]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: don't use @acronym.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
106* Invocation:: How to run Bison (to produce the parser source file).
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f56274a8
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
35430378 133Writing GLR Parsers
fa7e68c3 134
35430378
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 138* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
f56274a8
DJ
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
bfa74976 146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
150* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
151
152Reverse Polish Notation Calculator
153
f56274a8
DJ
154* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
155* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
156* Rpcalc Lexer:: The lexical analyzer.
157* Rpcalc Main:: The controlling function.
158* Rpcalc Error:: The error reporting function.
159* Rpcalc Generate:: Running Bison on the grammar file.
160* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
f56274a8
DJ
170* Ltcalc Declarations:: Bison and C declarations for ltcalc.
171* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
172* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
f56274a8
DJ
176* Mfcalc Declarations:: Bison declarations for multi-function calculator.
177* Mfcalc Rules:: Grammar rules for the calculator.
178* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
f56274a8 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
1f68dca5 208* Named References:: Using named references in actions.
bfa74976 209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
35430378 334* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
35430378
JD
354annotated context-free grammar into a deterministic LR or
355generalized LR (GLR) parser employing
356LALR(1), IELR(1), or canonical LR(1)
51c7ca01 357parser tables.
34a6c2d1
JD
358Once you are proficient with Bison, you can use it to develop a wide
359range of language parsers, from those used in simple desk calculators to
360complex programming languages.
bfa74976
RS
361
362Bison is upward compatible with Yacc: all properly-written Yacc grammars
363ought to work with Bison with no change. Anyone familiar with Yacc
364should be able to use Bison with little trouble. You need to be fluent in
1e137b71 365C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
366
367We begin with tutorial chapters that explain the basic concepts of using
368Bison and show three explained examples, each building on the last. If you
369don't know Bison or Yacc, start by reading these chapters. Reference
370chapters follow which describe specific aspects of Bison in detail.
371
931c7513
RS
372Bison was written primarily by Robert Corbett; Richard Stallman made it
373Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 374multi-character string literals and other features.
931c7513 375
df1af54c 376This edition corresponds to version @value{VERSION} of Bison.
bfa74976 377
342b8b6e 378@node Conditions
bfa74976
RS
379@unnumbered Conditions for Using Bison
380
193d7c70
PE
381The distribution terms for Bison-generated parsers permit using the
382parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 383permissions applied only when Bison was generating LALR(1)
193d7c70 384parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 385parsers could be used only in programs that were free software.
a31239f1 386
35430378 387The other GNU programming tools, such as the GNU C
c827f760 388compiler, have never
9ecbd125 389had such a requirement. They could always be used for nonfree
a31239f1
RS
390software. The reason Bison was different was not due to a special
391policy decision; it resulted from applying the usual General Public
392License to all of the Bison source code.
393
394The output of the Bison utility---the Bison parser file---contains a
395verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
396parser's implementation. (The actions from your grammar are inserted
397into this implementation at one point, but most of the rest of the
35430378 398implementation is not changed.) When we applied the GPL
193d7c70 399terms to the skeleton code for the parser's implementation,
a31239f1
RS
400the effect was to restrict the use of Bison output to free software.
401
402We didn't change the terms because of sympathy for people who want to
403make software proprietary. @strong{Software should be free.} But we
404concluded that limiting Bison's use to free software was doing little to
405encourage people to make other software free. So we decided to make the
406practical conditions for using Bison match the practical conditions for
35430378 407using the other GNU tools.
bfa74976 408
193d7c70
PE
409This exception applies when Bison is generating code for a parser.
410You can tell whether the exception applies to a Bison output file by
411inspecting the file for text beginning with ``As a special
412exception@dots{}''. The text spells out the exact terms of the
413exception.
262aa8dd 414
f16b0819
PE
415@node Copying
416@unnumbered GNU GENERAL PUBLIC LICENSE
417@include gpl-3.0.texi
bfa74976 418
342b8b6e 419@node Concepts
bfa74976
RS
420@chapter The Concepts of Bison
421
422This chapter introduces many of the basic concepts without which the
423details of Bison will not make sense. If you do not already know how to
424use Bison or Yacc, we suggest you start by reading this chapter carefully.
425
426@menu
f56274a8
DJ
427* Language and Grammar:: Languages and context-free grammars,
428 as mathematical ideas.
429* Grammar in Bison:: How we represent grammars for Bison's sake.
430* Semantic Values:: Each token or syntactic grouping can have
431 a semantic value (the value of an integer,
432 the name of an identifier, etc.).
433* Semantic Actions:: Each rule can have an action containing C code.
434* GLR Parsers:: Writing parsers for general context-free languages.
435* Locations Overview:: Tracking Locations.
436* Bison Parser:: What are Bison's input and output,
437 how is the output used?
438* Stages:: Stages in writing and running Bison grammars.
439* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
440@end menu
441
342b8b6e 442@node Language and Grammar
bfa74976
RS
443@section Languages and Context-Free Grammars
444
bfa74976
RS
445@cindex context-free grammar
446@cindex grammar, context-free
447In order for Bison to parse a language, it must be described by a
448@dfn{context-free grammar}. This means that you specify one or more
449@dfn{syntactic groupings} and give rules for constructing them from their
450parts. For example, in the C language, one kind of grouping is called an
451`expression'. One rule for making an expression might be, ``An expression
452can be made of a minus sign and another expression''. Another would be,
453``An expression can be an integer''. As you can see, rules are often
454recursive, but there must be at least one rule which leads out of the
455recursion.
456
35430378 457@cindex BNF
bfa74976
RS
458@cindex Backus-Naur form
459The most common formal system for presenting such rules for humans to read
35430378 460is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 461order to specify the language Algol 60. Any grammar expressed in
35430378
JD
462BNF is a context-free grammar. The input to Bison is
463essentially machine-readable BNF.
bfa74976 464
35430378
JD
465@cindex LALR(1) grammars
466@cindex IELR(1) grammars
467@cindex LR(1) grammars
34a6c2d1
JD
468There are various important subclasses of context-free grammars.
469Although it can handle almost all context-free grammars, Bison is
35430378 470optimized for what are called LR(1) grammars.
34a6c2d1
JD
471In brief, in these grammars, it must be possible to tell how to parse
472any portion of an input string with just a single token of lookahead.
473For historical reasons, Bison by default is limited by the additional
35430378 474restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
3b1977ea 477As an experimental feature, you can escape these additional restrictions by
35430378 478requesting IELR(1) or canonical LR(1) parser tables.
34a6c2d1 479@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 480
35430378
JD
481@cindex GLR parsing
482@cindex generalized LR (GLR) parsing
676385e2 483@cindex ambiguous grammars
9d9b8b70 484@cindex nondeterministic parsing
9501dc6e 485
35430378 486Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
487roughly that the next grammar rule to apply at any point in the input is
488uniquely determined by the preceding input and a fixed, finite portion
742e4900 489(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 490grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 491apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 492grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 493lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 494With the proper declarations, Bison is also able to parse these more
35430378
JD
495general context-free grammars, using a technique known as GLR
496parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
497are able to handle any context-free grammar for which the number of
498possible parses of any given string is finite.
676385e2 499
bfa74976
RS
500@cindex symbols (abstract)
501@cindex token
502@cindex syntactic grouping
503@cindex grouping, syntactic
9501dc6e
AD
504In the formal grammatical rules for a language, each kind of syntactic
505unit or grouping is named by a @dfn{symbol}. Those which are built by
506grouping smaller constructs according to grammatical rules are called
bfa74976
RS
507@dfn{nonterminal symbols}; those which can't be subdivided are called
508@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
509corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 510corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
511
512We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
513nonterminal, mean. The tokens of C are identifiers, constants (numeric
514and string), and the various keywords, arithmetic operators and
515punctuation marks. So the terminal symbols of a grammar for C include
516`identifier', `number', `string', plus one symbol for each keyword,
517operator or punctuation mark: `if', `return', `const', `static', `int',
518`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
519(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
520lexicography, not grammar.)
521
522Here is a simple C function subdivided into tokens:
523
9edcd895
AD
524@ifinfo
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
528 @r{identifier, close-paren} */
529@{ /* @r{open-brace} */
aa08666d
AD
530 return x * x; /* @r{keyword `return', identifier, asterisk,}
531 @r{identifier, semicolon} */
9edcd895
AD
532@} /* @r{close-brace} */
533@end example
534@end ifinfo
535@ifnotinfo
bfa74976
RS
536@example
537int /* @r{keyword `int'} */
14d4662b 538square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 539@{ /* @r{open-brace} */
9edcd895 540 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
541@} /* @r{close-brace} */
542@end example
9edcd895 543@end ifnotinfo
bfa74976
RS
544
545The syntactic groupings of C include the expression, the statement, the
546declaration, and the function definition. These are represented in the
547grammar of C by nonterminal symbols `expression', `statement',
548`declaration' and `function definition'. The full grammar uses dozens of
549additional language constructs, each with its own nonterminal symbol, in
550order to express the meanings of these four. The example above is a
551function definition; it contains one declaration, and one statement. In
552the statement, each @samp{x} is an expression and so is @samp{x * x}.
553
554Each nonterminal symbol must have grammatical rules showing how it is made
555out of simpler constructs. For example, one kind of C statement is the
556@code{return} statement; this would be described with a grammar rule which
557reads informally as follows:
558
559@quotation
560A `statement' can be made of a `return' keyword, an `expression' and a
561`semicolon'.
562@end quotation
563
564@noindent
565There would be many other rules for `statement', one for each kind of
566statement in C.
567
568@cindex start symbol
569One nonterminal symbol must be distinguished as the special one which
570defines a complete utterance in the language. It is called the @dfn{start
571symbol}. In a compiler, this means a complete input program. In the C
572language, the nonterminal symbol `sequence of definitions and declarations'
573plays this role.
574
575For example, @samp{1 + 2} is a valid C expression---a valid part of a C
576program---but it is not valid as an @emph{entire} C program. In the
577context-free grammar of C, this follows from the fact that `expression' is
578not the start symbol.
579
580The Bison parser reads a sequence of tokens as its input, and groups the
581tokens using the grammar rules. If the input is valid, the end result is
582that the entire token sequence reduces to a single grouping whose symbol is
583the grammar's start symbol. If we use a grammar for C, the entire input
584must be a `sequence of definitions and declarations'. If not, the parser
585reports a syntax error.
586
342b8b6e 587@node Grammar in Bison
bfa74976
RS
588@section From Formal Rules to Bison Input
589@cindex Bison grammar
590@cindex grammar, Bison
591@cindex formal grammar
592
593A formal grammar is a mathematical construct. To define the language
594for Bison, you must write a file expressing the grammar in Bison syntax:
595a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
596
597A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 598as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
599in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
600
601The Bison representation for a terminal symbol is also called a @dfn{token
602type}. Token types as well can be represented as C-like identifiers. By
603convention, these identifiers should be upper case to distinguish them from
604nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
605@code{RETURN}. A terminal symbol that stands for a particular keyword in
606the language should be named after that keyword converted to upper case.
607The terminal symbol @code{error} is reserved for error recovery.
931c7513 608@xref{Symbols}.
bfa74976
RS
609
610A terminal symbol can also be represented as a character literal, just like
611a C character constant. You should do this whenever a token is just a
612single character (parenthesis, plus-sign, etc.): use that same character in
613a literal as the terminal symbol for that token.
614
931c7513
RS
615A third way to represent a terminal symbol is with a C string constant
616containing several characters. @xref{Symbols}, for more information.
617
bfa74976
RS
618The grammar rules also have an expression in Bison syntax. For example,
619here is the Bison rule for a C @code{return} statement. The semicolon in
620quotes is a literal character token, representing part of the C syntax for
621the statement; the naked semicolon, and the colon, are Bison punctuation
622used in every rule.
623
624@example
625stmt: RETURN expr ';'
626 ;
627@end example
628
629@noindent
630@xref{Rules, ,Syntax of Grammar Rules}.
631
342b8b6e 632@node Semantic Values
bfa74976
RS
633@section Semantic Values
634@cindex semantic value
635@cindex value, semantic
636
637A formal grammar selects tokens only by their classifications: for example,
638if a rule mentions the terminal symbol `integer constant', it means that
639@emph{any} integer constant is grammatically valid in that position. The
640precise value of the constant is irrelevant to how to parse the input: if
641@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 642grammatical.
bfa74976
RS
643
644But the precise value is very important for what the input means once it is
645parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6463989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
647has both a token type and a @dfn{semantic value}. @xref{Semantics,
648,Defining Language Semantics},
bfa74976
RS
649for details.
650
651The token type is a terminal symbol defined in the grammar, such as
652@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
653you need to know to decide where the token may validly appear and how to
654group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 655except their types.
bfa74976
RS
656
657The semantic value has all the rest of the information about the
658meaning of the token, such as the value of an integer, or the name of an
659identifier. (A token such as @code{','} which is just punctuation doesn't
660need to have any semantic value.)
661
662For example, an input token might be classified as token type
663@code{INTEGER} and have the semantic value 4. Another input token might
664have the same token type @code{INTEGER} but value 3989. When a grammar
665rule says that @code{INTEGER} is allowed, either of these tokens is
666acceptable because each is an @code{INTEGER}. When the parser accepts the
667token, it keeps track of the token's semantic value.
668
669Each grouping can also have a semantic value as well as its nonterminal
670symbol. For example, in a calculator, an expression typically has a
671semantic value that is a number. In a compiler for a programming
672language, an expression typically has a semantic value that is a tree
673structure describing the meaning of the expression.
674
342b8b6e 675@node Semantic Actions
bfa74976
RS
676@section Semantic Actions
677@cindex semantic actions
678@cindex actions, semantic
679
680In order to be useful, a program must do more than parse input; it must
681also produce some output based on the input. In a Bison grammar, a grammar
682rule can have an @dfn{action} made up of C statements. Each time the
683parser recognizes a match for that rule, the action is executed.
684@xref{Actions}.
13863333 685
bfa74976
RS
686Most of the time, the purpose of an action is to compute the semantic value
687of the whole construct from the semantic values of its parts. For example,
688suppose we have a rule which says an expression can be the sum of two
689expressions. When the parser recognizes such a sum, each of the
690subexpressions has a semantic value which describes how it was built up.
691The action for this rule should create a similar sort of value for the
692newly recognized larger expression.
693
694For example, here is a rule that says an expression can be the sum of
695two subexpressions:
696
697@example
698expr: expr '+' expr @{ $$ = $1 + $3; @}
699 ;
700@end example
701
702@noindent
703The action says how to produce the semantic value of the sum expression
704from the values of the two subexpressions.
705
676385e2 706@node GLR Parsers
35430378
JD
707@section Writing GLR Parsers
708@cindex GLR parsing
709@cindex generalized LR (GLR) parsing
676385e2
PH
710@findex %glr-parser
711@cindex conflicts
712@cindex shift/reduce conflicts
fa7e68c3 713@cindex reduce/reduce conflicts
676385e2 714
34a6c2d1 715In some grammars, Bison's deterministic
35430378 716LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
717certain grammar rule at a given point. That is, it may not be able to
718decide (on the basis of the input read so far) which of two possible
719reductions (applications of a grammar rule) applies, or whether to apply
720a reduction or read more of the input and apply a reduction later in the
721input. These are known respectively as @dfn{reduce/reduce} conflicts
722(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
723(@pxref{Shift/Reduce}).
724
35430378 725To use a grammar that is not easily modified to be LR(1), a
9501dc6e 726more general parsing algorithm is sometimes necessary. If you include
676385e2 727@code{%glr-parser} among the Bison declarations in your file
35430378
JD
728(@pxref{Grammar Outline}), the result is a Generalized LR
729(GLR) parser. These parsers handle Bison grammars that
9501dc6e 730contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 731declarations) identically to deterministic parsers. However, when
9501dc6e 732faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 733GLR parsers use the simple expedient of doing both,
9501dc6e
AD
734effectively cloning the parser to follow both possibilities. Each of
735the resulting parsers can again split, so that at any given time, there
736can be any number of possible parses being explored. The parsers
676385e2
PH
737proceed in lockstep; that is, all of them consume (shift) a given input
738symbol before any of them proceed to the next. Each of the cloned
739parsers eventually meets one of two possible fates: either it runs into
740a parsing error, in which case it simply vanishes, or it merges with
741another parser, because the two of them have reduced the input to an
742identical set of symbols.
743
744During the time that there are multiple parsers, semantic actions are
745recorded, but not performed. When a parser disappears, its recorded
746semantic actions disappear as well, and are never performed. When a
747reduction makes two parsers identical, causing them to merge, Bison
748records both sets of semantic actions. Whenever the last two parsers
749merge, reverting to the single-parser case, Bison resolves all the
750outstanding actions either by precedences given to the grammar rules
751involved, or by performing both actions, and then calling a designated
752user-defined function on the resulting values to produce an arbitrary
753merged result.
754
fa7e68c3 755@menu
35430378
JD
756* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
757* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 758* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 759* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
760@end menu
761
762@node Simple GLR Parsers
35430378
JD
763@subsection Using GLR on Unambiguous Grammars
764@cindex GLR parsing, unambiguous grammars
765@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
766@findex %glr-parser
767@findex %expect-rr
768@cindex conflicts
769@cindex reduce/reduce conflicts
770@cindex shift/reduce conflicts
771
35430378
JD
772In the simplest cases, you can use the GLR algorithm
773to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 774Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 788and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
35430378 811With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
35430378
JD
834use the GLR algorithm.
835When the GLR parser reaches the critical state, it
fa7e68c3
PE
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
35430378
JD
850lookahead than the underlying LR(1) algorithm actually allows
851for. In this example, LR(2) would suffice, but also some cases
852that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 853
35430378 854In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
35430378 905When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
35430378 915The parser can be turned into a GLR parser, while also telling Bison
fa7e68c3 916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
35430378 931So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
35430378
JD
934analyze the conflicts reported by Bison to make sure that GLR
935splitting is only done where it is intended. A GLR parser
f8e1c9e5 936splitting inadvertently may cause problems less obvious than an
35430378 937LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
35430378 942eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
35430378
JD
954@subsection Using GLR to Resolve Ambiguities
955@cindex GLR parsing, ambiguous grammars
956@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1021time it encounters @code{x} in the example above. Since this is a
35430378 1022GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1030
35430378 1031At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
35430378 1051This is another example of using GLR to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
35430378 1122action in a GLR parser.
32c29292
JD
1123
1124@vindex yychar
35430378 1125@cindex GLR parsers and @code{yychar}
32c29292 1126@vindex yylval
35430378 1127@cindex GLR parsers and @code{yylval}
32c29292 1128@vindex yylloc
35430378 1129@cindex GLR parsers and @code{yylloc}
32c29292 1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
35430378 1140@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
35430378 1152@cindex GLR parsers and @code{YYERROR}
32c29292 1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1155initiate error recovery.
35430378 1156During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1157the same as its effect in a deterministic parser.
32c29292
JD
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41 1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1162describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1163
fa7e68c3 1164@node Compiler Requirements
35430378 1165@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1166@cindex @code{inline}
35430378 1167@cindex GLR parsers and @code{inline}
fa7e68c3 1168
35430378 1169The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
35430378 1272headers. On some non-GNU hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f56274a8
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f56274a8
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f56274a8 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
35430378 1650Only a simple lexical analyzer is needed for the RPN
c827f760 1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f56274a8 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
1866%left NEG /* negation--unary minus */
38a92d50 1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
1900associativity. (These tokens are single-character literals, which
1901ordinarily don't need to be declared. We declare them here to specify
1902the associativity.)
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1908by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1909Precedence}.
bfa74976 1910
704a47c4
AD
1911The other important new feature is the @code{%prec} in the grammar
1912section for the unary minus operator. The @code{%prec} simply instructs
1913Bison that the rule @samp{| '-' exp} has the same precedence as
1914@code{NEG}---in this case the next-to-highest. @xref{Contextual
1915Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1916
1917Here is a sample run of @file{calc.y}:
1918
1919@need 500
1920@example
9edcd895
AD
1921$ @kbd{calc}
1922@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19236.880952381
9edcd895 1924@kbd{-56 + 2}
bfa74976 1925-54
9edcd895 1926@kbd{3 ^ 2}
bfa74976
RS
19279
1928@end example
1929
342b8b6e 1930@node Simple Error Recovery
bfa74976
RS
1931@section Simple Error Recovery
1932@cindex error recovery, simple
1933
1934Up to this point, this manual has not addressed the issue of @dfn{error
1935recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1936error. All we have handled is error reporting with @code{yyerror}.
1937Recall that by default @code{yyparse} returns after calling
1938@code{yyerror}. This means that an erroneous input line causes the
1939calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1940
1941The Bison language itself includes the reserved word @code{error}, which
1942may be included in the grammar rules. In the example below it has
1943been added to one of the alternatives for @code{line}:
1944
1945@example
1946@group
1947line: '\n'
1948 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1949 | error '\n' @{ yyerrok; @}
1950;
1951@end group
1952@end example
1953
ceed8467 1954This addition to the grammar allows for simple error recovery in the
6e649e65 1955event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1956read, the error will be recognized by the third rule for @code{line},
1957and parsing will continue. (The @code{yyerror} function is still called
1958upon to print its message as well.) The action executes the statement
1959@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1960that error recovery is complete (@pxref{Error Recovery}). Note the
1961difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1962misprint.
bfa74976
RS
1963
1964This form of error recovery deals with syntax errors. There are other
1965kinds of errors; for example, division by zero, which raises an exception
1966signal that is normally fatal. A real calculator program must handle this
1967signal and use @code{longjmp} to return to @code{main} and resume parsing
1968input lines; it would also have to discard the rest of the current line of
1969input. We won't discuss this issue further because it is not specific to
1970Bison programs.
1971
342b8b6e
AD
1972@node Location Tracking Calc
1973@section Location Tracking Calculator: @code{ltcalc}
1974@cindex location tracking calculator
1975@cindex @code{ltcalc}
1976@cindex calculator, location tracking
1977
9edcd895
AD
1978This example extends the infix notation calculator with location
1979tracking. This feature will be used to improve the error messages. For
1980the sake of clarity, this example is a simple integer calculator, since
1981most of the work needed to use locations will be done in the lexical
72d2299c 1982analyzer.
342b8b6e
AD
1983
1984@menu
f56274a8
DJ
1985* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1986* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1987* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1988@end menu
1989
f56274a8 1990@node Ltcalc Declarations
342b8b6e
AD
1991@subsection Declarations for @code{ltcalc}
1992
9edcd895
AD
1993The C and Bison declarations for the location tracking calculator are
1994the same as the declarations for the infix notation calculator.
342b8b6e
AD
1995
1996@example
1997/* Location tracking calculator. */
1998
1999%@{
38a92d50
PE
2000 #define YYSTYPE int
2001 #include <math.h>
2002 int yylex (void);
2003 void yyerror (char const *);
342b8b6e
AD
2004%@}
2005
2006/* Bison declarations. */
2007%token NUM
2008
2009%left '-' '+'
2010%left '*' '/'
2011%left NEG
2012%right '^'
2013
38a92d50 2014%% /* The grammar follows. */
342b8b6e
AD
2015@end example
2016
9edcd895
AD
2017@noindent
2018Note there are no declarations specific to locations. Defining a data
2019type for storing locations is not needed: we will use the type provided
2020by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2021four member structure with the following integer fields:
2022@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2023@code{last_column}. By conventions, and in accordance with the GNU
2024Coding Standards and common practice, the line and column count both
2025start at 1.
342b8b6e
AD
2026
2027@node Ltcalc Rules
2028@subsection Grammar Rules for @code{ltcalc}
2029
9edcd895
AD
2030Whether handling locations or not has no effect on the syntax of your
2031language. Therefore, grammar rules for this example will be very close
2032to those of the previous example: we will only modify them to benefit
2033from the new information.
342b8b6e 2034
9edcd895
AD
2035Here, we will use locations to report divisions by zero, and locate the
2036wrong expressions or subexpressions.
342b8b6e
AD
2037
2038@example
2039@group
2040input : /* empty */
2041 | input line
2042;
2043@end group
2044
2045@group
2046line : '\n'
2047 | exp '\n' @{ printf ("%d\n", $1); @}
2048;
2049@end group
2050
2051@group
2052exp : NUM @{ $$ = $1; @}
2053 | exp '+' exp @{ $$ = $1 + $3; @}
2054 | exp '-' exp @{ $$ = $1 - $3; @}
2055 | exp '*' exp @{ $$ = $1 * $3; @}
2056@end group
342b8b6e 2057@group
9edcd895 2058 | exp '/' exp
342b8b6e
AD
2059 @{
2060 if ($3)
2061 $$ = $1 / $3;
2062 else
2063 @{
2064 $$ = 1;
9edcd895
AD
2065 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2066 @@3.first_line, @@3.first_column,
2067 @@3.last_line, @@3.last_column);
342b8b6e
AD
2068 @}
2069 @}
2070@end group
2071@group
178e123e 2072 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2073 | exp '^' exp @{ $$ = pow ($1, $3); @}
2074 | '(' exp ')' @{ $$ = $2; @}
2075@end group
2076@end example
2077
2078This code shows how to reach locations inside of semantic actions, by
2079using the pseudo-variables @code{@@@var{n}} for rule components, and the
2080pseudo-variable @code{@@$} for groupings.
2081
9edcd895
AD
2082We don't need to assign a value to @code{@@$}: the output parser does it
2083automatically. By default, before executing the C code of each action,
2084@code{@@$} is set to range from the beginning of @code{@@1} to the end
2085of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2086can be redefined (@pxref{Location Default Action, , Default Action for
2087Locations}), and for very specific rules, @code{@@$} can be computed by
2088hand.
342b8b6e
AD
2089
2090@node Ltcalc Lexer
2091@subsection The @code{ltcalc} Lexical Analyzer.
2092
9edcd895 2093Until now, we relied on Bison's defaults to enable location
72d2299c 2094tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2095able to feed the parser with the token locations, as it already does for
2096semantic values.
342b8b6e 2097
9edcd895
AD
2098To this end, we must take into account every single character of the
2099input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2100
2101@example
2102@group
2103int
2104yylex (void)
2105@{
2106 int c;
18b519c0 2107@end group
342b8b6e 2108
18b519c0 2109@group
72d2299c 2110 /* Skip white space. */
342b8b6e
AD
2111 while ((c = getchar ()) == ' ' || c == '\t')
2112 ++yylloc.last_column;
18b519c0 2113@end group
342b8b6e 2114
18b519c0 2115@group
72d2299c 2116 /* Step. */
342b8b6e
AD
2117 yylloc.first_line = yylloc.last_line;
2118 yylloc.first_column = yylloc.last_column;
2119@end group
2120
2121@group
72d2299c 2122 /* Process numbers. */
342b8b6e
AD
2123 if (isdigit (c))
2124 @{
2125 yylval = c - '0';
2126 ++yylloc.last_column;
2127 while (isdigit (c = getchar ()))
2128 @{
2129 ++yylloc.last_column;
2130 yylval = yylval * 10 + c - '0';
2131 @}
2132 ungetc (c, stdin);
2133 return NUM;
2134 @}
2135@end group
2136
72d2299c 2137 /* Return end-of-input. */
342b8b6e
AD
2138 if (c == EOF)
2139 return 0;
2140
72d2299c 2141 /* Return a single char, and update location. */
342b8b6e
AD
2142 if (c == '\n')
2143 @{
2144 ++yylloc.last_line;
2145 yylloc.last_column = 0;
2146 @}
2147 else
2148 ++yylloc.last_column;
2149 return c;
2150@}
2151@end example
2152
9edcd895
AD
2153Basically, the lexical analyzer performs the same processing as before:
2154it skips blanks and tabs, and reads numbers or single-character tokens.
2155In addition, it updates @code{yylloc}, the global variable (of type
2156@code{YYLTYPE}) containing the token's location.
342b8b6e 2157
9edcd895 2158Now, each time this function returns a token, the parser has its number
72d2299c 2159as well as its semantic value, and its location in the text. The last
9edcd895
AD
2160needed change is to initialize @code{yylloc}, for example in the
2161controlling function:
342b8b6e
AD
2162
2163@example
9edcd895 2164@group
342b8b6e
AD
2165int
2166main (void)
2167@{
2168 yylloc.first_line = yylloc.last_line = 1;
2169 yylloc.first_column = yylloc.last_column = 0;
2170 return yyparse ();
2171@}
9edcd895 2172@end group
342b8b6e
AD
2173@end example
2174
9edcd895
AD
2175Remember that computing locations is not a matter of syntax. Every
2176character must be associated to a location update, whether it is in
2177valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2178
2179@node Multi-function Calc
bfa74976
RS
2180@section Multi-Function Calculator: @code{mfcalc}
2181@cindex multi-function calculator
2182@cindex @code{mfcalc}
2183@cindex calculator, multi-function
2184
2185Now that the basics of Bison have been discussed, it is time to move on to
2186a more advanced problem. The above calculators provided only five
2187functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2188be nice to have a calculator that provides other mathematical functions such
2189as @code{sin}, @code{cos}, etc.
2190
2191It is easy to add new operators to the infix calculator as long as they are
2192only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2193back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2194adding a new operator. But we want something more flexible: built-in
2195functions whose syntax has this form:
2196
2197@example
2198@var{function_name} (@var{argument})
2199@end example
2200
2201@noindent
2202At the same time, we will add memory to the calculator, by allowing you
2203to create named variables, store values in them, and use them later.
2204Here is a sample session with the multi-function calculator:
2205
2206@example
9edcd895
AD
2207$ @kbd{mfcalc}
2208@kbd{pi = 3.141592653589}
bfa74976 22093.1415926536
9edcd895 2210@kbd{sin(pi)}
bfa74976 22110.0000000000
9edcd895 2212@kbd{alpha = beta1 = 2.3}
bfa74976 22132.3000000000
9edcd895 2214@kbd{alpha}
bfa74976 22152.3000000000
9edcd895 2216@kbd{ln(alpha)}
bfa74976 22170.8329091229
9edcd895 2218@kbd{exp(ln(beta1))}
bfa74976 22192.3000000000
9edcd895 2220$
bfa74976
RS
2221@end example
2222
2223Note that multiple assignment and nested function calls are permitted.
2224
2225@menu
f56274a8
DJ
2226* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2227* Mfcalc Rules:: Grammar rules for the calculator.
2228* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2229@end menu
2230
f56274a8 2231@node Mfcalc Declarations
bfa74976
RS
2232@subsection Declarations for @code{mfcalc}
2233
2234Here are the C and Bison declarations for the multi-function calculator.
2235
2236@smallexample
18b519c0 2237@group
bfa74976 2238%@{
38a92d50
PE
2239 #include <math.h> /* For math functions, cos(), sin(), etc. */
2240 #include "calc.h" /* Contains definition of `symrec'. */
2241 int yylex (void);
2242 void yyerror (char const *);
bfa74976 2243%@}
18b519c0
AD
2244@end group
2245@group
bfa74976 2246%union @{
38a92d50
PE
2247 double val; /* For returning numbers. */
2248 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2249@}
18b519c0 2250@end group
38a92d50
PE
2251%token <val> NUM /* Simple double precision number. */
2252%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2253%type <val> exp
2254
18b519c0 2255@group
bfa74976
RS
2256%right '='
2257%left '-' '+'
2258%left '*' '/'
38a92d50
PE
2259%left NEG /* negation--unary minus */
2260%right '^' /* exponentiation */
18b519c0 2261@end group
38a92d50 2262%% /* The grammar follows. */
bfa74976
RS
2263@end smallexample
2264
2265The above grammar introduces only two new features of the Bison language.
2266These features allow semantic values to have various data types
2267(@pxref{Multiple Types, ,More Than One Value Type}).
2268
2269The @code{%union} declaration specifies the entire list of possible types;
2270this is instead of defining @code{YYSTYPE}. The allowable types are now
2271double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2272the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2273
2274Since values can now have various types, it is necessary to associate a
2275type with each grammar symbol whose semantic value is used. These symbols
2276are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2277declarations are augmented with information about their data type (placed
2278between angle brackets).
2279
704a47c4
AD
2280The Bison construct @code{%type} is used for declaring nonterminal
2281symbols, just as @code{%token} is used for declaring token types. We
2282have not used @code{%type} before because nonterminal symbols are
2283normally declared implicitly by the rules that define them. But
2284@code{exp} must be declared explicitly so we can specify its value type.
2285@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2286
342b8b6e 2287@node Mfcalc Rules
bfa74976
RS
2288@subsection Grammar Rules for @code{mfcalc}
2289
2290Here are the grammar rules for the multi-function calculator.
2291Most of them are copied directly from @code{calc}; three rules,
2292those which mention @code{VAR} or @code{FNCT}, are new.
2293
2294@smallexample
18b519c0 2295@group
bfa74976
RS
2296input: /* empty */
2297 | input line
2298;
18b519c0 2299@end group
bfa74976 2300
18b519c0 2301@group
bfa74976
RS
2302line:
2303 '\n'
2304 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2305 | error '\n' @{ yyerrok; @}
2306;
18b519c0 2307@end group
bfa74976 2308
18b519c0 2309@group
bfa74976
RS
2310exp: NUM @{ $$ = $1; @}
2311 | VAR @{ $$ = $1->value.var; @}
2312 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2313 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2314 | exp '+' exp @{ $$ = $1 + $3; @}
2315 | exp '-' exp @{ $$ = $1 - $3; @}
2316 | exp '*' exp @{ $$ = $1 * $3; @}
2317 | exp '/' exp @{ $$ = $1 / $3; @}
2318 | '-' exp %prec NEG @{ $$ = -$2; @}
2319 | exp '^' exp @{ $$ = pow ($1, $3); @}
2320 | '(' exp ')' @{ $$ = $2; @}
2321;
18b519c0 2322@end group
38a92d50 2323/* End of grammar. */
bfa74976
RS
2324%%
2325@end smallexample
2326
f56274a8 2327@node Mfcalc Symbol Table
bfa74976
RS
2328@subsection The @code{mfcalc} Symbol Table
2329@cindex symbol table example
2330
2331The multi-function calculator requires a symbol table to keep track of the
2332names and meanings of variables and functions. This doesn't affect the
2333grammar rules (except for the actions) or the Bison declarations, but it
2334requires some additional C functions for support.
2335
2336The symbol table itself consists of a linked list of records. Its
2337definition, which is kept in the header @file{calc.h}, is as follows. It
2338provides for either functions or variables to be placed in the table.
2339
2340@smallexample
2341@group
38a92d50 2342/* Function type. */
32dfccf8 2343typedef double (*func_t) (double);
72f889cc 2344@end group
32dfccf8 2345
72f889cc 2346@group
38a92d50 2347/* Data type for links in the chain of symbols. */
bfa74976
RS
2348struct symrec
2349@{
38a92d50 2350 char *name; /* name of symbol */
bfa74976 2351 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2352 union
2353 @{
38a92d50
PE
2354 double var; /* value of a VAR */
2355 func_t fnctptr; /* value of a FNCT */
bfa74976 2356 @} value;
38a92d50 2357 struct symrec *next; /* link field */
bfa74976
RS
2358@};
2359@end group
2360
2361@group
2362typedef struct symrec symrec;
2363
38a92d50 2364/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2365extern symrec *sym_table;
2366
a730d142 2367symrec *putsym (char const *, int);
38a92d50 2368symrec *getsym (char const *);
bfa74976
RS
2369@end group
2370@end smallexample
2371
2372The new version of @code{main} includes a call to @code{init_table}, a
2373function that initializes the symbol table. Here it is, and
2374@code{init_table} as well:
2375
2376@smallexample
bfa74976
RS
2377#include <stdio.h>
2378
18b519c0 2379@group
38a92d50 2380/* Called by yyparse on error. */
13863333 2381void
38a92d50 2382yyerror (char const *s)
bfa74976
RS
2383@{
2384 printf ("%s\n", s);
2385@}
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976
RS
2389struct init
2390@{
38a92d50
PE
2391 char const *fname;
2392 double (*fnct) (double);
bfa74976
RS
2393@};
2394@end group
2395
2396@group
38a92d50 2397struct init const arith_fncts[] =
13863333 2398@{
32dfccf8
AD
2399 "sin", sin,
2400 "cos", cos,
13863333 2401 "atan", atan,
32dfccf8
AD
2402 "ln", log,
2403 "exp", exp,
13863333
AD
2404 "sqrt", sqrt,
2405 0, 0
2406@};
18b519c0 2407@end group
bfa74976 2408
18b519c0 2409@group
bfa74976 2410/* The symbol table: a chain of `struct symrec'. */
38a92d50 2411symrec *sym_table;
bfa74976
RS
2412@end group
2413
2414@group
72d2299c 2415/* Put arithmetic functions in table. */
13863333
AD
2416void
2417init_table (void)
bfa74976
RS
2418@{
2419 int i;
2420 symrec *ptr;
2421 for (i = 0; arith_fncts[i].fname != 0; i++)
2422 @{
2423 ptr = putsym (arith_fncts[i].fname, FNCT);
2424 ptr->value.fnctptr = arith_fncts[i].fnct;
2425 @}
2426@}
2427@end group
38a92d50
PE
2428
2429@group
2430int
2431main (void)
2432@{
2433 init_table ();
2434 return yyparse ();
2435@}
2436@end group
bfa74976
RS
2437@end smallexample
2438
2439By simply editing the initialization list and adding the necessary include
2440files, you can add additional functions to the calculator.
2441
2442Two important functions allow look-up and installation of symbols in the
2443symbol table. The function @code{putsym} is passed a name and the type
2444(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2445linked to the front of the list, and a pointer to the object is returned.
2446The function @code{getsym} is passed the name of the symbol to look up. If
2447found, a pointer to that symbol is returned; otherwise zero is returned.
2448
2449@smallexample
2450symrec *
38a92d50 2451putsym (char const *sym_name, int sym_type)
bfa74976
RS
2452@{
2453 symrec *ptr;
2454 ptr = (symrec *) malloc (sizeof (symrec));
2455 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2456 strcpy (ptr->name,sym_name);
2457 ptr->type = sym_type;
72d2299c 2458 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2459 ptr->next = (struct symrec *)sym_table;
2460 sym_table = ptr;
2461 return ptr;
2462@}
2463
2464symrec *
38a92d50 2465getsym (char const *sym_name)
bfa74976
RS
2466@{
2467 symrec *ptr;
2468 for (ptr = sym_table; ptr != (symrec *) 0;
2469 ptr = (symrec *)ptr->next)
2470 if (strcmp (ptr->name,sym_name) == 0)
2471 return ptr;
2472 return 0;
2473@}
2474@end smallexample
2475
2476The function @code{yylex} must now recognize variables, numeric values, and
2477the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2478characters with a leading letter are recognized as either variables or
bfa74976
RS
2479functions depending on what the symbol table says about them.
2480
2481The string is passed to @code{getsym} for look up in the symbol table. If
2482the name appears in the table, a pointer to its location and its type
2483(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2484already in the table, then it is installed as a @code{VAR} using
2485@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2486returned to @code{yyparse}.
bfa74976
RS
2487
2488No change is needed in the handling of numeric values and arithmetic
2489operators in @code{yylex}.
2490
2491@smallexample
2492@group
2493#include <ctype.h>
18b519c0 2494@end group
13863333 2495
18b519c0 2496@group
13863333
AD
2497int
2498yylex (void)
bfa74976
RS
2499@{
2500 int c;
2501
72d2299c 2502 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2503 while ((c = getchar ()) == ' ' || c == '\t');
2504
2505 if (c == EOF)
2506 return 0;
2507@end group
2508
2509@group
2510 /* Char starts a number => parse the number. */
2511 if (c == '.' || isdigit (c))
2512 @{
2513 ungetc (c, stdin);
2514 scanf ("%lf", &yylval.val);
2515 return NUM;
2516 @}
2517@end group
2518
2519@group
2520 /* Char starts an identifier => read the name. */
2521 if (isalpha (c))
2522 @{
2523 symrec *s;
2524 static char *symbuf = 0;
2525 static int length = 0;
2526 int i;
2527@end group
2528
2529@group
2530 /* Initially make the buffer long enough
2531 for a 40-character symbol name. */
2532 if (length == 0)
2533 length = 40, symbuf = (char *)malloc (length + 1);
2534
2535 i = 0;
2536 do
2537@end group
2538@group
2539 @{
2540 /* If buffer is full, make it bigger. */
2541 if (i == length)
2542 @{
2543 length *= 2;
18b519c0 2544 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2545 @}
2546 /* Add this character to the buffer. */
2547 symbuf[i++] = c;
2548 /* Get another character. */
2549 c = getchar ();
2550 @}
2551@end group
2552@group
72d2299c 2553 while (isalnum (c));
bfa74976
RS
2554
2555 ungetc (c, stdin);
2556 symbuf[i] = '\0';
2557@end group
2558
2559@group
2560 s = getsym (symbuf);
2561 if (s == 0)
2562 s = putsym (symbuf, VAR);
2563 yylval.tptr = s;
2564 return s->type;
2565 @}
2566
2567 /* Any other character is a token by itself. */
2568 return c;
2569@}
2570@end group
2571@end smallexample
2572
72d2299c 2573This program is both powerful and flexible. You may easily add new
704a47c4
AD
2574functions, and it is a simple job to modify this code to install
2575predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2576
342b8b6e 2577@node Exercises
bfa74976
RS
2578@section Exercises
2579@cindex exercises
2580
2581@enumerate
2582@item
2583Add some new functions from @file{math.h} to the initialization list.
2584
2585@item
2586Add another array that contains constants and their values. Then
2587modify @code{init_table} to add these constants to the symbol table.
2588It will be easiest to give the constants type @code{VAR}.
2589
2590@item
2591Make the program report an error if the user refers to an
2592uninitialized variable in any way except to store a value in it.
2593@end enumerate
2594
342b8b6e 2595@node Grammar File
bfa74976
RS
2596@chapter Bison Grammar Files
2597
2598Bison takes as input a context-free grammar specification and produces a
2599C-language function that recognizes correct instances of the grammar.
2600
2601The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2602@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2603
2604@menu
2605* Grammar Outline:: Overall layout of the grammar file.
2606* Symbols:: Terminal and nonterminal symbols.
2607* Rules:: How to write grammar rules.
2608* Recursion:: Writing recursive rules.
2609* Semantics:: Semantic values and actions.
847bf1f5 2610* Locations:: Locations and actions.
bfa74976
RS
2611* Declarations:: All kinds of Bison declarations are described here.
2612* Multiple Parsers:: Putting more than one Bison parser in one program.
2613@end menu
2614
342b8b6e 2615@node Grammar Outline
bfa74976
RS
2616@section Outline of a Bison Grammar
2617
2618A Bison grammar file has four main sections, shown here with the
2619appropriate delimiters:
2620
2621@example
2622%@{
38a92d50 2623 @var{Prologue}
bfa74976
RS
2624%@}
2625
2626@var{Bison declarations}
2627
2628%%
2629@var{Grammar rules}
2630%%
2631
75f5aaea 2632@var{Epilogue}
bfa74976
RS
2633@end example
2634
2635Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2636As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2637continues until end of line.
bfa74976
RS
2638
2639@menu
f56274a8 2640* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2641* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2642* Bison Declarations:: Syntax and usage of the Bison declarations section.
2643* Grammar Rules:: Syntax and usage of the grammar rules section.
2644* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2645@end menu
2646
38a92d50 2647@node Prologue
75f5aaea
MA
2648@subsection The prologue
2649@cindex declarations section
2650@cindex Prologue
2651@cindex declarations
bfa74976 2652
f8e1c9e5
AD
2653The @var{Prologue} section contains macro definitions and declarations
2654of functions and variables that are used in the actions in the grammar
2655rules. These are copied to the beginning of the parser file so that
2656they precede the definition of @code{yyparse}. You can use
2657@samp{#include} to get the declarations from a header file. If you
2658don't need any C declarations, you may omit the @samp{%@{} and
2659@samp{%@}} delimiters that bracket this section.
bfa74976 2660
9c437126 2661The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2662of @samp{%@}} that is outside a comment, a string literal, or a
2663character constant.
2664
c732d2c6
AD
2665You may have more than one @var{Prologue} section, intermixed with the
2666@var{Bison declarations}. This allows you to have C and Bison
2667declarations that refer to each other. For example, the @code{%union}
2668declaration may use types defined in a header file, and you may wish to
2669prototype functions that take arguments of type @code{YYSTYPE}. This
2670can be done with two @var{Prologue} blocks, one before and one after the
2671@code{%union} declaration.
2672
2673@smallexample
2674%@{
aef3da86 2675 #define _GNU_SOURCE
38a92d50
PE
2676 #include <stdio.h>
2677 #include "ptypes.h"
c732d2c6
AD
2678%@}
2679
2680%union @{
779e7ceb 2681 long int n;
c732d2c6
AD
2682 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2683@}
2684
2685%@{
38a92d50
PE
2686 static void print_token_value (FILE *, int, YYSTYPE);
2687 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2688%@}
2689
2690@dots{}
2691@end smallexample
2692
aef3da86
PE
2693When in doubt, it is usually safer to put prologue code before all
2694Bison declarations, rather than after. For example, any definitions
2695of feature test macros like @code{_GNU_SOURCE} or
2696@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2697feature test macros can affect the behavior of Bison-generated
2698@code{#include} directives.
2699
2cbe6b7f
JD
2700@node Prologue Alternatives
2701@subsection Prologue Alternatives
2702@cindex Prologue Alternatives
2703
136a0f76 2704@findex %code
16dc6a9e
JD
2705@findex %code requires
2706@findex %code provides
2707@findex %code top
85894313 2708
2cbe6b7f
JD
2709The functionality of @var{Prologue} sections can often be subtle and
2710inflexible.
8e0a5e9e
JD
2711As an alternative, Bison provides a %code directive with an explicit qualifier
2712field, which identifies the purpose of the code and thus the location(s) where
2713Bison should generate it.
2714For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2715one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2716@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2717
2718Look again at the example of the previous section:
2719
2720@smallexample
2721%@{
2722 #define _GNU_SOURCE
2723 #include <stdio.h>
2724 #include "ptypes.h"
2725%@}
2726
2727%union @{
2728 long int n;
2729 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2730@}
2731
2732%@{
2733 static void print_token_value (FILE *, int, YYSTYPE);
2734 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2735%@}
2736
2737@dots{}
2738@end smallexample
2739
2740@noindent
2741Notice that there are two @var{Prologue} sections here, but there's a subtle
2742distinction between their functionality.
2743For example, if you decide to override Bison's default definition for
2744@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2745definition?
2746You should write it in the first since Bison will insert that code into the
8e0a5e9e 2747parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2748In which @var{Prologue} section should you prototype an internal function,
2749@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2750arguments?
2751You should prototype it in the second since Bison will insert that code
2752@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2753
2754This distinction in functionality between the two @var{Prologue} sections is
2755established by the appearance of the @code{%union} between them.
a501eca9 2756This behavior raises a few questions.
2cbe6b7f
JD
2757First, why should the position of a @code{%union} affect definitions related to
2758@code{YYLTYPE} and @code{yytokentype}?
2759Second, what if there is no @code{%union}?
2760In that case, the second kind of @var{Prologue} section is not available.
2761This behavior is not intuitive.
2762
8e0a5e9e 2763To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2764@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2765Let's go ahead and add the new @code{YYLTYPE} definition and the
2766@code{trace_token} prototype at the same time:
2767
2768@smallexample
16dc6a9e 2769%code top @{
2cbe6b7f
JD
2770 #define _GNU_SOURCE
2771 #include <stdio.h>
8e0a5e9e
JD
2772
2773 /* WARNING: The following code really belongs
16dc6a9e 2774 * in a `%code requires'; see below. */
8e0a5e9e 2775
2cbe6b7f
JD
2776 #include "ptypes.h"
2777 #define YYLTYPE YYLTYPE
2778 typedef struct YYLTYPE
2779 @{
2780 int first_line;
2781 int first_column;
2782 int last_line;
2783 int last_column;
2784 char *filename;
2785 @} YYLTYPE;
2786@}
2787
2788%union @{
2789 long int n;
2790 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2791@}
2792
2793%code @{
2794 static void print_token_value (FILE *, int, YYSTYPE);
2795 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2796 static void trace_token (enum yytokentype token, YYLTYPE loc);
2797@}
2798
2799@dots{}
2800@end smallexample
2801
2802@noindent
16dc6a9e
JD
2803In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2804functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2805explicit which kind you intend.
2cbe6b7f
JD
2806Moreover, both kinds are always available even in the absence of @code{%union}.
2807
16dc6a9e 2808The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2809The first two lines before the warning need to appear near the top of the
2810parser source code file.
2811The first line after the warning is required by @code{YYSTYPE} and thus also
2812needs to appear in the parser source code file.
2cbe6b7f 2813However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2814(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2815the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2816The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2817override the default @code{YYLTYPE} definition there.
2818
16dc6a9e 2819In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2820lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2821definitions.
16dc6a9e 2822Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2823
2824@smallexample
16dc6a9e 2825%code top @{
2cbe6b7f
JD
2826 #define _GNU_SOURCE
2827 #include <stdio.h>
2828@}
2829
16dc6a9e 2830%code requires @{
9bc0dd67
JD
2831 #include "ptypes.h"
2832@}
2833%union @{
2834 long int n;
2835 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2836@}
2837
16dc6a9e 2838%code requires @{
2cbe6b7f
JD
2839 #define YYLTYPE YYLTYPE
2840 typedef struct YYLTYPE
2841 @{
2842 int first_line;
2843 int first_column;
2844 int last_line;
2845 int last_column;
2846 char *filename;
2847 @} YYLTYPE;
2848@}
2849
136a0f76 2850%code @{
2cbe6b7f
JD
2851 static void print_token_value (FILE *, int, YYSTYPE);
2852 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2853 static void trace_token (enum yytokentype token, YYLTYPE loc);
2854@}
2855
2856@dots{}
2857@end smallexample
2858
2859@noindent
2860Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2861definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2862definitions in both the parser source code file and the parser header file.
16dc6a9e 2863(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2864place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2865
a501eca9 2866When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2867should prefer @code{%code requires} over @code{%code top} regardless of whether
2868you instruct Bison to generate a parser header file.
a501eca9 2869When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2870source code file and that has no special need to appear at the top of that
16dc6a9e 2871file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2872These practices will make the purpose of each block of your code explicit to
2873Bison and to other developers reading your grammar file.
8e0a5e9e 2874Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2875@code{%code requires} to be the most important of the four @var{Prologue}
2876alternatives.
a501eca9 2877
2cbe6b7f
JD
2878At some point while developing your parser, you might decide to provide
2879@code{trace_token} to modules that are external to your parser.
2880Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2881header file and the parser source code file.
2882Since this function is not a dependency required by @code{YYSTYPE} or
2883@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2884@code{%code requires}.
2cbe6b7f 2885More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2886@code{%code requires} is not sufficient.
8e0a5e9e 2887Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2888@code{%code provides}:
2cbe6b7f
JD
2889
2890@smallexample
16dc6a9e 2891%code top @{
2cbe6b7f 2892 #define _GNU_SOURCE
136a0f76 2893 #include <stdio.h>
2cbe6b7f 2894@}
136a0f76 2895
16dc6a9e 2896%code requires @{
2cbe6b7f
JD
2897 #include "ptypes.h"
2898@}
2899%union @{
2900 long int n;
2901 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2902@}
2903
16dc6a9e 2904%code requires @{
2cbe6b7f
JD
2905 #define YYLTYPE YYLTYPE
2906 typedef struct YYLTYPE
2907 @{
2908 int first_line;
2909 int first_column;
2910 int last_line;
2911 int last_column;
2912 char *filename;
2913 @} YYLTYPE;
2914@}
2915
16dc6a9e 2916%code provides @{
2cbe6b7f
JD
2917 void trace_token (enum yytokentype token, YYLTYPE loc);
2918@}
2919
2920%code @{
9bc0dd67
JD
2921 static void print_token_value (FILE *, int, YYSTYPE);
2922 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2923@}
9bc0dd67
JD
2924
2925@dots{}
2926@end smallexample
2927
2cbe6b7f
JD
2928@noindent
2929Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2930file and the parser source code file after the definitions for
2931@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2932
2933The above examples are careful to write directives in an order that reflects
8e0a5e9e 2934the layout of the generated parser source code and header files:
16dc6a9e 2935@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2936@code{%code}.
a501eca9 2937While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2938this order, Bison does not require it.
2939Instead, Bison lets you choose an organization that makes sense to you.
2940
a501eca9 2941You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2942In that case, Bison concatenates the contained code in declaration order.
2943This is the only way in which the position of one of these directives within
2944the grammar file affects its functionality.
2945
2946The result of the previous two properties is greater flexibility in how you may
2947organize your grammar file.
2948For example, you may organize semantic-type-related directives by semantic
2949type:
2950
2951@smallexample
16dc6a9e 2952%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2953%union @{ type1 field1; @}
2954%destructor @{ type1_free ($$); @} <field1>
2955%printer @{ type1_print ($$); @} <field1>
2956
16dc6a9e 2957%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2958%union @{ type2 field2; @}
2959%destructor @{ type2_free ($$); @} <field2>
2960%printer @{ type2_print ($$); @} <field2>
2961@end smallexample
2962
2963@noindent
2964You could even place each of the above directive groups in the rules section of
2965the grammar file next to the set of rules that uses the associated semantic
2966type.
61fee93e
JD
2967(In the rules section, you must terminate each of those directives with a
2968semicolon.)
2cbe6b7f
JD
2969And you don't have to worry that some directive (like a @code{%union}) in the
2970definitions section is going to adversely affect their functionality in some
2971counter-intuitive manner just because it comes first.
2972Such an organization is not possible using @var{Prologue} sections.
2973
a501eca9 2974This section has been concerned with explaining the advantages of the four
8e0a5e9e 2975@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2976However, in most cases when using these directives, you shouldn't need to
2977think about all the low-level ordering issues discussed here.
2978Instead, you should simply use these directives to label each block of your
2979code according to its purpose and let Bison handle the ordering.
2980@code{%code} is the most generic label.
16dc6a9e
JD
2981Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2982as needed.
a501eca9 2983
342b8b6e 2984@node Bison Declarations
bfa74976
RS
2985@subsection The Bison Declarations Section
2986@cindex Bison declarations (introduction)
2987@cindex declarations, Bison (introduction)
2988
2989The @var{Bison declarations} section contains declarations that define
2990terminal and nonterminal symbols, specify precedence, and so on.
2991In some simple grammars you may not need any declarations.
2992@xref{Declarations, ,Bison Declarations}.
2993
342b8b6e 2994@node Grammar Rules
bfa74976
RS
2995@subsection The Grammar Rules Section
2996@cindex grammar rules section
2997@cindex rules section for grammar
2998
2999The @dfn{grammar rules} section contains one or more Bison grammar
3000rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3001
3002There must always be at least one grammar rule, and the first
3003@samp{%%} (which precedes the grammar rules) may never be omitted even
3004if it is the first thing in the file.
3005
38a92d50 3006@node Epilogue
75f5aaea 3007@subsection The epilogue
bfa74976 3008@cindex additional C code section
75f5aaea 3009@cindex epilogue
bfa74976
RS
3010@cindex C code, section for additional
3011
08e49d20
PE
3012The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3013the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3014place to put anything that you want to have in the parser file but which need
3015not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3016definitions of @code{yylex} and @code{yyerror} often go here. Because
3017C requires functions to be declared before being used, you often need
3018to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3019even if you define them in the Epilogue.
75f5aaea 3020@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3021
3022If the last section is empty, you may omit the @samp{%%} that separates it
3023from the grammar rules.
3024
f8e1c9e5
AD
3025The Bison parser itself contains many macros and identifiers whose names
3026start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3027any such names (except those documented in this manual) in the epilogue
3028of the grammar file.
bfa74976 3029
342b8b6e 3030@node Symbols
bfa74976
RS
3031@section Symbols, Terminal and Nonterminal
3032@cindex nonterminal symbol
3033@cindex terminal symbol
3034@cindex token type
3035@cindex symbol
3036
3037@dfn{Symbols} in Bison grammars represent the grammatical classifications
3038of the language.
3039
3040A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3041class of syntactically equivalent tokens. You use the symbol in grammar
3042rules to mean that a token in that class is allowed. The symbol is
3043represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3044function returns a token type code to indicate what kind of token has
3045been read. You don't need to know what the code value is; you can use
3046the symbol to stand for it.
bfa74976 3047
f8e1c9e5
AD
3048A @dfn{nonterminal symbol} stands for a class of syntactically
3049equivalent groupings. The symbol name is used in writing grammar rules.
3050By convention, it should be all lower case.
bfa74976 3051
c046698e
AD
3052Symbol names can contain letters, underscores, periods, dashes, and (not
3053at the beginning) digits. Dashes in symbol names are a GNU
35430378 3054extension, incompatible with POSIX Yacc. Terminal symbols
663ce7bb
AD
3055that contain periods or dashes make little sense: since they are not
3056valid symbols (in most programming languages) they are not exported as
3057token names.
bfa74976 3058
931c7513 3059There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3060
3061@itemize @bullet
3062@item
3063A @dfn{named token type} is written with an identifier, like an
c827f760 3064identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3065such name must be defined with a Bison declaration such as
3066@code{%token}. @xref{Token Decl, ,Token Type Names}.
3067
3068@item
3069@cindex character token
3070@cindex literal token
3071@cindex single-character literal
931c7513
RS
3072A @dfn{character token type} (or @dfn{literal character token}) is
3073written in the grammar using the same syntax used in C for character
3074constants; for example, @code{'+'} is a character token type. A
3075character token type doesn't need to be declared unless you need to
3076specify its semantic value data type (@pxref{Value Type, ,Data Types of
3077Semantic Values}), associativity, or precedence (@pxref{Precedence,
3078,Operator Precedence}).
bfa74976
RS
3079
3080By convention, a character token type is used only to represent a
3081token that consists of that particular character. Thus, the token
3082type @code{'+'} is used to represent the character @samp{+} as a
3083token. Nothing enforces this convention, but if you depart from it,
3084your program will confuse other readers.
3085
3086All the usual escape sequences used in character literals in C can be
3087used in Bison as well, but you must not use the null character as a
72d2299c
PE
3088character literal because its numeric code, zero, signifies
3089end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3090for @code{yylex}}). Also, unlike standard C, trigraphs have no
3091special meaning in Bison character literals, nor is backslash-newline
3092allowed.
931c7513
RS
3093
3094@item
3095@cindex string token
3096@cindex literal string token
9ecbd125 3097@cindex multicharacter literal
931c7513
RS
3098A @dfn{literal string token} is written like a C string constant; for
3099example, @code{"<="} is a literal string token. A literal string token
3100doesn't need to be declared unless you need to specify its semantic
14ded682 3101value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3102(@pxref{Precedence}).
3103
3104You can associate the literal string token with a symbolic name as an
3105alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3106Declarations}). If you don't do that, the lexical analyzer has to
3107retrieve the token number for the literal string token from the
3108@code{yytname} table (@pxref{Calling Convention}).
3109
c827f760 3110@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3111
3112By convention, a literal string token is used only to represent a token
3113that consists of that particular string. Thus, you should use the token
3114type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3115does not enforce this convention, but if you depart from it, people who
931c7513
RS
3116read your program will be confused.
3117
3118All the escape sequences used in string literals in C can be used in
92ac3705
PE
3119Bison as well, except that you must not use a null character within a
3120string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3121meaning in Bison string literals, nor is backslash-newline allowed. A
3122literal string token must contain two or more characters; for a token
3123containing just one character, use a character token (see above).
bfa74976
RS
3124@end itemize
3125
3126How you choose to write a terminal symbol has no effect on its
3127grammatical meaning. That depends only on where it appears in rules and
3128on when the parser function returns that symbol.
3129
72d2299c
PE
3130The value returned by @code{yylex} is always one of the terminal
3131symbols, except that a zero or negative value signifies end-of-input.
3132Whichever way you write the token type in the grammar rules, you write
3133it the same way in the definition of @code{yylex}. The numeric code
3134for a character token type is simply the positive numeric code of the
3135character, so @code{yylex} can use the identical value to generate the
3136requisite code, though you may need to convert it to @code{unsigned
3137char} to avoid sign-extension on hosts where @code{char} is signed.
3138Each named token type becomes a C macro in
bfa74976 3139the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3140(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3141@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3142
3143If @code{yylex} is defined in a separate file, you need to arrange for the
3144token-type macro definitions to be available there. Use the @samp{-d}
3145option when you run Bison, so that it will write these macro definitions
3146into a separate header file @file{@var{name}.tab.h} which you can include
3147in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3148
72d2299c 3149If you want to write a grammar that is portable to any Standard C
9d9b8b70 3150host, you must use only nonnull character tokens taken from the basic
c827f760 3151execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3152digits, the 52 lower- and upper-case English letters, and the
3153characters in the following C-language string:
3154
3155@example
3156"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3157@end example
3158
f8e1c9e5
AD
3159The @code{yylex} function and Bison must use a consistent character set
3160and encoding for character tokens. For example, if you run Bison in an
35430378 3161ASCII environment, but then compile and run the resulting
f8e1c9e5 3162program in an environment that uses an incompatible character set like
35430378
JD
3163EBCDIC, the resulting program may not work because the tables
3164generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3165character tokens. It is standard practice for software distributions to
3166contain C source files that were generated by Bison in an
35430378
JD
3167ASCII environment, so installers on platforms that are
3168incompatible with ASCII must rebuild those files before
f8e1c9e5 3169compiling them.
e966383b 3170
bfa74976
RS
3171The symbol @code{error} is a terminal symbol reserved for error recovery
3172(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3173In particular, @code{yylex} should never return this value. The default
3174value of the error token is 256, unless you explicitly assigned 256 to
3175one of your tokens with a @code{%token} declaration.
bfa74976 3176
342b8b6e 3177@node Rules
bfa74976
RS
3178@section Syntax of Grammar Rules
3179@cindex rule syntax
3180@cindex grammar rule syntax
3181@cindex syntax of grammar rules
3182
3183A Bison grammar rule has the following general form:
3184
3185@example
e425e872 3186@group
bfa74976
RS
3187@var{result}: @var{components}@dots{}
3188 ;
e425e872 3189@end group
bfa74976
RS
3190@end example
3191
3192@noindent
9ecbd125 3193where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3194and @var{components} are various terminal and nonterminal symbols that
13863333 3195are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3196
3197For example,
3198
3199@example
3200@group
3201exp: exp '+' exp
3202 ;
3203@end group
3204@end example
3205
3206@noindent
3207says that two groupings of type @code{exp}, with a @samp{+} token in between,
3208can be combined into a larger grouping of type @code{exp}.
3209
72d2299c
PE
3210White space in rules is significant only to separate symbols. You can add
3211extra white space as you wish.
bfa74976
RS
3212
3213Scattered among the components can be @var{actions} that determine
3214the semantics of the rule. An action looks like this:
3215
3216@example
3217@{@var{C statements}@}
3218@end example
3219
3220@noindent
287c78f6
PE
3221@cindex braced code
3222This is an example of @dfn{braced code}, that is, C code surrounded by
3223braces, much like a compound statement in C@. Braced code can contain
3224any sequence of C tokens, so long as its braces are balanced. Bison
3225does not check the braced code for correctness directly; it merely
3226copies the code to the output file, where the C compiler can check it.
3227
3228Within braced code, the balanced-brace count is not affected by braces
3229within comments, string literals, or character constants, but it is
3230affected by the C digraphs @samp{<%} and @samp{%>} that represent
3231braces. At the top level braced code must be terminated by @samp{@}}
3232and not by a digraph. Bison does not look for trigraphs, so if braced
3233code uses trigraphs you should ensure that they do not affect the
3234nesting of braces or the boundaries of comments, string literals, or
3235character constants.
3236
bfa74976
RS
3237Usually there is only one action and it follows the components.
3238@xref{Actions}.
3239
3240@findex |
3241Multiple rules for the same @var{result} can be written separately or can
3242be joined with the vertical-bar character @samp{|} as follows:
3243
bfa74976
RS
3244@example
3245@group
3246@var{result}: @var{rule1-components}@dots{}
3247 | @var{rule2-components}@dots{}
3248 @dots{}
3249 ;
3250@end group
3251@end example
bfa74976
RS
3252
3253@noindent
3254They are still considered distinct rules even when joined in this way.
3255
3256If @var{components} in a rule is empty, it means that @var{result} can
3257match the empty string. For example, here is how to define a
3258comma-separated sequence of zero or more @code{exp} groupings:
3259
3260@example
3261@group
3262expseq: /* empty */
3263 | expseq1
3264 ;
3265@end group
3266
3267@group
3268expseq1: exp
3269 | expseq1 ',' exp
3270 ;
3271@end group
3272@end example
3273
3274@noindent
3275It is customary to write a comment @samp{/* empty */} in each rule
3276with no components.
3277
342b8b6e 3278@node Recursion
bfa74976
RS
3279@section Recursive Rules
3280@cindex recursive rule
3281
f8e1c9e5
AD
3282A rule is called @dfn{recursive} when its @var{result} nonterminal
3283appears also on its right hand side. Nearly all Bison grammars need to
3284use recursion, because that is the only way to define a sequence of any
3285number of a particular thing. Consider this recursive definition of a
9ecbd125 3286comma-separated sequence of one or more expressions:
bfa74976
RS
3287
3288@example
3289@group
3290expseq1: exp
3291 | expseq1 ',' exp
3292 ;
3293@end group
3294@end example
3295
3296@cindex left recursion
3297@cindex right recursion
3298@noindent
3299Since the recursive use of @code{expseq1} is the leftmost symbol in the
3300right hand side, we call this @dfn{left recursion}. By contrast, here
3301the same construct is defined using @dfn{right recursion}:
3302
3303@example
3304@group
3305expseq1: exp
3306 | exp ',' expseq1
3307 ;
3308@end group
3309@end example
3310
3311@noindent
ec3bc396
AD
3312Any kind of sequence can be defined using either left recursion or right
3313recursion, but you should always use left recursion, because it can
3314parse a sequence of any number of elements with bounded stack space.
3315Right recursion uses up space on the Bison stack in proportion to the
3316number of elements in the sequence, because all the elements must be
3317shifted onto the stack before the rule can be applied even once.
3318@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3319of this.
bfa74976
RS
3320
3321@cindex mutual recursion
3322@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3323rule does not appear directly on its right hand side, but does appear
3324in rules for other nonterminals which do appear on its right hand
13863333 3325side.
bfa74976
RS
3326
3327For example:
3328
3329@example
3330@group
3331expr: primary
3332 | primary '+' primary
3333 ;
3334@end group
3335
3336@group
3337primary: constant
3338 | '(' expr ')'
3339 ;
3340@end group
3341@end example
3342
3343@noindent
3344defines two mutually-recursive nonterminals, since each refers to the
3345other.
3346
342b8b6e 3347@node Semantics
bfa74976
RS
3348@section Defining Language Semantics
3349@cindex defining language semantics
13863333 3350@cindex language semantics, defining
bfa74976
RS
3351
3352The grammar rules for a language determine only the syntax. The semantics
3353are determined by the semantic values associated with various tokens and
3354groupings, and by the actions taken when various groupings are recognized.
3355
3356For example, the calculator calculates properly because the value
3357associated with each expression is the proper number; it adds properly
3358because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3359the numbers associated with @var{x} and @var{y}.
3360
3361@menu
3362* Value Type:: Specifying one data type for all semantic values.
3363* Multiple Types:: Specifying several alternative data types.
3364* Actions:: An action is the semantic definition of a grammar rule.
3365* Action Types:: Specifying data types for actions to operate on.
3366* Mid-Rule Actions:: Most actions go at the end of a rule.
3367 This says when, why and how to use the exceptional
3368 action in the middle of a rule.
1f68dca5 3369* Named References:: Using named references in actions.
bfa74976
RS
3370@end menu
3371
342b8b6e 3372@node Value Type
bfa74976
RS
3373@subsection Data Types of Semantic Values
3374@cindex semantic value type
3375@cindex value type, semantic
3376@cindex data types of semantic values
3377@cindex default data type
3378
3379In a simple program it may be sufficient to use the same data type for
3380the semantic values of all language constructs. This was true in the
35430378 3381RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3382Notation Calculator}).
bfa74976 3383
ddc8ede1
PE
3384Bison normally uses the type @code{int} for semantic values if your
3385program uses the same data type for all language constructs. To
bfa74976
RS
3386specify some other type, define @code{YYSTYPE} as a macro, like this:
3387
3388@example
3389#define YYSTYPE double
3390@end example
3391
3392@noindent
50cce58e
PE
3393@code{YYSTYPE}'s replacement list should be a type name
3394that does not contain parentheses or square brackets.
342b8b6e 3395This macro definition must go in the prologue of the grammar file
75f5aaea 3396(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3397
342b8b6e 3398@node Multiple Types
bfa74976
RS
3399@subsection More Than One Value Type
3400
3401In most programs, you will need different data types for different kinds
3402of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3403@code{int} or @code{long int}, while a string constant needs type
3404@code{char *}, and an identifier might need a pointer to an entry in the
3405symbol table.
bfa74976
RS
3406
3407To use more than one data type for semantic values in one parser, Bison
3408requires you to do two things:
3409
3410@itemize @bullet
3411@item
ddc8ede1 3412Specify the entire collection of possible data types, either by using the
704a47c4 3413@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3414Value Types}), or by using a @code{typedef} or a @code{#define} to
3415define @code{YYSTYPE} to be a union type whose member names are
3416the type tags.
bfa74976
RS
3417
3418@item
14ded682
AD
3419Choose one of those types for each symbol (terminal or nonterminal) for
3420which semantic values are used. This is done for tokens with the
3421@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3422and for groupings with the @code{%type} Bison declaration (@pxref{Type
3423Decl, ,Nonterminal Symbols}).
bfa74976
RS
3424@end itemize
3425
342b8b6e 3426@node Actions
bfa74976
RS
3427@subsection Actions
3428@cindex action
3429@vindex $$
3430@vindex $@var{n}
1f68dca5
AR
3431@vindex $@var{name}
3432@vindex $[@var{name}]
bfa74976
RS
3433
3434An action accompanies a syntactic rule and contains C code to be executed
3435each time an instance of that rule is recognized. The task of most actions
3436is to compute a semantic value for the grouping built by the rule from the
3437semantic values associated with tokens or smaller groupings.
3438
287c78f6
PE
3439An action consists of braced code containing C statements, and can be
3440placed at any position in the rule;
704a47c4
AD
3441it is executed at that position. Most rules have just one action at the
3442end of the rule, following all the components. Actions in the middle of
3443a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3444Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3445
3446The C code in an action can refer to the semantic values of the components
3447matched by the rule with the construct @code{$@var{n}}, which stands for
3448the value of the @var{n}th component. The semantic value for the grouping
1f68dca5
AR
3449being constructed is @code{$$}. In addition, the semantic values of
3450symbols can be accessed with the named references construct
3451@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3452constructs into expressions of the appropriate type when it copies the
1f68dca5
AR
3453actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3454stands for the current grouping) is translated to a modifiable
0cc3da3a 3455lvalue, so it can be assigned to.
bfa74976
RS
3456
3457Here is a typical example:
3458
3459@example
3460@group
3461exp: @dots{}
3462 | exp '+' exp
3463 @{ $$ = $1 + $3; @}
3464@end group
3465@end example
3466
1f68dca5
AR
3467Or, in terms of named references:
3468
3469@example
3470@group
3471exp[result]: @dots{}
3472 | exp[left] '+' exp[right]
3473 @{ $result = $left + $right; @}
3474@end group
3475@end example
3476
bfa74976
RS
3477@noindent
3478This rule constructs an @code{exp} from two smaller @code{exp} groupings
3479connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3480(@code{$left} and @code{$right})
bfa74976
RS
3481refer to the semantic values of the two component @code{exp} groupings,
3482which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3483The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3484semantic value of
bfa74976
RS
3485the addition-expression just recognized by the rule. If there were a
3486useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3487referred to as @code{$2}.
bfa74976 3488
1f68dca5
AR
3489@xref{Named References,,Using Named References}, for more information
3490about using the named references construct.
3491
3ded9a63
AD
3492Note that the vertical-bar character @samp{|} is really a rule
3493separator, and actions are attached to a single rule. This is a
3494difference with tools like Flex, for which @samp{|} stands for either
3495``or'', or ``the same action as that of the next rule''. In the
3496following example, the action is triggered only when @samp{b} is found:
3497
3498@example
3499@group
3500a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3501@end group
3502@end example
3503
bfa74976
RS
3504@cindex default action
3505If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3506@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3507becomes the value of the whole rule. Of course, the default action is
3508valid only if the two data types match. There is no meaningful default
3509action for an empty rule; every empty rule must have an explicit action
3510unless the rule's value does not matter.
bfa74976
RS
3511
3512@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3513to tokens and groupings on the stack @emph{before} those that match the
3514current rule. This is a very risky practice, and to use it reliably
3515you must be certain of the context in which the rule is applied. Here
3516is a case in which you can use this reliably:
3517
3518@example
3519@group
3520foo: expr bar '+' expr @{ @dots{} @}
3521 | expr bar '-' expr @{ @dots{} @}
3522 ;
3523@end group
3524
3525@group
3526bar: /* empty */
3527 @{ previous_expr = $0; @}
3528 ;
3529@end group
3530@end example
3531
3532As long as @code{bar} is used only in the fashion shown here, @code{$0}
3533always refers to the @code{expr} which precedes @code{bar} in the
3534definition of @code{foo}.
3535
32c29292 3536@vindex yylval
742e4900 3537It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3538any, from a semantic action.
3539This semantic value is stored in @code{yylval}.
3540@xref{Action Features, ,Special Features for Use in Actions}.
3541
342b8b6e 3542@node Action Types
bfa74976
RS
3543@subsection Data Types of Values in Actions
3544@cindex action data types
3545@cindex data types in actions
3546
3547If you have chosen a single data type for semantic values, the @code{$$}
3548and @code{$@var{n}} constructs always have that data type.
3549
3550If you have used @code{%union} to specify a variety of data types, then you
3551must declare a choice among these types for each terminal or nonterminal
3552symbol that can have a semantic value. Then each time you use @code{$$} or
3553@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3554in the rule. In this example,
bfa74976
RS
3555
3556@example
3557@group
3558exp: @dots{}
3559 | exp '+' exp
3560 @{ $$ = $1 + $3; @}
3561@end group
3562@end example
3563
3564@noindent
3565@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3566have the data type declared for the nonterminal symbol @code{exp}. If
3567@code{$2} were used, it would have the data type declared for the
e0c471a9 3568terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3569
3570Alternatively, you can specify the data type when you refer to the value,
3571by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3572reference. For example, if you have defined types as shown here:
3573
3574@example
3575@group
3576%union @{
3577 int itype;
3578 double dtype;
3579@}
3580@end group
3581@end example
3582
3583@noindent
3584then you can write @code{$<itype>1} to refer to the first subunit of the
3585rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3586
342b8b6e 3587@node Mid-Rule Actions
bfa74976
RS
3588@subsection Actions in Mid-Rule
3589@cindex actions in mid-rule
3590@cindex mid-rule actions
3591
3592Occasionally it is useful to put an action in the middle of a rule.
3593These actions are written just like usual end-of-rule actions, but they
3594are executed before the parser even recognizes the following components.
3595
3596A mid-rule action may refer to the components preceding it using
3597@code{$@var{n}}, but it may not refer to subsequent components because
3598it is run before they are parsed.
3599
3600The mid-rule action itself counts as one of the components of the rule.
3601This makes a difference when there is another action later in the same rule
3602(and usually there is another at the end): you have to count the actions
3603along with the symbols when working out which number @var{n} to use in
3604@code{$@var{n}}.
3605
3606The mid-rule action can also have a semantic value. The action can set
3607its value with an assignment to @code{$$}, and actions later in the rule
3608can refer to the value using @code{$@var{n}}. Since there is no symbol
3609to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3610in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3611specify a data type each time you refer to this value.
bfa74976
RS
3612
3613There is no way to set the value of the entire rule with a mid-rule
3614action, because assignments to @code{$$} do not have that effect. The
3615only way to set the value for the entire rule is with an ordinary action
3616at the end of the rule.
3617
3618Here is an example from a hypothetical compiler, handling a @code{let}
3619statement that looks like @samp{let (@var{variable}) @var{statement}} and
3620serves to create a variable named @var{variable} temporarily for the
3621duration of @var{statement}. To parse this construct, we must put
3622@var{variable} into the symbol table while @var{statement} is parsed, then
3623remove it afterward. Here is how it is done:
3624
3625@example
3626@group
3627stmt: LET '(' var ')'
3628 @{ $<context>$ = push_context ();
3629 declare_variable ($3); @}
3630 stmt @{ $$ = $6;
3631 pop_context ($<context>5); @}
3632@end group
3633@end example
3634
3635@noindent
3636As soon as @samp{let (@var{variable})} has been recognized, the first
3637action is run. It saves a copy of the current semantic context (the
3638list of accessible variables) as its semantic value, using alternative
3639@code{context} in the data-type union. Then it calls
3640@code{declare_variable} to add the new variable to that list. Once the
3641first action is finished, the embedded statement @code{stmt} can be
3642parsed. Note that the mid-rule action is component number 5, so the
3643@samp{stmt} is component number 6.
3644
3645After the embedded statement is parsed, its semantic value becomes the
3646value of the entire @code{let}-statement. Then the semantic value from the
3647earlier action is used to restore the prior list of variables. This
3648removes the temporary @code{let}-variable from the list so that it won't
3649appear to exist while the rest of the program is parsed.
3650
841a7737
JD
3651@findex %destructor
3652@cindex discarded symbols, mid-rule actions
3653@cindex error recovery, mid-rule actions
3654In the above example, if the parser initiates error recovery (@pxref{Error
3655Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3656it might discard the previous semantic context @code{$<context>5} without
3657restoring it.
3658Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3659Discarded Symbols}).
ec5479ce
JD
3660However, Bison currently provides no means to declare a destructor specific to
3661a particular mid-rule action's semantic value.
841a7737
JD
3662
3663One solution is to bury the mid-rule action inside a nonterminal symbol and to
3664declare a destructor for that symbol:
3665
3666@example
3667@group
3668%type <context> let
3669%destructor @{ pop_context ($$); @} let
3670
3671%%
3672
3673stmt: let stmt
3674 @{ $$ = $2;
3675 pop_context ($1); @}
3676 ;
3677
3678let: LET '(' var ')'
3679 @{ $$ = push_context ();
3680 declare_variable ($3); @}
3681 ;
3682
3683@end group
3684@end example
3685
3686@noindent
3687Note that the action is now at the end of its rule.
3688Any mid-rule action can be converted to an end-of-rule action in this way, and
3689this is what Bison actually does to implement mid-rule actions.
3690
bfa74976
RS
3691Taking action before a rule is completely recognized often leads to
3692conflicts since the parser must commit to a parse in order to execute the
3693action. For example, the following two rules, without mid-rule actions,
3694can coexist in a working parser because the parser can shift the open-brace
3695token and look at what follows before deciding whether there is a
3696declaration or not:
3697
3698@example
3699@group
3700compound: '@{' declarations statements '@}'
3701 | '@{' statements '@}'
3702 ;
3703@end group
3704@end example
3705
3706@noindent
3707But when we add a mid-rule action as follows, the rules become nonfunctional:
3708
3709@example
3710@group
3711compound: @{ prepare_for_local_variables (); @}
3712 '@{' declarations statements '@}'
3713@end group
3714@group
3715 | '@{' statements '@}'
3716 ;
3717@end group
3718@end example
3719
3720@noindent
3721Now the parser is forced to decide whether to run the mid-rule action
3722when it has read no farther than the open-brace. In other words, it
3723must commit to using one rule or the other, without sufficient
3724information to do it correctly. (The open-brace token is what is called
742e4900
JD
3725the @dfn{lookahead} token at this time, since the parser is still
3726deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3727
3728You might think that you could correct the problem by putting identical
3729actions into the two rules, like this:
3730
3731@example
3732@group
3733compound: @{ prepare_for_local_variables (); @}
3734 '@{' declarations statements '@}'
3735 | @{ prepare_for_local_variables (); @}
3736 '@{' statements '@}'
3737 ;
3738@end group
3739@end example
3740
3741@noindent
3742But this does not help, because Bison does not realize that the two actions
3743are identical. (Bison never tries to understand the C code in an action.)
3744
3745If the grammar is such that a declaration can be distinguished from a
3746statement by the first token (which is true in C), then one solution which
3747does work is to put the action after the open-brace, like this:
3748
3749@example
3750@group
3751compound: '@{' @{ prepare_for_local_variables (); @}
3752 declarations statements '@}'
3753 | '@{' statements '@}'
3754 ;
3755@end group
3756@end example
3757
3758@noindent
3759Now the first token of the following declaration or statement,
3760which would in any case tell Bison which rule to use, can still do so.
3761
3762Another solution is to bury the action inside a nonterminal symbol which
3763serves as a subroutine:
3764
3765@example
3766@group
3767subroutine: /* empty */
3768 @{ prepare_for_local_variables (); @}
3769 ;
3770
3771@end group
3772
3773@group
3774compound: subroutine
3775 '@{' declarations statements '@}'
3776 | subroutine
3777 '@{' statements '@}'
3778 ;
3779@end group
3780@end example
3781
3782@noindent
3783Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3784deciding which rule for @code{compound} it will eventually use.
bfa74976 3785
1f68dca5
AR
3786@node Named References
3787@subsection Using Named References
3788@cindex named references
3789
3790While every semantic value can be accessed with positional references
3791@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3792them by name. First of all, original symbol names may be used as named
3793references. For example:
3794
3795@example
3796@group
3797invocation: op '(' args ')'
3798 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3799@end group
3800@end example
3801
3802@noindent
3803The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3804mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3805
3806@example
3807@group
3808invocation: op '(' args ')'
3809 @{ $$ = new_invocation ($op, $args, @@$); @}
3810@end group
3811@end example
3812
3813@noindent
3814However, sometimes regular symbol names are not sufficient due to
3815ambiguities:
3816
3817@example
3818@group
3819exp: exp '/' exp
3820 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3821
3822exp: exp '/' exp
3823 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3824
3825exp: exp '/' exp
3826 @{ $$ = $1 / $3; @} // No error.
3827@end group
3828@end example
3829
3830@noindent
3831When ambiguity occurs, explicitly declared names may be used for values and
3832locations. Explicit names are declared as a bracketed name after a symbol
3833appearance in rule definitions. For example:
3834@example
3835@group
3836exp[result]: exp[left] '/' exp[right]
3837 @{ $result = $left / $right; @}
3838@end group
3839@end example
3840
3841@noindent
3842Explicit names may be declared for RHS and for LHS symbols as well. In order
3843to access a semantic value generated by a mid-rule action, an explicit name
3844may also be declared by putting a bracketed name after the closing brace of
3845the mid-rule action code:
3846@example
3847@group
3848exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3849 @{ $res = $left + $right; @}
3850@end group
3851@end example
3852
3853@noindent
3854
3855In references, in order to specify names containing dots and dashes, an explicit
3856bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3857@example
3858@group
3859if-stmt: IF '(' expr ')' THEN then.stmt ';'
3860 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3861@end group
3862@end example
3863
3864It often happens that named references are followed by a dot, dash or other
3865C punctuation marks and operators. By default, Bison will read
3866@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3867@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3868value. In order to force Bison to recognize @code{name.suffix} in its entirety
3869as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3870must be used.
3871
3872
342b8b6e 3873@node Locations
847bf1f5
AD
3874@section Tracking Locations
3875@cindex location
95923bd6
AD
3876@cindex textual location
3877@cindex location, textual
847bf1f5
AD
3878
3879Though grammar rules and semantic actions are enough to write a fully
72d2299c 3880functional parser, it can be useful to process some additional information,
3e259915
MA
3881especially symbol locations.
3882
704a47c4
AD
3883The way locations are handled is defined by providing a data type, and
3884actions to take when rules are matched.
847bf1f5
AD
3885
3886@menu
3887* Location Type:: Specifying a data type for locations.
3888* Actions and Locations:: Using locations in actions.
3889* Location Default Action:: Defining a general way to compute locations.
3890@end menu
3891
342b8b6e 3892@node Location Type
847bf1f5
AD
3893@subsection Data Type of Locations
3894@cindex data type of locations
3895@cindex default location type
3896
3897Defining a data type for locations is much simpler than for semantic values,
3898since all tokens and groupings always use the same type.
3899
50cce58e
PE
3900You can specify the type of locations by defining a macro called
3901@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3902defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3903When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3904four members:
3905
3906@example
6273355b 3907typedef struct YYLTYPE
847bf1f5
AD
3908@{
3909 int first_line;
3910 int first_column;
3911 int last_line;
3912 int last_column;
6273355b 3913@} YYLTYPE;
847bf1f5
AD
3914@end example
3915
8fbbeba2
AD
3916When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3917initializes all these fields to 1 for @code{yylloc}. To initialize
3918@code{yylloc} with a custom location type (or to chose a different
3919initialization), use the @code{%initial-action} directive. @xref{Initial
3920Action Decl, , Performing Actions before Parsing}.
cd48d21d 3921
342b8b6e 3922@node Actions and Locations
847bf1f5
AD
3923@subsection Actions and Locations
3924@cindex location actions
3925@cindex actions, location
3926@vindex @@$
3927@vindex @@@var{n}
1f68dca5
AR
3928@vindex @@@var{name}
3929@vindex @@[@var{name}]
847bf1f5
AD
3930
3931Actions are not only useful for defining language semantics, but also for
3932describing the behavior of the output parser with locations.
3933
3934The most obvious way for building locations of syntactic groupings is very
72d2299c 3935similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3936constructs can be used to access the locations of the elements being matched.
3937The location of the @var{n}th component of the right hand side is
3938@code{@@@var{n}}, while the location of the left hand side grouping is
3939@code{@@$}.
3940
1f68dca5
AR
3941In addition, the named references construct @code{@@@var{name}} and
3942@code{@@[@var{name}]} may also be used to address the symbol locations.
3943@xref{Named References,,Using Named References}, for more information
3944about using the named references construct.
3945
3e259915 3946Here is a basic example using the default data type for locations:
847bf1f5
AD
3947
3948@example
3949@group
3950exp: @dots{}
3e259915 3951 | exp '/' exp
847bf1f5 3952 @{
3e259915
MA
3953 @@$.first_column = @@1.first_column;
3954 @@$.first_line = @@1.first_line;
847bf1f5
AD
3955 @@$.last_column = @@3.last_column;
3956 @@$.last_line = @@3.last_line;
3e259915
MA
3957 if ($3)
3958 $$ = $1 / $3;
3959 else
3960 @{
3961 $$ = 1;
4e03e201
AD
3962 fprintf (stderr,
3963 "Division by zero, l%d,c%d-l%d,c%d",
3964 @@3.first_line, @@3.first_column,
3965 @@3.last_line, @@3.last_column);
3e259915 3966 @}
847bf1f5
AD
3967 @}
3968@end group
3969@end example
3970
3e259915 3971As for semantic values, there is a default action for locations that is
72d2299c 3972run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3973beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3974last symbol.
3e259915 3975
72d2299c 3976With this default action, the location tracking can be fully automatic. The
3e259915
MA
3977example above simply rewrites this way:
3978
3979@example
3980@group
3981exp: @dots{}
3982 | exp '/' exp
3983 @{
3984 if ($3)
3985 $$ = $1 / $3;
3986 else
3987 @{
3988 $$ = 1;
4e03e201
AD
3989 fprintf (stderr,
3990 "Division by zero, l%d,c%d-l%d,c%d",
3991 @@3.first_line, @@3.first_column,
3992 @@3.last_line, @@3.last_column);
3e259915
MA
3993 @}
3994 @}
3995@end group
3996@end example
847bf1f5 3997
32c29292 3998@vindex yylloc
742e4900 3999It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4000from a semantic action.
4001This location is stored in @code{yylloc}.
4002@xref{Action Features, ,Special Features for Use in Actions}.
4003
342b8b6e 4004@node Location Default Action
847bf1f5
AD
4005@subsection Default Action for Locations
4006@vindex YYLLOC_DEFAULT
35430378 4007@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4008
72d2299c 4009Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4010locations are much more general than semantic values, there is room in
4011the output parser to redefine the default action to take for each
72d2299c 4012rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4013matched, before the associated action is run. It is also invoked
4014while processing a syntax error, to compute the error's location.
35430378 4015Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4016parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4017of that ambiguity.
847bf1f5 4018
3e259915 4019Most of the time, this macro is general enough to suppress location
79282c6c 4020dedicated code from semantic actions.
847bf1f5 4021
72d2299c 4022The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4023the location of the grouping (the result of the computation). When a
766de5eb 4024rule is matched, the second parameter identifies locations of
96b93a3d 4025all right hand side elements of the rule being matched, and the third
8710fc41 4026parameter is the size of the rule's right hand side.
35430378 4027When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4028right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4029When processing a syntax error, the second parameter identifies locations
4030of the symbols that were discarded during error processing, and the third
96b93a3d 4031parameter is the number of discarded symbols.
847bf1f5 4032
766de5eb 4033By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4034
766de5eb 4035@smallexample
847bf1f5 4036@group
766de5eb
PE
4037# define YYLLOC_DEFAULT(Current, Rhs, N) \
4038 do \
4039 if (N) \
4040 @{ \
4041 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4042 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4043 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4044 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4045 @} \
4046 else \
4047 @{ \
4048 (Current).first_line = (Current).last_line = \
4049 YYRHSLOC(Rhs, 0).last_line; \
4050 (Current).first_column = (Current).last_column = \
4051 YYRHSLOC(Rhs, 0).last_column; \
4052 @} \
4053 while (0)
847bf1f5 4054@end group
766de5eb 4055@end smallexample
676385e2 4056
766de5eb
PE
4057where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4058in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4059just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4060
3e259915 4061When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4062
3e259915 4063@itemize @bullet
79282c6c 4064@item
72d2299c 4065All arguments are free of side-effects. However, only the first one (the
3e259915 4066result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4067
3e259915 4068@item
766de5eb
PE
4069For consistency with semantic actions, valid indexes within the
4070right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4071valid index, and it refers to the symbol just before the reduction.
4072During error processing @var{n} is always positive.
0ae99356
PE
4073
4074@item
4075Your macro should parenthesize its arguments, if need be, since the
4076actual arguments may not be surrounded by parentheses. Also, your
4077macro should expand to something that can be used as a single
4078statement when it is followed by a semicolon.
3e259915 4079@end itemize
847bf1f5 4080
342b8b6e 4081@node Declarations
bfa74976
RS
4082@section Bison Declarations
4083@cindex declarations, Bison
4084@cindex Bison declarations
4085
4086The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4087used in formulating the grammar and the data types of semantic values.
4088@xref{Symbols}.
4089
4090All token type names (but not single-character literal tokens such as
4091@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4092declared if you need to specify which data type to use for the semantic
4093value (@pxref{Multiple Types, ,More Than One Value Type}).
4094
4095The first rule in the file also specifies the start symbol, by default.
4096If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4097it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4098Grammars}).
bfa74976
RS
4099
4100@menu
b50d2359 4101* Require Decl:: Requiring a Bison version.
bfa74976
RS
4102* Token Decl:: Declaring terminal symbols.
4103* Precedence Decl:: Declaring terminals with precedence and associativity.
4104* Union Decl:: Declaring the set of all semantic value types.
4105* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4106* Initial Action Decl:: Code run before parsing starts.
72f889cc 4107* Destructor Decl:: Declaring how symbols are freed.
d6328241 4108* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4109* Start Decl:: Specifying the start symbol.
4110* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4111* Push Decl:: Requesting a push parser.
bfa74976
RS
4112* Decl Summary:: Table of all Bison declarations.
4113@end menu
4114
b50d2359
AD
4115@node Require Decl
4116@subsection Require a Version of Bison
4117@cindex version requirement
4118@cindex requiring a version of Bison
4119@findex %require
4120
4121You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4122the requirement is not met, @command{bison} exits with an error (exit
4123status 63).
b50d2359
AD
4124
4125@example
4126%require "@var{version}"
4127@end example
4128
342b8b6e 4129@node Token Decl
bfa74976
RS
4130@subsection Token Type Names
4131@cindex declaring token type names
4132@cindex token type names, declaring
931c7513 4133@cindex declaring literal string tokens
bfa74976
RS
4134@findex %token
4135
4136The basic way to declare a token type name (terminal symbol) is as follows:
4137
4138@example
4139%token @var{name}
4140@end example
4141
4142Bison will convert this into a @code{#define} directive in
4143the parser, so that the function @code{yylex} (if it is in this file)
4144can use the name @var{name} to stand for this token type's code.
4145
14ded682
AD
4146Alternatively, you can use @code{%left}, @code{%right}, or
4147@code{%nonassoc} instead of @code{%token}, if you wish to specify
4148associativity and precedence. @xref{Precedence Decl, ,Operator
4149Precedence}.
bfa74976
RS
4150
4151You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4152a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4153following the token name:
bfa74976
RS
4154
4155@example
4156%token NUM 300
1452af69 4157%token XNUM 0x12d // a GNU extension
bfa74976
RS
4158@end example
4159
4160@noindent
4161It is generally best, however, to let Bison choose the numeric codes for
4162all token types. Bison will automatically select codes that don't conflict
e966383b 4163with each other or with normal characters.
bfa74976
RS
4164
4165In the event that the stack type is a union, you must augment the
4166@code{%token} or other token declaration to include the data type
704a47c4
AD
4167alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4168Than One Value Type}).
bfa74976
RS
4169
4170For example:
4171
4172@example
4173@group
4174%union @{ /* define stack type */
4175 double val;
4176 symrec *tptr;
4177@}
4178%token <val> NUM /* define token NUM and its type */
4179@end group
4180@end example
4181
931c7513
RS
4182You can associate a literal string token with a token type name by
4183writing the literal string at the end of a @code{%token}
4184declaration which declares the name. For example:
4185
4186@example
4187%token arrow "=>"
4188@end example
4189
4190@noindent
4191For example, a grammar for the C language might specify these names with
4192equivalent literal string tokens:
4193
4194@example
4195%token <operator> OR "||"
4196%token <operator> LE 134 "<="
4197%left OR "<="
4198@end example
4199
4200@noindent
4201Once you equate the literal string and the token name, you can use them
4202interchangeably in further declarations or the grammar rules. The
4203@code{yylex} function can use the token name or the literal string to
4204obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4205Syntax error messages passed to @code{yyerror} from the parser will reference
4206the literal string instead of the token name.
4207
4208The token numbered as 0 corresponds to end of file; the following line
4209allows for nicer error messages referring to ``end of file'' instead
4210of ``$end'':
4211
4212@example
4213%token END 0 "end of file"
4214@end example
931c7513 4215
342b8b6e 4216@node Precedence Decl
bfa74976
RS
4217@subsection Operator Precedence
4218@cindex precedence declarations
4219@cindex declaring operator precedence
4220@cindex operator precedence, declaring
4221
4222Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4223declare a token and specify its precedence and associativity, all at
4224once. These are called @dfn{precedence declarations}.
704a47c4
AD
4225@xref{Precedence, ,Operator Precedence}, for general information on
4226operator precedence.
bfa74976 4227
ab7f29f8 4228The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4229@code{%token}: either
4230
4231@example
4232%left @var{symbols}@dots{}
4233@end example
4234
4235@noindent
4236or
4237
4238@example
4239%left <@var{type}> @var{symbols}@dots{}
4240@end example
4241
4242And indeed any of these declarations serves the purposes of @code{%token}.
4243But in addition, they specify the associativity and relative precedence for
4244all the @var{symbols}:
4245
4246@itemize @bullet
4247@item
4248The associativity of an operator @var{op} determines how repeated uses
4249of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4250@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4251grouping @var{y} with @var{z} first. @code{%left} specifies
4252left-associativity (grouping @var{x} with @var{y} first) and
4253@code{%right} specifies right-associativity (grouping @var{y} with
4254@var{z} first). @code{%nonassoc} specifies no associativity, which
4255means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4256considered a syntax error.
4257
4258@item
4259The precedence of an operator determines how it nests with other operators.
4260All the tokens declared in a single precedence declaration have equal
4261precedence and nest together according to their associativity.
4262When two tokens declared in different precedence declarations associate,
4263the one declared later has the higher precedence and is grouped first.
4264@end itemize
4265
ab7f29f8
JD
4266For backward compatibility, there is a confusing difference between the
4267argument lists of @code{%token} and precedence declarations.
4268Only a @code{%token} can associate a literal string with a token type name.
4269A precedence declaration always interprets a literal string as a reference to a
4270separate token.
4271For example:
4272
4273@example
4274%left OR "<=" // Does not declare an alias.
4275%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4276@end example
4277
342b8b6e 4278@node Union Decl
bfa74976
RS
4279@subsection The Collection of Value Types
4280@cindex declaring value types
4281@cindex value types, declaring
4282@findex %union
4283
287c78f6
PE
4284The @code{%union} declaration specifies the entire collection of
4285possible data types for semantic values. The keyword @code{%union} is
4286followed by braced code containing the same thing that goes inside a
4287@code{union} in C@.
bfa74976
RS
4288
4289For example:
4290
4291@example
4292@group
4293%union @{
4294 double val;
4295 symrec *tptr;
4296@}
4297@end group
4298@end example
4299
4300@noindent
4301This says that the two alternative types are @code{double} and @code{symrec
4302*}. They are given names @code{val} and @code{tptr}; these names are used
4303in the @code{%token} and @code{%type} declarations to pick one of the types
4304for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4305
35430378 4306As an extension to POSIX, a tag is allowed after the
6273355b
PE
4307@code{union}. For example:
4308
4309@example
4310@group
4311%union value @{
4312 double val;
4313 symrec *tptr;
4314@}
4315@end group
4316@end example
4317
d6ca7905 4318@noindent
6273355b
PE
4319specifies the union tag @code{value}, so the corresponding C type is
4320@code{union value}. If you do not specify a tag, it defaults to
4321@code{YYSTYPE}.
4322
35430378 4323As another extension to POSIX, you may specify multiple
d6ca7905
PE
4324@code{%union} declarations; their contents are concatenated. However,
4325only the first @code{%union} declaration can specify a tag.
4326
6273355b 4327Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4328a semicolon after the closing brace.
4329
ddc8ede1
PE
4330Instead of @code{%union}, you can define and use your own union type
4331@code{YYSTYPE} if your grammar contains at least one
4332@samp{<@var{type}>} tag. For example, you can put the following into
4333a header file @file{parser.h}:
4334
4335@example
4336@group
4337union YYSTYPE @{
4338 double val;
4339 symrec *tptr;
4340@};
4341typedef union YYSTYPE YYSTYPE;
4342@end group
4343@end example
4344
4345@noindent
4346and then your grammar can use the following
4347instead of @code{%union}:
4348
4349@example
4350@group
4351%@{
4352#include "parser.h"
4353%@}
4354%type <val> expr
4355%token <tptr> ID
4356@end group
4357@end example
4358
342b8b6e 4359@node Type Decl
bfa74976
RS
4360@subsection Nonterminal Symbols
4361@cindex declaring value types, nonterminals
4362@cindex value types, nonterminals, declaring
4363@findex %type
4364
4365@noindent
4366When you use @code{%union} to specify multiple value types, you must
4367declare the value type of each nonterminal symbol for which values are
4368used. This is done with a @code{%type} declaration, like this:
4369
4370@example
4371%type <@var{type}> @var{nonterminal}@dots{}
4372@end example
4373
4374@noindent
704a47c4
AD
4375Here @var{nonterminal} is the name of a nonterminal symbol, and
4376@var{type} is the name given in the @code{%union} to the alternative
4377that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4378can give any number of nonterminal symbols in the same @code{%type}
4379declaration, if they have the same value type. Use spaces to separate
4380the symbol names.
bfa74976 4381
931c7513
RS
4382You can also declare the value type of a terminal symbol. To do this,
4383use the same @code{<@var{type}>} construction in a declaration for the
4384terminal symbol. All kinds of token declarations allow
4385@code{<@var{type}>}.
4386
18d192f0
AD
4387@node Initial Action Decl
4388@subsection Performing Actions before Parsing
4389@findex %initial-action
4390
4391Sometimes your parser needs to perform some initializations before
4392parsing. The @code{%initial-action} directive allows for such arbitrary
4393code.
4394
4395@deffn {Directive} %initial-action @{ @var{code} @}
4396@findex %initial-action
287c78f6 4397Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4398@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4399@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4400@code{%parse-param}.
18d192f0
AD
4401@end deffn
4402
451364ed
AD
4403For instance, if your locations use a file name, you may use
4404
4405@example
48b16bbc 4406%parse-param @{ char const *file_name @};
451364ed
AD
4407%initial-action
4408@{
4626a15d 4409 @@$.initialize (file_name);
451364ed
AD
4410@};
4411@end example
4412
18d192f0 4413
72f889cc
AD
4414@node Destructor Decl
4415@subsection Freeing Discarded Symbols
4416@cindex freeing discarded symbols
4417@findex %destructor
12e35840 4418@findex <*>
3ebecc24 4419@findex <>
a85284cf
AD
4420During error recovery (@pxref{Error Recovery}), symbols already pushed
4421on the stack and tokens coming from the rest of the file are discarded
4422until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4423or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4424symbols on the stack must be discarded. Even if the parser succeeds, it
4425must discard the start symbol.
258b75ca
PE
4426
4427When discarded symbols convey heap based information, this memory is
4428lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4429in traditional compilers, it is unacceptable for programs like shells or
4430protocol implementations that may parse and execute indefinitely.
258b75ca 4431
a85284cf
AD
4432The @code{%destructor} directive defines code that is called when a
4433symbol is automatically discarded.
72f889cc
AD
4434
4435@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4436@findex %destructor
287c78f6
PE
4437Invoke the braced @var{code} whenever the parser discards one of the
4438@var{symbols}.
4b367315 4439Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4440with the discarded symbol, and @code{@@$} designates its location.
4441The additional parser parameters are also available (@pxref{Parser Function, ,
4442The Parser Function @code{yyparse}}).
ec5479ce 4443
b2a0b7ca
JD
4444When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4445per-symbol @code{%destructor}.
4446You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4447tag among @var{symbols}.
b2a0b7ca 4448In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4449grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4450per-symbol @code{%destructor}.
4451
12e35840 4452Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4453(These default forms are experimental.
4454More user feedback will help to determine whether they should become permanent
4455features.)
3ebecc24 4456You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4457exactly one @code{%destructor} declaration in your grammar file.
4458The parser will invoke the @var{code} associated with one of these whenever it
4459discards any user-defined grammar symbol that has no per-symbol and no per-type
4460@code{%destructor}.
4461The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4462symbol for which you have formally declared a semantic type tag (@code{%type}
4463counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4464The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4465symbol that has no declared semantic type tag.
72f889cc
AD
4466@end deffn
4467
b2a0b7ca 4468@noindent
12e35840 4469For example:
72f889cc
AD
4470
4471@smallexample
ec5479ce
JD
4472%union @{ char *string; @}
4473%token <string> STRING1
4474%token <string> STRING2
4475%type <string> string1
4476%type <string> string2
b2a0b7ca
JD
4477%union @{ char character; @}
4478%token <character> CHR
4479%type <character> chr
12e35840
JD
4480%token TAGLESS
4481
b2a0b7ca 4482%destructor @{ @} <character>
12e35840
JD
4483%destructor @{ free ($$); @} <*>
4484%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4485%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4486@end smallexample
4487
4488@noindent
b2a0b7ca
JD
4489guarantees that, when the parser discards any user-defined symbol that has a
4490semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4491to @code{free} by default.
ec5479ce
JD
4492However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4493prints its line number to @code{stdout}.
4494It performs only the second @code{%destructor} in this case, so it invokes
4495@code{free} only once.
12e35840
JD
4496Finally, the parser merely prints a message whenever it discards any symbol,
4497such as @code{TAGLESS}, that has no semantic type tag.
4498
4499A Bison-generated parser invokes the default @code{%destructor}s only for
4500user-defined as opposed to Bison-defined symbols.
4501For example, the parser will not invoke either kind of default
4502@code{%destructor} for the special Bison-defined symbols @code{$accept},
4503@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4504none of which you can reference in your grammar.
4505It also will not invoke either for the @code{error} token (@pxref{Table of
4506Symbols, ,error}), which is always defined by Bison regardless of whether you
4507reference it in your grammar.
4508However, it may invoke one of them for the end token (token 0) if you
4509redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4510
4511@smallexample
4512%token END 0
4513@end smallexample
4514
12e35840
JD
4515@cindex actions in mid-rule
4516@cindex mid-rule actions
4517Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4518mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4519That is, Bison does not consider a mid-rule to have a semantic value if you do
4520not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4521@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4522rule.
4523However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4524@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4525
3508ce36
JD
4526@ignore
4527@noindent
4528In the future, it may be possible to redefine the @code{error} token as a
4529nonterminal that captures the discarded symbols.
4530In that case, the parser will invoke the default destructor for it as well.
4531@end ignore
4532
e757bb10
AD
4533@sp 1
4534
4535@cindex discarded symbols
4536@dfn{Discarded symbols} are the following:
4537
4538@itemize
4539@item
4540stacked symbols popped during the first phase of error recovery,
4541@item
4542incoming terminals during the second phase of error recovery,
4543@item
742e4900 4544the current lookahead and the entire stack (except the current
9d9b8b70 4545right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4546@item
4547the start symbol, when the parser succeeds.
e757bb10
AD
4548@end itemize
4549
9d9b8b70
PE
4550The parser can @dfn{return immediately} because of an explicit call to
4551@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4552exhaustion.
4553
29553547 4554Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4555error via @code{YYERROR} are not discarded automatically. As a rule
4556of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4557the memory.
e757bb10 4558
342b8b6e 4559@node Expect Decl
bfa74976
RS
4560@subsection Suppressing Conflict Warnings
4561@cindex suppressing conflict warnings
4562@cindex preventing warnings about conflicts
4563@cindex warnings, preventing
4564@cindex conflicts, suppressing warnings of
4565@findex %expect
d6328241 4566@findex %expect-rr
bfa74976
RS
4567
4568Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4569(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4570have harmless shift/reduce conflicts which are resolved in a predictable
4571way and would be difficult to eliminate. It is desirable to suppress
4572the warning about these conflicts unless the number of conflicts
4573changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4574
4575The declaration looks like this:
4576
4577@example
4578%expect @var{n}
4579@end example
4580
035aa4a0
PE
4581Here @var{n} is a decimal integer. The declaration says there should
4582be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4583Bison reports an error if the number of shift/reduce conflicts differs
4584from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4585
34a6c2d1 4586For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4587serious, and should be eliminated entirely. Bison will always report
35430378 4588reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4589parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4590there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4591also possible to specify an expected number of reduce/reduce conflicts
35430378 4592in GLR parsers, using the declaration:
d6328241
PH
4593
4594@example
4595%expect-rr @var{n}
4596@end example
4597
bfa74976
RS
4598In general, using @code{%expect} involves these steps:
4599
4600@itemize @bullet
4601@item
4602Compile your grammar without @code{%expect}. Use the @samp{-v} option
4603to get a verbose list of where the conflicts occur. Bison will also
4604print the number of conflicts.
4605
4606@item
4607Check each of the conflicts to make sure that Bison's default
4608resolution is what you really want. If not, rewrite the grammar and
4609go back to the beginning.
4610
4611@item
4612Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4613number which Bison printed. With GLR parsers, add an
035aa4a0 4614@code{%expect-rr} declaration as well.
bfa74976
RS
4615@end itemize
4616
cf22447c
JD
4617Now Bison will report an error if you introduce an unexpected conflict,
4618but will keep silent otherwise.
bfa74976 4619
342b8b6e 4620@node Start Decl
bfa74976
RS
4621@subsection The Start-Symbol
4622@cindex declaring the start symbol
4623@cindex start symbol, declaring
4624@cindex default start symbol
4625@findex %start
4626
4627Bison assumes by default that the start symbol for the grammar is the first
4628nonterminal specified in the grammar specification section. The programmer
4629may override this restriction with the @code{%start} declaration as follows:
4630
4631@example
4632%start @var{symbol}
4633@end example
4634
342b8b6e 4635@node Pure Decl
bfa74976
RS
4636@subsection A Pure (Reentrant) Parser
4637@cindex reentrant parser
4638@cindex pure parser
d9df47b6 4639@findex %define api.pure
bfa74976
RS
4640
4641A @dfn{reentrant} program is one which does not alter in the course of
4642execution; in other words, it consists entirely of @dfn{pure} (read-only)
4643code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4644for example, a nonreentrant program may not be safe to call from a signal
4645handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4646program must be called only within interlocks.
4647
70811b85 4648Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4649suitable for most uses, and it permits compatibility with Yacc. (The
4650standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4651statically allocated variables for communication with @code{yylex},
4652including @code{yylval} and @code{yylloc}.)
bfa74976 4653
70811b85 4654Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4655declaration @code{%define api.pure} says that you want the parser to be
70811b85 4656reentrant. It looks like this:
bfa74976
RS
4657
4658@example
d9df47b6 4659%define api.pure
bfa74976
RS
4660@end example
4661
70811b85
RS
4662The result is that the communication variables @code{yylval} and
4663@code{yylloc} become local variables in @code{yyparse}, and a different
4664calling convention is used for the lexical analyzer function
4665@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4666Parsers}, for the details of this. The variable @code{yynerrs}
4667becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4668of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4669Reporting Function @code{yyerror}}). The convention for calling
4670@code{yyparse} itself is unchanged.
4671
4672Whether the parser is pure has nothing to do with the grammar rules.
4673You can generate either a pure parser or a nonreentrant parser from any
4674valid grammar.
bfa74976 4675
9987d1b3
JD
4676@node Push Decl
4677@subsection A Push Parser
4678@cindex push parser
4679@cindex push parser
812775a0 4680@findex %define api.push-pull
9987d1b3 4681
59da312b
JD
4682(The current push parsing interface is experimental and may evolve.
4683More user feedback will help to stabilize it.)
4684
f4101aa6
AD
4685A pull parser is called once and it takes control until all its input
4686is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4687each time a new token is made available.
4688
f4101aa6 4689A push parser is typically useful when the parser is part of a
9987d1b3 4690main event loop in the client's application. This is typically
f4101aa6
AD
4691a requirement of a GUI, when the main event loop needs to be triggered
4692within a certain time period.
9987d1b3 4693
d782395d
JD
4694Normally, Bison generates a pull parser.
4695The following Bison declaration says that you want the parser to be a push
812775a0 4696parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4697
4698@example
f37495f6 4699%define api.push-pull push
9987d1b3
JD
4700@end example
4701
4702In almost all cases, you want to ensure that your push parser is also
4703a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4704time you should create an impure push parser is to have backwards
9987d1b3
JD
4705compatibility with the impure Yacc pull mode interface. Unless you know
4706what you are doing, your declarations should look like this:
4707
4708@example
d9df47b6 4709%define api.pure
f37495f6 4710%define api.push-pull push
9987d1b3
JD
4711@end example
4712
f4101aa6
AD
4713There is a major notable functional difference between the pure push parser
4714and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4715many parser instances, of the same type of parser, in memory at the same time.
4716An impure push parser should only use one parser at a time.
4717
4718When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4719the generated parser. @code{yypstate} is a structure that the generated
4720parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4721function that will create a new parser instance. @code{yypstate_delete}
4722will free the resources associated with the corresponding parser instance.
f4101aa6 4723Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4724token is available to provide the parser. A trivial example
4725of using a pure push parser would look like this:
4726
4727@example
4728int status;
4729yypstate *ps = yypstate_new ();
4730do @{
4731 status = yypush_parse (ps, yylex (), NULL);
4732@} while (status == YYPUSH_MORE);
4733yypstate_delete (ps);
4734@end example
4735
4736If the user decided to use an impure push parser, a few things about
f4101aa6 4737the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4738a global variable instead of a variable in the @code{yypush_parse} function.
4739For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4740changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4741example would thus look like this:
4742
4743@example
4744extern int yychar;
4745int status;
4746yypstate *ps = yypstate_new ();
4747do @{
4748 yychar = yylex ();
4749 status = yypush_parse (ps);
4750@} while (status == YYPUSH_MORE);
4751yypstate_delete (ps);
4752@end example
4753
f4101aa6 4754That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4755for use by the next invocation of the @code{yypush_parse} function.
4756
f4101aa6 4757Bison also supports both the push parser interface along with the pull parser
9987d1b3 4758interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4759you should replace the @code{%define api.push-pull push} declaration with the
4760@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4761the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4762and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4763would be used. However, the user should note that it is implemented in the
d782395d
JD
4764generated parser by calling @code{yypull_parse}.
4765This makes the @code{yyparse} function that is generated with the
f37495f6 4766@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4767@code{yyparse} function. If the user
4768calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4769stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4770and then @code{yypull_parse} the rest of the input stream. If you would like
4771to switch back and forth between between parsing styles, you would have to
4772write your own @code{yypull_parse} function that knows when to quit looking
4773for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4774like this:
4775
4776@example
4777yypstate *ps = yypstate_new ();
4778yypull_parse (ps); /* Will call the lexer */
4779yypstate_delete (ps);
4780@end example
4781
d9df47b6 4782Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4783the generated parser with @code{%define api.push-pull both} as it did for
4784@code{%define api.push-pull push}.
9987d1b3 4785
342b8b6e 4786@node Decl Summary
bfa74976
RS
4787@subsection Bison Declaration Summary
4788@cindex Bison declaration summary
4789@cindex declaration summary
4790@cindex summary, Bison declaration
4791
d8988b2f 4792Here is a summary of the declarations used to define a grammar:
bfa74976 4793
18b519c0 4794@deffn {Directive} %union
bfa74976
RS
4795Declare the collection of data types that semantic values may have
4796(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4797@end deffn
bfa74976 4798
18b519c0 4799@deffn {Directive} %token
bfa74976
RS
4800Declare a terminal symbol (token type name) with no precedence
4801or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4802@end deffn
bfa74976 4803
18b519c0 4804@deffn {Directive} %right
bfa74976
RS
4805Declare a terminal symbol (token type name) that is right-associative
4806(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4807@end deffn
bfa74976 4808
18b519c0 4809@deffn {Directive} %left
bfa74976
RS
4810Declare a terminal symbol (token type name) that is left-associative
4811(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4812@end deffn
bfa74976 4813
18b519c0 4814@deffn {Directive} %nonassoc
bfa74976 4815Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4816(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4817Using it in a way that would be associative is a syntax error.
4818@end deffn
4819
91d2c560 4820@ifset defaultprec
39a06c25 4821@deffn {Directive} %default-prec
22fccf95 4822Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4823(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4824@end deffn
91d2c560 4825@end ifset
bfa74976 4826
18b519c0 4827@deffn {Directive} %type
bfa74976
RS
4828Declare the type of semantic values for a nonterminal symbol
4829(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4830@end deffn
bfa74976 4831
18b519c0 4832@deffn {Directive} %start
89cab50d
AD
4833Specify the grammar's start symbol (@pxref{Start Decl, ,The
4834Start-Symbol}).
18b519c0 4835@end deffn
bfa74976 4836
18b519c0 4837@deffn {Directive} %expect
bfa74976
RS
4838Declare the expected number of shift-reduce conflicts
4839(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4840@end deffn
4841
bfa74976 4842
d8988b2f
AD
4843@sp 1
4844@noindent
4845In order to change the behavior of @command{bison}, use the following
4846directives:
4847
148d66d8
JD
4848@deffn {Directive} %code @{@var{code}@}
4849@findex %code
4850This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4851It inserts @var{code} verbatim at a language-dependent default location in the
4852output@footnote{The default location is actually skeleton-dependent;
4853 writers of non-standard skeletons however should choose the default location
4854 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4855
4856@cindex Prologue
8405b70c 4857For C/C++, the default location is the parser source code
148d66d8
JD
4858file after the usual contents of the parser header file.
4859Thus, @code{%code} replaces the traditional Yacc prologue,
4860@code{%@{@var{code}%@}}, for most purposes.
4861For a detailed discussion, see @ref{Prologue Alternatives}.
4862
8405b70c 4863For Java, the default location is inside the parser class.
148d66d8
JD
4864@end deffn
4865
4866@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4867This is the qualified form of the @code{%code} directive.
4868If you need to specify location-sensitive verbatim @var{code} that does not
4869belong at the default location selected by the unqualified @code{%code} form,
4870use this form instead.
4871
4872@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4873where Bison should generate it.
628be6c9
JD
4874Not all @var{qualifier}s are accepted for all target languages.
4875Unaccepted @var{qualifier}s produce an error.
4876Some of the accepted @var{qualifier}s are:
148d66d8
JD
4877
4878@itemize @bullet
148d66d8 4879@item requires
793fbca5 4880@findex %code requires
148d66d8
JD
4881
4882@itemize @bullet
4883@item Language(s): C, C++
4884
4885@item Purpose: This is the best place to write dependency code required for
4886@code{YYSTYPE} and @code{YYLTYPE}.
4887In other words, it's the best place to define types referenced in @code{%union}
4888directives, and it's the best place to override Bison's default @code{YYSTYPE}
4889and @code{YYLTYPE} definitions.
4890
4891@item Location(s): The parser header file and the parser source code file
4892before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4893@end itemize
4894
4895@item provides
4896@findex %code provides
4897
4898@itemize @bullet
4899@item Language(s): C, C++
4900
4901@item Purpose: This is the best place to write additional definitions and
4902declarations that should be provided to other modules.
4903
4904@item Location(s): The parser header file and the parser source code file after
4905the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4906@end itemize
4907
4908@item top
4909@findex %code top
4910
4911@itemize @bullet
4912@item Language(s): C, C++
4913
4914@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4915usually be more appropriate than @code{%code top}.
4916However, occasionally it is necessary to insert code much nearer the top of the
4917parser source code file.
4918For example:
4919
4920@smallexample
4921%code top @{
4922 #define _GNU_SOURCE
4923 #include <stdio.h>
4924@}
4925@end smallexample
4926
4927@item Location(s): Near the top of the parser source code file.
4928@end itemize
8405b70c 4929
148d66d8
JD
4930@item imports
4931@findex %code imports
4932
4933@itemize @bullet
4934@item Language(s): Java
4935
4936@item Purpose: This is the best place to write Java import directives.
4937
4938@item Location(s): The parser Java file after any Java package directive and
4939before any class definitions.
4940@end itemize
148d66d8
JD
4941@end itemize
4942
148d66d8
JD
4943@cindex Prologue
4944For a detailed discussion of how to use @code{%code} in place of the
4945traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4946@end deffn
4947
18b519c0 4948@deffn {Directive} %debug
4947ebdb
PE
4949In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4950already defined, so that the debugging facilities are compiled.
ec3bc396 4951@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4952@end deffn
d8988b2f 4953
c1d19e10 4954@deffn {Directive} %define @var{variable}
f37495f6 4955@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4956@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4957Define a variable to adjust Bison's behavior.
9611cfa2 4958
e3a33f7c 4959It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4960times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4961
f37495f6
JD
4962@var{value} must be placed in quotation marks if it contains any
4963character other than a letter, underscore, period, dash, or non-initial
4964digit.
4965
4966Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4967@code{""}.
4968
628be6c9 4969Some @var{variable}s take Boolean values.
9611cfa2
JD
4970In this case, Bison will complain if the variable definition does not meet one
4971of the following four conditions:
4972
4973@enumerate
f37495f6 4974@item @code{@var{value}} is @code{true}
9611cfa2 4975
f37495f6
JD
4976@item @code{@var{value}} is omitted (or @code{""} is specified).
4977This is equivalent to @code{true}.
9611cfa2 4978
f37495f6 4979@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4980
4981@item @var{variable} is never defined.
628be6c9 4982In this case, Bison selects a default value.
9611cfa2 4983@end enumerate
148d66d8 4984
628be6c9
JD
4985What @var{variable}s are accepted, as well as their meanings and default
4986values, depend on the selected target language and/or the parser
4987skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4988Summary,,%skeleton}).
4989Unaccepted @var{variable}s produce an error.
793fbca5
JD
4990Some of the accepted @var{variable}s are:
4991
4992@itemize @bullet
d9df47b6
JD
4993@item api.pure
4994@findex %define api.pure
4995
4996@itemize @bullet
4997@item Language(s): C
4998
4999@item Purpose: Request a pure (reentrant) parser program.
5000@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5001
5002@item Accepted Values: Boolean
5003
f37495f6 5004@item Default Value: @code{false}
d9df47b6
JD
5005@end itemize
5006
812775a0
JD
5007@item api.push-pull
5008@findex %define api.push-pull
793fbca5
JD
5009
5010@itemize @bullet
34a6c2d1 5011@item Language(s): C (deterministic parsers only)
793fbca5 5012
3b1977ea 5013@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5014@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5015(The current push parsing interface is experimental and may evolve.
5016More user feedback will help to stabilize it.)
793fbca5 5017
f37495f6 5018@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5019
f37495f6 5020@item Default Value: @code{pull}
793fbca5
JD
5021@end itemize
5022
232be91a
AD
5023@c ================================================== lr.default-reductions
5024
1d0f55cc 5025@item lr.default-reductions
620b5727 5026@cindex default reductions
1d0f55cc 5027@findex %define lr.default-reductions
34a6c2d1
JD
5028@cindex delayed syntax errors
5029@cindex syntax errors delayed
35430378 5030@cindex LAC
4c38b19e 5031@findex %nonassoc
34a6c2d1
JD
5032
5033@itemize @bullet
5034@item Language(s): all
5035
4c38b19e 5036@item Purpose: Specify the kind of states that are permitted to
620b5727 5037contain default reductions.
4c38b19e
JD
5038That is, in such a state, Bison selects the reduction with the largest
5039lookahead set to be the default parser action and then removes that
620b5727 5040lookahead set.
4c38b19e
JD
5041(The ability to specify where default reductions should be used is
5042experimental.
34a6c2d1
JD
5043More user feedback will help to stabilize it.)
5044
5045@item Accepted Values:
5046@itemize
f37495f6 5047@item @code{all}.
4c38b19e
JD
5048This is the traditional Bison behavior.
5049The main advantage is a significant decrease in the size of the parser
5050tables.
5051The disadvantage is that, when the generated parser encounters a
5052syntactically unacceptable token, the parser might then perform
5053unnecessary default reductions before it can detect the syntax error.
5054Such delayed syntax error detection is usually inherent in
35430378
JD
5055LALR and IELR parser tables anyway due to
5056LR state merging (@pxref{Decl Summary,,lr.type}).
4c38b19e 5057Furthermore, the use of @code{%nonassoc} can contribute to delayed
35430378 5058syntax error detection even in the case of canonical LR.
4c38b19e 5059As an experimental feature, delayed syntax error detection can be
35430378 5060overcome in all cases by enabling LAC (@pxref{Decl
4c38b19e
JD
5061Summary,,parse.lac}, for details, including a discussion of the effects
5062of delayed syntax error detection).
34a6c2d1 5063
f37495f6 5064@item @code{consistent}.
34a6c2d1
JD
5065@cindex consistent states
5066A consistent state is a state that has only one possible action.
5067If that action is a reduction, then the parser does not need to request
5068a lookahead token from the scanner before performing that action.
4c38b19e
JD
5069However, the parser recognizes the ability to ignore the lookahead token
5070in this way only when such a reduction is encoded as a default
5071reduction.
5072Thus, if default reductions are permitted only in consistent states,
35430378 5073then a canonical LR parser that does not employ
4c38b19e
JD
5074@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5075syntactically unacceptable token from the scanner.
34a6c2d1 5076
f37495f6 5077@item @code{accepting}.
34a6c2d1 5078@cindex accepting state
4c38b19e
JD
5079In the accepting state, the default reduction is actually the accept
5080action.
35430378 5081In this case, a canonical LR parser that does not employ
4c38b19e
JD
5082@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5083syntactically unacceptable token in the input.
5084That is, it does not perform any extra reductions.
34a6c2d1
JD
5085@end itemize
5086
5087@item Default Value:
5088@itemize
f37495f6
JD
5089@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5090@item @code{all} otherwise.
34a6c2d1
JD
5091@end itemize
5092@end itemize
5093
232be91a
AD
5094@c ============================================ lr.keep-unreachable-states
5095
812775a0
JD
5096@item lr.keep-unreachable-states
5097@findex %define lr.keep-unreachable-states
31984206
JD
5098
5099@itemize @bullet
5100@item Language(s): all
5101
3b1977ea
JD
5102@item Purpose: Request that Bison allow unreachable parser states to
5103remain in the parser tables.
31984206
JD
5104Bison considers a state to be unreachable if there exists no sequence of
5105transitions from the start state to that state.
5106A state can become unreachable during conflict resolution if Bison disables a
5107shift action leading to it from a predecessor state.
5108Keeping unreachable states is sometimes useful for analysis purposes, but they
5109are useless in the generated parser.
5110
5111@item Accepted Values: Boolean
5112
f37495f6 5113@item Default Value: @code{false}
31984206
JD
5114
5115@item Caveats:
5116
5117@itemize @bullet
cff03fb2
JD
5118
5119@item Unreachable states may contain conflicts and may use rules not used in
5120any other state.
31984206
JD
5121Thus, keeping unreachable states may induce warnings that are irrelevant to
5122your parser's behavior, and it may eliminate warnings that are relevant.
5123Of course, the change in warnings may actually be relevant to a parser table
5124analysis that wants to keep unreachable states, so this behavior will likely
5125remain in future Bison releases.
5126
5127@item While Bison is able to remove unreachable states, it is not guaranteed to
5128remove other kinds of useless states.
5129Specifically, when Bison disables reduce actions during conflict resolution,
5130some goto actions may become useless, and thus some additional states may
5131become useless.
5132If Bison were to compute which goto actions were useless and then disable those
5133actions, it could identify such states as unreachable and then remove those
5134states.
5135However, Bison does not compute which goto actions are useless.
5136@end itemize
5137@end itemize
5138
232be91a
AD
5139@c ================================================== lr.type
5140
34a6c2d1
JD
5141@item lr.type
5142@findex %define lr.type
35430378
JD
5143@cindex LALR
5144@cindex IELR
5145@cindex LR
34a6c2d1
JD
5146
5147@itemize @bullet
5148@item Language(s): all
5149
3b1977ea 5150@item Purpose: Specify the type of parser tables within the
35430378 5151LR(1) family.
34a6c2d1
JD
5152(This feature is experimental.
5153More user feedback will help to stabilize it.)
5154
5155@item Accepted Values:
5156@itemize
f37495f6 5157@item @code{lalr}.
35430378
JD
5158While Bison generates LALR parser tables by default for
5159historical reasons, IELR or canonical LR is almost
34a6c2d1 5160always preferable for deterministic parsers.
35430378 5161The trouble is that LALR parser tables can suffer from
620b5727 5162mysterious conflicts and thus may not accept the full set of sentences
35430378 5163that IELR and canonical LR accept.
34a6c2d1 5164@xref{Mystery Conflicts}, for details.
35430378 5165However, there are at least two scenarios where LALR may be
34a6c2d1
JD
5166worthwhile:
5167@itemize
35430378
JD
5168@cindex GLR with LALR
5169@item When employing GLR parsers (@pxref{GLR Parsers}), if you
34a6c2d1
JD
5170do not resolve any conflicts statically (for example, with @code{%left}
5171or @code{%prec}), then the parser explores all potential parses of any
5172given input.
35430378 5173In this case, the use of LALR parser tables is guaranteed not
620b5727 5174to alter the language accepted by the parser.
35430378 5175LALR parser tables are the smallest parser tables Bison can
34a6c2d1 5176currently generate, so they may be preferable.
3b1977ea 5177Nevertheless, once you begin to resolve conflicts statically,
35430378
JD
5178GLR begins to behave more like a deterministic parser, and so
5179IELR and canonical LR can be helpful to avoid
5180LALR's mysterious behavior.
34a6c2d1
JD
5181
5182@item Occasionally during development, an especially malformed grammar
35430378
JD
5183with a major recurring flaw may severely impede the IELR or
5184canonical LR parser table generation algorithm.
5185LALR can be a quick way to generate parser tables in order to
34a6c2d1 5186investigate such problems while ignoring the more subtle differences
35430378 5187from IELR and canonical LR.
34a6c2d1
JD
5188@end itemize
5189
f37495f6 5190@item @code{ielr}.
35430378
JD
5191IELR is a minimal LR algorithm.
5192That is, given any grammar (LR or non-LR),
5193IELR and canonical LR always accept exactly the same
34a6c2d1 5194set of sentences.
35430378
JD
5195However, as for LALR, the number of parser states is often an
5196order of magnitude less for IELR than for canonical
5197LR.
5198More importantly, because canonical LR's extra parser states
5199may contain duplicate conflicts in the case of non-LR
5200grammars, the number of conflicts for IELR is often an order
34a6c2d1
JD
5201of magnitude less as well.
5202This can significantly reduce the complexity of developing of a grammar.
5203
f37495f6 5204@item @code{canonical-lr}.
34a6c2d1
JD
5205@cindex delayed syntax errors
5206@cindex syntax errors delayed
35430378 5207@cindex LAC
4c38b19e 5208@findex %nonassoc
35430378 5209While inefficient, canonical LR parser tables can be an
4c38b19e 5210interesting means to explore a grammar because they have a property that
35430378 5211IELR and LALR tables do not.
4c38b19e
JD
5212That is, if @code{%nonassoc} is not used and default reductions are left
5213disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
35430378 5214left context of every canonical LR state, the set of tokens
4c38b19e
JD
5215accepted by that state is guaranteed to be the exact set of tokens that
5216is syntactically acceptable in that left context.
35430378 5217It might then seem that an advantage of canonical LR parsers
4c38b19e
JD
5218in production is that, under the above constraints, they are guaranteed
5219to detect a syntax error as soon as possible without performing any
5220unnecessary reductions.
35430378 5221However, IELR parsers using LAC (@pxref{Decl
4c38b19e
JD
5222Summary,,parse.lac}) are also able to achieve this behavior without
5223sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5224@end itemize
5225
f37495f6 5226@item Default Value: @code{lalr}
34a6c2d1
JD
5227@end itemize
5228
793fbca5
JD
5229@item namespace
5230@findex %define namespace
5231
5232@itemize
5233@item Languages(s): C++
5234
3b1977ea 5235@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5236For example, if you specify:
5237
5238@smallexample
5239%define namespace "foo::bar"
5240@end smallexample
5241
5242Bison uses @code{foo::bar} verbatim in references such as:
5243
5244@smallexample
5245foo::bar::parser::semantic_type
5246@end smallexample
5247
5248However, to open a namespace, Bison removes any leading @code{::} and then
5249splits on any remaining occurrences:
5250
5251@smallexample
5252namespace foo @{ namespace bar @{
5253 class position;
5254 class location;
5255@} @}
5256@end smallexample
5257
5258@item Accepted Values: Any absolute or relative C++ namespace reference without
5259a trailing @code{"::"}.
5260For example, @code{"foo"} or @code{"::foo::bar"}.
5261
5262@item Default Value: The value specified by @code{%name-prefix}, which defaults
5263to @code{yy}.
5264This usage of @code{%name-prefix} is for backward compatibility and can be
5265confusing since @code{%name-prefix} also specifies the textual prefix for the
5266lexical analyzer function.
5267Thus, if you specify @code{%name-prefix}, it is best to also specify
5268@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5269lexical analyzer function.
5270For example, if you specify:
5271
5272@smallexample
5273%define namespace "foo"
5274%name-prefix "bar::"
5275@end smallexample
5276
5277The parser namespace is @code{foo} and @code{yylex} is referenced as
5278@code{bar::lex}.
5279@end itemize
4c38b19e
JD
5280
5281@c ================================================== parse.lac
5282@item parse.lac
5283@findex %define parse.lac
35430378 5284@cindex LAC
4c38b19e
JD
5285@cindex lookahead correction
5286
5287@itemize
5288@item Languages(s): C
5289
35430378 5290@item Purpose: Enable LAC (lookahead correction) to improve
4c38b19e
JD
5291syntax error handling.
5292
35430378 5293Canonical LR, IELR, and LALR can suffer
4c38b19e
JD
5294from a couple of problems upon encountering a syntax error. First, the
5295parser might perform additional parser stack reductions before
5296discovering the syntax error. Such reductions perform user semantic
5297actions that are unexpected because they are based on an invalid token,
5298and they cause error recovery to begin in a different syntactic context
5299than the one in which the invalid token was encountered. Second, when
5300verbose error messages are enabled (with @code{%error-verbose} or
5301@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5302error message can both contain invalid tokens and omit valid tokens.
5303
5304The culprits for the above problems are @code{%nonassoc}, default
5305reductions in inconsistent states, and parser state merging. Thus,
35430378
JD
5306IELR and LALR suffer the most. Canonical
5307LR can suffer only if @code{%nonassoc} is used or if default
4c38b19e
JD
5308reductions are enabled for inconsistent states.
5309
35430378
JD
5310LAC is a new mechanism within the parsing algorithm that
5311completely solves these problems for canonical LR,
5312IELR, and LALR without sacrificing @code{%nonassoc},
4c38b19e
JD
5313default reductions, or state mering. Conceptually, the mechanism is
5314straight-forward. Whenever the parser fetches a new token from the
5315scanner so that it can determine the next parser action, it immediately
5316suspends normal parsing and performs an exploratory parse using a
5317temporary copy of the normal parser state stack. During this
5318exploratory parse, the parser does not perform user semantic actions.
5319If the exploratory parse reaches a shift action, normal parsing then
5320resumes on the normal parser stacks. If the exploratory parse reaches
5321an error instead, the parser reports a syntax error. If verbose syntax
5322error messages are enabled, the parser must then discover the list of
5323expected tokens, so it performs a separate exploratory parse for each
5324token in the grammar.
5325
35430378 5326There is one subtlety about the use of LAC. That is, when in
4c38b19e
JD
5327a consistent parser state with a default reduction, the parser will not
5328attempt to fetch a token from the scanner because no lookahead is needed
5329to determine the next parser action. Thus, whether default reductions
5330are enabled in consistent states (@pxref{Decl
5331Summary,,lr.default-reductions}) affects how soon the parser detects a
5332syntax error: when it @emph{reaches} an erroneous token or when it
5333eventually @emph{needs} that token as a lookahead. The latter behavior
5334is probably more intuitive, so Bison currently provides no way to
5335achieve the former behavior while default reductions are fully enabled.
5336
35430378 5337Thus, when LAC is in use, for some fixed decision of whether
4c38b19e 5338to enable default reductions in consistent states, canonical
35430378 5339LR and IELR behave exactly the same for both
4c38b19e 5340syntactically acceptable and syntactically unacceptable input. While
35430378
JD
5341LALR still does not support the full language-recognition
5342power of canonical LR and IELR, LAC at
5343least enables LALR's syntax error handling to correctly
5344reflect LALR's language-recognition power.
4c38b19e 5345
35430378 5346Because LAC requires many parse actions to be performed twice,
4c38b19e
JD
5347it can have a performance penalty. However, not all parse actions must
5348be performed twice. Specifically, during a series of default reductions
5349in consistent states and shift actions, the parser never has to initiate
5350an exploratory parse. Moreover, the most time-consuming tasks in a
5351parse are often the file I/O, the lexical analysis performed by the
5352scanner, and the user's semantic actions, but none of these are
5353performed during the exploratory parse. Finally, the base of the
5354temporary stack used during an exploratory parse is a pointer into the
5355normal parser state stack so that the stack is never physically copied.
35430378 5356In our experience, the performance penalty of LAC has proven
4c38b19e
JD
5357insignificant for practical grammars.
5358
5359@item Accepted Values: @code{none}, @code{full}
5360
5361@item Default Value: @code{none}
5362@end itemize
793fbca5
JD
5363@end itemize
5364
d782395d
JD
5365@end deffn
5366
18b519c0 5367@deffn {Directive} %defines
4bfd5e4e
PE
5368Write a header file containing macro definitions for the token type
5369names defined in the grammar as well as a few other declarations.
d8988b2f 5370If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5371is named @file{@var{name}.h}.
d8988b2f 5372
b321737f 5373For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5374@code{YYSTYPE} is already defined as a macro or you have used a
5375@code{<@var{type}>} tag without using @code{%union}.
5376Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5377(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5378require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5379or type definition
f8e1c9e5
AD
5380(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5381arrange for these definitions to be propagated to all modules, e.g., by
5382putting them in a prerequisite header that is included both by your
5383parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5384
5385Unless your parser is pure, the output header declares @code{yylval}
5386as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5387Parser}.
5388
5389If you have also used locations, the output header declares
5390@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5391the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5392Locations}.
5393
f8e1c9e5
AD
5394This output file is normally essential if you wish to put the definition
5395of @code{yylex} in a separate source file, because @code{yylex}
5396typically needs to be able to refer to the above-mentioned declarations
5397and to the token type codes. @xref{Token Values, ,Semantic Values of
5398Tokens}.
9bc0dd67 5399
16dc6a9e
JD
5400@findex %code requires
5401@findex %code provides
5402If you have declared @code{%code requires} or @code{%code provides}, the output
5403header also contains their code.
148d66d8 5404@xref{Decl Summary, ,%code}.
592d0b1e
PB
5405@end deffn
5406
02975b9a
JD
5407@deffn {Directive} %defines @var{defines-file}
5408Same as above, but save in the file @var{defines-file}.
5409@end deffn
5410
18b519c0 5411@deffn {Directive} %destructor
258b75ca 5412Specify how the parser should reclaim the memory associated to
fa7e68c3 5413discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5414@end deffn
72f889cc 5415
02975b9a 5416@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5417Specify a prefix to use for all Bison output file names. The names are
5418chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5419@end deffn
d8988b2f 5420
e6e704dc 5421@deffn {Directive} %language "@var{language}"
0e021770 5422Specify the programming language for the generated parser. Currently
59da312b 5423supported languages include C, C++, and Java.
e6e704dc 5424@var{language} is case-insensitive.
ed4d67dc
JD
5425
5426This directive is experimental and its effect may be modified in future
5427releases.
0e021770
PE
5428@end deffn
5429
18b519c0 5430@deffn {Directive} %locations
89cab50d
AD
5431Generate the code processing the locations (@pxref{Action Features,
5432,Special Features for Use in Actions}). This mode is enabled as soon as
5433the grammar uses the special @samp{@@@var{n}} tokens, but if your
5434grammar does not use it, using @samp{%locations} allows for more
6e649e65 5435accurate syntax error messages.
18b519c0 5436@end deffn
89cab50d 5437
02975b9a 5438@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5439Rename the external symbols used in the parser so that they start with
5440@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5441in C parsers
d8988b2f 5442is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5443@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5444(if locations are used) @code{yylloc}. If you use a push parser,
5445@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5446@code{yypstate_new} and @code{yypstate_delete} will
5447also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5448names become @code{c_parse}, @code{c_lex}, and so on.
5449For C++ parsers, see the @code{%define namespace} documentation in this
5450section.
aa08666d 5451@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5452@end deffn
931c7513 5453
91d2c560 5454@ifset defaultprec
22fccf95
PE
5455@deffn {Directive} %no-default-prec
5456Do not assign a precedence to rules lacking an explicit @code{%prec}
5457modifier (@pxref{Contextual Precedence, ,Context-Dependent
5458Precedence}).
5459@end deffn
91d2c560 5460@end ifset
22fccf95 5461
18b519c0 5462@deffn {Directive} %no-lines
931c7513
RS
5463Don't generate any @code{#line} preprocessor commands in the parser
5464file. Ordinarily Bison writes these commands in the parser file so that
5465the C compiler and debuggers will associate errors and object code with
5466your source file (the grammar file). This directive causes them to
5467associate errors with the parser file, treating it an independent source
5468file in its own right.
18b519c0 5469@end deffn
931c7513 5470
02975b9a 5471@deffn {Directive} %output "@var{file}"
fa4d969f 5472Specify @var{file} for the parser file.
18b519c0 5473@end deffn
6deb4447 5474
18b519c0 5475@deffn {Directive} %pure-parser
d9df47b6
JD
5476Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5477for which Bison is more careful to warn about unreasonable usage.
18b519c0 5478@end deffn
6deb4447 5479
b50d2359 5480@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5481Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5482Require a Version of Bison}.
b50d2359
AD
5483@end deffn
5484
0e021770 5485@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5486Specify the skeleton to use.
5487
ed4d67dc
JD
5488@c You probably don't need this option unless you are developing Bison.
5489@c You should use @code{%language} if you want to specify the skeleton for a
5490@c different language, because it is clearer and because it will always choose the
5491@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5492
5493If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5494file in the Bison installation directory.
5495If it does, @var{file} is an absolute file name or a file name relative to the
5496directory of the grammar file.
5497This is similar to how most shells resolve commands.
0e021770
PE
5498@end deffn
5499
18b519c0 5500@deffn {Directive} %token-table
931c7513
RS
5501Generate an array of token names in the parser file. The name of the
5502array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5503token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5504three elements of @code{yytname} correspond to the predefined tokens
5505@code{"$end"},
88bce5a2
AD
5506@code{"error"}, and @code{"$undefined"}; after these come the symbols
5507defined in the grammar file.
931c7513 5508
9e0876fb
PE
5509The name in the table includes all the characters needed to represent
5510the token in Bison. For single-character literals and literal
5511strings, this includes the surrounding quoting characters and any
5512escape sequences. For example, the Bison single-character literal
5513@code{'+'} corresponds to a three-character name, represented in C as
5514@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5515corresponds to a five-character name, represented in C as
5516@code{"\"\\\\/\""}.
931c7513 5517
8c9a50be 5518When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5519definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5520@code{YYNRULES}, and @code{YYNSTATES}:
5521
5522@table @code
5523@item YYNTOKENS
5524The highest token number, plus one.
5525@item YYNNTS
9ecbd125 5526The number of nonterminal symbols.
931c7513
RS
5527@item YYNRULES
5528The number of grammar rules,
5529@item YYNSTATES
5530The number of parser states (@pxref{Parser States}).
5531@end table
18b519c0 5532@end deffn
d8988b2f 5533
18b519c0 5534@deffn {Directive} %verbose
d8988b2f 5535Write an extra output file containing verbose descriptions of the
742e4900 5536parser states and what is done for each type of lookahead token in
72d2299c 5537that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5538information.
18b519c0 5539@end deffn
d8988b2f 5540
18b519c0 5541@deffn {Directive} %yacc
d8988b2f
AD
5542Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5543including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5544@end deffn
d8988b2f
AD
5545
5546
342b8b6e 5547@node Multiple Parsers
bfa74976
RS
5548@section Multiple Parsers in the Same Program
5549
5550Most programs that use Bison parse only one language and therefore contain
5551only one Bison parser. But what if you want to parse more than one
5552language with the same program? Then you need to avoid a name conflict
5553between different definitions of @code{yyparse}, @code{yylval}, and so on.
5554
5555The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5556(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5557functions and variables of the Bison parser to start with @var{prefix}
5558instead of @samp{yy}. You can use this to give each parser distinct
5559names that do not conflict.
bfa74976
RS
5560
5561The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5562@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5563@code{yychar} and @code{yydebug}. If you use a push parser,
5564@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5565@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5566For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5567@code{clex}, and so on.
bfa74976
RS
5568
5569@strong{All the other variables and macros associated with Bison are not
5570renamed.} These others are not global; there is no conflict if the same
5571name is used in different parsers. For example, @code{YYSTYPE} is not
5572renamed, but defining this in different ways in different parsers causes
5573no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5574
5575The @samp{-p} option works by adding macro definitions to the beginning
5576of the parser source file, defining @code{yyparse} as
5577@code{@var{prefix}parse}, and so on. This effectively substitutes one
5578name for the other in the entire parser file.
5579
342b8b6e 5580@node Interface
bfa74976
RS
5581@chapter Parser C-Language Interface
5582@cindex C-language interface
5583@cindex interface
5584
5585The Bison parser is actually a C function named @code{yyparse}. Here we
5586describe the interface conventions of @code{yyparse} and the other
5587functions that it needs to use.
5588
5589Keep in mind that the parser uses many C identifiers starting with
5590@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5591identifier (aside from those in this manual) in an action or in epilogue
5592in the grammar file, you are likely to run into trouble.
bfa74976
RS
5593
5594@menu
f56274a8
DJ
5595* Parser Function:: How to call @code{yyparse} and what it returns.
5596* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5597* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5598* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5599* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5600* Lexical:: You must supply a function @code{yylex}
5601 which reads tokens.
5602* Error Reporting:: You must supply a function @code{yyerror}.
5603* Action Features:: Special features for use in actions.
5604* Internationalization:: How to let the parser speak in the user's
5605 native language.
bfa74976
RS
5606@end menu
5607
342b8b6e 5608@node Parser Function
bfa74976
RS
5609@section The Parser Function @code{yyparse}
5610@findex yyparse
5611
5612You call the function @code{yyparse} to cause parsing to occur. This
5613function reads tokens, executes actions, and ultimately returns when it
5614encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5615write an action which directs @code{yyparse} to return immediately
5616without reading further.
bfa74976 5617
2a8d363a
AD
5618
5619@deftypefun int yyparse (void)
bfa74976
RS
5620The value returned by @code{yyparse} is 0 if parsing was successful (return
5621is due to end-of-input).
5622
b47dbebe
PE
5623The value is 1 if parsing failed because of invalid input, i.e., input
5624that contains a syntax error or that causes @code{YYABORT} to be
5625invoked.
5626
5627The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5628@end deftypefun
bfa74976
RS
5629
5630In an action, you can cause immediate return from @code{yyparse} by using
5631these macros:
5632
2a8d363a 5633@defmac YYACCEPT
bfa74976
RS
5634@findex YYACCEPT
5635Return immediately with value 0 (to report success).
2a8d363a 5636@end defmac
bfa74976 5637
2a8d363a 5638@defmac YYABORT
bfa74976
RS
5639@findex YYABORT
5640Return immediately with value 1 (to report failure).
2a8d363a
AD
5641@end defmac
5642
5643If you use a reentrant parser, you can optionally pass additional
5644parameter information to it in a reentrant way. To do so, use the
5645declaration @code{%parse-param}:
5646
feeb0eda 5647@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5648@findex %parse-param
287c78f6
PE
5649Declare that an argument declared by the braced-code
5650@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5651The @var{argument-declaration} is used when declaring
feeb0eda
PE
5652functions or prototypes. The last identifier in
5653@var{argument-declaration} must be the argument name.
2a8d363a
AD
5654@end deffn
5655
5656Here's an example. Write this in the parser:
5657
5658@example
feeb0eda
PE
5659%parse-param @{int *nastiness@}
5660%parse-param @{int *randomness@}
2a8d363a
AD
5661@end example
5662
5663@noindent
5664Then call the parser like this:
5665
5666@example
5667@{
5668 int nastiness, randomness;
5669 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5670 value = yyparse (&nastiness, &randomness);
5671 @dots{}
5672@}
5673@end example
5674
5675@noindent
5676In the grammar actions, use expressions like this to refer to the data:
5677
5678@example
5679exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5680@end example
5681
9987d1b3
JD
5682@node Push Parser Function
5683@section The Push Parser Function @code{yypush_parse}
5684@findex yypush_parse
5685
59da312b
JD
5686(The current push parsing interface is experimental and may evolve.
5687More user feedback will help to stabilize it.)
5688
f4101aa6 5689You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5690function is available if either the @code{%define api.push-pull push} or
5691@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5692@xref{Push Decl, ,A Push Parser}.
5693
5694@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5695The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5696following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5697is required to finish parsing the grammar.
5698@end deftypefun
5699
5700@node Pull Parser Function
5701@section The Pull Parser Function @code{yypull_parse}
5702@findex yypull_parse
5703
59da312b
JD
5704(The current push parsing interface is experimental and may evolve.
5705More user feedback will help to stabilize it.)
5706
f4101aa6 5707You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5708stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5709declaration is used.
9987d1b3
JD
5710@xref{Push Decl, ,A Push Parser}.
5711
5712@deftypefun int yypull_parse (yypstate *yyps)
5713The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5714@end deftypefun
5715
5716@node Parser Create Function
5717@section The Parser Create Function @code{yystate_new}
5718@findex yypstate_new
5719
59da312b
JD
5720(The current push parsing interface is experimental and may evolve.
5721More user feedback will help to stabilize it.)
5722
f4101aa6 5723You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5724This function is available if either the @code{%define api.push-pull push} or
5725@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5726@xref{Push Decl, ,A Push Parser}.
5727
5728@deftypefun yypstate *yypstate_new (void)
c781580d 5729The function will return a valid parser instance if there was memory available
333e670c
JD
5730or 0 if no memory was available.
5731In impure mode, it will also return 0 if a parser instance is currently
5732allocated.
9987d1b3
JD
5733@end deftypefun
5734
5735@node Parser Delete Function
5736@section The Parser Delete Function @code{yystate_delete}
5737@findex yypstate_delete
5738
59da312b
JD
5739(The current push parsing interface is experimental and may evolve.
5740More user feedback will help to stabilize it.)
5741
9987d1b3 5742You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5743function is available if either the @code{%define api.push-pull push} or
5744@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5745@xref{Push Decl, ,A Push Parser}.
5746
5747@deftypefun void yypstate_delete (yypstate *yyps)
5748This function will reclaim the memory associated with a parser instance.
5749After this call, you should no longer attempt to use the parser instance.
5750@end deftypefun
bfa74976 5751
342b8b6e 5752@node Lexical
bfa74976
RS
5753@section The Lexical Analyzer Function @code{yylex}
5754@findex yylex
5755@cindex lexical analyzer
5756
5757The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5758the input stream and returns them to the parser. Bison does not create
5759this function automatically; you must write it so that @code{yyparse} can
5760call it. The function is sometimes referred to as a lexical scanner.
5761
5762In simple programs, @code{yylex} is often defined at the end of the Bison
5763grammar file. If @code{yylex} is defined in a separate source file, you
5764need to arrange for the token-type macro definitions to be available there.
5765To do this, use the @samp{-d} option when you run Bison, so that it will
5766write these macro definitions into a separate header file
5767@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5768that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5769
5770@menu
5771* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5772* Token Values:: How @code{yylex} must return the semantic value
5773 of the token it has read.
5774* Token Locations:: How @code{yylex} must return the text location
5775 (line number, etc.) of the token, if the
5776 actions want that.
5777* Pure Calling:: How the calling convention differs in a pure parser
5778 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5779@end menu
5780
342b8b6e 5781@node Calling Convention
bfa74976
RS
5782@subsection Calling Convention for @code{yylex}
5783
72d2299c
PE
5784The value that @code{yylex} returns must be the positive numeric code
5785for the type of token it has just found; a zero or negative value
5786signifies end-of-input.
bfa74976
RS
5787
5788When a token is referred to in the grammar rules by a name, that name
5789in the parser file becomes a C macro whose definition is the proper
5790numeric code for that token type. So @code{yylex} can use the name
5791to indicate that type. @xref{Symbols}.
5792
5793When a token is referred to in the grammar rules by a character literal,
5794the numeric code for that character is also the code for the token type.
72d2299c
PE
5795So @code{yylex} can simply return that character code, possibly converted
5796to @code{unsigned char} to avoid sign-extension. The null character
5797must not be used this way, because its code is zero and that
bfa74976
RS
5798signifies end-of-input.
5799
5800Here is an example showing these things:
5801
5802@example
13863333
AD
5803int
5804yylex (void)
bfa74976
RS
5805@{
5806 @dots{}
72d2299c 5807 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5808 return 0;
5809 @dots{}
5810 if (c == '+' || c == '-')
72d2299c 5811 return c; /* Assume token type for `+' is '+'. */
bfa74976 5812 @dots{}
72d2299c 5813 return INT; /* Return the type of the token. */
bfa74976
RS
5814 @dots{}
5815@}
5816@end example
5817
5818@noindent
5819This interface has been designed so that the output from the @code{lex}
5820utility can be used without change as the definition of @code{yylex}.
5821
931c7513
RS
5822If the grammar uses literal string tokens, there are two ways that
5823@code{yylex} can determine the token type codes for them:
5824
5825@itemize @bullet
5826@item
5827If the grammar defines symbolic token names as aliases for the
5828literal string tokens, @code{yylex} can use these symbolic names like
5829all others. In this case, the use of the literal string tokens in
5830the grammar file has no effect on @code{yylex}.
5831
5832@item
9ecbd125 5833@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5834table. The index of the token in the table is the token type's code.
9ecbd125 5835The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5836double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5837token's characters are escaped as necessary to be suitable as input
5838to Bison.
931c7513 5839
9e0876fb
PE
5840Here's code for looking up a multicharacter token in @code{yytname},
5841assuming that the characters of the token are stored in
5842@code{token_buffer}, and assuming that the token does not contain any
5843characters like @samp{"} that require escaping.
931c7513
RS
5844
5845@smallexample
5846for (i = 0; i < YYNTOKENS; i++)
5847 @{
5848 if (yytname[i] != 0
5849 && yytname[i][0] == '"'
68449b3a
PE
5850 && ! strncmp (yytname[i] + 1, token_buffer,
5851 strlen (token_buffer))
931c7513
RS
5852 && yytname[i][strlen (token_buffer) + 1] == '"'
5853 && yytname[i][strlen (token_buffer) + 2] == 0)
5854 break;
5855 @}
5856@end smallexample
5857
5858The @code{yytname} table is generated only if you use the
8c9a50be 5859@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5860@end itemize
5861
342b8b6e 5862@node Token Values
bfa74976
RS
5863@subsection Semantic Values of Tokens
5864
5865@vindex yylval
9d9b8b70 5866In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5867be stored into the global variable @code{yylval}. When you are using
5868just one data type for semantic values, @code{yylval} has that type.
5869Thus, if the type is @code{int} (the default), you might write this in
5870@code{yylex}:
5871
5872@example
5873@group
5874 @dots{}
72d2299c
PE
5875 yylval = value; /* Put value onto Bison stack. */
5876 return INT; /* Return the type of the token. */
bfa74976
RS
5877 @dots{}
5878@end group
5879@end example
5880
5881When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5882made from the @code{%union} declaration (@pxref{Union Decl, ,The
5883Collection of Value Types}). So when you store a token's value, you
5884must use the proper member of the union. If the @code{%union}
5885declaration looks like this:
bfa74976
RS
5886
5887@example
5888@group
5889%union @{
5890 int intval;
5891 double val;
5892 symrec *tptr;
5893@}
5894@end group
5895@end example
5896
5897@noindent
5898then the code in @code{yylex} might look like this:
5899
5900@example
5901@group
5902 @dots{}
72d2299c
PE
5903 yylval.intval = value; /* Put value onto Bison stack. */
5904 return INT; /* Return the type of the token. */
bfa74976
RS
5905 @dots{}
5906@end group
5907@end example
5908
95923bd6
AD
5909@node Token Locations
5910@subsection Textual Locations of Tokens
bfa74976
RS
5911
5912@vindex yylloc
847bf1f5 5913If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5914Tracking Locations}) in actions to keep track of the textual locations
5915of tokens and groupings, then you must provide this information in
5916@code{yylex}. The function @code{yyparse} expects to find the textual
5917location of a token just parsed in the global variable @code{yylloc}.
5918So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5919
5920By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5921initialize the members that are going to be used by the actions. The
5922four members are called @code{first_line}, @code{first_column},
5923@code{last_line} and @code{last_column}. Note that the use of this
5924feature makes the parser noticeably slower.
bfa74976
RS
5925
5926@tindex YYLTYPE
5927The data type of @code{yylloc} has the name @code{YYLTYPE}.
5928
342b8b6e 5929@node Pure Calling
c656404a 5930@subsection Calling Conventions for Pure Parsers
bfa74976 5931
d9df47b6 5932When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5933pure, reentrant parser, the global communication variables @code{yylval}
5934and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5935Parser}.) In such parsers the two global variables are replaced by
5936pointers passed as arguments to @code{yylex}. You must declare them as
5937shown here, and pass the information back by storing it through those
5938pointers.
bfa74976
RS
5939
5940@example
13863333
AD
5941int
5942yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5943@{
5944 @dots{}
5945 *lvalp = value; /* Put value onto Bison stack. */
5946 return INT; /* Return the type of the token. */
5947 @dots{}
5948@}
5949@end example
5950
5951If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5952textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5953this case, omit the second argument; @code{yylex} will be called with
5954only one argument.
5955
e425e872 5956
2a8d363a
AD
5957If you wish to pass the additional parameter data to @code{yylex}, use
5958@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5959Function}).
e425e872 5960
feeb0eda 5961@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5962@findex %lex-param
287c78f6
PE
5963Declare that the braced-code @var{argument-declaration} is an
5964additional @code{yylex} argument declaration.
2a8d363a 5965@end deffn
e425e872 5966
2a8d363a 5967For instance:
e425e872
RS
5968
5969@example
feeb0eda
PE
5970%parse-param @{int *nastiness@}
5971%lex-param @{int *nastiness@}
5972%parse-param @{int *randomness@}
e425e872
RS
5973@end example
5974
5975@noindent
2a8d363a 5976results in the following signature:
e425e872
RS
5977
5978@example
2a8d363a
AD
5979int yylex (int *nastiness);
5980int yyparse (int *nastiness, int *randomness);
e425e872
RS
5981@end example
5982
d9df47b6 5983If @code{%define api.pure} is added:
c656404a
RS
5984
5985@example
2a8d363a
AD
5986int yylex (YYSTYPE *lvalp, int *nastiness);
5987int yyparse (int *nastiness, int *randomness);
c656404a
RS
5988@end example
5989
2a8d363a 5990@noindent
d9df47b6 5991and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5992
2a8d363a
AD
5993@example
5994int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5995int yyparse (int *nastiness, int *randomness);
5996@end example
931c7513 5997
342b8b6e 5998@node Error Reporting
bfa74976
RS
5999@section The Error Reporting Function @code{yyerror}
6000@cindex error reporting function
6001@findex yyerror
6002@cindex parse error
6003@cindex syntax error
6004
6e649e65 6005The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6006whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6007action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6008macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6009in Actions}).
bfa74976
RS
6010
6011The Bison parser expects to report the error by calling an error
6012reporting function named @code{yyerror}, which you must supply. It is
6013called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6014receives one argument. For a syntax error, the string is normally
6015@w{@code{"syntax error"}}.
bfa74976 6016
2a8d363a
AD
6017@findex %error-verbose
6018If you invoke the directive @code{%error-verbose} in the Bison
6019declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6020Section}), then Bison provides a more verbose and specific error message
6e649e65 6021string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6022
1a059451
PE
6023The parser can detect one other kind of error: memory exhaustion. This
6024can happen when the input contains constructions that are very deeply
bfa74976 6025nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6026parser normally extends its stack automatically up to a very large limit. But
6027if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6028fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6029
6030In some cases diagnostics like @w{@code{"syntax error"}} are
6031translated automatically from English to some other language before
6032they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6033
6034The following definition suffices in simple programs:
6035
6036@example
6037@group
13863333 6038void
38a92d50 6039yyerror (char const *s)
bfa74976
RS
6040@{
6041@end group
6042@group
6043 fprintf (stderr, "%s\n", s);
6044@}
6045@end group
6046@end example
6047
6048After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6049error recovery if you have written suitable error recovery grammar rules
6050(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6051immediately return 1.
6052
93724f13 6053Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6054an access to the current location.
35430378 6055This is indeed the case for the GLR
2a8d363a 6056parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6057@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6058@code{yyerror} are:
6059
6060@example
38a92d50
PE
6061void yyerror (char const *msg); /* Yacc parsers. */
6062void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6063@end example
6064
feeb0eda 6065If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6066
6067@example
b317297e
PE
6068void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6069void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6070@end example
6071
35430378 6072Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6073convention for absolutely pure parsers, i.e., when the calling
6074convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6075@code{%define api.pure} are pure.
6076I.e.:
2a8d363a
AD
6077
6078@example
6079/* Location tracking. */
6080%locations
6081/* Pure yylex. */
d9df47b6 6082%define api.pure
feeb0eda 6083%lex-param @{int *nastiness@}
2a8d363a 6084/* Pure yyparse. */
feeb0eda
PE
6085%parse-param @{int *nastiness@}
6086%parse-param @{int *randomness@}
2a8d363a
AD
6087@end example
6088
6089@noindent
6090results in the following signatures for all the parser kinds:
6091
6092@example
6093int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6094int yyparse (int *nastiness, int *randomness);
93724f13
AD
6095void yyerror (YYLTYPE *locp,
6096 int *nastiness, int *randomness,
38a92d50 6097 char const *msg);
2a8d363a
AD
6098@end example
6099
1c0c3e95 6100@noindent
38a92d50
PE
6101The prototypes are only indications of how the code produced by Bison
6102uses @code{yyerror}. Bison-generated code always ignores the returned
6103value, so @code{yyerror} can return any type, including @code{void}.
6104Also, @code{yyerror} can be a variadic function; that is why the
6105message is always passed last.
6106
6107Traditionally @code{yyerror} returns an @code{int} that is always
6108ignored, but this is purely for historical reasons, and @code{void} is
6109preferable since it more accurately describes the return type for
6110@code{yyerror}.
93724f13 6111
bfa74976
RS
6112@vindex yynerrs
6113The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6114reported so far. Normally this variable is global; but if you
704a47c4
AD
6115request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6116then it is a local variable which only the actions can access.
bfa74976 6117
342b8b6e 6118@node Action Features
bfa74976
RS
6119@section Special Features for Use in Actions
6120@cindex summary, action features
6121@cindex action features summary
6122
6123Here is a table of Bison constructs, variables and macros that
6124are useful in actions.
6125
18b519c0 6126@deffn {Variable} $$
bfa74976
RS
6127Acts like a variable that contains the semantic value for the
6128grouping made by the current rule. @xref{Actions}.
18b519c0 6129@end deffn
bfa74976 6130
18b519c0 6131@deffn {Variable} $@var{n}
bfa74976
RS
6132Acts like a variable that contains the semantic value for the
6133@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6134@end deffn
bfa74976 6135
18b519c0 6136@deffn {Variable} $<@var{typealt}>$
bfa74976 6137Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6138specified by the @code{%union} declaration. @xref{Action Types, ,Data
6139Types of Values in Actions}.
18b519c0 6140@end deffn
bfa74976 6141
18b519c0 6142@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6143Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6144union specified by the @code{%union} declaration.
e0c471a9 6145@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6146@end deffn
bfa74976 6147
18b519c0 6148@deffn {Macro} YYABORT;
bfa74976
RS
6149Return immediately from @code{yyparse}, indicating failure.
6150@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6151@end deffn
bfa74976 6152
18b519c0 6153@deffn {Macro} YYACCEPT;
bfa74976
RS
6154Return immediately from @code{yyparse}, indicating success.
6155@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6156@end deffn
bfa74976 6157
18b519c0 6158@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6159@findex YYBACKUP
6160Unshift a token. This macro is allowed only for rules that reduce
742e4900 6161a single value, and only when there is no lookahead token.
35430378 6162It is also disallowed in GLR parsers.
742e4900 6163It installs a lookahead token with token type @var{token} and
bfa74976
RS
6164semantic value @var{value}; then it discards the value that was
6165going to be reduced by this rule.
6166
6167If the macro is used when it is not valid, such as when there is
742e4900 6168a lookahead token already, then it reports a syntax error with
bfa74976
RS
6169a message @samp{cannot back up} and performs ordinary error
6170recovery.
6171
6172In either case, the rest of the action is not executed.
18b519c0 6173@end deffn
bfa74976 6174
18b519c0 6175@deffn {Macro} YYEMPTY
bfa74976 6176@vindex YYEMPTY
742e4900 6177Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6178@end deffn
bfa74976 6179
32c29292
JD
6180@deffn {Macro} YYEOF
6181@vindex YYEOF
742e4900 6182Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6183stream.
6184@end deffn
6185
18b519c0 6186@deffn {Macro} YYERROR;
bfa74976
RS
6187@findex YYERROR
6188Cause an immediate syntax error. This statement initiates error
6189recovery just as if the parser itself had detected an error; however, it
6190does not call @code{yyerror}, and does not print any message. If you
6191want to print an error message, call @code{yyerror} explicitly before
6192the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6193@end deffn
bfa74976 6194
18b519c0 6195@deffn {Macro} YYRECOVERING
02103984
PE
6196@findex YYRECOVERING
6197The expression @code{YYRECOVERING ()} yields 1 when the parser
6198is recovering from a syntax error, and 0 otherwise.
bfa74976 6199@xref{Error Recovery}.
18b519c0 6200@end deffn
bfa74976 6201
18b519c0 6202@deffn {Variable} yychar
742e4900
JD
6203Variable containing either the lookahead token, or @code{YYEOF} when the
6204lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6205has been performed so the next token is not yet known.
6206Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6207Actions}).
742e4900 6208@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6209@end deffn
bfa74976 6210
18b519c0 6211@deffn {Macro} yyclearin;
742e4900 6212Discard the current lookahead token. This is useful primarily in
32c29292
JD
6213error rules.
6214Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6215Semantic Actions}).
6216@xref{Error Recovery}.
18b519c0 6217@end deffn
bfa74976 6218
18b519c0 6219@deffn {Macro} yyerrok;
bfa74976 6220Resume generating error messages immediately for subsequent syntax
13863333 6221errors. This is useful primarily in error rules.
bfa74976 6222@xref{Error Recovery}.
18b519c0 6223@end deffn
bfa74976 6224
32c29292 6225@deffn {Variable} yylloc
742e4900 6226Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6227to @code{YYEMPTY} or @code{YYEOF}.
6228Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6229Actions}).
6230@xref{Actions and Locations, ,Actions and Locations}.
6231@end deffn
6232
6233@deffn {Variable} yylval
742e4900 6234Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6235not set to @code{YYEMPTY} or @code{YYEOF}.
6236Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6237Actions}).
6238@xref{Actions, ,Actions}.
6239@end deffn
6240
18b519c0 6241@deffn {Value} @@$
847bf1f5 6242@findex @@$
95923bd6 6243Acts like a structure variable containing information on the textual location
847bf1f5
AD
6244of the grouping made by the current rule. @xref{Locations, ,
6245Tracking Locations}.
bfa74976 6246
847bf1f5
AD
6247@c Check if those paragraphs are still useful or not.
6248
6249@c @example
6250@c struct @{
6251@c int first_line, last_line;
6252@c int first_column, last_column;
6253@c @};
6254@c @end example
6255
6256@c Thus, to get the starting line number of the third component, you would
6257@c use @samp{@@3.first_line}.
bfa74976 6258
847bf1f5
AD
6259@c In order for the members of this structure to contain valid information,
6260@c you must make @code{yylex} supply this information about each token.
6261@c If you need only certain members, then @code{yylex} need only fill in
6262@c those members.
bfa74976 6263
847bf1f5 6264@c The use of this feature makes the parser noticeably slower.
18b519c0 6265@end deffn
847bf1f5 6266
18b519c0 6267@deffn {Value} @@@var{n}
847bf1f5 6268@findex @@@var{n}
95923bd6 6269Acts like a structure variable containing information on the textual location
847bf1f5
AD
6270of the @var{n}th component of the current rule. @xref{Locations, ,
6271Tracking Locations}.
18b519c0 6272@end deffn
bfa74976 6273
f7ab6a50
PE
6274@node Internationalization
6275@section Parser Internationalization
6276@cindex internationalization
6277@cindex i18n
6278@cindex NLS
6279@cindex gettext
6280@cindex bison-po
6281
6282A Bison-generated parser can print diagnostics, including error and
6283tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6284also supports outputting diagnostics in the user's native language. To
6285make this work, the user should set the usual environment variables.
6286@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6287For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6288set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6289encoding. The exact set of available locales depends on the user's
6290installation.
6291
6292The maintainer of a package that uses a Bison-generated parser enables
6293the internationalization of the parser's output through the following
35430378
JD
6294steps. Here we assume a package that uses GNU Autoconf and
6295GNU Automake.
f7ab6a50
PE
6296
6297@enumerate
6298@item
30757c8c 6299@cindex bison-i18n.m4
35430378 6300Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6301by the package---often called @file{m4}---copy the
6302@file{bison-i18n.m4} file installed by Bison under
6303@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6304For example:
6305
6306@example
6307cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6308@end example
6309
6310@item
30757c8c
PE
6311@findex BISON_I18N
6312@vindex BISON_LOCALEDIR
6313@vindex YYENABLE_NLS
f7ab6a50
PE
6314In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6315invocation, add an invocation of @code{BISON_I18N}. This macro is
6316defined in the file @file{bison-i18n.m4} that you copied earlier. It
6317causes @samp{configure} to find the value of the
30757c8c
PE
6318@code{BISON_LOCALEDIR} variable, and it defines the source-language
6319symbol @code{YYENABLE_NLS} to enable translations in the
6320Bison-generated parser.
f7ab6a50
PE
6321
6322@item
6323In the @code{main} function of your program, designate the directory
6324containing Bison's runtime message catalog, through a call to
6325@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6326For example:
6327
6328@example
6329bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6330@end example
6331
6332Typically this appears after any other call @code{bindtextdomain
6333(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6334@samp{BISON_LOCALEDIR} to be defined as a string through the
6335@file{Makefile}.
6336
6337@item
6338In the @file{Makefile.am} that controls the compilation of the @code{main}
6339function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6340either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6341
6342@example
6343DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6344@end example
6345
6346or:
6347
6348@example
6349AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6350@end example
6351
6352@item
6353Finally, invoke the command @command{autoreconf} to generate the build
6354infrastructure.
6355@end enumerate
6356
bfa74976 6357
342b8b6e 6358@node Algorithm
13863333
AD
6359@chapter The Bison Parser Algorithm
6360@cindex Bison parser algorithm
bfa74976
RS
6361@cindex algorithm of parser
6362@cindex shifting
6363@cindex reduction
6364@cindex parser stack
6365@cindex stack, parser
6366
6367As Bison reads tokens, it pushes them onto a stack along with their
6368semantic values. The stack is called the @dfn{parser stack}. Pushing a
6369token is traditionally called @dfn{shifting}.
6370
6371For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6372@samp{3} to come. The stack will have four elements, one for each token
6373that was shifted.
6374
6375But the stack does not always have an element for each token read. When
6376the last @var{n} tokens and groupings shifted match the components of a
6377grammar rule, they can be combined according to that rule. This is called
6378@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6379single grouping whose symbol is the result (left hand side) of that rule.
6380Running the rule's action is part of the process of reduction, because this
6381is what computes the semantic value of the resulting grouping.
6382
6383For example, if the infix calculator's parser stack contains this:
6384
6385@example
63861 + 5 * 3
6387@end example
6388
6389@noindent
6390and the next input token is a newline character, then the last three
6391elements can be reduced to 15 via the rule:
6392
6393@example
6394expr: expr '*' expr;
6395@end example
6396
6397@noindent
6398Then the stack contains just these three elements:
6399
6400@example
64011 + 15
6402@end example
6403
6404@noindent
6405At this point, another reduction can be made, resulting in the single value
640616. Then the newline token can be shifted.
6407
6408The parser tries, by shifts and reductions, to reduce the entire input down
6409to a single grouping whose symbol is the grammar's start-symbol
6410(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6411
6412This kind of parser is known in the literature as a bottom-up parser.
6413
6414@menu
742e4900 6415* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6416* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6417* Precedence:: Operator precedence works by resolving conflicts.
6418* Contextual Precedence:: When an operator's precedence depends on context.
6419* Parser States:: The parser is a finite-state-machine with stack.
6420* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6421* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6422* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6423* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6424@end menu
6425
742e4900
JD
6426@node Lookahead
6427@section Lookahead Tokens
6428@cindex lookahead token
bfa74976
RS
6429
6430The Bison parser does @emph{not} always reduce immediately as soon as the
6431last @var{n} tokens and groupings match a rule. This is because such a
6432simple strategy is inadequate to handle most languages. Instead, when a
6433reduction is possible, the parser sometimes ``looks ahead'' at the next
6434token in order to decide what to do.
6435
6436When a token is read, it is not immediately shifted; first it becomes the
742e4900 6437@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6438perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6439the lookahead token remains off to the side. When no more reductions
6440should take place, the lookahead token is shifted onto the stack. This
bfa74976 6441does not mean that all possible reductions have been done; depending on the
742e4900 6442token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6443application.
6444
742e4900 6445Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6446expressions which contain binary addition operators and postfix unary
6447factorial operators (@samp{!}), and allow parentheses for grouping.
6448
6449@example
6450@group
6451expr: term '+' expr
6452 | term
6453 ;
6454@end group
6455
6456@group
6457term: '(' expr ')'
6458 | term '!'
6459 | NUMBER
6460 ;
6461@end group
6462@end example
6463
6464Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6465should be done? If the following token is @samp{)}, then the first three
6466tokens must be reduced to form an @code{expr}. This is the only valid
6467course, because shifting the @samp{)} would produce a sequence of symbols
6468@w{@code{term ')'}}, and no rule allows this.
6469
6470If the following token is @samp{!}, then it must be shifted immediately so
6471that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6472parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6473@code{expr}. It would then be impossible to shift the @samp{!} because
6474doing so would produce on the stack the sequence of symbols @code{expr
6475'!'}. No rule allows that sequence.
6476
6477@vindex yychar
32c29292
JD
6478@vindex yylval
6479@vindex yylloc
742e4900 6480The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6481Its semantic value and location, if any, are stored in the variables
6482@code{yylval} and @code{yylloc}.
bfa74976
RS
6483@xref{Action Features, ,Special Features for Use in Actions}.
6484
342b8b6e 6485@node Shift/Reduce
bfa74976
RS
6486@section Shift/Reduce Conflicts
6487@cindex conflicts
6488@cindex shift/reduce conflicts
6489@cindex dangling @code{else}
6490@cindex @code{else}, dangling
6491
6492Suppose we are parsing a language which has if-then and if-then-else
6493statements, with a pair of rules like this:
6494
6495@example
6496@group
6497if_stmt:
6498 IF expr THEN stmt
6499 | IF expr THEN stmt ELSE stmt
6500 ;
6501@end group
6502@end example
6503
6504@noindent
6505Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6506terminal symbols for specific keyword tokens.
6507
742e4900 6508When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6509contents of the stack (assuming the input is valid) are just right for
6510reduction by the first rule. But it is also legitimate to shift the
6511@code{ELSE}, because that would lead to eventual reduction by the second
6512rule.
6513
6514This situation, where either a shift or a reduction would be valid, is
6515called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6516these conflicts by choosing to shift, unless otherwise directed by
6517operator precedence declarations. To see the reason for this, let's
6518contrast it with the other alternative.
6519
6520Since the parser prefers to shift the @code{ELSE}, the result is to attach
6521the else-clause to the innermost if-statement, making these two inputs
6522equivalent:
6523
6524@example
6525if x then if y then win (); else lose;
6526
6527if x then do; if y then win (); else lose; end;
6528@end example
6529
6530But if the parser chose to reduce when possible rather than shift, the
6531result would be to attach the else-clause to the outermost if-statement,
6532making these two inputs equivalent:
6533
6534@example
6535if x then if y then win (); else lose;
6536
6537if x then do; if y then win (); end; else lose;
6538@end example
6539
6540The conflict exists because the grammar as written is ambiguous: either
6541parsing of the simple nested if-statement is legitimate. The established
6542convention is that these ambiguities are resolved by attaching the
6543else-clause to the innermost if-statement; this is what Bison accomplishes
6544by choosing to shift rather than reduce. (It would ideally be cleaner to
6545write an unambiguous grammar, but that is very hard to do in this case.)
6546This particular ambiguity was first encountered in the specifications of
6547Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6548
6549To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6550conflicts, use the @code{%expect @var{n}} declaration.
6551There will be no warning as long as the number of shift/reduce conflicts
6552is exactly @var{n}, and Bison will report an error if there is a
6553different number.
bfa74976
RS
6554@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6555
6556The definition of @code{if_stmt} above is solely to blame for the
6557conflict, but the conflict does not actually appear without additional
6558rules. Here is a complete Bison input file that actually manifests the
6559conflict:
6560
6561@example
6562@group
6563%token IF THEN ELSE variable
6564%%
6565@end group
6566@group
6567stmt: expr
6568 | if_stmt
6569 ;
6570@end group
6571
6572@group
6573if_stmt:
6574 IF expr THEN stmt
6575 | IF expr THEN stmt ELSE stmt
6576 ;
6577@end group
6578
6579expr: variable
6580 ;
6581@end example
6582
342b8b6e 6583@node Precedence
bfa74976
RS
6584@section Operator Precedence
6585@cindex operator precedence
6586@cindex precedence of operators
6587
6588Another situation where shift/reduce conflicts appear is in arithmetic
6589expressions. Here shifting is not always the preferred resolution; the
6590Bison declarations for operator precedence allow you to specify when to
6591shift and when to reduce.
6592
6593@menu
6594* Why Precedence:: An example showing why precedence is needed.
6595* Using Precedence:: How to specify precedence in Bison grammars.
6596* Precedence Examples:: How these features are used in the previous example.
6597* How Precedence:: How they work.
6598@end menu
6599
342b8b6e 6600@node Why Precedence
bfa74976
RS
6601@subsection When Precedence is Needed
6602
6603Consider the following ambiguous grammar fragment (ambiguous because the
6604input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6605
6606@example
6607@group
6608expr: expr '-' expr
6609 | expr '*' expr
6610 | expr '<' expr
6611 | '(' expr ')'
6612 @dots{}
6613 ;
6614@end group
6615@end example
6616
6617@noindent
6618Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6619should it reduce them via the rule for the subtraction operator? It
6620depends on the next token. Of course, if the next token is @samp{)}, we
6621must reduce; shifting is invalid because no single rule can reduce the
6622token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6623the next token is @samp{*} or @samp{<}, we have a choice: either
6624shifting or reduction would allow the parse to complete, but with
6625different results.
6626
6627To decide which one Bison should do, we must consider the results. If
6628the next operator token @var{op} is shifted, then it must be reduced
6629first in order to permit another opportunity to reduce the difference.
6630The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6631hand, if the subtraction is reduced before shifting @var{op}, the result
6632is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6633reduce should depend on the relative precedence of the operators
6634@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6635@samp{<}.
bfa74976
RS
6636
6637@cindex associativity
6638What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6639@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6640operators we prefer the former, which is called @dfn{left association}.
6641The latter alternative, @dfn{right association}, is desirable for
6642assignment operators. The choice of left or right association is a
6643matter of whether the parser chooses to shift or reduce when the stack
742e4900 6644contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6645makes right-associativity.
bfa74976 6646
342b8b6e 6647@node Using Precedence
bfa74976
RS
6648@subsection Specifying Operator Precedence
6649@findex %left
6650@findex %right
6651@findex %nonassoc
6652
6653Bison allows you to specify these choices with the operator precedence
6654declarations @code{%left} and @code{%right}. Each such declaration
6655contains a list of tokens, which are operators whose precedence and
6656associativity is being declared. The @code{%left} declaration makes all
6657those operators left-associative and the @code{%right} declaration makes
6658them right-associative. A third alternative is @code{%nonassoc}, which
6659declares that it is a syntax error to find the same operator twice ``in a
6660row''.
6661
6662The relative precedence of different operators is controlled by the
6663order in which they are declared. The first @code{%left} or
6664@code{%right} declaration in the file declares the operators whose
6665precedence is lowest, the next such declaration declares the operators
6666whose precedence is a little higher, and so on.
6667
342b8b6e 6668@node Precedence Examples
bfa74976
RS
6669@subsection Precedence Examples
6670
6671In our example, we would want the following declarations:
6672
6673@example
6674%left '<'
6675%left '-'
6676%left '*'
6677@end example
6678
6679In a more complete example, which supports other operators as well, we
6680would declare them in groups of equal precedence. For example, @code{'+'} is
6681declared with @code{'-'}:
6682
6683@example
6684%left '<' '>' '=' NE LE GE
6685%left '+' '-'
6686%left '*' '/'
6687@end example
6688
6689@noindent
6690(Here @code{NE} and so on stand for the operators for ``not equal''
6691and so on. We assume that these tokens are more than one character long
6692and therefore are represented by names, not character literals.)
6693
342b8b6e 6694@node How Precedence
bfa74976
RS
6695@subsection How Precedence Works
6696
6697The first effect of the precedence declarations is to assign precedence
6698levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6699precedence levels to certain rules: each rule gets its precedence from
6700the last terminal symbol mentioned in the components. (You can also
6701specify explicitly the precedence of a rule. @xref{Contextual
6702Precedence, ,Context-Dependent Precedence}.)
6703
6704Finally, the resolution of conflicts works by comparing the precedence
742e4900 6705of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6706token's precedence is higher, the choice is to shift. If the rule's
6707precedence is higher, the choice is to reduce. If they have equal
6708precedence, the choice is made based on the associativity of that
6709precedence level. The verbose output file made by @samp{-v}
6710(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6711resolved.
bfa74976
RS
6712
6713Not all rules and not all tokens have precedence. If either the rule or
742e4900 6714the lookahead token has no precedence, then the default is to shift.
bfa74976 6715
342b8b6e 6716@node Contextual Precedence
bfa74976
RS
6717@section Context-Dependent Precedence
6718@cindex context-dependent precedence
6719@cindex unary operator precedence
6720@cindex precedence, context-dependent
6721@cindex precedence, unary operator
6722@findex %prec
6723
6724Often the precedence of an operator depends on the context. This sounds
6725outlandish at first, but it is really very common. For example, a minus
6726sign typically has a very high precedence as a unary operator, and a
6727somewhat lower precedence (lower than multiplication) as a binary operator.
6728
6729The Bison precedence declarations, @code{%left}, @code{%right} and
6730@code{%nonassoc}, can only be used once for a given token; so a token has
6731only one precedence declared in this way. For context-dependent
6732precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6733modifier for rules.
bfa74976
RS
6734
6735The @code{%prec} modifier declares the precedence of a particular rule by
6736specifying a terminal symbol whose precedence should be used for that rule.
6737It's not necessary for that symbol to appear otherwise in the rule. The
6738modifier's syntax is:
6739
6740@example
6741%prec @var{terminal-symbol}
6742@end example
6743
6744@noindent
6745and it is written after the components of the rule. Its effect is to
6746assign the rule the precedence of @var{terminal-symbol}, overriding
6747the precedence that would be deduced for it in the ordinary way. The
6748altered rule precedence then affects how conflicts involving that rule
6749are resolved (@pxref{Precedence, ,Operator Precedence}).
6750
6751Here is how @code{%prec} solves the problem of unary minus. First, declare
6752a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6753are no tokens of this type, but the symbol serves to stand for its
6754precedence:
6755
6756@example
6757@dots{}
6758%left '+' '-'
6759%left '*'
6760%left UMINUS
6761@end example
6762
6763Now the precedence of @code{UMINUS} can be used in specific rules:
6764
6765@example
6766@group
6767exp: @dots{}
6768 | exp '-' exp
6769 @dots{}
6770 | '-' exp %prec UMINUS
6771@end group
6772@end example
6773
91d2c560 6774@ifset defaultprec
39a06c25
PE
6775If you forget to append @code{%prec UMINUS} to the rule for unary
6776minus, Bison silently assumes that minus has its usual precedence.
6777This kind of problem can be tricky to debug, since one typically
6778discovers the mistake only by testing the code.
6779
22fccf95 6780The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6781this kind of problem systematically. It causes rules that lack a
6782@code{%prec} modifier to have no precedence, even if the last terminal
6783symbol mentioned in their components has a declared precedence.
6784
22fccf95 6785If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6786for all rules that participate in precedence conflict resolution.
6787Then you will see any shift/reduce conflict until you tell Bison how
6788to resolve it, either by changing your grammar or by adding an
6789explicit precedence. This will probably add declarations to the
6790grammar, but it helps to protect against incorrect rule precedences.
6791
22fccf95
PE
6792The effect of @code{%no-default-prec;} can be reversed by giving
6793@code{%default-prec;}, which is the default.
91d2c560 6794@end ifset
39a06c25 6795
342b8b6e 6796@node Parser States
bfa74976
RS
6797@section Parser States
6798@cindex finite-state machine
6799@cindex parser state
6800@cindex state (of parser)
6801
6802The function @code{yyparse} is implemented using a finite-state machine.
6803The values pushed on the parser stack are not simply token type codes; they
6804represent the entire sequence of terminal and nonterminal symbols at or
6805near the top of the stack. The current state collects all the information
6806about previous input which is relevant to deciding what to do next.
6807
742e4900
JD
6808Each time a lookahead token is read, the current parser state together
6809with the type of lookahead token are looked up in a table. This table
6810entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6811specifies the new parser state, which is pushed onto the top of the
6812parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6813This means that a certain number of tokens or groupings are taken off
6814the top of the stack, and replaced by one grouping. In other words,
6815that number of states are popped from the stack, and one new state is
6816pushed.
6817
742e4900 6818There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6819is erroneous in the current state. This causes error processing to begin
6820(@pxref{Error Recovery}).
6821
342b8b6e 6822@node Reduce/Reduce
bfa74976
RS
6823@section Reduce/Reduce Conflicts
6824@cindex reduce/reduce conflict
6825@cindex conflicts, reduce/reduce
6826
6827A reduce/reduce conflict occurs if there are two or more rules that apply
6828to the same sequence of input. This usually indicates a serious error
6829in the grammar.
6830
6831For example, here is an erroneous attempt to define a sequence
6832of zero or more @code{word} groupings.
6833
6834@example
6835sequence: /* empty */
6836 @{ printf ("empty sequence\n"); @}
6837 | maybeword
6838 | sequence word
6839 @{ printf ("added word %s\n", $2); @}
6840 ;
6841
6842maybeword: /* empty */
6843 @{ printf ("empty maybeword\n"); @}
6844 | word
6845 @{ printf ("single word %s\n", $1); @}
6846 ;
6847@end example
6848
6849@noindent
6850The error is an ambiguity: there is more than one way to parse a single
6851@code{word} into a @code{sequence}. It could be reduced to a
6852@code{maybeword} and then into a @code{sequence} via the second rule.
6853Alternatively, nothing-at-all could be reduced into a @code{sequence}
6854via the first rule, and this could be combined with the @code{word}
6855using the third rule for @code{sequence}.
6856
6857There is also more than one way to reduce nothing-at-all into a
6858@code{sequence}. This can be done directly via the first rule,
6859or indirectly via @code{maybeword} and then the second rule.
6860
6861You might think that this is a distinction without a difference, because it
6862does not change whether any particular input is valid or not. But it does
6863affect which actions are run. One parsing order runs the second rule's
6864action; the other runs the first rule's action and the third rule's action.
6865In this example, the output of the program changes.
6866
6867Bison resolves a reduce/reduce conflict by choosing to use the rule that
6868appears first in the grammar, but it is very risky to rely on this. Every
6869reduce/reduce conflict must be studied and usually eliminated. Here is the
6870proper way to define @code{sequence}:
6871
6872@example
6873sequence: /* empty */
6874 @{ printf ("empty sequence\n"); @}
6875 | sequence word
6876 @{ printf ("added word %s\n", $2); @}
6877 ;
6878@end example
6879
6880Here is another common error that yields a reduce/reduce conflict:
6881
6882@example
6883sequence: /* empty */
6884 | sequence words
6885 | sequence redirects
6886 ;
6887
6888words: /* empty */
6889 | words word
6890 ;
6891
6892redirects:/* empty */
6893 | redirects redirect
6894 ;
6895@end example
6896
6897@noindent
6898The intention here is to define a sequence which can contain either
6899@code{word} or @code{redirect} groupings. The individual definitions of
6900@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6901three together make a subtle ambiguity: even an empty input can be parsed
6902in infinitely many ways!
6903
6904Consider: nothing-at-all could be a @code{words}. Or it could be two
6905@code{words} in a row, or three, or any number. It could equally well be a
6906@code{redirects}, or two, or any number. Or it could be a @code{words}
6907followed by three @code{redirects} and another @code{words}. And so on.
6908
6909Here are two ways to correct these rules. First, to make it a single level
6910of sequence:
6911
6912@example
6913sequence: /* empty */
6914 | sequence word
6915 | sequence redirect
6916 ;
6917@end example
6918
6919Second, to prevent either a @code{words} or a @code{redirects}
6920from being empty:
6921
6922@example
6923sequence: /* empty */
6924 | sequence words
6925 | sequence redirects
6926 ;
6927
6928words: word
6929 | words word
6930 ;
6931
6932redirects:redirect
6933 | redirects redirect
6934 ;
6935@end example
6936
342b8b6e 6937@node Mystery Conflicts
bfa74976
RS
6938@section Mysterious Reduce/Reduce Conflicts
6939
6940Sometimes reduce/reduce conflicts can occur that don't look warranted.
6941Here is an example:
6942
6943@example
6944@group
6945%token ID
6946
6947%%
6948def: param_spec return_spec ','
6949 ;
6950param_spec:
6951 type
6952 | name_list ':' type
6953 ;
6954@end group
6955@group
6956return_spec:
6957 type
6958 | name ':' type
6959 ;
6960@end group
6961@group
6962type: ID
6963 ;
6964@end group
6965@group
6966name: ID
6967 ;
6968name_list:
6969 name
6970 | name ',' name_list
6971 ;
6972@end group
6973@end example
6974
6975It would seem that this grammar can be parsed with only a single token
742e4900 6976of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6977a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6978@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6979
35430378
JD
6980@cindex LR(1)
6981@cindex LALR(1)
34a6c2d1 6982However, for historical reasons, Bison cannot by default handle all
35430378 6983LR(1) grammars.
34a6c2d1
JD
6984In this grammar, two contexts, that after an @code{ID} at the beginning
6985of a @code{param_spec} and likewise at the beginning of a
6986@code{return_spec}, are similar enough that Bison assumes they are the
6987same.
6988They appear similar because the same set of rules would be
bfa74976
RS
6989active---the rule for reducing to a @code{name} and that for reducing to
6990a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6991that the rules would require different lookahead tokens in the two
bfa74976
RS
6992contexts, so it makes a single parser state for them both. Combining
6993the two contexts causes a conflict later. In parser terminology, this
35430378 6994occurrence means that the grammar is not LALR(1).
bfa74976 6995
34a6c2d1 6996For many practical grammars (specifically those that fall into the
35430378 6997non-LR(1) class), the limitations of LALR(1) result in
34a6c2d1
JD
6998difficulties beyond just mysterious reduce/reduce conflicts.
6999The best way to fix all these problems is to select a different parser
7000table generation algorithm.
35430378 7001Either IELR(1) or canonical LR(1) would suffice, but
34a6c2d1
JD
7002the former is more efficient and easier to debug during development.
7003@xref{Decl Summary,,lr.type}, for details.
35430378 7004(Bison's IELR(1) and canonical LR(1) implementations
34a6c2d1
JD
7005are experimental.
7006More user feedback will help to stabilize them.)
7007
35430378 7008If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7009can often fix a mysterious conflict by identifying the two parser states
7010that are being confused, and adding something to make them look
7011distinct. In the above example, adding one rule to
bfa74976
RS
7012@code{return_spec} as follows makes the problem go away:
7013
7014@example
7015@group
7016%token BOGUS
7017@dots{}
7018%%
7019@dots{}
7020return_spec:
7021 type
7022 | name ':' type
7023 /* This rule is never used. */
7024 | ID BOGUS
7025 ;
7026@end group
7027@end example
7028
7029This corrects the problem because it introduces the possibility of an
7030additional active rule in the context after the @code{ID} at the beginning of
7031@code{return_spec}. This rule is not active in the corresponding context
7032in a @code{param_spec}, so the two contexts receive distinct parser states.
7033As long as the token @code{BOGUS} is never generated by @code{yylex},
7034the added rule cannot alter the way actual input is parsed.
7035
7036In this particular example, there is another way to solve the problem:
7037rewrite the rule for @code{return_spec} to use @code{ID} directly
7038instead of via @code{name}. This also causes the two confusing
7039contexts to have different sets of active rules, because the one for
7040@code{return_spec} activates the altered rule for @code{return_spec}
7041rather than the one for @code{name}.
7042
7043@example
7044param_spec:
7045 type
7046 | name_list ':' type
7047 ;
7048return_spec:
7049 type
7050 | ID ':' type
7051 ;
7052@end example
7053
35430378 7054For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7055generators, please see:
7056Frank DeRemer and Thomas Pennello, Efficient Computation of
35430378 7057LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7058Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7059pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7060
fae437e8 7061@node Generalized LR Parsing
35430378
JD
7062@section Generalized LR (GLR) Parsing
7063@cindex GLR parsing
7064@cindex generalized LR (GLR) parsing
676385e2 7065@cindex ambiguous grammars
9d9b8b70 7066@cindex nondeterministic parsing
676385e2 7067
fae437e8
AD
7068Bison produces @emph{deterministic} parsers that choose uniquely
7069when to reduce and which reduction to apply
742e4900 7070based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7071As a result, normal Bison handles a proper subset of the family of
7072context-free languages.
fae437e8 7073Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7074sequence of reductions cannot have deterministic parsers in this sense.
7075The same is true of languages that require more than one symbol of
742e4900 7076lookahead, since the parser lacks the information necessary to make a
676385e2 7077decision at the point it must be made in a shift-reduce parser.
fae437e8 7078Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7079there are languages where Bison's default choice of how to
676385e2
PH
7080summarize the input seen so far loses necessary information.
7081
7082When you use the @samp{%glr-parser} declaration in your grammar file,
7083Bison generates a parser that uses a different algorithm, called
35430378 7084Generalized LR (or GLR). A Bison GLR
c827f760 7085parser uses the same basic
676385e2
PH
7086algorithm for parsing as an ordinary Bison parser, but behaves
7087differently in cases where there is a shift-reduce conflict that has not
fae437e8 7088been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7089reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7090situation, it
fae437e8 7091effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7092shift or reduction. These parsers then proceed as usual, consuming
7093tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7094and split further, with the result that instead of a sequence of states,
35430378 7095a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7096
7097In effect, each stack represents a guess as to what the proper parse
7098is. Additional input may indicate that a guess was wrong, in which case
7099the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7100actions generated in each stack are saved, rather than being executed
676385e2 7101immediately. When a stack disappears, its saved semantic actions never
fae437e8 7102get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7103their sets of semantic actions are both saved with the state that
7104results from the reduction. We say that two stacks are equivalent
fae437e8 7105when they both represent the same sequence of states,
676385e2
PH
7106and each pair of corresponding states represents a
7107grammar symbol that produces the same segment of the input token
7108stream.
7109
7110Whenever the parser makes a transition from having multiple
34a6c2d1 7111states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7112algorithm, after resolving and executing the saved-up actions.
7113At this transition, some of the states on the stack will have semantic
7114values that are sets (actually multisets) of possible actions. The
7115parser tries to pick one of the actions by first finding one whose rule
7116has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7117declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7118precedence, but there the same merging function is declared for both
fae437e8 7119rules by the @samp{%merge} declaration,
676385e2
PH
7120Bison resolves and evaluates both and then calls the merge function on
7121the result. Otherwise, it reports an ambiguity.
7122
35430378
JD
7123It is possible to use a data structure for the GLR parsing tree that
7124permits the processing of any LR(1) grammar in linear time (in the
c827f760 7125size of the input), any unambiguous (not necessarily
35430378 7126LR(1)) grammar in
fae437e8 7127quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7128context-free grammar in cubic worst-case time. However, Bison currently
7129uses a simpler data structure that requires time proportional to the
7130length of the input times the maximum number of stacks required for any
9d9b8b70 7131prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7132grammars can require exponential time and space to process. Such badly
7133behaving examples, however, are not generally of practical interest.
9d9b8b70 7134Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7135doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7136structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7137grammar, in particular, it is only slightly slower than with the
35430378 7138deterministic LR(1) Bison parser.
676385e2 7139
35430378 7140For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7141Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
35430378 7142Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7143London, Department of Computer Science, TR-00-12,
7144@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7145(2000-12-24).
7146
1a059451
PE
7147@node Memory Management
7148@section Memory Management, and How to Avoid Memory Exhaustion
7149@cindex memory exhaustion
7150@cindex memory management
bfa74976
RS
7151@cindex stack overflow
7152@cindex parser stack overflow
7153@cindex overflow of parser stack
7154
1a059451 7155The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7156not reduced. When this happens, the parser function @code{yyparse}
1a059451 7157calls @code{yyerror} and then returns 2.
bfa74976 7158
c827f760 7159Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7160usually results from using a right recursion instead of a left
7161recursion, @xref{Recursion, ,Recursive Rules}.
7162
bfa74976
RS
7163@vindex YYMAXDEPTH
7164By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7165parser stack can become before memory is exhausted. Define the
bfa74976
RS
7166macro with a value that is an integer. This value is the maximum number
7167of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7168
7169The stack space allowed is not necessarily allocated. If you specify a
1a059451 7170large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7171stack at first, and then makes it bigger by stages as needed. This
7172increasing allocation happens automatically and silently. Therefore,
7173you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7174space for ordinary inputs that do not need much stack.
7175
d7e14fc0
PE
7176However, do not allow @code{YYMAXDEPTH} to be a value so large that
7177arithmetic overflow could occur when calculating the size of the stack
7178space. Also, do not allow @code{YYMAXDEPTH} to be less than
7179@code{YYINITDEPTH}.
7180
bfa74976
RS
7181@cindex default stack limit
7182The default value of @code{YYMAXDEPTH}, if you do not define it, is
718310000.
7184
7185@vindex YYINITDEPTH
7186You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7187macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7188parser in C, this value must be a compile-time constant
d7e14fc0
PE
7189unless you are assuming C99 or some other target language or compiler
7190that allows variable-length arrays. The default is 200.
7191
1a059451 7192Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7193
d1a1114f 7194@c FIXME: C++ output.
c781580d 7195Because of semantic differences between C and C++, the deterministic
34a6c2d1 7196parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7197by C++ compilers. In this precise case (compiling a C parser as C++) you are
7198suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7199this deficiency in a future release.
d1a1114f 7200
342b8b6e 7201@node Error Recovery
bfa74976
RS
7202@chapter Error Recovery
7203@cindex error recovery
7204@cindex recovery from errors
7205
6e649e65 7206It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7207error. For example, a compiler should recover sufficiently to parse the
7208rest of the input file and check it for errors; a calculator should accept
7209another expression.
7210
7211In a simple interactive command parser where each input is one line, it may
7212be sufficient to allow @code{yyparse} to return 1 on error and have the
7213caller ignore the rest of the input line when that happens (and then call
7214@code{yyparse} again). But this is inadequate for a compiler, because it
7215forgets all the syntactic context leading up to the error. A syntax error
7216deep within a function in the compiler input should not cause the compiler
7217to treat the following line like the beginning of a source file.
7218
7219@findex error
7220You can define how to recover from a syntax error by writing rules to
7221recognize the special token @code{error}. This is a terminal symbol that
7222is always defined (you need not declare it) and reserved for error
7223handling. The Bison parser generates an @code{error} token whenever a
7224syntax error happens; if you have provided a rule to recognize this token
13863333 7225in the current context, the parse can continue.
bfa74976
RS
7226
7227For example:
7228
7229@example
7230stmnts: /* empty string */
7231 | stmnts '\n'
7232 | stmnts exp '\n'
7233 | stmnts error '\n'
7234@end example
7235
7236The fourth rule in this example says that an error followed by a newline
7237makes a valid addition to any @code{stmnts}.
7238
7239What happens if a syntax error occurs in the middle of an @code{exp}? The
7240error recovery rule, interpreted strictly, applies to the precise sequence
7241of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7242the middle of an @code{exp}, there will probably be some additional tokens
7243and subexpressions on the stack after the last @code{stmnts}, and there
7244will be tokens to read before the next newline. So the rule is not
7245applicable in the ordinary way.
7246
7247But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7248the semantic context and part of the input. First it discards states
7249and objects from the stack until it gets back to a state in which the
bfa74976 7250@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7251already parsed are discarded, back to the last complete @code{stmnts}.)
7252At this point the @code{error} token can be shifted. Then, if the old
742e4900 7253lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7254tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7255this example, Bison reads and discards input until the next newline so
7256that the fourth rule can apply. Note that discarded symbols are
7257possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7258Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7259
7260The choice of error rules in the grammar is a choice of strategies for
7261error recovery. A simple and useful strategy is simply to skip the rest of
7262the current input line or current statement if an error is detected:
7263
7264@example
72d2299c 7265stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7266@end example
7267
7268It is also useful to recover to the matching close-delimiter of an
7269opening-delimiter that has already been parsed. Otherwise the
7270close-delimiter will probably appear to be unmatched, and generate another,
7271spurious error message:
7272
7273@example
7274primary: '(' expr ')'
7275 | '(' error ')'
7276 @dots{}
7277 ;
7278@end example
7279
7280Error recovery strategies are necessarily guesses. When they guess wrong,
7281one syntax error often leads to another. In the above example, the error
7282recovery rule guesses that an error is due to bad input within one
7283@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7284middle of a valid @code{stmnt}. After the error recovery rule recovers
7285from the first error, another syntax error will be found straightaway,
7286since the text following the spurious semicolon is also an invalid
7287@code{stmnt}.
7288
7289To prevent an outpouring of error messages, the parser will output no error
7290message for another syntax error that happens shortly after the first; only
7291after three consecutive input tokens have been successfully shifted will
7292error messages resume.
7293
7294Note that rules which accept the @code{error} token may have actions, just
7295as any other rules can.
7296
7297@findex yyerrok
7298You can make error messages resume immediately by using the macro
7299@code{yyerrok} in an action. If you do this in the error rule's action, no
7300error messages will be suppressed. This macro requires no arguments;
7301@samp{yyerrok;} is a valid C statement.
7302
7303@findex yyclearin
742e4900 7304The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7305this is unacceptable, then the macro @code{yyclearin} may be used to clear
7306this token. Write the statement @samp{yyclearin;} in the error rule's
7307action.
32c29292 7308@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7309
6e649e65 7310For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7311called that advances the input stream to some point where parsing should
7312once again commence. The next symbol returned by the lexical scanner is
742e4900 7313probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7314with @samp{yyclearin;}.
7315
7316@vindex YYRECOVERING
02103984
PE
7317The expression @code{YYRECOVERING ()} yields 1 when the parser
7318is recovering from a syntax error, and 0 otherwise.
7319Syntax error diagnostics are suppressed while recovering from a syntax
7320error.
bfa74976 7321
342b8b6e 7322@node Context Dependency
bfa74976
RS
7323@chapter Handling Context Dependencies
7324
7325The Bison paradigm is to parse tokens first, then group them into larger
7326syntactic units. In many languages, the meaning of a token is affected by
7327its context. Although this violates the Bison paradigm, certain techniques
7328(known as @dfn{kludges}) may enable you to write Bison parsers for such
7329languages.
7330
7331@menu
7332* Semantic Tokens:: Token parsing can depend on the semantic context.
7333* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7334* Tie-in Recovery:: Lexical tie-ins have implications for how
7335 error recovery rules must be written.
7336@end menu
7337
7338(Actually, ``kludge'' means any technique that gets its job done but is
7339neither clean nor robust.)
7340
342b8b6e 7341@node Semantic Tokens
bfa74976
RS
7342@section Semantic Info in Token Types
7343
7344The C language has a context dependency: the way an identifier is used
7345depends on what its current meaning is. For example, consider this:
7346
7347@example
7348foo (x);
7349@end example
7350
7351This looks like a function call statement, but if @code{foo} is a typedef
7352name, then this is actually a declaration of @code{x}. How can a Bison
7353parser for C decide how to parse this input?
7354
35430378 7355The method used in GNU C is to have two different token types,
bfa74976
RS
7356@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7357identifier, it looks up the current declaration of the identifier in order
7358to decide which token type to return: @code{TYPENAME} if the identifier is
7359declared as a typedef, @code{IDENTIFIER} otherwise.
7360
7361The grammar rules can then express the context dependency by the choice of
7362token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7363but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7364@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7365is @emph{not} significant, such as in declarations that can shadow a
7366typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7367accepted---there is one rule for each of the two token types.
7368
7369This technique is simple to use if the decision of which kinds of
7370identifiers to allow is made at a place close to where the identifier is
7371parsed. But in C this is not always so: C allows a declaration to
7372redeclare a typedef name provided an explicit type has been specified
7373earlier:
7374
7375@example
3a4f411f
PE
7376typedef int foo, bar;
7377int baz (void)
7378@{
7379 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7380 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7381 return foo (bar);
7382@}
bfa74976
RS
7383@end example
7384
7385Unfortunately, the name being declared is separated from the declaration
7386construct itself by a complicated syntactic structure---the ``declarator''.
7387
9ecbd125 7388As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7389all the nonterminal names changed: once for parsing a declaration in
7390which a typedef name can be redefined, and once for parsing a
7391declaration in which that can't be done. Here is a part of the
7392duplication, with actions omitted for brevity:
bfa74976
RS
7393
7394@example
7395initdcl:
7396 declarator maybeasm '='
7397 init
7398 | declarator maybeasm
7399 ;
7400
7401notype_initdcl:
7402 notype_declarator maybeasm '='
7403 init
7404 | notype_declarator maybeasm
7405 ;
7406@end example
7407
7408@noindent
7409Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7410cannot. The distinction between @code{declarator} and
7411@code{notype_declarator} is the same sort of thing.
7412
7413There is some similarity between this technique and a lexical tie-in
7414(described next), in that information which alters the lexical analysis is
7415changed during parsing by other parts of the program. The difference is
7416here the information is global, and is used for other purposes in the
7417program. A true lexical tie-in has a special-purpose flag controlled by
7418the syntactic context.
7419
342b8b6e 7420@node Lexical Tie-ins
bfa74976
RS
7421@section Lexical Tie-ins
7422@cindex lexical tie-in
7423
7424One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7425which is set by Bison actions, whose purpose is to alter the way tokens are
7426parsed.
7427
7428For example, suppose we have a language vaguely like C, but with a special
7429construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7430an expression in parentheses in which all integers are hexadecimal. In
7431particular, the token @samp{a1b} must be treated as an integer rather than
7432as an identifier if it appears in that context. Here is how you can do it:
7433
7434@example
7435@group
7436%@{
38a92d50
PE
7437 int hexflag;
7438 int yylex (void);
7439 void yyerror (char const *);
bfa74976
RS
7440%@}
7441%%
7442@dots{}
7443@end group
7444@group
7445expr: IDENTIFIER
7446 | constant
7447 | HEX '('
7448 @{ hexflag = 1; @}
7449 expr ')'
7450 @{ hexflag = 0;
7451 $$ = $4; @}
7452 | expr '+' expr
7453 @{ $$ = make_sum ($1, $3); @}
7454 @dots{}
7455 ;
7456@end group
7457
7458@group
7459constant:
7460 INTEGER
7461 | STRING
7462 ;
7463@end group
7464@end example
7465
7466@noindent
7467Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7468it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7469with letters are parsed as integers if possible.
7470
342b8b6e
AD
7471The declaration of @code{hexflag} shown in the prologue of the parser file
7472is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7473You must also write the code in @code{yylex} to obey the flag.
bfa74976 7474
342b8b6e 7475@node Tie-in Recovery
bfa74976
RS
7476@section Lexical Tie-ins and Error Recovery
7477
7478Lexical tie-ins make strict demands on any error recovery rules you have.
7479@xref{Error Recovery}.
7480
7481The reason for this is that the purpose of an error recovery rule is to
7482abort the parsing of one construct and resume in some larger construct.
7483For example, in C-like languages, a typical error recovery rule is to skip
7484tokens until the next semicolon, and then start a new statement, like this:
7485
7486@example
7487stmt: expr ';'
7488 | IF '(' expr ')' stmt @{ @dots{} @}
7489 @dots{}
7490 error ';'
7491 @{ hexflag = 0; @}
7492 ;
7493@end example
7494
7495If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7496construct, this error rule will apply, and then the action for the
7497completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7498remain set for the entire rest of the input, or until the next @code{hex}
7499keyword, causing identifiers to be misinterpreted as integers.
7500
7501To avoid this problem the error recovery rule itself clears @code{hexflag}.
7502
7503There may also be an error recovery rule that works within expressions.
7504For example, there could be a rule which applies within parentheses
7505and skips to the close-parenthesis:
7506
7507@example
7508@group
7509expr: @dots{}
7510 | '(' expr ')'
7511 @{ $$ = $2; @}
7512 | '(' error ')'
7513 @dots{}
7514@end group
7515@end example
7516
7517If this rule acts within the @code{hex} construct, it is not going to abort
7518that construct (since it applies to an inner level of parentheses within
7519the construct). Therefore, it should not clear the flag: the rest of
7520the @code{hex} construct should be parsed with the flag still in effect.
7521
7522What if there is an error recovery rule which might abort out of the
7523@code{hex} construct or might not, depending on circumstances? There is no
7524way you can write the action to determine whether a @code{hex} construct is
7525being aborted or not. So if you are using a lexical tie-in, you had better
7526make sure your error recovery rules are not of this kind. Each rule must
7527be such that you can be sure that it always will, or always won't, have to
7528clear the flag.
7529
ec3bc396
AD
7530@c ================================================== Debugging Your Parser
7531
342b8b6e 7532@node Debugging
bfa74976 7533@chapter Debugging Your Parser
ec3bc396
AD
7534
7535Developing a parser can be a challenge, especially if you don't
7536understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7537Algorithm}). Even so, sometimes a detailed description of the automaton
7538can help (@pxref{Understanding, , Understanding Your Parser}), or
7539tracing the execution of the parser can give some insight on why it
7540behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7541
7542@menu
7543* Understanding:: Understanding the structure of your parser.
7544* Tracing:: Tracing the execution of your parser.
7545@end menu
7546
7547@node Understanding
7548@section Understanding Your Parser
7549
7550As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7551Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7552frequent than one would hope), looking at this automaton is required to
7553tune or simply fix a parser. Bison provides two different
35fe0834 7554representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7555
7556The textual file is generated when the options @option{--report} or
7557@option{--verbose} are specified, see @xref{Invocation, , Invoking
7558Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7559the parser output file name, and adding @samp{.output} instead.
7560Therefore, if the input file is @file{foo.y}, then the parser file is
7561called @file{foo.tab.c} by default. As a consequence, the verbose
7562output file is called @file{foo.output}.
7563
7564The following grammar file, @file{calc.y}, will be used in the sequel:
7565
7566@example
7567%token NUM STR
7568%left '+' '-'
7569%left '*'
7570%%
7571exp: exp '+' exp
7572 | exp '-' exp
7573 | exp '*' exp
7574 | exp '/' exp
7575 | NUM
7576 ;
7577useless: STR;
7578%%
7579@end example
7580
88bce5a2
AD
7581@command{bison} reports:
7582
7583@example
379261b3
JD
7584calc.y: warning: 1 nonterminal useless in grammar
7585calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7586calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7587calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7588calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7589@end example
7590
7591When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7592creates a file @file{calc.output} with contents detailed below. The
7593order of the output and the exact presentation might vary, but the
7594interpretation is the same.
ec3bc396
AD
7595
7596The first section includes details on conflicts that were solved thanks
7597to precedence and/or associativity:
7598
7599@example
7600Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7601Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7602Conflict in state 8 between rule 2 and token '*' resolved as shift.
7603@exdent @dots{}
7604@end example
7605
7606@noindent
7607The next section lists states that still have conflicts.
7608
7609@example
5a99098d
PE
7610State 8 conflicts: 1 shift/reduce
7611State 9 conflicts: 1 shift/reduce
7612State 10 conflicts: 1 shift/reduce
7613State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7614@end example
7615
7616@noindent
7617@cindex token, useless
7618@cindex useless token
7619@cindex nonterminal, useless
7620@cindex useless nonterminal
7621@cindex rule, useless
7622@cindex useless rule
7623The next section reports useless tokens, nonterminal and rules. Useless
7624nonterminals and rules are removed in order to produce a smaller parser,
7625but useless tokens are preserved, since they might be used by the
d80fb37a 7626scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7627below):
7628
7629@example
d80fb37a 7630Nonterminals useless in grammar:
ec3bc396
AD
7631 useless
7632
d80fb37a 7633Terminals unused in grammar:
ec3bc396
AD
7634 STR
7635
cff03fb2 7636Rules useless in grammar:
ec3bc396
AD
7637#6 useless: STR;
7638@end example
7639
7640@noindent
7641The next section reproduces the exact grammar that Bison used:
7642
7643@example
7644Grammar
7645
7646 Number, Line, Rule
88bce5a2 7647 0 5 $accept -> exp $end
ec3bc396
AD
7648 1 5 exp -> exp '+' exp
7649 2 6 exp -> exp '-' exp
7650 3 7 exp -> exp '*' exp
7651 4 8 exp -> exp '/' exp
7652 5 9 exp -> NUM
7653@end example
7654
7655@noindent
7656and reports the uses of the symbols:
7657
7658@example
7659Terminals, with rules where they appear
7660
88bce5a2 7661$end (0) 0
ec3bc396
AD
7662'*' (42) 3
7663'+' (43) 1
7664'-' (45) 2
7665'/' (47) 4
7666error (256)
7667NUM (258) 5
7668
7669Nonterminals, with rules where they appear
7670
88bce5a2 7671$accept (8)
ec3bc396
AD
7672 on left: 0
7673exp (9)
7674 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7675@end example
7676
7677@noindent
7678@cindex item
7679@cindex pointed rule
7680@cindex rule, pointed
7681Bison then proceeds onto the automaton itself, describing each state
7682with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7683item is a production rule together with a point (marked by @samp{.})
7684that the input cursor.
7685
7686@example
7687state 0
7688
88bce5a2 7689 $accept -> . exp $ (rule 0)
ec3bc396 7690
2a8d363a 7691 NUM shift, and go to state 1
ec3bc396 7692
2a8d363a 7693 exp go to state 2
ec3bc396
AD
7694@end example
7695
7696This reads as follows: ``state 0 corresponds to being at the very
7697beginning of the parsing, in the initial rule, right before the start
7698symbol (here, @code{exp}). When the parser returns to this state right
7699after having reduced a rule that produced an @code{exp}, the control
7700flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7701symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7702the parse stack, and the control flow jumps to state 1. Any other
742e4900 7703lookahead triggers a syntax error.''
ec3bc396
AD
7704
7705@cindex core, item set
7706@cindex item set core
7707@cindex kernel, item set
7708@cindex item set core
7709Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7710report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7711at the beginning of any rule deriving an @code{exp}. By default Bison
7712reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7713you want to see more detail you can invoke @command{bison} with
7714@option{--report=itemset} to list all the items, include those that can
7715be derived:
7716
7717@example
7718state 0
7719
88bce5a2 7720 $accept -> . exp $ (rule 0)
ec3bc396
AD
7721 exp -> . exp '+' exp (rule 1)
7722 exp -> . exp '-' exp (rule 2)
7723 exp -> . exp '*' exp (rule 3)
7724 exp -> . exp '/' exp (rule 4)
7725 exp -> . NUM (rule 5)
7726
7727 NUM shift, and go to state 1
7728
7729 exp go to state 2
7730@end example
7731
7732@noindent
7733In the state 1...
7734
7735@example
7736state 1
7737
7738 exp -> NUM . (rule 5)
7739
2a8d363a 7740 $default reduce using rule 5 (exp)
ec3bc396
AD
7741@end example
7742
7743@noindent
742e4900 7744the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7745(@samp{$default}), the parser will reduce it. If it was coming from
7746state 0, then, after this reduction it will return to state 0, and will
7747jump to state 2 (@samp{exp: go to state 2}).
7748
7749@example
7750state 2
7751
88bce5a2 7752 $accept -> exp . $ (rule 0)
ec3bc396
AD
7753 exp -> exp . '+' exp (rule 1)
7754 exp -> exp . '-' exp (rule 2)
7755 exp -> exp . '*' exp (rule 3)
7756 exp -> exp . '/' exp (rule 4)
7757
2a8d363a
AD
7758 $ shift, and go to state 3
7759 '+' shift, and go to state 4
7760 '-' shift, and go to state 5
7761 '*' shift, and go to state 6
7762 '/' shift, and go to state 7
ec3bc396
AD
7763@end example
7764
7765@noindent
7766In state 2, the automaton can only shift a symbol. For instance,
742e4900 7767because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7768@samp{+}, it will be shifted on the parse stack, and the automaton
7769control will jump to state 4, corresponding to the item @samp{exp -> exp
7770'+' . exp}. Since there is no default action, any other token than
6e649e65 7771those listed above will trigger a syntax error.
ec3bc396 7772
34a6c2d1 7773@cindex accepting state
ec3bc396
AD
7774The state 3 is named the @dfn{final state}, or the @dfn{accepting
7775state}:
7776
7777@example
7778state 3
7779
88bce5a2 7780 $accept -> exp $ . (rule 0)
ec3bc396 7781
2a8d363a 7782 $default accept
ec3bc396
AD
7783@end example
7784
7785@noindent
7786the initial rule is completed (the start symbol and the end
7787of input were read), the parsing exits successfully.
7788
7789The interpretation of states 4 to 7 is straightforward, and is left to
7790the reader.
7791
7792@example
7793state 4
7794
7795 exp -> exp '+' . exp (rule 1)
7796
2a8d363a 7797 NUM shift, and go to state 1
ec3bc396 7798
2a8d363a 7799 exp go to state 8
ec3bc396
AD
7800
7801state 5
7802
7803 exp -> exp '-' . exp (rule 2)
7804
2a8d363a 7805 NUM shift, and go to state 1
ec3bc396 7806
2a8d363a 7807 exp go to state 9
ec3bc396
AD
7808
7809state 6
7810
7811 exp -> exp '*' . exp (rule 3)
7812
2a8d363a 7813 NUM shift, and go to state 1
ec3bc396 7814
2a8d363a 7815 exp go to state 10
ec3bc396
AD
7816
7817state 7
7818
7819 exp -> exp '/' . exp (rule 4)
7820
2a8d363a 7821 NUM shift, and go to state 1
ec3bc396 7822
2a8d363a 7823 exp go to state 11
ec3bc396
AD
7824@end example
7825
5a99098d
PE
7826As was announced in beginning of the report, @samp{State 8 conflicts:
78271 shift/reduce}:
ec3bc396
AD
7828
7829@example
7830state 8
7831
7832 exp -> exp . '+' exp (rule 1)
7833 exp -> exp '+' exp . (rule 1)
7834 exp -> exp . '-' exp (rule 2)
7835 exp -> exp . '*' exp (rule 3)
7836 exp -> exp . '/' exp (rule 4)
7837
2a8d363a
AD
7838 '*' shift, and go to state 6
7839 '/' shift, and go to state 7
ec3bc396 7840
2a8d363a
AD
7841 '/' [reduce using rule 1 (exp)]
7842 $default reduce using rule 1 (exp)
ec3bc396
AD
7843@end example
7844
742e4900 7845Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7846either shifting (and going to state 7), or reducing rule 1. The
7847conflict means that either the grammar is ambiguous, or the parser lacks
7848information to make the right decision. Indeed the grammar is
7849ambiguous, as, since we did not specify the precedence of @samp{/}, the
7850sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7851NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7852NUM}, which corresponds to reducing rule 1.
7853
34a6c2d1 7854Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7855arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7856Shift/Reduce Conflicts}. Discarded actions are reported in between
7857square brackets.
7858
7859Note that all the previous states had a single possible action: either
7860shifting the next token and going to the corresponding state, or
7861reducing a single rule. In the other cases, i.e., when shifting
7862@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7863possible, the lookahead is required to select the action. State 8 is
7864one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7865is shifting, otherwise the action is reducing rule 1. In other words,
7866the first two items, corresponding to rule 1, are not eligible when the
742e4900 7867lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7868precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7869with some set of possible lookahead tokens. When run with
7870@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7871
7872@example
7873state 8
7874
88c78747 7875 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7876 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7877 exp -> exp . '-' exp (rule 2)
7878 exp -> exp . '*' exp (rule 3)
7879 exp -> exp . '/' exp (rule 4)
7880
7881 '*' shift, and go to state 6
7882 '/' shift, and go to state 7
7883
7884 '/' [reduce using rule 1 (exp)]
7885 $default reduce using rule 1 (exp)
7886@end example
7887
7888The remaining states are similar:
7889
7890@example
7891state 9
7892
7893 exp -> exp . '+' exp (rule 1)
7894 exp -> exp . '-' exp (rule 2)
7895 exp -> exp '-' exp . (rule 2)
7896 exp -> exp . '*' exp (rule 3)
7897 exp -> exp . '/' exp (rule 4)
7898
2a8d363a
AD
7899 '*' shift, and go to state 6
7900 '/' shift, and go to state 7
ec3bc396 7901
2a8d363a
AD
7902 '/' [reduce using rule 2 (exp)]
7903 $default reduce using rule 2 (exp)
ec3bc396
AD
7904
7905state 10
7906
7907 exp -> exp . '+' exp (rule 1)
7908 exp -> exp . '-' exp (rule 2)
7909 exp -> exp . '*' exp (rule 3)
7910 exp -> exp '*' exp . (rule 3)
7911 exp -> exp . '/' exp (rule 4)
7912
2a8d363a 7913 '/' shift, and go to state 7
ec3bc396 7914
2a8d363a
AD
7915 '/' [reduce using rule 3 (exp)]
7916 $default reduce using rule 3 (exp)
ec3bc396
AD
7917
7918state 11
7919
7920 exp -> exp . '+' exp (rule 1)
7921 exp -> exp . '-' exp (rule 2)
7922 exp -> exp . '*' exp (rule 3)
7923 exp -> exp . '/' exp (rule 4)
7924 exp -> exp '/' exp . (rule 4)
7925
2a8d363a
AD
7926 '+' shift, and go to state 4
7927 '-' shift, and go to state 5
7928 '*' shift, and go to state 6
7929 '/' shift, and go to state 7
ec3bc396 7930
2a8d363a
AD
7931 '+' [reduce using rule 4 (exp)]
7932 '-' [reduce using rule 4 (exp)]
7933 '*' [reduce using rule 4 (exp)]
7934 '/' [reduce using rule 4 (exp)]
7935 $default reduce using rule 4 (exp)
ec3bc396
AD
7936@end example
7937
7938@noindent
fa7e68c3
PE
7939Observe that state 11 contains conflicts not only due to the lack of
7940precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7941@samp{*}, but also because the
ec3bc396
AD
7942associativity of @samp{/} is not specified.
7943
7944
7945@node Tracing
7946@section Tracing Your Parser
bfa74976
RS
7947@findex yydebug
7948@cindex debugging
7949@cindex tracing the parser
7950
7951If a Bison grammar compiles properly but doesn't do what you want when it
7952runs, the @code{yydebug} parser-trace feature can help you figure out why.
7953
3ded9a63
AD
7954There are several means to enable compilation of trace facilities:
7955
7956@table @asis
7957@item the macro @code{YYDEBUG}
7958@findex YYDEBUG
7959Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 7960parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
7961@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7962YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7963Prologue}).
7964
7965@item the option @option{-t}, @option{--debug}
7966Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 7967,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
7968
7969@item the directive @samp{%debug}
7970@findex %debug
7971Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7972Declaration Summary}). This is a Bison extension, which will prove
7973useful when Bison will output parsers for languages that don't use a
35430378 7974preprocessor. Unless POSIX and Yacc portability matter to
c827f760 7975you, this is
3ded9a63
AD
7976the preferred solution.
7977@end table
7978
7979We suggest that you always enable the debug option so that debugging is
7980always possible.
bfa74976 7981
02a81e05 7982The trace facility outputs messages with macro calls of the form
e2742e46 7983@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7984@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7985arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7986define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7987and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7988
7989Once you have compiled the program with trace facilities, the way to
7990request a trace is to store a nonzero value in the variable @code{yydebug}.
7991You can do this by making the C code do it (in @code{main}, perhaps), or
7992you can alter the value with a C debugger.
7993
7994Each step taken by the parser when @code{yydebug} is nonzero produces a
7995line or two of trace information, written on @code{stderr}. The trace
7996messages tell you these things:
7997
7998@itemize @bullet
7999@item
8000Each time the parser calls @code{yylex}, what kind of token was read.
8001
8002@item
8003Each time a token is shifted, the depth and complete contents of the
8004state stack (@pxref{Parser States}).
8005
8006@item
8007Each time a rule is reduced, which rule it is, and the complete contents
8008of the state stack afterward.
8009@end itemize
8010
8011To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8012produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8013Bison}). This file shows the meaning of each state in terms of
8014positions in various rules, and also what each state will do with each
8015possible input token. As you read the successive trace messages, you
8016can see that the parser is functioning according to its specification in
8017the listing file. Eventually you will arrive at the place where
8018something undesirable happens, and you will see which parts of the
8019grammar are to blame.
bfa74976
RS
8020
8021The parser file is a C program and you can use C debuggers on it, but it's
8022not easy to interpret what it is doing. The parser function is a
8023finite-state machine interpreter, and aside from the actions it executes
8024the same code over and over. Only the values of variables show where in
8025the grammar it is working.
8026
8027@findex YYPRINT
8028The debugging information normally gives the token type of each token
8029read, but not its semantic value. You can optionally define a macro
8030named @code{YYPRINT} to provide a way to print the value. If you define
8031@code{YYPRINT}, it should take three arguments. The parser will pass a
8032standard I/O stream, the numeric code for the token type, and the token
8033value (from @code{yylval}).
8034
8035Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8036calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8037
8038@smallexample
38a92d50
PE
8039%@{
8040 static void print_token_value (FILE *, int, YYSTYPE);
8041 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8042%@}
8043
8044@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8045
8046static void
831d3c99 8047print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8048@{
8049 if (type == VAR)
d3c4e709 8050 fprintf (file, "%s", value.tptr->name);
bfa74976 8051 else if (type == NUM)
d3c4e709 8052 fprintf (file, "%d", value.val);
bfa74976
RS
8053@}
8054@end smallexample
8055
ec3bc396
AD
8056@c ================================================= Invoking Bison
8057
342b8b6e 8058@node Invocation
bfa74976
RS
8059@chapter Invoking Bison
8060@cindex invoking Bison
8061@cindex Bison invocation
8062@cindex options for invoking Bison
8063
8064The usual way to invoke Bison is as follows:
8065
8066@example
8067bison @var{infile}
8068@end example
8069
8070Here @var{infile} is the grammar file name, which usually ends in
8071@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8072with @samp{.tab.c} and removing any leading directory. Thus, the
8073@samp{bison foo.y} file name yields
8074@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8075@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8076C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8077or @file{foo.y++}. Then, the output files will take an extension like
8078the given one as input (respectively @file{foo.tab.cpp} and
8079@file{foo.tab.c++}).
fa4d969f 8080This feature takes effect with all options that manipulate file names like
234a3be3
AD
8081@samp{-o} or @samp{-d}.
8082
8083For example :
8084
8085@example
8086bison -d @var{infile.yxx}
8087@end example
84163231 8088@noindent
72d2299c 8089will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8090
8091@example
b56471a6 8092bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8093@end example
84163231 8094@noindent
234a3be3
AD
8095will produce @file{output.c++} and @file{outfile.h++}.
8096
35430378 8097For compatibility with POSIX, the standard Bison
397ec073
PE
8098distribution also contains a shell script called @command{yacc} that
8099invokes Bison with the @option{-y} option.
8100
bfa74976 8101@menu
13863333 8102* Bison Options:: All the options described in detail,
c827f760 8103 in alphabetical order by short options.
bfa74976 8104* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8105* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8106@end menu
8107
342b8b6e 8108@node Bison Options
bfa74976
RS
8109@section Bison Options
8110
8111Bison supports both traditional single-letter options and mnemonic long
8112option names. Long option names are indicated with @samp{--} instead of
8113@samp{-}. Abbreviations for option names are allowed as long as they
8114are unique. When a long option takes an argument, like
8115@samp{--file-prefix}, connect the option name and the argument with
8116@samp{=}.
8117
8118Here is a list of options that can be used with Bison, alphabetized by
8119short option. It is followed by a cross key alphabetized by long
8120option.
8121
89cab50d
AD
8122@c Please, keep this ordered as in `bison --help'.
8123@noindent
8124Operations modes:
8125@table @option
8126@item -h
8127@itemx --help
8128Print a summary of the command-line options to Bison and exit.
bfa74976 8129
89cab50d
AD
8130@item -V
8131@itemx --version
8132Print the version number of Bison and exit.
bfa74976 8133
f7ab6a50
PE
8134@item --print-localedir
8135Print the name of the directory containing locale-dependent data.
8136
a0de5091
JD
8137@item --print-datadir
8138Print the name of the directory containing skeletons and XSLT.
8139
89cab50d
AD
8140@item -y
8141@itemx --yacc
54662697
PE
8142Act more like the traditional Yacc command. This can cause
8143different diagnostics to be generated, and may change behavior in
8144other minor ways. Most importantly, imitate Yacc's output
8145file name conventions, so that the parser output file is called
89cab50d 8146@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8147@file{y.tab.h}.
34a6c2d1 8148Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8149statements in addition to an @code{enum} to associate token numbers with token
8150names.
8151Thus, the following shell script can substitute for Yacc, and the Bison
35430378 8152distribution contains such a script for compatibility with POSIX:
bfa74976 8153
89cab50d 8154@example
397ec073 8155#! /bin/sh
26e06a21 8156bison -y "$@@"
89cab50d 8157@end example
54662697
PE
8158
8159The @option{-y}/@option{--yacc} option is intended for use with
8160traditional Yacc grammars. If your grammar uses a Bison extension
8161like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8162this option is specified.
8163
ecd1b61c
JD
8164@item -W [@var{category}]
8165@itemx --warnings[=@var{category}]
118d4978
AD
8166Output warnings falling in @var{category}. @var{category} can be one
8167of:
8168@table @code
8169@item midrule-values
8e55b3aa
JD
8170Warn about mid-rule values that are set but not used within any of the actions
8171of the parent rule.
8172For example, warn about unused @code{$2} in:
118d4978
AD
8173
8174@example
8175exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8176@end example
8177
8e55b3aa
JD
8178Also warn about mid-rule values that are used but not set.
8179For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8180
8181@example
8182 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8183@end example
8184
8185These warnings are not enabled by default since they sometimes prove to
8186be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8187@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8188
8189
8190@item yacc
35430378 8191Incompatibilities with POSIX Yacc.
118d4978
AD
8192
8193@item all
8e55b3aa 8194All the warnings.
118d4978 8195@item none
8e55b3aa 8196Turn off all the warnings.
118d4978 8197@item error
8e55b3aa 8198Treat warnings as errors.
118d4978
AD
8199@end table
8200
8201A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8202instance, @option{-Wno-yacc} will hide the warnings about
35430378 8203POSIX Yacc incompatibilities.
89cab50d
AD
8204@end table
8205
8206@noindent
8207Tuning the parser:
8208
8209@table @option
8210@item -t
8211@itemx --debug
4947ebdb
PE
8212In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8213already defined, so that the debugging facilities are compiled.
ec3bc396 8214@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8215
e14c6831
AD
8216@item -D @var{name}[=@var{value}]
8217@itemx --define=@var{name}[=@var{value}]
c33bc800 8218@itemx -F @var{name}[=@var{value}]
34d41938
JD
8219@itemx --force-define=@var{name}[=@var{value}]
8220Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8221(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8222definitions for the same @var{name} as follows:
8223
8224@itemize
8225@item
e3a33f7c
JD
8226Bison quietly ignores all command-line definitions for @var{name} except
8227the last.
34d41938 8228@item
e3a33f7c
JD
8229If that command-line definition is specified by a @code{-D} or
8230@code{--define}, Bison reports an error for any @code{%define}
8231definition for @var{name}.
34d41938 8232@item
e3a33f7c
JD
8233If that command-line definition is specified by a @code{-F} or
8234@code{--force-define} instead, Bison quietly ignores all @code{%define}
8235definitions for @var{name}.
8236@item
8237Otherwise, Bison reports an error if there are multiple @code{%define}
8238definitions for @var{name}.
34d41938
JD
8239@end itemize
8240
8241You should avoid using @code{-F} and @code{--force-define} in your
8242makefiles unless you are confident that it is safe to quietly ignore any
8243conflicting @code{%define} that may be added to the grammar file.
e14c6831 8244
0e021770
PE
8245@item -L @var{language}
8246@itemx --language=@var{language}
8247Specify the programming language for the generated parser, as if
8248@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8249Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8250@var{language} is case-insensitive.
0e021770 8251
ed4d67dc
JD
8252This option is experimental and its effect may be modified in future
8253releases.
8254
89cab50d 8255@item --locations
d8988b2f 8256Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8257
8258@item -p @var{prefix}
8259@itemx --name-prefix=@var{prefix}
02975b9a 8260Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8261@xref{Decl Summary}.
bfa74976
RS
8262
8263@item -l
8264@itemx --no-lines
8265Don't put any @code{#line} preprocessor commands in the parser file.
8266Ordinarily Bison puts them in the parser file so that the C compiler
8267and debuggers will associate errors with your source file, the
8268grammar file. This option causes them to associate errors with the
95e742f7 8269parser file, treating it as an independent source file in its own right.
bfa74976 8270
e6e704dc
JD
8271@item -S @var{file}
8272@itemx --skeleton=@var{file}
a7867f53 8273Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8274(@pxref{Decl Summary, , Bison Declaration Summary}).
8275
ed4d67dc
JD
8276@c You probably don't need this option unless you are developing Bison.
8277@c You should use @option{--language} if you want to specify the skeleton for a
8278@c different language, because it is clearer and because it will always
8279@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8280
a7867f53
JD
8281If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8282file in the Bison installation directory.
8283If it does, @var{file} is an absolute file name or a file name relative to the
8284current working directory.
8285This is similar to how most shells resolve commands.
8286
89cab50d
AD
8287@item -k
8288@itemx --token-table
d8988b2f 8289Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8290@end table
bfa74976 8291
89cab50d
AD
8292@noindent
8293Adjust the output:
bfa74976 8294
89cab50d 8295@table @option
8e55b3aa 8296@item --defines[=@var{file}]
d8988b2f 8297Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8298file containing macro definitions for the token type names defined in
4bfd5e4e 8299the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8300
8e55b3aa
JD
8301@item -d
8302This is the same as @code{--defines} except @code{-d} does not accept a
8303@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8304with other short options.
342b8b6e 8305
89cab50d
AD
8306@item -b @var{file-prefix}
8307@itemx --file-prefix=@var{prefix}
9c437126 8308Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8309for all Bison output file names. @xref{Decl Summary}.
bfa74976 8310
ec3bc396
AD
8311@item -r @var{things}
8312@itemx --report=@var{things}
8313Write an extra output file containing verbose description of the comma
8314separated list of @var{things} among:
8315
8316@table @code
8317@item state
8318Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8319parser's automaton.
ec3bc396 8320
742e4900 8321@item lookahead
ec3bc396 8322Implies @code{state} and augments the description of the automaton with
742e4900 8323each rule's lookahead set.
ec3bc396
AD
8324
8325@item itemset
8326Implies @code{state} and augments the description of the automaton with
8327the full set of items for each state, instead of its core only.
8328@end table
8329
1bb2bd75
JD
8330@item --report-file=@var{file}
8331Specify the @var{file} for the verbose description.
8332
bfa74976
RS
8333@item -v
8334@itemx --verbose
9c437126 8335Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8336file containing verbose descriptions of the grammar and
72d2299c 8337parser. @xref{Decl Summary}.
bfa74976 8338
fa4d969f
PE
8339@item -o @var{file}
8340@itemx --output=@var{file}
8341Specify the @var{file} for the parser file.
bfa74976 8342
fa4d969f 8343The other output files' names are constructed from @var{file} as
d8988b2f 8344described under the @samp{-v} and @samp{-d} options.
342b8b6e 8345
72183df4 8346@item -g [@var{file}]
8e55b3aa 8347@itemx --graph[=@var{file}]
34a6c2d1 8348Output a graphical representation of the parser's
35fe0834 8349automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8350@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8351@code{@var{file}} is optional.
8352If omitted and the grammar file is @file{foo.y}, the output file will be
8353@file{foo.dot}.
59da312b 8354
72183df4 8355@item -x [@var{file}]
8e55b3aa 8356@itemx --xml[=@var{file}]
34a6c2d1 8357Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8358@code{@var{file}} is optional.
59da312b
JD
8359If omitted and the grammar file is @file{foo.y}, the output file will be
8360@file{foo.xml}.
8361(The current XML schema is experimental and may evolve.
8362More user feedback will help to stabilize it.)
bfa74976
RS
8363@end table
8364
342b8b6e 8365@node Option Cross Key
bfa74976
RS
8366@section Option Cross Key
8367
8368Here is a list of options, alphabetized by long option, to help you find
34d41938 8369the corresponding short option and directive.
bfa74976 8370
34d41938 8371@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8372@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8373@include cross-options.texi
aa08666d 8374@end multitable
bfa74976 8375
93dd49ab
PE
8376@node Yacc Library
8377@section Yacc Library
8378
8379The Yacc library contains default implementations of the
8380@code{yyerror} and @code{main} functions. These default
35430378 8381implementations are normally not useful, but POSIX requires
93dd49ab
PE
8382them. To use the Yacc library, link your program with the
8383@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8384library is distributed under the terms of the GNU General
93dd49ab
PE
8385Public License (@pxref{Copying}).
8386
8387If you use the Yacc library's @code{yyerror} function, you should
8388declare @code{yyerror} as follows:
8389
8390@example
8391int yyerror (char const *);
8392@end example
8393
8394Bison ignores the @code{int} value returned by this @code{yyerror}.
8395If you use the Yacc library's @code{main} function, your
8396@code{yyparse} function should have the following type signature:
8397
8398@example
8399int yyparse (void);
8400@end example
8401
12545799
AD
8402@c ================================================= C++ Bison
8403
8405b70c
PB
8404@node Other Languages
8405@chapter Parsers Written In Other Languages
12545799
AD
8406
8407@menu
8408* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8409* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8410@end menu
8411
8412@node C++ Parsers
8413@section C++ Parsers
8414
8415@menu
8416* C++ Bison Interface:: Asking for C++ parser generation
8417* C++ Semantic Values:: %union vs. C++
8418* C++ Location Values:: The position and location classes
8419* C++ Parser Interface:: Instantiating and running the parser
8420* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8421* A Complete C++ Example:: Demonstrating their use
12545799
AD
8422@end menu
8423
8424@node C++ Bison Interface
8425@subsection C++ Bison Interface
ed4d67dc 8426@c - %skeleton "lalr1.cc"
12545799
AD
8427@c - Always pure
8428@c - initial action
8429
34a6c2d1 8430The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8431@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8432@option{--skeleton=lalr1.cc}.
e6e704dc 8433@xref{Decl Summary}.
0e021770 8434
793fbca5
JD
8435When run, @command{bison} will create several entities in the @samp{yy}
8436namespace.
8437@findex %define namespace
8438Use the @samp{%define namespace} directive to change the namespace name, see
8439@ref{Decl Summary}.
8440The various classes are generated in the following files:
aa08666d 8441
12545799
AD
8442@table @file
8443@item position.hh
8444@itemx location.hh
8445The definition of the classes @code{position} and @code{location},
8446used for location tracking. @xref{C++ Location Values}.
8447
8448@item stack.hh
8449An auxiliary class @code{stack} used by the parser.
8450
fa4d969f
PE
8451@item @var{file}.hh
8452@itemx @var{file}.cc
cd8b5791
AD
8453(Assuming the extension of the input file was @samp{.yy}.) The
8454declaration and implementation of the C++ parser class. The basename
8455and extension of these two files follow the same rules as with regular C
8456parsers (@pxref{Invocation}).
12545799 8457
cd8b5791
AD
8458The header is @emph{mandatory}; you must either pass
8459@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8460@samp{%defines} directive.
8461@end table
8462
8463All these files are documented using Doxygen; run @command{doxygen}
8464for a complete and accurate documentation.
8465
8466@node C++ Semantic Values
8467@subsection C++ Semantic Values
8468@c - No objects in unions
178e123e 8469@c - YYSTYPE
12545799
AD
8470@c - Printer and destructor
8471
8472The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8473Collection of Value Types}. In particular it produces a genuine
8474@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8475within pseudo-unions (similar to Boost variants) might be implemented to
8476alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8477@itemize @minus
8478@item
fb9712a9
AD
8479The type @code{YYSTYPE} is defined but its use is discouraged: rather
8480you should refer to the parser's encapsulated type
8481@code{yy::parser::semantic_type}.
12545799
AD
8482@item
8483Non POD (Plain Old Data) types cannot be used. C++ forbids any
8484instance of classes with constructors in unions: only @emph{pointers}
8485to such objects are allowed.
8486@end itemize
8487
8488Because objects have to be stored via pointers, memory is not
8489reclaimed automatically: using the @code{%destructor} directive is the
8490only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8491Symbols}.
8492
8493
8494@node C++ Location Values
8495@subsection C++ Location Values
8496@c - %locations
8497@c - class Position
8498@c - class Location
16dc6a9e 8499@c - %define filename_type "const symbol::Symbol"
12545799
AD
8500
8501When the directive @code{%locations} is used, the C++ parser supports
8502location tracking, see @ref{Locations, , Locations Overview}. Two
8503auxiliary classes define a @code{position}, a single point in a file,
8504and a @code{location}, a range composed of a pair of
8505@code{position}s (possibly spanning several files).
8506
fa4d969f 8507@deftypemethod {position} {std::string*} file
12545799
AD
8508The name of the file. It will always be handled as a pointer, the
8509parser will never duplicate nor deallocate it. As an experimental
8510feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8511filename_type "@var{type}"}.
12545799
AD
8512@end deftypemethod
8513
8514@deftypemethod {position} {unsigned int} line
8515The line, starting at 1.
8516@end deftypemethod
8517
8518@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8519Advance by @var{height} lines, resetting the column number.
8520@end deftypemethod
8521
8522@deftypemethod {position} {unsigned int} column
8523The column, starting at 0.
8524@end deftypemethod
8525
8526@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8527Advance by @var{width} columns, without changing the line number.
8528@end deftypemethod
8529
8530@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8531@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8532@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8533@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8534Various forms of syntactic sugar for @code{columns}.
8535@end deftypemethod
8536
8537@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8538Report @var{p} on @var{o} like this:
fa4d969f
PE
8539@samp{@var{file}:@var{line}.@var{column}}, or
8540@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8541@end deftypemethod
8542
8543@deftypemethod {location} {position} begin
8544@deftypemethodx {location} {position} end
8545The first, inclusive, position of the range, and the first beyond.
8546@end deftypemethod
8547
8548@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8549@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8550Advance the @code{end} position.
8551@end deftypemethod
8552
8553@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8554@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8555@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8556Various forms of syntactic sugar.
8557@end deftypemethod
8558
8559@deftypemethod {location} {void} step ()
8560Move @code{begin} onto @code{end}.
8561@end deftypemethod
8562
8563
8564@node C++ Parser Interface
8565@subsection C++ Parser Interface
8566@c - define parser_class_name
8567@c - Ctor
8568@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8569@c debug_stream.
8570@c - Reporting errors
8571
8572The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8573declare and define the parser class in the namespace @code{yy}. The
8574class name defaults to @code{parser}, but may be changed using
16dc6a9e 8575@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8576this class is detailed below. It can be extended using the
12545799
AD
8577@code{%parse-param} feature: its semantics is slightly changed since
8578it describes an additional member of the parser class, and an
8579additional argument for its constructor.
8580
baacae49
AD
8581@defcv {Type} {parser} {semantic_type}
8582@defcvx {Type} {parser} {location_type}
12545799 8583The types for semantics value and locations.
8a0adb01 8584@end defcv
12545799 8585
baacae49
AD
8586@defcv {Type} {parser} {token}
8587A structure that contains (only) the definition of the tokens as the
8588@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8589scanner should use @code{yy::parser::token::FOO}. The scanner can use
8590@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8591(@pxref{Calc++ Scanner}).
8592@end defcv
8593
12545799
AD
8594@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8595Build a new parser object. There are no arguments by default, unless
8596@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8597@end deftypemethod
8598
8599@deftypemethod {parser} {int} parse ()
8600Run the syntactic analysis, and return 0 on success, 1 otherwise.
8601@end deftypemethod
8602
8603@deftypemethod {parser} {std::ostream&} debug_stream ()
8604@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8605Get or set the stream used for tracing the parsing. It defaults to
8606@code{std::cerr}.
8607@end deftypemethod
8608
8609@deftypemethod {parser} {debug_level_type} debug_level ()
8610@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8611Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8612or nonzero, full tracing.
12545799
AD
8613@end deftypemethod
8614
8615@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8616The definition for this member function must be supplied by the user:
8617the parser uses it to report a parser error occurring at @var{l},
8618described by @var{m}.
8619@end deftypemethod
8620
8621
8622@node C++ Scanner Interface
8623@subsection C++ Scanner Interface
8624@c - prefix for yylex.
8625@c - Pure interface to yylex
8626@c - %lex-param
8627
8628The parser invokes the scanner by calling @code{yylex}. Contrary to C
8629parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8630@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8631
baacae49 8632@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8633Return the next token. Its type is the return value, its semantic
8634value and location being @var{yylval} and @var{yylloc}. Invocations of
8635@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8636@end deftypemethod
8637
8638
8639@node A Complete C++ Example
8405b70c 8640@subsection A Complete C++ Example
12545799
AD
8641
8642This section demonstrates the use of a C++ parser with a simple but
8643complete example. This example should be available on your system,
8644ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8645focuses on the use of Bison, therefore the design of the various C++
8646classes is very naive: no accessors, no encapsulation of members etc.
8647We will use a Lex scanner, and more precisely, a Flex scanner, to
8648demonstrate the various interaction. A hand written scanner is
8649actually easier to interface with.
8650
8651@menu
8652* Calc++ --- C++ Calculator:: The specifications
8653* Calc++ Parsing Driver:: An active parsing context
8654* Calc++ Parser:: A parser class
8655* Calc++ Scanner:: A pure C++ Flex scanner
8656* Calc++ Top Level:: Conducting the band
8657@end menu
8658
8659@node Calc++ --- C++ Calculator
8405b70c 8660@subsubsection Calc++ --- C++ Calculator
12545799
AD
8661
8662Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8663expression, possibly preceded by variable assignments. An
12545799
AD
8664environment containing possibly predefined variables such as
8665@code{one} and @code{two}, is exchanged with the parser. An example
8666of valid input follows.
8667
8668@example
8669three := 3
8670seven := one + two * three
8671seven * seven
8672@end example
8673
8674@node Calc++ Parsing Driver
8405b70c 8675@subsubsection Calc++ Parsing Driver
12545799
AD
8676@c - An env
8677@c - A place to store error messages
8678@c - A place for the result
8679
8680To support a pure interface with the parser (and the scanner) the
8681technique of the ``parsing context'' is convenient: a structure
8682containing all the data to exchange. Since, in addition to simply
8683launch the parsing, there are several auxiliary tasks to execute (open
8684the file for parsing, instantiate the parser etc.), we recommend
8685transforming the simple parsing context structure into a fully blown
8686@dfn{parsing driver} class.
8687
8688The declaration of this driver class, @file{calc++-driver.hh}, is as
8689follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8690required standard library components, and the declaration of the parser
8691class.
12545799 8692
1c59e0a1 8693@comment file: calc++-driver.hh
12545799
AD
8694@example
8695#ifndef CALCXX_DRIVER_HH
8696# define CALCXX_DRIVER_HH
8697# include <string>
8698# include <map>
fb9712a9 8699# include "calc++-parser.hh"
12545799
AD
8700@end example
8701
12545799
AD
8702
8703@noindent
8704Then comes the declaration of the scanning function. Flex expects
8705the signature of @code{yylex} to be defined in the macro
8706@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8707factor both as follows.
1c59e0a1
AD
8708
8709@comment file: calc++-driver.hh
12545799 8710@example
3dc5e96b
PE
8711// Tell Flex the lexer's prototype ...
8712# define YY_DECL \
c095d689
AD
8713 yy::calcxx_parser::token_type \
8714 yylex (yy::calcxx_parser::semantic_type* yylval, \
8715 yy::calcxx_parser::location_type* yylloc, \
8716 calcxx_driver& driver)
12545799
AD
8717// ... and declare it for the parser's sake.
8718YY_DECL;
8719@end example
8720
8721@noindent
8722The @code{calcxx_driver} class is then declared with its most obvious
8723members.
8724
1c59e0a1 8725@comment file: calc++-driver.hh
12545799
AD
8726@example
8727// Conducting the whole scanning and parsing of Calc++.
8728class calcxx_driver
8729@{
8730public:
8731 calcxx_driver ();
8732 virtual ~calcxx_driver ();
8733
8734 std::map<std::string, int> variables;
8735
8736 int result;
8737@end example
8738
8739@noindent
8740To encapsulate the coordination with the Flex scanner, it is useful to
8741have two members function to open and close the scanning phase.
12545799 8742
1c59e0a1 8743@comment file: calc++-driver.hh
12545799
AD
8744@example
8745 // Handling the scanner.
8746 void scan_begin ();
8747 void scan_end ();
8748 bool trace_scanning;
8749@end example
8750
8751@noindent
8752Similarly for the parser itself.
8753
1c59e0a1 8754@comment file: calc++-driver.hh
12545799 8755@example
bb32f4f2
AD
8756 // Run the parser. Return 0 on success.
8757 int parse (const std::string& f);
12545799
AD
8758 std::string file;
8759 bool trace_parsing;
8760@end example
8761
8762@noindent
8763To demonstrate pure handling of parse errors, instead of simply
8764dumping them on the standard error output, we will pass them to the
8765compiler driver using the following two member functions. Finally, we
8766close the class declaration and CPP guard.
8767
1c59e0a1 8768@comment file: calc++-driver.hh
12545799
AD
8769@example
8770 // Error handling.
8771 void error (const yy::location& l, const std::string& m);
8772 void error (const std::string& m);
8773@};
8774#endif // ! CALCXX_DRIVER_HH
8775@end example
8776
8777The implementation of the driver is straightforward. The @code{parse}
8778member function deserves some attention. The @code{error} functions
8779are simple stubs, they should actually register the located error
8780messages and set error state.
8781
1c59e0a1 8782@comment file: calc++-driver.cc
12545799
AD
8783@example
8784#include "calc++-driver.hh"
8785#include "calc++-parser.hh"
8786
8787calcxx_driver::calcxx_driver ()
8788 : trace_scanning (false), trace_parsing (false)
8789@{
8790 variables["one"] = 1;
8791 variables["two"] = 2;
8792@}
8793
8794calcxx_driver::~calcxx_driver ()
8795@{
8796@}
8797
bb32f4f2 8798int
12545799
AD
8799calcxx_driver::parse (const std::string &f)
8800@{
8801 file = f;
8802 scan_begin ();
8803 yy::calcxx_parser parser (*this);
8804 parser.set_debug_level (trace_parsing);
bb32f4f2 8805 int res = parser.parse ();
12545799 8806 scan_end ();
bb32f4f2 8807 return res;
12545799
AD
8808@}
8809
8810void
8811calcxx_driver::error (const yy::location& l, const std::string& m)
8812@{
8813 std::cerr << l << ": " << m << std::endl;
8814@}
8815
8816void
8817calcxx_driver::error (const std::string& m)
8818@{
8819 std::cerr << m << std::endl;
8820@}
8821@end example
8822
8823@node Calc++ Parser
8405b70c 8824@subsubsection Calc++ Parser
12545799 8825
b50d2359 8826The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8827the C++ deterministic parser skeleton, the creation of the parser header
8828file, and specifies the name of the parser class.
8829Because the C++ skeleton changed several times, it is safer to require
8830the version you designed the grammar for.
1c59e0a1
AD
8831
8832@comment file: calc++-parser.yy
12545799 8833@example
ed4d67dc 8834%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8835%require "@value{VERSION}"
12545799 8836%defines
16dc6a9e 8837%define parser_class_name "calcxx_parser"
fb9712a9
AD
8838@end example
8839
8840@noindent
16dc6a9e 8841@findex %code requires
fb9712a9
AD
8842Then come the declarations/inclusions needed to define the
8843@code{%union}. Because the parser uses the parsing driver and
8844reciprocally, both cannot include the header of the other. Because the
8845driver's header needs detailed knowledge about the parser class (in
8846particular its inner types), it is the parser's header which will simply
8847use a forward declaration of the driver.
148d66d8 8848@xref{Decl Summary, ,%code}.
fb9712a9
AD
8849
8850@comment file: calc++-parser.yy
8851@example
16dc6a9e 8852%code requires @{
12545799 8853# include <string>
fb9712a9 8854class calcxx_driver;
9bc0dd67 8855@}
12545799
AD
8856@end example
8857
8858@noindent
8859The driver is passed by reference to the parser and to the scanner.
8860This provides a simple but effective pure interface, not relying on
8861global variables.
8862
1c59e0a1 8863@comment file: calc++-parser.yy
12545799
AD
8864@example
8865// The parsing context.
8866%parse-param @{ calcxx_driver& driver @}
8867%lex-param @{ calcxx_driver& driver @}
8868@end example
8869
8870@noindent
8871Then we request the location tracking feature, and initialize the
c781580d 8872first location's file name. Afterward new locations are computed
12545799
AD
8873relatively to the previous locations: the file name will be
8874automatically propagated.
8875
1c59e0a1 8876@comment file: calc++-parser.yy
12545799
AD
8877@example
8878%locations
8879%initial-action
8880@{
8881 // Initialize the initial location.
b47dbebe 8882 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8883@};
8884@end example
8885
8886@noindent
8887Use the two following directives to enable parser tracing and verbose
8888error messages.
8889
1c59e0a1 8890@comment file: calc++-parser.yy
12545799
AD
8891@example
8892%debug
8893%error-verbose
8894@end example
8895
8896@noindent
8897Semantic values cannot use ``real'' objects, but only pointers to
8898them.
8899
1c59e0a1 8900@comment file: calc++-parser.yy
12545799
AD
8901@example
8902// Symbols.
8903%union
8904@{
8905 int ival;
8906 std::string *sval;
8907@};
8908@end example
8909
fb9712a9 8910@noindent
136a0f76
PB
8911@findex %code
8912The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8913@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8914
8915@comment file: calc++-parser.yy
8916@example
136a0f76 8917%code @{
fb9712a9 8918# include "calc++-driver.hh"
34f98f46 8919@}
fb9712a9
AD
8920@end example
8921
8922
12545799
AD
8923@noindent
8924The token numbered as 0 corresponds to end of file; the following line
8925allows for nicer error messages referring to ``end of file'' instead
8926of ``$end''. Similarly user friendly named are provided for each
8927symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8928avoid name clashes.
8929
1c59e0a1 8930@comment file: calc++-parser.yy
12545799 8931@example
fb9712a9
AD
8932%token END 0 "end of file"
8933%token ASSIGN ":="
8934%token <sval> IDENTIFIER "identifier"
8935%token <ival> NUMBER "number"
a8c2e813 8936%type <ival> exp
12545799
AD
8937@end example
8938
8939@noindent
8940To enable memory deallocation during error recovery, use
8941@code{%destructor}.
8942
287c78f6 8943@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8944@comment file: calc++-parser.yy
12545799
AD
8945@example
8946%printer @{ debug_stream () << *$$; @} "identifier"
8947%destructor @{ delete $$; @} "identifier"
8948
a8c2e813 8949%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8950@end example
8951
8952@noindent
8953The grammar itself is straightforward.
8954
1c59e0a1 8955@comment file: calc++-parser.yy
12545799
AD
8956@example
8957%%
8958%start unit;
8959unit: assignments exp @{ driver.result = $2; @};
8960
8961assignments: assignments assignment @{@}
9d9b8b70 8962 | /* Nothing. */ @{@};
12545799 8963
3dc5e96b
PE
8964assignment:
8965 "identifier" ":=" exp
8966 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8967
8968%left '+' '-';
8969%left '*' '/';
8970exp: exp '+' exp @{ $$ = $1 + $3; @}
8971 | exp '-' exp @{ $$ = $1 - $3; @}
8972 | exp '*' exp @{ $$ = $1 * $3; @}
8973 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8974 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8975 | "number" @{ $$ = $1; @};
12545799
AD
8976%%
8977@end example
8978
8979@noindent
8980Finally the @code{error} member function registers the errors to the
8981driver.
8982
1c59e0a1 8983@comment file: calc++-parser.yy
12545799
AD
8984@example
8985void
1c59e0a1
AD
8986yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8987 const std::string& m)
12545799
AD
8988@{
8989 driver.error (l, m);
8990@}
8991@end example
8992
8993@node Calc++ Scanner
8405b70c 8994@subsubsection Calc++ Scanner
12545799
AD
8995
8996The Flex scanner first includes the driver declaration, then the
8997parser's to get the set of defined tokens.
8998
1c59e0a1 8999@comment file: calc++-scanner.ll
12545799
AD
9000@example
9001%@{ /* -*- C++ -*- */
04098407 9002# include <cstdlib>
b10dd689
AD
9003# include <cerrno>
9004# include <climits>
12545799
AD
9005# include <string>
9006# include "calc++-driver.hh"
9007# include "calc++-parser.hh"
eaea13f5
PE
9008
9009/* Work around an incompatibility in flex (at least versions
9010 2.5.31 through 2.5.33): it generates code that does
9011 not conform to C89. See Debian bug 333231
9012 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9013# undef yywrap
9014# define yywrap() 1
eaea13f5 9015
c095d689
AD
9016/* By default yylex returns int, we use token_type.
9017 Unfortunately yyterminate by default returns 0, which is
9018 not of token_type. */
8c5b881d 9019#define yyterminate() return token::END
12545799
AD
9020%@}
9021@end example
9022
9023@noindent
9024Because there is no @code{#include}-like feature we don't need
9025@code{yywrap}, we don't need @code{unput} either, and we parse an
9026actual file, this is not an interactive session with the user.
9027Finally we enable the scanner tracing features.
9028
1c59e0a1 9029@comment file: calc++-scanner.ll
12545799
AD
9030@example
9031%option noyywrap nounput batch debug
9032@end example
9033
9034@noindent
9035Abbreviations allow for more readable rules.
9036
1c59e0a1 9037@comment file: calc++-scanner.ll
12545799
AD
9038@example
9039id [a-zA-Z][a-zA-Z_0-9]*
9040int [0-9]+
9041blank [ \t]
9042@end example
9043
9044@noindent
9d9b8b70 9045The following paragraph suffices to track locations accurately. Each
12545799
AD
9046time @code{yylex} is invoked, the begin position is moved onto the end
9047position. Then when a pattern is matched, the end position is
9048advanced of its width. In case it matched ends of lines, the end
9049cursor is adjusted, and each time blanks are matched, the begin cursor
9050is moved onto the end cursor to effectively ignore the blanks
9051preceding tokens. Comments would be treated equally.
9052
1c59e0a1 9053@comment file: calc++-scanner.ll
12545799 9054@example
828c373b
AD
9055%@{
9056# define YY_USER_ACTION yylloc->columns (yyleng);
9057%@}
12545799
AD
9058%%
9059%@{
9060 yylloc->step ();
12545799
AD
9061%@}
9062@{blank@}+ yylloc->step ();
9063[\n]+ yylloc->lines (yyleng); yylloc->step ();
9064@end example
9065
9066@noindent
fb9712a9
AD
9067The rules are simple, just note the use of the driver to report errors.
9068It is convenient to use a typedef to shorten
9069@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9070@code{token::identifier} for instance.
12545799 9071
1c59e0a1 9072@comment file: calc++-scanner.ll
12545799 9073@example
fb9712a9
AD
9074%@{
9075 typedef yy::calcxx_parser::token token;
9076%@}
8c5b881d 9077 /* Convert ints to the actual type of tokens. */
c095d689 9078[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9079":=" return token::ASSIGN;
04098407
PE
9080@{int@} @{
9081 errno = 0;
9082 long n = strtol (yytext, NULL, 10);
9083 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9084 driver.error (*yylloc, "integer is out of range");
9085 yylval->ival = n;
fb9712a9 9086 return token::NUMBER;
04098407 9087@}
fb9712a9 9088@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9089. driver.error (*yylloc, "invalid character");
9090%%
9091@end example
9092
9093@noindent
9094Finally, because the scanner related driver's member function depend
9095on the scanner's data, it is simpler to implement them in this file.
9096
1c59e0a1 9097@comment file: calc++-scanner.ll
12545799
AD
9098@example
9099void
9100calcxx_driver::scan_begin ()
9101@{
9102 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9103 if (file == "-")
9104 yyin = stdin;
9105 else if (!(yyin = fopen (file.c_str (), "r")))
9106 @{
9107 error (std::string ("cannot open ") + file);
9108 exit (1);
9109 @}
12545799
AD
9110@}
9111
9112void
9113calcxx_driver::scan_end ()
9114@{
9115 fclose (yyin);
9116@}
9117@end example
9118
9119@node Calc++ Top Level
8405b70c 9120@subsubsection Calc++ Top Level
12545799
AD
9121
9122The top level file, @file{calc++.cc}, poses no problem.
9123
1c59e0a1 9124@comment file: calc++.cc
12545799
AD
9125@example
9126#include <iostream>
9127#include "calc++-driver.hh"
9128
9129int
fa4d969f 9130main (int argc, char *argv[])
12545799
AD
9131@{
9132 calcxx_driver driver;
9133 for (++argv; argv[0]; ++argv)
9134 if (*argv == std::string ("-p"))
9135 driver.trace_parsing = true;
9136 else if (*argv == std::string ("-s"))
9137 driver.trace_scanning = true;
bb32f4f2
AD
9138 else if (!driver.parse (*argv))
9139 std::cout << driver.result << std::endl;
12545799
AD
9140@}
9141@end example
9142
8405b70c
PB
9143@node Java Parsers
9144@section Java Parsers
9145
9146@menu
f56274a8
DJ
9147* Java Bison Interface:: Asking for Java parser generation
9148* Java Semantic Values:: %type and %token vs. Java
9149* Java Location Values:: The position and location classes
9150* Java Parser Interface:: Instantiating and running the parser
9151* Java Scanner Interface:: Specifying the scanner for the parser
9152* Java Action Features:: Special features for use in actions
9153* Java Differences:: Differences between C/C++ and Java Grammars
9154* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9155@end menu
9156
9157@node Java Bison Interface
9158@subsection Java Bison Interface
9159@c - %language "Java"
8405b70c 9160
59da312b
JD
9161(The current Java interface is experimental and may evolve.
9162More user feedback will help to stabilize it.)
9163
e254a580
DJ
9164The Java parser skeletons are selected using the @code{%language "Java"}
9165directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9166
e254a580
DJ
9167@c FIXME: Documented bug.
9168When generating a Java parser, @code{bison @var{basename}.y} will create
9169a single Java source file named @file{@var{basename}.java}. Using an
9170input file without a @file{.y} suffix is currently broken. The basename
9171of the output file can be changed by the @code{%file-prefix} directive
9172or the @option{-p}/@option{--name-prefix} option. The entire output file
9173name can be changed by the @code{%output} directive or the
9174@option{-o}/@option{--output} option. The output file contains a single
9175class for the parser.
8405b70c 9176
e254a580 9177You can create documentation for generated parsers using Javadoc.
8405b70c 9178
e254a580
DJ
9179Contrary to C parsers, Java parsers do not use global variables; the
9180state of the parser is always local to an instance of the parser class.
9181Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9182and @code{%define api.pure} directives does not do anything when used in
9183Java.
8405b70c 9184
e254a580 9185Push parsers are currently unsupported in Java and @code{%define
812775a0 9186api.push-pull} have no effect.
01b477c6 9187
35430378 9188GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9189@code{glr-parser} directive.
9190
9191No header file can be generated for Java parsers. Do not use the
9192@code{%defines} directive or the @option{-d}/@option{--defines} options.
9193
9194@c FIXME: Possible code change.
9195Currently, support for debugging and verbose errors are always compiled
9196in. Thus the @code{%debug} and @code{%token-table} directives and the
9197@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9198options have no effect. This may change in the future to eliminate
9199unused code in the generated parser, so use @code{%debug} and
9200@code{%verbose-error} explicitly if needed. Also, in the future the
9201@code{%token-table} directive might enable a public interface to
9202access the token names and codes.
8405b70c
PB
9203
9204@node Java Semantic Values
9205@subsection Java Semantic Values
9206@c - No %union, specify type in %type/%token.
9207@c - YYSTYPE
9208@c - Printer and destructor
9209
9210There is no @code{%union} directive in Java parsers. Instead, the
9211semantic values' types (class names) should be specified in the
9212@code{%type} or @code{%token} directive:
9213
9214@example
9215%type <Expression> expr assignment_expr term factor
9216%type <Integer> number
9217@end example
9218
9219By default, the semantic stack is declared to have @code{Object} members,
9220which means that the class types you specify can be of any class.
9221To improve the type safety of the parser, you can declare the common
e254a580
DJ
9222superclass of all the semantic values using the @code{%define stype}
9223directive. For example, after the following declaration:
8405b70c
PB
9224
9225@example
e254a580 9226%define stype "ASTNode"
8405b70c
PB
9227@end example
9228
9229@noindent
9230any @code{%type} or @code{%token} specifying a semantic type which
9231is not a subclass of ASTNode, will cause a compile-time error.
9232
e254a580 9233@c FIXME: Documented bug.
8405b70c
PB
9234Types used in the directives may be qualified with a package name.
9235Primitive data types are accepted for Java version 1.5 or later. Note
9236that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9237Generic types may not be used; this is due to a limitation in the
9238implementation of Bison, and may change in future releases.
8405b70c
PB
9239
9240Java parsers do not support @code{%destructor}, since the language
9241adopts garbage collection. The parser will try to hold references
9242to semantic values for as little time as needed.
9243
9244Java parsers do not support @code{%printer}, as @code{toString()}
9245can be used to print the semantic values. This however may change
9246(in a backwards-compatible way) in future versions of Bison.
9247
9248
9249@node Java Location Values
9250@subsection Java Location Values
9251@c - %locations
9252@c - class Position
9253@c - class Location
9254
9255When the directive @code{%locations} is used, the Java parser
9256supports location tracking, see @ref{Locations, , Locations Overview}.
9257An auxiliary user-defined class defines a @dfn{position}, a single point
9258in a file; Bison itself defines a class representing a @dfn{location},
9259a range composed of a pair of positions (possibly spanning several
9260files). The location class is an inner class of the parser; the name
e254a580 9261is @code{Location} by default, and may also be renamed using
f37495f6 9262@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9263
9264The location class treats the position as a completely opaque value.
9265By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9266with @code{%define position_type "@var{class-name}"}. This class must
9267be supplied by the user.
8405b70c
PB
9268
9269
e254a580
DJ
9270@deftypeivar {Location} {Position} begin
9271@deftypeivarx {Location} {Position} end
8405b70c 9272The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9273@end deftypeivar
9274
9275@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9276Create a @code{Location} denoting an empty range located at a given point.
e254a580 9277@end deftypeop
8405b70c 9278
e254a580
DJ
9279@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9280Create a @code{Location} from the endpoints of the range.
9281@end deftypeop
9282
9283@deftypemethod {Location} {String} toString ()
8405b70c
PB
9284Prints the range represented by the location. For this to work
9285properly, the position class should override the @code{equals} and
9286@code{toString} methods appropriately.
9287@end deftypemethod
9288
9289
9290@node Java Parser Interface
9291@subsection Java Parser Interface
9292@c - define parser_class_name
9293@c - Ctor
9294@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9295@c debug_stream.
9296@c - Reporting errors
9297
e254a580
DJ
9298The name of the generated parser class defaults to @code{YYParser}. The
9299@code{YY} prefix may be changed using the @code{%name-prefix} directive
9300or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9301@code{%define parser_class_name "@var{name}"} to give a custom name to
9302the class. The interface of this class is detailed below.
8405b70c 9303
e254a580
DJ
9304By default, the parser class has package visibility. A declaration
9305@code{%define public} will change to public visibility. Remember that,
9306according to the Java language specification, the name of the @file{.java}
9307file should match the name of the class in this case. Similarly, you can
9308use @code{abstract}, @code{final} and @code{strictfp} with the
9309@code{%define} declaration to add other modifiers to the parser class.
9310
9311The Java package name of the parser class can be specified using the
9312@code{%define package} directive. The superclass and the implemented
9313interfaces of the parser class can be specified with the @code{%define
9314extends} and @code{%define implements} directives.
9315
9316The parser class defines an inner class, @code{Location}, that is used
9317for location tracking (see @ref{Java Location Values}), and a inner
9318interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9319these inner class/interface, and the members described in the interface
9320below, all the other members and fields are preceded with a @code{yy} or
9321@code{YY} prefix to avoid clashes with user code.
9322
9323@c FIXME: The following constants and variables are still undocumented:
9324@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9325
9326The parser class can be extended using the @code{%parse-param}
9327directive. Each occurrence of the directive will add a @code{protected
9328final} field to the parser class, and an argument to its constructor,
9329which initialize them automatically.
9330
9331Token names defined by @code{%token} and the predefined @code{EOF} token
9332name are added as constant fields to the parser class.
9333
9334@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9335Build a new parser object with embedded @code{%code lexer}. There are
9336no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9337used.
9338@end deftypeop
9339
9340@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9341Build a new parser object using the specified scanner. There are no
9342additional parameters unless @code{%parse-param}s are used.
9343
9344If the scanner is defined by @code{%code lexer}, this constructor is
9345declared @code{protected} and is called automatically with a scanner
9346created with the correct @code{%lex-param}s.
9347@end deftypeop
8405b70c
PB
9348
9349@deftypemethod {YYParser} {boolean} parse ()
9350Run the syntactic analysis, and return @code{true} on success,
9351@code{false} otherwise.
9352@end deftypemethod
9353
01b477c6 9354@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9355During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9356from a syntax error.
9357@xref{Error Recovery}.
8405b70c
PB
9358@end deftypemethod
9359
9360@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9361@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9362Get or set the stream used for tracing the parsing. It defaults to
9363@code{System.err}.
9364@end deftypemethod
9365
9366@deftypemethod {YYParser} {int} getDebugLevel ()
9367@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9368Get or set the tracing level. Currently its value is either 0, no trace,
9369or nonzero, full tracing.
9370@end deftypemethod
9371
8405b70c
PB
9372
9373@node Java Scanner Interface
9374@subsection Java Scanner Interface
01b477c6 9375@c - %code lexer
8405b70c 9376@c - %lex-param
01b477c6 9377@c - Lexer interface
8405b70c 9378
e254a580
DJ
9379There are two possible ways to interface a Bison-generated Java parser
9380with a scanner: the scanner may be defined by @code{%code lexer}, or
9381defined elsewhere. In either case, the scanner has to implement the
9382@code{Lexer} inner interface of the parser class.
9383
9384In the first case, the body of the scanner class is placed in
9385@code{%code lexer} blocks. If you want to pass parameters from the
9386parser constructor to the scanner constructor, specify them with
9387@code{%lex-param}; they are passed before @code{%parse-param}s to the
9388constructor.
01b477c6 9389
59c5ac72 9390In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9391which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9392The constructor of the parser object will then accept an object
9393implementing the interface; @code{%lex-param} is not used in this
9394case.
9395
9396In both cases, the scanner has to implement the following methods.
9397
e254a580
DJ
9398@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9399This method is defined by the user to emit an error message. The first
9400parameter is omitted if location tracking is not active. Its type can be
9401changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9402@end deftypemethod
9403
e254a580 9404@deftypemethod {Lexer} {int} yylex ()
8405b70c 9405Return the next token. Its type is the return value, its semantic
c781580d 9406value and location are saved and returned by the their methods in the
e254a580
DJ
9407interface.
9408
9409Use @code{%define lex_throws} to specify any uncaught exceptions.
9410Default is @code{java.io.IOException}.
8405b70c
PB
9411@end deftypemethod
9412
9413@deftypemethod {Lexer} {Position} getStartPos ()
9414@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9415Return respectively the first position of the last token that
9416@code{yylex} returned, and the first position beyond it. These
9417methods are not needed unless location tracking is active.
8405b70c 9418
e254a580 9419The return type can be changed using @code{%define position_type
8405b70c
PB
9420"@var{class-name}".}
9421@end deftypemethod
9422
9423@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9424Return the semantic value of the last token that yylex returned.
8405b70c 9425
e254a580 9426The return type can be changed using @code{%define stype
8405b70c
PB
9427"@var{class-name}".}
9428@end deftypemethod
9429
9430
e254a580
DJ
9431@node Java Action Features
9432@subsection Special Features for Use in Java Actions
9433
9434The following special constructs can be uses in Java actions.
9435Other analogous C action features are currently unavailable for Java.
9436
9437Use @code{%define throws} to specify any uncaught exceptions from parser
9438actions, and initial actions specified by @code{%initial-action}.
9439
9440@defvar $@var{n}
9441The semantic value for the @var{n}th component of the current rule.
9442This may not be assigned to.
9443@xref{Java Semantic Values}.
9444@end defvar
9445
9446@defvar $<@var{typealt}>@var{n}
9447Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9448@xref{Java Semantic Values}.
9449@end defvar
9450
9451@defvar $$
9452The semantic value for the grouping made by the current rule. As a
9453value, this is in the base type (@code{Object} or as specified by
9454@code{%define stype}) as in not cast to the declared subtype because
9455casts are not allowed on the left-hand side of Java assignments.
9456Use an explicit Java cast if the correct subtype is needed.
9457@xref{Java Semantic Values}.
9458@end defvar
9459
9460@defvar $<@var{typealt}>$
9461Same as @code{$$} since Java always allow assigning to the base type.
9462Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9463for setting the value but there is currently no easy way to distinguish
9464these constructs.
9465@xref{Java Semantic Values}.
9466@end defvar
9467
9468@defvar @@@var{n}
9469The location information of the @var{n}th component of the current rule.
9470This may not be assigned to.
9471@xref{Java Location Values}.
9472@end defvar
9473
9474@defvar @@$
9475The location information of the grouping made by the current rule.
9476@xref{Java Location Values}.
9477@end defvar
9478
9479@deffn {Statement} {return YYABORT;}
9480Return immediately from the parser, indicating failure.
9481@xref{Java Parser Interface}.
9482@end deffn
8405b70c 9483
e254a580
DJ
9484@deffn {Statement} {return YYACCEPT;}
9485Return immediately from the parser, indicating success.
9486@xref{Java Parser Interface}.
9487@end deffn
8405b70c 9488
e254a580 9489@deffn {Statement} {return YYERROR;}
c046698e 9490Start error recovery without printing an error message.
e254a580
DJ
9491@xref{Error Recovery}.
9492@end deffn
8405b70c 9493
e254a580
DJ
9494@deftypefn {Function} {boolean} recovering ()
9495Return whether error recovery is being done. In this state, the parser
9496reads token until it reaches a known state, and then restarts normal
9497operation.
9498@xref{Error Recovery}.
9499@end deftypefn
8405b70c 9500
e254a580
DJ
9501@deftypefn {Function} {protected void} yyerror (String msg)
9502@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9503@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9504Print an error message using the @code{yyerror} method of the scanner
9505instance in use.
9506@end deftypefn
8405b70c 9507
8405b70c 9508
8405b70c
PB
9509@node Java Differences
9510@subsection Differences between C/C++ and Java Grammars
9511
9512The different structure of the Java language forces several differences
9513between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9514section summarizes these differences.
8405b70c
PB
9515
9516@itemize
9517@item
01b477c6 9518Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9519@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9520macros. Instead, they should be preceded by @code{return} when they
9521appear in an action. The actual definition of these symbols is
8405b70c
PB
9522opaque to the Bison grammar, and it might change in the future. The
9523only meaningful operation that you can do, is to return them.
e254a580 9524See @pxref{Java Action Features}.
8405b70c
PB
9525
9526Note that of these three symbols, only @code{YYACCEPT} and
9527@code{YYABORT} will cause a return from the @code{yyparse}
9528method@footnote{Java parsers include the actions in a separate
9529method than @code{yyparse} in order to have an intuitive syntax that
9530corresponds to these C macros.}.
9531
e254a580
DJ
9532@item
9533Java lacks unions, so @code{%union} has no effect. Instead, semantic
9534values have a common base type: @code{Object} or as specified by
c781580d 9535@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9536@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9537an union. The type of @code{$$}, even with angle brackets, is the base
9538type since Java casts are not allow on the left-hand side of assignments.
9539Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9540left-hand side of assignments. See @pxref{Java Semantic Values} and
9541@pxref{Java Action Features}.
9542
8405b70c 9543@item
c781580d 9544The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9545@table @asis
9546@item @code{%code imports}
9547blocks are placed at the beginning of the Java source code. They may
9548include copyright notices. For a @code{package} declarations, it is
9549suggested to use @code{%define package} instead.
8405b70c 9550
01b477c6
PB
9551@item unqualified @code{%code}
9552blocks are placed inside the parser class.
9553
9554@item @code{%code lexer}
9555blocks, if specified, should include the implementation of the
9556scanner. If there is no such block, the scanner can be any class
9557that implements the appropriate interface (see @pxref{Java Scanner
9558Interface}).
29553547 9559@end table
8405b70c
PB
9560
9561Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9562In particular, @code{%@{ @dots{} %@}} blocks should not be used
9563and may give an error in future versions of Bison.
9564
01b477c6 9565The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9566be used to define other classes used by the parser @emph{outside}
9567the parser class.
8405b70c
PB
9568@end itemize
9569
e254a580
DJ
9570
9571@node Java Declarations Summary
9572@subsection Java Declarations Summary
9573
9574This summary only include declarations specific to Java or have special
9575meaning when used in a Java parser.
9576
9577@deffn {Directive} {%language "Java"}
9578Generate a Java class for the parser.
9579@end deffn
9580
9581@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9582A parameter for the lexer class defined by @code{%code lexer}
9583@emph{only}, added as parameters to the lexer constructor and the parser
9584constructor that @emph{creates} a lexer. Default is none.
9585@xref{Java Scanner Interface}.
9586@end deffn
9587
9588@deffn {Directive} %name-prefix "@var{prefix}"
9589The prefix of the parser class name @code{@var{prefix}Parser} if
9590@code{%define parser_class_name} is not used. Default is @code{YY}.
9591@xref{Java Bison Interface}.
9592@end deffn
9593
9594@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9595A parameter for the parser class added as parameters to constructor(s)
9596and as fields initialized by the constructor(s). Default is none.
9597@xref{Java Parser Interface}.
9598@end deffn
9599
9600@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9601Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9602@xref{Java Semantic Values}.
9603@end deffn
9604
9605@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9606Declare the type of nonterminals. Note that the angle brackets enclose
9607a Java @emph{type}.
9608@xref{Java Semantic Values}.
9609@end deffn
9610
9611@deffn {Directive} %code @{ @var{code} @dots{} @}
9612Code appended to the inside of the parser class.
9613@xref{Java Differences}.
9614@end deffn
9615
9616@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9617Code inserted just after the @code{package} declaration.
9618@xref{Java Differences}.
9619@end deffn
9620
9621@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9622Code added to the body of a inner lexer class within the parser class.
9623@xref{Java Scanner Interface}.
9624@end deffn
9625
9626@deffn {Directive} %% @var{code} @dots{}
9627Code (after the second @code{%%}) appended to the end of the file,
9628@emph{outside} the parser class.
9629@xref{Java Differences}.
9630@end deffn
9631
9632@deffn {Directive} %@{ @var{code} @dots{} %@}
9633Not supported. Use @code{%code import} instead.
9634@xref{Java Differences}.
9635@end deffn
9636
9637@deffn {Directive} {%define abstract}
9638Whether the parser class is declared @code{abstract}. Default is false.
9639@xref{Java Bison Interface}.
9640@end deffn
9641
9642@deffn {Directive} {%define extends} "@var{superclass}"
9643The superclass of the parser class. Default is none.
9644@xref{Java Bison Interface}.
9645@end deffn
9646
9647@deffn {Directive} {%define final}
9648Whether the parser class is declared @code{final}. Default is false.
9649@xref{Java Bison Interface}.
9650@end deffn
9651
9652@deffn {Directive} {%define implements} "@var{interfaces}"
9653The implemented interfaces of the parser class, a comma-separated list.
9654Default is none.
9655@xref{Java Bison Interface}.
9656@end deffn
9657
9658@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9659The exceptions thrown by the @code{yylex} method of the lexer, a
9660comma-separated list. Default is @code{java.io.IOException}.
9661@xref{Java Scanner Interface}.
9662@end deffn
9663
9664@deffn {Directive} {%define location_type} "@var{class}"
9665The name of the class used for locations (a range between two
9666positions). This class is generated as an inner class of the parser
9667class by @command{bison}. Default is @code{Location}.
9668@xref{Java Location Values}.
9669@end deffn
9670
9671@deffn {Directive} {%define package} "@var{package}"
9672The package to put the parser class in. Default is none.
9673@xref{Java Bison Interface}.
9674@end deffn
9675
9676@deffn {Directive} {%define parser_class_name} "@var{name}"
9677The name of the parser class. Default is @code{YYParser} or
9678@code{@var{name-prefix}Parser}.
9679@xref{Java Bison Interface}.
9680@end deffn
9681
9682@deffn {Directive} {%define position_type} "@var{class}"
9683The name of the class used for positions. This class must be supplied by
9684the user. Default is @code{Position}.
9685@xref{Java Location Values}.
9686@end deffn
9687
9688@deffn {Directive} {%define public}
9689Whether the parser class is declared @code{public}. Default is false.
9690@xref{Java Bison Interface}.
9691@end deffn
9692
9693@deffn {Directive} {%define stype} "@var{class}"
9694The base type of semantic values. Default is @code{Object}.
9695@xref{Java Semantic Values}.
9696@end deffn
9697
9698@deffn {Directive} {%define strictfp}
9699Whether the parser class is declared @code{strictfp}. Default is false.
9700@xref{Java Bison Interface}.
9701@end deffn
9702
9703@deffn {Directive} {%define throws} "@var{exceptions}"
9704The exceptions thrown by user-supplied parser actions and
9705@code{%initial-action}, a comma-separated list. Default is none.
9706@xref{Java Parser Interface}.
9707@end deffn
9708
9709
12545799 9710@c ================================================= FAQ
d1a1114f
AD
9711
9712@node FAQ
9713@chapter Frequently Asked Questions
9714@cindex frequently asked questions
9715@cindex questions
9716
9717Several questions about Bison come up occasionally. Here some of them
9718are addressed.
9719
9720@menu
55ba27be
AD
9721* Memory Exhausted:: Breaking the Stack Limits
9722* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9723* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9724* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9725* Multiple start-symbols:: Factoring closely related grammars
35430378 9726* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9727* I can't build Bison:: Troubleshooting
9728* Where can I find help?:: Troubleshouting
9729* Bug Reports:: Troublereporting
8405b70c 9730* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9731* Beta Testing:: Experimenting development versions
9732* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9733@end menu
9734
1a059451
PE
9735@node Memory Exhausted
9736@section Memory Exhausted
d1a1114f
AD
9737
9738@display
1a059451 9739My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9740message. What can I do?
9741@end display
9742
9743This question is already addressed elsewhere, @xref{Recursion,
9744,Recursive Rules}.
9745
e64fec0a
PE
9746@node How Can I Reset the Parser
9747@section How Can I Reset the Parser
5b066063 9748
0e14ad77
PE
9749The following phenomenon has several symptoms, resulting in the
9750following typical questions:
5b066063
AD
9751
9752@display
9753I invoke @code{yyparse} several times, and on correct input it works
9754properly; but when a parse error is found, all the other calls fail
0e14ad77 9755too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9756@end display
9757
9758@noindent
9759or
9760
9761@display
0e14ad77 9762My parser includes support for an @samp{#include}-like feature, in
5b066063 9763which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9764although I did specify @code{%define api.pure}.
5b066063
AD
9765@end display
9766
0e14ad77
PE
9767These problems typically come not from Bison itself, but from
9768Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9769speed, they might not notice a change of input file. As a
9770demonstration, consider the following source file,
9771@file{first-line.l}:
9772
9773@verbatim
9774%{
9775#include <stdio.h>
9776#include <stdlib.h>
9777%}
9778%%
9779.*\n ECHO; return 1;
9780%%
9781int
0e14ad77 9782yyparse (char const *file)
5b066063
AD
9783{
9784 yyin = fopen (file, "r");
9785 if (!yyin)
9786 exit (2);
fa7e68c3 9787 /* One token only. */
5b066063 9788 yylex ();
0e14ad77 9789 if (fclose (yyin) != 0)
5b066063
AD
9790 exit (3);
9791 return 0;
9792}
9793
9794int
0e14ad77 9795main (void)
5b066063
AD
9796{
9797 yyparse ("input");
9798 yyparse ("input");
9799 return 0;
9800}
9801@end verbatim
9802
9803@noindent
9804If the file @file{input} contains
9805
9806@verbatim
9807input:1: Hello,
9808input:2: World!
9809@end verbatim
9810
9811@noindent
0e14ad77 9812then instead of getting the first line twice, you get:
5b066063
AD
9813
9814@example
9815$ @kbd{flex -ofirst-line.c first-line.l}
9816$ @kbd{gcc -ofirst-line first-line.c -ll}
9817$ @kbd{./first-line}
9818input:1: Hello,
9819input:2: World!
9820@end example
9821
0e14ad77
PE
9822Therefore, whenever you change @code{yyin}, you must tell the
9823Lex-generated scanner to discard its current buffer and switch to the
9824new one. This depends upon your implementation of Lex; see its
9825documentation for more. For Flex, it suffices to call
9826@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9827Flex-generated scanner needs to read from several input streams to
9828handle features like include files, you might consider using Flex
9829functions like @samp{yy_switch_to_buffer} that manipulate multiple
9830input buffers.
5b066063 9831
b165c324
AD
9832If your Flex-generated scanner uses start conditions (@pxref{Start
9833conditions, , Start conditions, flex, The Flex Manual}), you might
9834also want to reset the scanner's state, i.e., go back to the initial
9835start condition, through a call to @samp{BEGIN (0)}.
9836
fef4cb51
AD
9837@node Strings are Destroyed
9838@section Strings are Destroyed
9839
9840@display
c7e441b4 9841My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9842them. Instead of reporting @samp{"foo", "bar"}, it reports
9843@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9844@end display
9845
9846This error is probably the single most frequent ``bug report'' sent to
9847Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9848of the scanner. Consider the following Lex code:
fef4cb51
AD
9849
9850@verbatim
9851%{
9852#include <stdio.h>
9853char *yylval = NULL;
9854%}
9855%%
9856.* yylval = yytext; return 1;
9857\n /* IGNORE */
9858%%
9859int
9860main ()
9861{
fa7e68c3 9862 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9863 char *fst = (yylex (), yylval);
9864 char *snd = (yylex (), yylval);
9865 printf ("\"%s\", \"%s\"\n", fst, snd);
9866 return 0;
9867}
9868@end verbatim
9869
9870If you compile and run this code, you get:
9871
9872@example
9873$ @kbd{flex -osplit-lines.c split-lines.l}
9874$ @kbd{gcc -osplit-lines split-lines.c -ll}
9875$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9876"one
9877two", "two"
9878@end example
9879
9880@noindent
9881this is because @code{yytext} is a buffer provided for @emph{reading}
9882in the action, but if you want to keep it, you have to duplicate it
9883(e.g., using @code{strdup}). Note that the output may depend on how
9884your implementation of Lex handles @code{yytext}. For instance, when
9885given the Lex compatibility option @option{-l} (which triggers the
9886option @samp{%array}) Flex generates a different behavior:
9887
9888@example
9889$ @kbd{flex -l -osplit-lines.c split-lines.l}
9890$ @kbd{gcc -osplit-lines split-lines.c -ll}
9891$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9892"two", "two"
9893@end example
9894
9895
2fa09258
AD
9896@node Implementing Gotos/Loops
9897@section Implementing Gotos/Loops
a06ea4aa
AD
9898
9899@display
9900My simple calculator supports variables, assignments, and functions,
2fa09258 9901but how can I implement gotos, or loops?
a06ea4aa
AD
9902@end display
9903
9904Although very pedagogical, the examples included in the document blur
a1c84f45 9905the distinction to make between the parser---whose job is to recover
a06ea4aa 9906the structure of a text and to transmit it to subsequent modules of
a1c84f45 9907the program---and the processing (such as the execution) of this
a06ea4aa
AD
9908structure. This works well with so called straight line programs,
9909i.e., precisely those that have a straightforward execution model:
9910execute simple instructions one after the others.
9911
9912@cindex abstract syntax tree
35430378 9913@cindex AST
a06ea4aa
AD
9914If you want a richer model, you will probably need to use the parser
9915to construct a tree that does represent the structure it has
9916recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 9917or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
9918traversing it in various ways, will enable treatments such as its
9919execution or its translation, which will result in an interpreter or a
9920compiler.
9921
9922This topic is way beyond the scope of this manual, and the reader is
9923invited to consult the dedicated literature.
9924
9925
ed2e6384
AD
9926@node Multiple start-symbols
9927@section Multiple start-symbols
9928
9929@display
9930I have several closely related grammars, and I would like to share their
9931implementations. In fact, I could use a single grammar but with
9932multiple entry points.
9933@end display
9934
9935Bison does not support multiple start-symbols, but there is a very
9936simple means to simulate them. If @code{foo} and @code{bar} are the two
9937pseudo start-symbols, then introduce two new tokens, say
9938@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9939real start-symbol:
9940
9941@example
9942%token START_FOO START_BAR;
9943%start start;
9944start: START_FOO foo
9945 | START_BAR bar;
9946@end example
9947
9948These tokens prevents the introduction of new conflicts. As far as the
9949parser goes, that is all that is needed.
9950
9951Now the difficult part is ensuring that the scanner will send these
9952tokens first. If your scanner is hand-written, that should be
9953straightforward. If your scanner is generated by Lex, them there is
9954simple means to do it: recall that anything between @samp{%@{ ... %@}}
9955after the first @code{%%} is copied verbatim in the top of the generated
9956@code{yylex} function. Make sure a variable @code{start_token} is
9957available in the scanner (e.g., a global variable or using
9958@code{%lex-param} etc.), and use the following:
9959
9960@example
9961 /* @r{Prologue.} */
9962%%
9963%@{
9964 if (start_token)
9965 @{
9966 int t = start_token;
9967 start_token = 0;
9968 return t;
9969 @}
9970%@}
9971 /* @r{The rules.} */
9972@end example
9973
9974
55ba27be
AD
9975@node Secure? Conform?
9976@section Secure? Conform?
9977
9978@display
9979Is Bison secure? Does it conform to POSIX?
9980@end display
9981
9982If you're looking for a guarantee or certification, we don't provide it.
9983However, Bison is intended to be a reliable program that conforms to the
35430378 9984POSIX specification for Yacc. If you run into problems,
55ba27be
AD
9985please send us a bug report.
9986
9987@node I can't build Bison
9988@section I can't build Bison
9989
9990@display
8c5b881d
PE
9991I can't build Bison because @command{make} complains that
9992@code{msgfmt} is not found.
55ba27be
AD
9993What should I do?
9994@end display
9995
9996Like most GNU packages with internationalization support, that feature
9997is turned on by default. If you have problems building in the @file{po}
9998subdirectory, it indicates that your system's internationalization
9999support is lacking. You can re-configure Bison with
10000@option{--disable-nls} to turn off this support, or you can install GNU
10001gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10002Bison. See the file @file{ABOUT-NLS} for more information.
10003
10004
10005@node Where can I find help?
10006@section Where can I find help?
10007
10008@display
10009I'm having trouble using Bison. Where can I find help?
10010@end display
10011
10012First, read this fine manual. Beyond that, you can send mail to
10013@email{help-bison@@gnu.org}. This mailing list is intended to be
10014populated with people who are willing to answer questions about using
10015and installing Bison. Please keep in mind that (most of) the people on
10016the list have aspects of their lives which are not related to Bison (!),
10017so you may not receive an answer to your question right away. This can
10018be frustrating, but please try not to honk them off; remember that any
10019help they provide is purely voluntary and out of the kindness of their
10020hearts.
10021
10022@node Bug Reports
10023@section Bug Reports
10024
10025@display
10026I found a bug. What should I include in the bug report?
10027@end display
10028
10029Before you send a bug report, make sure you are using the latest
10030version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10031mirrors. Be sure to include the version number in your bug report. If
10032the bug is present in the latest version but not in a previous version,
10033try to determine the most recent version which did not contain the bug.
10034
10035If the bug is parser-related, you should include the smallest grammar
10036you can which demonstrates the bug. The grammar file should also be
10037complete (i.e., I should be able to run it through Bison without having
10038to edit or add anything). The smaller and simpler the grammar, the
10039easier it will be to fix the bug.
10040
10041Include information about your compilation environment, including your
10042operating system's name and version and your compiler's name and
10043version. If you have trouble compiling, you should also include a
10044transcript of the build session, starting with the invocation of
10045`configure'. Depending on the nature of the bug, you may be asked to
10046send additional files as well (such as `config.h' or `config.cache').
10047
10048Patches are most welcome, but not required. That is, do not hesitate to
10049send a bug report just because you can not provide a fix.
10050
10051Send bug reports to @email{bug-bison@@gnu.org}.
10052
8405b70c
PB
10053@node More Languages
10054@section More Languages
55ba27be
AD
10055
10056@display
8405b70c 10057Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10058favorite language here}?
10059@end display
10060
8405b70c 10061C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10062languages; contributions are welcome.
10063
10064@node Beta Testing
10065@section Beta Testing
10066
10067@display
10068What is involved in being a beta tester?
10069@end display
10070
10071It's not terribly involved. Basically, you would download a test
10072release, compile it, and use it to build and run a parser or two. After
10073that, you would submit either a bug report or a message saying that
10074everything is okay. It is important to report successes as well as
10075failures because test releases eventually become mainstream releases,
10076but only if they are adequately tested. If no one tests, development is
10077essentially halted.
10078
10079Beta testers are particularly needed for operating systems to which the
10080developers do not have easy access. They currently have easy access to
10081recent GNU/Linux and Solaris versions. Reports about other operating
10082systems are especially welcome.
10083
10084@node Mailing Lists
10085@section Mailing Lists
10086
10087@display
10088How do I join the help-bison and bug-bison mailing lists?
10089@end display
10090
10091See @url{http://lists.gnu.org/}.
a06ea4aa 10092
d1a1114f
AD
10093@c ================================================= Table of Symbols
10094
342b8b6e 10095@node Table of Symbols
bfa74976
RS
10096@appendix Bison Symbols
10097@cindex Bison symbols, table of
10098@cindex symbols in Bison, table of
10099
18b519c0 10100@deffn {Variable} @@$
3ded9a63 10101In an action, the location of the left-hand side of the rule.
88bce5a2 10102@xref{Locations, , Locations Overview}.
18b519c0 10103@end deffn
3ded9a63 10104
18b519c0 10105@deffn {Variable} @@@var{n}
3ded9a63
AD
10106In an action, the location of the @var{n}-th symbol of the right-hand
10107side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10108@end deffn
3ded9a63 10109
1f68dca5
AR
10110@deffn {Variable} @@@var{name}
10111In an action, the location of a symbol addressed by name.
10112@xref{Locations, , Locations Overview}.
10113@end deffn
10114
10115@deffn {Variable} @@[@var{name}]
10116In an action, the location of a symbol addressed by name.
10117@xref{Locations, , Locations Overview}.
10118@end deffn
10119
18b519c0 10120@deffn {Variable} $$
3ded9a63
AD
10121In an action, the semantic value of the left-hand side of the rule.
10122@xref{Actions}.
18b519c0 10123@end deffn
3ded9a63 10124
18b519c0 10125@deffn {Variable} $@var{n}
3ded9a63
AD
10126In an action, the semantic value of the @var{n}-th symbol of the
10127right-hand side of the rule. @xref{Actions}.
18b519c0 10128@end deffn
3ded9a63 10129
1f68dca5
AR
10130@deffn {Variable} $@var{name}
10131In an action, the semantic value of a symbol addressed by name.
10132@xref{Actions}.
10133@end deffn
10134
10135@deffn {Variable} $[@var{name}]
10136In an action, the semantic value of a symbol addressed by name.
10137@xref{Actions}.
10138@end deffn
10139
dd8d9022
AD
10140@deffn {Delimiter} %%
10141Delimiter used to separate the grammar rule section from the
10142Bison declarations section or the epilogue.
10143@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10144@end deffn
bfa74976 10145
dd8d9022
AD
10146@c Don't insert spaces, or check the DVI output.
10147@deffn {Delimiter} %@{@var{code}%@}
10148All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10149the output file uninterpreted. Such code forms the prologue of the input
10150file. @xref{Grammar Outline, ,Outline of a Bison
10151Grammar}.
18b519c0 10152@end deffn
bfa74976 10153
dd8d9022
AD
10154@deffn {Construct} /*@dots{}*/
10155Comment delimiters, as in C.
18b519c0 10156@end deffn
bfa74976 10157
dd8d9022
AD
10158@deffn {Delimiter} :
10159Separates a rule's result from its components. @xref{Rules, ,Syntax of
10160Grammar Rules}.
18b519c0 10161@end deffn
bfa74976 10162
dd8d9022
AD
10163@deffn {Delimiter} ;
10164Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10165@end deffn
bfa74976 10166
dd8d9022
AD
10167@deffn {Delimiter} |
10168Separates alternate rules for the same result nonterminal.
10169@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10170@end deffn
bfa74976 10171
12e35840
JD
10172@deffn {Directive} <*>
10173Used to define a default tagged @code{%destructor} or default tagged
10174@code{%printer}.
85894313
JD
10175
10176This feature is experimental.
10177More user feedback will help to determine whether it should become a permanent
10178feature.
10179
12e35840
JD
10180@xref{Destructor Decl, , Freeing Discarded Symbols}.
10181@end deffn
10182
3ebecc24 10183@deffn {Directive} <>
12e35840
JD
10184Used to define a default tagless @code{%destructor} or default tagless
10185@code{%printer}.
85894313
JD
10186
10187This feature is experimental.
10188More user feedback will help to determine whether it should become a permanent
10189feature.
10190
12e35840
JD
10191@xref{Destructor Decl, , Freeing Discarded Symbols}.
10192@end deffn
10193
dd8d9022
AD
10194@deffn {Symbol} $accept
10195The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10196$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10197Start-Symbol}. It cannot be used in the grammar.
18b519c0 10198@end deffn
bfa74976 10199
136a0f76 10200@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10201@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10202Insert @var{code} verbatim into output parser source.
10203@xref{Decl Summary,,%code}.
9bc0dd67 10204@end deffn
9bc0dd67 10205
18b519c0 10206@deffn {Directive} %debug
6deb4447 10207Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10208@end deffn
6deb4447 10209
91d2c560 10210@ifset defaultprec
22fccf95
PE
10211@deffn {Directive} %default-prec
10212Assign a precedence to rules that lack an explicit @samp{%prec}
10213modifier. @xref{Contextual Precedence, ,Context-Dependent
10214Precedence}.
39a06c25 10215@end deffn
91d2c560 10216@end ifset
39a06c25 10217
148d66d8
JD
10218@deffn {Directive} %define @var{define-variable}
10219@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10220@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10221Define a variable to adjust Bison's behavior.
10222@xref{Decl Summary,,%define}.
10223@end deffn
10224
18b519c0 10225@deffn {Directive} %defines
6deb4447
AD
10226Bison declaration to create a header file meant for the scanner.
10227@xref{Decl Summary}.
18b519c0 10228@end deffn
6deb4447 10229
02975b9a
JD
10230@deffn {Directive} %defines @var{defines-file}
10231Same as above, but save in the file @var{defines-file}.
10232@xref{Decl Summary}.
10233@end deffn
10234
18b519c0 10235@deffn {Directive} %destructor
258b75ca 10236Specify how the parser should reclaim the memory associated to
fa7e68c3 10237discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10238@end deffn
72f889cc 10239
18b519c0 10240@deffn {Directive} %dprec
676385e2 10241Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10242time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10243GLR Parsers}.
18b519c0 10244@end deffn
676385e2 10245
dd8d9022
AD
10246@deffn {Symbol} $end
10247The predefined token marking the end of the token stream. It cannot be
10248used in the grammar.
10249@end deffn
10250
10251@deffn {Symbol} error
10252A token name reserved for error recovery. This token may be used in
10253grammar rules so as to allow the Bison parser to recognize an error in
10254the grammar without halting the process. In effect, a sentence
10255containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10256token @code{error} becomes the current lookahead token. Actions
10257corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10258token is reset to the token that originally caused the violation.
10259@xref{Error Recovery}.
18d192f0
AD
10260@end deffn
10261
18b519c0 10262@deffn {Directive} %error-verbose
2a8d363a
AD
10263Bison declaration to request verbose, specific error message strings
10264when @code{yyerror} is called.
18b519c0 10265@end deffn
2a8d363a 10266
02975b9a 10267@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10268Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10269Summary}.
18b519c0 10270@end deffn
d8988b2f 10271
18b519c0 10272@deffn {Directive} %glr-parser
35430378
JD
10273Bison declaration to produce a GLR parser. @xref{GLR
10274Parsers, ,Writing GLR Parsers}.
18b519c0 10275@end deffn
676385e2 10276
dd8d9022
AD
10277@deffn {Directive} %initial-action
10278Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10279@end deffn
10280
e6e704dc
JD
10281@deffn {Directive} %language
10282Specify the programming language for the generated parser.
10283@xref{Decl Summary}.
10284@end deffn
10285
18b519c0 10286@deffn {Directive} %left
bfa74976
RS
10287Bison declaration to assign left associativity to token(s).
10288@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10289@end deffn
bfa74976 10290
feeb0eda 10291@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10292Bison declaration to specifying an additional parameter that
10293@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10294for Pure Parsers}.
18b519c0 10295@end deffn
2a8d363a 10296
18b519c0 10297@deffn {Directive} %merge
676385e2 10298Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10299reduce/reduce conflict with a rule having the same merging function, the
676385e2 10300function is applied to the two semantic values to get a single result.
35430378 10301@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10302@end deffn
676385e2 10303
02975b9a 10304@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10305Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10306@end deffn
d8988b2f 10307
91d2c560 10308@ifset defaultprec
22fccf95
PE
10309@deffn {Directive} %no-default-prec
10310Do not assign a precedence to rules that lack an explicit @samp{%prec}
10311modifier. @xref{Contextual Precedence, ,Context-Dependent
10312Precedence}.
10313@end deffn
91d2c560 10314@end ifset
22fccf95 10315
18b519c0 10316@deffn {Directive} %no-lines
931c7513
RS
10317Bison declaration to avoid generating @code{#line} directives in the
10318parser file. @xref{Decl Summary}.
18b519c0 10319@end deffn
931c7513 10320
18b519c0 10321@deffn {Directive} %nonassoc
9d9b8b70 10322Bison declaration to assign nonassociativity to token(s).
bfa74976 10323@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10324@end deffn
bfa74976 10325
02975b9a 10326@deffn {Directive} %output "@var{file}"
72d2299c 10327Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10328Summary}.
18b519c0 10329@end deffn
d8988b2f 10330
feeb0eda 10331@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10332Bison declaration to specifying an additional parameter that
10333@code{yyparse} should accept. @xref{Parser Function,, The Parser
10334Function @code{yyparse}}.
18b519c0 10335@end deffn
2a8d363a 10336
18b519c0 10337@deffn {Directive} %prec
bfa74976
RS
10338Bison declaration to assign a precedence to a specific rule.
10339@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10340@end deffn
bfa74976 10341
18b519c0 10342@deffn {Directive} %pure-parser
d9df47b6
JD
10343Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10344for which Bison is more careful to warn about unreasonable usage.
18b519c0 10345@end deffn
bfa74976 10346
b50d2359 10347@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10348Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10349Require a Version of Bison}.
b50d2359
AD
10350@end deffn
10351
18b519c0 10352@deffn {Directive} %right
bfa74976
RS
10353Bison declaration to assign right associativity to token(s).
10354@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10355@end deffn
bfa74976 10356
e6e704dc
JD
10357@deffn {Directive} %skeleton
10358Specify the skeleton to use; usually for development.
10359@xref{Decl Summary}.
10360@end deffn
10361
18b519c0 10362@deffn {Directive} %start
704a47c4
AD
10363Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10364Start-Symbol}.
18b519c0 10365@end deffn
bfa74976 10366
18b519c0 10367@deffn {Directive} %token
bfa74976
RS
10368Bison declaration to declare token(s) without specifying precedence.
10369@xref{Token Decl, ,Token Type Names}.
18b519c0 10370@end deffn
bfa74976 10371
18b519c0 10372@deffn {Directive} %token-table
931c7513
RS
10373Bison declaration to include a token name table in the parser file.
10374@xref{Decl Summary}.
18b519c0 10375@end deffn
931c7513 10376
18b519c0 10377@deffn {Directive} %type
704a47c4
AD
10378Bison declaration to declare nonterminals. @xref{Type Decl,
10379,Nonterminal Symbols}.
18b519c0 10380@end deffn
bfa74976 10381
dd8d9022
AD
10382@deffn {Symbol} $undefined
10383The predefined token onto which all undefined values returned by
10384@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10385@code{error}.
10386@end deffn
10387
18b519c0 10388@deffn {Directive} %union
bfa74976
RS
10389Bison declaration to specify several possible data types for semantic
10390values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10391@end deffn
bfa74976 10392
dd8d9022
AD
10393@deffn {Macro} YYABORT
10394Macro to pretend that an unrecoverable syntax error has occurred, by
10395making @code{yyparse} return 1 immediately. The error reporting
10396function @code{yyerror} is not called. @xref{Parser Function, ,The
10397Parser Function @code{yyparse}}.
8405b70c
PB
10398
10399For Java parsers, this functionality is invoked using @code{return YYABORT;}
10400instead.
dd8d9022 10401@end deffn
3ded9a63 10402
dd8d9022
AD
10403@deffn {Macro} YYACCEPT
10404Macro to pretend that a complete utterance of the language has been
10405read, by making @code{yyparse} return 0 immediately.
10406@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10407
10408For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10409instead.
dd8d9022 10410@end deffn
bfa74976 10411
dd8d9022 10412@deffn {Macro} YYBACKUP
742e4900 10413Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10414token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10415@end deffn
bfa74976 10416
dd8d9022 10417@deffn {Variable} yychar
32c29292 10418External integer variable that contains the integer value of the
742e4900 10419lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10420@code{yyparse}.) Error-recovery rule actions may examine this variable.
10421@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10422@end deffn
bfa74976 10423
dd8d9022
AD
10424@deffn {Variable} yyclearin
10425Macro used in error-recovery rule actions. It clears the previous
742e4900 10426lookahead token. @xref{Error Recovery}.
18b519c0 10427@end deffn
bfa74976 10428
dd8d9022
AD
10429@deffn {Macro} YYDEBUG
10430Macro to define to equip the parser with tracing code. @xref{Tracing,
10431,Tracing Your Parser}.
18b519c0 10432@end deffn
bfa74976 10433
dd8d9022
AD
10434@deffn {Variable} yydebug
10435External integer variable set to zero by default. If @code{yydebug}
10436is given a nonzero value, the parser will output information on input
10437symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10438@end deffn
bfa74976 10439
dd8d9022
AD
10440@deffn {Macro} yyerrok
10441Macro to cause parser to recover immediately to its normal mode
10442after a syntax error. @xref{Error Recovery}.
10443@end deffn
10444
10445@deffn {Macro} YYERROR
10446Macro to pretend that a syntax error has just been detected: call
10447@code{yyerror} and then perform normal error recovery if possible
10448(@pxref{Error Recovery}), or (if recovery is impossible) make
10449@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10450
10451For Java parsers, this functionality is invoked using @code{return YYERROR;}
10452instead.
dd8d9022
AD
10453@end deffn
10454
10455@deffn {Function} yyerror
10456User-supplied function to be called by @code{yyparse} on error.
10457@xref{Error Reporting, ,The Error
10458Reporting Function @code{yyerror}}.
10459@end deffn
10460
10461@deffn {Macro} YYERROR_VERBOSE
10462An obsolete macro that you define with @code{#define} in the prologue
10463to request verbose, specific error message strings
10464when @code{yyerror} is called. It doesn't matter what definition you
10465use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10466@code{%error-verbose} is preferred.
10467@end deffn
10468
10469@deffn {Macro} YYINITDEPTH
10470Macro for specifying the initial size of the parser stack.
1a059451 10471@xref{Memory Management}.
dd8d9022
AD
10472@end deffn
10473
10474@deffn {Function} yylex
10475User-supplied lexical analyzer function, called with no arguments to get
10476the next token. @xref{Lexical, ,The Lexical Analyzer Function
10477@code{yylex}}.
10478@end deffn
10479
10480@deffn {Macro} YYLEX_PARAM
10481An obsolete macro for specifying an extra argument (or list of extra
32c29292 10482arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10483macro is deprecated, and is supported only for Yacc like parsers.
10484@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10485@end deffn
10486
10487@deffn {Variable} yylloc
10488External variable in which @code{yylex} should place the line and column
10489numbers associated with a token. (In a pure parser, it is a local
10490variable within @code{yyparse}, and its address is passed to
32c29292
JD
10491@code{yylex}.)
10492You can ignore this variable if you don't use the @samp{@@} feature in the
10493grammar actions.
10494@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10495In semantic actions, it stores the location of the lookahead token.
32c29292 10496@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10497@end deffn
10498
10499@deffn {Type} YYLTYPE
10500Data type of @code{yylloc}; by default, a structure with four
10501members. @xref{Location Type, , Data Types of Locations}.
10502@end deffn
10503
10504@deffn {Variable} yylval
10505External variable in which @code{yylex} should place the semantic
10506value associated with a token. (In a pure parser, it is a local
10507variable within @code{yyparse}, and its address is passed to
32c29292
JD
10508@code{yylex}.)
10509@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10510In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10511@xref{Actions, ,Actions}.
dd8d9022
AD
10512@end deffn
10513
10514@deffn {Macro} YYMAXDEPTH
1a059451
PE
10515Macro for specifying the maximum size of the parser stack. @xref{Memory
10516Management}.
dd8d9022
AD
10517@end deffn
10518
10519@deffn {Variable} yynerrs
8a2800e7 10520Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10521(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10522pure push parser, it is a member of yypstate.)
dd8d9022
AD
10523@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10524@end deffn
10525
10526@deffn {Function} yyparse
10527The parser function produced by Bison; call this function to start
10528parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10529@end deffn
10530
9987d1b3 10531@deffn {Function} yypstate_delete
f4101aa6 10532The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10533call this function to delete the memory associated with a parser.
f4101aa6 10534@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10535@code{yypstate_delete}}.
59da312b
JD
10536(The current push parsing interface is experimental and may evolve.
10537More user feedback will help to stabilize it.)
9987d1b3
JD
10538@end deffn
10539
10540@deffn {Function} yypstate_new
f4101aa6 10541The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10542call this function to create a new parser.
f4101aa6 10543@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10544@code{yypstate_new}}.
59da312b
JD
10545(The current push parsing interface is experimental and may evolve.
10546More user feedback will help to stabilize it.)
9987d1b3
JD
10547@end deffn
10548
10549@deffn {Function} yypull_parse
f4101aa6
AD
10550The parser function produced by Bison in push mode; call this function to
10551parse the rest of the input stream.
10552@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10553@code{yypull_parse}}.
59da312b
JD
10554(The current push parsing interface is experimental and may evolve.
10555More user feedback will help to stabilize it.)
9987d1b3
JD
10556@end deffn
10557
10558@deffn {Function} yypush_parse
f4101aa6
AD
10559The parser function produced by Bison in push mode; call this function to
10560parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10561@code{yypush_parse}}.
59da312b
JD
10562(The current push parsing interface is experimental and may evolve.
10563More user feedback will help to stabilize it.)
9987d1b3
JD
10564@end deffn
10565
dd8d9022
AD
10566@deffn {Macro} YYPARSE_PARAM
10567An obsolete macro for specifying the name of a parameter that
10568@code{yyparse} should accept. The use of this macro is deprecated, and
10569is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10570Conventions for Pure Parsers}.
10571@end deffn
10572
10573@deffn {Macro} YYRECOVERING
02103984
PE
10574The expression @code{YYRECOVERING ()} yields 1 when the parser
10575is recovering from a syntax error, and 0 otherwise.
10576@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10577@end deffn
10578
10579@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10580Macro used to control the use of @code{alloca} when the
10581deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10582the parser will use @code{malloc} to extend its stacks. If defined to
105831, the parser will use @code{alloca}. Values other than 0 and 1 are
10584reserved for future Bison extensions. If not defined,
10585@code{YYSTACK_USE_ALLOCA} defaults to 0.
10586
55289366 10587In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10588limited stack and with unreliable stack-overflow checking, you should
10589set @code{YYMAXDEPTH} to a value that cannot possibly result in
10590unchecked stack overflow on any of your target hosts when
10591@code{alloca} is called. You can inspect the code that Bison
10592generates in order to determine the proper numeric values. This will
10593require some expertise in low-level implementation details.
dd8d9022
AD
10594@end deffn
10595
10596@deffn {Type} YYSTYPE
10597Data type of semantic values; @code{int} by default.
10598@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10599@end deffn
bfa74976 10600
342b8b6e 10601@node Glossary
bfa74976
RS
10602@appendix Glossary
10603@cindex glossary
10604
10605@table @asis
34a6c2d1
JD
10606@item Accepting State
10607A state whose only action is the accept action.
10608The accepting state is thus a consistent state.
10609@xref{Understanding,,}.
10610
35430378 10611@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10612Formal method of specifying context-free grammars originally proposed
10613by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10614committee document contributing to what became the Algol 60 report.
10615@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10616
34a6c2d1
JD
10617@item Consistent State
10618A state containing only one possible action.
1d0f55cc 10619@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10620
bfa74976
RS
10621@item Context-free grammars
10622Grammars specified as rules that can be applied regardless of context.
10623Thus, if there is a rule which says that an integer can be used as an
10624expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10625permitted. @xref{Language and Grammar, ,Languages and Context-Free
10626Grammars}.
bfa74976 10627
620b5727
JD
10628@item Default Reduction
10629The reduction that a parser should perform if the current parser state
34a6c2d1 10630contains no other action for the lookahead token.
620b5727
JD
10631In permitted parser states, Bison declares the reduction with the
10632largest lookahead set to be the default reduction and removes that
10633lookahead set.
1d0f55cc 10634@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10635
bfa74976
RS
10636@item Dynamic allocation
10637Allocation of memory that occurs during execution, rather than at
10638compile time or on entry to a function.
10639
10640@item Empty string
10641Analogous to the empty set in set theory, the empty string is a
10642character string of length zero.
10643
10644@item Finite-state stack machine
10645A ``machine'' that has discrete states in which it is said to exist at
10646each instant in time. As input to the machine is processed, the
10647machine moves from state to state as specified by the logic of the
10648machine. In the case of the parser, the input is the language being
10649parsed, and the states correspond to various stages in the grammar
c827f760 10650rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10651
35430378 10652@item Generalized LR (GLR)
676385e2 10653A parsing algorithm that can handle all context-free grammars, including those
35430378 10654that are not LR(1). It resolves situations that Bison's
34a6c2d1 10655deterministic parsing
676385e2
PH
10656algorithm cannot by effectively splitting off multiple parsers, trying all
10657possible parsers, and discarding those that fail in the light of additional
c827f760 10658right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10659LR Parsing}.
676385e2 10660
bfa74976
RS
10661@item Grouping
10662A language construct that is (in general) grammatically divisible;
c827f760 10663for example, `expression' or `declaration' in C@.
bfa74976
RS
10664@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10665
35430378
JD
10666@item IELR(1)
10667A minimal LR(1) parser table generation algorithm.
10668That is, given any context-free grammar, IELR(1) generates
34a6c2d1 10669parser tables with the full language recognition power of canonical
35430378
JD
10670LR(1) but with nearly the same number of parser states as
10671LALR(1).
34a6c2d1 10672This reduction in parser states is often an order of magnitude.
35430378 10673More importantly, because canonical LR(1)'s extra parser
34a6c2d1 10674states may contain duplicate conflicts in the case of
35430378
JD
10675non-LR(1) grammars, the number of conflicts for
10676IELR(1) is often an order of magnitude less as well.
34a6c2d1
JD
10677This can significantly reduce the complexity of developing of a grammar.
10678@xref{Decl Summary,,lr.type}.
10679
bfa74976
RS
10680@item Infix operator
10681An arithmetic operator that is placed between the operands on which it
10682performs some operation.
10683
10684@item Input stream
10685A continuous flow of data between devices or programs.
10686
35430378 10687@item LAC (Lookahead Correction)
4c38b19e
JD
10688A parsing mechanism that fixes the problem of delayed syntax error
10689detection, which is caused by LR state merging, default reductions, and
10690the use of @code{%nonassoc}. Delayed syntax error detection results in
10691unexpected semantic actions, initiation of error recovery in the wrong
10692syntactic context, and an incorrect list of expected tokens in a verbose
10693syntax error message. @xref{Decl Summary,,parse.lac}.
10694
bfa74976
RS
10695@item Language construct
10696One of the typical usage schemas of the language. For example, one of
10697the constructs of the C language is the @code{if} statement.
10698@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10699
10700@item Left associativity
10701Operators having left associativity are analyzed from left to right:
10702@samp{a+b+c} first computes @samp{a+b} and then combines with
10703@samp{c}. @xref{Precedence, ,Operator Precedence}.
10704
10705@item Left recursion
89cab50d
AD
10706A rule whose result symbol is also its first component symbol; for
10707example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10708Rules}.
bfa74976
RS
10709
10710@item Left-to-right parsing
10711Parsing a sentence of a language by analyzing it token by token from
c827f760 10712left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10713
10714@item Lexical analyzer (scanner)
10715A function that reads an input stream and returns tokens one by one.
10716@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10717
10718@item Lexical tie-in
10719A flag, set by actions in the grammar rules, which alters the way
10720tokens are parsed. @xref{Lexical Tie-ins}.
10721
931c7513 10722@item Literal string token
14ded682 10723A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10724
742e4900
JD
10725@item Lookahead token
10726A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10727Tokens}.
bfa74976 10728
35430378 10729@item LALR(1)
bfa74976 10730The class of context-free grammars that Bison (like most other parser
35430378 10731generators) can handle by default; a subset of LR(1).
34a6c2d1 10732@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10733
35430378 10734@item LR(1)
bfa74976 10735The class of context-free grammars in which at most one token of
742e4900 10736lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10737
10738@item Nonterminal symbol
10739A grammar symbol standing for a grammatical construct that can
10740be expressed through rules in terms of smaller constructs; in other
10741words, a construct that is not a token. @xref{Symbols}.
10742
bfa74976
RS
10743@item Parser
10744A function that recognizes valid sentences of a language by analyzing
10745the syntax structure of a set of tokens passed to it from a lexical
10746analyzer.
10747
10748@item Postfix operator
10749An arithmetic operator that is placed after the operands upon which it
10750performs some operation.
10751
10752@item Reduction
10753Replacing a string of nonterminals and/or terminals with a single
89cab50d 10754nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10755Parser Algorithm}.
bfa74976
RS
10756
10757@item Reentrant
10758A reentrant subprogram is a subprogram which can be in invoked any
10759number of times in parallel, without interference between the various
10760invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10761
10762@item Reverse polish notation
10763A language in which all operators are postfix operators.
10764
10765@item Right recursion
89cab50d
AD
10766A rule whose result symbol is also its last component symbol; for
10767example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10768Rules}.
bfa74976
RS
10769
10770@item Semantics
10771In computer languages, the semantics are specified by the actions
10772taken for each instance of the language, i.e., the meaning of
10773each statement. @xref{Semantics, ,Defining Language Semantics}.
10774
10775@item Shift
10776A parser is said to shift when it makes the choice of analyzing
10777further input from the stream rather than reducing immediately some
c827f760 10778already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10779
10780@item Single-character literal
10781A single character that is recognized and interpreted as is.
10782@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10783
10784@item Start symbol
10785The nonterminal symbol that stands for a complete valid utterance in
10786the language being parsed. The start symbol is usually listed as the
13863333 10787first nonterminal symbol in a language specification.
bfa74976
RS
10788@xref{Start Decl, ,The Start-Symbol}.
10789
10790@item Symbol table
10791A data structure where symbol names and associated data are stored
10792during parsing to allow for recognition and use of existing
10793information in repeated uses of a symbol. @xref{Multi-function Calc}.
10794
6e649e65
PE
10795@item Syntax error
10796An error encountered during parsing of an input stream due to invalid
10797syntax. @xref{Error Recovery}.
10798
bfa74976
RS
10799@item Token
10800A basic, grammatically indivisible unit of a language. The symbol
10801that describes a token in the grammar is a terminal symbol.
10802The input of the Bison parser is a stream of tokens which comes from
10803the lexical analyzer. @xref{Symbols}.
10804
10805@item Terminal symbol
89cab50d
AD
10806A grammar symbol that has no rules in the grammar and therefore is
10807grammatically indivisible. The piece of text it represents is a token.
10808@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10809@end table
10810
342b8b6e 10811@node Copying This Manual
f2b5126e 10812@appendix Copying This Manual
f2b5126e
PB
10813@include fdl.texi
10814
342b8b6e 10815@node Index
bfa74976
RS
10816@unnumbered Index
10817
10818@printindex cp
10819
bfa74976 10820@bye
a06ea4aa 10821
8fbbeba2
AD
10822@c Local Variables:
10823@c fill-column: 76
10824@c End:
10825
232be91a
AD
10826@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10827@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10828@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10829@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10830@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10831@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10832@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10833@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10834@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10835@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10836@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10837@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10838@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10839@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10840@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10841@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10842@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10843@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10844@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10845@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10846@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10847@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10848@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10849@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10850@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10851@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10852@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10853@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10854@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10855@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a
AD
10856@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
10857@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
10858@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10859@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10860@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10861@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10862@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10863@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10864@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
10865@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
10866@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10867@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10868@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10869@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10870@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10871@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10872@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10873@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10874@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10875@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
41d35e54 10876@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
232be91a 10877@c LocalWords: subdirectory Solaris nonassociativity