]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* data/glr.c (yyresolveLocations): Rename local variables to avoid
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 471999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
32c29292
JD
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
150* GLR Semantic Actions:: Deferred semantic actions have special concerns.
151* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 152
bfa74976
RS
153Examples
154
155* RPN Calc:: Reverse polish notation calculator;
156 a first example with no operator precedence.
157* Infix Calc:: Infix (algebraic) notation calculator.
158 Operator precedence is introduced.
159* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 160* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
161* Multi-function Calc:: Calculator with memory and trig functions.
162 It uses multiple data-types for semantic values.
bfa74976
RS
163* Exercises:: Ideas for improving the multi-function calculator.
164
165Reverse Polish Notation Calculator
166
75f5aaea 167* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
168* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
169* Lexer: Rpcalc Lexer. The lexical analyzer.
170* Main: Rpcalc Main. The controlling function.
171* Error: Rpcalc Error. The error reporting function.
172* Gen: Rpcalc Gen. Running Bison on the grammar file.
173* Comp: Rpcalc Compile. Run the C compiler on the output code.
174
175Grammar Rules for @code{rpcalc}
176
13863333
AD
177* Rpcalc Input::
178* Rpcalc Line::
179* Rpcalc Expr::
bfa74976 180
342b8b6e
AD
181Location Tracking Calculator: @code{ltcalc}
182
183* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
184* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
185* Lexer: Ltcalc Lexer. The lexical analyzer.
186
bfa74976
RS
187Multi-Function Calculator: @code{mfcalc}
188
189* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
190* Rules: Mfcalc Rules. Grammar rules for the calculator.
191* Symtab: Mfcalc Symtab. Symbol table management subroutines.
192
193Bison Grammar Files
194
195* Grammar Outline:: Overall layout of the grammar file.
196* Symbols:: Terminal and nonterminal symbols.
197* Rules:: How to write grammar rules.
198* Recursion:: Writing recursive rules.
199* Semantics:: Semantic values and actions.
93dd49ab 200* Locations:: Locations and actions.
bfa74976
RS
201* Declarations:: All kinds of Bison declarations are described here.
202* Multiple Parsers:: Putting more than one Bison parser in one program.
203
204Outline of a Bison Grammar
205
93dd49ab 206* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
207* Bison Declarations:: Syntax and usage of the Bison declarations section.
208* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 209* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
210
211Defining Language Semantics
212
213* Value Type:: Specifying one data type for all semantic values.
214* Multiple Types:: Specifying several alternative data types.
215* Actions:: An action is the semantic definition of a grammar rule.
216* Action Types:: Specifying data types for actions to operate on.
217* Mid-Rule Actions:: Most actions go at the end of a rule.
218 This says when, why and how to use the exceptional
219 action in the middle of a rule.
220
93dd49ab
PE
221Tracking Locations
222
223* Location Type:: Specifying a data type for locations.
224* Actions and Locations:: Using locations in actions.
225* Location Default Action:: Defining a general way to compute locations.
226
bfa74976
RS
227Bison Declarations
228
b50d2359 229* Require Decl:: Requiring a Bison version.
bfa74976
RS
230* Token Decl:: Declaring terminal symbols.
231* Precedence Decl:: Declaring terminals with precedence and associativity.
232* Union Decl:: Declaring the set of all semantic value types.
233* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 234* Initial Action Decl:: Code run before parsing starts.
72f889cc 235* Destructor Decl:: Declaring how symbols are freed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
239* Decl Summary:: Table of all Bison declarations.
240
241Parser C-Language Interface
242
243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
f7ab6a50
PE
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
95923bd6 256* Token Locations:: How @code{yylex} must return the text location
bfa74976 257 (line number, etc.) of the token, if the
93dd49ab 258 actions want that.
bfa74976
RS
259* Pure Calling:: How the calling convention differs
260 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
261
13863333 262The Bison Parser Algorithm
bfa74976
RS
263
264* Look-Ahead:: Parser looks one token ahead when deciding what to do.
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
270* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 271* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 272* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
273
274Operator Precedence
275
276* Why Precedence:: An example showing why precedence is needed.
277* Using Precedence:: How to specify precedence in Bison grammars.
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
281Handling Context Dependencies
282
283* Semantic Tokens:: Token parsing can depend on the semantic context.
284* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
285* Tie-in Recovery:: Lexical tie-ins have implications for how
286 error recovery rules must be written.
287
93dd49ab 288Debugging Your Parser
ec3bc396
AD
289
290* Understanding:: Understanding the structure of your parser.
291* Tracing:: Tracing the execution of your parser.
292
bfa74976
RS
293Invoking Bison
294
13863333 295* Bison Options:: All the options described in detail,
c827f760 296 in alphabetical order by short options.
bfa74976 297* Option Cross Key:: Alphabetical list of long options.
93dd49ab 298* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 299
12545799
AD
300C++ Language Interface
301
302* C++ Parsers:: The interface to generate C++ parser classes
303* A Complete C++ Example:: Demonstrating their use
304
305C++ Parsers
306
307* C++ Bison Interface:: Asking for C++ parser generation
308* C++ Semantic Values:: %union vs. C++
309* C++ Location Values:: The position and location classes
310* C++ Parser Interface:: Instantiating and running the parser
311* C++ Scanner Interface:: Exchanges between yylex and parse
312
313A Complete C++ Example
314
315* Calc++ --- C++ Calculator:: The specifications
316* Calc++ Parsing Driver:: An active parsing context
317* Calc++ Parser:: A parser class
318* Calc++ Scanner:: A pure C++ Flex scanner
319* Calc++ Top Level:: Conducting the band
320
d1a1114f
AD
321Frequently Asked Questions
322
1a059451 323* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 324* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 325* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 326* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 327
f2b5126e
PB
328Copying This Manual
329
330* GNU Free Documentation License:: License for copying this manual.
331
342b8b6e 332@end detailmenu
bfa74976
RS
333@end menu
334
342b8b6e 335@node Introduction
bfa74976
RS
336@unnumbered Introduction
337@cindex introduction
338
339@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 340grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
341program to parse that grammar. Once you are proficient with Bison,
342you may use it to develop a wide range of language parsers, from those
343used in simple desk calculators to complex programming languages.
344
345Bison is upward compatible with Yacc: all properly-written Yacc grammars
346ought to work with Bison with no change. Anyone familiar with Yacc
347should be able to use Bison with little trouble. You need to be fluent in
348C programming in order to use Bison or to understand this manual.
349
350We begin with tutorial chapters that explain the basic concepts of using
351Bison and show three explained examples, each building on the last. If you
352don't know Bison or Yacc, start by reading these chapters. Reference
353chapters follow which describe specific aspects of Bison in detail.
354
931c7513
RS
355Bison was written primarily by Robert Corbett; Richard Stallman made it
356Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 357multi-character string literals and other features.
931c7513 358
df1af54c 359This edition corresponds to version @value{VERSION} of Bison.
bfa74976 360
342b8b6e 361@node Conditions
bfa74976
RS
362@unnumbered Conditions for Using Bison
363
a31239f1 364As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 365@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 366Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 367parsers could be used only in programs that were free software.
a31239f1 368
c827f760
PE
369The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
370compiler, have never
9ecbd125 371had such a requirement. They could always be used for nonfree
a31239f1
RS
372software. The reason Bison was different was not due to a special
373policy decision; it resulted from applying the usual General Public
374License to all of the Bison source code.
375
376The output of the Bison utility---the Bison parser file---contains a
377verbatim copy of a sizable piece of Bison, which is the code for the
378@code{yyparse} function. (The actions from your grammar are inserted
379into this function at one point, but the rest of the function is not
c827f760
PE
380changed.) When we applied the @acronym{GPL} terms to the code for
381@code{yyparse},
a31239f1
RS
382the effect was to restrict the use of Bison output to free software.
383
384We didn't change the terms because of sympathy for people who want to
385make software proprietary. @strong{Software should be free.} But we
386concluded that limiting Bison's use to free software was doing little to
387encourage people to make other software free. So we decided to make the
388practical conditions for using Bison match the practical conditions for
c827f760 389using the other @acronym{GNU} tools.
bfa74976 390
eda42934 391This exception applies only when Bison is generating C code for an
c827f760
PE
392@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
393as usual. You can
262aa8dd
PE
394tell whether the exception applies to your @samp{.c} output file by
395inspecting it to see whether it says ``As a special exception, when
396this file is copied by Bison into a Bison output file, you may use
397that output file without restriction.''
398
c67a198d 399@include gpl.texi
bfa74976 400
342b8b6e 401@node Concepts
bfa74976
RS
402@chapter The Concepts of Bison
403
404This chapter introduces many of the basic concepts without which the
405details of Bison will not make sense. If you do not already know how to
406use Bison or Yacc, we suggest you start by reading this chapter carefully.
407
408@menu
409* Language and Grammar:: Languages and context-free grammars,
410 as mathematical ideas.
411* Grammar in Bison:: How we represent grammars for Bison's sake.
412* Semantic Values:: Each token or syntactic grouping can have
413 a semantic value (the value of an integer,
414 the name of an identifier, etc.).
415* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 416* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 417* Locations Overview:: Tracking Locations.
bfa74976
RS
418* Bison Parser:: What are Bison's input and output,
419 how is the output used?
420* Stages:: Stages in writing and running Bison grammars.
421* Grammar Layout:: Overall structure of a Bison grammar file.
422@end menu
423
342b8b6e 424@node Language and Grammar
bfa74976
RS
425@section Languages and Context-Free Grammars
426
bfa74976
RS
427@cindex context-free grammar
428@cindex grammar, context-free
429In order for Bison to parse a language, it must be described by a
430@dfn{context-free grammar}. This means that you specify one or more
431@dfn{syntactic groupings} and give rules for constructing them from their
432parts. For example, in the C language, one kind of grouping is called an
433`expression'. One rule for making an expression might be, ``An expression
434can be made of a minus sign and another expression''. Another would be,
435``An expression can be an integer''. As you can see, rules are often
436recursive, but there must be at least one rule which leads out of the
437recursion.
438
c827f760 439@cindex @acronym{BNF}
bfa74976
RS
440@cindex Backus-Naur form
441The most common formal system for presenting such rules for humans to read
c827f760
PE
442is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
443order to specify the language Algol 60. Any grammar expressed in
444@acronym{BNF} is a context-free grammar. The input to Bison is
445essentially machine-readable @acronym{BNF}.
bfa74976 446
c827f760
PE
447@cindex @acronym{LALR}(1) grammars
448@cindex @acronym{LR}(1) grammars
676385e2
PH
449There are various important subclasses of context-free grammar. Although it
450can handle almost all context-free grammars, Bison is optimized for what
c827f760 451are called @acronym{LALR}(1) grammars.
676385e2 452In brief, in these grammars, it must be possible to
bfa74976
RS
453tell how to parse any portion of an input string with just a single
454token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
455@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
456restrictions that are
bfa74976 457hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
458@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
459@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
460more information on this.
bfa74976 461
c827f760
PE
462@cindex @acronym{GLR} parsing
463@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 464@cindex ambiguous grammars
9d9b8b70 465@cindex nondeterministic parsing
9501dc6e
AD
466
467Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
468roughly that the next grammar rule to apply at any point in the input is
469uniquely determined by the preceding input and a fixed, finite portion
470(called a @dfn{look-ahead}) of the remaining input. A context-free
471grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 472apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 473grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
474look-ahead always suffices to determine the next grammar rule to apply.
475With the proper declarations, Bison is also able to parse these more
476general context-free grammars, using a technique known as @acronym{GLR}
477parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
478are able to handle any context-free grammar for which the number of
479possible parses of any given string is finite.
676385e2 480
bfa74976
RS
481@cindex symbols (abstract)
482@cindex token
483@cindex syntactic grouping
484@cindex grouping, syntactic
9501dc6e
AD
485In the formal grammatical rules for a language, each kind of syntactic
486unit or grouping is named by a @dfn{symbol}. Those which are built by
487grouping smaller constructs according to grammatical rules are called
bfa74976
RS
488@dfn{nonterminal symbols}; those which can't be subdivided are called
489@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
490corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 491corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
492
493We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
494nonterminal, mean. The tokens of C are identifiers, constants (numeric
495and string), and the various keywords, arithmetic operators and
496punctuation marks. So the terminal symbols of a grammar for C include
497`identifier', `number', `string', plus one symbol for each keyword,
498operator or punctuation mark: `if', `return', `const', `static', `int',
499`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
500(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
501lexicography, not grammar.)
502
503Here is a simple C function subdivided into tokens:
504
9edcd895
AD
505@ifinfo
506@example
507int /* @r{keyword `int'} */
14d4662b 508square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
509 @r{identifier, close-paren} */
510@{ /* @r{open-brace} */
511 return x * x; /* @r{keyword `return', identifier, asterisk,
512 identifier, semicolon} */
513@} /* @r{close-brace} */
514@end example
515@end ifinfo
516@ifnotinfo
bfa74976
RS
517@example
518int /* @r{keyword `int'} */
14d4662b 519square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 520@{ /* @r{open-brace} */
9edcd895 521 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
522@} /* @r{close-brace} */
523@end example
9edcd895 524@end ifnotinfo
bfa74976
RS
525
526The syntactic groupings of C include the expression, the statement, the
527declaration, and the function definition. These are represented in the
528grammar of C by nonterminal symbols `expression', `statement',
529`declaration' and `function definition'. The full grammar uses dozens of
530additional language constructs, each with its own nonterminal symbol, in
531order to express the meanings of these four. The example above is a
532function definition; it contains one declaration, and one statement. In
533the statement, each @samp{x} is an expression and so is @samp{x * x}.
534
535Each nonterminal symbol must have grammatical rules showing how it is made
536out of simpler constructs. For example, one kind of C statement is the
537@code{return} statement; this would be described with a grammar rule which
538reads informally as follows:
539
540@quotation
541A `statement' can be made of a `return' keyword, an `expression' and a
542`semicolon'.
543@end quotation
544
545@noindent
546There would be many other rules for `statement', one for each kind of
547statement in C.
548
549@cindex start symbol
550One nonterminal symbol must be distinguished as the special one which
551defines a complete utterance in the language. It is called the @dfn{start
552symbol}. In a compiler, this means a complete input program. In the C
553language, the nonterminal symbol `sequence of definitions and declarations'
554plays this role.
555
556For example, @samp{1 + 2} is a valid C expression---a valid part of a C
557program---but it is not valid as an @emph{entire} C program. In the
558context-free grammar of C, this follows from the fact that `expression' is
559not the start symbol.
560
561The Bison parser reads a sequence of tokens as its input, and groups the
562tokens using the grammar rules. If the input is valid, the end result is
563that the entire token sequence reduces to a single grouping whose symbol is
564the grammar's start symbol. If we use a grammar for C, the entire input
565must be a `sequence of definitions and declarations'. If not, the parser
566reports a syntax error.
567
342b8b6e 568@node Grammar in Bison
bfa74976
RS
569@section From Formal Rules to Bison Input
570@cindex Bison grammar
571@cindex grammar, Bison
572@cindex formal grammar
573
574A formal grammar is a mathematical construct. To define the language
575for Bison, you must write a file expressing the grammar in Bison syntax:
576a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
577
578A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 579as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
580in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
581
582The Bison representation for a terminal symbol is also called a @dfn{token
583type}. Token types as well can be represented as C-like identifiers. By
584convention, these identifiers should be upper case to distinguish them from
585nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
586@code{RETURN}. A terminal symbol that stands for a particular keyword in
587the language should be named after that keyword converted to upper case.
588The terminal symbol @code{error} is reserved for error recovery.
931c7513 589@xref{Symbols}.
bfa74976
RS
590
591A terminal symbol can also be represented as a character literal, just like
592a C character constant. You should do this whenever a token is just a
593single character (parenthesis, plus-sign, etc.): use that same character in
594a literal as the terminal symbol for that token.
595
931c7513
RS
596A third way to represent a terminal symbol is with a C string constant
597containing several characters. @xref{Symbols}, for more information.
598
bfa74976
RS
599The grammar rules also have an expression in Bison syntax. For example,
600here is the Bison rule for a C @code{return} statement. The semicolon in
601quotes is a literal character token, representing part of the C syntax for
602the statement; the naked semicolon, and the colon, are Bison punctuation
603used in every rule.
604
605@example
606stmt: RETURN expr ';'
607 ;
608@end example
609
610@noindent
611@xref{Rules, ,Syntax of Grammar Rules}.
612
342b8b6e 613@node Semantic Values
bfa74976
RS
614@section Semantic Values
615@cindex semantic value
616@cindex value, semantic
617
618A formal grammar selects tokens only by their classifications: for example,
619if a rule mentions the terminal symbol `integer constant', it means that
620@emph{any} integer constant is grammatically valid in that position. The
621precise value of the constant is irrelevant to how to parse the input: if
622@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 623grammatical.
bfa74976
RS
624
625But the precise value is very important for what the input means once it is
626parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6273989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
628has both a token type and a @dfn{semantic value}. @xref{Semantics,
629,Defining Language Semantics},
bfa74976
RS
630for details.
631
632The token type is a terminal symbol defined in the grammar, such as
633@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
634you need to know to decide where the token may validly appear and how to
635group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 636except their types.
bfa74976
RS
637
638The semantic value has all the rest of the information about the
639meaning of the token, such as the value of an integer, or the name of an
640identifier. (A token such as @code{','} which is just punctuation doesn't
641need to have any semantic value.)
642
643For example, an input token might be classified as token type
644@code{INTEGER} and have the semantic value 4. Another input token might
645have the same token type @code{INTEGER} but value 3989. When a grammar
646rule says that @code{INTEGER} is allowed, either of these tokens is
647acceptable because each is an @code{INTEGER}. When the parser accepts the
648token, it keeps track of the token's semantic value.
649
650Each grouping can also have a semantic value as well as its nonterminal
651symbol. For example, in a calculator, an expression typically has a
652semantic value that is a number. In a compiler for a programming
653language, an expression typically has a semantic value that is a tree
654structure describing the meaning of the expression.
655
342b8b6e 656@node Semantic Actions
bfa74976
RS
657@section Semantic Actions
658@cindex semantic actions
659@cindex actions, semantic
660
661In order to be useful, a program must do more than parse input; it must
662also produce some output based on the input. In a Bison grammar, a grammar
663rule can have an @dfn{action} made up of C statements. Each time the
664parser recognizes a match for that rule, the action is executed.
665@xref{Actions}.
13863333 666
bfa74976
RS
667Most of the time, the purpose of an action is to compute the semantic value
668of the whole construct from the semantic values of its parts. For example,
669suppose we have a rule which says an expression can be the sum of two
670expressions. When the parser recognizes such a sum, each of the
671subexpressions has a semantic value which describes how it was built up.
672The action for this rule should create a similar sort of value for the
673newly recognized larger expression.
674
675For example, here is a rule that says an expression can be the sum of
676two subexpressions:
677
678@example
679expr: expr '+' expr @{ $$ = $1 + $3; @}
680 ;
681@end example
682
683@noindent
684The action says how to produce the semantic value of the sum expression
685from the values of the two subexpressions.
686
676385e2 687@node GLR Parsers
c827f760
PE
688@section Writing @acronym{GLR} Parsers
689@cindex @acronym{GLR} parsing
690@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
691@findex %glr-parser
692@cindex conflicts
693@cindex shift/reduce conflicts
fa7e68c3 694@cindex reduce/reduce conflicts
676385e2 695
fa7e68c3 696In some grammars, Bison's standard
9501dc6e
AD
697@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
698certain grammar rule at a given point. That is, it may not be able to
699decide (on the basis of the input read so far) which of two possible
700reductions (applications of a grammar rule) applies, or whether to apply
701a reduction or read more of the input and apply a reduction later in the
702input. These are known respectively as @dfn{reduce/reduce} conflicts
703(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
704(@pxref{Shift/Reduce}).
705
706To use a grammar that is not easily modified to be @acronym{LALR}(1), a
707more general parsing algorithm is sometimes necessary. If you include
676385e2 708@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 709(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
710(@acronym{GLR}) parser. These parsers handle Bison grammars that
711contain no unresolved conflicts (i.e., after applying precedence
712declarations) identically to @acronym{LALR}(1) parsers. However, when
713faced with unresolved shift/reduce and reduce/reduce conflicts,
714@acronym{GLR} parsers use the simple expedient of doing both,
715effectively cloning the parser to follow both possibilities. Each of
716the resulting parsers can again split, so that at any given time, there
717can be any number of possible parses being explored. The parsers
676385e2
PH
718proceed in lockstep; that is, all of them consume (shift) a given input
719symbol before any of them proceed to the next. Each of the cloned
720parsers eventually meets one of two possible fates: either it runs into
721a parsing error, in which case it simply vanishes, or it merges with
722another parser, because the two of them have reduced the input to an
723identical set of symbols.
724
725During the time that there are multiple parsers, semantic actions are
726recorded, but not performed. When a parser disappears, its recorded
727semantic actions disappear as well, and are never performed. When a
728reduction makes two parsers identical, causing them to merge, Bison
729records both sets of semantic actions. Whenever the last two parsers
730merge, reverting to the single-parser case, Bison resolves all the
731outstanding actions either by precedences given to the grammar rules
732involved, or by performing both actions, and then calling a designated
733user-defined function on the resulting values to produce an arbitrary
734merged result.
735
fa7e68c3 736@menu
32c29292
JD
737* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
738* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
739* GLR Semantic Actions:: Deferred semantic actions have special concerns.
740* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
741@end menu
742
743@node Simple GLR Parsers
744@subsection Using @acronym{GLR} on Unambiguous Grammars
745@cindex @acronym{GLR} parsing, unambiguous grammars
746@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
747@findex %glr-parser
748@findex %expect-rr
749@cindex conflicts
750@cindex reduce/reduce conflicts
751@cindex shift/reduce conflicts
752
753In the simplest cases, you can use the @acronym{GLR} algorithm
754to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
755Such grammars typically require more than one symbol of look-ahead,
756or (in rare cases) fall into the category of grammars in which the
757@acronym{LALR}(1) algorithm throws away too much information (they are in
758@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
759
760Consider a problem that
761arises in the declaration of enumerated and subrange types in the
762programming language Pascal. Here are some examples:
763
764@example
765type subrange = lo .. hi;
766type enum = (a, b, c);
767@end example
768
769@noindent
770The original language standard allows only numeric
771literals and constant identifiers for the subrange bounds (@samp{lo}
772and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77310206) and many other
774Pascal implementations allow arbitrary expressions there. This gives
775rise to the following situation, containing a superfluous pair of
776parentheses:
777
778@example
779type subrange = (a) .. b;
780@end example
781
782@noindent
783Compare this to the following declaration of an enumerated
784type with only one value:
785
786@example
787type enum = (a);
788@end example
789
790@noindent
791(These declarations are contrived, but they are syntactically
792valid, and more-complicated cases can come up in practical programs.)
793
794These two declarations look identical until the @samp{..} token.
795With normal @acronym{LALR}(1) one-token look-ahead it is not
796possible to decide between the two forms when the identifier
797@samp{a} is parsed. It is, however, desirable
798for a parser to decide this, since in the latter case
799@samp{a} must become a new identifier to represent the enumeration
800value, while in the former case @samp{a} must be evaluated with its
801current meaning, which may be a constant or even a function call.
802
803You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
804to be resolved later, but this typically requires substantial
805contortions in both semantic actions and large parts of the
806grammar, where the parentheses are nested in the recursive rules for
807expressions.
808
809You might think of using the lexer to distinguish between the two
810forms by returning different tokens for currently defined and
811undefined identifiers. But if these declarations occur in a local
812scope, and @samp{a} is defined in an outer scope, then both forms
813are possible---either locally redefining @samp{a}, or using the
814value of @samp{a} from the outer scope. So this approach cannot
815work.
816
e757bb10 817A simple solution to this problem is to declare the parser to
fa7e68c3
PE
818use the @acronym{GLR} algorithm.
819When the @acronym{GLR} parser reaches the critical state, it
820merely splits into two branches and pursues both syntax rules
821simultaneously. Sooner or later, one of them runs into a parsing
822error. If there is a @samp{..} token before the next
823@samp{;}, the rule for enumerated types fails since it cannot
824accept @samp{..} anywhere; otherwise, the subrange type rule
825fails since it requires a @samp{..} token. So one of the branches
826fails silently, and the other one continues normally, performing
827all the intermediate actions that were postponed during the split.
828
829If the input is syntactically incorrect, both branches fail and the parser
830reports a syntax error as usual.
831
832The effect of all this is that the parser seems to ``guess'' the
833correct branch to take, or in other words, it seems to use more
834look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
835for. In this example, @acronym{LALR}(2) would suffice, but also some cases
836that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
837
838In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
839and the current Bison parser even takes exponential time and space
840for some grammars. In practice, this rarely happens, and for many
841grammars it is possible to prove that it cannot happen.
842The present example contains only one conflict between two
843rules, and the type-declaration context containing the conflict
844cannot be nested. So the number of
845branches that can exist at any time is limited by the constant 2,
846and the parsing time is still linear.
847
848Here is a Bison grammar corresponding to the example above. It
849parses a vastly simplified form of Pascal type declarations.
850
851@example
852%token TYPE DOTDOT ID
853
854@group
855%left '+' '-'
856%left '*' '/'
857@end group
858
859%%
860
861@group
862type_decl : TYPE ID '=' type ';'
863 ;
864@end group
865
866@group
867type : '(' id_list ')'
868 | expr DOTDOT expr
869 ;
870@end group
871
872@group
873id_list : ID
874 | id_list ',' ID
875 ;
876@end group
877
878@group
879expr : '(' expr ')'
880 | expr '+' expr
881 | expr '-' expr
882 | expr '*' expr
883 | expr '/' expr
884 | ID
885 ;
886@end group
887@end example
888
889When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
890about one reduce/reduce conflict. In the conflicting situation the
891parser chooses one of the alternatives, arbitrarily the one
892declared first. Therefore the following correct input is not
893recognized:
894
895@example
896type t = (a) .. b;
897@end example
898
899The parser can be turned into a @acronym{GLR} parser, while also telling Bison
900to be silent about the one known reduce/reduce conflict, by
e757bb10 901adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
902@samp{%%}):
903
904@example
905%glr-parser
906%expect-rr 1
907@end example
908
909@noindent
910No change in the grammar itself is required. Now the
911parser recognizes all valid declarations, according to the
912limited syntax above, transparently. In fact, the user does not even
913notice when the parser splits.
914
f8e1c9e5
AD
915So here we have a case where we can use the benefits of @acronym{GLR},
916almost without disadvantages. Even in simple cases like this, however,
917there are at least two potential problems to beware. First, always
918analyze the conflicts reported by Bison to make sure that @acronym{GLR}
919splitting is only done where it is intended. A @acronym{GLR} parser
920splitting inadvertently may cause problems less obvious than an
921@acronym{LALR} parser statically choosing the wrong alternative in a
922conflict. Second, consider interactions with the lexer (@pxref{Semantic
923Tokens}) with great care. Since a split parser consumes tokens without
924performing any actions during the split, the lexer cannot obtain
925information via parser actions. Some cases of lexer interactions can be
926eliminated by using @acronym{GLR} to shift the complications from the
927lexer to the parser. You must check the remaining cases for
928correctness.
929
930In our example, it would be safe for the lexer to return tokens based on
931their current meanings in some symbol table, because no new symbols are
932defined in the middle of a type declaration. Though it is possible for
933a parser to define the enumeration constants as they are parsed, before
934the type declaration is completed, it actually makes no difference since
935they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
936
937@node Merging GLR Parses
938@subsection Using @acronym{GLR} to Resolve Ambiguities
939@cindex @acronym{GLR} parsing, ambiguous grammars
940@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
941@findex %dprec
942@findex %merge
943@cindex conflicts
944@cindex reduce/reduce conflicts
945
2a8d363a 946Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
947
948@example
949%@{
38a92d50
PE
950 #include <stdio.h>
951 #define YYSTYPE char const *
952 int yylex (void);
953 void yyerror (char const *);
676385e2
PH
954%@}
955
956%token TYPENAME ID
957
958%right '='
959%left '+'
960
961%glr-parser
962
963%%
964
fae437e8 965prog :
676385e2
PH
966 | prog stmt @{ printf ("\n"); @}
967 ;
968
969stmt : expr ';' %dprec 1
970 | decl %dprec 2
971 ;
972
2a8d363a 973expr : ID @{ printf ("%s ", $$); @}
fae437e8 974 | TYPENAME '(' expr ')'
2a8d363a
AD
975 @{ printf ("%s <cast> ", $1); @}
976 | expr '+' expr @{ printf ("+ "); @}
977 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
978 ;
979
fae437e8 980decl : TYPENAME declarator ';'
2a8d363a 981 @{ printf ("%s <declare> ", $1); @}
676385e2 982 | TYPENAME declarator '=' expr ';'
2a8d363a 983 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
984 ;
985
2a8d363a 986declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
987 | '(' declarator ')'
988 ;
989@end example
990
991@noindent
992This models a problematic part of the C++ grammar---the ambiguity between
993certain declarations and statements. For example,
994
995@example
996T (x) = y+z;
997@end example
998
999@noindent
1000parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1001(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1002@samp{x} as an @code{ID}).
676385e2 1003Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1004@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1005time it encounters @code{x} in the example above. Since this is a
1006@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1007each choice of resolving the reduce/reduce conflict.
1008Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1009however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1010ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1011the other reduces @code{stmt : decl}, after which both parsers are in an
1012identical state: they've seen @samp{prog stmt} and have the same unprocessed
1013input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1014
1015At this point, the @acronym{GLR} parser requires a specification in the
1016grammar of how to choose between the competing parses.
1017In the example above, the two @code{%dprec}
e757bb10 1018declarations specify that Bison is to give precedence
fa7e68c3 1019to the parse that interprets the example as a
676385e2
PH
1020@code{decl}, which implies that @code{x} is a declarator.
1021The parser therefore prints
1022
1023@example
fae437e8 1024"x" y z + T <init-declare>
676385e2
PH
1025@end example
1026
fa7e68c3
PE
1027The @code{%dprec} declarations only come into play when more than one
1028parse survives. Consider a different input string for this parser:
676385e2
PH
1029
1030@example
1031T (x) + y;
1032@end example
1033
1034@noindent
e757bb10 1035This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1036construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1037Here, there is no ambiguity (this cannot be parsed as a declaration).
1038However, at the time the Bison parser encounters @code{x}, it does not
1039have enough information to resolve the reduce/reduce conflict (again,
1040between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1041case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1042into two, one assuming that @code{x} is an @code{expr}, and the other
1043assuming @code{x} is a @code{declarator}. The second of these parsers
1044then vanishes when it sees @code{+}, and the parser prints
1045
1046@example
fae437e8 1047x T <cast> y +
676385e2
PH
1048@end example
1049
1050Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1051the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1052actions of the two possible parsers, rather than choosing one over the
1053other. To do so, you could change the declaration of @code{stmt} as
1054follows:
1055
1056@example
1057stmt : expr ';' %merge <stmtMerge>
1058 | decl %merge <stmtMerge>
1059 ;
1060@end example
1061
1062@noindent
676385e2
PH
1063and define the @code{stmtMerge} function as:
1064
1065@example
38a92d50
PE
1066static YYSTYPE
1067stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1068@{
1069 printf ("<OR> ");
1070 return "";
1071@}
1072@end example
1073
1074@noindent
1075with an accompanying forward declaration
1076in the C declarations at the beginning of the file:
1077
1078@example
1079%@{
38a92d50 1080 #define YYSTYPE char const *
676385e2
PH
1081 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1082%@}
1083@end example
1084
1085@noindent
fa7e68c3
PE
1086With these declarations, the resulting parser parses the first example
1087as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1088
1089@example
fae437e8 1090"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1091@end example
1092
fa7e68c3 1093Bison requires that all of the
e757bb10 1094productions that participate in any particular merge have identical
fa7e68c3
PE
1095@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1096and the parser will report an error during any parse that results in
1097the offending merge.
9501dc6e 1098
32c29292
JD
1099@node GLR Semantic Actions
1100@subsection GLR Semantic Actions
1101
1102@cindex deferred semantic actions
1103By definition, a deferred semantic action is not performed at the same time as
1104the associated reduction.
1105This raises caveats for several Bison features you might use in a semantic
1106action in a @acronym{GLR} parser.
1107
1108@vindex yychar
1109@cindex @acronym{GLR} parsers and @code{yychar}
1110@vindex yylval
1111@cindex @acronym{GLR} parsers and @code{yylval}
1112@vindex yylloc
1113@cindex @acronym{GLR} parsers and @code{yylloc}
1114In any semantic action, you can examine @code{yychar} to determine the type of
1115the look-ahead token present at the time of the associated reduction.
1116After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1117you can then examine @code{yylval} and @code{yylloc} to determine the
1118look-ahead token's semantic value and location, if any.
1119In a nondeferred semantic action, you can also modify any of these variables to
1120influence syntax analysis.
1121@xref{Look-Ahead, ,Look-Ahead Tokens}.
1122
1123@findex yyclearin
1124@cindex @acronym{GLR} parsers and @code{yyclearin}
1125In a deferred semantic action, it's too late to influence syntax analysis.
1126In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1127shallow copies of the values they had at the time of the associated reduction.
1128For this reason alone, modifying them is dangerous.
1129Moreover, the result of modifying them is undefined and subject to change with
1130future versions of Bison.
1131For example, if a semantic action might be deferred, you should never write it
1132to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1133memory referenced by @code{yylval}.
1134
1135@findex YYERROR
1136@cindex @acronym{GLR} parsers and @code{YYERROR}
1137Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1138(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1139initiate error recovery.
1140During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1141the same as its effect in an @acronym{LALR}(1) parser.
1142In a deferred semantic action, its effect is undefined.
1143@c The effect is probably a syntax error at the split point.
1144
8710fc41
JD
1145Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1146describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1147
fa7e68c3
PE
1148@node Compiler Requirements
1149@subsection Considerations when Compiling @acronym{GLR} Parsers
1150@cindex @code{inline}
9501dc6e 1151@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1152
38a92d50
PE
1153The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1154later. In addition, they use the @code{inline} keyword, which is not
1155C89, but is C99 and is a common extension in pre-C99 compilers. It is
1156up to the user of these parsers to handle
9501dc6e
AD
1157portability issues. For instance, if using Autoconf and the Autoconf
1158macro @code{AC_C_INLINE}, a mere
1159
1160@example
1161%@{
38a92d50 1162 #include <config.h>
9501dc6e
AD
1163%@}
1164@end example
1165
1166@noindent
1167will suffice. Otherwise, we suggest
1168
1169@example
1170%@{
38a92d50
PE
1171 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1172 #define inline
1173 #endif
9501dc6e
AD
1174%@}
1175@end example
676385e2 1176
342b8b6e 1177@node Locations Overview
847bf1f5
AD
1178@section Locations
1179@cindex location
95923bd6
AD
1180@cindex textual location
1181@cindex location, textual
847bf1f5
AD
1182
1183Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1184and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1185the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1186Bison provides a mechanism for handling these locations.
1187
72d2299c 1188Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1189associated location, but the type of locations is the same for all tokens and
72d2299c 1190groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1191structure for storing locations (@pxref{Locations}, for more details).
1192
1193Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1194set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1195is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1196@code{@@3}.
1197
1198When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1199of its left hand side (@pxref{Actions}). In the same way, another default
1200action is used for locations. However, the action for locations is general
847bf1f5 1201enough for most cases, meaning there is usually no need to describe for each
72d2299c 1202rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1203grouping, the default behavior of the output parser is to take the beginning
1204of the first symbol, and the end of the last symbol.
1205
342b8b6e 1206@node Bison Parser
bfa74976
RS
1207@section Bison Output: the Parser File
1208@cindex Bison parser
1209@cindex Bison utility
1210@cindex lexical analyzer, purpose
1211@cindex parser
1212
1213When you run Bison, you give it a Bison grammar file as input. The output
1214is a C source file that parses the language described by the grammar.
1215This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1216utility and the Bison parser are two distinct programs: the Bison utility
1217is a program whose output is the Bison parser that becomes part of your
1218program.
1219
1220The job of the Bison parser is to group tokens into groupings according to
1221the grammar rules---for example, to build identifiers and operators into
1222expressions. As it does this, it runs the actions for the grammar rules it
1223uses.
1224
704a47c4
AD
1225The tokens come from a function called the @dfn{lexical analyzer} that
1226you must supply in some fashion (such as by writing it in C). The Bison
1227parser calls the lexical analyzer each time it wants a new token. It
1228doesn't know what is ``inside'' the tokens (though their semantic values
1229may reflect this). Typically the lexical analyzer makes the tokens by
1230parsing characters of text, but Bison does not depend on this.
1231@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1232
1233The Bison parser file is C code which defines a function named
1234@code{yyparse} which implements that grammar. This function does not make
1235a complete C program: you must supply some additional functions. One is
1236the lexical analyzer. Another is an error-reporting function which the
1237parser calls to report an error. In addition, a complete C program must
1238start with a function called @code{main}; you have to provide this, and
1239arrange for it to call @code{yyparse} or the parser will never run.
1240@xref{Interface, ,Parser C-Language Interface}.
1241
f7ab6a50 1242Aside from the token type names and the symbols in the actions you
7093d0f5 1243write, all symbols defined in the Bison parser file itself
bfa74976
RS
1244begin with @samp{yy} or @samp{YY}. This includes interface functions
1245such as the lexical analyzer function @code{yylex}, the error reporting
1246function @code{yyerror} and the parser function @code{yyparse} itself.
1247This also includes numerous identifiers used for internal purposes.
1248Therefore, you should avoid using C identifiers starting with @samp{yy}
1249or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1250this manual. Also, you should avoid using the C identifiers
1251@samp{malloc} and @samp{free} for anything other than their usual
1252meanings.
bfa74976 1253
7093d0f5
AD
1254In some cases the Bison parser file includes system headers, and in
1255those cases your code should respect the identifiers reserved by those
55289366 1256headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1257@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1258declare memory allocators and related types. @code{<libintl.h>} is
1259included if message translation is in use
1260(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1261be included if you define @code{YYDEBUG} to a nonzero value
1262(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1263
342b8b6e 1264@node Stages
bfa74976
RS
1265@section Stages in Using Bison
1266@cindex stages in using Bison
1267@cindex using Bison
1268
1269The actual language-design process using Bison, from grammar specification
1270to a working compiler or interpreter, has these parts:
1271
1272@enumerate
1273@item
1274Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1275(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1276in the language, describe the action that is to be taken when an
1277instance of that rule is recognized. The action is described by a
1278sequence of C statements.
bfa74976
RS
1279
1280@item
704a47c4
AD
1281Write a lexical analyzer to process input and pass tokens to the parser.
1282The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1283Lexical Analyzer Function @code{yylex}}). It could also be produced
1284using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1285
1286@item
1287Write a controlling function that calls the Bison-produced parser.
1288
1289@item
1290Write error-reporting routines.
1291@end enumerate
1292
1293To turn this source code as written into a runnable program, you
1294must follow these steps:
1295
1296@enumerate
1297@item
1298Run Bison on the grammar to produce the parser.
1299
1300@item
1301Compile the code output by Bison, as well as any other source files.
1302
1303@item
1304Link the object files to produce the finished product.
1305@end enumerate
1306
342b8b6e 1307@node Grammar Layout
bfa74976
RS
1308@section The Overall Layout of a Bison Grammar
1309@cindex grammar file
1310@cindex file format
1311@cindex format of grammar file
1312@cindex layout of Bison grammar
1313
1314The input file for the Bison utility is a @dfn{Bison grammar file}. The
1315general form of a Bison grammar file is as follows:
1316
1317@example
1318%@{
08e49d20 1319@var{Prologue}
bfa74976
RS
1320%@}
1321
1322@var{Bison declarations}
1323
1324%%
1325@var{Grammar rules}
1326%%
08e49d20 1327@var{Epilogue}
bfa74976
RS
1328@end example
1329
1330@noindent
1331The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1332in every Bison grammar file to separate the sections.
1333
72d2299c 1334The prologue may define types and variables used in the actions. You can
342b8b6e 1335also use preprocessor commands to define macros used there, and use
bfa74976 1336@code{#include} to include header files that do any of these things.
38a92d50
PE
1337You need to declare the lexical analyzer @code{yylex} and the error
1338printer @code{yyerror} here, along with any other global identifiers
1339used by the actions in the grammar rules.
bfa74976
RS
1340
1341The Bison declarations declare the names of the terminal and nonterminal
1342symbols, and may also describe operator precedence and the data types of
1343semantic values of various symbols.
1344
1345The grammar rules define how to construct each nonterminal symbol from its
1346parts.
1347
38a92d50
PE
1348The epilogue can contain any code you want to use. Often the
1349definitions of functions declared in the prologue go here. In a
1350simple program, all the rest of the program can go here.
bfa74976 1351
342b8b6e 1352@node Examples
bfa74976
RS
1353@chapter Examples
1354@cindex simple examples
1355@cindex examples, simple
1356
1357Now we show and explain three sample programs written using Bison: a
1358reverse polish notation calculator, an algebraic (infix) notation
1359calculator, and a multi-function calculator. All three have been tested
1360under BSD Unix 4.3; each produces a usable, though limited, interactive
1361desk-top calculator.
1362
1363These examples are simple, but Bison grammars for real programming
1364languages are written the same way.
1365@ifinfo
1366You can copy these examples out of the Info file and into a source file
1367to try them.
1368@end ifinfo
1369
1370@menu
1371* RPN Calc:: Reverse polish notation calculator;
1372 a first example with no operator precedence.
1373* Infix Calc:: Infix (algebraic) notation calculator.
1374 Operator precedence is introduced.
1375* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1376* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1377* Multi-function Calc:: Calculator with memory and trig functions.
1378 It uses multiple data-types for semantic values.
1379* Exercises:: Ideas for improving the multi-function calculator.
1380@end menu
1381
342b8b6e 1382@node RPN Calc
bfa74976
RS
1383@section Reverse Polish Notation Calculator
1384@cindex reverse polish notation
1385@cindex polish notation calculator
1386@cindex @code{rpcalc}
1387@cindex calculator, simple
1388
1389The first example is that of a simple double-precision @dfn{reverse polish
1390notation} calculator (a calculator using postfix operators). This example
1391provides a good starting point, since operator precedence is not an issue.
1392The second example will illustrate how operator precedence is handled.
1393
1394The source code for this calculator is named @file{rpcalc.y}. The
1395@samp{.y} extension is a convention used for Bison input files.
1396
1397@menu
75f5aaea 1398* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1399* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1400* Lexer: Rpcalc Lexer. The lexical analyzer.
1401* Main: Rpcalc Main. The controlling function.
1402* Error: Rpcalc Error. The error reporting function.
1403* Gen: Rpcalc Gen. Running Bison on the grammar file.
1404* Comp: Rpcalc Compile. Run the C compiler on the output code.
1405@end menu
1406
342b8b6e 1407@node Rpcalc Decls
bfa74976
RS
1408@subsection Declarations for @code{rpcalc}
1409
1410Here are the C and Bison declarations for the reverse polish notation
1411calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1412
1413@example
72d2299c 1414/* Reverse polish notation calculator. */
bfa74976
RS
1415
1416%@{
38a92d50
PE
1417 #define YYSTYPE double
1418 #include <math.h>
1419 int yylex (void);
1420 void yyerror (char const *);
bfa74976
RS
1421%@}
1422
1423%token NUM
1424
72d2299c 1425%% /* Grammar rules and actions follow. */
bfa74976
RS
1426@end example
1427
75f5aaea 1428The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1429preprocessor directives and two forward declarations.
bfa74976
RS
1430
1431The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1432specifying the C data type for semantic values of both tokens and
1433groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1434Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1435don't define it, @code{int} is the default. Because we specify
1436@code{double}, each token and each expression has an associated value,
1437which is a floating point number.
bfa74976
RS
1438
1439The @code{#include} directive is used to declare the exponentiation
1440function @code{pow}.
1441
38a92d50
PE
1442The forward declarations for @code{yylex} and @code{yyerror} are
1443needed because the C language requires that functions be declared
1444before they are used. These functions will be defined in the
1445epilogue, but the parser calls them so they must be declared in the
1446prologue.
1447
704a47c4
AD
1448The second section, Bison declarations, provides information to Bison
1449about the token types (@pxref{Bison Declarations, ,The Bison
1450Declarations Section}). Each terminal symbol that is not a
1451single-character literal must be declared here. (Single-character
bfa74976
RS
1452literals normally don't need to be declared.) In this example, all the
1453arithmetic operators are designated by single-character literals, so the
1454only terminal symbol that needs to be declared is @code{NUM}, the token
1455type for numeric constants.
1456
342b8b6e 1457@node Rpcalc Rules
bfa74976
RS
1458@subsection Grammar Rules for @code{rpcalc}
1459
1460Here are the grammar rules for the reverse polish notation calculator.
1461
1462@example
1463input: /* empty */
1464 | input line
1465;
1466
1467line: '\n'
18b519c0 1468 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1469;
1470
18b519c0
AD
1471exp: NUM @{ $$ = $1; @}
1472 | exp exp '+' @{ $$ = $1 + $2; @}
1473 | exp exp '-' @{ $$ = $1 - $2; @}
1474 | exp exp '*' @{ $$ = $1 * $2; @}
1475 | exp exp '/' @{ $$ = $1 / $2; @}
1476 /* Exponentiation */
1477 | exp exp '^' @{ $$ = pow ($1, $2); @}
1478 /* Unary minus */
1479 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1480;
1481%%
1482@end example
1483
1484The groupings of the rpcalc ``language'' defined here are the expression
1485(given the name @code{exp}), the line of input (@code{line}), and the
1486complete input transcript (@code{input}). Each of these nonterminal
1487symbols has several alternate rules, joined by the @samp{|} punctuator
1488which is read as ``or''. The following sections explain what these rules
1489mean.
1490
1491The semantics of the language is determined by the actions taken when a
1492grouping is recognized. The actions are the C code that appears inside
1493braces. @xref{Actions}.
1494
1495You must specify these actions in C, but Bison provides the means for
1496passing semantic values between the rules. In each action, the
1497pseudo-variable @code{$$} stands for the semantic value for the grouping
1498that the rule is going to construct. Assigning a value to @code{$$} is the
1499main job of most actions. The semantic values of the components of the
1500rule are referred to as @code{$1}, @code{$2}, and so on.
1501
1502@menu
13863333
AD
1503* Rpcalc Input::
1504* Rpcalc Line::
1505* Rpcalc Expr::
bfa74976
RS
1506@end menu
1507
342b8b6e 1508@node Rpcalc Input
bfa74976
RS
1509@subsubsection Explanation of @code{input}
1510
1511Consider the definition of @code{input}:
1512
1513@example
1514input: /* empty */
1515 | input line
1516;
1517@end example
1518
1519This definition reads as follows: ``A complete input is either an empty
1520string, or a complete input followed by an input line''. Notice that
1521``complete input'' is defined in terms of itself. This definition is said
1522to be @dfn{left recursive} since @code{input} appears always as the
1523leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1524
1525The first alternative is empty because there are no symbols between the
1526colon and the first @samp{|}; this means that @code{input} can match an
1527empty string of input (no tokens). We write the rules this way because it
1528is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1529It's conventional to put an empty alternative first and write the comment
1530@samp{/* empty */} in it.
1531
1532The second alternate rule (@code{input line}) handles all nontrivial input.
1533It means, ``After reading any number of lines, read one more line if
1534possible.'' The left recursion makes this rule into a loop. Since the
1535first alternative matches empty input, the loop can be executed zero or
1536more times.
1537
1538The parser function @code{yyparse} continues to process input until a
1539grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1540input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1541
342b8b6e 1542@node Rpcalc Line
bfa74976
RS
1543@subsubsection Explanation of @code{line}
1544
1545Now consider the definition of @code{line}:
1546
1547@example
1548line: '\n'
1549 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1550;
1551@end example
1552
1553The first alternative is a token which is a newline character; this means
1554that rpcalc accepts a blank line (and ignores it, since there is no
1555action). The second alternative is an expression followed by a newline.
1556This is the alternative that makes rpcalc useful. The semantic value of
1557the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1558question is the first symbol in the alternative. The action prints this
1559value, which is the result of the computation the user asked for.
1560
1561This action is unusual because it does not assign a value to @code{$$}. As
1562a consequence, the semantic value associated with the @code{line} is
1563uninitialized (its value will be unpredictable). This would be a bug if
1564that value were ever used, but we don't use it: once rpcalc has printed the
1565value of the user's input line, that value is no longer needed.
1566
342b8b6e 1567@node Rpcalc Expr
bfa74976
RS
1568@subsubsection Explanation of @code{expr}
1569
1570The @code{exp} grouping has several rules, one for each kind of expression.
1571The first rule handles the simplest expressions: those that are just numbers.
1572The second handles an addition-expression, which looks like two expressions
1573followed by a plus-sign. The third handles subtraction, and so on.
1574
1575@example
1576exp: NUM
1577 | exp exp '+' @{ $$ = $1 + $2; @}
1578 | exp exp '-' @{ $$ = $1 - $2; @}
1579 @dots{}
1580 ;
1581@end example
1582
1583We have used @samp{|} to join all the rules for @code{exp}, but we could
1584equally well have written them separately:
1585
1586@example
1587exp: NUM ;
1588exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1589exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1590 @dots{}
1591@end example
1592
1593Most of the rules have actions that compute the value of the expression in
1594terms of the value of its parts. For example, in the rule for addition,
1595@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1596the second one. The third component, @code{'+'}, has no meaningful
1597associated semantic value, but if it had one you could refer to it as
1598@code{$3}. When @code{yyparse} recognizes a sum expression using this
1599rule, the sum of the two subexpressions' values is produced as the value of
1600the entire expression. @xref{Actions}.
1601
1602You don't have to give an action for every rule. When a rule has no
1603action, Bison by default copies the value of @code{$1} into @code{$$}.
1604This is what happens in the first rule (the one that uses @code{NUM}).
1605
1606The formatting shown here is the recommended convention, but Bison does
72d2299c 1607not require it. You can add or change white space as much as you wish.
bfa74976
RS
1608For example, this:
1609
1610@example
99a9344e 1611exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1612@end example
1613
1614@noindent
1615means the same thing as this:
1616
1617@example
1618exp: NUM
1619 | exp exp '+' @{ $$ = $1 + $2; @}
1620 | @dots{}
99a9344e 1621;
bfa74976
RS
1622@end example
1623
1624@noindent
1625The latter, however, is much more readable.
1626
342b8b6e 1627@node Rpcalc Lexer
bfa74976
RS
1628@subsection The @code{rpcalc} Lexical Analyzer
1629@cindex writing a lexical analyzer
1630@cindex lexical analyzer, writing
1631
704a47c4
AD
1632The lexical analyzer's job is low-level parsing: converting characters
1633or sequences of characters into tokens. The Bison parser gets its
1634tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1635Analyzer Function @code{yylex}}.
bfa74976 1636
c827f760
PE
1637Only a simple lexical analyzer is needed for the @acronym{RPN}
1638calculator. This
bfa74976
RS
1639lexical analyzer skips blanks and tabs, then reads in numbers as
1640@code{double} and returns them as @code{NUM} tokens. Any other character
1641that isn't part of a number is a separate token. Note that the token-code
1642for such a single-character token is the character itself.
1643
1644The return value of the lexical analyzer function is a numeric code which
1645represents a token type. The same text used in Bison rules to stand for
1646this token type is also a C expression for the numeric code for the type.
1647This works in two ways. If the token type is a character literal, then its
e966383b 1648numeric code is that of the character; you can use the same
bfa74976
RS
1649character literal in the lexical analyzer to express the number. If the
1650token type is an identifier, that identifier is defined by Bison as a C
1651macro whose definition is the appropriate number. In this example,
1652therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1653
1964ad8c
AD
1654The semantic value of the token (if it has one) is stored into the
1655global variable @code{yylval}, which is where the Bison parser will look
1656for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1657defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1658,Declarations for @code{rpcalc}}.)
bfa74976 1659
72d2299c
PE
1660A token type code of zero is returned if the end-of-input is encountered.
1661(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1662
1663Here is the code for the lexical analyzer:
1664
1665@example
1666@group
72d2299c 1667/* The lexical analyzer returns a double floating point
e966383b 1668 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1669 of the character read if not a number. It skips all blanks
1670 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1671
1672#include <ctype.h>
1673@end group
1674
1675@group
13863333
AD
1676int
1677yylex (void)
bfa74976
RS
1678@{
1679 int c;
1680
72d2299c 1681 /* Skip white space. */
13863333 1682 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1683 ;
1684@end group
1685@group
72d2299c 1686 /* Process numbers. */
13863333 1687 if (c == '.' || isdigit (c))
bfa74976
RS
1688 @{
1689 ungetc (c, stdin);
1690 scanf ("%lf", &yylval);
1691 return NUM;
1692 @}
1693@end group
1694@group
72d2299c 1695 /* Return end-of-input. */
13863333 1696 if (c == EOF)
bfa74976 1697 return 0;
72d2299c 1698 /* Return a single char. */
13863333 1699 return c;
bfa74976
RS
1700@}
1701@end group
1702@end example
1703
342b8b6e 1704@node Rpcalc Main
bfa74976
RS
1705@subsection The Controlling Function
1706@cindex controlling function
1707@cindex main function in simple example
1708
1709In keeping with the spirit of this example, the controlling function is
1710kept to the bare minimum. The only requirement is that it call
1711@code{yyparse} to start the process of parsing.
1712
1713@example
1714@group
13863333
AD
1715int
1716main (void)
bfa74976 1717@{
13863333 1718 return yyparse ();
bfa74976
RS
1719@}
1720@end group
1721@end example
1722
342b8b6e 1723@node Rpcalc Error
bfa74976
RS
1724@subsection The Error Reporting Routine
1725@cindex error reporting routine
1726
1727When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1728function @code{yyerror} to print an error message (usually but not
6e649e65 1729always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1730@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1731here is the definition we will use:
bfa74976
RS
1732
1733@example
1734@group
1735#include <stdio.h>
1736
38a92d50 1737/* Called by yyparse on error. */
13863333 1738void
38a92d50 1739yyerror (char const *s)
bfa74976 1740@{
4e03e201 1741 fprintf (stderr, "%s\n", s);
bfa74976
RS
1742@}
1743@end group
1744@end example
1745
1746After @code{yyerror} returns, the Bison parser may recover from the error
1747and continue parsing if the grammar contains a suitable error rule
1748(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1749have not written any error rules in this example, so any invalid input will
1750cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1751real calculator, but it is adequate for the first example.
bfa74976 1752
342b8b6e 1753@node Rpcalc Gen
bfa74976
RS
1754@subsection Running Bison to Make the Parser
1755@cindex running Bison (introduction)
1756
ceed8467
AD
1757Before running Bison to produce a parser, we need to decide how to
1758arrange all the source code in one or more source files. For such a
1759simple example, the easiest thing is to put everything in one file. The
1760definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1761end, in the epilogue of the file
75f5aaea 1762(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1763
1764For a large project, you would probably have several source files, and use
1765@code{make} to arrange to recompile them.
1766
1767With all the source in a single file, you use the following command to
1768convert it into a parser file:
1769
1770@example
fa4d969f 1771bison @var{file}.y
bfa74976
RS
1772@end example
1773
1774@noindent
1775In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1776@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1777removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1778Bison contains the source code for @code{yyparse}. The additional
1779functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1780are copied verbatim to the output.
1781
342b8b6e 1782@node Rpcalc Compile
bfa74976
RS
1783@subsection Compiling the Parser File
1784@cindex compiling the parser
1785
1786Here is how to compile and run the parser file:
1787
1788@example
1789@group
1790# @r{List files in current directory.}
9edcd895 1791$ @kbd{ls}
bfa74976
RS
1792rpcalc.tab.c rpcalc.y
1793@end group
1794
1795@group
1796# @r{Compile the Bison parser.}
1797# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1798$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1799@end group
1800
1801@group
1802# @r{List files again.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc rpcalc.tab.c rpcalc.y
1805@end group
1806@end example
1807
1808The file @file{rpcalc} now contains the executable code. Here is an
1809example session using @code{rpcalc}.
1810
1811@example
9edcd895
AD
1812$ @kbd{rpcalc}
1813@kbd{4 9 +}
bfa74976 181413
9edcd895 1815@kbd{3 7 + 3 4 5 *+-}
bfa74976 1816-13
9edcd895 1817@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181813
9edcd895 1819@kbd{5 6 / 4 n +}
bfa74976 1820-3.166666667
9edcd895 1821@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182281
9edcd895
AD
1823@kbd{^D} @r{End-of-file indicator}
1824$
bfa74976
RS
1825@end example
1826
342b8b6e 1827@node Infix Calc
bfa74976
RS
1828@section Infix Notation Calculator: @code{calc}
1829@cindex infix notation calculator
1830@cindex @code{calc}
1831@cindex calculator, infix notation
1832
1833We now modify rpcalc to handle infix operators instead of postfix. Infix
1834notation involves the concept of operator precedence and the need for
1835parentheses nested to arbitrary depth. Here is the Bison code for
1836@file{calc.y}, an infix desk-top calculator.
1837
1838@example
38a92d50 1839/* Infix notation calculator. */
bfa74976
RS
1840
1841%@{
38a92d50
PE
1842 #define YYSTYPE double
1843 #include <math.h>
1844 #include <stdio.h>
1845 int yylex (void);
1846 void yyerror (char const *);
bfa74976
RS
1847%@}
1848
38a92d50 1849/* Bison declarations. */
bfa74976
RS
1850%token NUM
1851%left '-' '+'
1852%left '*' '/'
1853%left NEG /* negation--unary minus */
38a92d50 1854%right '^' /* exponentiation */
bfa74976 1855
38a92d50
PE
1856%% /* The grammar follows. */
1857input: /* empty */
bfa74976
RS
1858 | input line
1859;
1860
1861line: '\n'
1862 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1863;
1864
1865exp: NUM @{ $$ = $1; @}
1866 | exp '+' exp @{ $$ = $1 + $3; @}
1867 | exp '-' exp @{ $$ = $1 - $3; @}
1868 | exp '*' exp @{ $$ = $1 * $3; @}
1869 | exp '/' exp @{ $$ = $1 / $3; @}
1870 | '-' exp %prec NEG @{ $$ = -$2; @}
1871 | exp '^' exp @{ $$ = pow ($1, $3); @}
1872 | '(' exp ')' @{ $$ = $2; @}
1873;
1874%%
1875@end example
1876
1877@noindent
ceed8467
AD
1878The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1879same as before.
bfa74976
RS
1880
1881There are two important new features shown in this code.
1882
1883In the second section (Bison declarations), @code{%left} declares token
1884types and says they are left-associative operators. The declarations
1885@code{%left} and @code{%right} (right associativity) take the place of
1886@code{%token} which is used to declare a token type name without
1887associativity. (These tokens are single-character literals, which
1888ordinarily don't need to be declared. We declare them here to specify
1889the associativity.)
1890
1891Operator precedence is determined by the line ordering of the
1892declarations; the higher the line number of the declaration (lower on
1893the page or screen), the higher the precedence. Hence, exponentiation
1894has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1895by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1896Precedence}.
bfa74976 1897
704a47c4
AD
1898The other important new feature is the @code{%prec} in the grammar
1899section for the unary minus operator. The @code{%prec} simply instructs
1900Bison that the rule @samp{| '-' exp} has the same precedence as
1901@code{NEG}---in this case the next-to-highest. @xref{Contextual
1902Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1903
1904Here is a sample run of @file{calc.y}:
1905
1906@need 500
1907@example
9edcd895
AD
1908$ @kbd{calc}
1909@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19106.880952381
9edcd895 1911@kbd{-56 + 2}
bfa74976 1912-54
9edcd895 1913@kbd{3 ^ 2}
bfa74976
RS
19149
1915@end example
1916
342b8b6e 1917@node Simple Error Recovery
bfa74976
RS
1918@section Simple Error Recovery
1919@cindex error recovery, simple
1920
1921Up to this point, this manual has not addressed the issue of @dfn{error
1922recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1923error. All we have handled is error reporting with @code{yyerror}.
1924Recall that by default @code{yyparse} returns after calling
1925@code{yyerror}. This means that an erroneous input line causes the
1926calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1927
1928The Bison language itself includes the reserved word @code{error}, which
1929may be included in the grammar rules. In the example below it has
1930been added to one of the alternatives for @code{line}:
1931
1932@example
1933@group
1934line: '\n'
1935 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1936 | error '\n' @{ yyerrok; @}
1937;
1938@end group
1939@end example
1940
ceed8467 1941This addition to the grammar allows for simple error recovery in the
6e649e65 1942event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1943read, the error will be recognized by the third rule for @code{line},
1944and parsing will continue. (The @code{yyerror} function is still called
1945upon to print its message as well.) The action executes the statement
1946@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1947that error recovery is complete (@pxref{Error Recovery}). Note the
1948difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1949misprint.
bfa74976
RS
1950
1951This form of error recovery deals with syntax errors. There are other
1952kinds of errors; for example, division by zero, which raises an exception
1953signal that is normally fatal. A real calculator program must handle this
1954signal and use @code{longjmp} to return to @code{main} and resume parsing
1955input lines; it would also have to discard the rest of the current line of
1956input. We won't discuss this issue further because it is not specific to
1957Bison programs.
1958
342b8b6e
AD
1959@node Location Tracking Calc
1960@section Location Tracking Calculator: @code{ltcalc}
1961@cindex location tracking calculator
1962@cindex @code{ltcalc}
1963@cindex calculator, location tracking
1964
9edcd895
AD
1965This example extends the infix notation calculator with location
1966tracking. This feature will be used to improve the error messages. For
1967the sake of clarity, this example is a simple integer calculator, since
1968most of the work needed to use locations will be done in the lexical
72d2299c 1969analyzer.
342b8b6e
AD
1970
1971@menu
1972* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1973* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1974* Lexer: Ltcalc Lexer. The lexical analyzer.
1975@end menu
1976
1977@node Ltcalc Decls
1978@subsection Declarations for @code{ltcalc}
1979
9edcd895
AD
1980The C and Bison declarations for the location tracking calculator are
1981the same as the declarations for the infix notation calculator.
342b8b6e
AD
1982
1983@example
1984/* Location tracking calculator. */
1985
1986%@{
38a92d50
PE
1987 #define YYSTYPE int
1988 #include <math.h>
1989 int yylex (void);
1990 void yyerror (char const *);
342b8b6e
AD
1991%@}
1992
1993/* Bison declarations. */
1994%token NUM
1995
1996%left '-' '+'
1997%left '*' '/'
1998%left NEG
1999%right '^'
2000
38a92d50 2001%% /* The grammar follows. */
342b8b6e
AD
2002@end example
2003
9edcd895
AD
2004@noindent
2005Note there are no declarations specific to locations. Defining a data
2006type for storing locations is not needed: we will use the type provided
2007by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2008four member structure with the following integer fields:
2009@code{first_line}, @code{first_column}, @code{last_line} and
2010@code{last_column}.
342b8b6e
AD
2011
2012@node Ltcalc Rules
2013@subsection Grammar Rules for @code{ltcalc}
2014
9edcd895
AD
2015Whether handling locations or not has no effect on the syntax of your
2016language. Therefore, grammar rules for this example will be very close
2017to those of the previous example: we will only modify them to benefit
2018from the new information.
342b8b6e 2019
9edcd895
AD
2020Here, we will use locations to report divisions by zero, and locate the
2021wrong expressions or subexpressions.
342b8b6e
AD
2022
2023@example
2024@group
2025input : /* empty */
2026 | input line
2027;
2028@end group
2029
2030@group
2031line : '\n'
2032 | exp '\n' @{ printf ("%d\n", $1); @}
2033;
2034@end group
2035
2036@group
2037exp : NUM @{ $$ = $1; @}
2038 | exp '+' exp @{ $$ = $1 + $3; @}
2039 | exp '-' exp @{ $$ = $1 - $3; @}
2040 | exp '*' exp @{ $$ = $1 * $3; @}
2041@end group
342b8b6e 2042@group
9edcd895 2043 | exp '/' exp
342b8b6e
AD
2044 @{
2045 if ($3)
2046 $$ = $1 / $3;
2047 else
2048 @{
2049 $$ = 1;
9edcd895
AD
2050 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2051 @@3.first_line, @@3.first_column,
2052 @@3.last_line, @@3.last_column);
342b8b6e
AD
2053 @}
2054 @}
2055@end group
2056@group
2057 | '-' exp %preg NEG @{ $$ = -$2; @}
2058 | exp '^' exp @{ $$ = pow ($1, $3); @}
2059 | '(' exp ')' @{ $$ = $2; @}
2060@end group
2061@end example
2062
2063This code shows how to reach locations inside of semantic actions, by
2064using the pseudo-variables @code{@@@var{n}} for rule components, and the
2065pseudo-variable @code{@@$} for groupings.
2066
9edcd895
AD
2067We don't need to assign a value to @code{@@$}: the output parser does it
2068automatically. By default, before executing the C code of each action,
2069@code{@@$} is set to range from the beginning of @code{@@1} to the end
2070of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2071can be redefined (@pxref{Location Default Action, , Default Action for
2072Locations}), and for very specific rules, @code{@@$} can be computed by
2073hand.
342b8b6e
AD
2074
2075@node Ltcalc Lexer
2076@subsection The @code{ltcalc} Lexical Analyzer.
2077
9edcd895 2078Until now, we relied on Bison's defaults to enable location
72d2299c 2079tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2080able to feed the parser with the token locations, as it already does for
2081semantic values.
342b8b6e 2082
9edcd895
AD
2083To this end, we must take into account every single character of the
2084input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2085
2086@example
2087@group
2088int
2089yylex (void)
2090@{
2091 int c;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Skip white space. */
342b8b6e
AD
2096 while ((c = getchar ()) == ' ' || c == '\t')
2097 ++yylloc.last_column;
18b519c0 2098@end group
342b8b6e 2099
18b519c0 2100@group
72d2299c 2101 /* Step. */
342b8b6e
AD
2102 yylloc.first_line = yylloc.last_line;
2103 yylloc.first_column = yylloc.last_column;
2104@end group
2105
2106@group
72d2299c 2107 /* Process numbers. */
342b8b6e
AD
2108 if (isdigit (c))
2109 @{
2110 yylval = c - '0';
2111 ++yylloc.last_column;
2112 while (isdigit (c = getchar ()))
2113 @{
2114 ++yylloc.last_column;
2115 yylval = yylval * 10 + c - '0';
2116 @}
2117 ungetc (c, stdin);
2118 return NUM;
2119 @}
2120@end group
2121
72d2299c 2122 /* Return end-of-input. */
342b8b6e
AD
2123 if (c == EOF)
2124 return 0;
2125
72d2299c 2126 /* Return a single char, and update location. */
342b8b6e
AD
2127 if (c == '\n')
2128 @{
2129 ++yylloc.last_line;
2130 yylloc.last_column = 0;
2131 @}
2132 else
2133 ++yylloc.last_column;
2134 return c;
2135@}
2136@end example
2137
9edcd895
AD
2138Basically, the lexical analyzer performs the same processing as before:
2139it skips blanks and tabs, and reads numbers or single-character tokens.
2140In addition, it updates @code{yylloc}, the global variable (of type
2141@code{YYLTYPE}) containing the token's location.
342b8b6e 2142
9edcd895 2143Now, each time this function returns a token, the parser has its number
72d2299c 2144as well as its semantic value, and its location in the text. The last
9edcd895
AD
2145needed change is to initialize @code{yylloc}, for example in the
2146controlling function:
342b8b6e
AD
2147
2148@example
9edcd895 2149@group
342b8b6e
AD
2150int
2151main (void)
2152@{
2153 yylloc.first_line = yylloc.last_line = 1;
2154 yylloc.first_column = yylloc.last_column = 0;
2155 return yyparse ();
2156@}
9edcd895 2157@end group
342b8b6e
AD
2158@end example
2159
9edcd895
AD
2160Remember that computing locations is not a matter of syntax. Every
2161character must be associated to a location update, whether it is in
2162valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2163
2164@node Multi-function Calc
bfa74976
RS
2165@section Multi-Function Calculator: @code{mfcalc}
2166@cindex multi-function calculator
2167@cindex @code{mfcalc}
2168@cindex calculator, multi-function
2169
2170Now that the basics of Bison have been discussed, it is time to move on to
2171a more advanced problem. The above calculators provided only five
2172functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2173be nice to have a calculator that provides other mathematical functions such
2174as @code{sin}, @code{cos}, etc.
2175
2176It is easy to add new operators to the infix calculator as long as they are
2177only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2178back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2179adding a new operator. But we want something more flexible: built-in
2180functions whose syntax has this form:
2181
2182@example
2183@var{function_name} (@var{argument})
2184@end example
2185
2186@noindent
2187At the same time, we will add memory to the calculator, by allowing you
2188to create named variables, store values in them, and use them later.
2189Here is a sample session with the multi-function calculator:
2190
2191@example
9edcd895
AD
2192$ @kbd{mfcalc}
2193@kbd{pi = 3.141592653589}
bfa74976 21943.1415926536
9edcd895 2195@kbd{sin(pi)}
bfa74976 21960.0000000000
9edcd895 2197@kbd{alpha = beta1 = 2.3}
bfa74976 21982.3000000000
9edcd895 2199@kbd{alpha}
bfa74976 22002.3000000000
9edcd895 2201@kbd{ln(alpha)}
bfa74976 22020.8329091229
9edcd895 2203@kbd{exp(ln(beta1))}
bfa74976 22042.3000000000
9edcd895 2205$
bfa74976
RS
2206@end example
2207
2208Note that multiple assignment and nested function calls are permitted.
2209
2210@menu
2211* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2212* Rules: Mfcalc Rules. Grammar rules for the calculator.
2213* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2214@end menu
2215
342b8b6e 2216@node Mfcalc Decl
bfa74976
RS
2217@subsection Declarations for @code{mfcalc}
2218
2219Here are the C and Bison declarations for the multi-function calculator.
2220
2221@smallexample
18b519c0 2222@group
bfa74976 2223%@{
38a92d50
PE
2224 #include <math.h> /* For math functions, cos(), sin(), etc. */
2225 #include "calc.h" /* Contains definition of `symrec'. */
2226 int yylex (void);
2227 void yyerror (char const *);
bfa74976 2228%@}
18b519c0
AD
2229@end group
2230@group
bfa74976 2231%union @{
38a92d50
PE
2232 double val; /* For returning numbers. */
2233 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2234@}
18b519c0 2235@end group
38a92d50
PE
2236%token <val> NUM /* Simple double precision number. */
2237%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2238%type <val> exp
2239
18b519c0 2240@group
bfa74976
RS
2241%right '='
2242%left '-' '+'
2243%left '*' '/'
38a92d50
PE
2244%left NEG /* negation--unary minus */
2245%right '^' /* exponentiation */
18b519c0 2246@end group
38a92d50 2247%% /* The grammar follows. */
bfa74976
RS
2248@end smallexample
2249
2250The above grammar introduces only two new features of the Bison language.
2251These features allow semantic values to have various data types
2252(@pxref{Multiple Types, ,More Than One Value Type}).
2253
2254The @code{%union} declaration specifies the entire list of possible types;
2255this is instead of defining @code{YYSTYPE}. The allowable types are now
2256double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2257the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2258
2259Since values can now have various types, it is necessary to associate a
2260type with each grammar symbol whose semantic value is used. These symbols
2261are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2262declarations are augmented with information about their data type (placed
2263between angle brackets).
2264
704a47c4
AD
2265The Bison construct @code{%type} is used for declaring nonterminal
2266symbols, just as @code{%token} is used for declaring token types. We
2267have not used @code{%type} before because nonterminal symbols are
2268normally declared implicitly by the rules that define them. But
2269@code{exp} must be declared explicitly so we can specify its value type.
2270@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2271
342b8b6e 2272@node Mfcalc Rules
bfa74976
RS
2273@subsection Grammar Rules for @code{mfcalc}
2274
2275Here are the grammar rules for the multi-function calculator.
2276Most of them are copied directly from @code{calc}; three rules,
2277those which mention @code{VAR} or @code{FNCT}, are new.
2278
2279@smallexample
18b519c0 2280@group
bfa74976
RS
2281input: /* empty */
2282 | input line
2283;
18b519c0 2284@end group
bfa74976 2285
18b519c0 2286@group
bfa74976
RS
2287line:
2288 '\n'
2289 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2290 | error '\n' @{ yyerrok; @}
2291;
18b519c0 2292@end group
bfa74976 2293
18b519c0 2294@group
bfa74976
RS
2295exp: NUM @{ $$ = $1; @}
2296 | VAR @{ $$ = $1->value.var; @}
2297 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2298 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2299 | exp '+' exp @{ $$ = $1 + $3; @}
2300 | exp '-' exp @{ $$ = $1 - $3; @}
2301 | exp '*' exp @{ $$ = $1 * $3; @}
2302 | exp '/' exp @{ $$ = $1 / $3; @}
2303 | '-' exp %prec NEG @{ $$ = -$2; @}
2304 | exp '^' exp @{ $$ = pow ($1, $3); @}
2305 | '(' exp ')' @{ $$ = $2; @}
2306;
18b519c0 2307@end group
38a92d50 2308/* End of grammar. */
bfa74976
RS
2309%%
2310@end smallexample
2311
342b8b6e 2312@node Mfcalc Symtab
bfa74976
RS
2313@subsection The @code{mfcalc} Symbol Table
2314@cindex symbol table example
2315
2316The multi-function calculator requires a symbol table to keep track of the
2317names and meanings of variables and functions. This doesn't affect the
2318grammar rules (except for the actions) or the Bison declarations, but it
2319requires some additional C functions for support.
2320
2321The symbol table itself consists of a linked list of records. Its
2322definition, which is kept in the header @file{calc.h}, is as follows. It
2323provides for either functions or variables to be placed in the table.
2324
2325@smallexample
2326@group
38a92d50 2327/* Function type. */
32dfccf8 2328typedef double (*func_t) (double);
72f889cc 2329@end group
32dfccf8 2330
72f889cc 2331@group
38a92d50 2332/* Data type for links in the chain of symbols. */
bfa74976
RS
2333struct symrec
2334@{
38a92d50 2335 char *name; /* name of symbol */
bfa74976 2336 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2337 union
2338 @{
38a92d50
PE
2339 double var; /* value of a VAR */
2340 func_t fnctptr; /* value of a FNCT */
bfa74976 2341 @} value;
38a92d50 2342 struct symrec *next; /* link field */
bfa74976
RS
2343@};
2344@end group
2345
2346@group
2347typedef struct symrec symrec;
2348
38a92d50 2349/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2350extern symrec *sym_table;
2351
a730d142 2352symrec *putsym (char const *, int);
38a92d50 2353symrec *getsym (char const *);
bfa74976
RS
2354@end group
2355@end smallexample
2356
2357The new version of @code{main} includes a call to @code{init_table}, a
2358function that initializes the symbol table. Here it is, and
2359@code{init_table} as well:
2360
2361@smallexample
bfa74976
RS
2362#include <stdio.h>
2363
18b519c0 2364@group
38a92d50 2365/* Called by yyparse on error. */
13863333 2366void
38a92d50 2367yyerror (char const *s)
bfa74976
RS
2368@{
2369 printf ("%s\n", s);
2370@}
18b519c0 2371@end group
bfa74976 2372
18b519c0 2373@group
bfa74976
RS
2374struct init
2375@{
38a92d50
PE
2376 char const *fname;
2377 double (*fnct) (double);
bfa74976
RS
2378@};
2379@end group
2380
2381@group
38a92d50 2382struct init const arith_fncts[] =
13863333 2383@{
32dfccf8
AD
2384 "sin", sin,
2385 "cos", cos,
13863333 2386 "atan", atan,
32dfccf8
AD
2387 "ln", log,
2388 "exp", exp,
13863333
AD
2389 "sqrt", sqrt,
2390 0, 0
2391@};
18b519c0 2392@end group
bfa74976 2393
18b519c0 2394@group
bfa74976 2395/* The symbol table: a chain of `struct symrec'. */
38a92d50 2396symrec *sym_table;
bfa74976
RS
2397@end group
2398
2399@group
72d2299c 2400/* Put arithmetic functions in table. */
13863333
AD
2401void
2402init_table (void)
bfa74976
RS
2403@{
2404 int i;
2405 symrec *ptr;
2406 for (i = 0; arith_fncts[i].fname != 0; i++)
2407 @{
2408 ptr = putsym (arith_fncts[i].fname, FNCT);
2409 ptr->value.fnctptr = arith_fncts[i].fnct;
2410 @}
2411@}
2412@end group
38a92d50
PE
2413
2414@group
2415int
2416main (void)
2417@{
2418 init_table ();
2419 return yyparse ();
2420@}
2421@end group
bfa74976
RS
2422@end smallexample
2423
2424By simply editing the initialization list and adding the necessary include
2425files, you can add additional functions to the calculator.
2426
2427Two important functions allow look-up and installation of symbols in the
2428symbol table. The function @code{putsym} is passed a name and the type
2429(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2430linked to the front of the list, and a pointer to the object is returned.
2431The function @code{getsym} is passed the name of the symbol to look up. If
2432found, a pointer to that symbol is returned; otherwise zero is returned.
2433
2434@smallexample
2435symrec *
38a92d50 2436putsym (char const *sym_name, int sym_type)
bfa74976
RS
2437@{
2438 symrec *ptr;
2439 ptr = (symrec *) malloc (sizeof (symrec));
2440 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2441 strcpy (ptr->name,sym_name);
2442 ptr->type = sym_type;
72d2299c 2443 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2444 ptr->next = (struct symrec *)sym_table;
2445 sym_table = ptr;
2446 return ptr;
2447@}
2448
2449symrec *
38a92d50 2450getsym (char const *sym_name)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 for (ptr = sym_table; ptr != (symrec *) 0;
2454 ptr = (symrec *)ptr->next)
2455 if (strcmp (ptr->name,sym_name) == 0)
2456 return ptr;
2457 return 0;
2458@}
2459@end smallexample
2460
2461The function @code{yylex} must now recognize variables, numeric values, and
2462the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2463characters with a leading letter are recognized as either variables or
bfa74976
RS
2464functions depending on what the symbol table says about them.
2465
2466The string is passed to @code{getsym} for look up in the symbol table. If
2467the name appears in the table, a pointer to its location and its type
2468(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2469already in the table, then it is installed as a @code{VAR} using
2470@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2471returned to @code{yyparse}.
bfa74976
RS
2472
2473No change is needed in the handling of numeric values and arithmetic
2474operators in @code{yylex}.
2475
2476@smallexample
2477@group
2478#include <ctype.h>
18b519c0 2479@end group
13863333 2480
18b519c0 2481@group
13863333
AD
2482int
2483yylex (void)
bfa74976
RS
2484@{
2485 int c;
2486
72d2299c 2487 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2488 while ((c = getchar ()) == ' ' || c == '\t');
2489
2490 if (c == EOF)
2491 return 0;
2492@end group
2493
2494@group
2495 /* Char starts a number => parse the number. */
2496 if (c == '.' || isdigit (c))
2497 @{
2498 ungetc (c, stdin);
2499 scanf ("%lf", &yylval.val);
2500 return NUM;
2501 @}
2502@end group
2503
2504@group
2505 /* Char starts an identifier => read the name. */
2506 if (isalpha (c))
2507 @{
2508 symrec *s;
2509 static char *symbuf = 0;
2510 static int length = 0;
2511 int i;
2512@end group
2513
2514@group
2515 /* Initially make the buffer long enough
2516 for a 40-character symbol name. */
2517 if (length == 0)
2518 length = 40, symbuf = (char *)malloc (length + 1);
2519
2520 i = 0;
2521 do
2522@end group
2523@group
2524 @{
2525 /* If buffer is full, make it bigger. */
2526 if (i == length)
2527 @{
2528 length *= 2;
18b519c0 2529 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2530 @}
2531 /* Add this character to the buffer. */
2532 symbuf[i++] = c;
2533 /* Get another character. */
2534 c = getchar ();
2535 @}
2536@end group
2537@group
72d2299c 2538 while (isalnum (c));
bfa74976
RS
2539
2540 ungetc (c, stdin);
2541 symbuf[i] = '\0';
2542@end group
2543
2544@group
2545 s = getsym (symbuf);
2546 if (s == 0)
2547 s = putsym (symbuf, VAR);
2548 yylval.tptr = s;
2549 return s->type;
2550 @}
2551
2552 /* Any other character is a token by itself. */
2553 return c;
2554@}
2555@end group
2556@end smallexample
2557
72d2299c 2558This program is both powerful and flexible. You may easily add new
704a47c4
AD
2559functions, and it is a simple job to modify this code to install
2560predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2561
342b8b6e 2562@node Exercises
bfa74976
RS
2563@section Exercises
2564@cindex exercises
2565
2566@enumerate
2567@item
2568Add some new functions from @file{math.h} to the initialization list.
2569
2570@item
2571Add another array that contains constants and their values. Then
2572modify @code{init_table} to add these constants to the symbol table.
2573It will be easiest to give the constants type @code{VAR}.
2574
2575@item
2576Make the program report an error if the user refers to an
2577uninitialized variable in any way except to store a value in it.
2578@end enumerate
2579
342b8b6e 2580@node Grammar File
bfa74976
RS
2581@chapter Bison Grammar Files
2582
2583Bison takes as input a context-free grammar specification and produces a
2584C-language function that recognizes correct instances of the grammar.
2585
2586The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2587@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2588
2589@menu
2590* Grammar Outline:: Overall layout of the grammar file.
2591* Symbols:: Terminal and nonterminal symbols.
2592* Rules:: How to write grammar rules.
2593* Recursion:: Writing recursive rules.
2594* Semantics:: Semantic values and actions.
847bf1f5 2595* Locations:: Locations and actions.
bfa74976
RS
2596* Declarations:: All kinds of Bison declarations are described here.
2597* Multiple Parsers:: Putting more than one Bison parser in one program.
2598@end menu
2599
342b8b6e 2600@node Grammar Outline
bfa74976
RS
2601@section Outline of a Bison Grammar
2602
2603A Bison grammar file has four main sections, shown here with the
2604appropriate delimiters:
2605
2606@example
2607%@{
38a92d50 2608 @var{Prologue}
bfa74976
RS
2609%@}
2610
2611@var{Bison declarations}
2612
2613%%
2614@var{Grammar rules}
2615%%
2616
75f5aaea 2617@var{Epilogue}
bfa74976
RS
2618@end example
2619
2620Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2621As a @acronym{GNU} extension, @samp{//} introduces a comment that
2622continues until end of line.
bfa74976
RS
2623
2624@menu
75f5aaea 2625* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2626* Bison Declarations:: Syntax and usage of the Bison declarations section.
2627* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2628* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2629@end menu
2630
38a92d50 2631@node Prologue
75f5aaea
MA
2632@subsection The prologue
2633@cindex declarations section
2634@cindex Prologue
2635@cindex declarations
bfa74976 2636
f8e1c9e5
AD
2637The @var{Prologue} section contains macro definitions and declarations
2638of functions and variables that are used in the actions in the grammar
2639rules. These are copied to the beginning of the parser file so that
2640they precede the definition of @code{yyparse}. You can use
2641@samp{#include} to get the declarations from a header file. If you
2642don't need any C declarations, you may omit the @samp{%@{} and
2643@samp{%@}} delimiters that bracket this section.
bfa74976 2644
287c78f6
PE
2645The @var{Prologue} section is terminated by the the first occurrence
2646of @samp{%@}} that is outside a comment, a string literal, or a
2647character constant.
2648
c732d2c6
AD
2649You may have more than one @var{Prologue} section, intermixed with the
2650@var{Bison declarations}. This allows you to have C and Bison
2651declarations that refer to each other. For example, the @code{%union}
2652declaration may use types defined in a header file, and you may wish to
2653prototype functions that take arguments of type @code{YYSTYPE}. This
2654can be done with two @var{Prologue} blocks, one before and one after the
2655@code{%union} declaration.
2656
2657@smallexample
2658%@{
38a92d50
PE
2659 #include <stdio.h>
2660 #include "ptypes.h"
c732d2c6
AD
2661%@}
2662
2663%union @{
779e7ceb 2664 long int n;
c732d2c6
AD
2665 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2666@}
2667
2668%@{
38a92d50
PE
2669 static void print_token_value (FILE *, int, YYSTYPE);
2670 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2671%@}
2672
2673@dots{}
2674@end smallexample
2675
342b8b6e 2676@node Bison Declarations
bfa74976
RS
2677@subsection The Bison Declarations Section
2678@cindex Bison declarations (introduction)
2679@cindex declarations, Bison (introduction)
2680
2681The @var{Bison declarations} section contains declarations that define
2682terminal and nonterminal symbols, specify precedence, and so on.
2683In some simple grammars you may not need any declarations.
2684@xref{Declarations, ,Bison Declarations}.
2685
342b8b6e 2686@node Grammar Rules
bfa74976
RS
2687@subsection The Grammar Rules Section
2688@cindex grammar rules section
2689@cindex rules section for grammar
2690
2691The @dfn{grammar rules} section contains one or more Bison grammar
2692rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2693
2694There must always be at least one grammar rule, and the first
2695@samp{%%} (which precedes the grammar rules) may never be omitted even
2696if it is the first thing in the file.
2697
38a92d50 2698@node Epilogue
75f5aaea 2699@subsection The epilogue
bfa74976 2700@cindex additional C code section
75f5aaea 2701@cindex epilogue
bfa74976
RS
2702@cindex C code, section for additional
2703
08e49d20
PE
2704The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2705the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2706place to put anything that you want to have in the parser file but which need
2707not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2708definitions of @code{yylex} and @code{yyerror} often go here. Because
2709C requires functions to be declared before being used, you often need
2710to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2711even if you define them in the Epilogue.
75f5aaea 2712@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2713
2714If the last section is empty, you may omit the @samp{%%} that separates it
2715from the grammar rules.
2716
f8e1c9e5
AD
2717The Bison parser itself contains many macros and identifiers whose names
2718start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2719any such names (except those documented in this manual) in the epilogue
2720of the grammar file.
bfa74976 2721
342b8b6e 2722@node Symbols
bfa74976
RS
2723@section Symbols, Terminal and Nonterminal
2724@cindex nonterminal symbol
2725@cindex terminal symbol
2726@cindex token type
2727@cindex symbol
2728
2729@dfn{Symbols} in Bison grammars represent the grammatical classifications
2730of the language.
2731
2732A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2733class of syntactically equivalent tokens. You use the symbol in grammar
2734rules to mean that a token in that class is allowed. The symbol is
2735represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2736function returns a token type code to indicate what kind of token has
2737been read. You don't need to know what the code value is; you can use
2738the symbol to stand for it.
bfa74976 2739
f8e1c9e5
AD
2740A @dfn{nonterminal symbol} stands for a class of syntactically
2741equivalent groupings. The symbol name is used in writing grammar rules.
2742By convention, it should be all lower case.
bfa74976
RS
2743
2744Symbol names can contain letters, digits (not at the beginning),
2745underscores and periods. Periods make sense only in nonterminals.
2746
931c7513 2747There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2748
2749@itemize @bullet
2750@item
2751A @dfn{named token type} is written with an identifier, like an
c827f760 2752identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2753such name must be defined with a Bison declaration such as
2754@code{%token}. @xref{Token Decl, ,Token Type Names}.
2755
2756@item
2757@cindex character token
2758@cindex literal token
2759@cindex single-character literal
931c7513
RS
2760A @dfn{character token type} (or @dfn{literal character token}) is
2761written in the grammar using the same syntax used in C for character
2762constants; for example, @code{'+'} is a character token type. A
2763character token type doesn't need to be declared unless you need to
2764specify its semantic value data type (@pxref{Value Type, ,Data Types of
2765Semantic Values}), associativity, or precedence (@pxref{Precedence,
2766,Operator Precedence}).
bfa74976
RS
2767
2768By convention, a character token type is used only to represent a
2769token that consists of that particular character. Thus, the token
2770type @code{'+'} is used to represent the character @samp{+} as a
2771token. Nothing enforces this convention, but if you depart from it,
2772your program will confuse other readers.
2773
2774All the usual escape sequences used in character literals in C can be
2775used in Bison as well, but you must not use the null character as a
72d2299c
PE
2776character literal because its numeric code, zero, signifies
2777end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2778for @code{yylex}}). Also, unlike standard C, trigraphs have no
2779special meaning in Bison character literals, nor is backslash-newline
2780allowed.
931c7513
RS
2781
2782@item
2783@cindex string token
2784@cindex literal string token
9ecbd125 2785@cindex multicharacter literal
931c7513
RS
2786A @dfn{literal string token} is written like a C string constant; for
2787example, @code{"<="} is a literal string token. A literal string token
2788doesn't need to be declared unless you need to specify its semantic
14ded682 2789value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2790(@pxref{Precedence}).
2791
2792You can associate the literal string token with a symbolic name as an
2793alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2794Declarations}). If you don't do that, the lexical analyzer has to
2795retrieve the token number for the literal string token from the
2796@code{yytname} table (@pxref{Calling Convention}).
2797
c827f760 2798@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2799
2800By convention, a literal string token is used only to represent a token
2801that consists of that particular string. Thus, you should use the token
2802type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2803does not enforce this convention, but if you depart from it, people who
931c7513
RS
2804read your program will be confused.
2805
2806All the escape sequences used in string literals in C can be used in
92ac3705
PE
2807Bison as well, except that you must not use a null character within a
2808string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2809meaning in Bison string literals, nor is backslash-newline allowed. A
2810literal string token must contain two or more characters; for a token
2811containing just one character, use a character token (see above).
bfa74976
RS
2812@end itemize
2813
2814How you choose to write a terminal symbol has no effect on its
2815grammatical meaning. That depends only on where it appears in rules and
2816on when the parser function returns that symbol.
2817
72d2299c
PE
2818The value returned by @code{yylex} is always one of the terminal
2819symbols, except that a zero or negative value signifies end-of-input.
2820Whichever way you write the token type in the grammar rules, you write
2821it the same way in the definition of @code{yylex}. The numeric code
2822for a character token type is simply the positive numeric code of the
2823character, so @code{yylex} can use the identical value to generate the
2824requisite code, though you may need to convert it to @code{unsigned
2825char} to avoid sign-extension on hosts where @code{char} is signed.
2826Each named token type becomes a C macro in
bfa74976 2827the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2828(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2829@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2830
2831If @code{yylex} is defined in a separate file, you need to arrange for the
2832token-type macro definitions to be available there. Use the @samp{-d}
2833option when you run Bison, so that it will write these macro definitions
2834into a separate header file @file{@var{name}.tab.h} which you can include
2835in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2836
72d2299c 2837If you want to write a grammar that is portable to any Standard C
9d9b8b70 2838host, you must use only nonnull character tokens taken from the basic
c827f760 2839execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2840digits, the 52 lower- and upper-case English letters, and the
2841characters in the following C-language string:
2842
2843@example
2844"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2845@end example
2846
f8e1c9e5
AD
2847The @code{yylex} function and Bison must use a consistent character set
2848and encoding for character tokens. For example, if you run Bison in an
2849@acronym{ASCII} environment, but then compile and run the resulting
2850program in an environment that uses an incompatible character set like
2851@acronym{EBCDIC}, the resulting program may not work because the tables
2852generated by Bison will assume @acronym{ASCII} numeric values for
2853character tokens. It is standard practice for software distributions to
2854contain C source files that were generated by Bison in an
2855@acronym{ASCII} environment, so installers on platforms that are
2856incompatible with @acronym{ASCII} must rebuild those files before
2857compiling them.
e966383b 2858
bfa74976
RS
2859The symbol @code{error} is a terminal symbol reserved for error recovery
2860(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2861In particular, @code{yylex} should never return this value. The default
2862value of the error token is 256, unless you explicitly assigned 256 to
2863one of your tokens with a @code{%token} declaration.
bfa74976 2864
342b8b6e 2865@node Rules
bfa74976
RS
2866@section Syntax of Grammar Rules
2867@cindex rule syntax
2868@cindex grammar rule syntax
2869@cindex syntax of grammar rules
2870
2871A Bison grammar rule has the following general form:
2872
2873@example
e425e872 2874@group
bfa74976
RS
2875@var{result}: @var{components}@dots{}
2876 ;
e425e872 2877@end group
bfa74976
RS
2878@end example
2879
2880@noindent
9ecbd125 2881where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2882and @var{components} are various terminal and nonterminal symbols that
13863333 2883are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2884
2885For example,
2886
2887@example
2888@group
2889exp: exp '+' exp
2890 ;
2891@end group
2892@end example
2893
2894@noindent
2895says that two groupings of type @code{exp}, with a @samp{+} token in between,
2896can be combined into a larger grouping of type @code{exp}.
2897
72d2299c
PE
2898White space in rules is significant only to separate symbols. You can add
2899extra white space as you wish.
bfa74976
RS
2900
2901Scattered among the components can be @var{actions} that determine
2902the semantics of the rule. An action looks like this:
2903
2904@example
2905@{@var{C statements}@}
2906@end example
2907
2908@noindent
287c78f6
PE
2909@cindex braced code
2910This is an example of @dfn{braced code}, that is, C code surrounded by
2911braces, much like a compound statement in C@. Braced code can contain
2912any sequence of C tokens, so long as its braces are balanced. Bison
2913does not check the braced code for correctness directly; it merely
2914copies the code to the output file, where the C compiler can check it.
2915
2916Within braced code, the balanced-brace count is not affected by braces
2917within comments, string literals, or character constants, but it is
2918affected by the C digraphs @samp{<%} and @samp{%>} that represent
2919braces. At the top level braced code must be terminated by @samp{@}}
2920and not by a digraph. Bison does not look for trigraphs, so if braced
2921code uses trigraphs you should ensure that they do not affect the
2922nesting of braces or the boundaries of comments, string literals, or
2923character constants.
2924
bfa74976
RS
2925Usually there is only one action and it follows the components.
2926@xref{Actions}.
2927
2928@findex |
2929Multiple rules for the same @var{result} can be written separately or can
2930be joined with the vertical-bar character @samp{|} as follows:
2931
2932@ifinfo
2933@example
2934@var{result}: @var{rule1-components}@dots{}
2935 | @var{rule2-components}@dots{}
2936 @dots{}
2937 ;
2938@end example
2939@end ifinfo
2940@iftex
2941@example
2942@group
2943@var{result}: @var{rule1-components}@dots{}
2944 | @var{rule2-components}@dots{}
2945 @dots{}
2946 ;
2947@end group
2948@end example
2949@end iftex
2950
2951@noindent
2952They are still considered distinct rules even when joined in this way.
2953
2954If @var{components} in a rule is empty, it means that @var{result} can
2955match the empty string. For example, here is how to define a
2956comma-separated sequence of zero or more @code{exp} groupings:
2957
2958@example
2959@group
2960expseq: /* empty */
2961 | expseq1
2962 ;
2963@end group
2964
2965@group
2966expseq1: exp
2967 | expseq1 ',' exp
2968 ;
2969@end group
2970@end example
2971
2972@noindent
2973It is customary to write a comment @samp{/* empty */} in each rule
2974with no components.
2975
342b8b6e 2976@node Recursion
bfa74976
RS
2977@section Recursive Rules
2978@cindex recursive rule
2979
f8e1c9e5
AD
2980A rule is called @dfn{recursive} when its @var{result} nonterminal
2981appears also on its right hand side. Nearly all Bison grammars need to
2982use recursion, because that is the only way to define a sequence of any
2983number of a particular thing. Consider this recursive definition of a
9ecbd125 2984comma-separated sequence of one or more expressions:
bfa74976
RS
2985
2986@example
2987@group
2988expseq1: exp
2989 | expseq1 ',' exp
2990 ;
2991@end group
2992@end example
2993
2994@cindex left recursion
2995@cindex right recursion
2996@noindent
2997Since the recursive use of @code{expseq1} is the leftmost symbol in the
2998right hand side, we call this @dfn{left recursion}. By contrast, here
2999the same construct is defined using @dfn{right recursion}:
3000
3001@example
3002@group
3003expseq1: exp
3004 | exp ',' expseq1
3005 ;
3006@end group
3007@end example
3008
3009@noindent
ec3bc396
AD
3010Any kind of sequence can be defined using either left recursion or right
3011recursion, but you should always use left recursion, because it can
3012parse a sequence of any number of elements with bounded stack space.
3013Right recursion uses up space on the Bison stack in proportion to the
3014number of elements in the sequence, because all the elements must be
3015shifted onto the stack before the rule can be applied even once.
3016@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3017of this.
bfa74976
RS
3018
3019@cindex mutual recursion
3020@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3021rule does not appear directly on its right hand side, but does appear
3022in rules for other nonterminals which do appear on its right hand
13863333 3023side.
bfa74976
RS
3024
3025For example:
3026
3027@example
3028@group
3029expr: primary
3030 | primary '+' primary
3031 ;
3032@end group
3033
3034@group
3035primary: constant
3036 | '(' expr ')'
3037 ;
3038@end group
3039@end example
3040
3041@noindent
3042defines two mutually-recursive nonterminals, since each refers to the
3043other.
3044
342b8b6e 3045@node Semantics
bfa74976
RS
3046@section Defining Language Semantics
3047@cindex defining language semantics
13863333 3048@cindex language semantics, defining
bfa74976
RS
3049
3050The grammar rules for a language determine only the syntax. The semantics
3051are determined by the semantic values associated with various tokens and
3052groupings, and by the actions taken when various groupings are recognized.
3053
3054For example, the calculator calculates properly because the value
3055associated with each expression is the proper number; it adds properly
3056because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3057the numbers associated with @var{x} and @var{y}.
3058
3059@menu
3060* Value Type:: Specifying one data type for all semantic values.
3061* Multiple Types:: Specifying several alternative data types.
3062* Actions:: An action is the semantic definition of a grammar rule.
3063* Action Types:: Specifying data types for actions to operate on.
3064* Mid-Rule Actions:: Most actions go at the end of a rule.
3065 This says when, why and how to use the exceptional
3066 action in the middle of a rule.
3067@end menu
3068
342b8b6e 3069@node Value Type
bfa74976
RS
3070@subsection Data Types of Semantic Values
3071@cindex semantic value type
3072@cindex value type, semantic
3073@cindex data types of semantic values
3074@cindex default data type
3075
3076In a simple program it may be sufficient to use the same data type for
3077the semantic values of all language constructs. This was true in the
c827f760 3078@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3079Notation Calculator}).
bfa74976
RS
3080
3081Bison's default is to use type @code{int} for all semantic values. To
3082specify some other type, define @code{YYSTYPE} as a macro, like this:
3083
3084@example
3085#define YYSTYPE double
3086@end example
3087
3088@noindent
342b8b6e 3089This macro definition must go in the prologue of the grammar file
75f5aaea 3090(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3091
342b8b6e 3092@node Multiple Types
bfa74976
RS
3093@subsection More Than One Value Type
3094
3095In most programs, you will need different data types for different kinds
3096of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3097@code{int} or @code{long int}, while a string constant needs type
3098@code{char *}, and an identifier might need a pointer to an entry in the
3099symbol table.
bfa74976
RS
3100
3101To use more than one data type for semantic values in one parser, Bison
3102requires you to do two things:
3103
3104@itemize @bullet
3105@item
3106Specify the entire collection of possible data types, with the
704a47c4
AD
3107@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3108Value Types}).
bfa74976
RS
3109
3110@item
14ded682
AD
3111Choose one of those types for each symbol (terminal or nonterminal) for
3112which semantic values are used. This is done for tokens with the
3113@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3114and for groupings with the @code{%type} Bison declaration (@pxref{Type
3115Decl, ,Nonterminal Symbols}).
bfa74976
RS
3116@end itemize
3117
342b8b6e 3118@node Actions
bfa74976
RS
3119@subsection Actions
3120@cindex action
3121@vindex $$
3122@vindex $@var{n}
3123
3124An action accompanies a syntactic rule and contains C code to be executed
3125each time an instance of that rule is recognized. The task of most actions
3126is to compute a semantic value for the grouping built by the rule from the
3127semantic values associated with tokens or smaller groupings.
3128
287c78f6
PE
3129An action consists of braced code containing C statements, and can be
3130placed at any position in the rule;
704a47c4
AD
3131it is executed at that position. Most rules have just one action at the
3132end of the rule, following all the components. Actions in the middle of
3133a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3134Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3135
3136The C code in an action can refer to the semantic values of the components
3137matched by the rule with the construct @code{$@var{n}}, which stands for
3138the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3139being constructed is @code{$$}. Bison translates both of these
3140constructs into expressions of the appropriate type when it copies the
3141actions into the parser file. @code{$$} is translated to a modifiable
3142lvalue, so it can be assigned to.
bfa74976
RS
3143
3144Here is a typical example:
3145
3146@example
3147@group
3148exp: @dots{}
3149 | exp '+' exp
3150 @{ $$ = $1 + $3; @}
3151@end group
3152@end example
3153
3154@noindent
3155This rule constructs an @code{exp} from two smaller @code{exp} groupings
3156connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3157refer to the semantic values of the two component @code{exp} groupings,
3158which are the first and third symbols on the right hand side of the rule.
3159The sum is stored into @code{$$} so that it becomes the semantic value of
3160the addition-expression just recognized by the rule. If there were a
3161useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3162referred to as @code{$2}.
bfa74976 3163
3ded9a63
AD
3164Note that the vertical-bar character @samp{|} is really a rule
3165separator, and actions are attached to a single rule. This is a
3166difference with tools like Flex, for which @samp{|} stands for either
3167``or'', or ``the same action as that of the next rule''. In the
3168following example, the action is triggered only when @samp{b} is found:
3169
3170@example
3171@group
3172a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3173@end group
3174@end example
3175
bfa74976
RS
3176@cindex default action
3177If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3178@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3179becomes the value of the whole rule. Of course, the default action is
3180valid only if the two data types match. There is no meaningful default
3181action for an empty rule; every empty rule must have an explicit action
3182unless the rule's value does not matter.
bfa74976
RS
3183
3184@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3185to tokens and groupings on the stack @emph{before} those that match the
3186current rule. This is a very risky practice, and to use it reliably
3187you must be certain of the context in which the rule is applied. Here
3188is a case in which you can use this reliably:
3189
3190@example
3191@group
3192foo: expr bar '+' expr @{ @dots{} @}
3193 | expr bar '-' expr @{ @dots{} @}
3194 ;
3195@end group
3196
3197@group
3198bar: /* empty */
3199 @{ previous_expr = $0; @}
3200 ;
3201@end group
3202@end example
3203
3204As long as @code{bar} is used only in the fashion shown here, @code{$0}
3205always refers to the @code{expr} which precedes @code{bar} in the
3206definition of @code{foo}.
3207
32c29292
JD
3208@vindex yylval
3209It is also possible to access the semantic value of the look-ahead token, if
3210any, from a semantic action.
3211This semantic value is stored in @code{yylval}.
3212@xref{Action Features, ,Special Features for Use in Actions}.
3213
342b8b6e 3214@node Action Types
bfa74976
RS
3215@subsection Data Types of Values in Actions
3216@cindex action data types
3217@cindex data types in actions
3218
3219If you have chosen a single data type for semantic values, the @code{$$}
3220and @code{$@var{n}} constructs always have that data type.
3221
3222If you have used @code{%union} to specify a variety of data types, then you
3223must declare a choice among these types for each terminal or nonterminal
3224symbol that can have a semantic value. Then each time you use @code{$$} or
3225@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3226in the rule. In this example,
bfa74976
RS
3227
3228@example
3229@group
3230exp: @dots{}
3231 | exp '+' exp
3232 @{ $$ = $1 + $3; @}
3233@end group
3234@end example
3235
3236@noindent
3237@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3238have the data type declared for the nonterminal symbol @code{exp}. If
3239@code{$2} were used, it would have the data type declared for the
e0c471a9 3240terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3241
3242Alternatively, you can specify the data type when you refer to the value,
3243by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3244reference. For example, if you have defined types as shown here:
3245
3246@example
3247@group
3248%union @{
3249 int itype;
3250 double dtype;
3251@}
3252@end group
3253@end example
3254
3255@noindent
3256then you can write @code{$<itype>1} to refer to the first subunit of the
3257rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3258
342b8b6e 3259@node Mid-Rule Actions
bfa74976
RS
3260@subsection Actions in Mid-Rule
3261@cindex actions in mid-rule
3262@cindex mid-rule actions
3263
3264Occasionally it is useful to put an action in the middle of a rule.
3265These actions are written just like usual end-of-rule actions, but they
3266are executed before the parser even recognizes the following components.
3267
3268A mid-rule action may refer to the components preceding it using
3269@code{$@var{n}}, but it may not refer to subsequent components because
3270it is run before they are parsed.
3271
3272The mid-rule action itself counts as one of the components of the rule.
3273This makes a difference when there is another action later in the same rule
3274(and usually there is another at the end): you have to count the actions
3275along with the symbols when working out which number @var{n} to use in
3276@code{$@var{n}}.
3277
3278The mid-rule action can also have a semantic value. The action can set
3279its value with an assignment to @code{$$}, and actions later in the rule
3280can refer to the value using @code{$@var{n}}. Since there is no symbol
3281to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3282in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3283specify a data type each time you refer to this value.
bfa74976
RS
3284
3285There is no way to set the value of the entire rule with a mid-rule
3286action, because assignments to @code{$$} do not have that effect. The
3287only way to set the value for the entire rule is with an ordinary action
3288at the end of the rule.
3289
3290Here is an example from a hypothetical compiler, handling a @code{let}
3291statement that looks like @samp{let (@var{variable}) @var{statement}} and
3292serves to create a variable named @var{variable} temporarily for the
3293duration of @var{statement}. To parse this construct, we must put
3294@var{variable} into the symbol table while @var{statement} is parsed, then
3295remove it afterward. Here is how it is done:
3296
3297@example
3298@group
3299stmt: LET '(' var ')'
3300 @{ $<context>$ = push_context ();
3301 declare_variable ($3); @}
3302 stmt @{ $$ = $6;
3303 pop_context ($<context>5); @}
3304@end group
3305@end example
3306
3307@noindent
3308As soon as @samp{let (@var{variable})} has been recognized, the first
3309action is run. It saves a copy of the current semantic context (the
3310list of accessible variables) as its semantic value, using alternative
3311@code{context} in the data-type union. Then it calls
3312@code{declare_variable} to add the new variable to that list. Once the
3313first action is finished, the embedded statement @code{stmt} can be
3314parsed. Note that the mid-rule action is component number 5, so the
3315@samp{stmt} is component number 6.
3316
3317After the embedded statement is parsed, its semantic value becomes the
3318value of the entire @code{let}-statement. Then the semantic value from the
3319earlier action is used to restore the prior list of variables. This
3320removes the temporary @code{let}-variable from the list so that it won't
3321appear to exist while the rest of the program is parsed.
3322
841a7737
JD
3323@findex %destructor
3324@cindex discarded symbols, mid-rule actions
3325@cindex error recovery, mid-rule actions
3326In the above example, if the parser initiates error recovery (@pxref{Error
3327Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3328it might discard the previous semantic context @code{$<context>5} without
3329restoring it.
3330Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3331Discarded Symbols}).
3332However, Bison currently provides no means to declare a destructor for a
3333mid-rule action's semantic value.
3334
3335One solution is to bury the mid-rule action inside a nonterminal symbol and to
3336declare a destructor for that symbol:
3337
3338@example
3339@group
3340%type <context> let
3341%destructor @{ pop_context ($$); @} let
3342
3343%%
3344
3345stmt: let stmt
3346 @{ $$ = $2;
3347 pop_context ($1); @}
3348 ;
3349
3350let: LET '(' var ')'
3351 @{ $$ = push_context ();
3352 declare_variable ($3); @}
3353 ;
3354
3355@end group
3356@end example
3357
3358@noindent
3359Note that the action is now at the end of its rule.
3360Any mid-rule action can be converted to an end-of-rule action in this way, and
3361this is what Bison actually does to implement mid-rule actions.
3362
bfa74976
RS
3363Taking action before a rule is completely recognized often leads to
3364conflicts since the parser must commit to a parse in order to execute the
3365action. For example, the following two rules, without mid-rule actions,
3366can coexist in a working parser because the parser can shift the open-brace
3367token and look at what follows before deciding whether there is a
3368declaration or not:
3369
3370@example
3371@group
3372compound: '@{' declarations statements '@}'
3373 | '@{' statements '@}'
3374 ;
3375@end group
3376@end example
3377
3378@noindent
3379But when we add a mid-rule action as follows, the rules become nonfunctional:
3380
3381@example
3382@group
3383compound: @{ prepare_for_local_variables (); @}
3384 '@{' declarations statements '@}'
3385@end group
3386@group
3387 | '@{' statements '@}'
3388 ;
3389@end group
3390@end example
3391
3392@noindent
3393Now the parser is forced to decide whether to run the mid-rule action
3394when it has read no farther than the open-brace. In other words, it
3395must commit to using one rule or the other, without sufficient
3396information to do it correctly. (The open-brace token is what is called
3397the @dfn{look-ahead} token at this time, since the parser is still
3398deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3399
3400You might think that you could correct the problem by putting identical
3401actions into the two rules, like this:
3402
3403@example
3404@group
3405compound: @{ prepare_for_local_variables (); @}
3406 '@{' declarations statements '@}'
3407 | @{ prepare_for_local_variables (); @}
3408 '@{' statements '@}'
3409 ;
3410@end group
3411@end example
3412
3413@noindent
3414But this does not help, because Bison does not realize that the two actions
3415are identical. (Bison never tries to understand the C code in an action.)
3416
3417If the grammar is such that a declaration can be distinguished from a
3418statement by the first token (which is true in C), then one solution which
3419does work is to put the action after the open-brace, like this:
3420
3421@example
3422@group
3423compound: '@{' @{ prepare_for_local_variables (); @}
3424 declarations statements '@}'
3425 | '@{' statements '@}'
3426 ;
3427@end group
3428@end example
3429
3430@noindent
3431Now the first token of the following declaration or statement,
3432which would in any case tell Bison which rule to use, can still do so.
3433
3434Another solution is to bury the action inside a nonterminal symbol which
3435serves as a subroutine:
3436
3437@example
3438@group
3439subroutine: /* empty */
3440 @{ prepare_for_local_variables (); @}
3441 ;
3442
3443@end group
3444
3445@group
3446compound: subroutine
3447 '@{' declarations statements '@}'
3448 | subroutine
3449 '@{' statements '@}'
3450 ;
3451@end group
3452@end example
3453
3454@noindent
3455Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3456deciding which rule for @code{compound} it will eventually use.
bfa74976 3457
342b8b6e 3458@node Locations
847bf1f5
AD
3459@section Tracking Locations
3460@cindex location
95923bd6
AD
3461@cindex textual location
3462@cindex location, textual
847bf1f5
AD
3463
3464Though grammar rules and semantic actions are enough to write a fully
72d2299c 3465functional parser, it can be useful to process some additional information,
3e259915
MA
3466especially symbol locations.
3467
704a47c4
AD
3468The way locations are handled is defined by providing a data type, and
3469actions to take when rules are matched.
847bf1f5
AD
3470
3471@menu
3472* Location Type:: Specifying a data type for locations.
3473* Actions and Locations:: Using locations in actions.
3474* Location Default Action:: Defining a general way to compute locations.
3475@end menu
3476
342b8b6e 3477@node Location Type
847bf1f5
AD
3478@subsection Data Type of Locations
3479@cindex data type of locations
3480@cindex default location type
3481
3482Defining a data type for locations is much simpler than for semantic values,
3483since all tokens and groupings always use the same type.
3484
3485The type of locations is specified by defining a macro called @code{YYLTYPE}.
3486When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3487four members:
3488
3489@example
6273355b 3490typedef struct YYLTYPE
847bf1f5
AD
3491@{
3492 int first_line;
3493 int first_column;
3494 int last_line;
3495 int last_column;
6273355b 3496@} YYLTYPE;
847bf1f5
AD
3497@end example
3498
342b8b6e 3499@node Actions and Locations
847bf1f5
AD
3500@subsection Actions and Locations
3501@cindex location actions
3502@cindex actions, location
3503@vindex @@$
3504@vindex @@@var{n}
3505
3506Actions are not only useful for defining language semantics, but also for
3507describing the behavior of the output parser with locations.
3508
3509The most obvious way for building locations of syntactic groupings is very
72d2299c 3510similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3511constructs can be used to access the locations of the elements being matched.
3512The location of the @var{n}th component of the right hand side is
3513@code{@@@var{n}}, while the location of the left hand side grouping is
3514@code{@@$}.
3515
3e259915 3516Here is a basic example using the default data type for locations:
847bf1f5
AD
3517
3518@example
3519@group
3520exp: @dots{}
3e259915 3521 | exp '/' exp
847bf1f5 3522 @{
3e259915
MA
3523 @@$.first_column = @@1.first_column;
3524 @@$.first_line = @@1.first_line;
847bf1f5
AD
3525 @@$.last_column = @@3.last_column;
3526 @@$.last_line = @@3.last_line;
3e259915
MA
3527 if ($3)
3528 $$ = $1 / $3;
3529 else
3530 @{
3531 $$ = 1;
4e03e201
AD
3532 fprintf (stderr,
3533 "Division by zero, l%d,c%d-l%d,c%d",
3534 @@3.first_line, @@3.first_column,
3535 @@3.last_line, @@3.last_column);
3e259915 3536 @}
847bf1f5
AD
3537 @}
3538@end group
3539@end example
3540
3e259915 3541As for semantic values, there is a default action for locations that is
72d2299c 3542run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3543beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3544last symbol.
3e259915 3545
72d2299c 3546With this default action, the location tracking can be fully automatic. The
3e259915
MA
3547example above simply rewrites this way:
3548
3549@example
3550@group
3551exp: @dots{}
3552 | exp '/' exp
3553 @{
3554 if ($3)
3555 $$ = $1 / $3;
3556 else
3557 @{
3558 $$ = 1;
4e03e201
AD
3559 fprintf (stderr,
3560 "Division by zero, l%d,c%d-l%d,c%d",
3561 @@3.first_line, @@3.first_column,
3562 @@3.last_line, @@3.last_column);
3e259915
MA
3563 @}
3564 @}
3565@end group
3566@end example
847bf1f5 3567
32c29292
JD
3568@vindex yylloc
3569It is also possible to access the location of the look-ahead token, if any,
3570from a semantic action.
3571This location is stored in @code{yylloc}.
3572@xref{Action Features, ,Special Features for Use in Actions}.
3573
342b8b6e 3574@node Location Default Action
847bf1f5
AD
3575@subsection Default Action for Locations
3576@vindex YYLLOC_DEFAULT
8710fc41 3577@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3578
72d2299c 3579Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3580locations are much more general than semantic values, there is room in
3581the output parser to redefine the default action to take for each
72d2299c 3582rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3583matched, before the associated action is run. It is also invoked
3584while processing a syntax error, to compute the error's location.
8710fc41
JD
3585Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3586parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3587of that ambiguity.
847bf1f5 3588
3e259915 3589Most of the time, this macro is general enough to suppress location
79282c6c 3590dedicated code from semantic actions.
847bf1f5 3591
72d2299c 3592The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3593the location of the grouping (the result of the computation). When a
766de5eb 3594rule is matched, the second parameter identifies locations of
96b93a3d 3595all right hand side elements of the rule being matched, and the third
8710fc41
JD
3596parameter is the size of the rule's right hand side.
3597When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3598right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3599When processing a syntax error, the second parameter identifies locations
3600of the symbols that were discarded during error processing, and the third
96b93a3d 3601parameter is the number of discarded symbols.
847bf1f5 3602
766de5eb 3603By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3604
766de5eb 3605@smallexample
847bf1f5 3606@group
766de5eb
PE
3607# define YYLLOC_DEFAULT(Current, Rhs, N) \
3608 do \
3609 if (N) \
3610 @{ \
3611 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3612 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3613 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3614 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3615 @} \
3616 else \
3617 @{ \
3618 (Current).first_line = (Current).last_line = \
3619 YYRHSLOC(Rhs, 0).last_line; \
3620 (Current).first_column = (Current).last_column = \
3621 YYRHSLOC(Rhs, 0).last_column; \
3622 @} \
3623 while (0)
847bf1f5 3624@end group
766de5eb 3625@end smallexample
676385e2 3626
766de5eb
PE
3627where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3628in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3629just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3630
3e259915 3631When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3632
3e259915 3633@itemize @bullet
79282c6c 3634@item
72d2299c 3635All arguments are free of side-effects. However, only the first one (the
3e259915 3636result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3637
3e259915 3638@item
766de5eb
PE
3639For consistency with semantic actions, valid indexes within the
3640right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3641valid index, and it refers to the symbol just before the reduction.
3642During error processing @var{n} is always positive.
0ae99356
PE
3643
3644@item
3645Your macro should parenthesize its arguments, if need be, since the
3646actual arguments may not be surrounded by parentheses. Also, your
3647macro should expand to something that can be used as a single
3648statement when it is followed by a semicolon.
3e259915 3649@end itemize
847bf1f5 3650
342b8b6e 3651@node Declarations
bfa74976
RS
3652@section Bison Declarations
3653@cindex declarations, Bison
3654@cindex Bison declarations
3655
3656The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3657used in formulating the grammar and the data types of semantic values.
3658@xref{Symbols}.
3659
3660All token type names (but not single-character literal tokens such as
3661@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3662declared if you need to specify which data type to use for the semantic
3663value (@pxref{Multiple Types, ,More Than One Value Type}).
3664
3665The first rule in the file also specifies the start symbol, by default.
3666If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3667it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3668Grammars}).
bfa74976
RS
3669
3670@menu
b50d2359 3671* Require Decl:: Requiring a Bison version.
bfa74976
RS
3672* Token Decl:: Declaring terminal symbols.
3673* Precedence Decl:: Declaring terminals with precedence and associativity.
3674* Union Decl:: Declaring the set of all semantic value types.
3675* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3676* Initial Action Decl:: Code run before parsing starts.
72f889cc 3677* Destructor Decl:: Declaring how symbols are freed.
d6328241 3678* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3679* Start Decl:: Specifying the start symbol.
3680* Pure Decl:: Requesting a reentrant parser.
3681* Decl Summary:: Table of all Bison declarations.
3682@end menu
3683
b50d2359
AD
3684@node Require Decl
3685@subsection Require a Version of Bison
3686@cindex version requirement
3687@cindex requiring a version of Bison
3688@findex %require
3689
3690You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3691the requirement is not met, @command{bison} exits with an error (exit
3692status 63).
b50d2359
AD
3693
3694@example
3695%require "@var{version}"
3696@end example
3697
342b8b6e 3698@node Token Decl
bfa74976
RS
3699@subsection Token Type Names
3700@cindex declaring token type names
3701@cindex token type names, declaring
931c7513 3702@cindex declaring literal string tokens
bfa74976
RS
3703@findex %token
3704
3705The basic way to declare a token type name (terminal symbol) is as follows:
3706
3707@example
3708%token @var{name}
3709@end example
3710
3711Bison will convert this into a @code{#define} directive in
3712the parser, so that the function @code{yylex} (if it is in this file)
3713can use the name @var{name} to stand for this token type's code.
3714
14ded682
AD
3715Alternatively, you can use @code{%left}, @code{%right}, or
3716@code{%nonassoc} instead of @code{%token}, if you wish to specify
3717associativity and precedence. @xref{Precedence Decl, ,Operator
3718Precedence}.
bfa74976
RS
3719
3720You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3721a decimal or hexadecimal integer value in the field immediately
3722following the token name:
bfa74976
RS
3723
3724@example
3725%token NUM 300
1452af69 3726%token XNUM 0x12d // a GNU extension
bfa74976
RS
3727@end example
3728
3729@noindent
3730It is generally best, however, to let Bison choose the numeric codes for
3731all token types. Bison will automatically select codes that don't conflict
e966383b 3732with each other or with normal characters.
bfa74976
RS
3733
3734In the event that the stack type is a union, you must augment the
3735@code{%token} or other token declaration to include the data type
704a47c4
AD
3736alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3737Than One Value Type}).
bfa74976
RS
3738
3739For example:
3740
3741@example
3742@group
3743%union @{ /* define stack type */
3744 double val;
3745 symrec *tptr;
3746@}
3747%token <val> NUM /* define token NUM and its type */
3748@end group
3749@end example
3750
931c7513
RS
3751You can associate a literal string token with a token type name by
3752writing the literal string at the end of a @code{%token}
3753declaration which declares the name. For example:
3754
3755@example
3756%token arrow "=>"
3757@end example
3758
3759@noindent
3760For example, a grammar for the C language might specify these names with
3761equivalent literal string tokens:
3762
3763@example
3764%token <operator> OR "||"
3765%token <operator> LE 134 "<="
3766%left OR "<="
3767@end example
3768
3769@noindent
3770Once you equate the literal string and the token name, you can use them
3771interchangeably in further declarations or the grammar rules. The
3772@code{yylex} function can use the token name or the literal string to
3773obtain the token type code number (@pxref{Calling Convention}).
3774
342b8b6e 3775@node Precedence Decl
bfa74976
RS
3776@subsection Operator Precedence
3777@cindex precedence declarations
3778@cindex declaring operator precedence
3779@cindex operator precedence, declaring
3780
3781Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3782declare a token and specify its precedence and associativity, all at
3783once. These are called @dfn{precedence declarations}.
704a47c4
AD
3784@xref{Precedence, ,Operator Precedence}, for general information on
3785operator precedence.
bfa74976
RS
3786
3787The syntax of a precedence declaration is the same as that of
3788@code{%token}: either
3789
3790@example
3791%left @var{symbols}@dots{}
3792@end example
3793
3794@noindent
3795or
3796
3797@example
3798%left <@var{type}> @var{symbols}@dots{}
3799@end example
3800
3801And indeed any of these declarations serves the purposes of @code{%token}.
3802But in addition, they specify the associativity and relative precedence for
3803all the @var{symbols}:
3804
3805@itemize @bullet
3806@item
3807The associativity of an operator @var{op} determines how repeated uses
3808of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3809@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3810grouping @var{y} with @var{z} first. @code{%left} specifies
3811left-associativity (grouping @var{x} with @var{y} first) and
3812@code{%right} specifies right-associativity (grouping @var{y} with
3813@var{z} first). @code{%nonassoc} specifies no associativity, which
3814means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3815considered a syntax error.
3816
3817@item
3818The precedence of an operator determines how it nests with other operators.
3819All the tokens declared in a single precedence declaration have equal
3820precedence and nest together according to their associativity.
3821When two tokens declared in different precedence declarations associate,
3822the one declared later has the higher precedence and is grouped first.
3823@end itemize
3824
342b8b6e 3825@node Union Decl
bfa74976
RS
3826@subsection The Collection of Value Types
3827@cindex declaring value types
3828@cindex value types, declaring
3829@findex %union
3830
287c78f6
PE
3831The @code{%union} declaration specifies the entire collection of
3832possible data types for semantic values. The keyword @code{%union} is
3833followed by braced code containing the same thing that goes inside a
3834@code{union} in C@.
bfa74976
RS
3835
3836For example:
3837
3838@example
3839@group
3840%union @{
3841 double val;
3842 symrec *tptr;
3843@}
3844@end group
3845@end example
3846
3847@noindent
3848This says that the two alternative types are @code{double} and @code{symrec
3849*}. They are given names @code{val} and @code{tptr}; these names are used
3850in the @code{%token} and @code{%type} declarations to pick one of the types
3851for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3852
6273355b
PE
3853As an extension to @acronym{POSIX}, a tag is allowed after the
3854@code{union}. For example:
3855
3856@example
3857@group
3858%union value @{
3859 double val;
3860 symrec *tptr;
3861@}
3862@end group
3863@end example
3864
d6ca7905 3865@noindent
6273355b
PE
3866specifies the union tag @code{value}, so the corresponding C type is
3867@code{union value}. If you do not specify a tag, it defaults to
3868@code{YYSTYPE}.
3869
d6ca7905
PE
3870As another extension to @acronym{POSIX}, you may specify multiple
3871@code{%union} declarations; their contents are concatenated. However,
3872only the first @code{%union} declaration can specify a tag.
3873
6273355b 3874Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3875a semicolon after the closing brace.
3876
342b8b6e 3877@node Type Decl
bfa74976
RS
3878@subsection Nonterminal Symbols
3879@cindex declaring value types, nonterminals
3880@cindex value types, nonterminals, declaring
3881@findex %type
3882
3883@noindent
3884When you use @code{%union} to specify multiple value types, you must
3885declare the value type of each nonterminal symbol for which values are
3886used. This is done with a @code{%type} declaration, like this:
3887
3888@example
3889%type <@var{type}> @var{nonterminal}@dots{}
3890@end example
3891
3892@noindent
704a47c4
AD
3893Here @var{nonterminal} is the name of a nonterminal symbol, and
3894@var{type} is the name given in the @code{%union} to the alternative
3895that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3896can give any number of nonterminal symbols in the same @code{%type}
3897declaration, if they have the same value type. Use spaces to separate
3898the symbol names.
bfa74976 3899
931c7513
RS
3900You can also declare the value type of a terminal symbol. To do this,
3901use the same @code{<@var{type}>} construction in a declaration for the
3902terminal symbol. All kinds of token declarations allow
3903@code{<@var{type}>}.
3904
18d192f0
AD
3905@node Initial Action Decl
3906@subsection Performing Actions before Parsing
3907@findex %initial-action
3908
3909Sometimes your parser needs to perform some initializations before
3910parsing. The @code{%initial-action} directive allows for such arbitrary
3911code.
3912
3913@deffn {Directive} %initial-action @{ @var{code} @}
3914@findex %initial-action
287c78f6 3915Declare that the braced @var{code} must be invoked before parsing each time
451364ed
AD
3916@code{yyparse} is called. The @var{code} may use @code{$$} and
3917@code{@@$} --- initial value and location of the look-ahead --- and the
3918@code{%parse-param}.
18d192f0
AD
3919@end deffn
3920
451364ed
AD
3921For instance, if your locations use a file name, you may use
3922
3923@example
48b16bbc 3924%parse-param @{ char const *file_name @};
451364ed
AD
3925%initial-action
3926@{
4626a15d 3927 @@$.initialize (file_name);
451364ed
AD
3928@};
3929@end example
3930
18d192f0 3931
72f889cc
AD
3932@node Destructor Decl
3933@subsection Freeing Discarded Symbols
3934@cindex freeing discarded symbols
3935@findex %destructor
3936
a85284cf
AD
3937During error recovery (@pxref{Error Recovery}), symbols already pushed
3938on the stack and tokens coming from the rest of the file are discarded
3939until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3940or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3941symbols on the stack must be discarded. Even if the parser succeeds, it
3942must discard the start symbol.
258b75ca
PE
3943
3944When discarded symbols convey heap based information, this memory is
3945lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3946in traditional compilers, it is unacceptable for programs like shells or
3947protocol implementations that may parse and execute indefinitely.
258b75ca 3948
a85284cf
AD
3949The @code{%destructor} directive defines code that is called when a
3950symbol is automatically discarded.
72f889cc
AD
3951
3952@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3953@findex %destructor
287c78f6
PE
3954Invoke the braced @var{code} whenever the parser discards one of the
3955@var{symbols}.
4b367315
AD
3956Within @var{code}, @code{$$} designates the semantic value associated
3957with the discarded symbol. The additional parser parameters are also
3958available (@pxref{Parser Function, , The Parser Function
3959@code{yyparse}}).
72f889cc
AD
3960@end deffn
3961
3962For instance:
3963
3964@smallexample
3965%union
3966@{
3967 char *string;
3968@}
3969%token <string> STRING
3970%type <string> string
3971%destructor @{ free ($$); @} STRING string
3972@end smallexample
3973
3974@noindent
258b75ca 3975guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3976its associated memory will be freed.
3977
e757bb10
AD
3978@sp 1
3979
3980@cindex discarded symbols
3981@dfn{Discarded symbols} are the following:
3982
3983@itemize
3984@item
3985stacked symbols popped during the first phase of error recovery,
3986@item
3987incoming terminals during the second phase of error recovery,
3988@item
a85284cf 3989the current look-ahead and the entire stack (except the current
9d9b8b70 3990right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3991@item
3992the start symbol, when the parser succeeds.
e757bb10
AD
3993@end itemize
3994
9d9b8b70
PE
3995The parser can @dfn{return immediately} because of an explicit call to
3996@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
3997exhaustion.
3998
3999Right-hand size symbols of a rule that explicitly triggers a syntax
4000error via @code{YYERROR} are not discarded automatically. As a rule
4001of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4002the memory.
e757bb10 4003
342b8b6e 4004@node Expect Decl
bfa74976
RS
4005@subsection Suppressing Conflict Warnings
4006@cindex suppressing conflict warnings
4007@cindex preventing warnings about conflicts
4008@cindex warnings, preventing
4009@cindex conflicts, suppressing warnings of
4010@findex %expect
d6328241 4011@findex %expect-rr
bfa74976
RS
4012
4013Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4014(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4015have harmless shift/reduce conflicts which are resolved in a predictable
4016way and would be difficult to eliminate. It is desirable to suppress
4017the warning about these conflicts unless the number of conflicts
4018changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4019
4020The declaration looks like this:
4021
4022@example
4023%expect @var{n}
4024@end example
4025
035aa4a0
PE
4026Here @var{n} is a decimal integer. The declaration says there should
4027be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4028Bison reports an error if the number of shift/reduce conflicts differs
4029from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4030
035aa4a0
PE
4031For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4032serious, and should be eliminated entirely. Bison will always report
4033reduce/reduce conflicts for these parsers. With @acronym{GLR}
4034parsers, however, both kinds of conflicts are routine; otherwise,
4035there would be no need to use @acronym{GLR} parsing. Therefore, it is
4036also possible to specify an expected number of reduce/reduce conflicts
4037in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4038
4039@example
4040%expect-rr @var{n}
4041@end example
4042
bfa74976
RS
4043In general, using @code{%expect} involves these steps:
4044
4045@itemize @bullet
4046@item
4047Compile your grammar without @code{%expect}. Use the @samp{-v} option
4048to get a verbose list of where the conflicts occur. Bison will also
4049print the number of conflicts.
4050
4051@item
4052Check each of the conflicts to make sure that Bison's default
4053resolution is what you really want. If not, rewrite the grammar and
4054go back to the beginning.
4055
4056@item
4057Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4058number which Bison printed. With @acronym{GLR} parsers, add an
4059@code{%expect-rr} declaration as well.
bfa74976
RS
4060@end itemize
4061
035aa4a0
PE
4062Now Bison will warn you if you introduce an unexpected conflict, but
4063will keep silent otherwise.
bfa74976 4064
342b8b6e 4065@node Start Decl
bfa74976
RS
4066@subsection The Start-Symbol
4067@cindex declaring the start symbol
4068@cindex start symbol, declaring
4069@cindex default start symbol
4070@findex %start
4071
4072Bison assumes by default that the start symbol for the grammar is the first
4073nonterminal specified in the grammar specification section. The programmer
4074may override this restriction with the @code{%start} declaration as follows:
4075
4076@example
4077%start @var{symbol}
4078@end example
4079
342b8b6e 4080@node Pure Decl
bfa74976
RS
4081@subsection A Pure (Reentrant) Parser
4082@cindex reentrant parser
4083@cindex pure parser
8c9a50be 4084@findex %pure-parser
bfa74976
RS
4085
4086A @dfn{reentrant} program is one which does not alter in the course of
4087execution; in other words, it consists entirely of @dfn{pure} (read-only)
4088code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4089for example, a nonreentrant program may not be safe to call from a signal
4090handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4091program must be called only within interlocks.
4092
70811b85 4093Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4094suitable for most uses, and it permits compatibility with Yacc. (The
4095standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4096statically allocated variables for communication with @code{yylex},
4097including @code{yylval} and @code{yylloc}.)
bfa74976 4098
70811b85 4099Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4100declaration @code{%pure-parser} says that you want the parser to be
70811b85 4101reentrant. It looks like this:
bfa74976
RS
4102
4103@example
8c9a50be 4104%pure-parser
bfa74976
RS
4105@end example
4106
70811b85
RS
4107The result is that the communication variables @code{yylval} and
4108@code{yylloc} become local variables in @code{yyparse}, and a different
4109calling convention is used for the lexical analyzer function
4110@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4111Parsers}, for the details of this. The variable @code{yynerrs} also
4112becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4113Reporting Function @code{yyerror}}). The convention for calling
4114@code{yyparse} itself is unchanged.
4115
4116Whether the parser is pure has nothing to do with the grammar rules.
4117You can generate either a pure parser or a nonreentrant parser from any
4118valid grammar.
bfa74976 4119
342b8b6e 4120@node Decl Summary
bfa74976
RS
4121@subsection Bison Declaration Summary
4122@cindex Bison declaration summary
4123@cindex declaration summary
4124@cindex summary, Bison declaration
4125
d8988b2f 4126Here is a summary of the declarations used to define a grammar:
bfa74976 4127
18b519c0 4128@deffn {Directive} %union
bfa74976
RS
4129Declare the collection of data types that semantic values may have
4130(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4131@end deffn
bfa74976 4132
18b519c0 4133@deffn {Directive} %token
bfa74976
RS
4134Declare a terminal symbol (token type name) with no precedence
4135or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4136@end deffn
bfa74976 4137
18b519c0 4138@deffn {Directive} %right
bfa74976
RS
4139Declare a terminal symbol (token type name) that is right-associative
4140(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4141@end deffn
bfa74976 4142
18b519c0 4143@deffn {Directive} %left
bfa74976
RS
4144Declare a terminal symbol (token type name) that is left-associative
4145(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4146@end deffn
bfa74976 4147
18b519c0 4148@deffn {Directive} %nonassoc
bfa74976 4149Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4150(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4151Using it in a way that would be associative is a syntax error.
4152@end deffn
4153
91d2c560 4154@ifset defaultprec
39a06c25 4155@deffn {Directive} %default-prec
22fccf95 4156Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4157(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4158@end deffn
91d2c560 4159@end ifset
bfa74976 4160
18b519c0 4161@deffn {Directive} %type
bfa74976
RS
4162Declare the type of semantic values for a nonterminal symbol
4163(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4164@end deffn
bfa74976 4165
18b519c0 4166@deffn {Directive} %start
89cab50d
AD
4167Specify the grammar's start symbol (@pxref{Start Decl, ,The
4168Start-Symbol}).
18b519c0 4169@end deffn
bfa74976 4170
18b519c0 4171@deffn {Directive} %expect
bfa74976
RS
4172Declare the expected number of shift-reduce conflicts
4173(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4174@end deffn
4175
bfa74976 4176
d8988b2f
AD
4177@sp 1
4178@noindent
4179In order to change the behavior of @command{bison}, use the following
4180directives:
4181
18b519c0 4182@deffn {Directive} %debug
4947ebdb
PE
4183In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4184already defined, so that the debugging facilities are compiled.
18b519c0 4185@end deffn
ec3bc396 4186@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4187
18b519c0 4188@deffn {Directive} %defines
4bfd5e4e
PE
4189Write a header file containing macro definitions for the token type
4190names defined in the grammar as well as a few other declarations.
d8988b2f 4191If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4192is named @file{@var{name}.h}.
d8988b2f 4193
4bfd5e4e 4194Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4195declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4196(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4197require other definitions, or if you have defined a @code{YYSTYPE} macro
4198(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4199arrange for these definitions to be propagated to all modules, e.g., by
4200putting them in a prerequisite header that is included both by your
4201parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4202
4203Unless your parser is pure, the output header declares @code{yylval}
4204as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4205Parser}.
4206
4207If you have also used locations, the output header declares
4208@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4209@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4210Locations}.
4211
f8e1c9e5
AD
4212This output file is normally essential if you wish to put the definition
4213of @code{yylex} in a separate source file, because @code{yylex}
4214typically needs to be able to refer to the above-mentioned declarations
4215and to the token type codes. @xref{Token Values, ,Semantic Values of
4216Tokens}.
18b519c0 4217@end deffn
d8988b2f 4218
18b519c0 4219@deffn {Directive} %destructor
258b75ca 4220Specify how the parser should reclaim the memory associated to
fa7e68c3 4221discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4222@end deffn
72f889cc 4223
18b519c0 4224@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4225Specify a prefix to use for all Bison output file names. The names are
4226chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4227@end deffn
d8988b2f 4228
18b519c0 4229@deffn {Directive} %locations
89cab50d
AD
4230Generate the code processing the locations (@pxref{Action Features,
4231,Special Features for Use in Actions}). This mode is enabled as soon as
4232the grammar uses the special @samp{@@@var{n}} tokens, but if your
4233grammar does not use it, using @samp{%locations} allows for more
6e649e65 4234accurate syntax error messages.
18b519c0 4235@end deffn
89cab50d 4236
18b519c0 4237@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4238Rename the external symbols used in the parser so that they start with
4239@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4240is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4241@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4242possible @code{yylloc}. For example, if you use
4243@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4244and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4245Program}.
18b519c0 4246@end deffn
931c7513 4247
91d2c560 4248@ifset defaultprec
22fccf95
PE
4249@deffn {Directive} %no-default-prec
4250Do not assign a precedence to rules lacking an explicit @code{%prec}
4251modifier (@pxref{Contextual Precedence, ,Context-Dependent
4252Precedence}).
4253@end deffn
91d2c560 4254@end ifset
22fccf95 4255
18b519c0 4256@deffn {Directive} %no-parser
6deb4447
AD
4257Do not include any C code in the parser file; generate tables only. The
4258parser file contains just @code{#define} directives and static variable
4259declarations.
4260
4261This option also tells Bison to write the C code for the grammar actions
fa4d969f 4262into a file named @file{@var{file}.act}, in the form of a
6deb4447 4263brace-surrounded body fit for a @code{switch} statement.
18b519c0 4264@end deffn
6deb4447 4265
18b519c0 4266@deffn {Directive} %no-lines
931c7513
RS
4267Don't generate any @code{#line} preprocessor commands in the parser
4268file. Ordinarily Bison writes these commands in the parser file so that
4269the C compiler and debuggers will associate errors and object code with
4270your source file (the grammar file). This directive causes them to
4271associate errors with the parser file, treating it an independent source
4272file in its own right.
18b519c0 4273@end deffn
931c7513 4274
fa4d969f
PE
4275@deffn {Directive} %output="@var{file}"
4276Specify @var{file} for the parser file.
18b519c0 4277@end deffn
6deb4447 4278
18b519c0 4279@deffn {Directive} %pure-parser
d8988b2f
AD
4280Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4281(Reentrant) Parser}).
18b519c0 4282@end deffn
6deb4447 4283
b50d2359 4284@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4285Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4286Require a Version of Bison}.
b50d2359
AD
4287@end deffn
4288
18b519c0 4289@deffn {Directive} %token-table
931c7513
RS
4290Generate an array of token names in the parser file. The name of the
4291array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4292token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4293three elements of @code{yytname} correspond to the predefined tokens
4294@code{"$end"},
88bce5a2
AD
4295@code{"error"}, and @code{"$undefined"}; after these come the symbols
4296defined in the grammar file.
931c7513 4297
9e0876fb
PE
4298The name in the table includes all the characters needed to represent
4299the token in Bison. For single-character literals and literal
4300strings, this includes the surrounding quoting characters and any
4301escape sequences. For example, the Bison single-character literal
4302@code{'+'} corresponds to a three-character name, represented in C as
4303@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4304corresponds to a five-character name, represented in C as
4305@code{"\"\\\\/\""}.
931c7513 4306
8c9a50be 4307When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4308definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4309@code{YYNRULES}, and @code{YYNSTATES}:
4310
4311@table @code
4312@item YYNTOKENS
4313The highest token number, plus one.
4314@item YYNNTS
9ecbd125 4315The number of nonterminal symbols.
931c7513
RS
4316@item YYNRULES
4317The number of grammar rules,
4318@item YYNSTATES
4319The number of parser states (@pxref{Parser States}).
4320@end table
18b519c0 4321@end deffn
d8988b2f 4322
18b519c0 4323@deffn {Directive} %verbose
d8988b2f
AD
4324Write an extra output file containing verbose descriptions of the
4325parser states and what is done for each type of look-ahead token in
72d2299c 4326that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4327information.
18b519c0 4328@end deffn
d8988b2f 4329
18b519c0 4330@deffn {Directive} %yacc
d8988b2f
AD
4331Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4332including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4333@end deffn
d8988b2f
AD
4334
4335
342b8b6e 4336@node Multiple Parsers
bfa74976
RS
4337@section Multiple Parsers in the Same Program
4338
4339Most programs that use Bison parse only one language and therefore contain
4340only one Bison parser. But what if you want to parse more than one
4341language with the same program? Then you need to avoid a name conflict
4342between different definitions of @code{yyparse}, @code{yylval}, and so on.
4343
4344The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4345(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4346functions and variables of the Bison parser to start with @var{prefix}
4347instead of @samp{yy}. You can use this to give each parser distinct
4348names that do not conflict.
bfa74976
RS
4349
4350The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4351@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4352@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4353the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4354
4355@strong{All the other variables and macros associated with Bison are not
4356renamed.} These others are not global; there is no conflict if the same
4357name is used in different parsers. For example, @code{YYSTYPE} is not
4358renamed, but defining this in different ways in different parsers causes
4359no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4360
4361The @samp{-p} option works by adding macro definitions to the beginning
4362of the parser source file, defining @code{yyparse} as
4363@code{@var{prefix}parse}, and so on. This effectively substitutes one
4364name for the other in the entire parser file.
4365
342b8b6e 4366@node Interface
bfa74976
RS
4367@chapter Parser C-Language Interface
4368@cindex C-language interface
4369@cindex interface
4370
4371The Bison parser is actually a C function named @code{yyparse}. Here we
4372describe the interface conventions of @code{yyparse} and the other
4373functions that it needs to use.
4374
4375Keep in mind that the parser uses many C identifiers starting with
4376@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4377identifier (aside from those in this manual) in an action or in epilogue
4378in the grammar file, you are likely to run into trouble.
bfa74976
RS
4379
4380@menu
4381* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4382* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4383 which reads tokens.
4384* Error Reporting:: You must supply a function @code{yyerror}.
4385* Action Features:: Special features for use in actions.
f7ab6a50
PE
4386* Internationalization:: How to let the parser speak in the user's
4387 native language.
bfa74976
RS
4388@end menu
4389
342b8b6e 4390@node Parser Function
bfa74976
RS
4391@section The Parser Function @code{yyparse}
4392@findex yyparse
4393
4394You call the function @code{yyparse} to cause parsing to occur. This
4395function reads tokens, executes actions, and ultimately returns when it
4396encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4397write an action which directs @code{yyparse} to return immediately
4398without reading further.
bfa74976 4399
2a8d363a
AD
4400
4401@deftypefun int yyparse (void)
bfa74976
RS
4402The value returned by @code{yyparse} is 0 if parsing was successful (return
4403is due to end-of-input).
4404
b47dbebe
PE
4405The value is 1 if parsing failed because of invalid input, i.e., input
4406that contains a syntax error or that causes @code{YYABORT} to be
4407invoked.
4408
4409The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4410@end deftypefun
bfa74976
RS
4411
4412In an action, you can cause immediate return from @code{yyparse} by using
4413these macros:
4414
2a8d363a 4415@defmac YYACCEPT
bfa74976
RS
4416@findex YYACCEPT
4417Return immediately with value 0 (to report success).
2a8d363a 4418@end defmac
bfa74976 4419
2a8d363a 4420@defmac YYABORT
bfa74976
RS
4421@findex YYABORT
4422Return immediately with value 1 (to report failure).
2a8d363a
AD
4423@end defmac
4424
4425If you use a reentrant parser, you can optionally pass additional
4426parameter information to it in a reentrant way. To do so, use the
4427declaration @code{%parse-param}:
4428
feeb0eda 4429@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4430@findex %parse-param
287c78f6
PE
4431Declare that an argument declared by the braced-code
4432@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4433The @var{argument-declaration} is used when declaring
feeb0eda
PE
4434functions or prototypes. The last identifier in
4435@var{argument-declaration} must be the argument name.
2a8d363a
AD
4436@end deffn
4437
4438Here's an example. Write this in the parser:
4439
4440@example
feeb0eda
PE
4441%parse-param @{int *nastiness@}
4442%parse-param @{int *randomness@}
2a8d363a
AD
4443@end example
4444
4445@noindent
4446Then call the parser like this:
4447
4448@example
4449@{
4450 int nastiness, randomness;
4451 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4452 value = yyparse (&nastiness, &randomness);
4453 @dots{}
4454@}
4455@end example
4456
4457@noindent
4458In the grammar actions, use expressions like this to refer to the data:
4459
4460@example
4461exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4462@end example
4463
bfa74976 4464
342b8b6e 4465@node Lexical
bfa74976
RS
4466@section The Lexical Analyzer Function @code{yylex}
4467@findex yylex
4468@cindex lexical analyzer
4469
4470The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4471the input stream and returns them to the parser. Bison does not create
4472this function automatically; you must write it so that @code{yyparse} can
4473call it. The function is sometimes referred to as a lexical scanner.
4474
4475In simple programs, @code{yylex} is often defined at the end of the Bison
4476grammar file. If @code{yylex} is defined in a separate source file, you
4477need to arrange for the token-type macro definitions to be available there.
4478To do this, use the @samp{-d} option when you run Bison, so that it will
4479write these macro definitions into a separate header file
4480@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4481that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4482
4483@menu
4484* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4485* Token Values:: How @code{yylex} must return the semantic value
4486 of the token it has read.
95923bd6 4487* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4488 (line number, etc.) of the token, if the
4489 actions want that.
4490* Pure Calling:: How the calling convention differs
4491 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4492@end menu
4493
342b8b6e 4494@node Calling Convention
bfa74976
RS
4495@subsection Calling Convention for @code{yylex}
4496
72d2299c
PE
4497The value that @code{yylex} returns must be the positive numeric code
4498for the type of token it has just found; a zero or negative value
4499signifies end-of-input.
bfa74976
RS
4500
4501When a token is referred to in the grammar rules by a name, that name
4502in the parser file becomes a C macro whose definition is the proper
4503numeric code for that token type. So @code{yylex} can use the name
4504to indicate that type. @xref{Symbols}.
4505
4506When a token is referred to in the grammar rules by a character literal,
4507the numeric code for that character is also the code for the token type.
72d2299c
PE
4508So @code{yylex} can simply return that character code, possibly converted
4509to @code{unsigned char} to avoid sign-extension. The null character
4510must not be used this way, because its code is zero and that
bfa74976
RS
4511signifies end-of-input.
4512
4513Here is an example showing these things:
4514
4515@example
13863333
AD
4516int
4517yylex (void)
bfa74976
RS
4518@{
4519 @dots{}
72d2299c 4520 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4521 return 0;
4522 @dots{}
4523 if (c == '+' || c == '-')
72d2299c 4524 return c; /* Assume token type for `+' is '+'. */
bfa74976 4525 @dots{}
72d2299c 4526 return INT; /* Return the type of the token. */
bfa74976
RS
4527 @dots{}
4528@}
4529@end example
4530
4531@noindent
4532This interface has been designed so that the output from the @code{lex}
4533utility can be used without change as the definition of @code{yylex}.
4534
931c7513
RS
4535If the grammar uses literal string tokens, there are two ways that
4536@code{yylex} can determine the token type codes for them:
4537
4538@itemize @bullet
4539@item
4540If the grammar defines symbolic token names as aliases for the
4541literal string tokens, @code{yylex} can use these symbolic names like
4542all others. In this case, the use of the literal string tokens in
4543the grammar file has no effect on @code{yylex}.
4544
4545@item
9ecbd125 4546@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4547table. The index of the token in the table is the token type's code.
9ecbd125 4548The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4549double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4550token's characters are escaped as necessary to be suitable as input
4551to Bison.
931c7513 4552
9e0876fb
PE
4553Here's code for looking up a multicharacter token in @code{yytname},
4554assuming that the characters of the token are stored in
4555@code{token_buffer}, and assuming that the token does not contain any
4556characters like @samp{"} that require escaping.
931c7513
RS
4557
4558@smallexample
4559for (i = 0; i < YYNTOKENS; i++)
4560 @{
4561 if (yytname[i] != 0
4562 && yytname[i][0] == '"'
68449b3a
PE
4563 && ! strncmp (yytname[i] + 1, token_buffer,
4564 strlen (token_buffer))
931c7513
RS
4565 && yytname[i][strlen (token_buffer) + 1] == '"'
4566 && yytname[i][strlen (token_buffer) + 2] == 0)
4567 break;
4568 @}
4569@end smallexample
4570
4571The @code{yytname} table is generated only if you use the
8c9a50be 4572@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4573@end itemize
4574
342b8b6e 4575@node Token Values
bfa74976
RS
4576@subsection Semantic Values of Tokens
4577
4578@vindex yylval
9d9b8b70 4579In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4580be stored into the global variable @code{yylval}. When you are using
4581just one data type for semantic values, @code{yylval} has that type.
4582Thus, if the type is @code{int} (the default), you might write this in
4583@code{yylex}:
4584
4585@example
4586@group
4587 @dots{}
72d2299c
PE
4588 yylval = value; /* Put value onto Bison stack. */
4589 return INT; /* Return the type of the token. */
bfa74976
RS
4590 @dots{}
4591@end group
4592@end example
4593
4594When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4595made from the @code{%union} declaration (@pxref{Union Decl, ,The
4596Collection of Value Types}). So when you store a token's value, you
4597must use the proper member of the union. If the @code{%union}
4598declaration looks like this:
bfa74976
RS
4599
4600@example
4601@group
4602%union @{
4603 int intval;
4604 double val;
4605 symrec *tptr;
4606@}
4607@end group
4608@end example
4609
4610@noindent
4611then the code in @code{yylex} might look like this:
4612
4613@example
4614@group
4615 @dots{}
72d2299c
PE
4616 yylval.intval = value; /* Put value onto Bison stack. */
4617 return INT; /* Return the type of the token. */
bfa74976
RS
4618 @dots{}
4619@end group
4620@end example
4621
95923bd6
AD
4622@node Token Locations
4623@subsection Textual Locations of Tokens
bfa74976
RS
4624
4625@vindex yylloc
847bf1f5 4626If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4627Tracking Locations}) in actions to keep track of the textual locations
4628of tokens and groupings, then you must provide this information in
4629@code{yylex}. The function @code{yyparse} expects to find the textual
4630location of a token just parsed in the global variable @code{yylloc}.
4631So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4632
4633By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4634initialize the members that are going to be used by the actions. The
4635four members are called @code{first_line}, @code{first_column},
4636@code{last_line} and @code{last_column}. Note that the use of this
4637feature makes the parser noticeably slower.
bfa74976
RS
4638
4639@tindex YYLTYPE
4640The data type of @code{yylloc} has the name @code{YYLTYPE}.
4641
342b8b6e 4642@node Pure Calling
c656404a 4643@subsection Calling Conventions for Pure Parsers
bfa74976 4644
8c9a50be 4645When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4646pure, reentrant parser, the global communication variables @code{yylval}
4647and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4648Parser}.) In such parsers the two global variables are replaced by
4649pointers passed as arguments to @code{yylex}. You must declare them as
4650shown here, and pass the information back by storing it through those
4651pointers.
bfa74976
RS
4652
4653@example
13863333
AD
4654int
4655yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4656@{
4657 @dots{}
4658 *lvalp = value; /* Put value onto Bison stack. */
4659 return INT; /* Return the type of the token. */
4660 @dots{}
4661@}
4662@end example
4663
4664If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4665textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4666this case, omit the second argument; @code{yylex} will be called with
4667only one argument.
4668
e425e872 4669
2a8d363a
AD
4670If you wish to pass the additional parameter data to @code{yylex}, use
4671@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4672Function}).
e425e872 4673
feeb0eda 4674@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4675@findex %lex-param
287c78f6
PE
4676Declare that the braced-code @var{argument-declaration} is an
4677additional @code{yylex} argument declaration.
2a8d363a 4678@end deffn
e425e872 4679
2a8d363a 4680For instance:
e425e872
RS
4681
4682@example
feeb0eda
PE
4683%parse-param @{int *nastiness@}
4684%lex-param @{int *nastiness@}
4685%parse-param @{int *randomness@}
e425e872
RS
4686@end example
4687
4688@noindent
2a8d363a 4689results in the following signature:
e425e872
RS
4690
4691@example
2a8d363a
AD
4692int yylex (int *nastiness);
4693int yyparse (int *nastiness, int *randomness);
e425e872
RS
4694@end example
4695
2a8d363a 4696If @code{%pure-parser} is added:
c656404a
RS
4697
4698@example
2a8d363a
AD
4699int yylex (YYSTYPE *lvalp, int *nastiness);
4700int yyparse (int *nastiness, int *randomness);
c656404a
RS
4701@end example
4702
2a8d363a
AD
4703@noindent
4704and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4705
2a8d363a
AD
4706@example
4707int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4708int yyparse (int *nastiness, int *randomness);
4709@end example
931c7513 4710
342b8b6e 4711@node Error Reporting
bfa74976
RS
4712@section The Error Reporting Function @code{yyerror}
4713@cindex error reporting function
4714@findex yyerror
4715@cindex parse error
4716@cindex syntax error
4717
6e649e65 4718The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4719whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4720action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4721macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4722in Actions}).
bfa74976
RS
4723
4724The Bison parser expects to report the error by calling an error
4725reporting function named @code{yyerror}, which you must supply. It is
4726called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4727receives one argument. For a syntax error, the string is normally
4728@w{@code{"syntax error"}}.
bfa74976 4729
2a8d363a
AD
4730@findex %error-verbose
4731If you invoke the directive @code{%error-verbose} in the Bison
4732declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4733Section}), then Bison provides a more verbose and specific error message
6e649e65 4734string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4735
1a059451
PE
4736The parser can detect one other kind of error: memory exhaustion. This
4737can happen when the input contains constructions that are very deeply
bfa74976 4738nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4739parser normally extends its stack automatically up to a very large limit. But
4740if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4741fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4742
4743In some cases diagnostics like @w{@code{"syntax error"}} are
4744translated automatically from English to some other language before
4745they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4746
4747The following definition suffices in simple programs:
4748
4749@example
4750@group
13863333 4751void
38a92d50 4752yyerror (char const *s)
bfa74976
RS
4753@{
4754@end group
4755@group
4756 fprintf (stderr, "%s\n", s);
4757@}
4758@end group
4759@end example
4760
4761After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4762error recovery if you have written suitable error recovery grammar rules
4763(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4764immediately return 1.
4765
93724f13 4766Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4767an access to the current location.
4768This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4769parsers, but not for the Yacc parser, for historical reasons. I.e., if
4770@samp{%locations %pure-parser} is passed then the prototypes for
4771@code{yyerror} are:
4772
4773@example
38a92d50
PE
4774void yyerror (char const *msg); /* Yacc parsers. */
4775void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4776@end example
4777
feeb0eda 4778If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4779
4780@example
b317297e
PE
4781void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4782void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4783@end example
4784
fa7e68c3 4785Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4786convention for absolutely pure parsers, i.e., when the calling
4787convention of @code{yylex} @emph{and} the calling convention of
4788@code{%pure-parser} are pure. I.e.:
4789
4790@example
4791/* Location tracking. */
4792%locations
4793/* Pure yylex. */
4794%pure-parser
feeb0eda 4795%lex-param @{int *nastiness@}
2a8d363a 4796/* Pure yyparse. */
feeb0eda
PE
4797%parse-param @{int *nastiness@}
4798%parse-param @{int *randomness@}
2a8d363a
AD
4799@end example
4800
4801@noindent
4802results in the following signatures for all the parser kinds:
4803
4804@example
4805int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4806int yyparse (int *nastiness, int *randomness);
93724f13
AD
4807void yyerror (YYLTYPE *locp,
4808 int *nastiness, int *randomness,
38a92d50 4809 char const *msg);
2a8d363a
AD
4810@end example
4811
1c0c3e95 4812@noindent
38a92d50
PE
4813The prototypes are only indications of how the code produced by Bison
4814uses @code{yyerror}. Bison-generated code always ignores the returned
4815value, so @code{yyerror} can return any type, including @code{void}.
4816Also, @code{yyerror} can be a variadic function; that is why the
4817message is always passed last.
4818
4819Traditionally @code{yyerror} returns an @code{int} that is always
4820ignored, but this is purely for historical reasons, and @code{void} is
4821preferable since it more accurately describes the return type for
4822@code{yyerror}.
93724f13 4823
bfa74976
RS
4824@vindex yynerrs
4825The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4826reported so far. Normally this variable is global; but if you
704a47c4
AD
4827request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4828then it is a local variable which only the actions can access.
bfa74976 4829
342b8b6e 4830@node Action Features
bfa74976
RS
4831@section Special Features for Use in Actions
4832@cindex summary, action features
4833@cindex action features summary
4834
4835Here is a table of Bison constructs, variables and macros that
4836are useful in actions.
4837
18b519c0 4838@deffn {Variable} $$
bfa74976
RS
4839Acts like a variable that contains the semantic value for the
4840grouping made by the current rule. @xref{Actions}.
18b519c0 4841@end deffn
bfa74976 4842
18b519c0 4843@deffn {Variable} $@var{n}
bfa74976
RS
4844Acts like a variable that contains the semantic value for the
4845@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4846@end deffn
bfa74976 4847
18b519c0 4848@deffn {Variable} $<@var{typealt}>$
bfa74976 4849Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4850specified by the @code{%union} declaration. @xref{Action Types, ,Data
4851Types of Values in Actions}.
18b519c0 4852@end deffn
bfa74976 4853
18b519c0 4854@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4855Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4856union specified by the @code{%union} declaration.
e0c471a9 4857@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4858@end deffn
bfa74976 4859
18b519c0 4860@deffn {Macro} YYABORT;
bfa74976
RS
4861Return immediately from @code{yyparse}, indicating failure.
4862@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4863@end deffn
bfa74976 4864
18b519c0 4865@deffn {Macro} YYACCEPT;
bfa74976
RS
4866Return immediately from @code{yyparse}, indicating success.
4867@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4868@end deffn
bfa74976 4869
18b519c0 4870@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4871@findex YYBACKUP
4872Unshift a token. This macro is allowed only for rules that reduce
4873a single value, and only when there is no look-ahead token.
c827f760 4874It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4875It installs a look-ahead token with token type @var{token} and
4876semantic value @var{value}; then it discards the value that was
4877going to be reduced by this rule.
4878
4879If the macro is used when it is not valid, such as when there is
4880a look-ahead token already, then it reports a syntax error with
4881a message @samp{cannot back up} and performs ordinary error
4882recovery.
4883
4884In either case, the rest of the action is not executed.
18b519c0 4885@end deffn
bfa74976 4886
18b519c0 4887@deffn {Macro} YYEMPTY
bfa74976
RS
4888@vindex YYEMPTY
4889Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4890@end deffn
bfa74976 4891
32c29292
JD
4892@deffn {Macro} YYEOF
4893@vindex YYEOF
4894Value stored in @code{yychar} when the look-ahead is the end of the input
4895stream.
4896@end deffn
4897
18b519c0 4898@deffn {Macro} YYERROR;
bfa74976
RS
4899@findex YYERROR
4900Cause an immediate syntax error. This statement initiates error
4901recovery just as if the parser itself had detected an error; however, it
4902does not call @code{yyerror}, and does not print any message. If you
4903want to print an error message, call @code{yyerror} explicitly before
4904the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4905@end deffn
bfa74976 4906
18b519c0 4907@deffn {Macro} YYRECOVERING
bfa74976
RS
4908This macro stands for an expression that has the value 1 when the parser
4909is recovering from a syntax error, and 0 the rest of the time.
4910@xref{Error Recovery}.
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Variable} yychar
32c29292
JD
4914Variable containing either the look-ahead token, or @code{YYEOF} when the
4915look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4916has been performed so the next token is not yet known.
4917Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4918Actions}).
bfa74976 4919@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4920@end deffn
bfa74976 4921
18b519c0 4922@deffn {Macro} yyclearin;
bfa74976 4923Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4924error rules.
4925Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4926Semantic Actions}).
4927@xref{Error Recovery}.
18b519c0 4928@end deffn
bfa74976 4929
18b519c0 4930@deffn {Macro} yyerrok;
bfa74976 4931Resume generating error messages immediately for subsequent syntax
13863333 4932errors. This is useful primarily in error rules.
bfa74976 4933@xref{Error Recovery}.
18b519c0 4934@end deffn
bfa74976 4935
32c29292
JD
4936@deffn {Variable} yylloc
4937Variable containing the look-ahead token location when @code{yychar} is not set
4938to @code{YYEMPTY} or @code{YYEOF}.
4939Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4940Actions}).
4941@xref{Actions and Locations, ,Actions and Locations}.
4942@end deffn
4943
4944@deffn {Variable} yylval
4945Variable containing the look-ahead token semantic value when @code{yychar} is
4946not set to @code{YYEMPTY} or @code{YYEOF}.
4947Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4948Actions}).
4949@xref{Actions, ,Actions}.
4950@end deffn
4951
18b519c0 4952@deffn {Value} @@$
847bf1f5 4953@findex @@$
95923bd6 4954Acts like a structure variable containing information on the textual location
847bf1f5
AD
4955of the grouping made by the current rule. @xref{Locations, ,
4956Tracking Locations}.
bfa74976 4957
847bf1f5
AD
4958@c Check if those paragraphs are still useful or not.
4959
4960@c @example
4961@c struct @{
4962@c int first_line, last_line;
4963@c int first_column, last_column;
4964@c @};
4965@c @end example
4966
4967@c Thus, to get the starting line number of the third component, you would
4968@c use @samp{@@3.first_line}.
bfa74976 4969
847bf1f5
AD
4970@c In order for the members of this structure to contain valid information,
4971@c you must make @code{yylex} supply this information about each token.
4972@c If you need only certain members, then @code{yylex} need only fill in
4973@c those members.
bfa74976 4974
847bf1f5 4975@c The use of this feature makes the parser noticeably slower.
18b519c0 4976@end deffn
847bf1f5 4977
18b519c0 4978@deffn {Value} @@@var{n}
847bf1f5 4979@findex @@@var{n}
95923bd6 4980Acts like a structure variable containing information on the textual location
847bf1f5
AD
4981of the @var{n}th component of the current rule. @xref{Locations, ,
4982Tracking Locations}.
18b519c0 4983@end deffn
bfa74976 4984
f7ab6a50
PE
4985@node Internationalization
4986@section Parser Internationalization
4987@cindex internationalization
4988@cindex i18n
4989@cindex NLS
4990@cindex gettext
4991@cindex bison-po
4992
4993A Bison-generated parser can print diagnostics, including error and
4994tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
4995also supports outputting diagnostics in the user's native language. To
4996make this work, the user should set the usual environment variables.
4997@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
4998For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
4999set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5000encoding. The exact set of available locales depends on the user's
5001installation.
5002
5003The maintainer of a package that uses a Bison-generated parser enables
5004the internationalization of the parser's output through the following
5005steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5006@acronym{GNU} Automake.
5007
5008@enumerate
5009@item
30757c8c 5010@cindex bison-i18n.m4
f7ab6a50
PE
5011Into the directory containing the @acronym{GNU} Autoconf macros used
5012by the package---often called @file{m4}---copy the
5013@file{bison-i18n.m4} file installed by Bison under
5014@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5015For example:
5016
5017@example
5018cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5019@end example
5020
5021@item
30757c8c
PE
5022@findex BISON_I18N
5023@vindex BISON_LOCALEDIR
5024@vindex YYENABLE_NLS
f7ab6a50
PE
5025In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5026invocation, add an invocation of @code{BISON_I18N}. This macro is
5027defined in the file @file{bison-i18n.m4} that you copied earlier. It
5028causes @samp{configure} to find the value of the
30757c8c
PE
5029@code{BISON_LOCALEDIR} variable, and it defines the source-language
5030symbol @code{YYENABLE_NLS} to enable translations in the
5031Bison-generated parser.
f7ab6a50
PE
5032
5033@item
5034In the @code{main} function of your program, designate the directory
5035containing Bison's runtime message catalog, through a call to
5036@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5037For example:
5038
5039@example
5040bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5041@end example
5042
5043Typically this appears after any other call @code{bindtextdomain
5044(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5045@samp{BISON_LOCALEDIR} to be defined as a string through the
5046@file{Makefile}.
5047
5048@item
5049In the @file{Makefile.am} that controls the compilation of the @code{main}
5050function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5051either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5052
5053@example
5054DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5055@end example
5056
5057or:
5058
5059@example
5060AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5061@end example
5062
5063@item
5064Finally, invoke the command @command{autoreconf} to generate the build
5065infrastructure.
5066@end enumerate
5067
bfa74976 5068
342b8b6e 5069@node Algorithm
13863333
AD
5070@chapter The Bison Parser Algorithm
5071@cindex Bison parser algorithm
bfa74976
RS
5072@cindex algorithm of parser
5073@cindex shifting
5074@cindex reduction
5075@cindex parser stack
5076@cindex stack, parser
5077
5078As Bison reads tokens, it pushes them onto a stack along with their
5079semantic values. The stack is called the @dfn{parser stack}. Pushing a
5080token is traditionally called @dfn{shifting}.
5081
5082For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5083@samp{3} to come. The stack will have four elements, one for each token
5084that was shifted.
5085
5086But the stack does not always have an element for each token read. When
5087the last @var{n} tokens and groupings shifted match the components of a
5088grammar rule, they can be combined according to that rule. This is called
5089@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5090single grouping whose symbol is the result (left hand side) of that rule.
5091Running the rule's action is part of the process of reduction, because this
5092is what computes the semantic value of the resulting grouping.
5093
5094For example, if the infix calculator's parser stack contains this:
5095
5096@example
50971 + 5 * 3
5098@end example
5099
5100@noindent
5101and the next input token is a newline character, then the last three
5102elements can be reduced to 15 via the rule:
5103
5104@example
5105expr: expr '*' expr;
5106@end example
5107
5108@noindent
5109Then the stack contains just these three elements:
5110
5111@example
51121 + 15
5113@end example
5114
5115@noindent
5116At this point, another reduction can be made, resulting in the single value
511716. Then the newline token can be shifted.
5118
5119The parser tries, by shifts and reductions, to reduce the entire input down
5120to a single grouping whose symbol is the grammar's start-symbol
5121(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5122
5123This kind of parser is known in the literature as a bottom-up parser.
5124
5125@menu
5126* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5127* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5128* Precedence:: Operator precedence works by resolving conflicts.
5129* Contextual Precedence:: When an operator's precedence depends on context.
5130* Parser States:: The parser is a finite-state-machine with stack.
5131* Reduce/Reduce:: When two rules are applicable in the same situation.
5132* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5133* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5134* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5135@end menu
5136
342b8b6e 5137@node Look-Ahead
bfa74976
RS
5138@section Look-Ahead Tokens
5139@cindex look-ahead token
5140
5141The Bison parser does @emph{not} always reduce immediately as soon as the
5142last @var{n} tokens and groupings match a rule. This is because such a
5143simple strategy is inadequate to handle most languages. Instead, when a
5144reduction is possible, the parser sometimes ``looks ahead'' at the next
5145token in order to decide what to do.
5146
5147When a token is read, it is not immediately shifted; first it becomes the
5148@dfn{look-ahead token}, which is not on the stack. Now the parser can
5149perform one or more reductions of tokens and groupings on the stack, while
5150the look-ahead token remains off to the side. When no more reductions
5151should take place, the look-ahead token is shifted onto the stack. This
5152does not mean that all possible reductions have been done; depending on the
5153token type of the look-ahead token, some rules may choose to delay their
5154application.
5155
5156Here is a simple case where look-ahead is needed. These three rules define
5157expressions which contain binary addition operators and postfix unary
5158factorial operators (@samp{!}), and allow parentheses for grouping.
5159
5160@example
5161@group
5162expr: term '+' expr
5163 | term
5164 ;
5165@end group
5166
5167@group
5168term: '(' expr ')'
5169 | term '!'
5170 | NUMBER
5171 ;
5172@end group
5173@end example
5174
5175Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5176should be done? If the following token is @samp{)}, then the first three
5177tokens must be reduced to form an @code{expr}. This is the only valid
5178course, because shifting the @samp{)} would produce a sequence of symbols
5179@w{@code{term ')'}}, and no rule allows this.
5180
5181If the following token is @samp{!}, then it must be shifted immediately so
5182that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5183parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5184@code{expr}. It would then be impossible to shift the @samp{!} because
5185doing so would produce on the stack the sequence of symbols @code{expr
5186'!'}. No rule allows that sequence.
5187
5188@vindex yychar
32c29292
JD
5189@vindex yylval
5190@vindex yylloc
5191The look-ahead token is stored in the variable @code{yychar}.
5192Its semantic value and location, if any, are stored in the variables
5193@code{yylval} and @code{yylloc}.
bfa74976
RS
5194@xref{Action Features, ,Special Features for Use in Actions}.
5195
342b8b6e 5196@node Shift/Reduce
bfa74976
RS
5197@section Shift/Reduce Conflicts
5198@cindex conflicts
5199@cindex shift/reduce conflicts
5200@cindex dangling @code{else}
5201@cindex @code{else}, dangling
5202
5203Suppose we are parsing a language which has if-then and if-then-else
5204statements, with a pair of rules like this:
5205
5206@example
5207@group
5208if_stmt:
5209 IF expr THEN stmt
5210 | IF expr THEN stmt ELSE stmt
5211 ;
5212@end group
5213@end example
5214
5215@noindent
5216Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5217terminal symbols for specific keyword tokens.
5218
5219When the @code{ELSE} token is read and becomes the look-ahead token, the
5220contents of the stack (assuming the input is valid) are just right for
5221reduction by the first rule. But it is also legitimate to shift the
5222@code{ELSE}, because that would lead to eventual reduction by the second
5223rule.
5224
5225This situation, where either a shift or a reduction would be valid, is
5226called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5227these conflicts by choosing to shift, unless otherwise directed by
5228operator precedence declarations. To see the reason for this, let's
5229contrast it with the other alternative.
5230
5231Since the parser prefers to shift the @code{ELSE}, the result is to attach
5232the else-clause to the innermost if-statement, making these two inputs
5233equivalent:
5234
5235@example
5236if x then if y then win (); else lose;
5237
5238if x then do; if y then win (); else lose; end;
5239@end example
5240
5241But if the parser chose to reduce when possible rather than shift, the
5242result would be to attach the else-clause to the outermost if-statement,
5243making these two inputs equivalent:
5244
5245@example
5246if x then if y then win (); else lose;
5247
5248if x then do; if y then win (); end; else lose;
5249@end example
5250
5251The conflict exists because the grammar as written is ambiguous: either
5252parsing of the simple nested if-statement is legitimate. The established
5253convention is that these ambiguities are resolved by attaching the
5254else-clause to the innermost if-statement; this is what Bison accomplishes
5255by choosing to shift rather than reduce. (It would ideally be cleaner to
5256write an unambiguous grammar, but that is very hard to do in this case.)
5257This particular ambiguity was first encountered in the specifications of
5258Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5259
5260To avoid warnings from Bison about predictable, legitimate shift/reduce
5261conflicts, use the @code{%expect @var{n}} declaration. There will be no
5262warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5263@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5264
5265The definition of @code{if_stmt} above is solely to blame for the
5266conflict, but the conflict does not actually appear without additional
5267rules. Here is a complete Bison input file that actually manifests the
5268conflict:
5269
5270@example
5271@group
5272%token IF THEN ELSE variable
5273%%
5274@end group
5275@group
5276stmt: expr
5277 | if_stmt
5278 ;
5279@end group
5280
5281@group
5282if_stmt:
5283 IF expr THEN stmt
5284 | IF expr THEN stmt ELSE stmt
5285 ;
5286@end group
5287
5288expr: variable
5289 ;
5290@end example
5291
342b8b6e 5292@node Precedence
bfa74976
RS
5293@section Operator Precedence
5294@cindex operator precedence
5295@cindex precedence of operators
5296
5297Another situation where shift/reduce conflicts appear is in arithmetic
5298expressions. Here shifting is not always the preferred resolution; the
5299Bison declarations for operator precedence allow you to specify when to
5300shift and when to reduce.
5301
5302@menu
5303* Why Precedence:: An example showing why precedence is needed.
5304* Using Precedence:: How to specify precedence in Bison grammars.
5305* Precedence Examples:: How these features are used in the previous example.
5306* How Precedence:: How they work.
5307@end menu
5308
342b8b6e 5309@node Why Precedence
bfa74976
RS
5310@subsection When Precedence is Needed
5311
5312Consider the following ambiguous grammar fragment (ambiguous because the
5313input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5314
5315@example
5316@group
5317expr: expr '-' expr
5318 | expr '*' expr
5319 | expr '<' expr
5320 | '(' expr ')'
5321 @dots{}
5322 ;
5323@end group
5324@end example
5325
5326@noindent
5327Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5328should it reduce them via the rule for the subtraction operator? It
5329depends on the next token. Of course, if the next token is @samp{)}, we
5330must reduce; shifting is invalid because no single rule can reduce the
5331token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5332the next token is @samp{*} or @samp{<}, we have a choice: either
5333shifting or reduction would allow the parse to complete, but with
5334different results.
5335
5336To decide which one Bison should do, we must consider the results. If
5337the next operator token @var{op} is shifted, then it must be reduced
5338first in order to permit another opportunity to reduce the difference.
5339The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5340hand, if the subtraction is reduced before shifting @var{op}, the result
5341is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5342reduce should depend on the relative precedence of the operators
5343@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5344@samp{<}.
bfa74976
RS
5345
5346@cindex associativity
5347What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5348@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5349operators we prefer the former, which is called @dfn{left association}.
5350The latter alternative, @dfn{right association}, is desirable for
5351assignment operators. The choice of left or right association is a
5352matter of whether the parser chooses to shift or reduce when the stack
5353contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5354makes right-associativity.
bfa74976 5355
342b8b6e 5356@node Using Precedence
bfa74976
RS
5357@subsection Specifying Operator Precedence
5358@findex %left
5359@findex %right
5360@findex %nonassoc
5361
5362Bison allows you to specify these choices with the operator precedence
5363declarations @code{%left} and @code{%right}. Each such declaration
5364contains a list of tokens, which are operators whose precedence and
5365associativity is being declared. The @code{%left} declaration makes all
5366those operators left-associative and the @code{%right} declaration makes
5367them right-associative. A third alternative is @code{%nonassoc}, which
5368declares that it is a syntax error to find the same operator twice ``in a
5369row''.
5370
5371The relative precedence of different operators is controlled by the
5372order in which they are declared. The first @code{%left} or
5373@code{%right} declaration in the file declares the operators whose
5374precedence is lowest, the next such declaration declares the operators
5375whose precedence is a little higher, and so on.
5376
342b8b6e 5377@node Precedence Examples
bfa74976
RS
5378@subsection Precedence Examples
5379
5380In our example, we would want the following declarations:
5381
5382@example
5383%left '<'
5384%left '-'
5385%left '*'
5386@end example
5387
5388In a more complete example, which supports other operators as well, we
5389would declare them in groups of equal precedence. For example, @code{'+'} is
5390declared with @code{'-'}:
5391
5392@example
5393%left '<' '>' '=' NE LE GE
5394%left '+' '-'
5395%left '*' '/'
5396@end example
5397
5398@noindent
5399(Here @code{NE} and so on stand for the operators for ``not equal''
5400and so on. We assume that these tokens are more than one character long
5401and therefore are represented by names, not character literals.)
5402
342b8b6e 5403@node How Precedence
bfa74976
RS
5404@subsection How Precedence Works
5405
5406The first effect of the precedence declarations is to assign precedence
5407levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5408precedence levels to certain rules: each rule gets its precedence from
5409the last terminal symbol mentioned in the components. (You can also
5410specify explicitly the precedence of a rule. @xref{Contextual
5411Precedence, ,Context-Dependent Precedence}.)
5412
5413Finally, the resolution of conflicts works by comparing the precedence
5414of the rule being considered with that of the look-ahead token. If the
5415token's precedence is higher, the choice is to shift. If the rule's
5416precedence is higher, the choice is to reduce. If they have equal
5417precedence, the choice is made based on the associativity of that
5418precedence level. The verbose output file made by @samp{-v}
5419(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5420resolved.
bfa74976
RS
5421
5422Not all rules and not all tokens have precedence. If either the rule or
5423the look-ahead token has no precedence, then the default is to shift.
5424
342b8b6e 5425@node Contextual Precedence
bfa74976
RS
5426@section Context-Dependent Precedence
5427@cindex context-dependent precedence
5428@cindex unary operator precedence
5429@cindex precedence, context-dependent
5430@cindex precedence, unary operator
5431@findex %prec
5432
5433Often the precedence of an operator depends on the context. This sounds
5434outlandish at first, but it is really very common. For example, a minus
5435sign typically has a very high precedence as a unary operator, and a
5436somewhat lower precedence (lower than multiplication) as a binary operator.
5437
5438The Bison precedence declarations, @code{%left}, @code{%right} and
5439@code{%nonassoc}, can only be used once for a given token; so a token has
5440only one precedence declared in this way. For context-dependent
5441precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5442modifier for rules.
bfa74976
RS
5443
5444The @code{%prec} modifier declares the precedence of a particular rule by
5445specifying a terminal symbol whose precedence should be used for that rule.
5446It's not necessary for that symbol to appear otherwise in the rule. The
5447modifier's syntax is:
5448
5449@example
5450%prec @var{terminal-symbol}
5451@end example
5452
5453@noindent
5454and it is written after the components of the rule. Its effect is to
5455assign the rule the precedence of @var{terminal-symbol}, overriding
5456the precedence that would be deduced for it in the ordinary way. The
5457altered rule precedence then affects how conflicts involving that rule
5458are resolved (@pxref{Precedence, ,Operator Precedence}).
5459
5460Here is how @code{%prec} solves the problem of unary minus. First, declare
5461a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5462are no tokens of this type, but the symbol serves to stand for its
5463precedence:
5464
5465@example
5466@dots{}
5467%left '+' '-'
5468%left '*'
5469%left UMINUS
5470@end example
5471
5472Now the precedence of @code{UMINUS} can be used in specific rules:
5473
5474@example
5475@group
5476exp: @dots{}
5477 | exp '-' exp
5478 @dots{}
5479 | '-' exp %prec UMINUS
5480@end group
5481@end example
5482
91d2c560 5483@ifset defaultprec
39a06c25
PE
5484If you forget to append @code{%prec UMINUS} to the rule for unary
5485minus, Bison silently assumes that minus has its usual precedence.
5486This kind of problem can be tricky to debug, since one typically
5487discovers the mistake only by testing the code.
5488
22fccf95 5489The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5490this kind of problem systematically. It causes rules that lack a
5491@code{%prec} modifier to have no precedence, even if the last terminal
5492symbol mentioned in their components has a declared precedence.
5493
22fccf95 5494If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5495for all rules that participate in precedence conflict resolution.
5496Then you will see any shift/reduce conflict until you tell Bison how
5497to resolve it, either by changing your grammar or by adding an
5498explicit precedence. This will probably add declarations to the
5499grammar, but it helps to protect against incorrect rule precedences.
5500
22fccf95
PE
5501The effect of @code{%no-default-prec;} can be reversed by giving
5502@code{%default-prec;}, which is the default.
91d2c560 5503@end ifset
39a06c25 5504
342b8b6e 5505@node Parser States
bfa74976
RS
5506@section Parser States
5507@cindex finite-state machine
5508@cindex parser state
5509@cindex state (of parser)
5510
5511The function @code{yyparse} is implemented using a finite-state machine.
5512The values pushed on the parser stack are not simply token type codes; they
5513represent the entire sequence of terminal and nonterminal symbols at or
5514near the top of the stack. The current state collects all the information
5515about previous input which is relevant to deciding what to do next.
5516
5517Each time a look-ahead token is read, the current parser state together
5518with the type of look-ahead token are looked up in a table. This table
5519entry can say, ``Shift the look-ahead token.'' In this case, it also
5520specifies the new parser state, which is pushed onto the top of the
5521parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5522This means that a certain number of tokens or groupings are taken off
5523the top of the stack, and replaced by one grouping. In other words,
5524that number of states are popped from the stack, and one new state is
5525pushed.
5526
5527There is one other alternative: the table can say that the look-ahead token
5528is erroneous in the current state. This causes error processing to begin
5529(@pxref{Error Recovery}).
5530
342b8b6e 5531@node Reduce/Reduce
bfa74976
RS
5532@section Reduce/Reduce Conflicts
5533@cindex reduce/reduce conflict
5534@cindex conflicts, reduce/reduce
5535
5536A reduce/reduce conflict occurs if there are two or more rules that apply
5537to the same sequence of input. This usually indicates a serious error
5538in the grammar.
5539
5540For example, here is an erroneous attempt to define a sequence
5541of zero or more @code{word} groupings.
5542
5543@example
5544sequence: /* empty */
5545 @{ printf ("empty sequence\n"); @}
5546 | maybeword
5547 | sequence word
5548 @{ printf ("added word %s\n", $2); @}
5549 ;
5550
5551maybeword: /* empty */
5552 @{ printf ("empty maybeword\n"); @}
5553 | word
5554 @{ printf ("single word %s\n", $1); @}
5555 ;
5556@end example
5557
5558@noindent
5559The error is an ambiguity: there is more than one way to parse a single
5560@code{word} into a @code{sequence}. It could be reduced to a
5561@code{maybeword} and then into a @code{sequence} via the second rule.
5562Alternatively, nothing-at-all could be reduced into a @code{sequence}
5563via the first rule, and this could be combined with the @code{word}
5564using the third rule for @code{sequence}.
5565
5566There is also more than one way to reduce nothing-at-all into a
5567@code{sequence}. This can be done directly via the first rule,
5568or indirectly via @code{maybeword} and then the second rule.
5569
5570You might think that this is a distinction without a difference, because it
5571does not change whether any particular input is valid or not. But it does
5572affect which actions are run. One parsing order runs the second rule's
5573action; the other runs the first rule's action and the third rule's action.
5574In this example, the output of the program changes.
5575
5576Bison resolves a reduce/reduce conflict by choosing to use the rule that
5577appears first in the grammar, but it is very risky to rely on this. Every
5578reduce/reduce conflict must be studied and usually eliminated. Here is the
5579proper way to define @code{sequence}:
5580
5581@example
5582sequence: /* empty */
5583 @{ printf ("empty sequence\n"); @}
5584 | sequence word
5585 @{ printf ("added word %s\n", $2); @}
5586 ;
5587@end example
5588
5589Here is another common error that yields a reduce/reduce conflict:
5590
5591@example
5592sequence: /* empty */
5593 | sequence words
5594 | sequence redirects
5595 ;
5596
5597words: /* empty */
5598 | words word
5599 ;
5600
5601redirects:/* empty */
5602 | redirects redirect
5603 ;
5604@end example
5605
5606@noindent
5607The intention here is to define a sequence which can contain either
5608@code{word} or @code{redirect} groupings. The individual definitions of
5609@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5610three together make a subtle ambiguity: even an empty input can be parsed
5611in infinitely many ways!
5612
5613Consider: nothing-at-all could be a @code{words}. Or it could be two
5614@code{words} in a row, or three, or any number. It could equally well be a
5615@code{redirects}, or two, or any number. Or it could be a @code{words}
5616followed by three @code{redirects} and another @code{words}. And so on.
5617
5618Here are two ways to correct these rules. First, to make it a single level
5619of sequence:
5620
5621@example
5622sequence: /* empty */
5623 | sequence word
5624 | sequence redirect
5625 ;
5626@end example
5627
5628Second, to prevent either a @code{words} or a @code{redirects}
5629from being empty:
5630
5631@example
5632sequence: /* empty */
5633 | sequence words
5634 | sequence redirects
5635 ;
5636
5637words: word
5638 | words word
5639 ;
5640
5641redirects:redirect
5642 | redirects redirect
5643 ;
5644@end example
5645
342b8b6e 5646@node Mystery Conflicts
bfa74976
RS
5647@section Mysterious Reduce/Reduce Conflicts
5648
5649Sometimes reduce/reduce conflicts can occur that don't look warranted.
5650Here is an example:
5651
5652@example
5653@group
5654%token ID
5655
5656%%
5657def: param_spec return_spec ','
5658 ;
5659param_spec:
5660 type
5661 | name_list ':' type
5662 ;
5663@end group
5664@group
5665return_spec:
5666 type
5667 | name ':' type
5668 ;
5669@end group
5670@group
5671type: ID
5672 ;
5673@end group
5674@group
5675name: ID
5676 ;
5677name_list:
5678 name
5679 | name ',' name_list
5680 ;
5681@end group
5682@end example
5683
5684It would seem that this grammar can be parsed with only a single token
13863333 5685of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5686a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5687@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5688
c827f760
PE
5689@cindex @acronym{LR}(1)
5690@cindex @acronym{LALR}(1)
bfa74976 5691However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5692@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5693an @code{ID}
bfa74976
RS
5694at the beginning of a @code{param_spec} and likewise at the beginning of
5695a @code{return_spec}, are similar enough that Bison assumes they are the
5696same. They appear similar because the same set of rules would be
5697active---the rule for reducing to a @code{name} and that for reducing to
5698a @code{type}. Bison is unable to determine at that stage of processing
5699that the rules would require different look-ahead tokens in the two
5700contexts, so it makes a single parser state for them both. Combining
5701the two contexts causes a conflict later. In parser terminology, this
c827f760 5702occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5703
5704In general, it is better to fix deficiencies than to document them. But
5705this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5706generators that can handle @acronym{LR}(1) grammars are hard to write
5707and tend to
bfa74976
RS
5708produce parsers that are very large. In practice, Bison is more useful
5709as it is now.
5710
5711When the problem arises, you can often fix it by identifying the two
a220f555
MA
5712parser states that are being confused, and adding something to make them
5713look distinct. In the above example, adding one rule to
bfa74976
RS
5714@code{return_spec} as follows makes the problem go away:
5715
5716@example
5717@group
5718%token BOGUS
5719@dots{}
5720%%
5721@dots{}
5722return_spec:
5723 type
5724 | name ':' type
5725 /* This rule is never used. */
5726 | ID BOGUS
5727 ;
5728@end group
5729@end example
5730
5731This corrects the problem because it introduces the possibility of an
5732additional active rule in the context after the @code{ID} at the beginning of
5733@code{return_spec}. This rule is not active in the corresponding context
5734in a @code{param_spec}, so the two contexts receive distinct parser states.
5735As long as the token @code{BOGUS} is never generated by @code{yylex},
5736the added rule cannot alter the way actual input is parsed.
5737
5738In this particular example, there is another way to solve the problem:
5739rewrite the rule for @code{return_spec} to use @code{ID} directly
5740instead of via @code{name}. This also causes the two confusing
5741contexts to have different sets of active rules, because the one for
5742@code{return_spec} activates the altered rule for @code{return_spec}
5743rather than the one for @code{name}.
5744
5745@example
5746param_spec:
5747 type
5748 | name_list ':' type
5749 ;
5750return_spec:
5751 type
5752 | ID ':' type
5753 ;
5754@end example
5755
e054b190
PE
5756For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5757generators, please see:
5758Frank DeRemer and Thomas Pennello, Efficient Computation of
5759@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5760Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5761pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5762
fae437e8 5763@node Generalized LR Parsing
c827f760
PE
5764@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5765@cindex @acronym{GLR} parsing
5766@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5767@cindex ambiguous grammars
9d9b8b70 5768@cindex nondeterministic parsing
676385e2 5769
fae437e8
AD
5770Bison produces @emph{deterministic} parsers that choose uniquely
5771when to reduce and which reduction to apply
8dd162d3 5772based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5773As a result, normal Bison handles a proper subset of the family of
5774context-free languages.
fae437e8 5775Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5776sequence of reductions cannot have deterministic parsers in this sense.
5777The same is true of languages that require more than one symbol of
8dd162d3 5778look-ahead, since the parser lacks the information necessary to make a
676385e2 5779decision at the point it must be made in a shift-reduce parser.
fae437e8 5780Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5781there are languages where Bison's particular choice of how to
5782summarize the input seen so far loses necessary information.
5783
5784When you use the @samp{%glr-parser} declaration in your grammar file,
5785Bison generates a parser that uses a different algorithm, called
c827f760
PE
5786Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5787parser uses the same basic
676385e2
PH
5788algorithm for parsing as an ordinary Bison parser, but behaves
5789differently in cases where there is a shift-reduce conflict that has not
fae437e8 5790been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5791reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5792situation, it
fae437e8 5793effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5794shift or reduction. These parsers then proceed as usual, consuming
5795tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5796and split further, with the result that instead of a sequence of states,
c827f760 5797a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5798
5799In effect, each stack represents a guess as to what the proper parse
5800is. Additional input may indicate that a guess was wrong, in which case
5801the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5802actions generated in each stack are saved, rather than being executed
676385e2 5803immediately. When a stack disappears, its saved semantic actions never
fae437e8 5804get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5805their sets of semantic actions are both saved with the state that
5806results from the reduction. We say that two stacks are equivalent
fae437e8 5807when they both represent the same sequence of states,
676385e2
PH
5808and each pair of corresponding states represents a
5809grammar symbol that produces the same segment of the input token
5810stream.
5811
5812Whenever the parser makes a transition from having multiple
c827f760 5813states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5814algorithm, after resolving and executing the saved-up actions.
5815At this transition, some of the states on the stack will have semantic
5816values that are sets (actually multisets) of possible actions. The
5817parser tries to pick one of the actions by first finding one whose rule
5818has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5819declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5820precedence, but there the same merging function is declared for both
fae437e8 5821rules by the @samp{%merge} declaration,
676385e2
PH
5822Bison resolves and evaluates both and then calls the merge function on
5823the result. Otherwise, it reports an ambiguity.
5824
c827f760
PE
5825It is possible to use a data structure for the @acronym{GLR} parsing tree that
5826permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5827size of the input), any unambiguous (not necessarily
5828@acronym{LALR}(1)) grammar in
fae437e8 5829quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5830context-free grammar in cubic worst-case time. However, Bison currently
5831uses a simpler data structure that requires time proportional to the
5832length of the input times the maximum number of stacks required for any
9d9b8b70 5833prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5834grammars can require exponential time and space to process. Such badly
5835behaving examples, however, are not generally of practical interest.
9d9b8b70 5836Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5837doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5838structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5839grammar, in particular, it is only slightly slower than with the default
5840Bison parser.
5841
fa7e68c3 5842For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5843Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5844Generalised @acronym{LR} Parsers, Royal Holloway, University of
5845London, Department of Computer Science, TR-00-12,
5846@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5847(2000-12-24).
5848
1a059451
PE
5849@node Memory Management
5850@section Memory Management, and How to Avoid Memory Exhaustion
5851@cindex memory exhaustion
5852@cindex memory management
bfa74976
RS
5853@cindex stack overflow
5854@cindex parser stack overflow
5855@cindex overflow of parser stack
5856
1a059451 5857The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5858not reduced. When this happens, the parser function @code{yyparse}
1a059451 5859calls @code{yyerror} and then returns 2.
bfa74976 5860
c827f760 5861Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5862usually results from using a right recursion instead of a left
5863recursion, @xref{Recursion, ,Recursive Rules}.
5864
bfa74976
RS
5865@vindex YYMAXDEPTH
5866By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5867parser stack can become before memory is exhausted. Define the
bfa74976
RS
5868macro with a value that is an integer. This value is the maximum number
5869of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5870
5871The stack space allowed is not necessarily allocated. If you specify a
1a059451 5872large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5873stack at first, and then makes it bigger by stages as needed. This
5874increasing allocation happens automatically and silently. Therefore,
5875you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5876space for ordinary inputs that do not need much stack.
5877
d7e14fc0
PE
5878However, do not allow @code{YYMAXDEPTH} to be a value so large that
5879arithmetic overflow could occur when calculating the size of the stack
5880space. Also, do not allow @code{YYMAXDEPTH} to be less than
5881@code{YYINITDEPTH}.
5882
bfa74976
RS
5883@cindex default stack limit
5884The default value of @code{YYMAXDEPTH}, if you do not define it, is
588510000.
5886
5887@vindex YYINITDEPTH
5888You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5889macro @code{YYINITDEPTH} to a positive integer. For the C
5890@acronym{LALR}(1) parser, this value must be a compile-time constant
5891unless you are assuming C99 or some other target language or compiler
5892that allows variable-length arrays. The default is 200.
5893
1a059451 5894Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5895
d1a1114f 5896@c FIXME: C++ output.
c827f760 5897Because of semantical differences between C and C++, the
1a059451
PE
5898@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5899by C++ compilers. In this precise case (compiling a C parser as C++) you are
5900suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5901this deficiency in a future release.
d1a1114f 5902
342b8b6e 5903@node Error Recovery
bfa74976
RS
5904@chapter Error Recovery
5905@cindex error recovery
5906@cindex recovery from errors
5907
6e649e65 5908It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5909error. For example, a compiler should recover sufficiently to parse the
5910rest of the input file and check it for errors; a calculator should accept
5911another expression.
5912
5913In a simple interactive command parser where each input is one line, it may
5914be sufficient to allow @code{yyparse} to return 1 on error and have the
5915caller ignore the rest of the input line when that happens (and then call
5916@code{yyparse} again). But this is inadequate for a compiler, because it
5917forgets all the syntactic context leading up to the error. A syntax error
5918deep within a function in the compiler input should not cause the compiler
5919to treat the following line like the beginning of a source file.
5920
5921@findex error
5922You can define how to recover from a syntax error by writing rules to
5923recognize the special token @code{error}. This is a terminal symbol that
5924is always defined (you need not declare it) and reserved for error
5925handling. The Bison parser generates an @code{error} token whenever a
5926syntax error happens; if you have provided a rule to recognize this token
13863333 5927in the current context, the parse can continue.
bfa74976
RS
5928
5929For example:
5930
5931@example
5932stmnts: /* empty string */
5933 | stmnts '\n'
5934 | stmnts exp '\n'
5935 | stmnts error '\n'
5936@end example
5937
5938The fourth rule in this example says that an error followed by a newline
5939makes a valid addition to any @code{stmnts}.
5940
5941What happens if a syntax error occurs in the middle of an @code{exp}? The
5942error recovery rule, interpreted strictly, applies to the precise sequence
5943of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5944the middle of an @code{exp}, there will probably be some additional tokens
5945and subexpressions on the stack after the last @code{stmnts}, and there
5946will be tokens to read before the next newline. So the rule is not
5947applicable in the ordinary way.
5948
5949But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5950the semantic context and part of the input. First it discards states
5951and objects from the stack until it gets back to a state in which the
bfa74976 5952@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5953already parsed are discarded, back to the last complete @code{stmnts}.)
5954At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5955look-ahead token is not acceptable to be shifted next, the parser reads
5956tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5957this example, Bison reads and discards input until the next newline so
5958that the fourth rule can apply. Note that discarded symbols are
5959possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5960Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5961
5962The choice of error rules in the grammar is a choice of strategies for
5963error recovery. A simple and useful strategy is simply to skip the rest of
5964the current input line or current statement if an error is detected:
5965
5966@example
72d2299c 5967stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5968@end example
5969
5970It is also useful to recover to the matching close-delimiter of an
5971opening-delimiter that has already been parsed. Otherwise the
5972close-delimiter will probably appear to be unmatched, and generate another,
5973spurious error message:
5974
5975@example
5976primary: '(' expr ')'
5977 | '(' error ')'
5978 @dots{}
5979 ;
5980@end example
5981
5982Error recovery strategies are necessarily guesses. When they guess wrong,
5983one syntax error often leads to another. In the above example, the error
5984recovery rule guesses that an error is due to bad input within one
5985@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5986middle of a valid @code{stmnt}. After the error recovery rule recovers
5987from the first error, another syntax error will be found straightaway,
5988since the text following the spurious semicolon is also an invalid
5989@code{stmnt}.
5990
5991To prevent an outpouring of error messages, the parser will output no error
5992message for another syntax error that happens shortly after the first; only
5993after three consecutive input tokens have been successfully shifted will
5994error messages resume.
5995
5996Note that rules which accept the @code{error} token may have actions, just
5997as any other rules can.
5998
5999@findex yyerrok
6000You can make error messages resume immediately by using the macro
6001@code{yyerrok} in an action. If you do this in the error rule's action, no
6002error messages will be suppressed. This macro requires no arguments;
6003@samp{yyerrok;} is a valid C statement.
6004
6005@findex yyclearin
6006The previous look-ahead token is reanalyzed immediately after an error. If
6007this is unacceptable, then the macro @code{yyclearin} may be used to clear
6008this token. Write the statement @samp{yyclearin;} in the error rule's
6009action.
32c29292 6010@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6011
6e649e65 6012For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6013called that advances the input stream to some point where parsing should
6014once again commence. The next symbol returned by the lexical scanner is
6015probably correct. The previous look-ahead token ought to be discarded
6016with @samp{yyclearin;}.
6017
6018@vindex YYRECOVERING
6019The macro @code{YYRECOVERING} stands for an expression that has the
6020value 1 when the parser is recovering from a syntax error, and 0 the
6021rest of the time. A value of 1 indicates that error messages are
6022currently suppressed for new syntax errors.
6023
342b8b6e 6024@node Context Dependency
bfa74976
RS
6025@chapter Handling Context Dependencies
6026
6027The Bison paradigm is to parse tokens first, then group them into larger
6028syntactic units. In many languages, the meaning of a token is affected by
6029its context. Although this violates the Bison paradigm, certain techniques
6030(known as @dfn{kludges}) may enable you to write Bison parsers for such
6031languages.
6032
6033@menu
6034* Semantic Tokens:: Token parsing can depend on the semantic context.
6035* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6036* Tie-in Recovery:: Lexical tie-ins have implications for how
6037 error recovery rules must be written.
6038@end menu
6039
6040(Actually, ``kludge'' means any technique that gets its job done but is
6041neither clean nor robust.)
6042
342b8b6e 6043@node Semantic Tokens
bfa74976
RS
6044@section Semantic Info in Token Types
6045
6046The C language has a context dependency: the way an identifier is used
6047depends on what its current meaning is. For example, consider this:
6048
6049@example
6050foo (x);
6051@end example
6052
6053This looks like a function call statement, but if @code{foo} is a typedef
6054name, then this is actually a declaration of @code{x}. How can a Bison
6055parser for C decide how to parse this input?
6056
c827f760 6057The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6058@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6059identifier, it looks up the current declaration of the identifier in order
6060to decide which token type to return: @code{TYPENAME} if the identifier is
6061declared as a typedef, @code{IDENTIFIER} otherwise.
6062
6063The grammar rules can then express the context dependency by the choice of
6064token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6065but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6066@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6067is @emph{not} significant, such as in declarations that can shadow a
6068typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6069accepted---there is one rule for each of the two token types.
6070
6071This technique is simple to use if the decision of which kinds of
6072identifiers to allow is made at a place close to where the identifier is
6073parsed. But in C this is not always so: C allows a declaration to
6074redeclare a typedef name provided an explicit type has been specified
6075earlier:
6076
6077@example
3a4f411f
PE
6078typedef int foo, bar;
6079int baz (void)
6080@{
6081 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6082 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6083 return foo (bar);
6084@}
bfa74976
RS
6085@end example
6086
6087Unfortunately, the name being declared is separated from the declaration
6088construct itself by a complicated syntactic structure---the ``declarator''.
6089
9ecbd125 6090As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6091all the nonterminal names changed: once for parsing a declaration in
6092which a typedef name can be redefined, and once for parsing a
6093declaration in which that can't be done. Here is a part of the
6094duplication, with actions omitted for brevity:
bfa74976
RS
6095
6096@example
6097initdcl:
6098 declarator maybeasm '='
6099 init
6100 | declarator maybeasm
6101 ;
6102
6103notype_initdcl:
6104 notype_declarator maybeasm '='
6105 init
6106 | notype_declarator maybeasm
6107 ;
6108@end example
6109
6110@noindent
6111Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6112cannot. The distinction between @code{declarator} and
6113@code{notype_declarator} is the same sort of thing.
6114
6115There is some similarity between this technique and a lexical tie-in
6116(described next), in that information which alters the lexical analysis is
6117changed during parsing by other parts of the program. The difference is
6118here the information is global, and is used for other purposes in the
6119program. A true lexical tie-in has a special-purpose flag controlled by
6120the syntactic context.
6121
342b8b6e 6122@node Lexical Tie-ins
bfa74976
RS
6123@section Lexical Tie-ins
6124@cindex lexical tie-in
6125
6126One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6127which is set by Bison actions, whose purpose is to alter the way tokens are
6128parsed.
6129
6130For example, suppose we have a language vaguely like C, but with a special
6131construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6132an expression in parentheses in which all integers are hexadecimal. In
6133particular, the token @samp{a1b} must be treated as an integer rather than
6134as an identifier if it appears in that context. Here is how you can do it:
6135
6136@example
6137@group
6138%@{
38a92d50
PE
6139 int hexflag;
6140 int yylex (void);
6141 void yyerror (char const *);
bfa74976
RS
6142%@}
6143%%
6144@dots{}
6145@end group
6146@group
6147expr: IDENTIFIER
6148 | constant
6149 | HEX '('
6150 @{ hexflag = 1; @}
6151 expr ')'
6152 @{ hexflag = 0;
6153 $$ = $4; @}
6154 | expr '+' expr
6155 @{ $$ = make_sum ($1, $3); @}
6156 @dots{}
6157 ;
6158@end group
6159
6160@group
6161constant:
6162 INTEGER
6163 | STRING
6164 ;
6165@end group
6166@end example
6167
6168@noindent
6169Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6170it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6171with letters are parsed as integers if possible.
6172
342b8b6e
AD
6173The declaration of @code{hexflag} shown in the prologue of the parser file
6174is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6175You must also write the code in @code{yylex} to obey the flag.
bfa74976 6176
342b8b6e 6177@node Tie-in Recovery
bfa74976
RS
6178@section Lexical Tie-ins and Error Recovery
6179
6180Lexical tie-ins make strict demands on any error recovery rules you have.
6181@xref{Error Recovery}.
6182
6183The reason for this is that the purpose of an error recovery rule is to
6184abort the parsing of one construct and resume in some larger construct.
6185For example, in C-like languages, a typical error recovery rule is to skip
6186tokens until the next semicolon, and then start a new statement, like this:
6187
6188@example
6189stmt: expr ';'
6190 | IF '(' expr ')' stmt @{ @dots{} @}
6191 @dots{}
6192 error ';'
6193 @{ hexflag = 0; @}
6194 ;
6195@end example
6196
6197If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6198construct, this error rule will apply, and then the action for the
6199completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6200remain set for the entire rest of the input, or until the next @code{hex}
6201keyword, causing identifiers to be misinterpreted as integers.
6202
6203To avoid this problem the error recovery rule itself clears @code{hexflag}.
6204
6205There may also be an error recovery rule that works within expressions.
6206For example, there could be a rule which applies within parentheses
6207and skips to the close-parenthesis:
6208
6209@example
6210@group
6211expr: @dots{}
6212 | '(' expr ')'
6213 @{ $$ = $2; @}
6214 | '(' error ')'
6215 @dots{}
6216@end group
6217@end example
6218
6219If this rule acts within the @code{hex} construct, it is not going to abort
6220that construct (since it applies to an inner level of parentheses within
6221the construct). Therefore, it should not clear the flag: the rest of
6222the @code{hex} construct should be parsed with the flag still in effect.
6223
6224What if there is an error recovery rule which might abort out of the
6225@code{hex} construct or might not, depending on circumstances? There is no
6226way you can write the action to determine whether a @code{hex} construct is
6227being aborted or not. So if you are using a lexical tie-in, you had better
6228make sure your error recovery rules are not of this kind. Each rule must
6229be such that you can be sure that it always will, or always won't, have to
6230clear the flag.
6231
ec3bc396
AD
6232@c ================================================== Debugging Your Parser
6233
342b8b6e 6234@node Debugging
bfa74976 6235@chapter Debugging Your Parser
ec3bc396
AD
6236
6237Developing a parser can be a challenge, especially if you don't
6238understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6239Algorithm}). Even so, sometimes a detailed description of the automaton
6240can help (@pxref{Understanding, , Understanding Your Parser}), or
6241tracing the execution of the parser can give some insight on why it
6242behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6243
6244@menu
6245* Understanding:: Understanding the structure of your parser.
6246* Tracing:: Tracing the execution of your parser.
6247@end menu
6248
6249@node Understanding
6250@section Understanding Your Parser
6251
6252As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6253Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6254frequent than one would hope), looking at this automaton is required to
6255tune or simply fix a parser. Bison provides two different
c827f760 6256representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6257file).
6258
6259The textual file is generated when the options @option{--report} or
6260@option{--verbose} are specified, see @xref{Invocation, , Invoking
6261Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6262the parser output file name, and adding @samp{.output} instead.
6263Therefore, if the input file is @file{foo.y}, then the parser file is
6264called @file{foo.tab.c} by default. As a consequence, the verbose
6265output file is called @file{foo.output}.
6266
6267The following grammar file, @file{calc.y}, will be used in the sequel:
6268
6269@example
6270%token NUM STR
6271%left '+' '-'
6272%left '*'
6273%%
6274exp: exp '+' exp
6275 | exp '-' exp
6276 | exp '*' exp
6277 | exp '/' exp
6278 | NUM
6279 ;
6280useless: STR;
6281%%
6282@end example
6283
88bce5a2
AD
6284@command{bison} reports:
6285
6286@example
6287calc.y: warning: 1 useless nonterminal and 1 useless rule
6288calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6289calc.y:11.10-12: warning: useless rule: useless: STR
6290calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6291@end example
6292
6293When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6294creates a file @file{calc.output} with contents detailed below. The
6295order of the output and the exact presentation might vary, but the
6296interpretation is the same.
ec3bc396
AD
6297
6298The first section includes details on conflicts that were solved thanks
6299to precedence and/or associativity:
6300
6301@example
6302Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6303Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6304Conflict in state 8 between rule 2 and token '*' resolved as shift.
6305@exdent @dots{}
6306@end example
6307
6308@noindent
6309The next section lists states that still have conflicts.
6310
6311@example
5a99098d
PE
6312State 8 conflicts: 1 shift/reduce
6313State 9 conflicts: 1 shift/reduce
6314State 10 conflicts: 1 shift/reduce
6315State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6316@end example
6317
6318@noindent
6319@cindex token, useless
6320@cindex useless token
6321@cindex nonterminal, useless
6322@cindex useless nonterminal
6323@cindex rule, useless
6324@cindex useless rule
6325The next section reports useless tokens, nonterminal and rules. Useless
6326nonterminals and rules are removed in order to produce a smaller parser,
6327but useless tokens are preserved, since they might be used by the
6328scanner (note the difference between ``useless'' and ``not used''
6329below):
6330
6331@example
6332Useless nonterminals:
6333 useless
6334
6335Terminals which are not used:
6336 STR
6337
6338Useless rules:
6339#6 useless: STR;
6340@end example
6341
6342@noindent
6343The next section reproduces the exact grammar that Bison used:
6344
6345@example
6346Grammar
6347
6348 Number, Line, Rule
88bce5a2 6349 0 5 $accept -> exp $end
ec3bc396
AD
6350 1 5 exp -> exp '+' exp
6351 2 6 exp -> exp '-' exp
6352 3 7 exp -> exp '*' exp
6353 4 8 exp -> exp '/' exp
6354 5 9 exp -> NUM
6355@end example
6356
6357@noindent
6358and reports the uses of the symbols:
6359
6360@example
6361Terminals, with rules where they appear
6362
88bce5a2 6363$end (0) 0
ec3bc396
AD
6364'*' (42) 3
6365'+' (43) 1
6366'-' (45) 2
6367'/' (47) 4
6368error (256)
6369NUM (258) 5
6370
6371Nonterminals, with rules where they appear
6372
88bce5a2 6373$accept (8)
ec3bc396
AD
6374 on left: 0
6375exp (9)
6376 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6377@end example
6378
6379@noindent
6380@cindex item
6381@cindex pointed rule
6382@cindex rule, pointed
6383Bison then proceeds onto the automaton itself, describing each state
6384with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6385item is a production rule together with a point (marked by @samp{.})
6386that the input cursor.
6387
6388@example
6389state 0
6390
88bce5a2 6391 $accept -> . exp $ (rule 0)
ec3bc396 6392
2a8d363a 6393 NUM shift, and go to state 1
ec3bc396 6394
2a8d363a 6395 exp go to state 2
ec3bc396
AD
6396@end example
6397
6398This reads as follows: ``state 0 corresponds to being at the very
6399beginning of the parsing, in the initial rule, right before the start
6400symbol (here, @code{exp}). When the parser returns to this state right
6401after having reduced a rule that produced an @code{exp}, the control
6402flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6403symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6404the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6405look-ahead triggers a syntax error.''
ec3bc396
AD
6406
6407@cindex core, item set
6408@cindex item set core
6409@cindex kernel, item set
6410@cindex item set core
6411Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6412report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6413at the beginning of any rule deriving an @code{exp}. By default Bison
6414reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6415you want to see more detail you can invoke @command{bison} with
6416@option{--report=itemset} to list all the items, include those that can
6417be derived:
6418
6419@example
6420state 0
6421
88bce5a2 6422 $accept -> . exp $ (rule 0)
ec3bc396
AD
6423 exp -> . exp '+' exp (rule 1)
6424 exp -> . exp '-' exp (rule 2)
6425 exp -> . exp '*' exp (rule 3)
6426 exp -> . exp '/' exp (rule 4)
6427 exp -> . NUM (rule 5)
6428
6429 NUM shift, and go to state 1
6430
6431 exp go to state 2
6432@end example
6433
6434@noindent
6435In the state 1...
6436
6437@example
6438state 1
6439
6440 exp -> NUM . (rule 5)
6441
2a8d363a 6442 $default reduce using rule 5 (exp)
ec3bc396
AD
6443@end example
6444
6445@noindent
8dd162d3 6446the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6447(@samp{$default}), the parser will reduce it. If it was coming from
6448state 0, then, after this reduction it will return to state 0, and will
6449jump to state 2 (@samp{exp: go to state 2}).
6450
6451@example
6452state 2
6453
88bce5a2 6454 $accept -> exp . $ (rule 0)
ec3bc396
AD
6455 exp -> exp . '+' exp (rule 1)
6456 exp -> exp . '-' exp (rule 2)
6457 exp -> exp . '*' exp (rule 3)
6458 exp -> exp . '/' exp (rule 4)
6459
2a8d363a
AD
6460 $ shift, and go to state 3
6461 '+' shift, and go to state 4
6462 '-' shift, and go to state 5
6463 '*' shift, and go to state 6
6464 '/' shift, and go to state 7
ec3bc396
AD
6465@end example
6466
6467@noindent
6468In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6469because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6470@samp{+}, it will be shifted on the parse stack, and the automaton
6471control will jump to state 4, corresponding to the item @samp{exp -> exp
6472'+' . exp}. Since there is no default action, any other token than
6e649e65 6473those listed above will trigger a syntax error.
ec3bc396
AD
6474
6475The state 3 is named the @dfn{final state}, or the @dfn{accepting
6476state}:
6477
6478@example
6479state 3
6480
88bce5a2 6481 $accept -> exp $ . (rule 0)
ec3bc396 6482
2a8d363a 6483 $default accept
ec3bc396
AD
6484@end example
6485
6486@noindent
6487the initial rule is completed (the start symbol and the end
6488of input were read), the parsing exits successfully.
6489
6490The interpretation of states 4 to 7 is straightforward, and is left to
6491the reader.
6492
6493@example
6494state 4
6495
6496 exp -> exp '+' . exp (rule 1)
6497
2a8d363a 6498 NUM shift, and go to state 1
ec3bc396 6499
2a8d363a 6500 exp go to state 8
ec3bc396
AD
6501
6502state 5
6503
6504 exp -> exp '-' . exp (rule 2)
6505
2a8d363a 6506 NUM shift, and go to state 1
ec3bc396 6507
2a8d363a 6508 exp go to state 9
ec3bc396
AD
6509
6510state 6
6511
6512 exp -> exp '*' . exp (rule 3)
6513
2a8d363a 6514 NUM shift, and go to state 1
ec3bc396 6515
2a8d363a 6516 exp go to state 10
ec3bc396
AD
6517
6518state 7
6519
6520 exp -> exp '/' . exp (rule 4)
6521
2a8d363a 6522 NUM shift, and go to state 1
ec3bc396 6523
2a8d363a 6524 exp go to state 11
ec3bc396
AD
6525@end example
6526
5a99098d
PE
6527As was announced in beginning of the report, @samp{State 8 conflicts:
65281 shift/reduce}:
ec3bc396
AD
6529
6530@example
6531state 8
6532
6533 exp -> exp . '+' exp (rule 1)
6534 exp -> exp '+' exp . (rule 1)
6535 exp -> exp . '-' exp (rule 2)
6536 exp -> exp . '*' exp (rule 3)
6537 exp -> exp . '/' exp (rule 4)
6538
2a8d363a
AD
6539 '*' shift, and go to state 6
6540 '/' shift, and go to state 7
ec3bc396 6541
2a8d363a
AD
6542 '/' [reduce using rule 1 (exp)]
6543 $default reduce using rule 1 (exp)
ec3bc396
AD
6544@end example
6545
8dd162d3 6546Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6547either shifting (and going to state 7), or reducing rule 1. The
6548conflict means that either the grammar is ambiguous, or the parser lacks
6549information to make the right decision. Indeed the grammar is
6550ambiguous, as, since we did not specify the precedence of @samp{/}, the
6551sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6552NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6553NUM}, which corresponds to reducing rule 1.
6554
c827f760 6555Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6556arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6557Shift/Reduce Conflicts}. Discarded actions are reported in between
6558square brackets.
6559
6560Note that all the previous states had a single possible action: either
6561shifting the next token and going to the corresponding state, or
6562reducing a single rule. In the other cases, i.e., when shifting
6563@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6564possible, the look-ahead is required to select the action. State 8 is
6565one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6566is shifting, otherwise the action is reducing rule 1. In other words,
6567the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6568look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6569precedence than @samp{+}. More generally, some items are eligible only
6570with some set of possible look-ahead tokens. When run with
6571@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6572
6573@example
6574state 8
6575
6576 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6577 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6578 exp -> exp . '-' exp (rule 2)
6579 exp -> exp . '*' exp (rule 3)
6580 exp -> exp . '/' exp (rule 4)
6581
6582 '*' shift, and go to state 6
6583 '/' shift, and go to state 7
6584
6585 '/' [reduce using rule 1 (exp)]
6586 $default reduce using rule 1 (exp)
6587@end example
6588
6589The remaining states are similar:
6590
6591@example
6592state 9
6593
6594 exp -> exp . '+' exp (rule 1)
6595 exp -> exp . '-' exp (rule 2)
6596 exp -> exp '-' exp . (rule 2)
6597 exp -> exp . '*' exp (rule 3)
6598 exp -> exp . '/' exp (rule 4)
6599
2a8d363a
AD
6600 '*' shift, and go to state 6
6601 '/' shift, and go to state 7
ec3bc396 6602
2a8d363a
AD
6603 '/' [reduce using rule 2 (exp)]
6604 $default reduce using rule 2 (exp)
ec3bc396
AD
6605
6606state 10
6607
6608 exp -> exp . '+' exp (rule 1)
6609 exp -> exp . '-' exp (rule 2)
6610 exp -> exp . '*' exp (rule 3)
6611 exp -> exp '*' exp . (rule 3)
6612 exp -> exp . '/' exp (rule 4)
6613
2a8d363a 6614 '/' shift, and go to state 7
ec3bc396 6615
2a8d363a
AD
6616 '/' [reduce using rule 3 (exp)]
6617 $default reduce using rule 3 (exp)
ec3bc396
AD
6618
6619state 11
6620
6621 exp -> exp . '+' exp (rule 1)
6622 exp -> exp . '-' exp (rule 2)
6623 exp -> exp . '*' exp (rule 3)
6624 exp -> exp . '/' exp (rule 4)
6625 exp -> exp '/' exp . (rule 4)
6626
2a8d363a
AD
6627 '+' shift, and go to state 4
6628 '-' shift, and go to state 5
6629 '*' shift, and go to state 6
6630 '/' shift, and go to state 7
ec3bc396 6631
2a8d363a
AD
6632 '+' [reduce using rule 4 (exp)]
6633 '-' [reduce using rule 4 (exp)]
6634 '*' [reduce using rule 4 (exp)]
6635 '/' [reduce using rule 4 (exp)]
6636 $default reduce using rule 4 (exp)
ec3bc396
AD
6637@end example
6638
6639@noindent
fa7e68c3
PE
6640Observe that state 11 contains conflicts not only due to the lack of
6641precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6642@samp{*}, but also because the
ec3bc396
AD
6643associativity of @samp{/} is not specified.
6644
6645
6646@node Tracing
6647@section Tracing Your Parser
bfa74976
RS
6648@findex yydebug
6649@cindex debugging
6650@cindex tracing the parser
6651
6652If a Bison grammar compiles properly but doesn't do what you want when it
6653runs, the @code{yydebug} parser-trace feature can help you figure out why.
6654
3ded9a63
AD
6655There are several means to enable compilation of trace facilities:
6656
6657@table @asis
6658@item the macro @code{YYDEBUG}
6659@findex YYDEBUG
6660Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6661parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6662@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6663YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6664Prologue}).
6665
6666@item the option @option{-t}, @option{--debug}
6667Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6668,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6669
6670@item the directive @samp{%debug}
6671@findex %debug
6672Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6673Declaration Summary}). This is a Bison extension, which will prove
6674useful when Bison will output parsers for languages that don't use a
c827f760
PE
6675preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6676you, this is
3ded9a63
AD
6677the preferred solution.
6678@end table
6679
6680We suggest that you always enable the debug option so that debugging is
6681always possible.
bfa74976 6682
02a81e05 6683The trace facility outputs messages with macro calls of the form
e2742e46 6684@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6685@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6686arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6687define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6688and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6689
6690Once you have compiled the program with trace facilities, the way to
6691request a trace is to store a nonzero value in the variable @code{yydebug}.
6692You can do this by making the C code do it (in @code{main}, perhaps), or
6693you can alter the value with a C debugger.
6694
6695Each step taken by the parser when @code{yydebug} is nonzero produces a
6696line or two of trace information, written on @code{stderr}. The trace
6697messages tell you these things:
6698
6699@itemize @bullet
6700@item
6701Each time the parser calls @code{yylex}, what kind of token was read.
6702
6703@item
6704Each time a token is shifted, the depth and complete contents of the
6705state stack (@pxref{Parser States}).
6706
6707@item
6708Each time a rule is reduced, which rule it is, and the complete contents
6709of the state stack afterward.
6710@end itemize
6711
6712To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6713produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6714Bison}). This file shows the meaning of each state in terms of
6715positions in various rules, and also what each state will do with each
6716possible input token. As you read the successive trace messages, you
6717can see that the parser is functioning according to its specification in
6718the listing file. Eventually you will arrive at the place where
6719something undesirable happens, and you will see which parts of the
6720grammar are to blame.
bfa74976
RS
6721
6722The parser file is a C program and you can use C debuggers on it, but it's
6723not easy to interpret what it is doing. The parser function is a
6724finite-state machine interpreter, and aside from the actions it executes
6725the same code over and over. Only the values of variables show where in
6726the grammar it is working.
6727
6728@findex YYPRINT
6729The debugging information normally gives the token type of each token
6730read, but not its semantic value. You can optionally define a macro
6731named @code{YYPRINT} to provide a way to print the value. If you define
6732@code{YYPRINT}, it should take three arguments. The parser will pass a
6733standard I/O stream, the numeric code for the token type, and the token
6734value (from @code{yylval}).
6735
6736Here is an example of @code{YYPRINT} suitable for the multi-function
6737calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6738
6739@smallexample
38a92d50
PE
6740%@{
6741 static void print_token_value (FILE *, int, YYSTYPE);
6742 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6743%@}
6744
6745@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6746
6747static void
831d3c99 6748print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6749@{
6750 if (type == VAR)
d3c4e709 6751 fprintf (file, "%s", value.tptr->name);
bfa74976 6752 else if (type == NUM)
d3c4e709 6753 fprintf (file, "%d", value.val);
bfa74976
RS
6754@}
6755@end smallexample
6756
ec3bc396
AD
6757@c ================================================= Invoking Bison
6758
342b8b6e 6759@node Invocation
bfa74976
RS
6760@chapter Invoking Bison
6761@cindex invoking Bison
6762@cindex Bison invocation
6763@cindex options for invoking Bison
6764
6765The usual way to invoke Bison is as follows:
6766
6767@example
6768bison @var{infile}
6769@end example
6770
6771Here @var{infile} is the grammar file name, which usually ends in
6772@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6773with @samp{.tab.c} and removing any leading directory. Thus, the
6774@samp{bison foo.y} file name yields
6775@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6776@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6777C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6778or @file{foo.y++}. Then, the output files will take an extension like
6779the given one as input (respectively @file{foo.tab.cpp} and
6780@file{foo.tab.c++}).
fa4d969f 6781This feature takes effect with all options that manipulate file names like
234a3be3
AD
6782@samp{-o} or @samp{-d}.
6783
6784For example :
6785
6786@example
6787bison -d @var{infile.yxx}
6788@end example
84163231 6789@noindent
72d2299c 6790will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6791
6792@example
b56471a6 6793bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6794@end example
84163231 6795@noindent
234a3be3
AD
6796will produce @file{output.c++} and @file{outfile.h++}.
6797
397ec073
PE
6798For compatibility with @acronym{POSIX}, the standard Bison
6799distribution also contains a shell script called @command{yacc} that
6800invokes Bison with the @option{-y} option.
6801
bfa74976 6802@menu
13863333 6803* Bison Options:: All the options described in detail,
c827f760 6804 in alphabetical order by short options.
bfa74976 6805* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6806* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6807@end menu
6808
342b8b6e 6809@node Bison Options
bfa74976
RS
6810@section Bison Options
6811
6812Bison supports both traditional single-letter options and mnemonic long
6813option names. Long option names are indicated with @samp{--} instead of
6814@samp{-}. Abbreviations for option names are allowed as long as they
6815are unique. When a long option takes an argument, like
6816@samp{--file-prefix}, connect the option name and the argument with
6817@samp{=}.
6818
6819Here is a list of options that can be used with Bison, alphabetized by
6820short option. It is followed by a cross key alphabetized by long
6821option.
6822
89cab50d
AD
6823@c Please, keep this ordered as in `bison --help'.
6824@noindent
6825Operations modes:
6826@table @option
6827@item -h
6828@itemx --help
6829Print a summary of the command-line options to Bison and exit.
bfa74976 6830
89cab50d
AD
6831@item -V
6832@itemx --version
6833Print the version number of Bison and exit.
bfa74976 6834
f7ab6a50
PE
6835@item --print-localedir
6836Print the name of the directory containing locale-dependent data.
6837
89cab50d
AD
6838@item -y
6839@itemx --yacc
54662697
PE
6840Act more like the traditional Yacc command. This can cause
6841different diagnostics to be generated, and may change behavior in
6842other minor ways. Most importantly, imitate Yacc's output
6843file name conventions, so that the parser output file is called
89cab50d 6844@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6845@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6846for Yacc, and the Bison distribution contains such a script for
6847compatibility with @acronym{POSIX}:
bfa74976 6848
89cab50d 6849@example
397ec073 6850#! /bin/sh
26e06a21 6851bison -y "$@@"
89cab50d 6852@end example
54662697
PE
6853
6854The @option{-y}/@option{--yacc} option is intended for use with
6855traditional Yacc grammars. If your grammar uses a Bison extension
6856like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6857this option is specified.
6858
89cab50d
AD
6859@end table
6860
6861@noindent
6862Tuning the parser:
6863
6864@table @option
cd5bd6ac
AD
6865@item -S @var{file}
6866@itemx --skeleton=@var{file}
6867Specify the skeleton to use. You probably don't need this option unless
6868you are developing Bison.
6869
89cab50d
AD
6870@item -t
6871@itemx --debug
4947ebdb
PE
6872In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6873already defined, so that the debugging facilities are compiled.
ec3bc396 6874@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6875
6876@item --locations
d8988b2f 6877Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6878
6879@item -p @var{prefix}
6880@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6881Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6882@xref{Decl Summary}.
bfa74976
RS
6883
6884@item -l
6885@itemx --no-lines
6886Don't put any @code{#line} preprocessor commands in the parser file.
6887Ordinarily Bison puts them in the parser file so that the C compiler
6888and debuggers will associate errors with your source file, the
6889grammar file. This option causes them to associate errors with the
95e742f7 6890parser file, treating it as an independent source file in its own right.
bfa74976 6891
931c7513
RS
6892@item -n
6893@itemx --no-parser
d8988b2f 6894Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6895
89cab50d
AD
6896@item -k
6897@itemx --token-table
d8988b2f 6898Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6899@end table
bfa74976 6900
89cab50d
AD
6901@noindent
6902Adjust the output:
bfa74976 6903
89cab50d
AD
6904@table @option
6905@item -d
d8988b2f
AD
6906@itemx --defines
6907Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6908file containing macro definitions for the token type names defined in
4bfd5e4e 6909the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6910
342b8b6e 6911@item --defines=@var{defines-file}
d8988b2f 6912Same as above, but save in the file @var{defines-file}.
342b8b6e 6913
89cab50d
AD
6914@item -b @var{file-prefix}
6915@itemx --file-prefix=@var{prefix}
d8988b2f 6916Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6917for all Bison output file names. @xref{Decl Summary}.
bfa74976 6918
ec3bc396
AD
6919@item -r @var{things}
6920@itemx --report=@var{things}
6921Write an extra output file containing verbose description of the comma
6922separated list of @var{things} among:
6923
6924@table @code
6925@item state
6926Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6927@acronym{LALR} automaton.
ec3bc396 6928
8dd162d3 6929@item look-ahead
ec3bc396 6930Implies @code{state} and augments the description of the automaton with
8dd162d3 6931each rule's look-ahead set.
ec3bc396
AD
6932
6933@item itemset
6934Implies @code{state} and augments the description of the automaton with
6935the full set of items for each state, instead of its core only.
6936@end table
6937
bfa74976
RS
6938@item -v
6939@itemx --verbose
6deb4447
AD
6940Pretend that @code{%verbose} was specified, i.e, write an extra output
6941file containing verbose descriptions of the grammar and
72d2299c 6942parser. @xref{Decl Summary}.
bfa74976 6943
fa4d969f
PE
6944@item -o @var{file}
6945@itemx --output=@var{file}
6946Specify the @var{file} for the parser file.
bfa74976 6947
fa4d969f 6948The other output files' names are constructed from @var{file} as
d8988b2f 6949described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6950
6951@item -g
c827f760
PE
6952Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6953automaton computed by Bison. If the grammar file is @file{foo.y}, the
6954@acronym{VCG} output file will
342b8b6e
AD
6955be @file{foo.vcg}.
6956
6957@item --graph=@var{graph-file}
72d2299c
PE
6958The behavior of @var{--graph} is the same than @samp{-g}. The only
6959difference is that it has an optional argument which is the name of
fa4d969f 6960the output graph file.
bfa74976
RS
6961@end table
6962
342b8b6e 6963@node Option Cross Key
bfa74976
RS
6964@section Option Cross Key
6965
6966Here is a list of options, alphabetized by long option, to help you find
6967the corresponding short option.
6968
6969@tex
6970\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6971
6972{\tt
6973\line{ --debug \leaderfill -t}
6974\line{ --defines \leaderfill -d}
6975\line{ --file-prefix \leaderfill -b}
342b8b6e 6976\line{ --graph \leaderfill -g}
ff51d159 6977\line{ --help \leaderfill -h}
bfa74976
RS
6978\line{ --name-prefix \leaderfill -p}
6979\line{ --no-lines \leaderfill -l}
931c7513 6980\line{ --no-parser \leaderfill -n}
d8988b2f 6981\line{ --output \leaderfill -o}
f7ab6a50 6982\line{ --print-localedir}
931c7513 6983\line{ --token-table \leaderfill -k}
bfa74976
RS
6984\line{ --verbose \leaderfill -v}
6985\line{ --version \leaderfill -V}
6986\line{ --yacc \leaderfill -y}
6987}
6988@end tex
6989
6990@ifinfo
6991@example
6992--debug -t
342b8b6e 6993--defines=@var{defines-file} -d
bfa74976 6994--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6995--graph=@var{graph-file} -d
ff51d159 6996--help -h
931c7513 6997--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6998--no-lines -l
931c7513 6999--no-parser -n
d8988b2f 7000--output=@var{outfile} -o @var{outfile}
f7ab6a50 7001--print-localedir
931c7513 7002--token-table -k
bfa74976
RS
7003--verbose -v
7004--version -V
8c9a50be 7005--yacc -y
bfa74976
RS
7006@end example
7007@end ifinfo
7008
93dd49ab
PE
7009@node Yacc Library
7010@section Yacc Library
7011
7012The Yacc library contains default implementations of the
7013@code{yyerror} and @code{main} functions. These default
7014implementations are normally not useful, but @acronym{POSIX} requires
7015them. To use the Yacc library, link your program with the
7016@option{-ly} option. Note that Bison's implementation of the Yacc
7017library is distributed under the terms of the @acronym{GNU} General
7018Public License (@pxref{Copying}).
7019
7020If you use the Yacc library's @code{yyerror} function, you should
7021declare @code{yyerror} as follows:
7022
7023@example
7024int yyerror (char const *);
7025@end example
7026
7027Bison ignores the @code{int} value returned by this @code{yyerror}.
7028If you use the Yacc library's @code{main} function, your
7029@code{yyparse} function should have the following type signature:
7030
7031@example
7032int yyparse (void);
7033@end example
7034
12545799
AD
7035@c ================================================= C++ Bison
7036
7037@node C++ Language Interface
7038@chapter C++ Language Interface
7039
7040@menu
7041* C++ Parsers:: The interface to generate C++ parser classes
7042* A Complete C++ Example:: Demonstrating their use
7043@end menu
7044
7045@node C++ Parsers
7046@section C++ Parsers
7047
7048@menu
7049* C++ Bison Interface:: Asking for C++ parser generation
7050* C++ Semantic Values:: %union vs. C++
7051* C++ Location Values:: The position and location classes
7052* C++ Parser Interface:: Instantiating and running the parser
7053* C++ Scanner Interface:: Exchanges between yylex and parse
7054@end menu
7055
7056@node C++ Bison Interface
7057@subsection C++ Bison Interface
7058@c - %skeleton "lalr1.cc"
7059@c - Always pure
7060@c - initial action
7061
e054b190 7062The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
7063it, you may either pass the option @option{--skeleton=lalr1.cc} to
7064Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
7065grammar preamble. When run, @command{bison} will create several
7066files:
7067@table @file
7068@item position.hh
7069@itemx location.hh
7070The definition of the classes @code{position} and @code{location},
7071used for location tracking. @xref{C++ Location Values}.
7072
7073@item stack.hh
7074An auxiliary class @code{stack} used by the parser.
7075
fa4d969f
PE
7076@item @var{file}.hh
7077@itemx @var{file}.cc
12545799 7078The declaration and implementation of the C++ parser class.
fa4d969f 7079@var{file} is the name of the output file. It follows the same
12545799
AD
7080rules as with regular C parsers.
7081
fa4d969f 7082Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7083work without the parser class declaration. Therefore, you must either
7084pass @option{-d}/@option{--defines} to @command{bison}, or use the
7085@samp{%defines} directive.
7086@end table
7087
7088All these files are documented using Doxygen; run @command{doxygen}
7089for a complete and accurate documentation.
7090
7091@node C++ Semantic Values
7092@subsection C++ Semantic Values
7093@c - No objects in unions
7094@c - YSTYPE
7095@c - Printer and destructor
7096
7097The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7098Collection of Value Types}. In particular it produces a genuine
7099@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7100within pseudo-unions (similar to Boost variants) might be implemented to
7101alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7102@itemize @minus
7103@item
fb9712a9
AD
7104The type @code{YYSTYPE} is defined but its use is discouraged: rather
7105you should refer to the parser's encapsulated type
7106@code{yy::parser::semantic_type}.
12545799
AD
7107@item
7108Non POD (Plain Old Data) types cannot be used. C++ forbids any
7109instance of classes with constructors in unions: only @emph{pointers}
7110to such objects are allowed.
7111@end itemize
7112
7113Because objects have to be stored via pointers, memory is not
7114reclaimed automatically: using the @code{%destructor} directive is the
7115only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7116Symbols}.
7117
7118
7119@node C++ Location Values
7120@subsection C++ Location Values
7121@c - %locations
7122@c - class Position
7123@c - class Location
b47dbebe 7124@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7125
7126When the directive @code{%locations} is used, the C++ parser supports
7127location tracking, see @ref{Locations, , Locations Overview}. Two
7128auxiliary classes define a @code{position}, a single point in a file,
7129and a @code{location}, a range composed of a pair of
7130@code{position}s (possibly spanning several files).
7131
fa4d969f 7132@deftypemethod {position} {std::string*} file
12545799
AD
7133The name of the file. It will always be handled as a pointer, the
7134parser will never duplicate nor deallocate it. As an experimental
7135feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7136"filename_type" "@var{type}"}.
12545799
AD
7137@end deftypemethod
7138
7139@deftypemethod {position} {unsigned int} line
7140The line, starting at 1.
7141@end deftypemethod
7142
7143@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7144Advance by @var{height} lines, resetting the column number.
7145@end deftypemethod
7146
7147@deftypemethod {position} {unsigned int} column
7148The column, starting at 0.
7149@end deftypemethod
7150
7151@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7152Advance by @var{width} columns, without changing the line number.
7153@end deftypemethod
7154
7155@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7156@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7157@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7158@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7159Various forms of syntactic sugar for @code{columns}.
7160@end deftypemethod
7161
7162@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7163Report @var{p} on @var{o} like this:
fa4d969f
PE
7164@samp{@var{file}:@var{line}.@var{column}}, or
7165@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7166@end deftypemethod
7167
7168@deftypemethod {location} {position} begin
7169@deftypemethodx {location} {position} end
7170The first, inclusive, position of the range, and the first beyond.
7171@end deftypemethod
7172
7173@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7174@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7175Advance the @code{end} position.
7176@end deftypemethod
7177
7178@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7179@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7180@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7181Various forms of syntactic sugar.
7182@end deftypemethod
7183
7184@deftypemethod {location} {void} step ()
7185Move @code{begin} onto @code{end}.
7186@end deftypemethod
7187
7188
7189@node C++ Parser Interface
7190@subsection C++ Parser Interface
7191@c - define parser_class_name
7192@c - Ctor
7193@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7194@c debug_stream.
7195@c - Reporting errors
7196
7197The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7198declare and define the parser class in the namespace @code{yy}. The
7199class name defaults to @code{parser}, but may be changed using
7200@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7201this class is detailed below. It can be extended using the
12545799
AD
7202@code{%parse-param} feature: its semantics is slightly changed since
7203it describes an additional member of the parser class, and an
7204additional argument for its constructor.
7205
8a0adb01
AD
7206@defcv {Type} {parser} {semantic_value_type}
7207@defcvx {Type} {parser} {location_value_type}
12545799 7208The types for semantics value and locations.
8a0adb01 7209@end defcv
12545799
AD
7210
7211@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7212Build a new parser object. There are no arguments by default, unless
7213@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7214@end deftypemethod
7215
7216@deftypemethod {parser} {int} parse ()
7217Run the syntactic analysis, and return 0 on success, 1 otherwise.
7218@end deftypemethod
7219
7220@deftypemethod {parser} {std::ostream&} debug_stream ()
7221@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7222Get or set the stream used for tracing the parsing. It defaults to
7223@code{std::cerr}.
7224@end deftypemethod
7225
7226@deftypemethod {parser} {debug_level_type} debug_level ()
7227@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7228Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7229or nonzero, full tracing.
12545799
AD
7230@end deftypemethod
7231
7232@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7233The definition for this member function must be supplied by the user:
7234the parser uses it to report a parser error occurring at @var{l},
7235described by @var{m}.
7236@end deftypemethod
7237
7238
7239@node C++ Scanner Interface
7240@subsection C++ Scanner Interface
7241@c - prefix for yylex.
7242@c - Pure interface to yylex
7243@c - %lex-param
7244
7245The parser invokes the scanner by calling @code{yylex}. Contrary to C
7246parsers, C++ parsers are always pure: there is no point in using the
7247@code{%pure-parser} directive. Therefore the interface is as follows.
7248
7249@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7250Return the next token. Its type is the return value, its semantic
7251value and location being @var{yylval} and @var{yylloc}. Invocations of
7252@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7253@end deftypemethod
7254
7255
7256@node A Complete C++ Example
7257@section A Complete C++ Example
7258
7259This section demonstrates the use of a C++ parser with a simple but
7260complete example. This example should be available on your system,
7261ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7262focuses on the use of Bison, therefore the design of the various C++
7263classes is very naive: no accessors, no encapsulation of members etc.
7264We will use a Lex scanner, and more precisely, a Flex scanner, to
7265demonstrate the various interaction. A hand written scanner is
7266actually easier to interface with.
7267
7268@menu
7269* Calc++ --- C++ Calculator:: The specifications
7270* Calc++ Parsing Driver:: An active parsing context
7271* Calc++ Parser:: A parser class
7272* Calc++ Scanner:: A pure C++ Flex scanner
7273* Calc++ Top Level:: Conducting the band
7274@end menu
7275
7276@node Calc++ --- C++ Calculator
7277@subsection Calc++ --- C++ Calculator
7278
7279Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7280expression, possibly preceded by variable assignments. An
12545799
AD
7281environment containing possibly predefined variables such as
7282@code{one} and @code{two}, is exchanged with the parser. An example
7283of valid input follows.
7284
7285@example
7286three := 3
7287seven := one + two * three
7288seven * seven
7289@end example
7290
7291@node Calc++ Parsing Driver
7292@subsection Calc++ Parsing Driver
7293@c - An env
7294@c - A place to store error messages
7295@c - A place for the result
7296
7297To support a pure interface with the parser (and the scanner) the
7298technique of the ``parsing context'' is convenient: a structure
7299containing all the data to exchange. Since, in addition to simply
7300launch the parsing, there are several auxiliary tasks to execute (open
7301the file for parsing, instantiate the parser etc.), we recommend
7302transforming the simple parsing context structure into a fully blown
7303@dfn{parsing driver} class.
7304
7305The declaration of this driver class, @file{calc++-driver.hh}, is as
7306follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7307required standard library components, and the declaration of the parser
7308class.
12545799 7309
1c59e0a1 7310@comment file: calc++-driver.hh
12545799
AD
7311@example
7312#ifndef CALCXX_DRIVER_HH
7313# define CALCXX_DRIVER_HH
7314# include <string>
7315# include <map>
fb9712a9 7316# include "calc++-parser.hh"
12545799
AD
7317@end example
7318
12545799
AD
7319
7320@noindent
7321Then comes the declaration of the scanning function. Flex expects
7322the signature of @code{yylex} to be defined in the macro
7323@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7324factor both as follows.
1c59e0a1
AD
7325
7326@comment file: calc++-driver.hh
12545799
AD
7327@example
7328// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7329# define YY_DECL \
fb9712a9
AD
7330 int yylex (yy::calcxx_parser::semantic_type* yylval, \
7331 yy::calcxx_parser::location_type* yylloc, \
7332 calcxx_driver& driver)
12545799
AD
7333// ... and declare it for the parser's sake.
7334YY_DECL;
7335@end example
7336
7337@noindent
7338The @code{calcxx_driver} class is then declared with its most obvious
7339members.
7340
1c59e0a1 7341@comment file: calc++-driver.hh
12545799
AD
7342@example
7343// Conducting the whole scanning and parsing of Calc++.
7344class calcxx_driver
7345@{
7346public:
7347 calcxx_driver ();
7348 virtual ~calcxx_driver ();
7349
7350 std::map<std::string, int> variables;
7351
7352 int result;
7353@end example
7354
7355@noindent
7356To encapsulate the coordination with the Flex scanner, it is useful to
7357have two members function to open and close the scanning phase.
7358members.
7359
1c59e0a1 7360@comment file: calc++-driver.hh
12545799
AD
7361@example
7362 // Handling the scanner.
7363 void scan_begin ();
7364 void scan_end ();
7365 bool trace_scanning;
7366@end example
7367
7368@noindent
7369Similarly for the parser itself.
7370
1c59e0a1 7371@comment file: calc++-driver.hh
12545799
AD
7372@example
7373 // Handling the parser.
7374 void parse (const std::string& f);
7375 std::string file;
7376 bool trace_parsing;
7377@end example
7378
7379@noindent
7380To demonstrate pure handling of parse errors, instead of simply
7381dumping them on the standard error output, we will pass them to the
7382compiler driver using the following two member functions. Finally, we
7383close the class declaration and CPP guard.
7384
1c59e0a1 7385@comment file: calc++-driver.hh
12545799
AD
7386@example
7387 // Error handling.
7388 void error (const yy::location& l, const std::string& m);
7389 void error (const std::string& m);
7390@};
7391#endif // ! CALCXX_DRIVER_HH
7392@end example
7393
7394The implementation of the driver is straightforward. The @code{parse}
7395member function deserves some attention. The @code{error} functions
7396are simple stubs, they should actually register the located error
7397messages and set error state.
7398
1c59e0a1 7399@comment file: calc++-driver.cc
12545799
AD
7400@example
7401#include "calc++-driver.hh"
7402#include "calc++-parser.hh"
7403
7404calcxx_driver::calcxx_driver ()
7405 : trace_scanning (false), trace_parsing (false)
7406@{
7407 variables["one"] = 1;
7408 variables["two"] = 2;
7409@}
7410
7411calcxx_driver::~calcxx_driver ()
7412@{
7413@}
7414
7415void
7416calcxx_driver::parse (const std::string &f)
7417@{
7418 file = f;
7419 scan_begin ();
7420 yy::calcxx_parser parser (*this);
7421 parser.set_debug_level (trace_parsing);
7422 parser.parse ();
7423 scan_end ();
7424@}
7425
7426void
7427calcxx_driver::error (const yy::location& l, const std::string& m)
7428@{
7429 std::cerr << l << ": " << m << std::endl;
7430@}
7431
7432void
7433calcxx_driver::error (const std::string& m)
7434@{
7435 std::cerr << m << std::endl;
7436@}
7437@end example
7438
7439@node Calc++ Parser
7440@subsection Calc++ Parser
7441
b50d2359
AD
7442The parser definition file @file{calc++-parser.yy} starts by asking for
7443the C++ LALR(1) skeleton, the creation of the parser header file, and
7444specifies the name of the parser class. Because the C++ skeleton
7445changed several times, it is safer to require the version you designed
7446the grammar for.
1c59e0a1
AD
7447
7448@comment file: calc++-parser.yy
12545799
AD
7449@example
7450%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7451%require "2.1a"
12545799 7452%defines
fb9712a9
AD
7453%define "parser_class_name" "calcxx_parser"
7454@end example
7455
7456@noindent
7457Then come the declarations/inclusions needed to define the
7458@code{%union}. Because the parser uses the parsing driver and
7459reciprocally, both cannot include the header of the other. Because the
7460driver's header needs detailed knowledge about the parser class (in
7461particular its inner types), it is the parser's header which will simply
7462use a forward declaration of the driver.
7463
7464@comment file: calc++-parser.yy
7465@example
12545799
AD
7466%@{
7467# include <string>
fb9712a9 7468class calcxx_driver;
12545799
AD
7469%@}
7470@end example
7471
7472@noindent
7473The driver is passed by reference to the parser and to the scanner.
7474This provides a simple but effective pure interface, not relying on
7475global variables.
7476
1c59e0a1 7477@comment file: calc++-parser.yy
12545799
AD
7478@example
7479// The parsing context.
7480%parse-param @{ calcxx_driver& driver @}
7481%lex-param @{ calcxx_driver& driver @}
7482@end example
7483
7484@noindent
7485Then we request the location tracking feature, and initialize the
7486first location's file name. Afterwards new locations are computed
7487relatively to the previous locations: the file name will be
7488automatically propagated.
7489
1c59e0a1 7490@comment file: calc++-parser.yy
12545799
AD
7491@example
7492%locations
7493%initial-action
7494@{
7495 // Initialize the initial location.
b47dbebe 7496 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7497@};
7498@end example
7499
7500@noindent
7501Use the two following directives to enable parser tracing and verbose
7502error messages.
7503
1c59e0a1 7504@comment file: calc++-parser.yy
12545799
AD
7505@example
7506%debug
7507%error-verbose
7508@end example
7509
7510@noindent
7511Semantic values cannot use ``real'' objects, but only pointers to
7512them.
7513
1c59e0a1 7514@comment file: calc++-parser.yy
12545799
AD
7515@example
7516// Symbols.
7517%union
7518@{
7519 int ival;
7520 std::string *sval;
7521@};
7522@end example
7523
fb9712a9
AD
7524@noindent
7525The code between @samp{%@{} and @samp{%@}} after the introduction of the
7526@samp{%union} is output in the @file{*.cc} file; it needs detailed
7527knowledge about the driver.
7528
7529@comment file: calc++-parser.yy
7530@example
7531%@{
7532# include "calc++-driver.hh"
7533%@}
7534@end example
7535
7536
12545799
AD
7537@noindent
7538The token numbered as 0 corresponds to end of file; the following line
7539allows for nicer error messages referring to ``end of file'' instead
7540of ``$end''. Similarly user friendly named are provided for each
7541symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7542avoid name clashes.
7543
1c59e0a1 7544@comment file: calc++-parser.yy
12545799 7545@example
fb9712a9
AD
7546%token END 0 "end of file"
7547%token ASSIGN ":="
7548%token <sval> IDENTIFIER "identifier"
7549%token <ival> NUMBER "number"
7550%type <ival> exp "expression"
12545799
AD
7551@end example
7552
7553@noindent
7554To enable memory deallocation during error recovery, use
7555@code{%destructor}.
7556
287c78f6 7557@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7558@comment file: calc++-parser.yy
12545799
AD
7559@example
7560%printer @{ debug_stream () << *$$; @} "identifier"
7561%destructor @{ delete $$; @} "identifier"
7562
7563%printer @{ debug_stream () << $$; @} "number" "expression"
7564@end example
7565
7566@noindent
7567The grammar itself is straightforward.
7568
1c59e0a1 7569@comment file: calc++-parser.yy
12545799
AD
7570@example
7571%%
7572%start unit;
7573unit: assignments exp @{ driver.result = $2; @};
7574
7575assignments: assignments assignment @{@}
9d9b8b70 7576 | /* Nothing. */ @{@};
12545799 7577
fb9712a9 7578assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7579
7580%left '+' '-';
7581%left '*' '/';
7582exp: exp '+' exp @{ $$ = $1 + $3; @}
7583 | exp '-' exp @{ $$ = $1 - $3; @}
7584 | exp '*' exp @{ $$ = $1 * $3; @}
7585 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7586 | "identifier" @{ $$ = driver.variables[*$1]; @}
7587 | "number" @{ $$ = $1; @};
12545799
AD
7588%%
7589@end example
7590
7591@noindent
7592Finally the @code{error} member function registers the errors to the
7593driver.
7594
1c59e0a1 7595@comment file: calc++-parser.yy
12545799
AD
7596@example
7597void
1c59e0a1
AD
7598yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7599 const std::string& m)
12545799
AD
7600@{
7601 driver.error (l, m);
7602@}
7603@end example
7604
7605@node Calc++ Scanner
7606@subsection Calc++ Scanner
7607
7608The Flex scanner first includes the driver declaration, then the
7609parser's to get the set of defined tokens.
7610
1c59e0a1 7611@comment file: calc++-scanner.ll
12545799
AD
7612@example
7613%@{ /* -*- C++ -*- */
04098407
PE
7614# include <cstdlib>
7615# include <errno.h>
7616# include <limits.h>
12545799
AD
7617# include <string>
7618# include "calc++-driver.hh"
7619# include "calc++-parser.hh"
7870f699
PE
7620/* Work around a bug in flex 2.5.31. See Debian bug 333231
7621 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7622# undef yywrap
7623# define yywrap() 1
12545799
AD
7624%@}
7625@end example
7626
7627@noindent
7628Because there is no @code{#include}-like feature we don't need
7629@code{yywrap}, we don't need @code{unput} either, and we parse an
7630actual file, this is not an interactive session with the user.
7631Finally we enable the scanner tracing features.
7632
1c59e0a1 7633@comment file: calc++-scanner.ll
12545799
AD
7634@example
7635%option noyywrap nounput batch debug
7636@end example
7637
7638@noindent
7639Abbreviations allow for more readable rules.
7640
1c59e0a1 7641@comment file: calc++-scanner.ll
12545799
AD
7642@example
7643id [a-zA-Z][a-zA-Z_0-9]*
7644int [0-9]+
7645blank [ \t]
7646@end example
7647
7648@noindent
9d9b8b70 7649The following paragraph suffices to track locations accurately. Each
12545799
AD
7650time @code{yylex} is invoked, the begin position is moved onto the end
7651position. Then when a pattern is matched, the end position is
7652advanced of its width. In case it matched ends of lines, the end
7653cursor is adjusted, and each time blanks are matched, the begin cursor
7654is moved onto the end cursor to effectively ignore the blanks
7655preceding tokens. Comments would be treated equally.
7656
1c59e0a1 7657@comment file: calc++-scanner.ll
12545799 7658@example
828c373b
AD
7659%@{
7660# define YY_USER_ACTION yylloc->columns (yyleng);
7661%@}
12545799
AD
7662%%
7663%@{
7664 yylloc->step ();
12545799
AD
7665%@}
7666@{blank@}+ yylloc->step ();
7667[\n]+ yylloc->lines (yyleng); yylloc->step ();
7668@end example
7669
7670@noindent
fb9712a9
AD
7671The rules are simple, just note the use of the driver to report errors.
7672It is convenient to use a typedef to shorten
7673@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7674@code{token::identifier} for instance.
12545799 7675
1c59e0a1 7676@comment file: calc++-scanner.ll
12545799 7677@example
fb9712a9
AD
7678%@{
7679 typedef yy::calcxx_parser::token token;
7680%@}
7681
12545799 7682[-+*/] return yytext[0];
fb9712a9 7683":=" return token::ASSIGN;
04098407
PE
7684@{int@} @{
7685 errno = 0;
7686 long n = strtol (yytext, NULL, 10);
7687 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7688 driver.error (*yylloc, "integer is out of range");
7689 yylval->ival = n;
fb9712a9 7690 return token::NUMBER;
04098407 7691@}
fb9712a9 7692@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7693. driver.error (*yylloc, "invalid character");
7694%%
7695@end example
7696
7697@noindent
7698Finally, because the scanner related driver's member function depend
7699on the scanner's data, it is simpler to implement them in this file.
7700
1c59e0a1 7701@comment file: calc++-scanner.ll
12545799
AD
7702@example
7703void
7704calcxx_driver::scan_begin ()
7705@{
7706 yy_flex_debug = trace_scanning;
7707 if (!(yyin = fopen (file.c_str (), "r")))
7708 error (std::string ("cannot open ") + file);
7709@}
7710
7711void
7712calcxx_driver::scan_end ()
7713@{
7714 fclose (yyin);
7715@}
7716@end example
7717
7718@node Calc++ Top Level
7719@subsection Calc++ Top Level
7720
7721The top level file, @file{calc++.cc}, poses no problem.
7722
1c59e0a1 7723@comment file: calc++.cc
12545799
AD
7724@example
7725#include <iostream>
7726#include "calc++-driver.hh"
7727
7728int
fa4d969f 7729main (int argc, char *argv[])
12545799
AD
7730@{
7731 calcxx_driver driver;
7732 for (++argv; argv[0]; ++argv)
7733 if (*argv == std::string ("-p"))
7734 driver.trace_parsing = true;
7735 else if (*argv == std::string ("-s"))
7736 driver.trace_scanning = true;
7737 else
7738 @{
7739 driver.parse (*argv);
7740 std::cout << driver.result << std::endl;
7741 @}
7742@}
7743@end example
7744
7745@c ================================================= FAQ
d1a1114f
AD
7746
7747@node FAQ
7748@chapter Frequently Asked Questions
7749@cindex frequently asked questions
7750@cindex questions
7751
7752Several questions about Bison come up occasionally. Here some of them
7753are addressed.
7754
7755@menu
1a059451 7756* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7757* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7758* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7759* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7760@end menu
7761
1a059451
PE
7762@node Memory Exhausted
7763@section Memory Exhausted
d1a1114f
AD
7764
7765@display
1a059451 7766My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7767message. What can I do?
7768@end display
7769
7770This question is already addressed elsewhere, @xref{Recursion,
7771,Recursive Rules}.
7772
e64fec0a
PE
7773@node How Can I Reset the Parser
7774@section How Can I Reset the Parser
5b066063 7775
0e14ad77
PE
7776The following phenomenon has several symptoms, resulting in the
7777following typical questions:
5b066063
AD
7778
7779@display
7780I invoke @code{yyparse} several times, and on correct input it works
7781properly; but when a parse error is found, all the other calls fail
0e14ad77 7782too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7783@end display
7784
7785@noindent
7786or
7787
7788@display
0e14ad77 7789My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7790which case I run @code{yyparse} from @code{yyparse}. This fails
7791although I did specify I needed a @code{%pure-parser}.
7792@end display
7793
0e14ad77
PE
7794These problems typically come not from Bison itself, but from
7795Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7796speed, they might not notice a change of input file. As a
7797demonstration, consider the following source file,
7798@file{first-line.l}:
7799
7800@verbatim
7801%{
7802#include <stdio.h>
7803#include <stdlib.h>
7804%}
7805%%
7806.*\n ECHO; return 1;
7807%%
7808int
0e14ad77 7809yyparse (char const *file)
5b066063
AD
7810{
7811 yyin = fopen (file, "r");
7812 if (!yyin)
7813 exit (2);
fa7e68c3 7814 /* One token only. */
5b066063 7815 yylex ();
0e14ad77 7816 if (fclose (yyin) != 0)
5b066063
AD
7817 exit (3);
7818 return 0;
7819}
7820
7821int
0e14ad77 7822main (void)
5b066063
AD
7823{
7824 yyparse ("input");
7825 yyparse ("input");
7826 return 0;
7827}
7828@end verbatim
7829
7830@noindent
7831If the file @file{input} contains
7832
7833@verbatim
7834input:1: Hello,
7835input:2: World!
7836@end verbatim
7837
7838@noindent
0e14ad77 7839then instead of getting the first line twice, you get:
5b066063
AD
7840
7841@example
7842$ @kbd{flex -ofirst-line.c first-line.l}
7843$ @kbd{gcc -ofirst-line first-line.c -ll}
7844$ @kbd{./first-line}
7845input:1: Hello,
7846input:2: World!
7847@end example
7848
0e14ad77
PE
7849Therefore, whenever you change @code{yyin}, you must tell the
7850Lex-generated scanner to discard its current buffer and switch to the
7851new one. This depends upon your implementation of Lex; see its
7852documentation for more. For Flex, it suffices to call
7853@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7854Flex-generated scanner needs to read from several input streams to
7855handle features like include files, you might consider using Flex
7856functions like @samp{yy_switch_to_buffer} that manipulate multiple
7857input buffers.
5b066063 7858
b165c324
AD
7859If your Flex-generated scanner uses start conditions (@pxref{Start
7860conditions, , Start conditions, flex, The Flex Manual}), you might
7861also want to reset the scanner's state, i.e., go back to the initial
7862start condition, through a call to @samp{BEGIN (0)}.
7863
fef4cb51
AD
7864@node Strings are Destroyed
7865@section Strings are Destroyed
7866
7867@display
c7e441b4 7868My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7869them. Instead of reporting @samp{"foo", "bar"}, it reports
7870@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7871@end display
7872
7873This error is probably the single most frequent ``bug report'' sent to
7874Bison lists, but is only concerned with a misunderstanding of the role
7875of scanner. Consider the following Lex code:
7876
7877@verbatim
7878%{
7879#include <stdio.h>
7880char *yylval = NULL;
7881%}
7882%%
7883.* yylval = yytext; return 1;
7884\n /* IGNORE */
7885%%
7886int
7887main ()
7888{
fa7e68c3 7889 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7890 char *fst = (yylex (), yylval);
7891 char *snd = (yylex (), yylval);
7892 printf ("\"%s\", \"%s\"\n", fst, snd);
7893 return 0;
7894}
7895@end verbatim
7896
7897If you compile and run this code, you get:
7898
7899@example
7900$ @kbd{flex -osplit-lines.c split-lines.l}
7901$ @kbd{gcc -osplit-lines split-lines.c -ll}
7902$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7903"one
7904two", "two"
7905@end example
7906
7907@noindent
7908this is because @code{yytext} is a buffer provided for @emph{reading}
7909in the action, but if you want to keep it, you have to duplicate it
7910(e.g., using @code{strdup}). Note that the output may depend on how
7911your implementation of Lex handles @code{yytext}. For instance, when
7912given the Lex compatibility option @option{-l} (which triggers the
7913option @samp{%array}) Flex generates a different behavior:
7914
7915@example
7916$ @kbd{flex -l -osplit-lines.c split-lines.l}
7917$ @kbd{gcc -osplit-lines split-lines.c -ll}
7918$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7919"two", "two"
7920@end example
7921
7922
2fa09258
AD
7923@node Implementing Gotos/Loops
7924@section Implementing Gotos/Loops
a06ea4aa
AD
7925
7926@display
7927My simple calculator supports variables, assignments, and functions,
2fa09258 7928but how can I implement gotos, or loops?
a06ea4aa
AD
7929@end display
7930
7931Although very pedagogical, the examples included in the document blur
a1c84f45 7932the distinction to make between the parser---whose job is to recover
a06ea4aa 7933the structure of a text and to transmit it to subsequent modules of
a1c84f45 7934the program---and the processing (such as the execution) of this
a06ea4aa
AD
7935structure. This works well with so called straight line programs,
7936i.e., precisely those that have a straightforward execution model:
7937execute simple instructions one after the others.
7938
7939@cindex abstract syntax tree
7940@cindex @acronym{AST}
7941If you want a richer model, you will probably need to use the parser
7942to construct a tree that does represent the structure it has
7943recovered; this tree is usually called the @dfn{abstract syntax tree},
7944or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7945traversing it in various ways, will enable treatments such as its
7946execution or its translation, which will result in an interpreter or a
7947compiler.
7948
7949This topic is way beyond the scope of this manual, and the reader is
7950invited to consult the dedicated literature.
7951
7952
7953
d1a1114f
AD
7954@c ================================================= Table of Symbols
7955
342b8b6e 7956@node Table of Symbols
bfa74976
RS
7957@appendix Bison Symbols
7958@cindex Bison symbols, table of
7959@cindex symbols in Bison, table of
7960
18b519c0 7961@deffn {Variable} @@$
3ded9a63 7962In an action, the location of the left-hand side of the rule.
88bce5a2 7963@xref{Locations, , Locations Overview}.
18b519c0 7964@end deffn
3ded9a63 7965
18b519c0 7966@deffn {Variable} @@@var{n}
3ded9a63
AD
7967In an action, the location of the @var{n}-th symbol of the right-hand
7968side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7969@end deffn
3ded9a63 7970
18b519c0 7971@deffn {Variable} $$
3ded9a63
AD
7972In an action, the semantic value of the left-hand side of the rule.
7973@xref{Actions}.
18b519c0 7974@end deffn
3ded9a63 7975
18b519c0 7976@deffn {Variable} $@var{n}
3ded9a63
AD
7977In an action, the semantic value of the @var{n}-th symbol of the
7978right-hand side of the rule. @xref{Actions}.
18b519c0 7979@end deffn
3ded9a63 7980
dd8d9022
AD
7981@deffn {Delimiter} %%
7982Delimiter used to separate the grammar rule section from the
7983Bison declarations section or the epilogue.
7984@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7985@end deffn
bfa74976 7986
dd8d9022
AD
7987@c Don't insert spaces, or check the DVI output.
7988@deffn {Delimiter} %@{@var{code}%@}
7989All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7990the output file uninterpreted. Such code forms the prologue of the input
7991file. @xref{Grammar Outline, ,Outline of a Bison
7992Grammar}.
18b519c0 7993@end deffn
bfa74976 7994
dd8d9022
AD
7995@deffn {Construct} /*@dots{}*/
7996Comment delimiters, as in C.
18b519c0 7997@end deffn
bfa74976 7998
dd8d9022
AD
7999@deffn {Delimiter} :
8000Separates a rule's result from its components. @xref{Rules, ,Syntax of
8001Grammar Rules}.
18b519c0 8002@end deffn
bfa74976 8003
dd8d9022
AD
8004@deffn {Delimiter} ;
8005Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8006@end deffn
bfa74976 8007
dd8d9022
AD
8008@deffn {Delimiter} |
8009Separates alternate rules for the same result nonterminal.
8010@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8011@end deffn
bfa74976 8012
dd8d9022
AD
8013@deffn {Symbol} $accept
8014The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8015$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8016Start-Symbol}. It cannot be used in the grammar.
18b519c0 8017@end deffn
bfa74976 8018
18b519c0 8019@deffn {Directive} %debug
6deb4447 8020Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8021@end deffn
6deb4447 8022
91d2c560 8023@ifset defaultprec
22fccf95
PE
8024@deffn {Directive} %default-prec
8025Assign a precedence to rules that lack an explicit @samp{%prec}
8026modifier. @xref{Contextual Precedence, ,Context-Dependent
8027Precedence}.
39a06c25 8028@end deffn
91d2c560 8029@end ifset
39a06c25 8030
18b519c0 8031@deffn {Directive} %defines
6deb4447
AD
8032Bison declaration to create a header file meant for the scanner.
8033@xref{Decl Summary}.
18b519c0 8034@end deffn
6deb4447 8035
18b519c0 8036@deffn {Directive} %destructor
258b75ca 8037Specify how the parser should reclaim the memory associated to
fa7e68c3 8038discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8039@end deffn
72f889cc 8040
18b519c0 8041@deffn {Directive} %dprec
676385e2 8042Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8043time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8044@acronym{GLR} Parsers}.
18b519c0 8045@end deffn
676385e2 8046
dd8d9022
AD
8047@deffn {Symbol} $end
8048The predefined token marking the end of the token stream. It cannot be
8049used in the grammar.
8050@end deffn
8051
8052@deffn {Symbol} error
8053A token name reserved for error recovery. This token may be used in
8054grammar rules so as to allow the Bison parser to recognize an error in
8055the grammar without halting the process. In effect, a sentence
8056containing an error may be recognized as valid. On a syntax error, the
8057token @code{error} becomes the current look-ahead token. Actions
8058corresponding to @code{error} are then executed, and the look-ahead
8059token is reset to the token that originally caused the violation.
8060@xref{Error Recovery}.
18d192f0
AD
8061@end deffn
8062
18b519c0 8063@deffn {Directive} %error-verbose
2a8d363a
AD
8064Bison declaration to request verbose, specific error message strings
8065when @code{yyerror} is called.
18b519c0 8066@end deffn
2a8d363a 8067
18b519c0 8068@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8069Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8070Summary}.
18b519c0 8071@end deffn
d8988b2f 8072
18b519c0 8073@deffn {Directive} %glr-parser
c827f760
PE
8074Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8075Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8076@end deffn
676385e2 8077
dd8d9022
AD
8078@deffn {Directive} %initial-action
8079Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8080@end deffn
8081
18b519c0 8082@deffn {Directive} %left
bfa74976
RS
8083Bison declaration to assign left associativity to token(s).
8084@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8085@end deffn
bfa74976 8086
feeb0eda 8087@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8088Bison declaration to specifying an additional parameter that
8089@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8090for Pure Parsers}.
18b519c0 8091@end deffn
2a8d363a 8092
18b519c0 8093@deffn {Directive} %merge
676385e2 8094Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8095reduce/reduce conflict with a rule having the same merging function, the
676385e2 8096function is applied to the two semantic values to get a single result.
c827f760 8097@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8098@end deffn
676385e2 8099
18b519c0 8100@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8101Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8102@end deffn
d8988b2f 8103
91d2c560 8104@ifset defaultprec
22fccf95
PE
8105@deffn {Directive} %no-default-prec
8106Do not assign a precedence to rules that lack an explicit @samp{%prec}
8107modifier. @xref{Contextual Precedence, ,Context-Dependent
8108Precedence}.
8109@end deffn
91d2c560 8110@end ifset
22fccf95 8111
18b519c0 8112@deffn {Directive} %no-lines
931c7513
RS
8113Bison declaration to avoid generating @code{#line} directives in the
8114parser file. @xref{Decl Summary}.
18b519c0 8115@end deffn
931c7513 8116
18b519c0 8117@deffn {Directive} %nonassoc
9d9b8b70 8118Bison declaration to assign nonassociativity to token(s).
bfa74976 8119@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8120@end deffn
bfa74976 8121
fa4d969f 8122@deffn {Directive} %output="@var{file}"
72d2299c 8123Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8124Summary}.
18b519c0 8125@end deffn
d8988b2f 8126
feeb0eda 8127@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8128Bison declaration to specifying an additional parameter that
8129@code{yyparse} should accept. @xref{Parser Function,, The Parser
8130Function @code{yyparse}}.
18b519c0 8131@end deffn
2a8d363a 8132
18b519c0 8133@deffn {Directive} %prec
bfa74976
RS
8134Bison declaration to assign a precedence to a specific rule.
8135@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8136@end deffn
bfa74976 8137
18b519c0 8138@deffn {Directive} %pure-parser
bfa74976
RS
8139Bison declaration to request a pure (reentrant) parser.
8140@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8141@end deffn
bfa74976 8142
b50d2359 8143@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8144Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8145Require a Version of Bison}.
b50d2359
AD
8146@end deffn
8147
18b519c0 8148@deffn {Directive} %right
bfa74976
RS
8149Bison declaration to assign right associativity to token(s).
8150@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8151@end deffn
bfa74976 8152
18b519c0 8153@deffn {Directive} %start
704a47c4
AD
8154Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8155Start-Symbol}.
18b519c0 8156@end deffn
bfa74976 8157
18b519c0 8158@deffn {Directive} %token
bfa74976
RS
8159Bison declaration to declare token(s) without specifying precedence.
8160@xref{Token Decl, ,Token Type Names}.
18b519c0 8161@end deffn
bfa74976 8162
18b519c0 8163@deffn {Directive} %token-table
931c7513
RS
8164Bison declaration to include a token name table in the parser file.
8165@xref{Decl Summary}.
18b519c0 8166@end deffn
931c7513 8167
18b519c0 8168@deffn {Directive} %type
704a47c4
AD
8169Bison declaration to declare nonterminals. @xref{Type Decl,
8170,Nonterminal Symbols}.
18b519c0 8171@end deffn
bfa74976 8172
dd8d9022
AD
8173@deffn {Symbol} $undefined
8174The predefined token onto which all undefined values returned by
8175@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8176@code{error}.
8177@end deffn
8178
18b519c0 8179@deffn {Directive} %union
bfa74976
RS
8180Bison declaration to specify several possible data types for semantic
8181values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8182@end deffn
bfa74976 8183
dd8d9022
AD
8184@deffn {Macro} YYABORT
8185Macro to pretend that an unrecoverable syntax error has occurred, by
8186making @code{yyparse} return 1 immediately. The error reporting
8187function @code{yyerror} is not called. @xref{Parser Function, ,The
8188Parser Function @code{yyparse}}.
8189@end deffn
3ded9a63 8190
dd8d9022
AD
8191@deffn {Macro} YYACCEPT
8192Macro to pretend that a complete utterance of the language has been
8193read, by making @code{yyparse} return 0 immediately.
8194@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8195@end deffn
bfa74976 8196
dd8d9022
AD
8197@deffn {Macro} YYBACKUP
8198Macro to discard a value from the parser stack and fake a look-ahead
8199token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8200@end deffn
bfa74976 8201
dd8d9022 8202@deffn {Variable} yychar
32c29292 8203External integer variable that contains the integer value of the
dd8d9022
AD
8204look-ahead token. (In a pure parser, it is a local variable within
8205@code{yyparse}.) Error-recovery rule actions may examine this variable.
8206@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8207@end deffn
bfa74976 8208
dd8d9022
AD
8209@deffn {Variable} yyclearin
8210Macro used in error-recovery rule actions. It clears the previous
8211look-ahead token. @xref{Error Recovery}.
18b519c0 8212@end deffn
bfa74976 8213
dd8d9022
AD
8214@deffn {Macro} YYDEBUG
8215Macro to define to equip the parser with tracing code. @xref{Tracing,
8216,Tracing Your Parser}.
18b519c0 8217@end deffn
bfa74976 8218
dd8d9022
AD
8219@deffn {Variable} yydebug
8220External integer variable set to zero by default. If @code{yydebug}
8221is given a nonzero value, the parser will output information on input
8222symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8223@end deffn
bfa74976 8224
dd8d9022
AD
8225@deffn {Macro} yyerrok
8226Macro to cause parser to recover immediately to its normal mode
8227after a syntax error. @xref{Error Recovery}.
8228@end deffn
8229
8230@deffn {Macro} YYERROR
8231Macro to pretend that a syntax error has just been detected: call
8232@code{yyerror} and then perform normal error recovery if possible
8233(@pxref{Error Recovery}), or (if recovery is impossible) make
8234@code{yyparse} return 1. @xref{Error Recovery}.
8235@end deffn
8236
8237@deffn {Function} yyerror
8238User-supplied function to be called by @code{yyparse} on error.
8239@xref{Error Reporting, ,The Error
8240Reporting Function @code{yyerror}}.
8241@end deffn
8242
8243@deffn {Macro} YYERROR_VERBOSE
8244An obsolete macro that you define with @code{#define} in the prologue
8245to request verbose, specific error message strings
8246when @code{yyerror} is called. It doesn't matter what definition you
8247use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8248@code{%error-verbose} is preferred.
8249@end deffn
8250
8251@deffn {Macro} YYINITDEPTH
8252Macro for specifying the initial size of the parser stack.
1a059451 8253@xref{Memory Management}.
dd8d9022
AD
8254@end deffn
8255
8256@deffn {Function} yylex
8257User-supplied lexical analyzer function, called with no arguments to get
8258the next token. @xref{Lexical, ,The Lexical Analyzer Function
8259@code{yylex}}.
8260@end deffn
8261
8262@deffn {Macro} YYLEX_PARAM
8263An obsolete macro for specifying an extra argument (or list of extra
32c29292 8264arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8265macro is deprecated, and is supported only for Yacc like parsers.
8266@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8267@end deffn
8268
8269@deffn {Variable} yylloc
8270External variable in which @code{yylex} should place the line and column
8271numbers associated with a token. (In a pure parser, it is a local
8272variable within @code{yyparse}, and its address is passed to
32c29292
JD
8273@code{yylex}.)
8274You can ignore this variable if you don't use the @samp{@@} feature in the
8275grammar actions.
8276@xref{Token Locations, ,Textual Locations of Tokens}.
8277In semantic actions, it stores the location of the look-ahead token.
8278@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8279@end deffn
8280
8281@deffn {Type} YYLTYPE
8282Data type of @code{yylloc}; by default, a structure with four
8283members. @xref{Location Type, , Data Types of Locations}.
8284@end deffn
8285
8286@deffn {Variable} yylval
8287External variable in which @code{yylex} should place the semantic
8288value associated with a token. (In a pure parser, it is a local
8289variable within @code{yyparse}, and its address is passed to
32c29292
JD
8290@code{yylex}.)
8291@xref{Token Values, ,Semantic Values of Tokens}.
8292In semantic actions, it stores the semantic value of the look-ahead token.
8293@xref{Actions, ,Actions}.
dd8d9022
AD
8294@end deffn
8295
8296@deffn {Macro} YYMAXDEPTH
1a059451
PE
8297Macro for specifying the maximum size of the parser stack. @xref{Memory
8298Management}.
dd8d9022
AD
8299@end deffn
8300
8301@deffn {Variable} yynerrs
8a2800e7 8302Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8303(In a pure parser, it is a local variable within @code{yyparse}.)
8304@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8305@end deffn
8306
8307@deffn {Function} yyparse
8308The parser function produced by Bison; call this function to start
8309parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8310@end deffn
8311
8312@deffn {Macro} YYPARSE_PARAM
8313An obsolete macro for specifying the name of a parameter that
8314@code{yyparse} should accept. The use of this macro is deprecated, and
8315is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8316Conventions for Pure Parsers}.
8317@end deffn
8318
8319@deffn {Macro} YYRECOVERING
8320Macro whose value indicates whether the parser is recovering from a
8321syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8322@end deffn
8323
8324@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8325Macro used to control the use of @code{alloca} when the C
8326@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8327the parser will use @code{malloc} to extend its stacks. If defined to
83281, the parser will use @code{alloca}. Values other than 0 and 1 are
8329reserved for future Bison extensions. If not defined,
8330@code{YYSTACK_USE_ALLOCA} defaults to 0.
8331
55289366 8332In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8333limited stack and with unreliable stack-overflow checking, you should
8334set @code{YYMAXDEPTH} to a value that cannot possibly result in
8335unchecked stack overflow on any of your target hosts when
8336@code{alloca} is called. You can inspect the code that Bison
8337generates in order to determine the proper numeric values. This will
8338require some expertise in low-level implementation details.
dd8d9022
AD
8339@end deffn
8340
8341@deffn {Type} YYSTYPE
8342Data type of semantic values; @code{int} by default.
8343@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8344@end deffn
bfa74976 8345
342b8b6e 8346@node Glossary
bfa74976
RS
8347@appendix Glossary
8348@cindex glossary
8349
8350@table @asis
c827f760
PE
8351@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8352Formal method of specifying context-free grammars originally proposed
8353by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8354committee document contributing to what became the Algol 60 report.
8355@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8356
8357@item Context-free grammars
8358Grammars specified as rules that can be applied regardless of context.
8359Thus, if there is a rule which says that an integer can be used as an
8360expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8361permitted. @xref{Language and Grammar, ,Languages and Context-Free
8362Grammars}.
bfa74976
RS
8363
8364@item Dynamic allocation
8365Allocation of memory that occurs during execution, rather than at
8366compile time or on entry to a function.
8367
8368@item Empty string
8369Analogous to the empty set in set theory, the empty string is a
8370character string of length zero.
8371
8372@item Finite-state stack machine
8373A ``machine'' that has discrete states in which it is said to exist at
8374each instant in time. As input to the machine is processed, the
8375machine moves from state to state as specified by the logic of the
8376machine. In the case of the parser, the input is the language being
8377parsed, and the states correspond to various stages in the grammar
c827f760 8378rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8379
c827f760 8380@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8381A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8382that are not @acronym{LALR}(1). It resolves situations that Bison's
8383usual @acronym{LALR}(1)
676385e2
PH
8384algorithm cannot by effectively splitting off multiple parsers, trying all
8385possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8386right context. @xref{Generalized LR Parsing, ,Generalized
8387@acronym{LR} Parsing}.
676385e2 8388
bfa74976
RS
8389@item Grouping
8390A language construct that is (in general) grammatically divisible;
c827f760 8391for example, `expression' or `declaration' in C@.
bfa74976
RS
8392@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8393
8394@item Infix operator
8395An arithmetic operator that is placed between the operands on which it
8396performs some operation.
8397
8398@item Input stream
8399A continuous flow of data between devices or programs.
8400
8401@item Language construct
8402One of the typical usage schemas of the language. For example, one of
8403the constructs of the C language is the @code{if} statement.
8404@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8405
8406@item Left associativity
8407Operators having left associativity are analyzed from left to right:
8408@samp{a+b+c} first computes @samp{a+b} and then combines with
8409@samp{c}. @xref{Precedence, ,Operator Precedence}.
8410
8411@item Left recursion
89cab50d
AD
8412A rule whose result symbol is also its first component symbol; for
8413example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8414Rules}.
bfa74976
RS
8415
8416@item Left-to-right parsing
8417Parsing a sentence of a language by analyzing it token by token from
c827f760 8418left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8419
8420@item Lexical analyzer (scanner)
8421A function that reads an input stream and returns tokens one by one.
8422@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8423
8424@item Lexical tie-in
8425A flag, set by actions in the grammar rules, which alters the way
8426tokens are parsed. @xref{Lexical Tie-ins}.
8427
931c7513 8428@item Literal string token
14ded682 8429A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8430
bfa74976 8431@item Look-ahead token
89cab50d
AD
8432A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8433Tokens}.
bfa74976 8434
c827f760 8435@item @acronym{LALR}(1)
bfa74976 8436The class of context-free grammars that Bison (like most other parser
c827f760
PE
8437generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8438Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8439
c827f760 8440@item @acronym{LR}(1)
bfa74976
RS
8441The class of context-free grammars in which at most one token of
8442look-ahead is needed to disambiguate the parsing of any piece of input.
8443
8444@item Nonterminal symbol
8445A grammar symbol standing for a grammatical construct that can
8446be expressed through rules in terms of smaller constructs; in other
8447words, a construct that is not a token. @xref{Symbols}.
8448
bfa74976
RS
8449@item Parser
8450A function that recognizes valid sentences of a language by analyzing
8451the syntax structure of a set of tokens passed to it from a lexical
8452analyzer.
8453
8454@item Postfix operator
8455An arithmetic operator that is placed after the operands upon which it
8456performs some operation.
8457
8458@item Reduction
8459Replacing a string of nonterminals and/or terminals with a single
89cab50d 8460nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8461Parser Algorithm}.
bfa74976
RS
8462
8463@item Reentrant
8464A reentrant subprogram is a subprogram which can be in invoked any
8465number of times in parallel, without interference between the various
8466invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8467
8468@item Reverse polish notation
8469A language in which all operators are postfix operators.
8470
8471@item Right recursion
89cab50d
AD
8472A rule whose result symbol is also its last component symbol; for
8473example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8474Rules}.
bfa74976
RS
8475
8476@item Semantics
8477In computer languages, the semantics are specified by the actions
8478taken for each instance of the language, i.e., the meaning of
8479each statement. @xref{Semantics, ,Defining Language Semantics}.
8480
8481@item Shift
8482A parser is said to shift when it makes the choice of analyzing
8483further input from the stream rather than reducing immediately some
c827f760 8484already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8485
8486@item Single-character literal
8487A single character that is recognized and interpreted as is.
8488@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8489
8490@item Start symbol
8491The nonterminal symbol that stands for a complete valid utterance in
8492the language being parsed. The start symbol is usually listed as the
13863333 8493first nonterminal symbol in a language specification.
bfa74976
RS
8494@xref{Start Decl, ,The Start-Symbol}.
8495
8496@item Symbol table
8497A data structure where symbol names and associated data are stored
8498during parsing to allow for recognition and use of existing
8499information in repeated uses of a symbol. @xref{Multi-function Calc}.
8500
6e649e65
PE
8501@item Syntax error
8502An error encountered during parsing of an input stream due to invalid
8503syntax. @xref{Error Recovery}.
8504
bfa74976
RS
8505@item Token
8506A basic, grammatically indivisible unit of a language. The symbol
8507that describes a token in the grammar is a terminal symbol.
8508The input of the Bison parser is a stream of tokens which comes from
8509the lexical analyzer. @xref{Symbols}.
8510
8511@item Terminal symbol
89cab50d
AD
8512A grammar symbol that has no rules in the grammar and therefore is
8513grammatically indivisible. The piece of text it represents is a token.
8514@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8515@end table
8516
342b8b6e 8517@node Copying This Manual
f2b5126e 8518@appendix Copying This Manual
f9a8293a 8519
f2b5126e
PB
8520@menu
8521* GNU Free Documentation License:: License for copying this manual.
8522@end menu
f9a8293a 8523
f2b5126e
PB
8524@include fdl.texi
8525
342b8b6e 8526@node Index
bfa74976
RS
8527@unnumbered Index
8528
8529@printindex cp
8530
bfa74976 8531@bye
a06ea4aa
AD
8532
8533@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8534@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8535@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8536@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8537@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8538@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8539@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8540@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8541@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8542@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8543@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8544@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8545@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8546@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8547@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8548@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8549@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8550@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8551@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8552@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8553@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8554@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8555@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8556@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8557@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8558@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8559@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8560@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8561@c LocalWords: YYSTACK DVI fdl printindex