]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: don't use @acronym.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
575619af
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
106* Invocation:: How to run Bison (to produce the parser source file).
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f5f419de
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
8a4281b9 133Writing GLR Parsers
fa7e68c3 134
8a4281b9
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 137* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 138* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
d013372c 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976
RS
230* Decl Summary:: Table of all Bison declarations.
231
232Parser C-Language Interface
233
f5f419de
DJ
234* Parser Function:: How to call @code{yyparse} and what it returns.
235* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
236* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
237* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
238* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
239* Lexical:: You must supply a function @code{yylex}
240 which reads tokens.
241* Error Reporting:: You must supply a function @code{yyerror}.
242* Action Features:: Special features for use in actions.
243* Internationalization:: How to let the parser speak in the user's
244 native language.
bfa74976
RS
245
246The Lexical Analyzer Function @code{yylex}
247
248* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
249* Token Values:: How @code{yylex} must return the semantic value
250 of the token it has read.
251* Token Locations:: How @code{yylex} must return the text location
252 (line number, etc.) of the token, if the
253 actions want that.
254* Pure Calling:: How the calling convention differs in a pure parser
255 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 256
13863333 257The Bison Parser Algorithm
bfa74976 258
742e4900 259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
261* Precedence:: Operator precedence works by resolving conflicts.
262* Contextual Precedence:: When an operator's precedence depends on context.
263* Parser States:: The parser is a finite-state-machine with stack.
264* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 265* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
268
269Operator Precedence
270
271* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
272* Using Precedence:: How to specify precedence and associativity.
273* Precedence Only:: How to specify precedence only.
bfa74976
RS
274* Precedence Examples:: How these features are used in the previous example.
275* How Precedence:: How they work.
276
277Handling Context Dependencies
278
279* Semantic Tokens:: Token parsing can depend on the semantic context.
280* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
281* Tie-in Recovery:: Lexical tie-ins have implications for how
282 error recovery rules must be written.
283
93dd49ab 284Debugging Your Parser
ec3bc396
AD
285
286* Understanding:: Understanding the structure of your parser.
287* Tracing:: Tracing the execution of your parser.
288
bfa74976
RS
289Invoking Bison
290
13863333 291* Bison Options:: All the options described in detail,
c827f760 292 in alphabetical order by short options.
bfa74976 293* Option Cross Key:: Alphabetical list of long options.
93dd49ab 294* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 295
8405b70c 296Parsers Written In Other Languages
12545799
AD
297
298* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 299* Java Parsers:: The interface to generate Java parser classes
12545799
AD
300
301C++ Parsers
302
303* C++ Bison Interface:: Asking for C++ parser generation
304* C++ Semantic Values:: %union vs. C++
305* C++ Location Values:: The position and location classes
306* C++ Parser Interface:: Instantiating and running the parser
307* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 308* A Complete C++ Example:: Demonstrating their use
12545799
AD
309
310A Complete C++ Example
311
312* Calc++ --- C++ Calculator:: The specifications
313* Calc++ Parsing Driver:: An active parsing context
314* Calc++ Parser:: A parser class
315* Calc++ Scanner:: A pure C++ Flex scanner
316* Calc++ Top Level:: Conducting the band
317
8405b70c
PB
318Java Parsers
319
f5f419de
DJ
320* Java Bison Interface:: Asking for Java parser generation
321* Java Semantic Values:: %type and %token vs. Java
322* Java Location Values:: The position and location classes
323* Java Parser Interface:: Instantiating and running the parser
324* Java Scanner Interface:: Specifying the scanner for the parser
325* Java Action Features:: Special features for use in actions
326* Java Differences:: Differences between C/C++ and Java Grammars
327* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 328
d1a1114f
AD
329Frequently Asked Questions
330
f5f419de
DJ
331* Memory Exhausted:: Breaking the Stack Limits
332* How Can I Reset the Parser:: @code{yyparse} Keeps some State
333* Strings are Destroyed:: @code{yylval} Loses Track of Strings
334* Implementing Gotos/Loops:: Control Flow in the Calculator
335* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 336* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
337* I can't build Bison:: Troubleshooting
338* Where can I find help?:: Troubleshouting
339* Bug Reports:: Troublereporting
340* More Languages:: Parsers in C++, Java, and so on
341* Beta Testing:: Experimenting development versions
342* Mailing Lists:: Meeting other Bison users
d1a1114f 343
f2b5126e
PB
344Copying This Manual
345
f5f419de 346* Copying This Manual:: License for copying this manual.
f2b5126e 347
342b8b6e 348@end detailmenu
bfa74976
RS
349@end menu
350
342b8b6e 351@node Introduction
bfa74976
RS
352@unnumbered Introduction
353@cindex introduction
354
6077da58 355@dfn{Bison} is a general-purpose parser generator that converts an
8a4281b9
JD
356annotated context-free grammar into a deterministic LR or
357generalized LR (GLR) parser employing
358LALR(1), IELR(1), or canonical LR(1)
9dc3ee6d 359parser tables.
eb45ef3b
JD
360Once you are proficient with Bison, you can use it to develop a wide
361range of language parsers, from those used in simple desk calculators to
362complex programming languages.
bfa74976
RS
363
364Bison is upward compatible with Yacc: all properly-written Yacc grammars
365ought to work with Bison with no change. Anyone familiar with Yacc
366should be able to use Bison with little trouble. You need to be fluent in
1e137b71 367C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
368
369We begin with tutorial chapters that explain the basic concepts of using
370Bison and show three explained examples, each building on the last. If you
371don't know Bison or Yacc, start by reading these chapters. Reference
372chapters follow which describe specific aspects of Bison in detail.
373
931c7513
RS
374Bison was written primarily by Robert Corbett; Richard Stallman made it
375Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 376multi-character string literals and other features.
931c7513 377
df1af54c 378This edition corresponds to version @value{VERSION} of Bison.
bfa74976 379
342b8b6e 380@node Conditions
bfa74976
RS
381@unnumbered Conditions for Using Bison
382
193d7c70
PE
383The distribution terms for Bison-generated parsers permit using the
384parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 385permissions applied only when Bison was generating LALR(1)
193d7c70 386parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 387parsers could be used only in programs that were free software.
a31239f1 388
8a4281b9 389The other GNU programming tools, such as the GNU C
c827f760 390compiler, have never
9ecbd125 391had such a requirement. They could always be used for nonfree
a31239f1
RS
392software. The reason Bison was different was not due to a special
393policy decision; it resulted from applying the usual General Public
394License to all of the Bison source code.
395
396The output of the Bison utility---the Bison parser file---contains a
397verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
398parser's implementation. (The actions from your grammar are inserted
399into this implementation at one point, but most of the rest of the
8a4281b9 400implementation is not changed.) When we applied the GPL
193d7c70 401terms to the skeleton code for the parser's implementation,
a31239f1
RS
402the effect was to restrict the use of Bison output to free software.
403
404We didn't change the terms because of sympathy for people who want to
405make software proprietary. @strong{Software should be free.} But we
406concluded that limiting Bison's use to free software was doing little to
407encourage people to make other software free. So we decided to make the
408practical conditions for using Bison match the practical conditions for
8a4281b9 409using the other GNU tools.
bfa74976 410
193d7c70
PE
411This exception applies when Bison is generating code for a parser.
412You can tell whether the exception applies to a Bison output file by
413inspecting the file for text beginning with ``As a special
414exception@dots{}''. The text spells out the exact terms of the
415exception.
262aa8dd 416
f16b0819
PE
417@node Copying
418@unnumbered GNU GENERAL PUBLIC LICENSE
419@include gpl-3.0.texi
bfa74976 420
342b8b6e 421@node Concepts
bfa74976
RS
422@chapter The Concepts of Bison
423
424This chapter introduces many of the basic concepts without which the
425details of Bison will not make sense. If you do not already know how to
426use Bison or Yacc, we suggest you start by reading this chapter carefully.
427
428@menu
f5f419de
DJ
429* Language and Grammar:: Languages and context-free grammars,
430 as mathematical ideas.
431* Grammar in Bison:: How we represent grammars for Bison's sake.
432* Semantic Values:: Each token or syntactic grouping can have
433 a semantic value (the value of an integer,
434 the name of an identifier, etc.).
435* Semantic Actions:: Each rule can have an action containing C code.
436* GLR Parsers:: Writing parsers for general context-free languages.
437* Locations Overview:: Tracking Locations.
438* Bison Parser:: What are Bison's input and output,
439 how is the output used?
440* Stages:: Stages in writing and running Bison grammars.
441* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
442@end menu
443
342b8b6e 444@node Language and Grammar
bfa74976
RS
445@section Languages and Context-Free Grammars
446
bfa74976
RS
447@cindex context-free grammar
448@cindex grammar, context-free
449In order for Bison to parse a language, it must be described by a
450@dfn{context-free grammar}. This means that you specify one or more
451@dfn{syntactic groupings} and give rules for constructing them from their
452parts. For example, in the C language, one kind of grouping is called an
453`expression'. One rule for making an expression might be, ``An expression
454can be made of a minus sign and another expression''. Another would be,
455``An expression can be an integer''. As you can see, rules are often
456recursive, but there must be at least one rule which leads out of the
457recursion.
458
8a4281b9 459@cindex BNF
bfa74976
RS
460@cindex Backus-Naur form
461The most common formal system for presenting such rules for humans to read
8a4281b9 462is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 463order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
464BNF is a context-free grammar. The input to Bison is
465essentially machine-readable BNF.
bfa74976 466
8a4281b9
JD
467@cindex LALR(1) grammars
468@cindex IELR(1) grammars
469@cindex LR(1) grammars
eb45ef3b
JD
470There are various important subclasses of context-free grammars.
471Although it can handle almost all context-free grammars, Bison is
8a4281b9 472optimized for what are called LR(1) grammars.
eb45ef3b
JD
473In brief, in these grammars, it must be possible to tell how to parse
474any portion of an input string with just a single token of lookahead.
475For historical reasons, Bison by default is limited by the additional
8a4281b9 476restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
477@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
478more information on this.
f1b238df 479As an experimental feature, you can escape these additional restrictions by
8a4281b9 480requesting IELR(1) or canonical LR(1) parser tables.
eb45ef3b 481@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 482
8a4281b9
JD
483@cindex GLR parsing
484@cindex generalized LR (GLR) parsing
676385e2 485@cindex ambiguous grammars
9d9b8b70 486@cindex nondeterministic parsing
9501dc6e 487
8a4281b9 488Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
489roughly that the next grammar rule to apply at any point in the input is
490uniquely determined by the preceding input and a fixed, finite portion
742e4900 491(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 492grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 493apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 494grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 495lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 496With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
497general context-free grammars, using a technique known as GLR
498parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
499are able to handle any context-free grammar for which the number of
500possible parses of any given string is finite.
676385e2 501
bfa74976
RS
502@cindex symbols (abstract)
503@cindex token
504@cindex syntactic grouping
505@cindex grouping, syntactic
9501dc6e
AD
506In the formal grammatical rules for a language, each kind of syntactic
507unit or grouping is named by a @dfn{symbol}. Those which are built by
508grouping smaller constructs according to grammatical rules are called
bfa74976
RS
509@dfn{nonterminal symbols}; those which can't be subdivided are called
510@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
511corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 512corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
513
514We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
515nonterminal, mean. The tokens of C are identifiers, constants (numeric
516and string), and the various keywords, arithmetic operators and
517punctuation marks. So the terminal symbols of a grammar for C include
518`identifier', `number', `string', plus one symbol for each keyword,
519operator or punctuation mark: `if', `return', `const', `static', `int',
520`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
521(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
522lexicography, not grammar.)
523
524Here is a simple C function subdivided into tokens:
525
9edcd895
AD
526@ifinfo
527@example
528int /* @r{keyword `int'} */
14d4662b 529square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
530 @r{identifier, close-paren} */
531@{ /* @r{open-brace} */
aa08666d
AD
532 return x * x; /* @r{keyword `return', identifier, asterisk,}
533 @r{identifier, semicolon} */
9edcd895
AD
534@} /* @r{close-brace} */
535@end example
536@end ifinfo
537@ifnotinfo
bfa74976
RS
538@example
539int /* @r{keyword `int'} */
14d4662b 540square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 541@{ /* @r{open-brace} */
9edcd895 542 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
543@} /* @r{close-brace} */
544@end example
9edcd895 545@end ifnotinfo
bfa74976
RS
546
547The syntactic groupings of C include the expression, the statement, the
548declaration, and the function definition. These are represented in the
549grammar of C by nonterminal symbols `expression', `statement',
550`declaration' and `function definition'. The full grammar uses dozens of
551additional language constructs, each with its own nonterminal symbol, in
552order to express the meanings of these four. The example above is a
553function definition; it contains one declaration, and one statement. In
554the statement, each @samp{x} is an expression and so is @samp{x * x}.
555
556Each nonterminal symbol must have grammatical rules showing how it is made
557out of simpler constructs. For example, one kind of C statement is the
558@code{return} statement; this would be described with a grammar rule which
559reads informally as follows:
560
561@quotation
562A `statement' can be made of a `return' keyword, an `expression' and a
563`semicolon'.
564@end quotation
565
566@noindent
567There would be many other rules for `statement', one for each kind of
568statement in C.
569
570@cindex start symbol
571One nonterminal symbol must be distinguished as the special one which
572defines a complete utterance in the language. It is called the @dfn{start
573symbol}. In a compiler, this means a complete input program. In the C
574language, the nonterminal symbol `sequence of definitions and declarations'
575plays this role.
576
577For example, @samp{1 + 2} is a valid C expression---a valid part of a C
578program---but it is not valid as an @emph{entire} C program. In the
579context-free grammar of C, this follows from the fact that `expression' is
580not the start symbol.
581
582The Bison parser reads a sequence of tokens as its input, and groups the
583tokens using the grammar rules. If the input is valid, the end result is
584that the entire token sequence reduces to a single grouping whose symbol is
585the grammar's start symbol. If we use a grammar for C, the entire input
586must be a `sequence of definitions and declarations'. If not, the parser
587reports a syntax error.
588
342b8b6e 589@node Grammar in Bison
bfa74976
RS
590@section From Formal Rules to Bison Input
591@cindex Bison grammar
592@cindex grammar, Bison
593@cindex formal grammar
594
595A formal grammar is a mathematical construct. To define the language
596for Bison, you must write a file expressing the grammar in Bison syntax:
597a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
598
599A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 600as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
601in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
602
603The Bison representation for a terminal symbol is also called a @dfn{token
604type}. Token types as well can be represented as C-like identifiers. By
605convention, these identifiers should be upper case to distinguish them from
606nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
607@code{RETURN}. A terminal symbol that stands for a particular keyword in
608the language should be named after that keyword converted to upper case.
609The terminal symbol @code{error} is reserved for error recovery.
931c7513 610@xref{Symbols}.
bfa74976
RS
611
612A terminal symbol can also be represented as a character literal, just like
613a C character constant. You should do this whenever a token is just a
614single character (parenthesis, plus-sign, etc.): use that same character in
615a literal as the terminal symbol for that token.
616
931c7513
RS
617A third way to represent a terminal symbol is with a C string constant
618containing several characters. @xref{Symbols}, for more information.
619
bfa74976
RS
620The grammar rules also have an expression in Bison syntax. For example,
621here is the Bison rule for a C @code{return} statement. The semicolon in
622quotes is a literal character token, representing part of the C syntax for
623the statement; the naked semicolon, and the colon, are Bison punctuation
624used in every rule.
625
626@example
627stmt: RETURN expr ';'
628 ;
629@end example
630
631@noindent
632@xref{Rules, ,Syntax of Grammar Rules}.
633
342b8b6e 634@node Semantic Values
bfa74976
RS
635@section Semantic Values
636@cindex semantic value
637@cindex value, semantic
638
639A formal grammar selects tokens only by their classifications: for example,
640if a rule mentions the terminal symbol `integer constant', it means that
641@emph{any} integer constant is grammatically valid in that position. The
642precise value of the constant is irrelevant to how to parse the input: if
643@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 644grammatical.
bfa74976
RS
645
646But the precise value is very important for what the input means once it is
647parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6483989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
649has both a token type and a @dfn{semantic value}. @xref{Semantics,
650,Defining Language Semantics},
bfa74976
RS
651for details.
652
653The token type is a terminal symbol defined in the grammar, such as
654@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
655you need to know to decide where the token may validly appear and how to
656group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 657except their types.
bfa74976
RS
658
659The semantic value has all the rest of the information about the
660meaning of the token, such as the value of an integer, or the name of an
661identifier. (A token such as @code{','} which is just punctuation doesn't
662need to have any semantic value.)
663
664For example, an input token might be classified as token type
665@code{INTEGER} and have the semantic value 4. Another input token might
666have the same token type @code{INTEGER} but value 3989. When a grammar
667rule says that @code{INTEGER} is allowed, either of these tokens is
668acceptable because each is an @code{INTEGER}. When the parser accepts the
669token, it keeps track of the token's semantic value.
670
671Each grouping can also have a semantic value as well as its nonterminal
672symbol. For example, in a calculator, an expression typically has a
673semantic value that is a number. In a compiler for a programming
674language, an expression typically has a semantic value that is a tree
675structure describing the meaning of the expression.
676
342b8b6e 677@node Semantic Actions
bfa74976
RS
678@section Semantic Actions
679@cindex semantic actions
680@cindex actions, semantic
681
682In order to be useful, a program must do more than parse input; it must
683also produce some output based on the input. In a Bison grammar, a grammar
684rule can have an @dfn{action} made up of C statements. Each time the
685parser recognizes a match for that rule, the action is executed.
686@xref{Actions}.
13863333 687
bfa74976
RS
688Most of the time, the purpose of an action is to compute the semantic value
689of the whole construct from the semantic values of its parts. For example,
690suppose we have a rule which says an expression can be the sum of two
691expressions. When the parser recognizes such a sum, each of the
692subexpressions has a semantic value which describes how it was built up.
693The action for this rule should create a similar sort of value for the
694newly recognized larger expression.
695
696For example, here is a rule that says an expression can be the sum of
697two subexpressions:
698
699@example
700expr: expr '+' expr @{ $$ = $1 + $3; @}
701 ;
702@end example
703
704@noindent
705The action says how to produce the semantic value of the sum expression
706from the values of the two subexpressions.
707
676385e2 708@node GLR Parsers
8a4281b9
JD
709@section Writing GLR Parsers
710@cindex GLR parsing
711@cindex generalized LR (GLR) parsing
676385e2
PH
712@findex %glr-parser
713@cindex conflicts
714@cindex shift/reduce conflicts
fa7e68c3 715@cindex reduce/reduce conflicts
676385e2 716
eb45ef3b 717In some grammars, Bison's deterministic
8a4281b9 718LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
719certain grammar rule at a given point. That is, it may not be able to
720decide (on the basis of the input read so far) which of two possible
721reductions (applications of a grammar rule) applies, or whether to apply
722a reduction or read more of the input and apply a reduction later in the
723input. These are known respectively as @dfn{reduce/reduce} conflicts
724(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
725(@pxref{Shift/Reduce}).
726
8a4281b9 727To use a grammar that is not easily modified to be LR(1), a
9501dc6e 728more general parsing algorithm is sometimes necessary. If you include
676385e2 729@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
730(@pxref{Grammar Outline}), the result is a Generalized LR
731(GLR) parser. These parsers handle Bison grammars that
9501dc6e 732contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 733declarations) identically to deterministic parsers. However, when
9501dc6e 734faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 735GLR parsers use the simple expedient of doing both,
9501dc6e
AD
736effectively cloning the parser to follow both possibilities. Each of
737the resulting parsers can again split, so that at any given time, there
738can be any number of possible parses being explored. The parsers
676385e2
PH
739proceed in lockstep; that is, all of them consume (shift) a given input
740symbol before any of them proceed to the next. Each of the cloned
741parsers eventually meets one of two possible fates: either it runs into
742a parsing error, in which case it simply vanishes, or it merges with
743another parser, because the two of them have reduced the input to an
744identical set of symbols.
745
746During the time that there are multiple parsers, semantic actions are
747recorded, but not performed. When a parser disappears, its recorded
748semantic actions disappear as well, and are never performed. When a
749reduction makes two parsers identical, causing them to merge, Bison
750records both sets of semantic actions. Whenever the last two parsers
751merge, reverting to the single-parser case, Bison resolves all the
752outstanding actions either by precedences given to the grammar rules
753involved, or by performing both actions, and then calling a designated
754user-defined function on the resulting values to produce an arbitrary
755merged result.
756
fa7e68c3 757@menu
8a4281b9
JD
758* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
759* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 760* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 761* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 762* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
763@end menu
764
765@node Simple GLR Parsers
8a4281b9
JD
766@subsection Using GLR on Unambiguous Grammars
767@cindex GLR parsing, unambiguous grammars
768@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
769@findex %glr-parser
770@findex %expect-rr
771@cindex conflicts
772@cindex reduce/reduce conflicts
773@cindex shift/reduce conflicts
774
8a4281b9
JD
775In the simplest cases, you can use the GLR algorithm
776to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 777Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
778
779Consider a problem that
780arises in the declaration of enumerated and subrange types in the
781programming language Pascal. Here are some examples:
782
783@example
784type subrange = lo .. hi;
785type enum = (a, b, c);
786@end example
787
788@noindent
789The original language standard allows only numeric
790literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 791and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79210206) and many other
793Pascal implementations allow arbitrary expressions there. This gives
794rise to the following situation, containing a superfluous pair of
795parentheses:
796
797@example
798type subrange = (a) .. b;
799@end example
800
801@noindent
802Compare this to the following declaration of an enumerated
803type with only one value:
804
805@example
806type enum = (a);
807@end example
808
809@noindent
810(These declarations are contrived, but they are syntactically
811valid, and more-complicated cases can come up in practical programs.)
812
813These two declarations look identical until the @samp{..} token.
8a4281b9 814With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
815possible to decide between the two forms when the identifier
816@samp{a} is parsed. It is, however, desirable
817for a parser to decide this, since in the latter case
818@samp{a} must become a new identifier to represent the enumeration
819value, while in the former case @samp{a} must be evaluated with its
820current meaning, which may be a constant or even a function call.
821
822You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
823to be resolved later, but this typically requires substantial
824contortions in both semantic actions and large parts of the
825grammar, where the parentheses are nested in the recursive rules for
826expressions.
827
828You might think of using the lexer to distinguish between the two
829forms by returning different tokens for currently defined and
830undefined identifiers. But if these declarations occur in a local
831scope, and @samp{a} is defined in an outer scope, then both forms
832are possible---either locally redefining @samp{a}, or using the
833value of @samp{a} from the outer scope. So this approach cannot
834work.
835
e757bb10 836A simple solution to this problem is to declare the parser to
8a4281b9
JD
837use the GLR algorithm.
838When the GLR parser reaches the critical state, it
fa7e68c3
PE
839merely splits into two branches and pursues both syntax rules
840simultaneously. Sooner or later, one of them runs into a parsing
841error. If there is a @samp{..} token before the next
842@samp{;}, the rule for enumerated types fails since it cannot
843accept @samp{..} anywhere; otherwise, the subrange type rule
844fails since it requires a @samp{..} token. So one of the branches
845fails silently, and the other one continues normally, performing
846all the intermediate actions that were postponed during the split.
847
848If the input is syntactically incorrect, both branches fail and the parser
849reports a syntax error as usual.
850
851The effect of all this is that the parser seems to ``guess'' the
852correct branch to take, or in other words, it seems to use more
8a4281b9
JD
853lookahead than the underlying LR(1) algorithm actually allows
854for. In this example, LR(2) would suffice, but also some cases
855that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 856
8a4281b9 857In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
858and the current Bison parser even takes exponential time and space
859for some grammars. In practice, this rarely happens, and for many
860grammars it is possible to prove that it cannot happen.
861The present example contains only one conflict between two
862rules, and the type-declaration context containing the conflict
863cannot be nested. So the number of
864branches that can exist at any time is limited by the constant 2,
865and the parsing time is still linear.
866
867Here is a Bison grammar corresponding to the example above. It
868parses a vastly simplified form of Pascal type declarations.
869
870@example
871%token TYPE DOTDOT ID
872
873@group
874%left '+' '-'
875%left '*' '/'
876@end group
877
878%%
879
880@group
881type_decl : TYPE ID '=' type ';'
882 ;
883@end group
884
885@group
886type : '(' id_list ')'
887 | expr DOTDOT expr
888 ;
889@end group
890
891@group
892id_list : ID
893 | id_list ',' ID
894 ;
895@end group
896
897@group
898expr : '(' expr ')'
899 | expr '+' expr
900 | expr '-' expr
901 | expr '*' expr
902 | expr '/' expr
903 | ID
904 ;
905@end group
906@end example
907
8a4281b9 908When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
909about one reduce/reduce conflict. In the conflicting situation the
910parser chooses one of the alternatives, arbitrarily the one
911declared first. Therefore the following correct input is not
912recognized:
913
914@example
915type t = (a) .. b;
916@end example
917
8a4281b9 918The parser can be turned into a GLR parser, while also telling Bison
fa7e68c3 919to be silent about the one known reduce/reduce conflict, by
e757bb10 920adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
921@samp{%%}):
922
923@example
924%glr-parser
925%expect-rr 1
926@end example
927
928@noindent
929No change in the grammar itself is required. Now the
930parser recognizes all valid declarations, according to the
931limited syntax above, transparently. In fact, the user does not even
932notice when the parser splits.
933
8a4281b9 934So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
935almost without disadvantages. Even in simple cases like this, however,
936there are at least two potential problems to beware. First, always
8a4281b9
JD
937analyze the conflicts reported by Bison to make sure that GLR
938splitting is only done where it is intended. A GLR parser
f8e1c9e5 939splitting inadvertently may cause problems less obvious than an
8a4281b9 940LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
941conflict. Second, consider interactions with the lexer (@pxref{Semantic
942Tokens}) with great care. Since a split parser consumes tokens without
943performing any actions during the split, the lexer cannot obtain
944information via parser actions. Some cases of lexer interactions can be
8a4281b9 945eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
946lexer to the parser. You must check the remaining cases for
947correctness.
948
949In our example, it would be safe for the lexer to return tokens based on
950their current meanings in some symbol table, because no new symbols are
951defined in the middle of a type declaration. Though it is possible for
952a parser to define the enumeration constants as they are parsed, before
953the type declaration is completed, it actually makes no difference since
954they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
955
956@node Merging GLR Parses
8a4281b9
JD
957@subsection Using GLR to Resolve Ambiguities
958@cindex GLR parsing, ambiguous grammars
959@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
960@findex %dprec
961@findex %merge
962@cindex conflicts
963@cindex reduce/reduce conflicts
964
2a8d363a 965Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
966
967@example
968%@{
38a92d50
PE
969 #include <stdio.h>
970 #define YYSTYPE char const *
971 int yylex (void);
972 void yyerror (char const *);
676385e2
PH
973%@}
974
975%token TYPENAME ID
976
977%right '='
978%left '+'
979
980%glr-parser
981
982%%
983
fae437e8 984prog :
676385e2
PH
985 | prog stmt @{ printf ("\n"); @}
986 ;
987
988stmt : expr ';' %dprec 1
989 | decl %dprec 2
990 ;
991
2a8d363a 992expr : ID @{ printf ("%s ", $$); @}
fae437e8 993 | TYPENAME '(' expr ')'
2a8d363a
AD
994 @{ printf ("%s <cast> ", $1); @}
995 | expr '+' expr @{ printf ("+ "); @}
996 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
997 ;
998
fae437e8 999decl : TYPENAME declarator ';'
2a8d363a 1000 @{ printf ("%s <declare> ", $1); @}
676385e2 1001 | TYPENAME declarator '=' expr ';'
2a8d363a 1002 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1003 ;
1004
2a8d363a 1005declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1006 | '(' declarator ')'
1007 ;
1008@end example
1009
1010@noindent
1011This models a problematic part of the C++ grammar---the ambiguity between
1012certain declarations and statements. For example,
1013
1014@example
1015T (x) = y+z;
1016@end example
1017
1018@noindent
1019parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1020(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1021@samp{x} as an @code{ID}).
676385e2 1022Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1023@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1024time it encounters @code{x} in the example above. Since this is a
8a4281b9 1025GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1026each choice of resolving the reduce/reduce conflict.
1027Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1028however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1029ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1030the other reduces @code{stmt : decl}, after which both parsers are in an
1031identical state: they've seen @samp{prog stmt} and have the same unprocessed
1032input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1033
8a4281b9 1034At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1035grammar of how to choose between the competing parses.
1036In the example above, the two @code{%dprec}
e757bb10 1037declarations specify that Bison is to give precedence
fa7e68c3 1038to the parse that interprets the example as a
676385e2
PH
1039@code{decl}, which implies that @code{x} is a declarator.
1040The parser therefore prints
1041
1042@example
fae437e8 1043"x" y z + T <init-declare>
676385e2
PH
1044@end example
1045
fa7e68c3
PE
1046The @code{%dprec} declarations only come into play when more than one
1047parse survives. Consider a different input string for this parser:
676385e2
PH
1048
1049@example
1050T (x) + y;
1051@end example
1052
1053@noindent
8a4281b9 1054This is another example of using GLR to parse an unambiguous
fa7e68c3 1055construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1056Here, there is no ambiguity (this cannot be parsed as a declaration).
1057However, at the time the Bison parser encounters @code{x}, it does not
1058have enough information to resolve the reduce/reduce conflict (again,
1059between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1060case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1061into two, one assuming that @code{x} is an @code{expr}, and the other
1062assuming @code{x} is a @code{declarator}. The second of these parsers
1063then vanishes when it sees @code{+}, and the parser prints
1064
1065@example
fae437e8 1066x T <cast> y +
676385e2
PH
1067@end example
1068
1069Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1070the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1071actions of the two possible parsers, rather than choosing one over the
1072other. To do so, you could change the declaration of @code{stmt} as
1073follows:
1074
1075@example
1076stmt : expr ';' %merge <stmtMerge>
1077 | decl %merge <stmtMerge>
1078 ;
1079@end example
1080
1081@noindent
676385e2
PH
1082and define the @code{stmtMerge} function as:
1083
1084@example
38a92d50
PE
1085static YYSTYPE
1086stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1087@{
1088 printf ("<OR> ");
1089 return "";
1090@}
1091@end example
1092
1093@noindent
1094with an accompanying forward declaration
1095in the C declarations at the beginning of the file:
1096
1097@example
1098%@{
38a92d50 1099 #define YYSTYPE char const *
676385e2
PH
1100 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1101%@}
1102@end example
1103
1104@noindent
fa7e68c3
PE
1105With these declarations, the resulting parser parses the first example
1106as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1107
1108@example
fae437e8 1109"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1110@end example
1111
fa7e68c3 1112Bison requires that all of the
e757bb10 1113productions that participate in any particular merge have identical
fa7e68c3
PE
1114@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1115and the parser will report an error during any parse that results in
1116the offending merge.
9501dc6e 1117
32c29292
JD
1118@node GLR Semantic Actions
1119@subsection GLR Semantic Actions
1120
8a4281b9 1121The nature of GLR parsing and the structure of the generated
20be2f92
PH
1122parsers give rise to certain restrictions on semantic values and actions.
1123
1124@subsubsection Deferred semantic actions
32c29292
JD
1125@cindex deferred semantic actions
1126By definition, a deferred semantic action is not performed at the same time as
1127the associated reduction.
1128This raises caveats for several Bison features you might use in a semantic
8a4281b9 1129action in a GLR parser.
32c29292
JD
1130
1131@vindex yychar
8a4281b9 1132@cindex GLR parsers and @code{yychar}
32c29292 1133@vindex yylval
8a4281b9 1134@cindex GLR parsers and @code{yylval}
32c29292 1135@vindex yylloc
8a4281b9 1136@cindex GLR parsers and @code{yylloc}
32c29292 1137In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1138the lookahead token present at the time of the associated reduction.
32c29292
JD
1139After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1140you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1141lookahead token's semantic value and location, if any.
32c29292
JD
1142In a nondeferred semantic action, you can also modify any of these variables to
1143influence syntax analysis.
742e4900 1144@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1145
1146@findex yyclearin
8a4281b9 1147@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1148In a deferred semantic action, it's too late to influence syntax analysis.
1149In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1150shallow copies of the values they had at the time of the associated reduction.
1151For this reason alone, modifying them is dangerous.
1152Moreover, the result of modifying them is undefined and subject to change with
1153future versions of Bison.
1154For example, if a semantic action might be deferred, you should never write it
1155to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1156memory referenced by @code{yylval}.
1157
20be2f92 1158@subsubsection YYERROR
32c29292 1159@findex YYERROR
8a4281b9 1160@cindex GLR parsers and @code{YYERROR}
32c29292 1161Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1162(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1163initiate error recovery.
8a4281b9 1164During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1165the same as its effect in a deterministic parser.
20be2f92
PH
1166The effect in a deferred action is similar, but the precise point of the
1167error is undefined; instead, the parser reverts to deterministic operation,
1168selecting an unspecified stack on which to continue with a syntax error.
1169In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1170parsing, @code{YYERROR} silently prunes
1171the parse that invoked the test.
1172
1173@subsubsection Restrictions on semantic values and locations
8a4281b9 1174GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1175semantic values and location types when using the generated parsers as
1176C++ code.
8710fc41 1177
ca2a6d15
PH
1178@node Semantic Predicates
1179@subsection Controlling a Parse with Arbitrary Predicates
1180@findex %?
8a4281b9 1181@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1182
1183In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1184GLR parsers
ca2a6d15
PH
1185allow you to reject parses on the basis of arbitrary computations executed
1186in user code, without having Bison treat this rejection as an error
1187if there are alternative parses. (This feature is experimental and may
1188evolve. We welcome user feedback.) For example,
1189
1190@smallexample
1191widget :
1192 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1193 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1194 ;
1195@end smallexample
1196
1197@noindent
1198is one way to allow the same parser to handle two different syntaxes for
1199widgets. The clause preceded by @code{%?} is treated like an ordinary
1200action, except that its text is treated as an expression and is always
1201evaluated immediately (even when in nondeterministic mode). If the
1202expression yields 0 (false), the clause is treated as a syntax error,
1203which, in a nondeterministic parser, causes the stack in which it is reduced
1204to die. In a deterministic parser, it acts like YYERROR.
1205
1206As the example shows, predicates otherwise look like semantic actions, and
1207therefore you must be take them into account when determining the numbers
1208to use for denoting the semantic values of right-hand side symbols.
1209Predicate actions, however, have no defined value, and may not be given
1210labels.
1211
1212There is a subtle difference between semantic predicates and ordinary
1213actions in nondeterministic mode, since the latter are deferred.
1214For example, we could try to rewrite the previous example as
1215
1216@smallexample
1217widget :
1218 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1219 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1220 ;
1221@end smallexample
1222
1223@noindent
1224(reversing the sense of the predicate tests to cause an error when they are
1225false). However, this
1226does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1227have overlapping syntax.
1228Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1229a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1230for cases where @code{new_args} and @code{old_args} recognize the same string
1231@emph{before} performing the tests of @code{new_syntax}. It therefore
1232reports an error.
1233
1234Finally, be careful in writing predicates: deferred actions have not been
1235evaluated, so that using them in a predicate will have undefined effects.
1236
fa7e68c3 1237@node Compiler Requirements
8a4281b9 1238@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1239@cindex @code{inline}
8a4281b9 1240@cindex GLR parsers and @code{inline}
fa7e68c3 1241
8a4281b9 1242The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1243later. In addition, they use the @code{inline} keyword, which is not
1244C89, but is C99 and is a common extension in pre-C99 compilers. It is
1245up to the user of these parsers to handle
9501dc6e
AD
1246portability issues. For instance, if using Autoconf and the Autoconf
1247macro @code{AC_C_INLINE}, a mere
1248
1249@example
1250%@{
38a92d50 1251 #include <config.h>
9501dc6e
AD
1252%@}
1253@end example
1254
1255@noindent
1256will suffice. Otherwise, we suggest
1257
1258@example
1259%@{
38a92d50
PE
1260 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1261 #define inline
1262 #endif
9501dc6e
AD
1263%@}
1264@end example
676385e2 1265
342b8b6e 1266@node Locations Overview
847bf1f5
AD
1267@section Locations
1268@cindex location
95923bd6
AD
1269@cindex textual location
1270@cindex location, textual
847bf1f5
AD
1271
1272Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1273and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1274the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1275Bison provides a mechanism for handling these locations.
1276
72d2299c 1277Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1278associated location, but the type of locations is the same for all tokens and
72d2299c 1279groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1280structure for storing locations (@pxref{Locations}, for more details).
1281
1282Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1283set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1284is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1285@code{@@3}.
1286
1287When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1288of its left hand side (@pxref{Actions}). In the same way, another default
1289action is used for locations. However, the action for locations is general
847bf1f5 1290enough for most cases, meaning there is usually no need to describe for each
72d2299c 1291rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1292grouping, the default behavior of the output parser is to take the beginning
1293of the first symbol, and the end of the last symbol.
1294
342b8b6e 1295@node Bison Parser
bfa74976
RS
1296@section Bison Output: the Parser File
1297@cindex Bison parser
1298@cindex Bison utility
1299@cindex lexical analyzer, purpose
1300@cindex parser
1301
1302When you run Bison, you give it a Bison grammar file as input. The output
1303is a C source file that parses the language described by the grammar.
1304This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1305utility and the Bison parser are two distinct programs: the Bison utility
1306is a program whose output is the Bison parser that becomes part of your
1307program.
1308
1309The job of the Bison parser is to group tokens into groupings according to
1310the grammar rules---for example, to build identifiers and operators into
1311expressions. As it does this, it runs the actions for the grammar rules it
1312uses.
1313
704a47c4
AD
1314The tokens come from a function called the @dfn{lexical analyzer} that
1315you must supply in some fashion (such as by writing it in C). The Bison
1316parser calls the lexical analyzer each time it wants a new token. It
1317doesn't know what is ``inside'' the tokens (though their semantic values
1318may reflect this). Typically the lexical analyzer makes the tokens by
1319parsing characters of text, but Bison does not depend on this.
1320@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1321
1322The Bison parser file is C code which defines a function named
1323@code{yyparse} which implements that grammar. This function does not make
1324a complete C program: you must supply some additional functions. One is
1325the lexical analyzer. Another is an error-reporting function which the
1326parser calls to report an error. In addition, a complete C program must
1327start with a function called @code{main}; you have to provide this, and
1328arrange for it to call @code{yyparse} or the parser will never run.
1329@xref{Interface, ,Parser C-Language Interface}.
1330
f7ab6a50 1331Aside from the token type names and the symbols in the actions you
7093d0f5 1332write, all symbols defined in the Bison parser file itself
bfa74976
RS
1333begin with @samp{yy} or @samp{YY}. This includes interface functions
1334such as the lexical analyzer function @code{yylex}, the error reporting
1335function @code{yyerror} and the parser function @code{yyparse} itself.
1336This also includes numerous identifiers used for internal purposes.
1337Therefore, you should avoid using C identifiers starting with @samp{yy}
1338or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1339this manual. Also, you should avoid using the C identifiers
1340@samp{malloc} and @samp{free} for anything other than their usual
1341meanings.
bfa74976 1342
7093d0f5
AD
1343In some cases the Bison parser file includes system headers, and in
1344those cases your code should respect the identifiers reserved by those
8a4281b9 1345headers. On some non-GNU hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1346@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1347declare memory allocators and related types. @code{<libintl.h>} is
1348included if message translation is in use
1349(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1350be included if you define @code{YYDEBUG} to a nonzero value
1351(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1352
342b8b6e 1353@node Stages
bfa74976
RS
1354@section Stages in Using Bison
1355@cindex stages in using Bison
1356@cindex using Bison
1357
1358The actual language-design process using Bison, from grammar specification
1359to a working compiler or interpreter, has these parts:
1360
1361@enumerate
1362@item
1363Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1364(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1365in the language, describe the action that is to be taken when an
1366instance of that rule is recognized. The action is described by a
1367sequence of C statements.
bfa74976
RS
1368
1369@item
704a47c4
AD
1370Write a lexical analyzer to process input and pass tokens to the parser.
1371The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1372Lexical Analyzer Function @code{yylex}}). It could also be produced
1373using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1374
1375@item
1376Write a controlling function that calls the Bison-produced parser.
1377
1378@item
1379Write error-reporting routines.
1380@end enumerate
1381
1382To turn this source code as written into a runnable program, you
1383must follow these steps:
1384
1385@enumerate
1386@item
1387Run Bison on the grammar to produce the parser.
1388
1389@item
1390Compile the code output by Bison, as well as any other source files.
1391
1392@item
1393Link the object files to produce the finished product.
1394@end enumerate
1395
342b8b6e 1396@node Grammar Layout
bfa74976
RS
1397@section The Overall Layout of a Bison Grammar
1398@cindex grammar file
1399@cindex file format
1400@cindex format of grammar file
1401@cindex layout of Bison grammar
1402
1403The input file for the Bison utility is a @dfn{Bison grammar file}. The
1404general form of a Bison grammar file is as follows:
1405
1406@example
1407%@{
08e49d20 1408@var{Prologue}
bfa74976
RS
1409%@}
1410
1411@var{Bison declarations}
1412
1413%%
1414@var{Grammar rules}
1415%%
08e49d20 1416@var{Epilogue}
bfa74976
RS
1417@end example
1418
1419@noindent
1420The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1421in every Bison grammar file to separate the sections.
1422
72d2299c 1423The prologue may define types and variables used in the actions. You can
342b8b6e 1424also use preprocessor commands to define macros used there, and use
bfa74976 1425@code{#include} to include header files that do any of these things.
38a92d50
PE
1426You need to declare the lexical analyzer @code{yylex} and the error
1427printer @code{yyerror} here, along with any other global identifiers
1428used by the actions in the grammar rules.
bfa74976
RS
1429
1430The Bison declarations declare the names of the terminal and nonterminal
1431symbols, and may also describe operator precedence and the data types of
1432semantic values of various symbols.
1433
1434The grammar rules define how to construct each nonterminal symbol from its
1435parts.
1436
38a92d50
PE
1437The epilogue can contain any code you want to use. Often the
1438definitions of functions declared in the prologue go here. In a
1439simple program, all the rest of the program can go here.
bfa74976 1440
342b8b6e 1441@node Examples
bfa74976
RS
1442@chapter Examples
1443@cindex simple examples
1444@cindex examples, simple
1445
1446Now we show and explain three sample programs written using Bison: a
1447reverse polish notation calculator, an algebraic (infix) notation
1448calculator, and a multi-function calculator. All three have been tested
1449under BSD Unix 4.3; each produces a usable, though limited, interactive
1450desk-top calculator.
1451
1452These examples are simple, but Bison grammars for real programming
aa08666d
AD
1453languages are written the same way. You can copy these examples into a
1454source file to try them.
bfa74976
RS
1455
1456@menu
f5f419de
DJ
1457* RPN Calc:: Reverse polish notation calculator;
1458 a first example with no operator precedence.
1459* Infix Calc:: Infix (algebraic) notation calculator.
1460 Operator precedence is introduced.
bfa74976 1461* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1462* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1463* Multi-function Calc:: Calculator with memory and trig functions.
1464 It uses multiple data-types for semantic values.
1465* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1466@end menu
1467
342b8b6e 1468@node RPN Calc
bfa74976
RS
1469@section Reverse Polish Notation Calculator
1470@cindex reverse polish notation
1471@cindex polish notation calculator
1472@cindex @code{rpcalc}
1473@cindex calculator, simple
1474
1475The first example is that of a simple double-precision @dfn{reverse polish
1476notation} calculator (a calculator using postfix operators). This example
1477provides a good starting point, since operator precedence is not an issue.
1478The second example will illustrate how operator precedence is handled.
1479
1480The source code for this calculator is named @file{rpcalc.y}. The
1481@samp{.y} extension is a convention used for Bison input files.
1482
1483@menu
f5f419de
DJ
1484* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1485* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1486* Rpcalc Lexer:: The lexical analyzer.
1487* Rpcalc Main:: The controlling function.
1488* Rpcalc Error:: The error reporting function.
1489* Rpcalc Generate:: Running Bison on the grammar file.
1490* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1491@end menu
1492
f5f419de 1493@node Rpcalc Declarations
bfa74976
RS
1494@subsection Declarations for @code{rpcalc}
1495
1496Here are the C and Bison declarations for the reverse polish notation
1497calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1498
1499@example
72d2299c 1500/* Reverse polish notation calculator. */
bfa74976
RS
1501
1502%@{
38a92d50
PE
1503 #define YYSTYPE double
1504 #include <math.h>
1505 int yylex (void);
1506 void yyerror (char const *);
bfa74976
RS
1507%@}
1508
1509%token NUM
1510
72d2299c 1511%% /* Grammar rules and actions follow. */
bfa74976
RS
1512@end example
1513
75f5aaea 1514The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1515preprocessor directives and two forward declarations.
bfa74976
RS
1516
1517The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1518specifying the C data type for semantic values of both tokens and
1519groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1520Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1521don't define it, @code{int} is the default. Because we specify
1522@code{double}, each token and each expression has an associated value,
1523which is a floating point number.
bfa74976
RS
1524
1525The @code{#include} directive is used to declare the exponentiation
1526function @code{pow}.
1527
38a92d50
PE
1528The forward declarations for @code{yylex} and @code{yyerror} are
1529needed because the C language requires that functions be declared
1530before they are used. These functions will be defined in the
1531epilogue, but the parser calls them so they must be declared in the
1532prologue.
1533
704a47c4
AD
1534The second section, Bison declarations, provides information to Bison
1535about the token types (@pxref{Bison Declarations, ,The Bison
1536Declarations Section}). Each terminal symbol that is not a
1537single-character literal must be declared here. (Single-character
bfa74976
RS
1538literals normally don't need to be declared.) In this example, all the
1539arithmetic operators are designated by single-character literals, so the
1540only terminal symbol that needs to be declared is @code{NUM}, the token
1541type for numeric constants.
1542
342b8b6e 1543@node Rpcalc Rules
bfa74976
RS
1544@subsection Grammar Rules for @code{rpcalc}
1545
1546Here are the grammar rules for the reverse polish notation calculator.
1547
1548@example
1549input: /* empty */
1550 | input line
1551;
1552
1553line: '\n'
18b519c0 1554 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1555;
1556
18b519c0
AD
1557exp: NUM @{ $$ = $1; @}
1558 | exp exp '+' @{ $$ = $1 + $2; @}
1559 | exp exp '-' @{ $$ = $1 - $2; @}
1560 | exp exp '*' @{ $$ = $1 * $2; @}
1561 | exp exp '/' @{ $$ = $1 / $2; @}
1562 /* Exponentiation */
1563 | exp exp '^' @{ $$ = pow ($1, $2); @}
1564 /* Unary minus */
1565 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1566;
1567%%
1568@end example
1569
1570The groupings of the rpcalc ``language'' defined here are the expression
1571(given the name @code{exp}), the line of input (@code{line}), and the
1572complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1573symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1574which is read as ``or''. The following sections explain what these rules
1575mean.
1576
1577The semantics of the language is determined by the actions taken when a
1578grouping is recognized. The actions are the C code that appears inside
1579braces. @xref{Actions}.
1580
1581You must specify these actions in C, but Bison provides the means for
1582passing semantic values between the rules. In each action, the
1583pseudo-variable @code{$$} stands for the semantic value for the grouping
1584that the rule is going to construct. Assigning a value to @code{$$} is the
1585main job of most actions. The semantic values of the components of the
1586rule are referred to as @code{$1}, @code{$2}, and so on.
1587
1588@menu
13863333
AD
1589* Rpcalc Input::
1590* Rpcalc Line::
1591* Rpcalc Expr::
bfa74976
RS
1592@end menu
1593
342b8b6e 1594@node Rpcalc Input
bfa74976
RS
1595@subsubsection Explanation of @code{input}
1596
1597Consider the definition of @code{input}:
1598
1599@example
1600input: /* empty */
1601 | input line
1602;
1603@end example
1604
1605This definition reads as follows: ``A complete input is either an empty
1606string, or a complete input followed by an input line''. Notice that
1607``complete input'' is defined in terms of itself. This definition is said
1608to be @dfn{left recursive} since @code{input} appears always as the
1609leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1610
1611The first alternative is empty because there are no symbols between the
1612colon and the first @samp{|}; this means that @code{input} can match an
1613empty string of input (no tokens). We write the rules this way because it
1614is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1615It's conventional to put an empty alternative first and write the comment
1616@samp{/* empty */} in it.
1617
1618The second alternate rule (@code{input line}) handles all nontrivial input.
1619It means, ``After reading any number of lines, read one more line if
1620possible.'' The left recursion makes this rule into a loop. Since the
1621first alternative matches empty input, the loop can be executed zero or
1622more times.
1623
1624The parser function @code{yyparse} continues to process input until a
1625grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1626input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1627
342b8b6e 1628@node Rpcalc Line
bfa74976
RS
1629@subsubsection Explanation of @code{line}
1630
1631Now consider the definition of @code{line}:
1632
1633@example
1634line: '\n'
1635 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1636;
1637@end example
1638
1639The first alternative is a token which is a newline character; this means
1640that rpcalc accepts a blank line (and ignores it, since there is no
1641action). The second alternative is an expression followed by a newline.
1642This is the alternative that makes rpcalc useful. The semantic value of
1643the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1644question is the first symbol in the alternative. The action prints this
1645value, which is the result of the computation the user asked for.
1646
1647This action is unusual because it does not assign a value to @code{$$}. As
1648a consequence, the semantic value associated with the @code{line} is
1649uninitialized (its value will be unpredictable). This would be a bug if
1650that value were ever used, but we don't use it: once rpcalc has printed the
1651value of the user's input line, that value is no longer needed.
1652
342b8b6e 1653@node Rpcalc Expr
bfa74976
RS
1654@subsubsection Explanation of @code{expr}
1655
1656The @code{exp} grouping has several rules, one for each kind of expression.
1657The first rule handles the simplest expressions: those that are just numbers.
1658The second handles an addition-expression, which looks like two expressions
1659followed by a plus-sign. The third handles subtraction, and so on.
1660
1661@example
1662exp: NUM
1663 | exp exp '+' @{ $$ = $1 + $2; @}
1664 | exp exp '-' @{ $$ = $1 - $2; @}
1665 @dots{}
1666 ;
1667@end example
1668
1669We have used @samp{|} to join all the rules for @code{exp}, but we could
1670equally well have written them separately:
1671
1672@example
1673exp: NUM ;
1674exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1675exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1676 @dots{}
1677@end example
1678
1679Most of the rules have actions that compute the value of the expression in
1680terms of the value of its parts. For example, in the rule for addition,
1681@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1682the second one. The third component, @code{'+'}, has no meaningful
1683associated semantic value, but if it had one you could refer to it as
1684@code{$3}. When @code{yyparse} recognizes a sum expression using this
1685rule, the sum of the two subexpressions' values is produced as the value of
1686the entire expression. @xref{Actions}.
1687
1688You don't have to give an action for every rule. When a rule has no
1689action, Bison by default copies the value of @code{$1} into @code{$$}.
1690This is what happens in the first rule (the one that uses @code{NUM}).
1691
1692The formatting shown here is the recommended convention, but Bison does
72d2299c 1693not require it. You can add or change white space as much as you wish.
bfa74976
RS
1694For example, this:
1695
1696@example
99a9344e 1697exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1698@end example
1699
1700@noindent
1701means the same thing as this:
1702
1703@example
1704exp: NUM
1705 | exp exp '+' @{ $$ = $1 + $2; @}
1706 | @dots{}
99a9344e 1707;
bfa74976
RS
1708@end example
1709
1710@noindent
1711The latter, however, is much more readable.
1712
342b8b6e 1713@node Rpcalc Lexer
bfa74976
RS
1714@subsection The @code{rpcalc} Lexical Analyzer
1715@cindex writing a lexical analyzer
1716@cindex lexical analyzer, writing
1717
704a47c4
AD
1718The lexical analyzer's job is low-level parsing: converting characters
1719or sequences of characters into tokens. The Bison parser gets its
1720tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1721Analyzer Function @code{yylex}}.
bfa74976 1722
8a4281b9 1723Only a simple lexical analyzer is needed for the RPN
c827f760 1724calculator. This
bfa74976
RS
1725lexical analyzer skips blanks and tabs, then reads in numbers as
1726@code{double} and returns them as @code{NUM} tokens. Any other character
1727that isn't part of a number is a separate token. Note that the token-code
1728for such a single-character token is the character itself.
1729
1730The return value of the lexical analyzer function is a numeric code which
1731represents a token type. The same text used in Bison rules to stand for
1732this token type is also a C expression for the numeric code for the type.
1733This works in two ways. If the token type is a character literal, then its
e966383b 1734numeric code is that of the character; you can use the same
bfa74976
RS
1735character literal in the lexical analyzer to express the number. If the
1736token type is an identifier, that identifier is defined by Bison as a C
1737macro whose definition is the appropriate number. In this example,
1738therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1739
1964ad8c
AD
1740The semantic value of the token (if it has one) is stored into the
1741global variable @code{yylval}, which is where the Bison parser will look
1742for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1743defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1744,Declarations for @code{rpcalc}}.)
bfa74976 1745
72d2299c
PE
1746A token type code of zero is returned if the end-of-input is encountered.
1747(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1748
1749Here is the code for the lexical analyzer:
1750
1751@example
1752@group
72d2299c 1753/* The lexical analyzer returns a double floating point
e966383b 1754 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1755 of the character read if not a number. It skips all blanks
1756 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1757
1758#include <ctype.h>
1759@end group
1760
1761@group
13863333
AD
1762int
1763yylex (void)
bfa74976
RS
1764@{
1765 int c;
1766
72d2299c 1767 /* Skip white space. */
13863333 1768 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1769 ;
1770@end group
1771@group
72d2299c 1772 /* Process numbers. */
13863333 1773 if (c == '.' || isdigit (c))
bfa74976
RS
1774 @{
1775 ungetc (c, stdin);
1776 scanf ("%lf", &yylval);
1777 return NUM;
1778 @}
1779@end group
1780@group
72d2299c 1781 /* Return end-of-input. */
13863333 1782 if (c == EOF)
bfa74976 1783 return 0;
72d2299c 1784 /* Return a single char. */
13863333 1785 return c;
bfa74976
RS
1786@}
1787@end group
1788@end example
1789
342b8b6e 1790@node Rpcalc Main
bfa74976
RS
1791@subsection The Controlling Function
1792@cindex controlling function
1793@cindex main function in simple example
1794
1795In keeping with the spirit of this example, the controlling function is
1796kept to the bare minimum. The only requirement is that it call
1797@code{yyparse} to start the process of parsing.
1798
1799@example
1800@group
13863333
AD
1801int
1802main (void)
bfa74976 1803@{
13863333 1804 return yyparse ();
bfa74976
RS
1805@}
1806@end group
1807@end example
1808
342b8b6e 1809@node Rpcalc Error
bfa74976
RS
1810@subsection The Error Reporting Routine
1811@cindex error reporting routine
1812
1813When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1814function @code{yyerror} to print an error message (usually but not
6e649e65 1815always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1816@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1817here is the definition we will use:
bfa74976
RS
1818
1819@example
1820@group
1821#include <stdio.h>
1822
38a92d50 1823/* Called by yyparse on error. */
13863333 1824void
38a92d50 1825yyerror (char const *s)
bfa74976 1826@{
4e03e201 1827 fprintf (stderr, "%s\n", s);
bfa74976
RS
1828@}
1829@end group
1830@end example
1831
1832After @code{yyerror} returns, the Bison parser may recover from the error
1833and continue parsing if the grammar contains a suitable error rule
1834(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1835have not written any error rules in this example, so any invalid input will
1836cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1837real calculator, but it is adequate for the first example.
bfa74976 1838
f5f419de 1839@node Rpcalc Generate
bfa74976
RS
1840@subsection Running Bison to Make the Parser
1841@cindex running Bison (introduction)
1842
ceed8467
AD
1843Before running Bison to produce a parser, we need to decide how to
1844arrange all the source code in one or more source files. For such a
1845simple example, the easiest thing is to put everything in one file. The
1846definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1847end, in the epilogue of the file
75f5aaea 1848(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1849
1850For a large project, you would probably have several source files, and use
1851@code{make} to arrange to recompile them.
1852
1853With all the source in a single file, you use the following command to
1854convert it into a parser file:
1855
1856@example
fa4d969f 1857bison @var{file}.y
bfa74976
RS
1858@end example
1859
1860@noindent
1861In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1862@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1863removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1864Bison contains the source code for @code{yyparse}. The additional
1865functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1866are copied verbatim to the output.
1867
342b8b6e 1868@node Rpcalc Compile
bfa74976
RS
1869@subsection Compiling the Parser File
1870@cindex compiling the parser
1871
1872Here is how to compile and run the parser file:
1873
1874@example
1875@group
1876# @r{List files in current directory.}
9edcd895 1877$ @kbd{ls}
bfa74976
RS
1878rpcalc.tab.c rpcalc.y
1879@end group
1880
1881@group
1882# @r{Compile the Bison parser.}
1883# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1884$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1885@end group
1886
1887@group
1888# @r{List files again.}
9edcd895 1889$ @kbd{ls}
bfa74976
RS
1890rpcalc rpcalc.tab.c rpcalc.y
1891@end group
1892@end example
1893
1894The file @file{rpcalc} now contains the executable code. Here is an
1895example session using @code{rpcalc}.
1896
1897@example
9edcd895
AD
1898$ @kbd{rpcalc}
1899@kbd{4 9 +}
bfa74976 190013
9edcd895 1901@kbd{3 7 + 3 4 5 *+-}
bfa74976 1902-13
9edcd895 1903@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 190413
9edcd895 1905@kbd{5 6 / 4 n +}
bfa74976 1906-3.166666667
9edcd895 1907@kbd{3 4 ^} @r{Exponentiation}
bfa74976 190881
9edcd895
AD
1909@kbd{^D} @r{End-of-file indicator}
1910$
bfa74976
RS
1911@end example
1912
342b8b6e 1913@node Infix Calc
bfa74976
RS
1914@section Infix Notation Calculator: @code{calc}
1915@cindex infix notation calculator
1916@cindex @code{calc}
1917@cindex calculator, infix notation
1918
1919We now modify rpcalc to handle infix operators instead of postfix. Infix
1920notation involves the concept of operator precedence and the need for
1921parentheses nested to arbitrary depth. Here is the Bison code for
1922@file{calc.y}, an infix desk-top calculator.
1923
1924@example
38a92d50 1925/* Infix notation calculator. */
bfa74976
RS
1926
1927%@{
38a92d50
PE
1928 #define YYSTYPE double
1929 #include <math.h>
1930 #include <stdio.h>
1931 int yylex (void);
1932 void yyerror (char const *);
bfa74976
RS
1933%@}
1934
38a92d50 1935/* Bison declarations. */
bfa74976
RS
1936%token NUM
1937%left '-' '+'
1938%left '*' '/'
d78f0ac9
AD
1939%precedence NEG /* negation--unary minus */
1940%right '^' /* exponentiation */
bfa74976 1941
38a92d50
PE
1942%% /* The grammar follows. */
1943input: /* empty */
bfa74976
RS
1944 | input line
1945;
1946
1947line: '\n'
1948 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1949;
1950
1951exp: NUM @{ $$ = $1; @}
1952 | exp '+' exp @{ $$ = $1 + $3; @}
1953 | exp '-' exp @{ $$ = $1 - $3; @}
1954 | exp '*' exp @{ $$ = $1 * $3; @}
1955 | exp '/' exp @{ $$ = $1 / $3; @}
1956 | '-' exp %prec NEG @{ $$ = -$2; @}
1957 | exp '^' exp @{ $$ = pow ($1, $3); @}
1958 | '(' exp ')' @{ $$ = $2; @}
1959;
1960%%
1961@end example
1962
1963@noindent
ceed8467
AD
1964The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1965same as before.
bfa74976
RS
1966
1967There are two important new features shown in this code.
1968
1969In the second section (Bison declarations), @code{%left} declares token
1970types and says they are left-associative operators. The declarations
1971@code{%left} and @code{%right} (right associativity) take the place of
1972@code{%token} which is used to declare a token type name without
d78f0ac9 1973associativity/precedence. (These tokens are single-character literals, which
bfa74976 1974ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1975the associativity/precedence.)
bfa74976
RS
1976
1977Operator precedence is determined by the line ordering of the
1978declarations; the higher the line number of the declaration (lower on
1979the page or screen), the higher the precedence. Hence, exponentiation
1980has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1981by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1982only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1983Precedence}.
bfa74976 1984
704a47c4
AD
1985The other important new feature is the @code{%prec} in the grammar
1986section for the unary minus operator. The @code{%prec} simply instructs
1987Bison that the rule @samp{| '-' exp} has the same precedence as
1988@code{NEG}---in this case the next-to-highest. @xref{Contextual
1989Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1990
1991Here is a sample run of @file{calc.y}:
1992
1993@need 500
1994@example
9edcd895
AD
1995$ @kbd{calc}
1996@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19976.880952381
9edcd895 1998@kbd{-56 + 2}
bfa74976 1999-54
9edcd895 2000@kbd{3 ^ 2}
bfa74976
RS
20019
2002@end example
2003
342b8b6e 2004@node Simple Error Recovery
bfa74976
RS
2005@section Simple Error Recovery
2006@cindex error recovery, simple
2007
2008Up to this point, this manual has not addressed the issue of @dfn{error
2009recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2010error. All we have handled is error reporting with @code{yyerror}.
2011Recall that by default @code{yyparse} returns after calling
2012@code{yyerror}. This means that an erroneous input line causes the
2013calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2014
2015The Bison language itself includes the reserved word @code{error}, which
2016may be included in the grammar rules. In the example below it has
2017been added to one of the alternatives for @code{line}:
2018
2019@example
2020@group
2021line: '\n'
2022 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2023 | error '\n' @{ yyerrok; @}
2024;
2025@end group
2026@end example
2027
ceed8467 2028This addition to the grammar allows for simple error recovery in the
6e649e65 2029event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2030read, the error will be recognized by the third rule for @code{line},
2031and parsing will continue. (The @code{yyerror} function is still called
2032upon to print its message as well.) The action executes the statement
2033@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2034that error recovery is complete (@pxref{Error Recovery}). Note the
2035difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2036misprint.
bfa74976
RS
2037
2038This form of error recovery deals with syntax errors. There are other
2039kinds of errors; for example, division by zero, which raises an exception
2040signal that is normally fatal. A real calculator program must handle this
2041signal and use @code{longjmp} to return to @code{main} and resume parsing
2042input lines; it would also have to discard the rest of the current line of
2043input. We won't discuss this issue further because it is not specific to
2044Bison programs.
2045
342b8b6e
AD
2046@node Location Tracking Calc
2047@section Location Tracking Calculator: @code{ltcalc}
2048@cindex location tracking calculator
2049@cindex @code{ltcalc}
2050@cindex calculator, location tracking
2051
9edcd895
AD
2052This example extends the infix notation calculator with location
2053tracking. This feature will be used to improve the error messages. For
2054the sake of clarity, this example is a simple integer calculator, since
2055most of the work needed to use locations will be done in the lexical
72d2299c 2056analyzer.
342b8b6e
AD
2057
2058@menu
f5f419de
DJ
2059* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2060* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2061* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2062@end menu
2063
f5f419de 2064@node Ltcalc Declarations
342b8b6e
AD
2065@subsection Declarations for @code{ltcalc}
2066
9edcd895
AD
2067The C and Bison declarations for the location tracking calculator are
2068the same as the declarations for the infix notation calculator.
342b8b6e
AD
2069
2070@example
2071/* Location tracking calculator. */
2072
2073%@{
38a92d50
PE
2074 #define YYSTYPE int
2075 #include <math.h>
2076 int yylex (void);
2077 void yyerror (char const *);
342b8b6e
AD
2078%@}
2079
2080/* Bison declarations. */
2081%token NUM
2082
2083%left '-' '+'
2084%left '*' '/'
d78f0ac9 2085%precedence NEG
342b8b6e
AD
2086%right '^'
2087
38a92d50 2088%% /* The grammar follows. */
342b8b6e
AD
2089@end example
2090
9edcd895
AD
2091@noindent
2092Note there are no declarations specific to locations. Defining a data
2093type for storing locations is not needed: we will use the type provided
2094by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2095four member structure with the following integer fields:
2096@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2097@code{last_column}. By conventions, and in accordance with the GNU
2098Coding Standards and common practice, the line and column count both
2099start at 1.
342b8b6e
AD
2100
2101@node Ltcalc Rules
2102@subsection Grammar Rules for @code{ltcalc}
2103
9edcd895
AD
2104Whether handling locations or not has no effect on the syntax of your
2105language. Therefore, grammar rules for this example will be very close
2106to those of the previous example: we will only modify them to benefit
2107from the new information.
342b8b6e 2108
9edcd895
AD
2109Here, we will use locations to report divisions by zero, and locate the
2110wrong expressions or subexpressions.
342b8b6e
AD
2111
2112@example
2113@group
2114input : /* empty */
2115 | input line
2116;
2117@end group
2118
2119@group
2120line : '\n'
2121 | exp '\n' @{ printf ("%d\n", $1); @}
2122;
2123@end group
2124
2125@group
2126exp : NUM @{ $$ = $1; @}
2127 | exp '+' exp @{ $$ = $1 + $3; @}
2128 | exp '-' exp @{ $$ = $1 - $3; @}
2129 | exp '*' exp @{ $$ = $1 * $3; @}
2130@end group
342b8b6e 2131@group
9edcd895 2132 | exp '/' exp
342b8b6e
AD
2133 @{
2134 if ($3)
2135 $$ = $1 / $3;
2136 else
2137 @{
2138 $$ = 1;
9edcd895
AD
2139 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2140 @@3.first_line, @@3.first_column,
2141 @@3.last_line, @@3.last_column);
342b8b6e
AD
2142 @}
2143 @}
2144@end group
2145@group
178e123e 2146 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2147 | exp '^' exp @{ $$ = pow ($1, $3); @}
2148 | '(' exp ')' @{ $$ = $2; @}
2149@end group
2150@end example
2151
2152This code shows how to reach locations inside of semantic actions, by
2153using the pseudo-variables @code{@@@var{n}} for rule components, and the
2154pseudo-variable @code{@@$} for groupings.
2155
9edcd895
AD
2156We don't need to assign a value to @code{@@$}: the output parser does it
2157automatically. By default, before executing the C code of each action,
2158@code{@@$} is set to range from the beginning of @code{@@1} to the end
2159of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2160can be redefined (@pxref{Location Default Action, , Default Action for
2161Locations}), and for very specific rules, @code{@@$} can be computed by
2162hand.
342b8b6e
AD
2163
2164@node Ltcalc Lexer
2165@subsection The @code{ltcalc} Lexical Analyzer.
2166
9edcd895 2167Until now, we relied on Bison's defaults to enable location
72d2299c 2168tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2169able to feed the parser with the token locations, as it already does for
2170semantic values.
342b8b6e 2171
9edcd895
AD
2172To this end, we must take into account every single character of the
2173input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2174
2175@example
2176@group
2177int
2178yylex (void)
2179@{
2180 int c;
18b519c0 2181@end group
342b8b6e 2182
18b519c0 2183@group
72d2299c 2184 /* Skip white space. */
342b8b6e
AD
2185 while ((c = getchar ()) == ' ' || c == '\t')
2186 ++yylloc.last_column;
18b519c0 2187@end group
342b8b6e 2188
18b519c0 2189@group
72d2299c 2190 /* Step. */
342b8b6e
AD
2191 yylloc.first_line = yylloc.last_line;
2192 yylloc.first_column = yylloc.last_column;
2193@end group
2194
2195@group
72d2299c 2196 /* Process numbers. */
342b8b6e
AD
2197 if (isdigit (c))
2198 @{
2199 yylval = c - '0';
2200 ++yylloc.last_column;
2201 while (isdigit (c = getchar ()))
2202 @{
2203 ++yylloc.last_column;
2204 yylval = yylval * 10 + c - '0';
2205 @}
2206 ungetc (c, stdin);
2207 return NUM;
2208 @}
2209@end group
2210
72d2299c 2211 /* Return end-of-input. */
342b8b6e
AD
2212 if (c == EOF)
2213 return 0;
2214
72d2299c 2215 /* Return a single char, and update location. */
342b8b6e
AD
2216 if (c == '\n')
2217 @{
2218 ++yylloc.last_line;
2219 yylloc.last_column = 0;
2220 @}
2221 else
2222 ++yylloc.last_column;
2223 return c;
2224@}
2225@end example
2226
9edcd895
AD
2227Basically, the lexical analyzer performs the same processing as before:
2228it skips blanks and tabs, and reads numbers or single-character tokens.
2229In addition, it updates @code{yylloc}, the global variable (of type
2230@code{YYLTYPE}) containing the token's location.
342b8b6e 2231
9edcd895 2232Now, each time this function returns a token, the parser has its number
72d2299c 2233as well as its semantic value, and its location in the text. The last
9edcd895
AD
2234needed change is to initialize @code{yylloc}, for example in the
2235controlling function:
342b8b6e
AD
2236
2237@example
9edcd895 2238@group
342b8b6e
AD
2239int
2240main (void)
2241@{
2242 yylloc.first_line = yylloc.last_line = 1;
2243 yylloc.first_column = yylloc.last_column = 0;
2244 return yyparse ();
2245@}
9edcd895 2246@end group
342b8b6e
AD
2247@end example
2248
9edcd895
AD
2249Remember that computing locations is not a matter of syntax. Every
2250character must be associated to a location update, whether it is in
2251valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2252
2253@node Multi-function Calc
bfa74976
RS
2254@section Multi-Function Calculator: @code{mfcalc}
2255@cindex multi-function calculator
2256@cindex @code{mfcalc}
2257@cindex calculator, multi-function
2258
2259Now that the basics of Bison have been discussed, it is time to move on to
2260a more advanced problem. The above calculators provided only five
2261functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2262be nice to have a calculator that provides other mathematical functions such
2263as @code{sin}, @code{cos}, etc.
2264
2265It is easy to add new operators to the infix calculator as long as they are
2266only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2267back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2268adding a new operator. But we want something more flexible: built-in
2269functions whose syntax has this form:
2270
2271@example
2272@var{function_name} (@var{argument})
2273@end example
2274
2275@noindent
2276At the same time, we will add memory to the calculator, by allowing you
2277to create named variables, store values in them, and use them later.
2278Here is a sample session with the multi-function calculator:
2279
2280@example
9edcd895
AD
2281$ @kbd{mfcalc}
2282@kbd{pi = 3.141592653589}
bfa74976 22833.1415926536
9edcd895 2284@kbd{sin(pi)}
bfa74976 22850.0000000000
9edcd895 2286@kbd{alpha = beta1 = 2.3}
bfa74976 22872.3000000000
9edcd895 2288@kbd{alpha}
bfa74976 22892.3000000000
9edcd895 2290@kbd{ln(alpha)}
bfa74976 22910.8329091229
9edcd895 2292@kbd{exp(ln(beta1))}
bfa74976 22932.3000000000
9edcd895 2294$
bfa74976
RS
2295@end example
2296
2297Note that multiple assignment and nested function calls are permitted.
2298
2299@menu
f5f419de
DJ
2300* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2301* Mfcalc Rules:: Grammar rules for the calculator.
2302* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2303@end menu
2304
f5f419de 2305@node Mfcalc Declarations
bfa74976
RS
2306@subsection Declarations for @code{mfcalc}
2307
2308Here are the C and Bison declarations for the multi-function calculator.
2309
2310@smallexample
18b519c0 2311@group
bfa74976 2312%@{
38a92d50
PE
2313 #include <math.h> /* For math functions, cos(), sin(), etc. */
2314 #include "calc.h" /* Contains definition of `symrec'. */
2315 int yylex (void);
2316 void yyerror (char const *);
bfa74976 2317%@}
18b519c0
AD
2318@end group
2319@group
bfa74976 2320%union @{
38a92d50
PE
2321 double val; /* For returning numbers. */
2322 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2323@}
18b519c0 2324@end group
38a92d50
PE
2325%token <val> NUM /* Simple double precision number. */
2326%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2327%type <val> exp
2328
18b519c0 2329@group
bfa74976
RS
2330%right '='
2331%left '-' '+'
2332%left '*' '/'
d78f0ac9
AD
2333%precedence NEG /* negation--unary minus */
2334%right '^' /* exponentiation */
18b519c0 2335@end group
38a92d50 2336%% /* The grammar follows. */
bfa74976
RS
2337@end smallexample
2338
2339The above grammar introduces only two new features of the Bison language.
2340These features allow semantic values to have various data types
2341(@pxref{Multiple Types, ,More Than One Value Type}).
2342
2343The @code{%union} declaration specifies the entire list of possible types;
2344this is instead of defining @code{YYSTYPE}. The allowable types are now
2345double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2346the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2347
2348Since values can now have various types, it is necessary to associate a
2349type with each grammar symbol whose semantic value is used. These symbols
2350are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2351declarations are augmented with information about their data type (placed
2352between angle brackets).
2353
704a47c4
AD
2354The Bison construct @code{%type} is used for declaring nonterminal
2355symbols, just as @code{%token} is used for declaring token types. We
2356have not used @code{%type} before because nonterminal symbols are
2357normally declared implicitly by the rules that define them. But
2358@code{exp} must be declared explicitly so we can specify its value type.
2359@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2360
342b8b6e 2361@node Mfcalc Rules
bfa74976
RS
2362@subsection Grammar Rules for @code{mfcalc}
2363
2364Here are the grammar rules for the multi-function calculator.
2365Most of them are copied directly from @code{calc}; three rules,
2366those which mention @code{VAR} or @code{FNCT}, are new.
2367
2368@smallexample
18b519c0 2369@group
bfa74976
RS
2370input: /* empty */
2371 | input line
2372;
18b519c0 2373@end group
bfa74976 2374
18b519c0 2375@group
bfa74976
RS
2376line:
2377 '\n'
2378 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2379 | error '\n' @{ yyerrok; @}
2380;
18b519c0 2381@end group
bfa74976 2382
18b519c0 2383@group
bfa74976
RS
2384exp: NUM @{ $$ = $1; @}
2385 | VAR @{ $$ = $1->value.var; @}
2386 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2387 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2388 | exp '+' exp @{ $$ = $1 + $3; @}
2389 | exp '-' exp @{ $$ = $1 - $3; @}
2390 | exp '*' exp @{ $$ = $1 * $3; @}
2391 | exp '/' exp @{ $$ = $1 / $3; @}
2392 | '-' exp %prec NEG @{ $$ = -$2; @}
2393 | exp '^' exp @{ $$ = pow ($1, $3); @}
2394 | '(' exp ')' @{ $$ = $2; @}
2395;
18b519c0 2396@end group
38a92d50 2397/* End of grammar. */
bfa74976
RS
2398%%
2399@end smallexample
2400
f5f419de 2401@node Mfcalc Symbol Table
bfa74976
RS
2402@subsection The @code{mfcalc} Symbol Table
2403@cindex symbol table example
2404
2405The multi-function calculator requires a symbol table to keep track of the
2406names and meanings of variables and functions. This doesn't affect the
2407grammar rules (except for the actions) or the Bison declarations, but it
2408requires some additional C functions for support.
2409
2410The symbol table itself consists of a linked list of records. Its
2411definition, which is kept in the header @file{calc.h}, is as follows. It
2412provides for either functions or variables to be placed in the table.
2413
2414@smallexample
2415@group
38a92d50 2416/* Function type. */
32dfccf8 2417typedef double (*func_t) (double);
72f889cc 2418@end group
32dfccf8 2419
72f889cc 2420@group
38a92d50 2421/* Data type for links in the chain of symbols. */
bfa74976
RS
2422struct symrec
2423@{
38a92d50 2424 char *name; /* name of symbol */
bfa74976 2425 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2426 union
2427 @{
38a92d50
PE
2428 double var; /* value of a VAR */
2429 func_t fnctptr; /* value of a FNCT */
bfa74976 2430 @} value;
38a92d50 2431 struct symrec *next; /* link field */
bfa74976
RS
2432@};
2433@end group
2434
2435@group
2436typedef struct symrec symrec;
2437
38a92d50 2438/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2439extern symrec *sym_table;
2440
a730d142 2441symrec *putsym (char const *, int);
38a92d50 2442symrec *getsym (char const *);
bfa74976
RS
2443@end group
2444@end smallexample
2445
2446The new version of @code{main} includes a call to @code{init_table}, a
2447function that initializes the symbol table. Here it is, and
2448@code{init_table} as well:
2449
2450@smallexample
bfa74976
RS
2451#include <stdio.h>
2452
18b519c0 2453@group
38a92d50 2454/* Called by yyparse on error. */
13863333 2455void
38a92d50 2456yyerror (char const *s)
bfa74976
RS
2457@{
2458 printf ("%s\n", s);
2459@}
18b519c0 2460@end group
bfa74976 2461
18b519c0 2462@group
bfa74976
RS
2463struct init
2464@{
38a92d50
PE
2465 char const *fname;
2466 double (*fnct) (double);
bfa74976
RS
2467@};
2468@end group
2469
2470@group
38a92d50 2471struct init const arith_fncts[] =
13863333 2472@{
32dfccf8
AD
2473 "sin", sin,
2474 "cos", cos,
13863333 2475 "atan", atan,
32dfccf8
AD
2476 "ln", log,
2477 "exp", exp,
13863333
AD
2478 "sqrt", sqrt,
2479 0, 0
2480@};
18b519c0 2481@end group
bfa74976 2482
18b519c0 2483@group
bfa74976 2484/* The symbol table: a chain of `struct symrec'. */
38a92d50 2485symrec *sym_table;
bfa74976
RS
2486@end group
2487
2488@group
72d2299c 2489/* Put arithmetic functions in table. */
13863333
AD
2490void
2491init_table (void)
bfa74976
RS
2492@{
2493 int i;
2494 symrec *ptr;
2495 for (i = 0; arith_fncts[i].fname != 0; i++)
2496 @{
2497 ptr = putsym (arith_fncts[i].fname, FNCT);
2498 ptr->value.fnctptr = arith_fncts[i].fnct;
2499 @}
2500@}
2501@end group
38a92d50
PE
2502
2503@group
2504int
2505main (void)
2506@{
2507 init_table ();
2508 return yyparse ();
2509@}
2510@end group
bfa74976
RS
2511@end smallexample
2512
2513By simply editing the initialization list and adding the necessary include
2514files, you can add additional functions to the calculator.
2515
2516Two important functions allow look-up and installation of symbols in the
2517symbol table. The function @code{putsym} is passed a name and the type
2518(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2519linked to the front of the list, and a pointer to the object is returned.
2520The function @code{getsym} is passed the name of the symbol to look up. If
2521found, a pointer to that symbol is returned; otherwise zero is returned.
2522
2523@smallexample
2524symrec *
38a92d50 2525putsym (char const *sym_name, int sym_type)
bfa74976
RS
2526@{
2527 symrec *ptr;
2528 ptr = (symrec *) malloc (sizeof (symrec));
2529 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2530 strcpy (ptr->name,sym_name);
2531 ptr->type = sym_type;
72d2299c 2532 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2533 ptr->next = (struct symrec *)sym_table;
2534 sym_table = ptr;
2535 return ptr;
2536@}
2537
2538symrec *
38a92d50 2539getsym (char const *sym_name)
bfa74976
RS
2540@{
2541 symrec *ptr;
2542 for (ptr = sym_table; ptr != (symrec *) 0;
2543 ptr = (symrec *)ptr->next)
2544 if (strcmp (ptr->name,sym_name) == 0)
2545 return ptr;
2546 return 0;
2547@}
2548@end smallexample
2549
2550The function @code{yylex} must now recognize variables, numeric values, and
2551the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2552characters with a leading letter are recognized as either variables or
bfa74976
RS
2553functions depending on what the symbol table says about them.
2554
2555The string is passed to @code{getsym} for look up in the symbol table. If
2556the name appears in the table, a pointer to its location and its type
2557(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2558already in the table, then it is installed as a @code{VAR} using
2559@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2560returned to @code{yyparse}.
bfa74976
RS
2561
2562No change is needed in the handling of numeric values and arithmetic
2563operators in @code{yylex}.
2564
2565@smallexample
2566@group
2567#include <ctype.h>
18b519c0 2568@end group
13863333 2569
18b519c0 2570@group
13863333
AD
2571int
2572yylex (void)
bfa74976
RS
2573@{
2574 int c;
2575
72d2299c 2576 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2577 while ((c = getchar ()) == ' ' || c == '\t');
2578
2579 if (c == EOF)
2580 return 0;
2581@end group
2582
2583@group
2584 /* Char starts a number => parse the number. */
2585 if (c == '.' || isdigit (c))
2586 @{
2587 ungetc (c, stdin);
2588 scanf ("%lf", &yylval.val);
2589 return NUM;
2590 @}
2591@end group
2592
2593@group
2594 /* Char starts an identifier => read the name. */
2595 if (isalpha (c))
2596 @{
2597 symrec *s;
2598 static char *symbuf = 0;
2599 static int length = 0;
2600 int i;
2601@end group
2602
2603@group
2604 /* Initially make the buffer long enough
2605 for a 40-character symbol name. */
2606 if (length == 0)
2607 length = 40, symbuf = (char *)malloc (length + 1);
2608
2609 i = 0;
2610 do
2611@end group
2612@group
2613 @{
2614 /* If buffer is full, make it bigger. */
2615 if (i == length)
2616 @{
2617 length *= 2;
18b519c0 2618 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2619 @}
2620 /* Add this character to the buffer. */
2621 symbuf[i++] = c;
2622 /* Get another character. */
2623 c = getchar ();
2624 @}
2625@end group
2626@group
72d2299c 2627 while (isalnum (c));
bfa74976
RS
2628
2629 ungetc (c, stdin);
2630 symbuf[i] = '\0';
2631@end group
2632
2633@group
2634 s = getsym (symbuf);
2635 if (s == 0)
2636 s = putsym (symbuf, VAR);
2637 yylval.tptr = s;
2638 return s->type;
2639 @}
2640
2641 /* Any other character is a token by itself. */
2642 return c;
2643@}
2644@end group
2645@end smallexample
2646
72d2299c 2647This program is both powerful and flexible. You may easily add new
704a47c4
AD
2648functions, and it is a simple job to modify this code to install
2649predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2650
342b8b6e 2651@node Exercises
bfa74976
RS
2652@section Exercises
2653@cindex exercises
2654
2655@enumerate
2656@item
2657Add some new functions from @file{math.h} to the initialization list.
2658
2659@item
2660Add another array that contains constants and their values. Then
2661modify @code{init_table} to add these constants to the symbol table.
2662It will be easiest to give the constants type @code{VAR}.
2663
2664@item
2665Make the program report an error if the user refers to an
2666uninitialized variable in any way except to store a value in it.
2667@end enumerate
2668
342b8b6e 2669@node Grammar File
bfa74976
RS
2670@chapter Bison Grammar Files
2671
2672Bison takes as input a context-free grammar specification and produces a
2673C-language function that recognizes correct instances of the grammar.
2674
2675The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2676@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2677
2678@menu
2679* Grammar Outline:: Overall layout of the grammar file.
2680* Symbols:: Terminal and nonterminal symbols.
2681* Rules:: How to write grammar rules.
2682* Recursion:: Writing recursive rules.
2683* Semantics:: Semantic values and actions.
847bf1f5 2684* Locations:: Locations and actions.
bfa74976
RS
2685* Declarations:: All kinds of Bison declarations are described here.
2686* Multiple Parsers:: Putting more than one Bison parser in one program.
2687@end menu
2688
342b8b6e 2689@node Grammar Outline
bfa74976
RS
2690@section Outline of a Bison Grammar
2691
2692A Bison grammar file has four main sections, shown here with the
2693appropriate delimiters:
2694
2695@example
2696%@{
38a92d50 2697 @var{Prologue}
bfa74976
RS
2698%@}
2699
2700@var{Bison declarations}
2701
2702%%
2703@var{Grammar rules}
2704%%
2705
75f5aaea 2706@var{Epilogue}
bfa74976
RS
2707@end example
2708
2709Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2710As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2711continues until end of line.
bfa74976
RS
2712
2713@menu
f5f419de 2714* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2715* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2716* Bison Declarations:: Syntax and usage of the Bison declarations section.
2717* Grammar Rules:: Syntax and usage of the grammar rules section.
2718* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2719@end menu
2720
38a92d50 2721@node Prologue
75f5aaea
MA
2722@subsection The prologue
2723@cindex declarations section
2724@cindex Prologue
2725@cindex declarations
bfa74976 2726
f8e1c9e5
AD
2727The @var{Prologue} section contains macro definitions and declarations
2728of functions and variables that are used in the actions in the grammar
2729rules. These are copied to the beginning of the parser file so that
2730they precede the definition of @code{yyparse}. You can use
2731@samp{#include} to get the declarations from a header file. If you
2732don't need any C declarations, you may omit the @samp{%@{} and
2733@samp{%@}} delimiters that bracket this section.
bfa74976 2734
9c437126 2735The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2736of @samp{%@}} that is outside a comment, a string literal, or a
2737character constant.
2738
c732d2c6
AD
2739You may have more than one @var{Prologue} section, intermixed with the
2740@var{Bison declarations}. This allows you to have C and Bison
2741declarations that refer to each other. For example, the @code{%union}
2742declaration may use types defined in a header file, and you may wish to
2743prototype functions that take arguments of type @code{YYSTYPE}. This
2744can be done with two @var{Prologue} blocks, one before and one after the
2745@code{%union} declaration.
2746
2747@smallexample
2748%@{
aef3da86 2749 #define _GNU_SOURCE
38a92d50
PE
2750 #include <stdio.h>
2751 #include "ptypes.h"
c732d2c6
AD
2752%@}
2753
2754%union @{
779e7ceb 2755 long int n;
c732d2c6
AD
2756 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2757@}
2758
2759%@{
38a92d50
PE
2760 static void print_token_value (FILE *, int, YYSTYPE);
2761 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2762%@}
2763
2764@dots{}
2765@end smallexample
2766
aef3da86
PE
2767When in doubt, it is usually safer to put prologue code before all
2768Bison declarations, rather than after. For example, any definitions
2769of feature test macros like @code{_GNU_SOURCE} or
2770@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2771feature test macros can affect the behavior of Bison-generated
2772@code{#include} directives.
2773
2cbe6b7f
JD
2774@node Prologue Alternatives
2775@subsection Prologue Alternatives
2776@cindex Prologue Alternatives
2777
136a0f76 2778@findex %code
16dc6a9e
JD
2779@findex %code requires
2780@findex %code provides
2781@findex %code top
85894313 2782
2cbe6b7f
JD
2783The functionality of @var{Prologue} sections can often be subtle and
2784inflexible.
8e0a5e9e
JD
2785As an alternative, Bison provides a %code directive with an explicit qualifier
2786field, which identifies the purpose of the code and thus the location(s) where
2787Bison should generate it.
2788For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2789one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2790@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2791
2792Look again at the example of the previous section:
2793
2794@smallexample
2795%@{
2796 #define _GNU_SOURCE
2797 #include <stdio.h>
2798 #include "ptypes.h"
2799%@}
2800
2801%union @{
2802 long int n;
2803 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2804@}
2805
2806%@{
2807 static void print_token_value (FILE *, int, YYSTYPE);
2808 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2809%@}
2810
2811@dots{}
2812@end smallexample
2813
2814@noindent
2815Notice that there are two @var{Prologue} sections here, but there's a subtle
2816distinction between their functionality.
2817For example, if you decide to override Bison's default definition for
2818@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2819definition?
2820You should write it in the first since Bison will insert that code into the
8e0a5e9e 2821parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2822In which @var{Prologue} section should you prototype an internal function,
2823@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2824arguments?
2825You should prototype it in the second since Bison will insert that code
2826@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2827
2828This distinction in functionality between the two @var{Prologue} sections is
2829established by the appearance of the @code{%union} between them.
a501eca9 2830This behavior raises a few questions.
2cbe6b7f
JD
2831First, why should the position of a @code{%union} affect definitions related to
2832@code{YYLTYPE} and @code{yytokentype}?
2833Second, what if there is no @code{%union}?
2834In that case, the second kind of @var{Prologue} section is not available.
2835This behavior is not intuitive.
2836
8e0a5e9e 2837To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2838@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2839Let's go ahead and add the new @code{YYLTYPE} definition and the
2840@code{trace_token} prototype at the same time:
2841
2842@smallexample
16dc6a9e 2843%code top @{
2cbe6b7f
JD
2844 #define _GNU_SOURCE
2845 #include <stdio.h>
8e0a5e9e
JD
2846
2847 /* WARNING: The following code really belongs
16dc6a9e 2848 * in a `%code requires'; see below. */
8e0a5e9e 2849
2cbe6b7f
JD
2850 #include "ptypes.h"
2851 #define YYLTYPE YYLTYPE
2852 typedef struct YYLTYPE
2853 @{
2854 int first_line;
2855 int first_column;
2856 int last_line;
2857 int last_column;
2858 char *filename;
2859 @} YYLTYPE;
2860@}
2861
2862%union @{
2863 long int n;
2864 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2865@}
2866
2867%code @{
2868 static void print_token_value (FILE *, int, YYSTYPE);
2869 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2870 static void trace_token (enum yytokentype token, YYLTYPE loc);
2871@}
2872
2873@dots{}
2874@end smallexample
2875
2876@noindent
16dc6a9e
JD
2877In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2878functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2879explicit which kind you intend.
2cbe6b7f
JD
2880Moreover, both kinds are always available even in the absence of @code{%union}.
2881
16dc6a9e 2882The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2883The first two lines before the warning need to appear near the top of the
2884parser source code file.
2885The first line after the warning is required by @code{YYSTYPE} and thus also
2886needs to appear in the parser source code file.
2cbe6b7f 2887However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2888(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2889the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2890The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2891override the default @code{YYLTYPE} definition there.
2892
16dc6a9e 2893In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2894lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2895definitions.
16dc6a9e 2896Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2897
2898@smallexample
16dc6a9e 2899%code top @{
2cbe6b7f
JD
2900 #define _GNU_SOURCE
2901 #include <stdio.h>
2902@}
2903
16dc6a9e 2904%code requires @{
9bc0dd67
JD
2905 #include "ptypes.h"
2906@}
2907%union @{
2908 long int n;
2909 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2910@}
2911
16dc6a9e 2912%code requires @{
2cbe6b7f
JD
2913 #define YYLTYPE YYLTYPE
2914 typedef struct YYLTYPE
2915 @{
2916 int first_line;
2917 int first_column;
2918 int last_line;
2919 int last_column;
2920 char *filename;
2921 @} YYLTYPE;
2922@}
2923
136a0f76 2924%code @{
2cbe6b7f
JD
2925 static void print_token_value (FILE *, int, YYSTYPE);
2926 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2927 static void trace_token (enum yytokentype token, YYLTYPE loc);
2928@}
2929
2930@dots{}
2931@end smallexample
2932
2933@noindent
2934Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2935definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2936definitions in both the parser source code file and the parser header file.
16dc6a9e 2937(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2938place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2939
a501eca9 2940When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2941should prefer @code{%code requires} over @code{%code top} regardless of whether
2942you instruct Bison to generate a parser header file.
a501eca9 2943When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2944source code file and that has no special need to appear at the top of that
16dc6a9e 2945file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2946These practices will make the purpose of each block of your code explicit to
2947Bison and to other developers reading your grammar file.
8e0a5e9e 2948Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2949@code{%code requires} to be the most important of the four @var{Prologue}
2950alternatives.
a501eca9 2951
2cbe6b7f
JD
2952At some point while developing your parser, you might decide to provide
2953@code{trace_token} to modules that are external to your parser.
2954Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2955header file and the parser source code file.
2956Since this function is not a dependency required by @code{YYSTYPE} or
2957@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2958@code{%code requires}.
2cbe6b7f 2959More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2960@code{%code requires} is not sufficient.
8e0a5e9e 2961Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2962@code{%code provides}:
2cbe6b7f
JD
2963
2964@smallexample
16dc6a9e 2965%code top @{
2cbe6b7f 2966 #define _GNU_SOURCE
136a0f76 2967 #include <stdio.h>
2cbe6b7f 2968@}
136a0f76 2969
16dc6a9e 2970%code requires @{
2cbe6b7f
JD
2971 #include "ptypes.h"
2972@}
2973%union @{
2974 long int n;
2975 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2976@}
2977
16dc6a9e 2978%code requires @{
2cbe6b7f
JD
2979 #define YYLTYPE YYLTYPE
2980 typedef struct YYLTYPE
2981 @{
2982 int first_line;
2983 int first_column;
2984 int last_line;
2985 int last_column;
2986 char *filename;
2987 @} YYLTYPE;
2988@}
2989
16dc6a9e 2990%code provides @{
2cbe6b7f
JD
2991 void trace_token (enum yytokentype token, YYLTYPE loc);
2992@}
2993
2994%code @{
9bc0dd67
JD
2995 static void print_token_value (FILE *, int, YYSTYPE);
2996 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2997@}
9bc0dd67
JD
2998
2999@dots{}
3000@end smallexample
3001
2cbe6b7f
JD
3002@noindent
3003Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
3004file and the parser source code file after the definitions for
3005@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
3006
3007The above examples are careful to write directives in an order that reflects
8e0a5e9e 3008the layout of the generated parser source code and header files:
16dc6a9e 3009@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3010@code{%code}.
a501eca9 3011While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3012this order, Bison does not require it.
3013Instead, Bison lets you choose an organization that makes sense to you.
3014
a501eca9 3015You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3016In that case, Bison concatenates the contained code in declaration order.
3017This is the only way in which the position of one of these directives within
3018the grammar file affects its functionality.
3019
3020The result of the previous two properties is greater flexibility in how you may
3021organize your grammar file.
3022For example, you may organize semantic-type-related directives by semantic
3023type:
3024
3025@smallexample
16dc6a9e 3026%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3027%union @{ type1 field1; @}
3028%destructor @{ type1_free ($$); @} <field1>
3029%printer @{ type1_print ($$); @} <field1>
3030
16dc6a9e 3031%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3032%union @{ type2 field2; @}
3033%destructor @{ type2_free ($$); @} <field2>
3034%printer @{ type2_print ($$); @} <field2>
3035@end smallexample
3036
3037@noindent
3038You could even place each of the above directive groups in the rules section of
3039the grammar file next to the set of rules that uses the associated semantic
3040type.
61fee93e
JD
3041(In the rules section, you must terminate each of those directives with a
3042semicolon.)
2cbe6b7f
JD
3043And you don't have to worry that some directive (like a @code{%union}) in the
3044definitions section is going to adversely affect their functionality in some
3045counter-intuitive manner just because it comes first.
3046Such an organization is not possible using @var{Prologue} sections.
3047
a501eca9 3048This section has been concerned with explaining the advantages of the four
8e0a5e9e 3049@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3050However, in most cases when using these directives, you shouldn't need to
3051think about all the low-level ordering issues discussed here.
3052Instead, you should simply use these directives to label each block of your
3053code according to its purpose and let Bison handle the ordering.
3054@code{%code} is the most generic label.
16dc6a9e
JD
3055Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3056as needed.
a501eca9 3057
342b8b6e 3058@node Bison Declarations
bfa74976
RS
3059@subsection The Bison Declarations Section
3060@cindex Bison declarations (introduction)
3061@cindex declarations, Bison (introduction)
3062
3063The @var{Bison declarations} section contains declarations that define
3064terminal and nonterminal symbols, specify precedence, and so on.
3065In some simple grammars you may not need any declarations.
3066@xref{Declarations, ,Bison Declarations}.
3067
342b8b6e 3068@node Grammar Rules
bfa74976
RS
3069@subsection The Grammar Rules Section
3070@cindex grammar rules section
3071@cindex rules section for grammar
3072
3073The @dfn{grammar rules} section contains one or more Bison grammar
3074rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3075
3076There must always be at least one grammar rule, and the first
3077@samp{%%} (which precedes the grammar rules) may never be omitted even
3078if it is the first thing in the file.
3079
38a92d50 3080@node Epilogue
75f5aaea 3081@subsection The epilogue
bfa74976 3082@cindex additional C code section
75f5aaea 3083@cindex epilogue
bfa74976
RS
3084@cindex C code, section for additional
3085
08e49d20
PE
3086The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3087the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3088place to put anything that you want to have in the parser file but which need
3089not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3090definitions of @code{yylex} and @code{yyerror} often go here. Because
3091C requires functions to be declared before being used, you often need
3092to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3093even if you define them in the Epilogue.
75f5aaea 3094@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3095
3096If the last section is empty, you may omit the @samp{%%} that separates it
3097from the grammar rules.
3098
f8e1c9e5
AD
3099The Bison parser itself contains many macros and identifiers whose names
3100start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3101any such names (except those documented in this manual) in the epilogue
3102of the grammar file.
bfa74976 3103
342b8b6e 3104@node Symbols
bfa74976
RS
3105@section Symbols, Terminal and Nonterminal
3106@cindex nonterminal symbol
3107@cindex terminal symbol
3108@cindex token type
3109@cindex symbol
3110
3111@dfn{Symbols} in Bison grammars represent the grammatical classifications
3112of the language.
3113
3114A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3115class of syntactically equivalent tokens. You use the symbol in grammar
3116rules to mean that a token in that class is allowed. The symbol is
3117represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3118function returns a token type code to indicate what kind of token has
3119been read. You don't need to know what the code value is; you can use
3120the symbol to stand for it.
bfa74976 3121
f8e1c9e5
AD
3122A @dfn{nonterminal symbol} stands for a class of syntactically
3123equivalent groupings. The symbol name is used in writing grammar rules.
3124By convention, it should be all lower case.
bfa74976 3125
cdf3f113
AD
3126Symbol names can contain letters, underscores, periods, dashes, and (not
3127at the beginning) digits. Dashes in symbol names are a GNU
8a4281b9 3128extension, incompatible with POSIX Yacc. Terminal symbols
4f646c37
AD
3129that contain periods or dashes make little sense: since they are not
3130valid symbols (in most programming languages) they are not exported as
3131token names.
bfa74976 3132
931c7513 3133There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3134
3135@itemize @bullet
3136@item
3137A @dfn{named token type} is written with an identifier, like an
c827f760 3138identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3139such name must be defined with a Bison declaration such as
3140@code{%token}. @xref{Token Decl, ,Token Type Names}.
3141
3142@item
3143@cindex character token
3144@cindex literal token
3145@cindex single-character literal
931c7513
RS
3146A @dfn{character token type} (or @dfn{literal character token}) is
3147written in the grammar using the same syntax used in C for character
3148constants; for example, @code{'+'} is a character token type. A
3149character token type doesn't need to be declared unless you need to
3150specify its semantic value data type (@pxref{Value Type, ,Data Types of
3151Semantic Values}), associativity, or precedence (@pxref{Precedence,
3152,Operator Precedence}).
bfa74976
RS
3153
3154By convention, a character token type is used only to represent a
3155token that consists of that particular character. Thus, the token
3156type @code{'+'} is used to represent the character @samp{+} as a
3157token. Nothing enforces this convention, but if you depart from it,
3158your program will confuse other readers.
3159
3160All the usual escape sequences used in character literals in C can be
3161used in Bison as well, but you must not use the null character as a
72d2299c
PE
3162character literal because its numeric code, zero, signifies
3163end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3164for @code{yylex}}). Also, unlike standard C, trigraphs have no
3165special meaning in Bison character literals, nor is backslash-newline
3166allowed.
931c7513
RS
3167
3168@item
3169@cindex string token
3170@cindex literal string token
9ecbd125 3171@cindex multicharacter literal
931c7513
RS
3172A @dfn{literal string token} is written like a C string constant; for
3173example, @code{"<="} is a literal string token. A literal string token
3174doesn't need to be declared unless you need to specify its semantic
14ded682 3175value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3176(@pxref{Precedence}).
3177
3178You can associate the literal string token with a symbolic name as an
3179alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3180Declarations}). If you don't do that, the lexical analyzer has to
3181retrieve the token number for the literal string token from the
3182@code{yytname} table (@pxref{Calling Convention}).
3183
c827f760 3184@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3185
3186By convention, a literal string token is used only to represent a token
3187that consists of that particular string. Thus, you should use the token
3188type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3189does not enforce this convention, but if you depart from it, people who
931c7513
RS
3190read your program will be confused.
3191
3192All the escape sequences used in string literals in C can be used in
92ac3705
PE
3193Bison as well, except that you must not use a null character within a
3194string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3195meaning in Bison string literals, nor is backslash-newline allowed. A
3196literal string token must contain two or more characters; for a token
3197containing just one character, use a character token (see above).
bfa74976
RS
3198@end itemize
3199
3200How you choose to write a terminal symbol has no effect on its
3201grammatical meaning. That depends only on where it appears in rules and
3202on when the parser function returns that symbol.
3203
72d2299c
PE
3204The value returned by @code{yylex} is always one of the terminal
3205symbols, except that a zero or negative value signifies end-of-input.
3206Whichever way you write the token type in the grammar rules, you write
3207it the same way in the definition of @code{yylex}. The numeric code
3208for a character token type is simply the positive numeric code of the
3209character, so @code{yylex} can use the identical value to generate the
3210requisite code, though you may need to convert it to @code{unsigned
3211char} to avoid sign-extension on hosts where @code{char} is signed.
3212Each named token type becomes a C macro in
bfa74976 3213the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3214(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3215@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3216
3217If @code{yylex} is defined in a separate file, you need to arrange for the
3218token-type macro definitions to be available there. Use the @samp{-d}
3219option when you run Bison, so that it will write these macro definitions
3220into a separate header file @file{@var{name}.tab.h} which you can include
3221in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3222
72d2299c 3223If you want to write a grammar that is portable to any Standard C
9d9b8b70 3224host, you must use only nonnull character tokens taken from the basic
c827f760 3225execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3226digits, the 52 lower- and upper-case English letters, and the
3227characters in the following C-language string:
3228
3229@example
3230"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3231@end example
3232
f8e1c9e5
AD
3233The @code{yylex} function and Bison must use a consistent character set
3234and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3235ASCII environment, but then compile and run the resulting
f8e1c9e5 3236program in an environment that uses an incompatible character set like
8a4281b9
JD
3237EBCDIC, the resulting program may not work because the tables
3238generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3239character tokens. It is standard practice for software distributions to
3240contain C source files that were generated by Bison in an
8a4281b9
JD
3241ASCII environment, so installers on platforms that are
3242incompatible with ASCII must rebuild those files before
f8e1c9e5 3243compiling them.
e966383b 3244
bfa74976
RS
3245The symbol @code{error} is a terminal symbol reserved for error recovery
3246(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3247In particular, @code{yylex} should never return this value. The default
3248value of the error token is 256, unless you explicitly assigned 256 to
3249one of your tokens with a @code{%token} declaration.
bfa74976 3250
342b8b6e 3251@node Rules
bfa74976
RS
3252@section Syntax of Grammar Rules
3253@cindex rule syntax
3254@cindex grammar rule syntax
3255@cindex syntax of grammar rules
3256
3257A Bison grammar rule has the following general form:
3258
3259@example
e425e872 3260@group
bfa74976
RS
3261@var{result}: @var{components}@dots{}
3262 ;
e425e872 3263@end group
bfa74976
RS
3264@end example
3265
3266@noindent
9ecbd125 3267where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3268and @var{components} are various terminal and nonterminal symbols that
13863333 3269are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3270
3271For example,
3272
3273@example
3274@group
3275exp: exp '+' exp
3276 ;
3277@end group
3278@end example
3279
3280@noindent
3281says that two groupings of type @code{exp}, with a @samp{+} token in between,
3282can be combined into a larger grouping of type @code{exp}.
3283
72d2299c
PE
3284White space in rules is significant only to separate symbols. You can add
3285extra white space as you wish.
bfa74976
RS
3286
3287Scattered among the components can be @var{actions} that determine
3288the semantics of the rule. An action looks like this:
3289
3290@example
3291@{@var{C statements}@}
3292@end example
3293
3294@noindent
287c78f6
PE
3295@cindex braced code
3296This is an example of @dfn{braced code}, that is, C code surrounded by
3297braces, much like a compound statement in C@. Braced code can contain
3298any sequence of C tokens, so long as its braces are balanced. Bison
3299does not check the braced code for correctness directly; it merely
3300copies the code to the output file, where the C compiler can check it.
3301
3302Within braced code, the balanced-brace count is not affected by braces
3303within comments, string literals, or character constants, but it is
3304affected by the C digraphs @samp{<%} and @samp{%>} that represent
3305braces. At the top level braced code must be terminated by @samp{@}}
3306and not by a digraph. Bison does not look for trigraphs, so if braced
3307code uses trigraphs you should ensure that they do not affect the
3308nesting of braces or the boundaries of comments, string literals, or
3309character constants.
3310
bfa74976
RS
3311Usually there is only one action and it follows the components.
3312@xref{Actions}.
3313
3314@findex |
3315Multiple rules for the same @var{result} can be written separately or can
3316be joined with the vertical-bar character @samp{|} as follows:
3317
bfa74976
RS
3318@example
3319@group
3320@var{result}: @var{rule1-components}@dots{}
3321 | @var{rule2-components}@dots{}
3322 @dots{}
3323 ;
3324@end group
3325@end example
bfa74976
RS
3326
3327@noindent
3328They are still considered distinct rules even when joined in this way.
3329
3330If @var{components} in a rule is empty, it means that @var{result} can
3331match the empty string. For example, here is how to define a
3332comma-separated sequence of zero or more @code{exp} groupings:
3333
3334@example
3335@group
3336expseq: /* empty */
3337 | expseq1
3338 ;
3339@end group
3340
3341@group
3342expseq1: exp
3343 | expseq1 ',' exp
3344 ;
3345@end group
3346@end example
3347
3348@noindent
3349It is customary to write a comment @samp{/* empty */} in each rule
3350with no components.
3351
342b8b6e 3352@node Recursion
bfa74976
RS
3353@section Recursive Rules
3354@cindex recursive rule
3355
f8e1c9e5
AD
3356A rule is called @dfn{recursive} when its @var{result} nonterminal
3357appears also on its right hand side. Nearly all Bison grammars need to
3358use recursion, because that is the only way to define a sequence of any
3359number of a particular thing. Consider this recursive definition of a
9ecbd125 3360comma-separated sequence of one or more expressions:
bfa74976
RS
3361
3362@example
3363@group
3364expseq1: exp
3365 | expseq1 ',' exp
3366 ;
3367@end group
3368@end example
3369
3370@cindex left recursion
3371@cindex right recursion
3372@noindent
3373Since the recursive use of @code{expseq1} is the leftmost symbol in the
3374right hand side, we call this @dfn{left recursion}. By contrast, here
3375the same construct is defined using @dfn{right recursion}:
3376
3377@example
3378@group
3379expseq1: exp
3380 | exp ',' expseq1
3381 ;
3382@end group
3383@end example
3384
3385@noindent
ec3bc396
AD
3386Any kind of sequence can be defined using either left recursion or right
3387recursion, but you should always use left recursion, because it can
3388parse a sequence of any number of elements with bounded stack space.
3389Right recursion uses up space on the Bison stack in proportion to the
3390number of elements in the sequence, because all the elements must be
3391shifted onto the stack before the rule can be applied even once.
3392@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3393of this.
bfa74976
RS
3394
3395@cindex mutual recursion
3396@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3397rule does not appear directly on its right hand side, but does appear
3398in rules for other nonterminals which do appear on its right hand
13863333 3399side.
bfa74976
RS
3400
3401For example:
3402
3403@example
3404@group
3405expr: primary
3406 | primary '+' primary
3407 ;
3408@end group
3409
3410@group
3411primary: constant
3412 | '(' expr ')'
3413 ;
3414@end group
3415@end example
3416
3417@noindent
3418defines two mutually-recursive nonterminals, since each refers to the
3419other.
3420
342b8b6e 3421@node Semantics
bfa74976
RS
3422@section Defining Language Semantics
3423@cindex defining language semantics
13863333 3424@cindex language semantics, defining
bfa74976
RS
3425
3426The grammar rules for a language determine only the syntax. The semantics
3427are determined by the semantic values associated with various tokens and
3428groupings, and by the actions taken when various groupings are recognized.
3429
3430For example, the calculator calculates properly because the value
3431associated with each expression is the proper number; it adds properly
3432because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3433the numbers associated with @var{x} and @var{y}.
3434
3435@menu
3436* Value Type:: Specifying one data type for all semantic values.
3437* Multiple Types:: Specifying several alternative data types.
3438* Actions:: An action is the semantic definition of a grammar rule.
3439* Action Types:: Specifying data types for actions to operate on.
3440* Mid-Rule Actions:: Most actions go at the end of a rule.
3441 This says when, why and how to use the exceptional
3442 action in the middle of a rule.
d013372c 3443* Named References:: Using named references in actions.
bfa74976
RS
3444@end menu
3445
342b8b6e 3446@node Value Type
bfa74976
RS
3447@subsection Data Types of Semantic Values
3448@cindex semantic value type
3449@cindex value type, semantic
3450@cindex data types of semantic values
3451@cindex default data type
3452
3453In a simple program it may be sufficient to use the same data type for
3454the semantic values of all language constructs. This was true in the
8a4281b9 3455RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3456Notation Calculator}).
bfa74976 3457
ddc8ede1
PE
3458Bison normally uses the type @code{int} for semantic values if your
3459program uses the same data type for all language constructs. To
bfa74976
RS
3460specify some other type, define @code{YYSTYPE} as a macro, like this:
3461
3462@example
3463#define YYSTYPE double
3464@end example
3465
3466@noindent
50cce58e
PE
3467@code{YYSTYPE}'s replacement list should be a type name
3468that does not contain parentheses or square brackets.
342b8b6e 3469This macro definition must go in the prologue of the grammar file
75f5aaea 3470(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3471
342b8b6e 3472@node Multiple Types
bfa74976
RS
3473@subsection More Than One Value Type
3474
3475In most programs, you will need different data types for different kinds
3476of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3477@code{int} or @code{long int}, while a string constant needs type
3478@code{char *}, and an identifier might need a pointer to an entry in the
3479symbol table.
bfa74976
RS
3480
3481To use more than one data type for semantic values in one parser, Bison
3482requires you to do two things:
3483
3484@itemize @bullet
3485@item
ddc8ede1 3486Specify the entire collection of possible data types, either by using the
704a47c4 3487@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3488Value Types}), or by using a @code{typedef} or a @code{#define} to
3489define @code{YYSTYPE} to be a union type whose member names are
3490the type tags.
bfa74976
RS
3491
3492@item
14ded682
AD
3493Choose one of those types for each symbol (terminal or nonterminal) for
3494which semantic values are used. This is done for tokens with the
3495@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3496and for groupings with the @code{%type} Bison declaration (@pxref{Type
3497Decl, ,Nonterminal Symbols}).
bfa74976
RS
3498@end itemize
3499
342b8b6e 3500@node Actions
bfa74976
RS
3501@subsection Actions
3502@cindex action
3503@vindex $$
3504@vindex $@var{n}
d013372c
AR
3505@vindex $@var{name}
3506@vindex $[@var{name}]
bfa74976
RS
3507
3508An action accompanies a syntactic rule and contains C code to be executed
3509each time an instance of that rule is recognized. The task of most actions
3510is to compute a semantic value for the grouping built by the rule from the
3511semantic values associated with tokens or smaller groupings.
3512
287c78f6
PE
3513An action consists of braced code containing C statements, and can be
3514placed at any position in the rule;
704a47c4
AD
3515it is executed at that position. Most rules have just one action at the
3516end of the rule, following all the components. Actions in the middle of
3517a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3518Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3519
3520The C code in an action can refer to the semantic values of the components
3521matched by the rule with the construct @code{$@var{n}}, which stands for
3522the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3523being constructed is @code{$$}. In addition, the semantic values of
3524symbols can be accessed with the named references construct
3525@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3526constructs into expressions of the appropriate type when it copies the
d013372c
AR
3527actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3528stands for the current grouping) is translated to a modifiable
0cc3da3a 3529lvalue, so it can be assigned to.
bfa74976
RS
3530
3531Here is a typical example:
3532
3533@example
3534@group
3535exp: @dots{}
3536 | exp '+' exp
3537 @{ $$ = $1 + $3; @}
3538@end group
3539@end example
3540
d013372c
AR
3541Or, in terms of named references:
3542
3543@example
3544@group
3545exp[result]: @dots{}
3546 | exp[left] '+' exp[right]
3547 @{ $result = $left + $right; @}
3548@end group
3549@end example
3550
bfa74976
RS
3551@noindent
3552This rule constructs an @code{exp} from two smaller @code{exp} groupings
3553connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3554(@code{$left} and @code{$right})
bfa74976
RS
3555refer to the semantic values of the two component @code{exp} groupings,
3556which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3557The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3558semantic value of
bfa74976
RS
3559the addition-expression just recognized by the rule. If there were a
3560useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3561referred to as @code{$2}.
bfa74976 3562
d013372c
AR
3563@xref{Named References,,Using Named References}, for more information
3564about using the named references construct.
3565
3ded9a63
AD
3566Note that the vertical-bar character @samp{|} is really a rule
3567separator, and actions are attached to a single rule. This is a
3568difference with tools like Flex, for which @samp{|} stands for either
3569``or'', or ``the same action as that of the next rule''. In the
3570following example, the action is triggered only when @samp{b} is found:
3571
3572@example
3573@group
3574a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3575@end group
3576@end example
3577
bfa74976
RS
3578@cindex default action
3579If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3580@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3581becomes the value of the whole rule. Of course, the default action is
3582valid only if the two data types match. There is no meaningful default
3583action for an empty rule; every empty rule must have an explicit action
3584unless the rule's value does not matter.
bfa74976
RS
3585
3586@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3587to tokens and groupings on the stack @emph{before} those that match the
3588current rule. This is a very risky practice, and to use it reliably
3589you must be certain of the context in which the rule is applied. Here
3590is a case in which you can use this reliably:
3591
3592@example
3593@group
3594foo: expr bar '+' expr @{ @dots{} @}
3595 | expr bar '-' expr @{ @dots{} @}
3596 ;
3597@end group
3598
3599@group
3600bar: /* empty */
3601 @{ previous_expr = $0; @}
3602 ;
3603@end group
3604@end example
3605
3606As long as @code{bar} is used only in the fashion shown here, @code{$0}
3607always refers to the @code{expr} which precedes @code{bar} in the
3608definition of @code{foo}.
3609
32c29292 3610@vindex yylval
742e4900 3611It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3612any, from a semantic action.
3613This semantic value is stored in @code{yylval}.
3614@xref{Action Features, ,Special Features for Use in Actions}.
3615
342b8b6e 3616@node Action Types
bfa74976
RS
3617@subsection Data Types of Values in Actions
3618@cindex action data types
3619@cindex data types in actions
3620
3621If you have chosen a single data type for semantic values, the @code{$$}
3622and @code{$@var{n}} constructs always have that data type.
3623
3624If you have used @code{%union} to specify a variety of data types, then you
3625must declare a choice among these types for each terminal or nonterminal
3626symbol that can have a semantic value. Then each time you use @code{$$} or
3627@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3628in the rule. In this example,
bfa74976
RS
3629
3630@example
3631@group
3632exp: @dots{}
3633 | exp '+' exp
3634 @{ $$ = $1 + $3; @}
3635@end group
3636@end example
3637
3638@noindent
3639@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3640have the data type declared for the nonterminal symbol @code{exp}. If
3641@code{$2} were used, it would have the data type declared for the
e0c471a9 3642terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3643
3644Alternatively, you can specify the data type when you refer to the value,
3645by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3646reference. For example, if you have defined types as shown here:
3647
3648@example
3649@group
3650%union @{
3651 int itype;
3652 double dtype;
3653@}
3654@end group
3655@end example
3656
3657@noindent
3658then you can write @code{$<itype>1} to refer to the first subunit of the
3659rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3660
342b8b6e 3661@node Mid-Rule Actions
bfa74976
RS
3662@subsection Actions in Mid-Rule
3663@cindex actions in mid-rule
3664@cindex mid-rule actions
3665
3666Occasionally it is useful to put an action in the middle of a rule.
3667These actions are written just like usual end-of-rule actions, but they
3668are executed before the parser even recognizes the following components.
3669
3670A mid-rule action may refer to the components preceding it using
3671@code{$@var{n}}, but it may not refer to subsequent components because
3672it is run before they are parsed.
3673
3674The mid-rule action itself counts as one of the components of the rule.
3675This makes a difference when there is another action later in the same rule
3676(and usually there is another at the end): you have to count the actions
3677along with the symbols when working out which number @var{n} to use in
3678@code{$@var{n}}.
3679
3680The mid-rule action can also have a semantic value. The action can set
3681its value with an assignment to @code{$$}, and actions later in the rule
3682can refer to the value using @code{$@var{n}}. Since there is no symbol
3683to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3684in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3685specify a data type each time you refer to this value.
bfa74976
RS
3686
3687There is no way to set the value of the entire rule with a mid-rule
3688action, because assignments to @code{$$} do not have that effect. The
3689only way to set the value for the entire rule is with an ordinary action
3690at the end of the rule.
3691
3692Here is an example from a hypothetical compiler, handling a @code{let}
3693statement that looks like @samp{let (@var{variable}) @var{statement}} and
3694serves to create a variable named @var{variable} temporarily for the
3695duration of @var{statement}. To parse this construct, we must put
3696@var{variable} into the symbol table while @var{statement} is parsed, then
3697remove it afterward. Here is how it is done:
3698
3699@example
3700@group
3701stmt: LET '(' var ')'
3702 @{ $<context>$ = push_context ();
3703 declare_variable ($3); @}
3704 stmt @{ $$ = $6;
3705 pop_context ($<context>5); @}
3706@end group
3707@end example
3708
3709@noindent
3710As soon as @samp{let (@var{variable})} has been recognized, the first
3711action is run. It saves a copy of the current semantic context (the
3712list of accessible variables) as its semantic value, using alternative
3713@code{context} in the data-type union. Then it calls
3714@code{declare_variable} to add the new variable to that list. Once the
3715first action is finished, the embedded statement @code{stmt} can be
3716parsed. Note that the mid-rule action is component number 5, so the
3717@samp{stmt} is component number 6.
3718
3719After the embedded statement is parsed, its semantic value becomes the
3720value of the entire @code{let}-statement. Then the semantic value from the
3721earlier action is used to restore the prior list of variables. This
3722removes the temporary @code{let}-variable from the list so that it won't
3723appear to exist while the rest of the program is parsed.
3724
841a7737
JD
3725@findex %destructor
3726@cindex discarded symbols, mid-rule actions
3727@cindex error recovery, mid-rule actions
3728In the above example, if the parser initiates error recovery (@pxref{Error
3729Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3730it might discard the previous semantic context @code{$<context>5} without
3731restoring it.
3732Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3733Discarded Symbols}).
ec5479ce
JD
3734However, Bison currently provides no means to declare a destructor specific to
3735a particular mid-rule action's semantic value.
841a7737
JD
3736
3737One solution is to bury the mid-rule action inside a nonterminal symbol and to
3738declare a destructor for that symbol:
3739
3740@example
3741@group
3742%type <context> let
3743%destructor @{ pop_context ($$); @} let
3744
3745%%
3746
3747stmt: let stmt
3748 @{ $$ = $2;
3749 pop_context ($1); @}
3750 ;
3751
3752let: LET '(' var ')'
3753 @{ $$ = push_context ();
3754 declare_variable ($3); @}
3755 ;
3756
3757@end group
3758@end example
3759
3760@noindent
3761Note that the action is now at the end of its rule.
3762Any mid-rule action can be converted to an end-of-rule action in this way, and
3763this is what Bison actually does to implement mid-rule actions.
3764
bfa74976
RS
3765Taking action before a rule is completely recognized often leads to
3766conflicts since the parser must commit to a parse in order to execute the
3767action. For example, the following two rules, without mid-rule actions,
3768can coexist in a working parser because the parser can shift the open-brace
3769token and look at what follows before deciding whether there is a
3770declaration or not:
3771
3772@example
3773@group
3774compound: '@{' declarations statements '@}'
3775 | '@{' statements '@}'
3776 ;
3777@end group
3778@end example
3779
3780@noindent
3781But when we add a mid-rule action as follows, the rules become nonfunctional:
3782
3783@example
3784@group
3785compound: @{ prepare_for_local_variables (); @}
3786 '@{' declarations statements '@}'
3787@end group
3788@group
3789 | '@{' statements '@}'
3790 ;
3791@end group
3792@end example
3793
3794@noindent
3795Now the parser is forced to decide whether to run the mid-rule action
3796when it has read no farther than the open-brace. In other words, it
3797must commit to using one rule or the other, without sufficient
3798information to do it correctly. (The open-brace token is what is called
742e4900
JD
3799the @dfn{lookahead} token at this time, since the parser is still
3800deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3801
3802You might think that you could correct the problem by putting identical
3803actions into the two rules, like this:
3804
3805@example
3806@group
3807compound: @{ prepare_for_local_variables (); @}
3808 '@{' declarations statements '@}'
3809 | @{ prepare_for_local_variables (); @}
3810 '@{' statements '@}'
3811 ;
3812@end group
3813@end example
3814
3815@noindent
3816But this does not help, because Bison does not realize that the two actions
3817are identical. (Bison never tries to understand the C code in an action.)
3818
3819If the grammar is such that a declaration can be distinguished from a
3820statement by the first token (which is true in C), then one solution which
3821does work is to put the action after the open-brace, like this:
3822
3823@example
3824@group
3825compound: '@{' @{ prepare_for_local_variables (); @}
3826 declarations statements '@}'
3827 | '@{' statements '@}'
3828 ;
3829@end group
3830@end example
3831
3832@noindent
3833Now the first token of the following declaration or statement,
3834which would in any case tell Bison which rule to use, can still do so.
3835
3836Another solution is to bury the action inside a nonterminal symbol which
3837serves as a subroutine:
3838
3839@example
3840@group
3841subroutine: /* empty */
3842 @{ prepare_for_local_variables (); @}
3843 ;
3844
3845@end group
3846
3847@group
3848compound: subroutine
3849 '@{' declarations statements '@}'
3850 | subroutine
3851 '@{' statements '@}'
3852 ;
3853@end group
3854@end example
3855
3856@noindent
3857Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3858deciding which rule for @code{compound} it will eventually use.
bfa74976 3859
d013372c
AR
3860@node Named References
3861@subsection Using Named References
3862@cindex named references
3863
3864While every semantic value can be accessed with positional references
3865@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3866them by name. First of all, original symbol names may be used as named
3867references. For example:
3868
3869@example
3870@group
3871invocation: op '(' args ')'
3872 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3873@end group
3874@end example
3875
3876@noindent
3877The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3878mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3879
3880@example
3881@group
3882invocation: op '(' args ')'
3883 @{ $$ = new_invocation ($op, $args, @@$); @}
3884@end group
3885@end example
3886
3887@noindent
3888However, sometimes regular symbol names are not sufficient due to
3889ambiguities:
3890
3891@example
3892@group
3893exp: exp '/' exp
3894 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3895
3896exp: exp '/' exp
3897 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3898
3899exp: exp '/' exp
3900 @{ $$ = $1 / $3; @} // No error.
3901@end group
3902@end example
3903
3904@noindent
3905When ambiguity occurs, explicitly declared names may be used for values and
3906locations. Explicit names are declared as a bracketed name after a symbol
3907appearance in rule definitions. For example:
3908@example
3909@group
3910exp[result]: exp[left] '/' exp[right]
3911 @{ $result = $left / $right; @}
3912@end group
3913@end example
3914
3915@noindent
3916Explicit names may be declared for RHS and for LHS symbols as well. In order
3917to access a semantic value generated by a mid-rule action, an explicit name
3918may also be declared by putting a bracketed name after the closing brace of
3919the mid-rule action code:
3920@example
3921@group
3922exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3923 @{ $res = $left + $right; @}
3924@end group
3925@end example
3926
3927@noindent
3928
3929In references, in order to specify names containing dots and dashes, an explicit
3930bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3931@example
3932@group
3933if-stmt: IF '(' expr ')' THEN then.stmt ';'
3934 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3935@end group
3936@end example
3937
3938It often happens that named references are followed by a dot, dash or other
3939C punctuation marks and operators. By default, Bison will read
3940@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3941@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3942value. In order to force Bison to recognize @code{name.suffix} in its entirety
3943as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3944must be used.
3945
3946
342b8b6e 3947@node Locations
847bf1f5
AD
3948@section Tracking Locations
3949@cindex location
95923bd6
AD
3950@cindex textual location
3951@cindex location, textual
847bf1f5
AD
3952
3953Though grammar rules and semantic actions are enough to write a fully
72d2299c 3954functional parser, it can be useful to process some additional information,
3e259915
MA
3955especially symbol locations.
3956
704a47c4
AD
3957The way locations are handled is defined by providing a data type, and
3958actions to take when rules are matched.
847bf1f5
AD
3959
3960@menu
3961* Location Type:: Specifying a data type for locations.
3962* Actions and Locations:: Using locations in actions.
3963* Location Default Action:: Defining a general way to compute locations.
3964@end menu
3965
342b8b6e 3966@node Location Type
847bf1f5
AD
3967@subsection Data Type of Locations
3968@cindex data type of locations
3969@cindex default location type
3970
3971Defining a data type for locations is much simpler than for semantic values,
3972since all tokens and groupings always use the same type.
3973
50cce58e
PE
3974You can specify the type of locations by defining a macro called
3975@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3976defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3977When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3978four members:
3979
3980@example
6273355b 3981typedef struct YYLTYPE
847bf1f5
AD
3982@{
3983 int first_line;
3984 int first_column;
3985 int last_line;
3986 int last_column;
6273355b 3987@} YYLTYPE;
847bf1f5
AD
3988@end example
3989
d59e456d
AD
3990When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3991initializes all these fields to 1 for @code{yylloc}. To initialize
3992@code{yylloc} with a custom location type (or to chose a different
3993initialization), use the @code{%initial-action} directive. @xref{Initial
3994Action Decl, , Performing Actions before Parsing}.
cd48d21d 3995
342b8b6e 3996@node Actions and Locations
847bf1f5
AD
3997@subsection Actions and Locations
3998@cindex location actions
3999@cindex actions, location
4000@vindex @@$
4001@vindex @@@var{n}
d013372c
AR
4002@vindex @@@var{name}
4003@vindex @@[@var{name}]
847bf1f5
AD
4004
4005Actions are not only useful for defining language semantics, but also for
4006describing the behavior of the output parser with locations.
4007
4008The most obvious way for building locations of syntactic groupings is very
72d2299c 4009similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4010constructs can be used to access the locations of the elements being matched.
4011The location of the @var{n}th component of the right hand side is
4012@code{@@@var{n}}, while the location of the left hand side grouping is
4013@code{@@$}.
4014
d013372c
AR
4015In addition, the named references construct @code{@@@var{name}} and
4016@code{@@[@var{name}]} may also be used to address the symbol locations.
4017@xref{Named References,,Using Named References}, for more information
4018about using the named references construct.
4019
3e259915 4020Here is a basic example using the default data type for locations:
847bf1f5
AD
4021
4022@example
4023@group
4024exp: @dots{}
3e259915 4025 | exp '/' exp
847bf1f5 4026 @{
3e259915
MA
4027 @@$.first_column = @@1.first_column;
4028 @@$.first_line = @@1.first_line;
847bf1f5
AD
4029 @@$.last_column = @@3.last_column;
4030 @@$.last_line = @@3.last_line;
3e259915
MA
4031 if ($3)
4032 $$ = $1 / $3;
4033 else
4034 @{
4035 $$ = 1;
4e03e201
AD
4036 fprintf (stderr,
4037 "Division by zero, l%d,c%d-l%d,c%d",
4038 @@3.first_line, @@3.first_column,
4039 @@3.last_line, @@3.last_column);
3e259915 4040 @}
847bf1f5
AD
4041 @}
4042@end group
4043@end example
4044
3e259915 4045As for semantic values, there is a default action for locations that is
72d2299c 4046run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4047beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4048last symbol.
3e259915 4049
72d2299c 4050With this default action, the location tracking can be fully automatic. The
3e259915
MA
4051example above simply rewrites this way:
4052
4053@example
4054@group
4055exp: @dots{}
4056 | exp '/' exp
4057 @{
4058 if ($3)
4059 $$ = $1 / $3;
4060 else
4061 @{
4062 $$ = 1;
4e03e201
AD
4063 fprintf (stderr,
4064 "Division by zero, l%d,c%d-l%d,c%d",
4065 @@3.first_line, @@3.first_column,
4066 @@3.last_line, @@3.last_column);
3e259915
MA
4067 @}
4068 @}
4069@end group
4070@end example
847bf1f5 4071
32c29292 4072@vindex yylloc
742e4900 4073It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4074from a semantic action.
4075This location is stored in @code{yylloc}.
4076@xref{Action Features, ,Special Features for Use in Actions}.
4077
342b8b6e 4078@node Location Default Action
847bf1f5
AD
4079@subsection Default Action for Locations
4080@vindex YYLLOC_DEFAULT
8a4281b9 4081@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4082
72d2299c 4083Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4084locations are much more general than semantic values, there is room in
4085the output parser to redefine the default action to take for each
72d2299c 4086rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4087matched, before the associated action is run. It is also invoked
4088while processing a syntax error, to compute the error's location.
8a4281b9 4089Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4090parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4091of that ambiguity.
847bf1f5 4092
3e259915 4093Most of the time, this macro is general enough to suppress location
79282c6c 4094dedicated code from semantic actions.
847bf1f5 4095
72d2299c 4096The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4097the location of the grouping (the result of the computation). When a
766de5eb 4098rule is matched, the second parameter identifies locations of
96b93a3d 4099all right hand side elements of the rule being matched, and the third
8710fc41 4100parameter is the size of the rule's right hand side.
8a4281b9 4101When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4102right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4103When processing a syntax error, the second parameter identifies locations
4104of the symbols that were discarded during error processing, and the third
96b93a3d 4105parameter is the number of discarded symbols.
847bf1f5 4106
766de5eb 4107By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4108
766de5eb 4109@smallexample
847bf1f5 4110@group
766de5eb
PE
4111# define YYLLOC_DEFAULT(Current, Rhs, N) \
4112 do \
4113 if (N) \
4114 @{ \
4115 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4116 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4117 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4118 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4119 @} \
4120 else \
4121 @{ \
4122 (Current).first_line = (Current).last_line = \
4123 YYRHSLOC(Rhs, 0).last_line; \
4124 (Current).first_column = (Current).last_column = \
4125 YYRHSLOC(Rhs, 0).last_column; \
4126 @} \
4127 while (0)
847bf1f5 4128@end group
766de5eb 4129@end smallexample
676385e2 4130
766de5eb
PE
4131where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4132in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4133just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4134
3e259915 4135When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4136
3e259915 4137@itemize @bullet
79282c6c 4138@item
72d2299c 4139All arguments are free of side-effects. However, only the first one (the
3e259915 4140result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4141
3e259915 4142@item
766de5eb
PE
4143For consistency with semantic actions, valid indexes within the
4144right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4145valid index, and it refers to the symbol just before the reduction.
4146During error processing @var{n} is always positive.
0ae99356
PE
4147
4148@item
4149Your macro should parenthesize its arguments, if need be, since the
4150actual arguments may not be surrounded by parentheses. Also, your
4151macro should expand to something that can be used as a single
4152statement when it is followed by a semicolon.
3e259915 4153@end itemize
847bf1f5 4154
342b8b6e 4155@node Declarations
bfa74976
RS
4156@section Bison Declarations
4157@cindex declarations, Bison
4158@cindex Bison declarations
4159
4160The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4161used in formulating the grammar and the data types of semantic values.
4162@xref{Symbols}.
4163
4164All token type names (but not single-character literal tokens such as
4165@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4166declared if you need to specify which data type to use for the semantic
4167value (@pxref{Multiple Types, ,More Than One Value Type}).
4168
4169The first rule in the file also specifies the start symbol, by default.
4170If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4171it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4172Grammars}).
bfa74976
RS
4173
4174@menu
b50d2359 4175* Require Decl:: Requiring a Bison version.
bfa74976
RS
4176* Token Decl:: Declaring terminal symbols.
4177* Precedence Decl:: Declaring terminals with precedence and associativity.
4178* Union Decl:: Declaring the set of all semantic value types.
4179* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4180* Initial Action Decl:: Code run before parsing starts.
72f889cc 4181* Destructor Decl:: Declaring how symbols are freed.
d6328241 4182* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4183* Start Decl:: Specifying the start symbol.
4184* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4185* Push Decl:: Requesting a push parser.
bfa74976
RS
4186* Decl Summary:: Table of all Bison declarations.
4187@end menu
4188
b50d2359
AD
4189@node Require Decl
4190@subsection Require a Version of Bison
4191@cindex version requirement
4192@cindex requiring a version of Bison
4193@findex %require
4194
4195You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4196the requirement is not met, @command{bison} exits with an error (exit
4197status 63).
b50d2359
AD
4198
4199@example
4200%require "@var{version}"
4201@end example
4202
342b8b6e 4203@node Token Decl
bfa74976
RS
4204@subsection Token Type Names
4205@cindex declaring token type names
4206@cindex token type names, declaring
931c7513 4207@cindex declaring literal string tokens
bfa74976
RS
4208@findex %token
4209
4210The basic way to declare a token type name (terminal symbol) is as follows:
4211
4212@example
4213%token @var{name}
4214@end example
4215
4216Bison will convert this into a @code{#define} directive in
4217the parser, so that the function @code{yylex} (if it is in this file)
4218can use the name @var{name} to stand for this token type's code.
4219
d78f0ac9
AD
4220Alternatively, you can use @code{%left}, @code{%right},
4221@code{%precedence}, or
14ded682
AD
4222@code{%nonassoc} instead of @code{%token}, if you wish to specify
4223associativity and precedence. @xref{Precedence Decl, ,Operator
4224Precedence}.
bfa74976
RS
4225
4226You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4227a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4228following the token name:
bfa74976
RS
4229
4230@example
4231%token NUM 300
1452af69 4232%token XNUM 0x12d // a GNU extension
bfa74976
RS
4233@end example
4234
4235@noindent
4236It is generally best, however, to let Bison choose the numeric codes for
4237all token types. Bison will automatically select codes that don't conflict
e966383b 4238with each other or with normal characters.
bfa74976
RS
4239
4240In the event that the stack type is a union, you must augment the
4241@code{%token} or other token declaration to include the data type
704a47c4
AD
4242alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4243Than One Value Type}).
bfa74976
RS
4244
4245For example:
4246
4247@example
4248@group
4249%union @{ /* define stack type */
4250 double val;
4251 symrec *tptr;
4252@}
4253%token <val> NUM /* define token NUM and its type */
4254@end group
4255@end example
4256
931c7513
RS
4257You can associate a literal string token with a token type name by
4258writing the literal string at the end of a @code{%token}
4259declaration which declares the name. For example:
4260
4261@example
4262%token arrow "=>"
4263@end example
4264
4265@noindent
4266For example, a grammar for the C language might specify these names with
4267equivalent literal string tokens:
4268
4269@example
4270%token <operator> OR "||"
4271%token <operator> LE 134 "<="
4272%left OR "<="
4273@end example
4274
4275@noindent
4276Once you equate the literal string and the token name, you can use them
4277interchangeably in further declarations or the grammar rules. The
4278@code{yylex} function can use the token name or the literal string to
4279obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4280Syntax error messages passed to @code{yyerror} from the parser will reference
4281the literal string instead of the token name.
4282
4283The token numbered as 0 corresponds to end of file; the following line
4284allows for nicer error messages referring to ``end of file'' instead
4285of ``$end'':
4286
4287@example
4288%token END 0 "end of file"
4289@end example
931c7513 4290
342b8b6e 4291@node Precedence Decl
bfa74976
RS
4292@subsection Operator Precedence
4293@cindex precedence declarations
4294@cindex declaring operator precedence
4295@cindex operator precedence, declaring
4296
d78f0ac9
AD
4297Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4298@code{%precedence} declaration to
bfa74976
RS
4299declare a token and specify its precedence and associativity, all at
4300once. These are called @dfn{precedence declarations}.
704a47c4
AD
4301@xref{Precedence, ,Operator Precedence}, for general information on
4302operator precedence.
bfa74976 4303
ab7f29f8 4304The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4305@code{%token}: either
4306
4307@example
4308%left @var{symbols}@dots{}
4309@end example
4310
4311@noindent
4312or
4313
4314@example
4315%left <@var{type}> @var{symbols}@dots{}
4316@end example
4317
4318And indeed any of these declarations serves the purposes of @code{%token}.
4319But in addition, they specify the associativity and relative precedence for
4320all the @var{symbols}:
4321
4322@itemize @bullet
4323@item
4324The associativity of an operator @var{op} determines how repeated uses
4325of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4326@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4327grouping @var{y} with @var{z} first. @code{%left} specifies
4328left-associativity (grouping @var{x} with @var{y} first) and
4329@code{%right} specifies right-associativity (grouping @var{y} with
4330@var{z} first). @code{%nonassoc} specifies no associativity, which
4331means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4332considered a syntax error.
4333
d78f0ac9
AD
4334@code{%precedence} gives only precedence to the @var{symbols}, and
4335defines no associativity at all. Use this to define precedence only,
4336and leave any potential conflict due to associativity enabled.
4337
bfa74976
RS
4338@item
4339The precedence of an operator determines how it nests with other operators.
4340All the tokens declared in a single precedence declaration have equal
4341precedence and nest together according to their associativity.
4342When two tokens declared in different precedence declarations associate,
4343the one declared later has the higher precedence and is grouped first.
4344@end itemize
4345
ab7f29f8
JD
4346For backward compatibility, there is a confusing difference between the
4347argument lists of @code{%token} and precedence declarations.
4348Only a @code{%token} can associate a literal string with a token type name.
4349A precedence declaration always interprets a literal string as a reference to a
4350separate token.
4351For example:
4352
4353@example
4354%left OR "<=" // Does not declare an alias.
4355%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4356@end example
4357
342b8b6e 4358@node Union Decl
bfa74976
RS
4359@subsection The Collection of Value Types
4360@cindex declaring value types
4361@cindex value types, declaring
4362@findex %union
4363
287c78f6
PE
4364The @code{%union} declaration specifies the entire collection of
4365possible data types for semantic values. The keyword @code{%union} is
4366followed by braced code containing the same thing that goes inside a
4367@code{union} in C@.
bfa74976
RS
4368
4369For example:
4370
4371@example
4372@group
4373%union @{
4374 double val;
4375 symrec *tptr;
4376@}
4377@end group
4378@end example
4379
4380@noindent
4381This says that the two alternative types are @code{double} and @code{symrec
4382*}. They are given names @code{val} and @code{tptr}; these names are used
4383in the @code{%token} and @code{%type} declarations to pick one of the types
4384for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4385
8a4281b9 4386As an extension to POSIX, a tag is allowed after the
6273355b
PE
4387@code{union}. For example:
4388
4389@example
4390@group
4391%union value @{
4392 double val;
4393 symrec *tptr;
4394@}
4395@end group
4396@end example
4397
d6ca7905 4398@noindent
6273355b
PE
4399specifies the union tag @code{value}, so the corresponding C type is
4400@code{union value}. If you do not specify a tag, it defaults to
4401@code{YYSTYPE}.
4402
8a4281b9 4403As another extension to POSIX, you may specify multiple
d6ca7905
PE
4404@code{%union} declarations; their contents are concatenated. However,
4405only the first @code{%union} declaration can specify a tag.
4406
6273355b 4407Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4408a semicolon after the closing brace.
4409
ddc8ede1
PE
4410Instead of @code{%union}, you can define and use your own union type
4411@code{YYSTYPE} if your grammar contains at least one
4412@samp{<@var{type}>} tag. For example, you can put the following into
4413a header file @file{parser.h}:
4414
4415@example
4416@group
4417union YYSTYPE @{
4418 double val;
4419 symrec *tptr;
4420@};
4421typedef union YYSTYPE YYSTYPE;
4422@end group
4423@end example
4424
4425@noindent
4426and then your grammar can use the following
4427instead of @code{%union}:
4428
4429@example
4430@group
4431%@{
4432#include "parser.h"
4433%@}
4434%type <val> expr
4435%token <tptr> ID
4436@end group
4437@end example
4438
342b8b6e 4439@node Type Decl
bfa74976
RS
4440@subsection Nonterminal Symbols
4441@cindex declaring value types, nonterminals
4442@cindex value types, nonterminals, declaring
4443@findex %type
4444
4445@noindent
4446When you use @code{%union} to specify multiple value types, you must
4447declare the value type of each nonterminal symbol for which values are
4448used. This is done with a @code{%type} declaration, like this:
4449
4450@example
4451%type <@var{type}> @var{nonterminal}@dots{}
4452@end example
4453
4454@noindent
704a47c4
AD
4455Here @var{nonterminal} is the name of a nonterminal symbol, and
4456@var{type} is the name given in the @code{%union} to the alternative
4457that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4458can give any number of nonterminal symbols in the same @code{%type}
4459declaration, if they have the same value type. Use spaces to separate
4460the symbol names.
bfa74976 4461
931c7513
RS
4462You can also declare the value type of a terminal symbol. To do this,
4463use the same @code{<@var{type}>} construction in a declaration for the
4464terminal symbol. All kinds of token declarations allow
4465@code{<@var{type}>}.
4466
18d192f0
AD
4467@node Initial Action Decl
4468@subsection Performing Actions before Parsing
4469@findex %initial-action
4470
4471Sometimes your parser needs to perform some initializations before
4472parsing. The @code{%initial-action} directive allows for such arbitrary
4473code.
4474
4475@deffn {Directive} %initial-action @{ @var{code} @}
4476@findex %initial-action
287c78f6 4477Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4478@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4479@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4480@code{%parse-param}.
18d192f0
AD
4481@end deffn
4482
451364ed
AD
4483For instance, if your locations use a file name, you may use
4484
4485@example
48b16bbc 4486%parse-param @{ char const *file_name @};
451364ed
AD
4487%initial-action
4488@{
4626a15d 4489 @@$.initialize (file_name);
451364ed
AD
4490@};
4491@end example
4492
18d192f0 4493
72f889cc
AD
4494@node Destructor Decl
4495@subsection Freeing Discarded Symbols
4496@cindex freeing discarded symbols
4497@findex %destructor
12e35840 4498@findex <*>
3ebecc24 4499@findex <>
a85284cf
AD
4500During error recovery (@pxref{Error Recovery}), symbols already pushed
4501on the stack and tokens coming from the rest of the file are discarded
4502until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4503or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4504symbols on the stack must be discarded. Even if the parser succeeds, it
4505must discard the start symbol.
258b75ca
PE
4506
4507When discarded symbols convey heap based information, this memory is
4508lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4509in traditional compilers, it is unacceptable for programs like shells or
4510protocol implementations that may parse and execute indefinitely.
258b75ca 4511
a85284cf
AD
4512The @code{%destructor} directive defines code that is called when a
4513symbol is automatically discarded.
72f889cc
AD
4514
4515@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4516@findex %destructor
287c78f6
PE
4517Invoke the braced @var{code} whenever the parser discards one of the
4518@var{symbols}.
4b367315 4519Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4520with the discarded symbol, and @code{@@$} designates its location.
4521The additional parser parameters are also available (@pxref{Parser Function, ,
4522The Parser Function @code{yyparse}}).
ec5479ce 4523
b2a0b7ca
JD
4524When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4525per-symbol @code{%destructor}.
4526You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4527tag among @var{symbols}.
b2a0b7ca 4528In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4529grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4530per-symbol @code{%destructor}.
4531
12e35840 4532Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4533(These default forms are experimental.
4534More user feedback will help to determine whether they should become permanent
4535features.)
3ebecc24 4536You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4537exactly one @code{%destructor} declaration in your grammar file.
4538The parser will invoke the @var{code} associated with one of these whenever it
4539discards any user-defined grammar symbol that has no per-symbol and no per-type
4540@code{%destructor}.
4541The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4542symbol for which you have formally declared a semantic type tag (@code{%type}
4543counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4544The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4545symbol that has no declared semantic type tag.
72f889cc
AD
4546@end deffn
4547
b2a0b7ca 4548@noindent
12e35840 4549For example:
72f889cc
AD
4550
4551@smallexample
ec5479ce
JD
4552%union @{ char *string; @}
4553%token <string> STRING1
4554%token <string> STRING2
4555%type <string> string1
4556%type <string> string2
b2a0b7ca
JD
4557%union @{ char character; @}
4558%token <character> CHR
4559%type <character> chr
12e35840
JD
4560%token TAGLESS
4561
b2a0b7ca 4562%destructor @{ @} <character>
12e35840
JD
4563%destructor @{ free ($$); @} <*>
4564%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4565%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4566@end smallexample
4567
4568@noindent
b2a0b7ca
JD
4569guarantees that, when the parser discards any user-defined symbol that has a
4570semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4571to @code{free} by default.
ec5479ce
JD
4572However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4573prints its line number to @code{stdout}.
4574It performs only the second @code{%destructor} in this case, so it invokes
4575@code{free} only once.
12e35840
JD
4576Finally, the parser merely prints a message whenever it discards any symbol,
4577such as @code{TAGLESS}, that has no semantic type tag.
4578
4579A Bison-generated parser invokes the default @code{%destructor}s only for
4580user-defined as opposed to Bison-defined symbols.
4581For example, the parser will not invoke either kind of default
4582@code{%destructor} for the special Bison-defined symbols @code{$accept},
4583@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4584none of which you can reference in your grammar.
4585It also will not invoke either for the @code{error} token (@pxref{Table of
4586Symbols, ,error}), which is always defined by Bison regardless of whether you
4587reference it in your grammar.
4588However, it may invoke one of them for the end token (token 0) if you
4589redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4590
4591@smallexample
4592%token END 0
4593@end smallexample
4594
12e35840
JD
4595@cindex actions in mid-rule
4596@cindex mid-rule actions
4597Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4598mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4599That is, Bison does not consider a mid-rule to have a semantic value if you do
4600not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4601@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4602rule.
4603However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4604@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4605
3508ce36
JD
4606@ignore
4607@noindent
4608In the future, it may be possible to redefine the @code{error} token as a
4609nonterminal that captures the discarded symbols.
4610In that case, the parser will invoke the default destructor for it as well.
4611@end ignore
4612
e757bb10
AD
4613@sp 1
4614
4615@cindex discarded symbols
4616@dfn{Discarded symbols} are the following:
4617
4618@itemize
4619@item
4620stacked symbols popped during the first phase of error recovery,
4621@item
4622incoming terminals during the second phase of error recovery,
4623@item
742e4900 4624the current lookahead and the entire stack (except the current
9d9b8b70 4625right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4626@item
4627the start symbol, when the parser succeeds.
e757bb10
AD
4628@end itemize
4629
9d9b8b70
PE
4630The parser can @dfn{return immediately} because of an explicit call to
4631@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4632exhaustion.
4633
29553547 4634Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4635error via @code{YYERROR} are not discarded automatically. As a rule
4636of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4637the memory.
e757bb10 4638
342b8b6e 4639@node Expect Decl
bfa74976
RS
4640@subsection Suppressing Conflict Warnings
4641@cindex suppressing conflict warnings
4642@cindex preventing warnings about conflicts
4643@cindex warnings, preventing
4644@cindex conflicts, suppressing warnings of
4645@findex %expect
d6328241 4646@findex %expect-rr
bfa74976
RS
4647
4648Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4649(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4650have harmless shift/reduce conflicts which are resolved in a predictable
4651way and would be difficult to eliminate. It is desirable to suppress
4652the warning about these conflicts unless the number of conflicts
4653changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4654
4655The declaration looks like this:
4656
4657@example
4658%expect @var{n}
4659@end example
4660
035aa4a0
PE
4661Here @var{n} is a decimal integer. The declaration says there should
4662be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4663Bison reports an error if the number of shift/reduce conflicts differs
4664from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4665
eb45ef3b 4666For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4667serious, and should be eliminated entirely. Bison will always report
8a4281b9 4668reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4669parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4670there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4671also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4672in GLR parsers, using the declaration:
d6328241
PH
4673
4674@example
4675%expect-rr @var{n}
4676@end example
4677
bfa74976
RS
4678In general, using @code{%expect} involves these steps:
4679
4680@itemize @bullet
4681@item
4682Compile your grammar without @code{%expect}. Use the @samp{-v} option
4683to get a verbose list of where the conflicts occur. Bison will also
4684print the number of conflicts.
4685
4686@item
4687Check each of the conflicts to make sure that Bison's default
4688resolution is what you really want. If not, rewrite the grammar and
4689go back to the beginning.
4690
4691@item
4692Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4693number which Bison printed. With GLR parsers, add an
035aa4a0 4694@code{%expect-rr} declaration as well.
bfa74976
RS
4695@end itemize
4696
93d7dde9
JD
4697Now Bison will report an error if you introduce an unexpected conflict,
4698but will keep silent otherwise.
bfa74976 4699
342b8b6e 4700@node Start Decl
bfa74976
RS
4701@subsection The Start-Symbol
4702@cindex declaring the start symbol
4703@cindex start symbol, declaring
4704@cindex default start symbol
4705@findex %start
4706
4707Bison assumes by default that the start symbol for the grammar is the first
4708nonterminal specified in the grammar specification section. The programmer
4709may override this restriction with the @code{%start} declaration as follows:
4710
4711@example
4712%start @var{symbol}
4713@end example
4714
342b8b6e 4715@node Pure Decl
bfa74976
RS
4716@subsection A Pure (Reentrant) Parser
4717@cindex reentrant parser
4718@cindex pure parser
d9df47b6 4719@findex %define api.pure
bfa74976
RS
4720
4721A @dfn{reentrant} program is one which does not alter in the course of
4722execution; in other words, it consists entirely of @dfn{pure} (read-only)
4723code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4724for example, a nonreentrant program may not be safe to call from a signal
4725handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4726program must be called only within interlocks.
4727
70811b85 4728Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4729suitable for most uses, and it permits compatibility with Yacc. (The
4730standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4731statically allocated variables for communication with @code{yylex},
4732including @code{yylval} and @code{yylloc}.)
bfa74976 4733
70811b85 4734Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4735declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4736reentrant. It looks like this:
bfa74976
RS
4737
4738@example
d9df47b6 4739%define api.pure
bfa74976
RS
4740@end example
4741
70811b85
RS
4742The result is that the communication variables @code{yylval} and
4743@code{yylloc} become local variables in @code{yyparse}, and a different
4744calling convention is used for the lexical analyzer function
4745@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4746Parsers}, for the details of this. The variable @code{yynerrs}
4747becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4748of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4749Reporting Function @code{yyerror}}). The convention for calling
4750@code{yyparse} itself is unchanged.
4751
4752Whether the parser is pure has nothing to do with the grammar rules.
4753You can generate either a pure parser or a nonreentrant parser from any
4754valid grammar.
bfa74976 4755
9987d1b3
JD
4756@node Push Decl
4757@subsection A Push Parser
4758@cindex push parser
4759@cindex push parser
67212941 4760@findex %define api.push-pull
9987d1b3 4761
59da312b
JD
4762(The current push parsing interface is experimental and may evolve.
4763More user feedback will help to stabilize it.)
4764
f4101aa6
AD
4765A pull parser is called once and it takes control until all its input
4766is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4767each time a new token is made available.
4768
f4101aa6 4769A push parser is typically useful when the parser is part of a
9987d1b3 4770main event loop in the client's application. This is typically
f4101aa6
AD
4771a requirement of a GUI, when the main event loop needs to be triggered
4772within a certain time period.
9987d1b3 4773
d782395d
JD
4774Normally, Bison generates a pull parser.
4775The following Bison declaration says that you want the parser to be a push
67212941 4776parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4777
4778@example
cf499cff 4779%define api.push-pull push
9987d1b3
JD
4780@end example
4781
4782In almost all cases, you want to ensure that your push parser is also
4783a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4784time you should create an impure push parser is to have backwards
9987d1b3
JD
4785compatibility with the impure Yacc pull mode interface. Unless you know
4786what you are doing, your declarations should look like this:
4787
4788@example
d9df47b6 4789%define api.pure
cf499cff 4790%define api.push-pull push
9987d1b3
JD
4791@end example
4792
f4101aa6
AD
4793There is a major notable functional difference between the pure push parser
4794and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4795many parser instances, of the same type of parser, in memory at the same time.
4796An impure push parser should only use one parser at a time.
4797
4798When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4799the generated parser. @code{yypstate} is a structure that the generated
4800parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4801function that will create a new parser instance. @code{yypstate_delete}
4802will free the resources associated with the corresponding parser instance.
f4101aa6 4803Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4804token is available to provide the parser. A trivial example
4805of using a pure push parser would look like this:
4806
4807@example
4808int status;
4809yypstate *ps = yypstate_new ();
4810do @{
4811 status = yypush_parse (ps, yylex (), NULL);
4812@} while (status == YYPUSH_MORE);
4813yypstate_delete (ps);
4814@end example
4815
4816If the user decided to use an impure push parser, a few things about
f4101aa6 4817the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4818a global variable instead of a variable in the @code{yypush_parse} function.
4819For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4820changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4821example would thus look like this:
4822
4823@example
4824extern int yychar;
4825int status;
4826yypstate *ps = yypstate_new ();
4827do @{
4828 yychar = yylex ();
4829 status = yypush_parse (ps);
4830@} while (status == YYPUSH_MORE);
4831yypstate_delete (ps);
4832@end example
4833
f4101aa6 4834That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4835for use by the next invocation of the @code{yypush_parse} function.
4836
f4101aa6 4837Bison also supports both the push parser interface along with the pull parser
9987d1b3 4838interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4839you should replace the @samp{%define api.push-pull push} declaration with the
4840@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4841the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4842and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4843would be used. However, the user should note that it is implemented in the
d782395d
JD
4844generated parser by calling @code{yypull_parse}.
4845This makes the @code{yyparse} function that is generated with the
cf499cff 4846@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4847@code{yyparse} function. If the user
4848calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4849stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4850and then @code{yypull_parse} the rest of the input stream. If you would like
4851to switch back and forth between between parsing styles, you would have to
4852write your own @code{yypull_parse} function that knows when to quit looking
4853for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4854like this:
4855
4856@example
4857yypstate *ps = yypstate_new ();
4858yypull_parse (ps); /* Will call the lexer */
4859yypstate_delete (ps);
4860@end example
4861
67501061 4862Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4863the generated parser with @samp{%define api.push-pull both} as it did for
4864@samp{%define api.push-pull push}.
9987d1b3 4865
342b8b6e 4866@node Decl Summary
bfa74976
RS
4867@subsection Bison Declaration Summary
4868@cindex Bison declaration summary
4869@cindex declaration summary
4870@cindex summary, Bison declaration
4871
d8988b2f 4872Here is a summary of the declarations used to define a grammar:
bfa74976 4873
18b519c0 4874@deffn {Directive} %union
bfa74976
RS
4875Declare the collection of data types that semantic values may have
4876(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4877@end deffn
bfa74976 4878
18b519c0 4879@deffn {Directive} %token
bfa74976
RS
4880Declare a terminal symbol (token type name) with no precedence
4881or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4882@end deffn
bfa74976 4883
18b519c0 4884@deffn {Directive} %right
bfa74976
RS
4885Declare a terminal symbol (token type name) that is right-associative
4886(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4887@end deffn
bfa74976 4888
18b519c0 4889@deffn {Directive} %left
bfa74976
RS
4890Declare a terminal symbol (token type name) that is left-associative
4891(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4892@end deffn
bfa74976 4893
18b519c0 4894@deffn {Directive} %nonassoc
bfa74976 4895Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4896(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4897Using it in a way that would be associative is a syntax error.
4898@end deffn
4899
91d2c560 4900@ifset defaultprec
39a06c25 4901@deffn {Directive} %default-prec
22fccf95 4902Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4903(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4904@end deffn
91d2c560 4905@end ifset
bfa74976 4906
18b519c0 4907@deffn {Directive} %type
bfa74976
RS
4908Declare the type of semantic values for a nonterminal symbol
4909(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4910@end deffn
bfa74976 4911
18b519c0 4912@deffn {Directive} %start
89cab50d
AD
4913Specify the grammar's start symbol (@pxref{Start Decl, ,The
4914Start-Symbol}).
18b519c0 4915@end deffn
bfa74976 4916
18b519c0 4917@deffn {Directive} %expect
bfa74976
RS
4918Declare the expected number of shift-reduce conflicts
4919(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4920@end deffn
4921
bfa74976 4922
d8988b2f
AD
4923@sp 1
4924@noindent
4925In order to change the behavior of @command{bison}, use the following
4926directives:
4927
148d66d8
JD
4928@deffn {Directive} %code @{@var{code}@}
4929@findex %code
4930This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4931It inserts @var{code} verbatim at a language-dependent default location in the
4932output@footnote{The default location is actually skeleton-dependent;
4933 writers of non-standard skeletons however should choose the default location
4934 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4935
4936@cindex Prologue
8405b70c 4937For C/C++, the default location is the parser source code
148d66d8
JD
4938file after the usual contents of the parser header file.
4939Thus, @code{%code} replaces the traditional Yacc prologue,
4940@code{%@{@var{code}%@}}, for most purposes.
4941For a detailed discussion, see @ref{Prologue Alternatives}.
4942
8405b70c 4943For Java, the default location is inside the parser class.
148d66d8
JD
4944@end deffn
4945
4946@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4947This is the qualified form of the @code{%code} directive.
4948If you need to specify location-sensitive verbatim @var{code} that does not
4949belong at the default location selected by the unqualified @code{%code} form,
4950use this form instead.
4951
4952@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4953where Bison should generate it.
c6abeab1
JD
4954Not all @var{qualifier}s are accepted for all target languages.
4955Unaccepted @var{qualifier}s produce an error.
4956Some of the accepted @var{qualifier}s are:
148d66d8
JD
4957
4958@itemize @bullet
148d66d8 4959@item requires
793fbca5 4960@findex %code requires
148d66d8
JD
4961
4962@itemize @bullet
4963@item Language(s): C, C++
4964
4965@item Purpose: This is the best place to write dependency code required for
4966@code{YYSTYPE} and @code{YYLTYPE}.
4967In other words, it's the best place to define types referenced in @code{%union}
4968directives, and it's the best place to override Bison's default @code{YYSTYPE}
4969and @code{YYLTYPE} definitions.
4970
4971@item Location(s): The parser header file and the parser source code file
4972before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4973@end itemize
4974
4975@item provides
4976@findex %code provides
4977
4978@itemize @bullet
4979@item Language(s): C, C++
4980
4981@item Purpose: This is the best place to write additional definitions and
4982declarations that should be provided to other modules.
4983
4984@item Location(s): The parser header file and the parser source code file after
4985the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4986@end itemize
4987
4988@item top
4989@findex %code top
4990
4991@itemize @bullet
4992@item Language(s): C, C++
4993
4994@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4995usually be more appropriate than @code{%code top}.
4996However, occasionally it is necessary to insert code much nearer the top of the
4997parser source code file.
4998For example:
4999
5000@smallexample
5001%code top @{
5002 #define _GNU_SOURCE
5003 #include <stdio.h>
5004@}
5005@end smallexample
5006
5007@item Location(s): Near the top of the parser source code file.
5008@end itemize
8405b70c 5009
148d66d8
JD
5010@item imports
5011@findex %code imports
5012
5013@itemize @bullet
5014@item Language(s): Java
5015
5016@item Purpose: This is the best place to write Java import directives.
5017
5018@item Location(s): The parser Java file after any Java package directive and
5019before any class definitions.
5020@end itemize
148d66d8
JD
5021@end itemize
5022
148d66d8
JD
5023@cindex Prologue
5024For a detailed discussion of how to use @code{%code} in place of the
5025traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5026@end deffn
5027
18b519c0 5028@deffn {Directive} %debug
fa819509
AD
5029Instrument the output parser for traces. Obsoleted by @samp{%define
5030parse.trace}.
ec3bc396 5031@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5032@end deffn
d8988b2f 5033
c1d19e10 5034@deffn {Directive} %define @var{variable}
cf499cff 5035@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5036@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5037Define a variable to adjust Bison's behavior.
9611cfa2 5038
0b6d43c5 5039It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5040times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5041
cf499cff
JD
5042@var{value} must be placed in quotation marks if it contains any
5043character other than a letter, underscore, period, dash, or non-initial
5044digit.
5045
5046Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5047@code{""}.
5048
c6abeab1 5049Some @var{variable}s take Boolean values.
9611cfa2
JD
5050In this case, Bison will complain if the variable definition does not meet one
5051of the following four conditions:
5052
5053@enumerate
cf499cff 5054@item @code{@var{value}} is @code{true}
9611cfa2 5055
cf499cff
JD
5056@item @code{@var{value}} is omitted (or @code{""} is specified).
5057This is equivalent to @code{true}.
9611cfa2 5058
cf499cff 5059@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5060
5061@item @var{variable} is never defined.
c6abeab1 5062In this case, Bison selects a default value.
9611cfa2 5063@end enumerate
148d66d8 5064
c6abeab1
JD
5065What @var{variable}s are accepted, as well as their meanings and default
5066values, depend on the selected target language and/or the parser
5067skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5068Summary,,%skeleton}).
5069Unaccepted @var{variable}s produce an error.
793fbca5
JD
5070Some of the accepted @var{variable}s are:
5071
fa819509 5072@table @code
6b5a0de9 5073@c ================================================== api.namespace
67501061
AD
5074@item api.namespace
5075@findex %define api.namespace
5076@itemize
5077@item Languages(s): C++
5078
f1b238df 5079@item Purpose: Specify the namespace for the parser class.
67501061
AD
5080For example, if you specify:
5081
5082@smallexample
5083%define api.namespace "foo::bar"
5084@end smallexample
5085
5086Bison uses @code{foo::bar} verbatim in references such as:
5087
5088@smallexample
5089foo::bar::parser::semantic_type
5090@end smallexample
5091
5092However, to open a namespace, Bison removes any leading @code{::} and then
5093splits on any remaining occurrences:
5094
5095@smallexample
5096namespace foo @{ namespace bar @{
5097 class position;
5098 class location;
5099@} @}
5100@end smallexample
5101
5102@item Accepted Values:
5103Any absolute or relative C++ namespace reference without a trailing
5104@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5105
5106@item Default Value:
5107The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5108This usage of @code{%name-prefix} is for backward compatibility and can
5109be confusing since @code{%name-prefix} also specifies the textual prefix
5110for the lexical analyzer function. Thus, if you specify
5111@code{%name-prefix}, it is best to also specify @samp{%define
5112api.namespace} so that @code{%name-prefix} @emph{only} affects the
5113lexical analyzer function. For example, if you specify:
5114
5115@smallexample
5116%define api.namespace "foo"
5117%name-prefix "bar::"
5118@end smallexample
5119
5120The parser namespace is @code{foo} and @code{yylex} is referenced as
5121@code{bar::lex}.
5122@end itemize
5123@c namespace
5124
5125
5126
5127@c ================================================== api.pure
d9df47b6
JD
5128@item api.pure
5129@findex %define api.pure
5130
5131@itemize @bullet
5132@item Language(s): C
5133
5134@item Purpose: Request a pure (reentrant) parser program.
5135@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5136
5137@item Accepted Values: Boolean
5138
cf499cff 5139@item Default Value: @code{false}
d9df47b6 5140@end itemize
71b00ed8 5141@c api.pure
d9df47b6 5142
67501061
AD
5143
5144
5145@c ================================================== api.push-pull
67212941
JD
5146@item api.push-pull
5147@findex %define api.push-pull
793fbca5
JD
5148
5149@itemize @bullet
eb45ef3b 5150@item Language(s): C (deterministic parsers only)
793fbca5 5151
f1b238df 5152@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5153@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5154(The current push parsing interface is experimental and may evolve.
5155More user feedback will help to stabilize it.)
793fbca5 5156
cf499cff 5157@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5158
cf499cff 5159@item Default Value: @code{pull}
793fbca5 5160@end itemize
67212941 5161@c api.push-pull
71b00ed8 5162
6b5a0de9
AD
5163
5164
5165@c ================================================== api.tokens.prefix
4c6622c2
AD
5166@item api.tokens.prefix
5167@findex %define api.tokens.prefix
5168
5169@itemize
5170@item Languages(s): all
5171
5172@item Purpose:
5173Add a prefix to the token names when generating their definition in the
5174target language. For instance
5175
5176@example
5177%token FILE for ERROR
5178%define api.tokens.prefix "TOK_"
5179%%
5180start: FILE for ERROR;
5181@end example
5182
5183@noindent
5184generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5185and @code{TOK_ERROR} in the generated source files. In particular, the
5186scanner must use these prefixed token names, while the grammar itself
5187may still use the short names (as in the sample rule given above). The
5188generated informational files (@file{*.output}, @file{*.xml},
5189@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5190and @ref{Calc++ Scanner}, for a complete example.
5191
5192@item Accepted Values:
5193Any string. Should be a valid identifier prefix in the target language,
5194in other words, it should typically be an identifier itself (sequence of
5195letters, underscores, and ---not at the beginning--- digits).
5196
5197@item Default Value:
5198empty
5199@end itemize
5200@c api.tokens.prefix
5201
5202
3cdc21cf
AD
5203@c ================================================== lex_symbol
5204@item variant
5205@findex %define lex_symbol
5206
5207@itemize @bullet
5208@item Language(s):
5209C++
5210
5211@item Purpose:
5212When variant-based semantic values are enabled (@pxref{C++ Variants}),
5213request that symbols be handled as a whole (type, value, and possibly
5214location) in the scanner. @xref{Complete Symbols}, for details.
5215
5216@item Accepted Values:
5217Boolean.
5218
5219@item Default Value:
5220@code{false}
5221@end itemize
5222@c lex_symbol
5223
5224
6b5a0de9
AD
5225@c ================================================== lr.default-reductions
5226
5bab9d08 5227@item lr.default-reductions
110ef36a 5228@cindex default reductions
5bab9d08 5229@findex %define lr.default-reductions
eb45ef3b
JD
5230@cindex delayed syntax errors
5231@cindex syntax errors delayed
8a4281b9 5232@cindex LAC
fcf834f9 5233@findex %nonassoc
eb45ef3b
JD
5234
5235@itemize @bullet
5236@item Language(s): all
5237
fcf834f9 5238@item Purpose: Specify the kind of states that are permitted to
110ef36a 5239contain default reductions.
fcf834f9
JD
5240That is, in such a state, Bison selects the reduction with the largest
5241lookahead set to be the default parser action and then removes that
110ef36a 5242lookahead set.
fcf834f9
JD
5243(The ability to specify where default reductions should be used is
5244experimental.
eb45ef3b
JD
5245More user feedback will help to stabilize it.)
5246
5247@item Accepted Values:
5248@itemize
cf499cff 5249@item @code{all}.
fcf834f9
JD
5250This is the traditional Bison behavior.
5251The main advantage is a significant decrease in the size of the parser
5252tables.
5253The disadvantage is that, when the generated parser encounters a
5254syntactically unacceptable token, the parser might then perform
5255unnecessary default reductions before it can detect the syntax error.
5256Such delayed syntax error detection is usually inherent in
8a4281b9
JD
5257LALR and IELR parser tables anyway due to
5258LR state merging (@pxref{Decl Summary,,lr.type}).
fcf834f9 5259Furthermore, the use of @code{%nonassoc} can contribute to delayed
8a4281b9 5260syntax error detection even in the case of canonical LR.
fcf834f9 5261As an experimental feature, delayed syntax error detection can be
8a4281b9 5262overcome in all cases by enabling LAC (@pxref{Decl
fcf834f9
JD
5263Summary,,parse.lac}, for details, including a discussion of the effects
5264of delayed syntax error detection).
eb45ef3b 5265
cf499cff 5266@item @code{consistent}.
eb45ef3b
JD
5267@cindex consistent states
5268A consistent state is a state that has only one possible action.
5269If that action is a reduction, then the parser does not need to request
5270a lookahead token from the scanner before performing that action.
fcf834f9
JD
5271However, the parser recognizes the ability to ignore the lookahead token
5272in this way only when such a reduction is encoded as a default
5273reduction.
5274Thus, if default reductions are permitted only in consistent states,
8a4281b9 5275then a canonical LR parser that does not employ
fcf834f9
JD
5276@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5277syntactically unacceptable token from the scanner.
eb45ef3b 5278
cf499cff 5279@item @code{accepting}.
eb45ef3b 5280@cindex accepting state
fcf834f9
JD
5281In the accepting state, the default reduction is actually the accept
5282action.
8a4281b9 5283In this case, a canonical LR parser that does not employ
fcf834f9
JD
5284@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5285syntactically unacceptable token in the input.
5286That is, it does not perform any extra reductions.
eb45ef3b
JD
5287@end itemize
5288
5289@item Default Value:
5290@itemize
cf499cff
JD
5291@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5292@item @code{all} otherwise.
eb45ef3b
JD
5293@end itemize
5294@end itemize
5295
6b5a0de9
AD
5296@c ============================================ lr.keep-unreachable-states
5297
67212941
JD
5298@item lr.keep-unreachable-states
5299@findex %define lr.keep-unreachable-states
31984206
JD
5300
5301@itemize @bullet
5302@item Language(s): all
5303
f1b238df
JD
5304@item Purpose: Request that Bison allow unreachable parser states to
5305remain in the parser tables.
31984206
JD
5306Bison considers a state to be unreachable if there exists no sequence of
5307transitions from the start state to that state.
5308A state can become unreachable during conflict resolution if Bison disables a
5309shift action leading to it from a predecessor state.
5310Keeping unreachable states is sometimes useful for analysis purposes, but they
5311are useless in the generated parser.
5312
5313@item Accepted Values: Boolean
5314
cf499cff 5315@item Default Value: @code{false}
31984206
JD
5316
5317@item Caveats:
5318
5319@itemize @bullet
cff03fb2
JD
5320
5321@item Unreachable states may contain conflicts and may use rules not used in
5322any other state.
31984206
JD
5323Thus, keeping unreachable states may induce warnings that are irrelevant to
5324your parser's behavior, and it may eliminate warnings that are relevant.
5325Of course, the change in warnings may actually be relevant to a parser table
5326analysis that wants to keep unreachable states, so this behavior will likely
5327remain in future Bison releases.
5328
5329@item While Bison is able to remove unreachable states, it is not guaranteed to
5330remove other kinds of useless states.
5331Specifically, when Bison disables reduce actions during conflict resolution,
5332some goto actions may become useless, and thus some additional states may
5333become useless.
5334If Bison were to compute which goto actions were useless and then disable those
5335actions, it could identify such states as unreachable and then remove those
5336states.
5337However, Bison does not compute which goto actions are useless.
5338@end itemize
5339@end itemize
67212941 5340@c lr.keep-unreachable-states
31984206 5341
6b5a0de9
AD
5342@c ================================================== lr.type
5343
eb45ef3b
JD
5344@item lr.type
5345@findex %define lr.type
8a4281b9
JD
5346@cindex LALR
5347@cindex IELR
5348@cindex LR
eb45ef3b
JD
5349
5350@itemize @bullet
5351@item Language(s): all
5352
f1b238df 5353@item Purpose: Specify the type of parser tables within the
8a4281b9 5354LR(1) family.
eb45ef3b
JD
5355(This feature is experimental.
5356More user feedback will help to stabilize it.)
5357
5358@item Accepted Values:
5359@itemize
cf499cff 5360@item @code{lalr}.
8a4281b9
JD
5361While Bison generates LALR parser tables by default for
5362historical reasons, IELR or canonical LR is almost
eb45ef3b 5363always preferable for deterministic parsers.
8a4281b9 5364The trouble is that LALR parser tables can suffer from
110ef36a 5365mysterious conflicts and thus may not accept the full set of sentences
8a4281b9 5366that IELR and canonical LR accept.
eb45ef3b 5367@xref{Mystery Conflicts}, for details.
8a4281b9 5368However, there are at least two scenarios where LALR may be
eb45ef3b
JD
5369worthwhile:
5370@itemize
8a4281b9
JD
5371@cindex GLR with LALR
5372@item When employing GLR parsers (@pxref{GLR Parsers}), if you
eb45ef3b
JD
5373do not resolve any conflicts statically (for example, with @code{%left}
5374or @code{%prec}), then the parser explores all potential parses of any
5375given input.
8a4281b9 5376In this case, the use of LALR parser tables is guaranteed not
110ef36a 5377to alter the language accepted by the parser.
8a4281b9 5378LALR parser tables are the smallest parser tables Bison can
eb45ef3b 5379currently generate, so they may be preferable.
f1b238df 5380Nevertheless, once you begin to resolve conflicts statically,
8a4281b9
JD
5381GLR begins to behave more like a deterministic parser, and so
5382IELR and canonical LR can be helpful to avoid
5383LALR's mysterious behavior.
eb45ef3b
JD
5384
5385@item Occasionally during development, an especially malformed grammar
8a4281b9
JD
5386with a major recurring flaw may severely impede the IELR or
5387canonical LR parser table generation algorithm.
5388LALR can be a quick way to generate parser tables in order to
eb45ef3b 5389investigate such problems while ignoring the more subtle differences
8a4281b9 5390from IELR and canonical LR.
eb45ef3b
JD
5391@end itemize
5392
cf499cff 5393@item @code{ielr}.
8a4281b9
JD
5394IELR is a minimal LR algorithm.
5395That is, given any grammar (LR or non-LR),
5396IELR and canonical LR always accept exactly the same
eb45ef3b 5397set of sentences.
8a4281b9
JD
5398However, as for LALR, the number of parser states is often an
5399order of magnitude less for IELR than for canonical
5400LR.
5401More importantly, because canonical LR's extra parser states
5402may contain duplicate conflicts in the case of non-LR
5403grammars, the number of conflicts for IELR is often an order
eb45ef3b
JD
5404of magnitude less as well.
5405This can significantly reduce the complexity of developing of a grammar.
5406
cf499cff 5407@item @code{canonical-lr}.
eb45ef3b
JD
5408@cindex delayed syntax errors
5409@cindex syntax errors delayed
8a4281b9 5410@cindex LAC
fcf834f9 5411@findex %nonassoc
8a4281b9 5412While inefficient, canonical LR parser tables can be an
fcf834f9 5413interesting means to explore a grammar because they have a property that
8a4281b9 5414IELR and LALR tables do not.
fcf834f9
JD
5415That is, if @code{%nonassoc} is not used and default reductions are left
5416disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
8a4281b9 5417left context of every canonical LR state, the set of tokens
fcf834f9
JD
5418accepted by that state is guaranteed to be the exact set of tokens that
5419is syntactically acceptable in that left context.
8a4281b9 5420It might then seem that an advantage of canonical LR parsers
fcf834f9
JD
5421in production is that, under the above constraints, they are guaranteed
5422to detect a syntax error as soon as possible without performing any
5423unnecessary reductions.
8a4281b9 5424However, IELR parsers using LAC (@pxref{Decl
fcf834f9
JD
5425Summary,,parse.lac}) are also able to achieve this behavior without
5426sacrificing @code{%nonassoc} or default reductions.
eb45ef3b
JD
5427@end itemize
5428
cf499cff 5429@item Default Value: @code{lalr}
eb45ef3b
JD
5430@end itemize
5431
67501061
AD
5432
5433@c ================================================== namespace
793fbca5
JD
5434@item namespace
5435@findex %define namespace
67501061 5436Obsoleted by @code{api.namespace}
fa819509
AD
5437@c namespace
5438
31b850d2
AD
5439
5440@c ================================================== parse.assert
0c90a1f5
AD
5441@item parse.assert
5442@findex %define parse.assert
5443
5444@itemize
5445@item Languages(s): C++
5446
5447@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5448In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5449constructed and
0c90a1f5
AD
5450destroyed properly. This option checks these constraints.
5451
5452@item Accepted Values: Boolean
5453
5454@item Default Value: @code{false}
5455@end itemize
5456@c parse.assert
5457
31b850d2
AD
5458
5459@c ================================================== parse.error
5460@item parse.error
5461@findex %define parse.error
5462@itemize
5463@item Languages(s):
fcf834f9 5464all
31b850d2
AD
5465@item Purpose:
5466Control the kind of error messages passed to the error reporting
5467function. @xref{Error Reporting, ,The Error Reporting Function
5468@code{yyerror}}.
5469@item Accepted Values:
5470@itemize
cf499cff 5471@item @code{simple}
31b850d2
AD
5472Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5473error"}}.
cf499cff 5474@item @code{verbose}
31b850d2
AD
5475Error messages report the unexpected token, and possibly the expected
5476ones.
5477@end itemize
5478
5479@item Default Value:
5480@code{simple}
5481@end itemize
5482@c parse.error
5483
5484
fcf834f9
JD
5485@c ================================================== parse.lac
5486@item parse.lac
5487@findex %define parse.lac
8a4281b9 5488@cindex LAC
fcf834f9
JD
5489@cindex lookahead correction
5490
5491@itemize
5492@item Languages(s): C
5493
8a4281b9 5494@item Purpose: Enable LAC (lookahead correction) to improve
fcf834f9
JD
5495syntax error handling.
5496
8a4281b9 5497Canonical LR, IELR, and LALR can suffer
fcf834f9
JD
5498from a couple of problems upon encountering a syntax error. First, the
5499parser might perform additional parser stack reductions before
5500discovering the syntax error. Such reductions perform user semantic
5501actions that are unexpected because they are based on an invalid token,
5502and they cause error recovery to begin in a different syntactic context
5503than the one in which the invalid token was encountered. Second, when
5504verbose error messages are enabled (with @code{%error-verbose} or
5505@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5506error message can both contain invalid tokens and omit valid tokens.
5507
5508The culprits for the above problems are @code{%nonassoc}, default
5509reductions in inconsistent states, and parser state merging. Thus,
8a4281b9
JD
5510IELR and LALR suffer the most. Canonical
5511LR can suffer only if @code{%nonassoc} is used or if default
fcf834f9
JD
5512reductions are enabled for inconsistent states.
5513
8a4281b9
JD
5514LAC is a new mechanism within the parsing algorithm that
5515completely solves these problems for canonical LR,
5516IELR, and LALR without sacrificing @code{%nonassoc},
fcf834f9
JD
5517default reductions, or state mering. Conceptually, the mechanism is
5518straight-forward. Whenever the parser fetches a new token from the
5519scanner so that it can determine the next parser action, it immediately
5520suspends normal parsing and performs an exploratory parse using a
5521temporary copy of the normal parser state stack. During this
5522exploratory parse, the parser does not perform user semantic actions.
5523If the exploratory parse reaches a shift action, normal parsing then
5524resumes on the normal parser stacks. If the exploratory parse reaches
5525an error instead, the parser reports a syntax error. If verbose syntax
5526error messages are enabled, the parser must then discover the list of
5527expected tokens, so it performs a separate exploratory parse for each
5528token in the grammar.
5529
8a4281b9 5530There is one subtlety about the use of LAC. That is, when in
fcf834f9
JD
5531a consistent parser state with a default reduction, the parser will not
5532attempt to fetch a token from the scanner because no lookahead is needed
5533to determine the next parser action. Thus, whether default reductions
5534are enabled in consistent states (@pxref{Decl
5535Summary,,lr.default-reductions}) affects how soon the parser detects a
5536syntax error: when it @emph{reaches} an erroneous token or when it
5537eventually @emph{needs} that token as a lookahead. The latter behavior
5538is probably more intuitive, so Bison currently provides no way to
5539achieve the former behavior while default reductions are fully enabled.
5540
8a4281b9 5541Thus, when LAC is in use, for some fixed decision of whether
fcf834f9 5542to enable default reductions in consistent states, canonical
8a4281b9 5543LR and IELR behave exactly the same for both
fcf834f9 5544syntactically acceptable and syntactically unacceptable input. While
8a4281b9
JD
5545LALR still does not support the full language-recognition
5546power of canonical LR and IELR, LAC at
5547least enables LALR's syntax error handling to correctly
5548reflect LALR's language-recognition power.
fcf834f9 5549
8a4281b9 5550Because LAC requires many parse actions to be performed twice,
fcf834f9
JD
5551it can have a performance penalty. However, not all parse actions must
5552be performed twice. Specifically, during a series of default reductions
5553in consistent states and shift actions, the parser never has to initiate
5554an exploratory parse. Moreover, the most time-consuming tasks in a
5555parse are often the file I/O, the lexical analysis performed by the
5556scanner, and the user's semantic actions, but none of these are
5557performed during the exploratory parse. Finally, the base of the
5558temporary stack used during an exploratory parse is a pointer into the
5559normal parser state stack so that the stack is never physically copied.
8a4281b9 5560In our experience, the performance penalty of LAC has proven
fcf834f9
JD
5561insignificant for practical grammars.
5562
5563@item Accepted Values: @code{none}, @code{full}
5564
5565@item Default Value: @code{none}
5566@end itemize
5567@c parse.lac
5568
31b850d2 5569@c ================================================== parse.trace
fa819509
AD
5570@item parse.trace
5571@findex %define parse.trace
5572
5573@itemize
5574@item Languages(s): C, C++
5575
5576@item Purpose: Require parser instrumentation for tracing.
5577In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5578is not already defined, so that the debugging facilities are compiled.
5579@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5580
fa819509
AD
5581@item Accepted Values: Boolean
5582
5583@item Default Value: @code{false}
5584@end itemize
fa819509 5585@c parse.trace
99c08fb6 5586
3cdc21cf
AD
5587@c ================================================== variant
5588@item variant
5589@findex %define variant
5590
5591@itemize @bullet
5592@item Language(s):
5593C++
5594
5595@item Purpose:
f1b238df 5596Request variant-based semantic values.
3cdc21cf
AD
5597@xref{C++ Variants}.
5598
5599@item Accepted Values:
5600Boolean.
5601
5602@item Default Value:
5603@code{false}
5604@end itemize
5605@c variant
5606
5607
99c08fb6 5608@end table
d782395d 5609@end deffn
99c08fb6 5610@c ---------------------------------------------------------- %define
d782395d 5611
18b519c0 5612@deffn {Directive} %defines
4bfd5e4e
PE
5613Write a header file containing macro definitions for the token type
5614names defined in the grammar as well as a few other declarations.
d8988b2f 5615If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5616is named @file{@var{name}.h}.
d8988b2f 5617
b321737f 5618For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5619@code{YYSTYPE} is already defined as a macro or you have used a
5620@code{<@var{type}>} tag without using @code{%union}.
5621Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5622(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5623require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5624or type definition
f8e1c9e5
AD
5625(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5626arrange for these definitions to be propagated to all modules, e.g., by
5627putting them in a prerequisite header that is included both by your
5628parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5629
5630Unless your parser is pure, the output header declares @code{yylval}
5631as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5632Parser}.
5633
5634If you have also used locations, the output header declares
5635@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5636the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5637Locations}.
5638
f8e1c9e5
AD
5639This output file is normally essential if you wish to put the definition
5640of @code{yylex} in a separate source file, because @code{yylex}
5641typically needs to be able to refer to the above-mentioned declarations
5642and to the token type codes. @xref{Token Values, ,Semantic Values of
5643Tokens}.
9bc0dd67 5644
16dc6a9e
JD
5645@findex %code requires
5646@findex %code provides
5647If you have declared @code{%code requires} or @code{%code provides}, the output
5648header also contains their code.
148d66d8 5649@xref{Decl Summary, ,%code}.
592d0b1e
PB
5650@end deffn
5651
02975b9a
JD
5652@deffn {Directive} %defines @var{defines-file}
5653Same as above, but save in the file @var{defines-file}.
5654@end deffn
5655
18b519c0 5656@deffn {Directive} %destructor
258b75ca 5657Specify how the parser should reclaim the memory associated to
fa7e68c3 5658discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5659@end deffn
72f889cc 5660
02975b9a 5661@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5662Specify a prefix to use for all Bison output file names. The names are
5663chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5664@end deffn
d8988b2f 5665
e6e704dc 5666@deffn {Directive} %language "@var{language}"
0e021770 5667Specify the programming language for the generated parser. Currently
59da312b 5668supported languages include C, C++, and Java.
e6e704dc 5669@var{language} is case-insensitive.
ed4d67dc
JD
5670
5671This directive is experimental and its effect may be modified in future
5672releases.
0e021770
PE
5673@end deffn
5674
18b519c0 5675@deffn {Directive} %locations
89cab50d
AD
5676Generate the code processing the locations (@pxref{Action Features,
5677,Special Features for Use in Actions}). This mode is enabled as soon as
5678the grammar uses the special @samp{@@@var{n}} tokens, but if your
5679grammar does not use it, using @samp{%locations} allows for more
6e649e65 5680accurate syntax error messages.
18b519c0 5681@end deffn
89cab50d 5682
02975b9a 5683@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5684Rename the external symbols used in the parser so that they start with
5685@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5686in C parsers
d8988b2f 5687is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5688@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5689(if locations are used) @code{yylloc}. If you use a push parser,
5690@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5691@code{yypstate_new} and @code{yypstate_delete} will
5692also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5693names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5694For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5695section.
aa08666d 5696@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5697@end deffn
931c7513 5698
91d2c560 5699@ifset defaultprec
22fccf95
PE
5700@deffn {Directive} %no-default-prec
5701Do not assign a precedence to rules lacking an explicit @code{%prec}
5702modifier (@pxref{Contextual Precedence, ,Context-Dependent
5703Precedence}).
5704@end deffn
91d2c560 5705@end ifset
22fccf95 5706
18b519c0 5707@deffn {Directive} %no-lines
931c7513
RS
5708Don't generate any @code{#line} preprocessor commands in the parser
5709file. Ordinarily Bison writes these commands in the parser file so that
5710the C compiler and debuggers will associate errors and object code with
5711your source file (the grammar file). This directive causes them to
5712associate errors with the parser file, treating it an independent source
5713file in its own right.
18b519c0 5714@end deffn
931c7513 5715
02975b9a 5716@deffn {Directive} %output "@var{file}"
fa4d969f 5717Specify @var{file} for the parser file.
18b519c0 5718@end deffn
6deb4447 5719
18b519c0 5720@deffn {Directive} %pure-parser
67501061 5721Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5722for which Bison is more careful to warn about unreasonable usage.
18b519c0 5723@end deffn
6deb4447 5724
b50d2359 5725@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5726Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5727Require a Version of Bison}.
b50d2359
AD
5728@end deffn
5729
0e021770 5730@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5731Specify the skeleton to use.
5732
ed4d67dc
JD
5733@c You probably don't need this option unless you are developing Bison.
5734@c You should use @code{%language} if you want to specify the skeleton for a
5735@c different language, because it is clearer and because it will always choose the
5736@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5737
5738If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5739file in the Bison installation directory.
5740If it does, @var{file} is an absolute file name or a file name relative to the
5741directory of the grammar file.
5742This is similar to how most shells resolve commands.
0e021770
PE
5743@end deffn
5744
18b519c0 5745@deffn {Directive} %token-table
931c7513
RS
5746Generate an array of token names in the parser file. The name of the
5747array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5748token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5749three elements of @code{yytname} correspond to the predefined tokens
5750@code{"$end"},
88bce5a2
AD
5751@code{"error"}, and @code{"$undefined"}; after these come the symbols
5752defined in the grammar file.
931c7513 5753
9e0876fb
PE
5754The name in the table includes all the characters needed to represent
5755the token in Bison. For single-character literals and literal
5756strings, this includes the surrounding quoting characters and any
5757escape sequences. For example, the Bison single-character literal
5758@code{'+'} corresponds to a three-character name, represented in C as
5759@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5760corresponds to a five-character name, represented in C as
5761@code{"\"\\\\/\""}.
931c7513 5762
8c9a50be 5763When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5764definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5765@code{YYNRULES}, and @code{YYNSTATES}:
5766
5767@table @code
5768@item YYNTOKENS
5769The highest token number, plus one.
5770@item YYNNTS
9ecbd125 5771The number of nonterminal symbols.
931c7513
RS
5772@item YYNRULES
5773The number of grammar rules,
5774@item YYNSTATES
5775The number of parser states (@pxref{Parser States}).
5776@end table
18b519c0 5777@end deffn
d8988b2f 5778
18b519c0 5779@deffn {Directive} %verbose
d8988b2f 5780Write an extra output file containing verbose descriptions of the
742e4900 5781parser states and what is done for each type of lookahead token in
72d2299c 5782that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5783information.
18b519c0 5784@end deffn
d8988b2f 5785
18b519c0 5786@deffn {Directive} %yacc
d8988b2f
AD
5787Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5788including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5789@end deffn
d8988b2f
AD
5790
5791
342b8b6e 5792@node Multiple Parsers
bfa74976
RS
5793@section Multiple Parsers in the Same Program
5794
5795Most programs that use Bison parse only one language and therefore contain
5796only one Bison parser. But what if you want to parse more than one
5797language with the same program? Then you need to avoid a name conflict
5798between different definitions of @code{yyparse}, @code{yylval}, and so on.
5799
5800The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5801(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5802functions and variables of the Bison parser to start with @var{prefix}
5803instead of @samp{yy}. You can use this to give each parser distinct
5804names that do not conflict.
bfa74976
RS
5805
5806The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5807@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5808@code{yychar} and @code{yydebug}. If you use a push parser,
5809@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5810@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5811For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5812@code{clex}, and so on.
bfa74976
RS
5813
5814@strong{All the other variables and macros associated with Bison are not
5815renamed.} These others are not global; there is no conflict if the same
5816name is used in different parsers. For example, @code{YYSTYPE} is not
5817renamed, but defining this in different ways in different parsers causes
5818no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5819
5820The @samp{-p} option works by adding macro definitions to the beginning
5821of the parser source file, defining @code{yyparse} as
5822@code{@var{prefix}parse}, and so on. This effectively substitutes one
5823name for the other in the entire parser file.
5824
342b8b6e 5825@node Interface
bfa74976
RS
5826@chapter Parser C-Language Interface
5827@cindex C-language interface
5828@cindex interface
5829
5830The Bison parser is actually a C function named @code{yyparse}. Here we
5831describe the interface conventions of @code{yyparse} and the other
5832functions that it needs to use.
5833
5834Keep in mind that the parser uses many C identifiers starting with
5835@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5836identifier (aside from those in this manual) in an action or in epilogue
5837in the grammar file, you are likely to run into trouble.
bfa74976
RS
5838
5839@menu
f5f419de
DJ
5840* Parser Function:: How to call @code{yyparse} and what it returns.
5841* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5842* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5843* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5844* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5845* Lexical:: You must supply a function @code{yylex}
5846 which reads tokens.
5847* Error Reporting:: You must supply a function @code{yyerror}.
5848* Action Features:: Special features for use in actions.
5849* Internationalization:: How to let the parser speak in the user's
5850 native language.
bfa74976
RS
5851@end menu
5852
342b8b6e 5853@node Parser Function
bfa74976
RS
5854@section The Parser Function @code{yyparse}
5855@findex yyparse
5856
5857You call the function @code{yyparse} to cause parsing to occur. This
5858function reads tokens, executes actions, and ultimately returns when it
5859encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5860write an action which directs @code{yyparse} to return immediately
5861without reading further.
bfa74976 5862
2a8d363a
AD
5863
5864@deftypefun int yyparse (void)
bfa74976
RS
5865The value returned by @code{yyparse} is 0 if parsing was successful (return
5866is due to end-of-input).
5867
b47dbebe
PE
5868The value is 1 if parsing failed because of invalid input, i.e., input
5869that contains a syntax error or that causes @code{YYABORT} to be
5870invoked.
5871
5872The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5873@end deftypefun
bfa74976
RS
5874
5875In an action, you can cause immediate return from @code{yyparse} by using
5876these macros:
5877
2a8d363a 5878@defmac YYACCEPT
bfa74976
RS
5879@findex YYACCEPT
5880Return immediately with value 0 (to report success).
2a8d363a 5881@end defmac
bfa74976 5882
2a8d363a 5883@defmac YYABORT
bfa74976
RS
5884@findex YYABORT
5885Return immediately with value 1 (to report failure).
2a8d363a
AD
5886@end defmac
5887
5888If you use a reentrant parser, you can optionally pass additional
5889parameter information to it in a reentrant way. To do so, use the
5890declaration @code{%parse-param}:
5891
2055a44e 5892@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5893@findex %parse-param
2055a44e
AD
5894Declare that one or more
5895@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5896The @var{argument-declaration} is used when declaring
feeb0eda
PE
5897functions or prototypes. The last identifier in
5898@var{argument-declaration} must be the argument name.
2a8d363a
AD
5899@end deffn
5900
5901Here's an example. Write this in the parser:
5902
5903@example
2055a44e 5904%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5905@end example
5906
5907@noindent
5908Then call the parser like this:
5909
5910@example
5911@{
5912 int nastiness, randomness;
5913 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5914 value = yyparse (&nastiness, &randomness);
5915 @dots{}
5916@}
5917@end example
5918
5919@noindent
5920In the grammar actions, use expressions like this to refer to the data:
5921
5922@example
5923exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5924@end example
5925
9987d1b3
JD
5926@node Push Parser Function
5927@section The Push Parser Function @code{yypush_parse}
5928@findex yypush_parse
5929
59da312b
JD
5930(The current push parsing interface is experimental and may evolve.
5931More user feedback will help to stabilize it.)
5932
f4101aa6 5933You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5934function is available if either the @samp{%define api.push-pull push} or
5935@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5936@xref{Push Decl, ,A Push Parser}.
5937
5938@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5939The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5940following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5941is required to finish parsing the grammar.
5942@end deftypefun
5943
5944@node Pull Parser Function
5945@section The Pull Parser Function @code{yypull_parse}
5946@findex yypull_parse
5947
59da312b
JD
5948(The current push parsing interface is experimental and may evolve.
5949More user feedback will help to stabilize it.)
5950
f4101aa6 5951You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5952stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5953declaration is used.
9987d1b3
JD
5954@xref{Push Decl, ,A Push Parser}.
5955
5956@deftypefun int yypull_parse (yypstate *yyps)
5957The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5958@end deftypefun
5959
5960@node Parser Create Function
5961@section The Parser Create Function @code{yystate_new}
5962@findex yypstate_new
5963
59da312b
JD
5964(The current push parsing interface is experimental and may evolve.
5965More user feedback will help to stabilize it.)
5966
f4101aa6 5967You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5968This function is available if either the @samp{%define api.push-pull push} or
5969@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5970@xref{Push Decl, ,A Push Parser}.
5971
5972@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5973The function will return a valid parser instance if there was memory available
333e670c
JD
5974or 0 if no memory was available.
5975In impure mode, it will also return 0 if a parser instance is currently
5976allocated.
9987d1b3
JD
5977@end deftypefun
5978
5979@node Parser Delete Function
5980@section The Parser Delete Function @code{yystate_delete}
5981@findex yypstate_delete
5982
59da312b
JD
5983(The current push parsing interface is experimental and may evolve.
5984More user feedback will help to stabilize it.)
5985
9987d1b3 5986You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5987function is available if either the @samp{%define api.push-pull push} or
5988@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5989@xref{Push Decl, ,A Push Parser}.
5990
5991@deftypefun void yypstate_delete (yypstate *yyps)
5992This function will reclaim the memory associated with a parser instance.
5993After this call, you should no longer attempt to use the parser instance.
5994@end deftypefun
bfa74976 5995
342b8b6e 5996@node Lexical
bfa74976
RS
5997@section The Lexical Analyzer Function @code{yylex}
5998@findex yylex
5999@cindex lexical analyzer
6000
6001The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6002the input stream and returns them to the parser. Bison does not create
6003this function automatically; you must write it so that @code{yyparse} can
6004call it. The function is sometimes referred to as a lexical scanner.
6005
6006In simple programs, @code{yylex} is often defined at the end of the Bison
6007grammar file. If @code{yylex} is defined in a separate source file, you
6008need to arrange for the token-type macro definitions to be available there.
6009To do this, use the @samp{-d} option when you run Bison, so that it will
6010write these macro definitions into a separate header file
6011@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 6012that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
6013
6014@menu
6015* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6016* Token Values:: How @code{yylex} must return the semantic value
6017 of the token it has read.
6018* Token Locations:: How @code{yylex} must return the text location
6019 (line number, etc.) of the token, if the
6020 actions want that.
6021* Pure Calling:: How the calling convention differs in a pure parser
6022 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6023@end menu
6024
342b8b6e 6025@node Calling Convention
bfa74976
RS
6026@subsection Calling Convention for @code{yylex}
6027
72d2299c
PE
6028The value that @code{yylex} returns must be the positive numeric code
6029for the type of token it has just found; a zero or negative value
6030signifies end-of-input.
bfa74976
RS
6031
6032When a token is referred to in the grammar rules by a name, that name
6033in the parser file becomes a C macro whose definition is the proper
6034numeric code for that token type. So @code{yylex} can use the name
6035to indicate that type. @xref{Symbols}.
6036
6037When a token is referred to in the grammar rules by a character literal,
6038the numeric code for that character is also the code for the token type.
72d2299c
PE
6039So @code{yylex} can simply return that character code, possibly converted
6040to @code{unsigned char} to avoid sign-extension. The null character
6041must not be used this way, because its code is zero and that
bfa74976
RS
6042signifies end-of-input.
6043
6044Here is an example showing these things:
6045
6046@example
13863333
AD
6047int
6048yylex (void)
bfa74976
RS
6049@{
6050 @dots{}
72d2299c 6051 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6052 return 0;
6053 @dots{}
6054 if (c == '+' || c == '-')
72d2299c 6055 return c; /* Assume token type for `+' is '+'. */
bfa74976 6056 @dots{}
72d2299c 6057 return INT; /* Return the type of the token. */
bfa74976
RS
6058 @dots{}
6059@}
6060@end example
6061
6062@noindent
6063This interface has been designed so that the output from the @code{lex}
6064utility can be used without change as the definition of @code{yylex}.
6065
931c7513
RS
6066If the grammar uses literal string tokens, there are two ways that
6067@code{yylex} can determine the token type codes for them:
6068
6069@itemize @bullet
6070@item
6071If the grammar defines symbolic token names as aliases for the
6072literal string tokens, @code{yylex} can use these symbolic names like
6073all others. In this case, the use of the literal string tokens in
6074the grammar file has no effect on @code{yylex}.
6075
6076@item
9ecbd125 6077@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6078table. The index of the token in the table is the token type's code.
9ecbd125 6079The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6080double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6081token's characters are escaped as necessary to be suitable as input
6082to Bison.
931c7513 6083
9e0876fb
PE
6084Here's code for looking up a multicharacter token in @code{yytname},
6085assuming that the characters of the token are stored in
6086@code{token_buffer}, and assuming that the token does not contain any
6087characters like @samp{"} that require escaping.
931c7513
RS
6088
6089@smallexample
6090for (i = 0; i < YYNTOKENS; i++)
6091 @{
6092 if (yytname[i] != 0
6093 && yytname[i][0] == '"'
68449b3a
PE
6094 && ! strncmp (yytname[i] + 1, token_buffer,
6095 strlen (token_buffer))
931c7513
RS
6096 && yytname[i][strlen (token_buffer) + 1] == '"'
6097 && yytname[i][strlen (token_buffer) + 2] == 0)
6098 break;
6099 @}
6100@end smallexample
6101
6102The @code{yytname} table is generated only if you use the
8c9a50be 6103@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6104@end itemize
6105
342b8b6e 6106@node Token Values
bfa74976
RS
6107@subsection Semantic Values of Tokens
6108
6109@vindex yylval
9d9b8b70 6110In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6111be stored into the global variable @code{yylval}. When you are using
6112just one data type for semantic values, @code{yylval} has that type.
6113Thus, if the type is @code{int} (the default), you might write this in
6114@code{yylex}:
6115
6116@example
6117@group
6118 @dots{}
72d2299c
PE
6119 yylval = value; /* Put value onto Bison stack. */
6120 return INT; /* Return the type of the token. */
bfa74976
RS
6121 @dots{}
6122@end group
6123@end example
6124
6125When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6126made from the @code{%union} declaration (@pxref{Union Decl, ,The
6127Collection of Value Types}). So when you store a token's value, you
6128must use the proper member of the union. If the @code{%union}
6129declaration looks like this:
bfa74976
RS
6130
6131@example
6132@group
6133%union @{
6134 int intval;
6135 double val;
6136 symrec *tptr;
6137@}
6138@end group
6139@end example
6140
6141@noindent
6142then the code in @code{yylex} might look like this:
6143
6144@example
6145@group
6146 @dots{}
72d2299c
PE
6147 yylval.intval = value; /* Put value onto Bison stack. */
6148 return INT; /* Return the type of the token. */
bfa74976
RS
6149 @dots{}
6150@end group
6151@end example
6152
95923bd6
AD
6153@node Token Locations
6154@subsection Textual Locations of Tokens
bfa74976
RS
6155
6156@vindex yylloc
847bf1f5 6157If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6158Tracking Locations}) in actions to keep track of the textual locations
6159of tokens and groupings, then you must provide this information in
6160@code{yylex}. The function @code{yyparse} expects to find the textual
6161location of a token just parsed in the global variable @code{yylloc}.
6162So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6163
6164By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6165initialize the members that are going to be used by the actions. The
6166four members are called @code{first_line}, @code{first_column},
6167@code{last_line} and @code{last_column}. Note that the use of this
6168feature makes the parser noticeably slower.
bfa74976
RS
6169
6170@tindex YYLTYPE
6171The data type of @code{yylloc} has the name @code{YYLTYPE}.
6172
342b8b6e 6173@node Pure Calling
c656404a 6174@subsection Calling Conventions for Pure Parsers
bfa74976 6175
67501061 6176When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6177pure, reentrant parser, the global communication variables @code{yylval}
6178and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6179Parser}.) In such parsers the two global variables are replaced by
6180pointers passed as arguments to @code{yylex}. You must declare them as
6181shown here, and pass the information back by storing it through those
6182pointers.
bfa74976
RS
6183
6184@example
13863333
AD
6185int
6186yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6187@{
6188 @dots{}
6189 *lvalp = value; /* Put value onto Bison stack. */
6190 return INT; /* Return the type of the token. */
6191 @dots{}
6192@}
6193@end example
6194
6195If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6196textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6197this case, omit the second argument; @code{yylex} will be called with
6198only one argument.
6199
2055a44e 6200If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6201@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6202Function}). To pass additional arguments to both @code{yylex} and
6203@code{yyparse}, use @code{%param}.
e425e872 6204
2055a44e 6205@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6206@findex %lex-param
2055a44e
AD
6207Specify that @var{argument-declaration} are additional @code{yylex} argument
6208declarations. You may pass one or more such declarations, which is
6209equivalent to repeating @code{%lex-param}.
6210@end deffn
6211
6212@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6213@findex %param
6214Specify that @var{argument-declaration} are additional
6215@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6216@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6217@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6218declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6219@end deffn
e425e872 6220
2a8d363a 6221For instance:
e425e872
RS
6222
6223@example
2055a44e
AD
6224%lex-param @{scanner_mode *mode@}
6225%parse-param @{parser_mode *mode@}
6226%param @{environment_type *env@}
e425e872
RS
6227@end example
6228
6229@noindent
2a8d363a 6230results in the following signature:
e425e872
RS
6231
6232@example
2055a44e
AD
6233int yylex (scanner_mode *mode, environment_type *env);
6234int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6235@end example
6236
67501061 6237If @samp{%define api.pure} is added:
c656404a
RS
6238
6239@example
2055a44e
AD
6240int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6241int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6242@end example
6243
2a8d363a 6244@noindent
67501061 6245and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6246
2a8d363a 6247@example
2055a44e
AD
6248int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6249 scanner_mode *mode, environment_type *env);
6250int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6251@end example
931c7513 6252
342b8b6e 6253@node Error Reporting
bfa74976
RS
6254@section The Error Reporting Function @code{yyerror}
6255@cindex error reporting function
6256@findex yyerror
6257@cindex parse error
6258@cindex syntax error
6259
31b850d2 6260The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6261whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6262action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6263macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6264in Actions}).
bfa74976
RS
6265
6266The Bison parser expects to report the error by calling an error
6267reporting function named @code{yyerror}, which you must supply. It is
6268called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6269receives one argument. For a syntax error, the string is normally
6270@w{@code{"syntax error"}}.
bfa74976 6271
31b850d2 6272@findex %define parse.error
cf499cff 6273If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6274declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6275Section}), then Bison provides a more verbose and specific error message
6e649e65 6276string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6277
1a059451
PE
6278The parser can detect one other kind of error: memory exhaustion. This
6279can happen when the input contains constructions that are very deeply
bfa74976 6280nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6281parser normally extends its stack automatically up to a very large limit. But
6282if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6283fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6284
6285In some cases diagnostics like @w{@code{"syntax error"}} are
6286translated automatically from English to some other language before
6287they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6288
6289The following definition suffices in simple programs:
6290
6291@example
6292@group
13863333 6293void
38a92d50 6294yyerror (char const *s)
bfa74976
RS
6295@{
6296@end group
6297@group
6298 fprintf (stderr, "%s\n", s);
6299@}
6300@end group
6301@end example
6302
6303After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6304error recovery if you have written suitable error recovery grammar rules
6305(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6306immediately return 1.
6307
93724f13 6308Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6309an access to the current location.
8a4281b9 6310This is indeed the case for the GLR
2a8d363a 6311parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6312@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6313@code{yyerror} are:
6314
6315@example
38a92d50
PE
6316void yyerror (char const *msg); /* Yacc parsers. */
6317void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6318@end example
6319
feeb0eda 6320If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6321
6322@example
b317297e
PE
6323void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6324void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6325@end example
6326
8a4281b9 6327Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6328convention for absolutely pure parsers, i.e., when the calling
6329convention of @code{yylex} @emph{and} the calling convention of
67501061 6330@samp{%define api.pure} are pure.
d9df47b6 6331I.e.:
2a8d363a
AD
6332
6333@example
6334/* Location tracking. */
6335%locations
6336/* Pure yylex. */
d9df47b6 6337%define api.pure
feeb0eda 6338%lex-param @{int *nastiness@}
2a8d363a 6339/* Pure yyparse. */
feeb0eda
PE
6340%parse-param @{int *nastiness@}
6341%parse-param @{int *randomness@}
2a8d363a
AD
6342@end example
6343
6344@noindent
6345results in the following signatures for all the parser kinds:
6346
6347@example
6348int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6349int yyparse (int *nastiness, int *randomness);
93724f13
AD
6350void yyerror (YYLTYPE *locp,
6351 int *nastiness, int *randomness,
38a92d50 6352 char const *msg);
2a8d363a
AD
6353@end example
6354
1c0c3e95 6355@noindent
38a92d50
PE
6356The prototypes are only indications of how the code produced by Bison
6357uses @code{yyerror}. Bison-generated code always ignores the returned
6358value, so @code{yyerror} can return any type, including @code{void}.
6359Also, @code{yyerror} can be a variadic function; that is why the
6360message is always passed last.
6361
6362Traditionally @code{yyerror} returns an @code{int} that is always
6363ignored, but this is purely for historical reasons, and @code{void} is
6364preferable since it more accurately describes the return type for
6365@code{yyerror}.
93724f13 6366
bfa74976
RS
6367@vindex yynerrs
6368The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6369reported so far. Normally this variable is global; but if you
704a47c4
AD
6370request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6371then it is a local variable which only the actions can access.
bfa74976 6372
342b8b6e 6373@node Action Features
bfa74976
RS
6374@section Special Features for Use in Actions
6375@cindex summary, action features
6376@cindex action features summary
6377
6378Here is a table of Bison constructs, variables and macros that
6379are useful in actions.
6380
18b519c0 6381@deffn {Variable} $$
bfa74976
RS
6382Acts like a variable that contains the semantic value for the
6383grouping made by the current rule. @xref{Actions}.
18b519c0 6384@end deffn
bfa74976 6385
18b519c0 6386@deffn {Variable} $@var{n}
bfa74976
RS
6387Acts like a variable that contains the semantic value for the
6388@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6389@end deffn
bfa74976 6390
18b519c0 6391@deffn {Variable} $<@var{typealt}>$
bfa74976 6392Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6393specified by the @code{%union} declaration. @xref{Action Types, ,Data
6394Types of Values in Actions}.
18b519c0 6395@end deffn
bfa74976 6396
18b519c0 6397@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6398Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6399union specified by the @code{%union} declaration.
e0c471a9 6400@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6401@end deffn
bfa74976 6402
18b519c0 6403@deffn {Macro} YYABORT;
bfa74976
RS
6404Return immediately from @code{yyparse}, indicating failure.
6405@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6406@end deffn
bfa74976 6407
18b519c0 6408@deffn {Macro} YYACCEPT;
bfa74976
RS
6409Return immediately from @code{yyparse}, indicating success.
6410@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6411@end deffn
bfa74976 6412
18b519c0 6413@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6414@findex YYBACKUP
6415Unshift a token. This macro is allowed only for rules that reduce
742e4900 6416a single value, and only when there is no lookahead token.
8a4281b9 6417It is also disallowed in GLR parsers.
742e4900 6418It installs a lookahead token with token type @var{token} and
bfa74976
RS
6419semantic value @var{value}; then it discards the value that was
6420going to be reduced by this rule.
6421
6422If the macro is used when it is not valid, such as when there is
742e4900 6423a lookahead token already, then it reports a syntax error with
bfa74976
RS
6424a message @samp{cannot back up} and performs ordinary error
6425recovery.
6426
6427In either case, the rest of the action is not executed.
18b519c0 6428@end deffn
bfa74976 6429
18b519c0 6430@deffn {Macro} YYEMPTY
bfa74976 6431@vindex YYEMPTY
742e4900 6432Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6433@end deffn
bfa74976 6434
32c29292
JD
6435@deffn {Macro} YYEOF
6436@vindex YYEOF
742e4900 6437Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6438stream.
6439@end deffn
6440
18b519c0 6441@deffn {Macro} YYERROR;
bfa74976
RS
6442@findex YYERROR
6443Cause an immediate syntax error. This statement initiates error
6444recovery just as if the parser itself had detected an error; however, it
6445does not call @code{yyerror}, and does not print any message. If you
6446want to print an error message, call @code{yyerror} explicitly before
6447the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6448@end deffn
bfa74976 6449
18b519c0 6450@deffn {Macro} YYRECOVERING
02103984
PE
6451@findex YYRECOVERING
6452The expression @code{YYRECOVERING ()} yields 1 when the parser
6453is recovering from a syntax error, and 0 otherwise.
bfa74976 6454@xref{Error Recovery}.
18b519c0 6455@end deffn
bfa74976 6456
18b519c0 6457@deffn {Variable} yychar
742e4900
JD
6458Variable containing either the lookahead token, or @code{YYEOF} when the
6459lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6460has been performed so the next token is not yet known.
6461Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6462Actions}).
742e4900 6463@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6464@end deffn
bfa74976 6465
18b519c0 6466@deffn {Macro} yyclearin;
742e4900 6467Discard the current lookahead token. This is useful primarily in
32c29292
JD
6468error rules.
6469Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6470Semantic Actions}).
6471@xref{Error Recovery}.
18b519c0 6472@end deffn
bfa74976 6473
18b519c0 6474@deffn {Macro} yyerrok;
bfa74976 6475Resume generating error messages immediately for subsequent syntax
13863333 6476errors. This is useful primarily in error rules.
bfa74976 6477@xref{Error Recovery}.
18b519c0 6478@end deffn
bfa74976 6479
32c29292 6480@deffn {Variable} yylloc
742e4900 6481Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6482to @code{YYEMPTY} or @code{YYEOF}.
6483Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6484Actions}).
6485@xref{Actions and Locations, ,Actions and Locations}.
6486@end deffn
6487
6488@deffn {Variable} yylval
742e4900 6489Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6490not set to @code{YYEMPTY} or @code{YYEOF}.
6491Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6492Actions}).
6493@xref{Actions, ,Actions}.
6494@end deffn
6495
18b519c0 6496@deffn {Value} @@$
847bf1f5 6497@findex @@$
95923bd6 6498Acts like a structure variable containing information on the textual location
847bf1f5
AD
6499of the grouping made by the current rule. @xref{Locations, ,
6500Tracking Locations}.
bfa74976 6501
847bf1f5
AD
6502@c Check if those paragraphs are still useful or not.
6503
6504@c @example
6505@c struct @{
6506@c int first_line, last_line;
6507@c int first_column, last_column;
6508@c @};
6509@c @end example
6510
6511@c Thus, to get the starting line number of the third component, you would
6512@c use @samp{@@3.first_line}.
bfa74976 6513
847bf1f5
AD
6514@c In order for the members of this structure to contain valid information,
6515@c you must make @code{yylex} supply this information about each token.
6516@c If you need only certain members, then @code{yylex} need only fill in
6517@c those members.
bfa74976 6518
847bf1f5 6519@c The use of this feature makes the parser noticeably slower.
18b519c0 6520@end deffn
847bf1f5 6521
18b519c0 6522@deffn {Value} @@@var{n}
847bf1f5 6523@findex @@@var{n}
95923bd6 6524Acts like a structure variable containing information on the textual location
847bf1f5
AD
6525of the @var{n}th component of the current rule. @xref{Locations, ,
6526Tracking Locations}.
18b519c0 6527@end deffn
bfa74976 6528
f7ab6a50
PE
6529@node Internationalization
6530@section Parser Internationalization
6531@cindex internationalization
6532@cindex i18n
6533@cindex NLS
6534@cindex gettext
6535@cindex bison-po
6536
6537A Bison-generated parser can print diagnostics, including error and
6538tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6539also supports outputting diagnostics in the user's native language. To
6540make this work, the user should set the usual environment variables.
6541@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6542For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6543set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6544encoding. The exact set of available locales depends on the user's
6545installation.
6546
6547The maintainer of a package that uses a Bison-generated parser enables
6548the internationalization of the parser's output through the following
8a4281b9
JD
6549steps. Here we assume a package that uses GNU Autoconf and
6550GNU Automake.
f7ab6a50
PE
6551
6552@enumerate
6553@item
30757c8c 6554@cindex bison-i18n.m4
8a4281b9 6555Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6556by the package---often called @file{m4}---copy the
6557@file{bison-i18n.m4} file installed by Bison under
6558@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6559For example:
6560
6561@example
6562cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6563@end example
6564
6565@item
30757c8c
PE
6566@findex BISON_I18N
6567@vindex BISON_LOCALEDIR
6568@vindex YYENABLE_NLS
f7ab6a50
PE
6569In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6570invocation, add an invocation of @code{BISON_I18N}. This macro is
6571defined in the file @file{bison-i18n.m4} that you copied earlier. It
6572causes @samp{configure} to find the value of the
30757c8c
PE
6573@code{BISON_LOCALEDIR} variable, and it defines the source-language
6574symbol @code{YYENABLE_NLS} to enable translations in the
6575Bison-generated parser.
f7ab6a50
PE
6576
6577@item
6578In the @code{main} function of your program, designate the directory
6579containing Bison's runtime message catalog, through a call to
6580@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6581For example:
6582
6583@example
6584bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6585@end example
6586
6587Typically this appears after any other call @code{bindtextdomain
6588(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6589@samp{BISON_LOCALEDIR} to be defined as a string through the
6590@file{Makefile}.
6591
6592@item
6593In the @file{Makefile.am} that controls the compilation of the @code{main}
6594function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6595either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6596
6597@example
6598DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6599@end example
6600
6601or:
6602
6603@example
6604AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6605@end example
6606
6607@item
6608Finally, invoke the command @command{autoreconf} to generate the build
6609infrastructure.
6610@end enumerate
6611
bfa74976 6612
342b8b6e 6613@node Algorithm
13863333
AD
6614@chapter The Bison Parser Algorithm
6615@cindex Bison parser algorithm
bfa74976
RS
6616@cindex algorithm of parser
6617@cindex shifting
6618@cindex reduction
6619@cindex parser stack
6620@cindex stack, parser
6621
6622As Bison reads tokens, it pushes them onto a stack along with their
6623semantic values. The stack is called the @dfn{parser stack}. Pushing a
6624token is traditionally called @dfn{shifting}.
6625
6626For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6627@samp{3} to come. The stack will have four elements, one for each token
6628that was shifted.
6629
6630But the stack does not always have an element for each token read. When
6631the last @var{n} tokens and groupings shifted match the components of a
6632grammar rule, they can be combined according to that rule. This is called
6633@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6634single grouping whose symbol is the result (left hand side) of that rule.
6635Running the rule's action is part of the process of reduction, because this
6636is what computes the semantic value of the resulting grouping.
6637
6638For example, if the infix calculator's parser stack contains this:
6639
6640@example
66411 + 5 * 3
6642@end example
6643
6644@noindent
6645and the next input token is a newline character, then the last three
6646elements can be reduced to 15 via the rule:
6647
6648@example
6649expr: expr '*' expr;
6650@end example
6651
6652@noindent
6653Then the stack contains just these three elements:
6654
6655@example
66561 + 15
6657@end example
6658
6659@noindent
6660At this point, another reduction can be made, resulting in the single value
666116. Then the newline token can be shifted.
6662
6663The parser tries, by shifts and reductions, to reduce the entire input down
6664to a single grouping whose symbol is the grammar's start-symbol
6665(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6666
6667This kind of parser is known in the literature as a bottom-up parser.
6668
6669@menu
742e4900 6670* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6671* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6672* Precedence:: Operator precedence works by resolving conflicts.
6673* Contextual Precedence:: When an operator's precedence depends on context.
6674* Parser States:: The parser is a finite-state-machine with stack.
6675* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6676* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6677* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6678* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6679@end menu
6680
742e4900
JD
6681@node Lookahead
6682@section Lookahead Tokens
6683@cindex lookahead token
bfa74976
RS
6684
6685The Bison parser does @emph{not} always reduce immediately as soon as the
6686last @var{n} tokens and groupings match a rule. This is because such a
6687simple strategy is inadequate to handle most languages. Instead, when a
6688reduction is possible, the parser sometimes ``looks ahead'' at the next
6689token in order to decide what to do.
6690
6691When a token is read, it is not immediately shifted; first it becomes the
742e4900 6692@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6693perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6694the lookahead token remains off to the side. When no more reductions
6695should take place, the lookahead token is shifted onto the stack. This
bfa74976 6696does not mean that all possible reductions have been done; depending on the
742e4900 6697token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6698application.
6699
742e4900 6700Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6701expressions which contain binary addition operators and postfix unary
6702factorial operators (@samp{!}), and allow parentheses for grouping.
6703
6704@example
6705@group
6706expr: term '+' expr
6707 | term
6708 ;
6709@end group
6710
6711@group
6712term: '(' expr ')'
6713 | term '!'
6714 | NUMBER
6715 ;
6716@end group
6717@end example
6718
6719Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6720should be done? If the following token is @samp{)}, then the first three
6721tokens must be reduced to form an @code{expr}. This is the only valid
6722course, because shifting the @samp{)} would produce a sequence of symbols
6723@w{@code{term ')'}}, and no rule allows this.
6724
6725If the following token is @samp{!}, then it must be shifted immediately so
6726that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6727parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6728@code{expr}. It would then be impossible to shift the @samp{!} because
6729doing so would produce on the stack the sequence of symbols @code{expr
6730'!'}. No rule allows that sequence.
6731
6732@vindex yychar
32c29292
JD
6733@vindex yylval
6734@vindex yylloc
742e4900 6735The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6736Its semantic value and location, if any, are stored in the variables
6737@code{yylval} and @code{yylloc}.
bfa74976
RS
6738@xref{Action Features, ,Special Features for Use in Actions}.
6739
342b8b6e 6740@node Shift/Reduce
bfa74976
RS
6741@section Shift/Reduce Conflicts
6742@cindex conflicts
6743@cindex shift/reduce conflicts
6744@cindex dangling @code{else}
6745@cindex @code{else}, dangling
6746
6747Suppose we are parsing a language which has if-then and if-then-else
6748statements, with a pair of rules like this:
6749
6750@example
6751@group
6752if_stmt:
6753 IF expr THEN stmt
6754 | IF expr THEN stmt ELSE stmt
6755 ;
6756@end group
6757@end example
6758
6759@noindent
6760Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6761terminal symbols for specific keyword tokens.
6762
742e4900 6763When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6764contents of the stack (assuming the input is valid) are just right for
6765reduction by the first rule. But it is also legitimate to shift the
6766@code{ELSE}, because that would lead to eventual reduction by the second
6767rule.
6768
6769This situation, where either a shift or a reduction would be valid, is
6770called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6771these conflicts by choosing to shift, unless otherwise directed by
6772operator precedence declarations. To see the reason for this, let's
6773contrast it with the other alternative.
6774
6775Since the parser prefers to shift the @code{ELSE}, the result is to attach
6776the else-clause to the innermost if-statement, making these two inputs
6777equivalent:
6778
6779@example
6780if x then if y then win (); else lose;
6781
6782if x then do; if y then win (); else lose; end;
6783@end example
6784
6785But if the parser chose to reduce when possible rather than shift, the
6786result would be to attach the else-clause to the outermost if-statement,
6787making these two inputs equivalent:
6788
6789@example
6790if x then if y then win (); else lose;
6791
6792if x then do; if y then win (); end; else lose;
6793@end example
6794
6795The conflict exists because the grammar as written is ambiguous: either
6796parsing of the simple nested if-statement is legitimate. The established
6797convention is that these ambiguities are resolved by attaching the
6798else-clause to the innermost if-statement; this is what Bison accomplishes
6799by choosing to shift rather than reduce. (It would ideally be cleaner to
6800write an unambiguous grammar, but that is very hard to do in this case.)
6801This particular ambiguity was first encountered in the specifications of
6802Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6803
6804To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6805conflicts, use the @code{%expect @var{n}} declaration.
6806There will be no warning as long as the number of shift/reduce conflicts
6807is exactly @var{n}, and Bison will report an error if there is a
6808different number.
bfa74976
RS
6809@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6810
6811The definition of @code{if_stmt} above is solely to blame for the
6812conflict, but the conflict does not actually appear without additional
6813rules. Here is a complete Bison input file that actually manifests the
6814conflict:
6815
6816@example
6817@group
6818%token IF THEN ELSE variable
6819%%
6820@end group
6821@group
6822stmt: expr
6823 | if_stmt
6824 ;
6825@end group
6826
6827@group
6828if_stmt:
6829 IF expr THEN stmt
6830 | IF expr THEN stmt ELSE stmt
6831 ;
6832@end group
6833
6834expr: variable
6835 ;
6836@end example
6837
342b8b6e 6838@node Precedence
bfa74976
RS
6839@section Operator Precedence
6840@cindex operator precedence
6841@cindex precedence of operators
6842
6843Another situation where shift/reduce conflicts appear is in arithmetic
6844expressions. Here shifting is not always the preferred resolution; the
6845Bison declarations for operator precedence allow you to specify when to
6846shift and when to reduce.
6847
6848@menu
6849* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6850* Using Precedence:: How to specify precedence and associativity.
6851* Precedence Only:: How to specify precedence only.
bfa74976
RS
6852* Precedence Examples:: How these features are used in the previous example.
6853* How Precedence:: How they work.
6854@end menu
6855
342b8b6e 6856@node Why Precedence
bfa74976
RS
6857@subsection When Precedence is Needed
6858
6859Consider the following ambiguous grammar fragment (ambiguous because the
6860input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6861
6862@example
6863@group
6864expr: expr '-' expr
6865 | expr '*' expr
6866 | expr '<' expr
6867 | '(' expr ')'
6868 @dots{}
6869 ;
6870@end group
6871@end example
6872
6873@noindent
6874Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6875should it reduce them via the rule for the subtraction operator? It
6876depends on the next token. Of course, if the next token is @samp{)}, we
6877must reduce; shifting is invalid because no single rule can reduce the
6878token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6879the next token is @samp{*} or @samp{<}, we have a choice: either
6880shifting or reduction would allow the parse to complete, but with
6881different results.
6882
6883To decide which one Bison should do, we must consider the results. If
6884the next operator token @var{op} is shifted, then it must be reduced
6885first in order to permit another opportunity to reduce the difference.
6886The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6887hand, if the subtraction is reduced before shifting @var{op}, the result
6888is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6889reduce should depend on the relative precedence of the operators
6890@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6891@samp{<}.
bfa74976
RS
6892
6893@cindex associativity
6894What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6895@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6896operators we prefer the former, which is called @dfn{left association}.
6897The latter alternative, @dfn{right association}, is desirable for
6898assignment operators. The choice of left or right association is a
6899matter of whether the parser chooses to shift or reduce when the stack
742e4900 6900contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6901makes right-associativity.
bfa74976 6902
342b8b6e 6903@node Using Precedence
bfa74976
RS
6904@subsection Specifying Operator Precedence
6905@findex %left
bfa74976 6906@findex %nonassoc
d78f0ac9
AD
6907@findex %precedence
6908@findex %right
bfa74976
RS
6909
6910Bison allows you to specify these choices with the operator precedence
6911declarations @code{%left} and @code{%right}. Each such declaration
6912contains a list of tokens, which are operators whose precedence and
6913associativity is being declared. The @code{%left} declaration makes all
6914those operators left-associative and the @code{%right} declaration makes
6915them right-associative. A third alternative is @code{%nonassoc}, which
6916declares that it is a syntax error to find the same operator twice ``in a
6917row''.
d78f0ac9
AD
6918The last alternative, @code{%precedence}, allows to define only
6919precedence and no associativity at all. As a result, any
6920associativity-related conflict that remains will be reported as an
6921compile-time error. The directive @code{%nonassoc} creates run-time
6922error: using the operator in a associative way is a syntax error. The
6923directive @code{%precedence} creates compile-time errors: an operator
6924@emph{can} be involved in an associativity-related conflict, contrary to
6925what expected the grammar author.
bfa74976
RS
6926
6927The relative precedence of different operators is controlled by the
d78f0ac9
AD
6928order in which they are declared. The first precedence/associativity
6929declaration in the file declares the operators whose
bfa74976
RS
6930precedence is lowest, the next such declaration declares the operators
6931whose precedence is a little higher, and so on.
6932
d78f0ac9
AD
6933@node Precedence Only
6934@subsection Specifying Precedence Only
6935@findex %precedence
6936
8a4281b9 6937Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6938@code{%nonassoc}, which all defines precedence and associativity, little
6939attention is paid to the fact that precedence cannot be defined without
6940defining associativity. Yet, sometimes, when trying to solve a
6941conflict, precedence suffices. In such a case, using @code{%left},
6942@code{%right}, or @code{%nonassoc} might hide future (associativity
6943related) conflicts that would remain hidden.
6944
6945The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6946Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6947in the following situation, where the period denotes the current parsing
6948state:
6949
6950@example
6951if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6952@end example
6953
6954The conflict involves the reduction of the rule @samp{IF expr THEN
6955stmt}, which precedence is by default that of its last token
6956(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6957disambiguation (attach the @code{else} to the closest @code{if}),
6958shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6959higher than that of @code{THEN}. But neither is expected to be involved
6960in an associativity related conflict, which can be specified as follows.
6961
6962@example
6963%precedence THEN
6964%precedence ELSE
6965@end example
6966
6967The unary-minus is another typical example where associativity is
6968usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6969Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6970used to declare the precedence of @code{NEG}, which is more than needed
6971since it also defines its associativity. While this is harmless in the
6972traditional example, who knows how @code{NEG} might be used in future
6973evolutions of the grammar@dots{}
6974
342b8b6e 6975@node Precedence Examples
bfa74976
RS
6976@subsection Precedence Examples
6977
6978In our example, we would want the following declarations:
6979
6980@example
6981%left '<'
6982%left '-'
6983%left '*'
6984@end example
6985
6986In a more complete example, which supports other operators as well, we
6987would declare them in groups of equal precedence. For example, @code{'+'} is
6988declared with @code{'-'}:
6989
6990@example
6991%left '<' '>' '=' NE LE GE
6992%left '+' '-'
6993%left '*' '/'
6994@end example
6995
6996@noindent
6997(Here @code{NE} and so on stand for the operators for ``not equal''
6998and so on. We assume that these tokens are more than one character long
6999and therefore are represented by names, not character literals.)
7000
342b8b6e 7001@node How Precedence
bfa74976
RS
7002@subsection How Precedence Works
7003
7004The first effect of the precedence declarations is to assign precedence
7005levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7006precedence levels to certain rules: each rule gets its precedence from
7007the last terminal symbol mentioned in the components. (You can also
7008specify explicitly the precedence of a rule. @xref{Contextual
7009Precedence, ,Context-Dependent Precedence}.)
7010
7011Finally, the resolution of conflicts works by comparing the precedence
742e4900 7012of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7013token's precedence is higher, the choice is to shift. If the rule's
7014precedence is higher, the choice is to reduce. If they have equal
7015precedence, the choice is made based on the associativity of that
7016precedence level. The verbose output file made by @samp{-v}
7017(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7018resolved.
bfa74976
RS
7019
7020Not all rules and not all tokens have precedence. If either the rule or
742e4900 7021the lookahead token has no precedence, then the default is to shift.
bfa74976 7022
342b8b6e 7023@node Contextual Precedence
bfa74976
RS
7024@section Context-Dependent Precedence
7025@cindex context-dependent precedence
7026@cindex unary operator precedence
7027@cindex precedence, context-dependent
7028@cindex precedence, unary operator
7029@findex %prec
7030
7031Often the precedence of an operator depends on the context. This sounds
7032outlandish at first, but it is really very common. For example, a minus
7033sign typically has a very high precedence as a unary operator, and a
7034somewhat lower precedence (lower than multiplication) as a binary operator.
7035
d78f0ac9
AD
7036The Bison precedence declarations
7037can only be used once for a given token; so a token has
bfa74976
RS
7038only one precedence declared in this way. For context-dependent
7039precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7040modifier for rules.
bfa74976
RS
7041
7042The @code{%prec} modifier declares the precedence of a particular rule by
7043specifying a terminal symbol whose precedence should be used for that rule.
7044It's not necessary for that symbol to appear otherwise in the rule. The
7045modifier's syntax is:
7046
7047@example
7048%prec @var{terminal-symbol}
7049@end example
7050
7051@noindent
7052and it is written after the components of the rule. Its effect is to
7053assign the rule the precedence of @var{terminal-symbol}, overriding
7054the precedence that would be deduced for it in the ordinary way. The
7055altered rule precedence then affects how conflicts involving that rule
7056are resolved (@pxref{Precedence, ,Operator Precedence}).
7057
7058Here is how @code{%prec} solves the problem of unary minus. First, declare
7059a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7060are no tokens of this type, but the symbol serves to stand for its
7061precedence:
7062
7063@example
7064@dots{}
7065%left '+' '-'
7066%left '*'
7067%left UMINUS
7068@end example
7069
7070Now the precedence of @code{UMINUS} can be used in specific rules:
7071
7072@example
7073@group
7074exp: @dots{}
7075 | exp '-' exp
7076 @dots{}
7077 | '-' exp %prec UMINUS
7078@end group
7079@end example
7080
91d2c560 7081@ifset defaultprec
39a06c25
PE
7082If you forget to append @code{%prec UMINUS} to the rule for unary
7083minus, Bison silently assumes that minus has its usual precedence.
7084This kind of problem can be tricky to debug, since one typically
7085discovers the mistake only by testing the code.
7086
22fccf95 7087The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7088this kind of problem systematically. It causes rules that lack a
7089@code{%prec} modifier to have no precedence, even if the last terminal
7090symbol mentioned in their components has a declared precedence.
7091
22fccf95 7092If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7093for all rules that participate in precedence conflict resolution.
7094Then you will see any shift/reduce conflict until you tell Bison how
7095to resolve it, either by changing your grammar or by adding an
7096explicit precedence. This will probably add declarations to the
7097grammar, but it helps to protect against incorrect rule precedences.
7098
22fccf95
PE
7099The effect of @code{%no-default-prec;} can be reversed by giving
7100@code{%default-prec;}, which is the default.
91d2c560 7101@end ifset
39a06c25 7102
342b8b6e 7103@node Parser States
bfa74976
RS
7104@section Parser States
7105@cindex finite-state machine
7106@cindex parser state
7107@cindex state (of parser)
7108
7109The function @code{yyparse} is implemented using a finite-state machine.
7110The values pushed on the parser stack are not simply token type codes; they
7111represent the entire sequence of terminal and nonterminal symbols at or
7112near the top of the stack. The current state collects all the information
7113about previous input which is relevant to deciding what to do next.
7114
742e4900
JD
7115Each time a lookahead token is read, the current parser state together
7116with the type of lookahead token are looked up in a table. This table
7117entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7118specifies the new parser state, which is pushed onto the top of the
7119parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7120This means that a certain number of tokens or groupings are taken off
7121the top of the stack, and replaced by one grouping. In other words,
7122that number of states are popped from the stack, and one new state is
7123pushed.
7124
742e4900 7125There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7126is erroneous in the current state. This causes error processing to begin
7127(@pxref{Error Recovery}).
7128
342b8b6e 7129@node Reduce/Reduce
bfa74976
RS
7130@section Reduce/Reduce Conflicts
7131@cindex reduce/reduce conflict
7132@cindex conflicts, reduce/reduce
7133
7134A reduce/reduce conflict occurs if there are two or more rules that apply
7135to the same sequence of input. This usually indicates a serious error
7136in the grammar.
7137
7138For example, here is an erroneous attempt to define a sequence
7139of zero or more @code{word} groupings.
7140
7141@example
7142sequence: /* empty */
7143 @{ printf ("empty sequence\n"); @}
7144 | maybeword
7145 | sequence word
7146 @{ printf ("added word %s\n", $2); @}
7147 ;
7148
7149maybeword: /* empty */
7150 @{ printf ("empty maybeword\n"); @}
7151 | word
7152 @{ printf ("single word %s\n", $1); @}
7153 ;
7154@end example
7155
7156@noindent
7157The error is an ambiguity: there is more than one way to parse a single
7158@code{word} into a @code{sequence}. It could be reduced to a
7159@code{maybeword} and then into a @code{sequence} via the second rule.
7160Alternatively, nothing-at-all could be reduced into a @code{sequence}
7161via the first rule, and this could be combined with the @code{word}
7162using the third rule for @code{sequence}.
7163
7164There is also more than one way to reduce nothing-at-all into a
7165@code{sequence}. This can be done directly via the first rule,
7166or indirectly via @code{maybeword} and then the second rule.
7167
7168You might think that this is a distinction without a difference, because it
7169does not change whether any particular input is valid or not. But it does
7170affect which actions are run. One parsing order runs the second rule's
7171action; the other runs the first rule's action and the third rule's action.
7172In this example, the output of the program changes.
7173
7174Bison resolves a reduce/reduce conflict by choosing to use the rule that
7175appears first in the grammar, but it is very risky to rely on this. Every
7176reduce/reduce conflict must be studied and usually eliminated. Here is the
7177proper way to define @code{sequence}:
7178
7179@example
7180sequence: /* empty */
7181 @{ printf ("empty sequence\n"); @}
7182 | sequence word
7183 @{ printf ("added word %s\n", $2); @}
7184 ;
7185@end example
7186
7187Here is another common error that yields a reduce/reduce conflict:
7188
7189@example
7190sequence: /* empty */
7191 | sequence words
7192 | sequence redirects
7193 ;
7194
7195words: /* empty */
7196 | words word
7197 ;
7198
7199redirects:/* empty */
7200 | redirects redirect
7201 ;
7202@end example
7203
7204@noindent
7205The intention here is to define a sequence which can contain either
7206@code{word} or @code{redirect} groupings. The individual definitions of
7207@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7208three together make a subtle ambiguity: even an empty input can be parsed
7209in infinitely many ways!
7210
7211Consider: nothing-at-all could be a @code{words}. Or it could be two
7212@code{words} in a row, or three, or any number. It could equally well be a
7213@code{redirects}, or two, or any number. Or it could be a @code{words}
7214followed by three @code{redirects} and another @code{words}. And so on.
7215
7216Here are two ways to correct these rules. First, to make it a single level
7217of sequence:
7218
7219@example
7220sequence: /* empty */
7221 | sequence word
7222 | sequence redirect
7223 ;
7224@end example
7225
7226Second, to prevent either a @code{words} or a @code{redirects}
7227from being empty:
7228
7229@example
7230sequence: /* empty */
7231 | sequence words
7232 | sequence redirects
7233 ;
7234
7235words: word
7236 | words word
7237 ;
7238
7239redirects:redirect
7240 | redirects redirect
7241 ;
7242@end example
7243
342b8b6e 7244@node Mystery Conflicts
bfa74976
RS
7245@section Mysterious Reduce/Reduce Conflicts
7246
7247Sometimes reduce/reduce conflicts can occur that don't look warranted.
7248Here is an example:
7249
7250@example
7251@group
7252%token ID
7253
7254%%
7255def: param_spec return_spec ','
7256 ;
7257param_spec:
7258 type
7259 | name_list ':' type
7260 ;
7261@end group
7262@group
7263return_spec:
7264 type
7265 | name ':' type
7266 ;
7267@end group
7268@group
7269type: ID
7270 ;
7271@end group
7272@group
7273name: ID
7274 ;
7275name_list:
7276 name
7277 | name ',' name_list
7278 ;
7279@end group
7280@end example
7281
7282It would seem that this grammar can be parsed with only a single token
742e4900 7283of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7284a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7285@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7286
8a4281b9
JD
7287@cindex LR(1)
7288@cindex LALR(1)
eb45ef3b 7289However, for historical reasons, Bison cannot by default handle all
8a4281b9 7290LR(1) grammars.
eb45ef3b
JD
7291In this grammar, two contexts, that after an @code{ID} at the beginning
7292of a @code{param_spec} and likewise at the beginning of a
7293@code{return_spec}, are similar enough that Bison assumes they are the
7294same.
7295They appear similar because the same set of rules would be
bfa74976
RS
7296active---the rule for reducing to a @code{name} and that for reducing to
7297a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7298that the rules would require different lookahead tokens in the two
bfa74976
RS
7299contexts, so it makes a single parser state for them both. Combining
7300the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7301occurrence means that the grammar is not LALR(1).
bfa74976 7302
eb45ef3b 7303For many practical grammars (specifically those that fall into the
8a4281b9 7304non-LR(1) class), the limitations of LALR(1) result in
eb45ef3b
JD
7305difficulties beyond just mysterious reduce/reduce conflicts.
7306The best way to fix all these problems is to select a different parser
7307table generation algorithm.
8a4281b9 7308Either IELR(1) or canonical LR(1) would suffice, but
eb45ef3b
JD
7309the former is more efficient and easier to debug during development.
7310@xref{Decl Summary,,lr.type}, for details.
8a4281b9 7311(Bison's IELR(1) and canonical LR(1) implementations
eb45ef3b
JD
7312are experimental.
7313More user feedback will help to stabilize them.)
7314
8a4281b9 7315If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7316can often fix a mysterious conflict by identifying the two parser states
7317that are being confused, and adding something to make them look
7318distinct. In the above example, adding one rule to
bfa74976
RS
7319@code{return_spec} as follows makes the problem go away:
7320
7321@example
7322@group
7323%token BOGUS
7324@dots{}
7325%%
7326@dots{}
7327return_spec:
7328 type
7329 | name ':' type
7330 /* This rule is never used. */
7331 | ID BOGUS
7332 ;
7333@end group
7334@end example
7335
7336This corrects the problem because it introduces the possibility of an
7337additional active rule in the context after the @code{ID} at the beginning of
7338@code{return_spec}. This rule is not active in the corresponding context
7339in a @code{param_spec}, so the two contexts receive distinct parser states.
7340As long as the token @code{BOGUS} is never generated by @code{yylex},
7341the added rule cannot alter the way actual input is parsed.
7342
7343In this particular example, there is another way to solve the problem:
7344rewrite the rule for @code{return_spec} to use @code{ID} directly
7345instead of via @code{name}. This also causes the two confusing
7346contexts to have different sets of active rules, because the one for
7347@code{return_spec} activates the altered rule for @code{return_spec}
7348rather than the one for @code{name}.
7349
7350@example
7351param_spec:
7352 type
7353 | name_list ':' type
7354 ;
7355return_spec:
7356 type
7357 | ID ':' type
7358 ;
7359@end example
7360
8a4281b9 7361For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7362generators, please see:
7363Frank DeRemer and Thomas Pennello, Efficient Computation of
8a4281b9 7364LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7365Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7366pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7367
fae437e8 7368@node Generalized LR Parsing
8a4281b9
JD
7369@section Generalized LR (GLR) Parsing
7370@cindex GLR parsing
7371@cindex generalized LR (GLR) parsing
676385e2 7372@cindex ambiguous grammars
9d9b8b70 7373@cindex nondeterministic parsing
676385e2 7374
fae437e8
AD
7375Bison produces @emph{deterministic} parsers that choose uniquely
7376when to reduce and which reduction to apply
742e4900 7377based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7378As a result, normal Bison handles a proper subset of the family of
7379context-free languages.
fae437e8 7380Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7381sequence of reductions cannot have deterministic parsers in this sense.
7382The same is true of languages that require more than one symbol of
742e4900 7383lookahead, since the parser lacks the information necessary to make a
676385e2 7384decision at the point it must be made in a shift-reduce parser.
fae437e8 7385Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7386there are languages where Bison's default choice of how to
676385e2
PH
7387summarize the input seen so far loses necessary information.
7388
7389When you use the @samp{%glr-parser} declaration in your grammar file,
7390Bison generates a parser that uses a different algorithm, called
8a4281b9 7391Generalized LR (or GLR). A Bison GLR
c827f760 7392parser uses the same basic
676385e2
PH
7393algorithm for parsing as an ordinary Bison parser, but behaves
7394differently in cases where there is a shift-reduce conflict that has not
fae437e8 7395been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7396reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7397situation, it
fae437e8 7398effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7399shift or reduction. These parsers then proceed as usual, consuming
7400tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7401and split further, with the result that instead of a sequence of states,
8a4281b9 7402a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7403
7404In effect, each stack represents a guess as to what the proper parse
7405is. Additional input may indicate that a guess was wrong, in which case
7406the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7407actions generated in each stack are saved, rather than being executed
676385e2 7408immediately. When a stack disappears, its saved semantic actions never
fae437e8 7409get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7410their sets of semantic actions are both saved with the state that
7411results from the reduction. We say that two stacks are equivalent
fae437e8 7412when they both represent the same sequence of states,
676385e2
PH
7413and each pair of corresponding states represents a
7414grammar symbol that produces the same segment of the input token
7415stream.
7416
7417Whenever the parser makes a transition from having multiple
eb45ef3b 7418states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7419algorithm, after resolving and executing the saved-up actions.
7420At this transition, some of the states on the stack will have semantic
7421values that are sets (actually multisets) of possible actions. The
7422parser tries to pick one of the actions by first finding one whose rule
7423has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7424declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7425precedence, but there the same merging function is declared for both
fae437e8 7426rules by the @samp{%merge} declaration,
676385e2
PH
7427Bison resolves and evaluates both and then calls the merge function on
7428the result. Otherwise, it reports an ambiguity.
7429
8a4281b9
JD
7430It is possible to use a data structure for the GLR parsing tree that
7431permits the processing of any LR(1) grammar in linear time (in the
c827f760 7432size of the input), any unambiguous (not necessarily
8a4281b9 7433LR(1)) grammar in
fae437e8 7434quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7435context-free grammar in cubic worst-case time. However, Bison currently
7436uses a simpler data structure that requires time proportional to the
7437length of the input times the maximum number of stacks required for any
9d9b8b70 7438prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7439grammars can require exponential time and space to process. Such badly
7440behaving examples, however, are not generally of practical interest.
9d9b8b70 7441Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7442doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7443structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7444grammar, in particular, it is only slightly slower than with the
8a4281b9 7445deterministic LR(1) Bison parser.
676385e2 7446
8a4281b9 7447For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7448Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
8a4281b9 7449Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7450London, Department of Computer Science, TR-00-12,
7451@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7452(2000-12-24).
7453
1a059451
PE
7454@node Memory Management
7455@section Memory Management, and How to Avoid Memory Exhaustion
7456@cindex memory exhaustion
7457@cindex memory management
bfa74976
RS
7458@cindex stack overflow
7459@cindex parser stack overflow
7460@cindex overflow of parser stack
7461
1a059451 7462The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7463not reduced. When this happens, the parser function @code{yyparse}
1a059451 7464calls @code{yyerror} and then returns 2.
bfa74976 7465
c827f760 7466Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7467usually results from using a right recursion instead of a left
7468recursion, @xref{Recursion, ,Recursive Rules}.
7469
bfa74976
RS
7470@vindex YYMAXDEPTH
7471By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7472parser stack can become before memory is exhausted. Define the
bfa74976
RS
7473macro with a value that is an integer. This value is the maximum number
7474of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7475
7476The stack space allowed is not necessarily allocated. If you specify a
1a059451 7477large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7478stack at first, and then makes it bigger by stages as needed. This
7479increasing allocation happens automatically and silently. Therefore,
7480you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7481space for ordinary inputs that do not need much stack.
7482
d7e14fc0
PE
7483However, do not allow @code{YYMAXDEPTH} to be a value so large that
7484arithmetic overflow could occur when calculating the size of the stack
7485space. Also, do not allow @code{YYMAXDEPTH} to be less than
7486@code{YYINITDEPTH}.
7487
bfa74976
RS
7488@cindex default stack limit
7489The default value of @code{YYMAXDEPTH}, if you do not define it, is
749010000.
7491
7492@vindex YYINITDEPTH
7493You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7494macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7495parser in C, this value must be a compile-time constant
d7e14fc0
PE
7496unless you are assuming C99 or some other target language or compiler
7497that allows variable-length arrays. The default is 200.
7498
1a059451 7499Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7500
20be2f92
PH
7501You can generate a deterministic parser containing C++ user code from
7502the default (C) skeleton, as well as from the C++ skeleton
7503(@pxref{C++ Parsers}). However, if you do use the default skeleton
7504and want to allow the parsing stack to grow,
7505be careful not to use semantic types or location types that require
7506non-trivial copy constructors.
7507The C skeleton bypasses these constructors when copying data to
7508new, larger stacks.
d1a1114f 7509
342b8b6e 7510@node Error Recovery
bfa74976
RS
7511@chapter Error Recovery
7512@cindex error recovery
7513@cindex recovery from errors
7514
6e649e65 7515It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7516error. For example, a compiler should recover sufficiently to parse the
7517rest of the input file and check it for errors; a calculator should accept
7518another expression.
7519
7520In a simple interactive command parser where each input is one line, it may
7521be sufficient to allow @code{yyparse} to return 1 on error and have the
7522caller ignore the rest of the input line when that happens (and then call
7523@code{yyparse} again). But this is inadequate for a compiler, because it
7524forgets all the syntactic context leading up to the error. A syntax error
7525deep within a function in the compiler input should not cause the compiler
7526to treat the following line like the beginning of a source file.
7527
7528@findex error
7529You can define how to recover from a syntax error by writing rules to
7530recognize the special token @code{error}. This is a terminal symbol that
7531is always defined (you need not declare it) and reserved for error
7532handling. The Bison parser generates an @code{error} token whenever a
7533syntax error happens; if you have provided a rule to recognize this token
13863333 7534in the current context, the parse can continue.
bfa74976
RS
7535
7536For example:
7537
7538@example
7539stmnts: /* empty string */
7540 | stmnts '\n'
7541 | stmnts exp '\n'
7542 | stmnts error '\n'
7543@end example
7544
7545The fourth rule in this example says that an error followed by a newline
7546makes a valid addition to any @code{stmnts}.
7547
7548What happens if a syntax error occurs in the middle of an @code{exp}? The
7549error recovery rule, interpreted strictly, applies to the precise sequence
7550of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7551the middle of an @code{exp}, there will probably be some additional tokens
7552and subexpressions on the stack after the last @code{stmnts}, and there
7553will be tokens to read before the next newline. So the rule is not
7554applicable in the ordinary way.
7555
7556But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7557the semantic context and part of the input. First it discards states
7558and objects from the stack until it gets back to a state in which the
bfa74976 7559@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7560already parsed are discarded, back to the last complete @code{stmnts}.)
7561At this point the @code{error} token can be shifted. Then, if the old
742e4900 7562lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7563tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7564this example, Bison reads and discards input until the next newline so
7565that the fourth rule can apply. Note that discarded symbols are
7566possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7567Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7568
7569The choice of error rules in the grammar is a choice of strategies for
7570error recovery. A simple and useful strategy is simply to skip the rest of
7571the current input line or current statement if an error is detected:
7572
7573@example
72d2299c 7574stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7575@end example
7576
7577It is also useful to recover to the matching close-delimiter of an
7578opening-delimiter that has already been parsed. Otherwise the
7579close-delimiter will probably appear to be unmatched, and generate another,
7580spurious error message:
7581
7582@example
7583primary: '(' expr ')'
7584 | '(' error ')'
7585 @dots{}
7586 ;
7587@end example
7588
7589Error recovery strategies are necessarily guesses. When they guess wrong,
7590one syntax error often leads to another. In the above example, the error
7591recovery rule guesses that an error is due to bad input within one
7592@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7593middle of a valid @code{stmnt}. After the error recovery rule recovers
7594from the first error, another syntax error will be found straightaway,
7595since the text following the spurious semicolon is also an invalid
7596@code{stmnt}.
7597
7598To prevent an outpouring of error messages, the parser will output no error
7599message for another syntax error that happens shortly after the first; only
7600after three consecutive input tokens have been successfully shifted will
7601error messages resume.
7602
7603Note that rules which accept the @code{error} token may have actions, just
7604as any other rules can.
7605
7606@findex yyerrok
7607You can make error messages resume immediately by using the macro
7608@code{yyerrok} in an action. If you do this in the error rule's action, no
7609error messages will be suppressed. This macro requires no arguments;
7610@samp{yyerrok;} is a valid C statement.
7611
7612@findex yyclearin
742e4900 7613The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7614this is unacceptable, then the macro @code{yyclearin} may be used to clear
7615this token. Write the statement @samp{yyclearin;} in the error rule's
7616action.
32c29292 7617@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7618
6e649e65 7619For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7620called that advances the input stream to some point where parsing should
7621once again commence. The next symbol returned by the lexical scanner is
742e4900 7622probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7623with @samp{yyclearin;}.
7624
7625@vindex YYRECOVERING
02103984
PE
7626The expression @code{YYRECOVERING ()} yields 1 when the parser
7627is recovering from a syntax error, and 0 otherwise.
7628Syntax error diagnostics are suppressed while recovering from a syntax
7629error.
bfa74976 7630
342b8b6e 7631@node Context Dependency
bfa74976
RS
7632@chapter Handling Context Dependencies
7633
7634The Bison paradigm is to parse tokens first, then group them into larger
7635syntactic units. In many languages, the meaning of a token is affected by
7636its context. Although this violates the Bison paradigm, certain techniques
7637(known as @dfn{kludges}) may enable you to write Bison parsers for such
7638languages.
7639
7640@menu
7641* Semantic Tokens:: Token parsing can depend on the semantic context.
7642* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7643* Tie-in Recovery:: Lexical tie-ins have implications for how
7644 error recovery rules must be written.
7645@end menu
7646
7647(Actually, ``kludge'' means any technique that gets its job done but is
7648neither clean nor robust.)
7649
342b8b6e 7650@node Semantic Tokens
bfa74976
RS
7651@section Semantic Info in Token Types
7652
7653The C language has a context dependency: the way an identifier is used
7654depends on what its current meaning is. For example, consider this:
7655
7656@example
7657foo (x);
7658@end example
7659
7660This looks like a function call statement, but if @code{foo} is a typedef
7661name, then this is actually a declaration of @code{x}. How can a Bison
7662parser for C decide how to parse this input?
7663
8a4281b9 7664The method used in GNU C is to have two different token types,
bfa74976
RS
7665@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7666identifier, it looks up the current declaration of the identifier in order
7667to decide which token type to return: @code{TYPENAME} if the identifier is
7668declared as a typedef, @code{IDENTIFIER} otherwise.
7669
7670The grammar rules can then express the context dependency by the choice of
7671token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7672but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7673@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7674is @emph{not} significant, such as in declarations that can shadow a
7675typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7676accepted---there is one rule for each of the two token types.
7677
7678This technique is simple to use if the decision of which kinds of
7679identifiers to allow is made at a place close to where the identifier is
7680parsed. But in C this is not always so: C allows a declaration to
7681redeclare a typedef name provided an explicit type has been specified
7682earlier:
7683
7684@example
3a4f411f
PE
7685typedef int foo, bar;
7686int baz (void)
7687@{
7688 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7689 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7690 return foo (bar);
7691@}
bfa74976
RS
7692@end example
7693
7694Unfortunately, the name being declared is separated from the declaration
7695construct itself by a complicated syntactic structure---the ``declarator''.
7696
9ecbd125 7697As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7698all the nonterminal names changed: once for parsing a declaration in
7699which a typedef name can be redefined, and once for parsing a
7700declaration in which that can't be done. Here is a part of the
7701duplication, with actions omitted for brevity:
bfa74976
RS
7702
7703@example
7704initdcl:
7705 declarator maybeasm '='
7706 init
7707 | declarator maybeasm
7708 ;
7709
7710notype_initdcl:
7711 notype_declarator maybeasm '='
7712 init
7713 | notype_declarator maybeasm
7714 ;
7715@end example
7716
7717@noindent
7718Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7719cannot. The distinction between @code{declarator} and
7720@code{notype_declarator} is the same sort of thing.
7721
7722There is some similarity between this technique and a lexical tie-in
7723(described next), in that information which alters the lexical analysis is
7724changed during parsing by other parts of the program. The difference is
7725here the information is global, and is used for other purposes in the
7726program. A true lexical tie-in has a special-purpose flag controlled by
7727the syntactic context.
7728
342b8b6e 7729@node Lexical Tie-ins
bfa74976
RS
7730@section Lexical Tie-ins
7731@cindex lexical tie-in
7732
7733One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7734which is set by Bison actions, whose purpose is to alter the way tokens are
7735parsed.
7736
7737For example, suppose we have a language vaguely like C, but with a special
7738construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7739an expression in parentheses in which all integers are hexadecimal. In
7740particular, the token @samp{a1b} must be treated as an integer rather than
7741as an identifier if it appears in that context. Here is how you can do it:
7742
7743@example
7744@group
7745%@{
38a92d50
PE
7746 int hexflag;
7747 int yylex (void);
7748 void yyerror (char const *);
bfa74976
RS
7749%@}
7750%%
7751@dots{}
7752@end group
7753@group
7754expr: IDENTIFIER
7755 | constant
7756 | HEX '('
7757 @{ hexflag = 1; @}
7758 expr ')'
7759 @{ hexflag = 0;
7760 $$ = $4; @}
7761 | expr '+' expr
7762 @{ $$ = make_sum ($1, $3); @}
7763 @dots{}
7764 ;
7765@end group
7766
7767@group
7768constant:
7769 INTEGER
7770 | STRING
7771 ;
7772@end group
7773@end example
7774
7775@noindent
7776Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7777it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7778with letters are parsed as integers if possible.
7779
342b8b6e
AD
7780The declaration of @code{hexflag} shown in the prologue of the parser file
7781is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7782You must also write the code in @code{yylex} to obey the flag.
bfa74976 7783
342b8b6e 7784@node Tie-in Recovery
bfa74976
RS
7785@section Lexical Tie-ins and Error Recovery
7786
7787Lexical tie-ins make strict demands on any error recovery rules you have.
7788@xref{Error Recovery}.
7789
7790The reason for this is that the purpose of an error recovery rule is to
7791abort the parsing of one construct and resume in some larger construct.
7792For example, in C-like languages, a typical error recovery rule is to skip
7793tokens until the next semicolon, and then start a new statement, like this:
7794
7795@example
7796stmt: expr ';'
7797 | IF '(' expr ')' stmt @{ @dots{} @}
7798 @dots{}
7799 error ';'
7800 @{ hexflag = 0; @}
7801 ;
7802@end example
7803
7804If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7805construct, this error rule will apply, and then the action for the
7806completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7807remain set for the entire rest of the input, or until the next @code{hex}
7808keyword, causing identifiers to be misinterpreted as integers.
7809
7810To avoid this problem the error recovery rule itself clears @code{hexflag}.
7811
7812There may also be an error recovery rule that works within expressions.
7813For example, there could be a rule which applies within parentheses
7814and skips to the close-parenthesis:
7815
7816@example
7817@group
7818expr: @dots{}
7819 | '(' expr ')'
7820 @{ $$ = $2; @}
7821 | '(' error ')'
7822 @dots{}
7823@end group
7824@end example
7825
7826If this rule acts within the @code{hex} construct, it is not going to abort
7827that construct (since it applies to an inner level of parentheses within
7828the construct). Therefore, it should not clear the flag: the rest of
7829the @code{hex} construct should be parsed with the flag still in effect.
7830
7831What if there is an error recovery rule which might abort out of the
7832@code{hex} construct or might not, depending on circumstances? There is no
7833way you can write the action to determine whether a @code{hex} construct is
7834being aborted or not. So if you are using a lexical tie-in, you had better
7835make sure your error recovery rules are not of this kind. Each rule must
7836be such that you can be sure that it always will, or always won't, have to
7837clear the flag.
7838
ec3bc396
AD
7839@c ================================================== Debugging Your Parser
7840
342b8b6e 7841@node Debugging
bfa74976 7842@chapter Debugging Your Parser
ec3bc396
AD
7843
7844Developing a parser can be a challenge, especially if you don't
7845understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7846Algorithm}). Even so, sometimes a detailed description of the automaton
7847can help (@pxref{Understanding, , Understanding Your Parser}), or
7848tracing the execution of the parser can give some insight on why it
7849behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7850
7851@menu
7852* Understanding:: Understanding the structure of your parser.
7853* Tracing:: Tracing the execution of your parser.
7854@end menu
7855
7856@node Understanding
7857@section Understanding Your Parser
7858
7859As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7860Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7861frequent than one would hope), looking at this automaton is required to
7862tune or simply fix a parser. Bison provides two different
35fe0834 7863representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7864
7865The textual file is generated when the options @option{--report} or
7866@option{--verbose} are specified, see @xref{Invocation, , Invoking
7867Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7868the parser output file name, and adding @samp{.output} instead.
7869Therefore, if the input file is @file{foo.y}, then the parser file is
7870called @file{foo.tab.c} by default. As a consequence, the verbose
7871output file is called @file{foo.output}.
7872
7873The following grammar file, @file{calc.y}, will be used in the sequel:
7874
7875@example
7876%token NUM STR
7877%left '+' '-'
7878%left '*'
7879%%
7880exp: exp '+' exp
7881 | exp '-' exp
7882 | exp '*' exp
7883 | exp '/' exp
7884 | NUM
7885 ;
7886useless: STR;
7887%%
7888@end example
7889
88bce5a2
AD
7890@command{bison} reports:
7891
7892@example
8f0d265e
JD
7893calc.y: warning: 1 nonterminal useless in grammar
7894calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7895calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7896calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7897calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7898@end example
7899
7900When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7901creates a file @file{calc.output} with contents detailed below. The
7902order of the output and the exact presentation might vary, but the
7903interpretation is the same.
ec3bc396
AD
7904
7905The first section includes details on conflicts that were solved thanks
7906to precedence and/or associativity:
7907
7908@example
7909Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7910Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7911Conflict in state 8 between rule 2 and token '*' resolved as shift.
7912@exdent @dots{}
7913@end example
7914
7915@noindent
7916The next section lists states that still have conflicts.
7917
7918@example
5a99098d
PE
7919State 8 conflicts: 1 shift/reduce
7920State 9 conflicts: 1 shift/reduce
7921State 10 conflicts: 1 shift/reduce
7922State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7923@end example
7924
7925@noindent
7926@cindex token, useless
7927@cindex useless token
7928@cindex nonterminal, useless
7929@cindex useless nonterminal
7930@cindex rule, useless
7931@cindex useless rule
7932The next section reports useless tokens, nonterminal and rules. Useless
7933nonterminals and rules are removed in order to produce a smaller parser,
7934but useless tokens are preserved, since they might be used by the
d80fb37a 7935scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7936below):
7937
7938@example
d80fb37a 7939Nonterminals useless in grammar:
ec3bc396
AD
7940 useless
7941
d80fb37a 7942Terminals unused in grammar:
ec3bc396
AD
7943 STR
7944
cff03fb2 7945Rules useless in grammar:
ec3bc396
AD
7946#6 useless: STR;
7947@end example
7948
7949@noindent
7950The next section reproduces the exact grammar that Bison used:
7951
7952@example
7953Grammar
7954
7955 Number, Line, Rule
88bce5a2 7956 0 5 $accept -> exp $end
ec3bc396
AD
7957 1 5 exp -> exp '+' exp
7958 2 6 exp -> exp '-' exp
7959 3 7 exp -> exp '*' exp
7960 4 8 exp -> exp '/' exp
7961 5 9 exp -> NUM
7962@end example
7963
7964@noindent
7965and reports the uses of the symbols:
7966
7967@example
7968Terminals, with rules where they appear
7969
88bce5a2 7970$end (0) 0
ec3bc396
AD
7971'*' (42) 3
7972'+' (43) 1
7973'-' (45) 2
7974'/' (47) 4
7975error (256)
7976NUM (258) 5
7977
7978Nonterminals, with rules where they appear
7979
88bce5a2 7980$accept (8)
ec3bc396
AD
7981 on left: 0
7982exp (9)
7983 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7984@end example
7985
7986@noindent
7987@cindex item
7988@cindex pointed rule
7989@cindex rule, pointed
7990Bison then proceeds onto the automaton itself, describing each state
7991with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7992item is a production rule together with a point (marked by @samp{.})
7993that the input cursor.
7994
7995@example
7996state 0
7997
88bce5a2 7998 $accept -> . exp $ (rule 0)
ec3bc396 7999
2a8d363a 8000 NUM shift, and go to state 1
ec3bc396 8001
2a8d363a 8002 exp go to state 2
ec3bc396
AD
8003@end example
8004
8005This reads as follows: ``state 0 corresponds to being at the very
8006beginning of the parsing, in the initial rule, right before the start
8007symbol (here, @code{exp}). When the parser returns to this state right
8008after having reduced a rule that produced an @code{exp}, the control
8009flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8010symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8011the parse stack, and the control flow jumps to state 1. Any other
742e4900 8012lookahead triggers a syntax error.''
ec3bc396
AD
8013
8014@cindex core, item set
8015@cindex item set core
8016@cindex kernel, item set
8017@cindex item set core
8018Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8019report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8020at the beginning of any rule deriving an @code{exp}. By default Bison
8021reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8022you want to see more detail you can invoke @command{bison} with
8023@option{--report=itemset} to list all the items, include those that can
8024be derived:
8025
8026@example
8027state 0
8028
88bce5a2 8029 $accept -> . exp $ (rule 0)
ec3bc396
AD
8030 exp -> . exp '+' exp (rule 1)
8031 exp -> . exp '-' exp (rule 2)
8032 exp -> . exp '*' exp (rule 3)
8033 exp -> . exp '/' exp (rule 4)
8034 exp -> . NUM (rule 5)
8035
8036 NUM shift, and go to state 1
8037
8038 exp go to state 2
8039@end example
8040
8041@noindent
8042In the state 1...
8043
8044@example
8045state 1
8046
8047 exp -> NUM . (rule 5)
8048
2a8d363a 8049 $default reduce using rule 5 (exp)
ec3bc396
AD
8050@end example
8051
8052@noindent
742e4900 8053the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8054(@samp{$default}), the parser will reduce it. If it was coming from
8055state 0, then, after this reduction it will return to state 0, and will
8056jump to state 2 (@samp{exp: go to state 2}).
8057
8058@example
8059state 2
8060
88bce5a2 8061 $accept -> exp . $ (rule 0)
ec3bc396
AD
8062 exp -> exp . '+' exp (rule 1)
8063 exp -> exp . '-' exp (rule 2)
8064 exp -> exp . '*' exp (rule 3)
8065 exp -> exp . '/' exp (rule 4)
8066
2a8d363a
AD
8067 $ shift, and go to state 3
8068 '+' shift, and go to state 4
8069 '-' shift, and go to state 5
8070 '*' shift, and go to state 6
8071 '/' shift, and go to state 7
ec3bc396
AD
8072@end example
8073
8074@noindent
8075In state 2, the automaton can only shift a symbol. For instance,
742e4900 8076because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8077@samp{+}, it will be shifted on the parse stack, and the automaton
8078control will jump to state 4, corresponding to the item @samp{exp -> exp
8079'+' . exp}. Since there is no default action, any other token than
6e649e65 8080those listed above will trigger a syntax error.
ec3bc396 8081
eb45ef3b 8082@cindex accepting state
ec3bc396
AD
8083The state 3 is named the @dfn{final state}, or the @dfn{accepting
8084state}:
8085
8086@example
8087state 3
8088
88bce5a2 8089 $accept -> exp $ . (rule 0)
ec3bc396 8090
2a8d363a 8091 $default accept
ec3bc396
AD
8092@end example
8093
8094@noindent
8095the initial rule is completed (the start symbol and the end
8096of input were read), the parsing exits successfully.
8097
8098The interpretation of states 4 to 7 is straightforward, and is left to
8099the reader.
8100
8101@example
8102state 4
8103
8104 exp -> exp '+' . exp (rule 1)
8105
2a8d363a 8106 NUM shift, and go to state 1
ec3bc396 8107
2a8d363a 8108 exp go to state 8
ec3bc396
AD
8109
8110state 5
8111
8112 exp -> exp '-' . exp (rule 2)
8113
2a8d363a 8114 NUM shift, and go to state 1
ec3bc396 8115
2a8d363a 8116 exp go to state 9
ec3bc396
AD
8117
8118state 6
8119
8120 exp -> exp '*' . exp (rule 3)
8121
2a8d363a 8122 NUM shift, and go to state 1
ec3bc396 8123
2a8d363a 8124 exp go to state 10
ec3bc396
AD
8125
8126state 7
8127
8128 exp -> exp '/' . exp (rule 4)
8129
2a8d363a 8130 NUM shift, and go to state 1
ec3bc396 8131
2a8d363a 8132 exp go to state 11
ec3bc396
AD
8133@end example
8134
5a99098d
PE
8135As was announced in beginning of the report, @samp{State 8 conflicts:
81361 shift/reduce}:
ec3bc396
AD
8137
8138@example
8139state 8
8140
8141 exp -> exp . '+' exp (rule 1)
8142 exp -> exp '+' exp . (rule 1)
8143 exp -> exp . '-' exp (rule 2)
8144 exp -> exp . '*' exp (rule 3)
8145 exp -> exp . '/' exp (rule 4)
8146
2a8d363a
AD
8147 '*' shift, and go to state 6
8148 '/' shift, and go to state 7
ec3bc396 8149
2a8d363a
AD
8150 '/' [reduce using rule 1 (exp)]
8151 $default reduce using rule 1 (exp)
ec3bc396
AD
8152@end example
8153
742e4900 8154Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8155either shifting (and going to state 7), or reducing rule 1. The
8156conflict means that either the grammar is ambiguous, or the parser lacks
8157information to make the right decision. Indeed the grammar is
8158ambiguous, as, since we did not specify the precedence of @samp{/}, the
8159sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8160NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8161NUM}, which corresponds to reducing rule 1.
8162
eb45ef3b 8163Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8164arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8165Shift/Reduce Conflicts}. Discarded actions are reported in between
8166square brackets.
8167
8168Note that all the previous states had a single possible action: either
8169shifting the next token and going to the corresponding state, or
8170reducing a single rule. In the other cases, i.e., when shifting
8171@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8172possible, the lookahead is required to select the action. State 8 is
8173one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8174is shifting, otherwise the action is reducing rule 1. In other words,
8175the first two items, corresponding to rule 1, are not eligible when the
742e4900 8176lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8177precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8178with some set of possible lookahead tokens. When run with
8179@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8180
8181@example
8182state 8
8183
88c78747 8184 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8185 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8186 exp -> exp . '-' exp (rule 2)
8187 exp -> exp . '*' exp (rule 3)
8188 exp -> exp . '/' exp (rule 4)
8189
8190 '*' shift, and go to state 6
8191 '/' shift, and go to state 7
8192
8193 '/' [reduce using rule 1 (exp)]
8194 $default reduce using rule 1 (exp)
8195@end example
8196
8197The remaining states are similar:
8198
8199@example
8200state 9
8201
8202 exp -> exp . '+' exp (rule 1)
8203 exp -> exp . '-' exp (rule 2)
8204 exp -> exp '-' exp . (rule 2)
8205 exp -> exp . '*' exp (rule 3)
8206 exp -> exp . '/' exp (rule 4)
8207
2a8d363a
AD
8208 '*' shift, and go to state 6
8209 '/' shift, and go to state 7
ec3bc396 8210
2a8d363a
AD
8211 '/' [reduce using rule 2 (exp)]
8212 $default reduce using rule 2 (exp)
ec3bc396
AD
8213
8214state 10
8215
8216 exp -> exp . '+' exp (rule 1)
8217 exp -> exp . '-' exp (rule 2)
8218 exp -> exp . '*' exp (rule 3)
8219 exp -> exp '*' exp . (rule 3)
8220 exp -> exp . '/' exp (rule 4)
8221
2a8d363a 8222 '/' shift, and go to state 7
ec3bc396 8223
2a8d363a
AD
8224 '/' [reduce using rule 3 (exp)]
8225 $default reduce using rule 3 (exp)
ec3bc396
AD
8226
8227state 11
8228
8229 exp -> exp . '+' exp (rule 1)
8230 exp -> exp . '-' exp (rule 2)
8231 exp -> exp . '*' exp (rule 3)
8232 exp -> exp . '/' exp (rule 4)
8233 exp -> exp '/' exp . (rule 4)
8234
2a8d363a
AD
8235 '+' shift, and go to state 4
8236 '-' shift, and go to state 5
8237 '*' shift, and go to state 6
8238 '/' shift, and go to state 7
ec3bc396 8239
2a8d363a
AD
8240 '+' [reduce using rule 4 (exp)]
8241 '-' [reduce using rule 4 (exp)]
8242 '*' [reduce using rule 4 (exp)]
8243 '/' [reduce using rule 4 (exp)]
8244 $default reduce using rule 4 (exp)
ec3bc396
AD
8245@end example
8246
8247@noindent
fa7e68c3
PE
8248Observe that state 11 contains conflicts not only due to the lack of
8249precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8250@samp{*}, but also because the
ec3bc396
AD
8251associativity of @samp{/} is not specified.
8252
8253
8254@node Tracing
8255@section Tracing Your Parser
bfa74976
RS
8256@findex yydebug
8257@cindex debugging
8258@cindex tracing the parser
8259
8260If a Bison grammar compiles properly but doesn't do what you want when it
8261runs, the @code{yydebug} parser-trace feature can help you figure out why.
8262
3ded9a63
AD
8263There are several means to enable compilation of trace facilities:
8264
8265@table @asis
8266@item the macro @code{YYDEBUG}
8267@findex YYDEBUG
8268Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8269parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8270@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8271YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8272Prologue}).
8273
8274@item the option @option{-t}, @option{--debug}
8275Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8276,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8277
8278@item the directive @samp{%debug}
8279@findex %debug
fa819509
AD
8280Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8281Summary}). This Bison extension is maintained for backward
8282compatibility with previous versions of Bison.
8283
8284@item the variable @samp{parse.trace}
8285@findex %define parse.trace
8286Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8287,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8288(@pxref{Bison Options}). This is a Bison extension, which is especially
8289useful for languages that don't use a preprocessor. Unless
8a4281b9 8290POSIX and Yacc portability matter to you, this is the
fa819509 8291preferred solution.
3ded9a63
AD
8292@end table
8293
fa819509 8294We suggest that you always enable the trace option so that debugging is
3ded9a63 8295always possible.
bfa74976 8296
02a81e05 8297The trace facility outputs messages with macro calls of the form
e2742e46 8298@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8299@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8300arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8301define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8302and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8303
8304Once you have compiled the program with trace facilities, the way to
8305request a trace is to store a nonzero value in the variable @code{yydebug}.
8306You can do this by making the C code do it (in @code{main}, perhaps), or
8307you can alter the value with a C debugger.
8308
8309Each step taken by the parser when @code{yydebug} is nonzero produces a
8310line or two of trace information, written on @code{stderr}. The trace
8311messages tell you these things:
8312
8313@itemize @bullet
8314@item
8315Each time the parser calls @code{yylex}, what kind of token was read.
8316
8317@item
8318Each time a token is shifted, the depth and complete contents of the
8319state stack (@pxref{Parser States}).
8320
8321@item
8322Each time a rule is reduced, which rule it is, and the complete contents
8323of the state stack afterward.
8324@end itemize
8325
8326To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8327produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8328Bison}). This file shows the meaning of each state in terms of
8329positions in various rules, and also what each state will do with each
8330possible input token. As you read the successive trace messages, you
8331can see that the parser is functioning according to its specification in
8332the listing file. Eventually you will arrive at the place where
8333something undesirable happens, and you will see which parts of the
8334grammar are to blame.
bfa74976
RS
8335
8336The parser file is a C program and you can use C debuggers on it, but it's
8337not easy to interpret what it is doing. The parser function is a
8338finite-state machine interpreter, and aside from the actions it executes
8339the same code over and over. Only the values of variables show where in
8340the grammar it is working.
8341
8342@findex YYPRINT
8343The debugging information normally gives the token type of each token
8344read, but not its semantic value. You can optionally define a macro
8345named @code{YYPRINT} to provide a way to print the value. If you define
8346@code{YYPRINT}, it should take three arguments. The parser will pass a
8347standard I/O stream, the numeric code for the token type, and the token
8348value (from @code{yylval}).
8349
8350Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8351calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8352
8353@smallexample
38a92d50
PE
8354%@{
8355 static void print_token_value (FILE *, int, YYSTYPE);
8356 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8357%@}
8358
8359@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8360
8361static void
831d3c99 8362print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8363@{
8364 if (type == VAR)
d3c4e709 8365 fprintf (file, "%s", value.tptr->name);
bfa74976 8366 else if (type == NUM)
d3c4e709 8367 fprintf (file, "%d", value.val);
bfa74976
RS
8368@}
8369@end smallexample
8370
ec3bc396
AD
8371@c ================================================= Invoking Bison
8372
342b8b6e 8373@node Invocation
bfa74976
RS
8374@chapter Invoking Bison
8375@cindex invoking Bison
8376@cindex Bison invocation
8377@cindex options for invoking Bison
8378
8379The usual way to invoke Bison is as follows:
8380
8381@example
8382bison @var{infile}
8383@end example
8384
8385Here @var{infile} is the grammar file name, which usually ends in
8386@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8387with @samp{.tab.c} and removing any leading directory. Thus, the
8388@samp{bison foo.y} file name yields
8389@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8390@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8391C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8392or @file{foo.y++}. Then, the output files will take an extension like
8393the given one as input (respectively @file{foo.tab.cpp} and
8394@file{foo.tab.c++}).
fa4d969f 8395This feature takes effect with all options that manipulate file names like
234a3be3
AD
8396@samp{-o} or @samp{-d}.
8397
8398For example :
8399
8400@example
8401bison -d @var{infile.yxx}
8402@end example
84163231 8403@noindent
72d2299c 8404will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8405
8406@example
b56471a6 8407bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8408@end example
84163231 8409@noindent
234a3be3
AD
8410will produce @file{output.c++} and @file{outfile.h++}.
8411
8a4281b9 8412For compatibility with POSIX, the standard Bison
397ec073
PE
8413distribution also contains a shell script called @command{yacc} that
8414invokes Bison with the @option{-y} option.
8415
bfa74976 8416@menu
13863333 8417* Bison Options:: All the options described in detail,
c827f760 8418 in alphabetical order by short options.
bfa74976 8419* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8420* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8421@end menu
8422
342b8b6e 8423@node Bison Options
bfa74976
RS
8424@section Bison Options
8425
8426Bison supports both traditional single-letter options and mnemonic long
8427option names. Long option names are indicated with @samp{--} instead of
8428@samp{-}. Abbreviations for option names are allowed as long as they
8429are unique. When a long option takes an argument, like
8430@samp{--file-prefix}, connect the option name and the argument with
8431@samp{=}.
8432
8433Here is a list of options that can be used with Bison, alphabetized by
8434short option. It is followed by a cross key alphabetized by long
8435option.
8436
89cab50d
AD
8437@c Please, keep this ordered as in `bison --help'.
8438@noindent
8439Operations modes:
8440@table @option
8441@item -h
8442@itemx --help
8443Print a summary of the command-line options to Bison and exit.
bfa74976 8444
89cab50d
AD
8445@item -V
8446@itemx --version
8447Print the version number of Bison and exit.
bfa74976 8448
f7ab6a50
PE
8449@item --print-localedir
8450Print the name of the directory containing locale-dependent data.
8451
a0de5091
JD
8452@item --print-datadir
8453Print the name of the directory containing skeletons and XSLT.
8454
89cab50d
AD
8455@item -y
8456@itemx --yacc
54662697
PE
8457Act more like the traditional Yacc command. This can cause
8458different diagnostics to be generated, and may change behavior in
8459other minor ways. Most importantly, imitate Yacc's output
8460file name conventions, so that the parser output file is called
89cab50d 8461@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8462@file{y.tab.h}.
eb45ef3b 8463Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8464statements in addition to an @code{enum} to associate token numbers with token
8465names.
8466Thus, the following shell script can substitute for Yacc, and the Bison
8a4281b9 8467distribution contains such a script for compatibility with POSIX:
bfa74976 8468
89cab50d 8469@example
397ec073 8470#! /bin/sh
26e06a21 8471bison -y "$@@"
89cab50d 8472@end example
54662697
PE
8473
8474The @option{-y}/@option{--yacc} option is intended for use with
8475traditional Yacc grammars. If your grammar uses a Bison extension
8476like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8477this option is specified.
8478
1d5b3c08
JD
8479@item -W [@var{category}]
8480@itemx --warnings[=@var{category}]
118d4978
AD
8481Output warnings falling in @var{category}. @var{category} can be one
8482of:
8483@table @code
8484@item midrule-values
8e55b3aa
JD
8485Warn about mid-rule values that are set but not used within any of the actions
8486of the parent rule.
8487For example, warn about unused @code{$2} in:
118d4978
AD
8488
8489@example
8490exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8491@end example
8492
8e55b3aa
JD
8493Also warn about mid-rule values that are used but not set.
8494For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8495
8496@example
8497 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8498@end example
8499
8500These warnings are not enabled by default since they sometimes prove to
8501be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8502@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8503
8504
8505@item yacc
8a4281b9 8506Incompatibilities with POSIX Yacc.
118d4978
AD
8507
8508@item all
8e55b3aa 8509All the warnings.
118d4978 8510@item none
8e55b3aa 8511Turn off all the warnings.
118d4978 8512@item error
8e55b3aa 8513Treat warnings as errors.
118d4978
AD
8514@end table
8515
8516A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8517instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8518POSIX Yacc incompatibilities.
89cab50d
AD
8519@end table
8520
8521@noindent
8522Tuning the parser:
8523
8524@table @option
8525@item -t
8526@itemx --debug
4947ebdb
PE
8527In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8528already defined, so that the debugging facilities are compiled.
ec3bc396 8529@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8530
58697c6d
AD
8531@item -D @var{name}[=@var{value}]
8532@itemx --define=@var{name}[=@var{value}]
17aed602 8533@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8534@itemx --force-define=@var{name}[=@var{value}]
8535Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8536(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8537definitions for the same @var{name} as follows:
8538
8539@itemize
8540@item
0b6d43c5
JD
8541Bison quietly ignores all command-line definitions for @var{name} except
8542the last.
de5ab940 8543@item
0b6d43c5
JD
8544If that command-line definition is specified by a @code{-D} or
8545@code{--define}, Bison reports an error for any @code{%define}
8546definition for @var{name}.
de5ab940 8547@item
0b6d43c5
JD
8548If that command-line definition is specified by a @code{-F} or
8549@code{--force-define} instead, Bison quietly ignores all @code{%define}
8550definitions for @var{name}.
8551@item
8552Otherwise, Bison reports an error if there are multiple @code{%define}
8553definitions for @var{name}.
de5ab940
JD
8554@end itemize
8555
8556You should avoid using @code{-F} and @code{--force-define} in your
8557makefiles unless you are confident that it is safe to quietly ignore any
8558conflicting @code{%define} that may be added to the grammar file.
58697c6d 8559
0e021770
PE
8560@item -L @var{language}
8561@itemx --language=@var{language}
8562Specify the programming language for the generated parser, as if
8563@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8564Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8565@var{language} is case-insensitive.
0e021770 8566
ed4d67dc
JD
8567This option is experimental and its effect may be modified in future
8568releases.
8569
89cab50d 8570@item --locations
d8988b2f 8571Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8572
8573@item -p @var{prefix}
8574@itemx --name-prefix=@var{prefix}
02975b9a 8575Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8576@xref{Decl Summary}.
bfa74976
RS
8577
8578@item -l
8579@itemx --no-lines
8580Don't put any @code{#line} preprocessor commands in the parser file.
8581Ordinarily Bison puts them in the parser file so that the C compiler
8582and debuggers will associate errors with your source file, the
8583grammar file. This option causes them to associate errors with the
95e742f7 8584parser file, treating it as an independent source file in its own right.
bfa74976 8585
e6e704dc
JD
8586@item -S @var{file}
8587@itemx --skeleton=@var{file}
a7867f53 8588Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8589(@pxref{Decl Summary, , Bison Declaration Summary}).
8590
ed4d67dc
JD
8591@c You probably don't need this option unless you are developing Bison.
8592@c You should use @option{--language} if you want to specify the skeleton for a
8593@c different language, because it is clearer and because it will always
8594@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8595
a7867f53
JD
8596If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8597file in the Bison installation directory.
8598If it does, @var{file} is an absolute file name or a file name relative to the
8599current working directory.
8600This is similar to how most shells resolve commands.
8601
89cab50d
AD
8602@item -k
8603@itemx --token-table
d8988b2f 8604Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8605@end table
bfa74976 8606
89cab50d
AD
8607@noindent
8608Adjust the output:
bfa74976 8609
89cab50d 8610@table @option
8e55b3aa 8611@item --defines[=@var{file}]
d8988b2f 8612Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8613file containing macro definitions for the token type names defined in
4bfd5e4e 8614the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8615
8e55b3aa
JD
8616@item -d
8617This is the same as @code{--defines} except @code{-d} does not accept a
8618@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8619with other short options.
342b8b6e 8620
89cab50d
AD
8621@item -b @var{file-prefix}
8622@itemx --file-prefix=@var{prefix}
9c437126 8623Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8624for all Bison output file names. @xref{Decl Summary}.
bfa74976 8625
ec3bc396
AD
8626@item -r @var{things}
8627@itemx --report=@var{things}
8628Write an extra output file containing verbose description of the comma
8629separated list of @var{things} among:
8630
8631@table @code
8632@item state
8633Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8634parser's automaton.
ec3bc396 8635
742e4900 8636@item lookahead
ec3bc396 8637Implies @code{state} and augments the description of the automaton with
742e4900 8638each rule's lookahead set.
ec3bc396
AD
8639
8640@item itemset
8641Implies @code{state} and augments the description of the automaton with
8642the full set of items for each state, instead of its core only.
8643@end table
8644
1bb2bd75
JD
8645@item --report-file=@var{file}
8646Specify the @var{file} for the verbose description.
8647
bfa74976
RS
8648@item -v
8649@itemx --verbose
9c437126 8650Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8651file containing verbose descriptions of the grammar and
72d2299c 8652parser. @xref{Decl Summary}.
bfa74976 8653
fa4d969f
PE
8654@item -o @var{file}
8655@itemx --output=@var{file}
8656Specify the @var{file} for the parser file.
bfa74976 8657
fa4d969f 8658The other output files' names are constructed from @var{file} as
d8988b2f 8659described under the @samp{-v} and @samp{-d} options.
342b8b6e 8660
a7c09cba 8661@item -g [@var{file}]
8e55b3aa 8662@itemx --graph[=@var{file}]
eb45ef3b 8663Output a graphical representation of the parser's
35fe0834 8664automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8665@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8666@code{@var{file}} is optional.
8667If omitted and the grammar file is @file{foo.y}, the output file will be
8668@file{foo.dot}.
59da312b 8669
a7c09cba 8670@item -x [@var{file}]
8e55b3aa 8671@itemx --xml[=@var{file}]
eb45ef3b 8672Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8673@code{@var{file}} is optional.
59da312b
JD
8674If omitted and the grammar file is @file{foo.y}, the output file will be
8675@file{foo.xml}.
8676(The current XML schema is experimental and may evolve.
8677More user feedback will help to stabilize it.)
bfa74976
RS
8678@end table
8679
342b8b6e 8680@node Option Cross Key
bfa74976
RS
8681@section Option Cross Key
8682
8683Here is a list of options, alphabetized by long option, to help you find
de5ab940 8684the corresponding short option and directive.
bfa74976 8685
de5ab940 8686@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8687@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8688@include cross-options.texi
aa08666d 8689@end multitable
bfa74976 8690
93dd49ab
PE
8691@node Yacc Library
8692@section Yacc Library
8693
8694The Yacc library contains default implementations of the
8695@code{yyerror} and @code{main} functions. These default
8a4281b9 8696implementations are normally not useful, but POSIX requires
93dd49ab
PE
8697them. To use the Yacc library, link your program with the
8698@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8699library is distributed under the terms of the GNU General
93dd49ab
PE
8700Public License (@pxref{Copying}).
8701
8702If you use the Yacc library's @code{yyerror} function, you should
8703declare @code{yyerror} as follows:
8704
8705@example
8706int yyerror (char const *);
8707@end example
8708
8709Bison ignores the @code{int} value returned by this @code{yyerror}.
8710If you use the Yacc library's @code{main} function, your
8711@code{yyparse} function should have the following type signature:
8712
8713@example
8714int yyparse (void);
8715@end example
8716
12545799
AD
8717@c ================================================= C++ Bison
8718
8405b70c
PB
8719@node Other Languages
8720@chapter Parsers Written In Other Languages
12545799
AD
8721
8722@menu
8723* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8724* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8725@end menu
8726
8727@node C++ Parsers
8728@section C++ Parsers
8729
8730@menu
8731* C++ Bison Interface:: Asking for C++ parser generation
8732* C++ Semantic Values:: %union vs. C++
8733* C++ Location Values:: The position and location classes
8734* C++ Parser Interface:: Instantiating and running the parser
8735* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8736* A Complete C++ Example:: Demonstrating their use
12545799
AD
8737@end menu
8738
8739@node C++ Bison Interface
8740@subsection C++ Bison Interface
ed4d67dc 8741@c - %skeleton "lalr1.cc"
12545799
AD
8742@c - Always pure
8743@c - initial action
8744
eb45ef3b 8745The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8746@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8747@option{--skeleton=lalr1.cc}.
e6e704dc 8748@xref{Decl Summary}.
0e021770 8749
793fbca5
JD
8750When run, @command{bison} will create several entities in the @samp{yy}
8751namespace.
67501061
AD
8752@findex %define api.namespace
8753Use the @samp{%define api.namespace} directive to change the namespace
8754name, see
793fbca5
JD
8755@ref{Decl Summary}.
8756The various classes are generated in the following files:
aa08666d 8757
12545799
AD
8758@table @file
8759@item position.hh
8760@itemx location.hh
8761The definition of the classes @code{position} and @code{location},
3cdc21cf 8762used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8763
8764@item stack.hh
8765An auxiliary class @code{stack} used by the parser.
8766
fa4d969f
PE
8767@item @var{file}.hh
8768@itemx @var{file}.cc
cd8b5791
AD
8769(Assuming the extension of the input file was @samp{.yy}.) The
8770declaration and implementation of the C++ parser class. The basename
8771and extension of these two files follow the same rules as with regular C
8772parsers (@pxref{Invocation}).
12545799 8773
cd8b5791
AD
8774The header is @emph{mandatory}; you must either pass
8775@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8776@samp{%defines} directive.
8777@end table
8778
8779All these files are documented using Doxygen; run @command{doxygen}
8780for a complete and accurate documentation.
8781
8782@node C++ Semantic Values
8783@subsection C++ Semantic Values
8784@c - No objects in unions
178e123e 8785@c - YYSTYPE
12545799
AD
8786@c - Printer and destructor
8787
3cdc21cf
AD
8788Bison supports two different means to handle semantic values in C++. One is
8789alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8790practitioners know, unions are inconvenient in C++, therefore another
8791approach is provided, based on variants (@pxref{C++ Variants}).
8792
8793@menu
8794* C++ Unions:: Semantic values cannot be objects
8795* C++ Variants:: Using objects as semantic values
8796@end menu
8797
8798@node C++ Unions
8799@subsubsection C++ Unions
8800
12545799
AD
8801The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8802Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8803@code{union}, which have a few specific features in C++.
12545799
AD
8804@itemize @minus
8805@item
fb9712a9
AD
8806The type @code{YYSTYPE} is defined but its use is discouraged: rather
8807you should refer to the parser's encapsulated type
8808@code{yy::parser::semantic_type}.
12545799
AD
8809@item
8810Non POD (Plain Old Data) types cannot be used. C++ forbids any
8811instance of classes with constructors in unions: only @emph{pointers}
8812to such objects are allowed.
8813@end itemize
8814
8815Because objects have to be stored via pointers, memory is not
8816reclaimed automatically: using the @code{%destructor} directive is the
8817only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8818Symbols}.
8819
3cdc21cf
AD
8820@node C++ Variants
8821@subsubsection C++ Variants
8822
8823Starting with version 2.6, Bison provides a @emph{variant} based
8824implementation of semantic values for C++. This alleviates all the
8825limitations reported in the previous section, and in particular, object
8826types can be used without pointers.
8827
8828To enable variant-based semantic values, set @code{%define} variable
8829@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8830@code{%union} is ignored, and instead of using the name of the fields of the
8831@code{%union} to ``type'' the symbols, use genuine types.
8832
8833For instance, instead of
8834
8835@example
8836%union
8837@{
8838 int ival;
8839 std::string* sval;
8840@}
8841%token <ival> NUMBER;
8842%token <sval> STRING;
8843@end example
8844
8845@noindent
8846write
8847
8848@example
8849%token <int> NUMBER;
8850%token <std::string> STRING;
8851@end example
8852
8853@code{STRING} is no longer a pointer, which should fairly simplify the user
8854actions in the grammar and in the scanner (in particular the memory
8855management).
8856
8857Since C++ features destructors, and since it is customary to specialize
8858@code{operator<<} to support uniform printing of values, variants also
8859typically simplify Bison printers and destructors.
8860
8861Variants are stricter than unions. When based on unions, you may play any
8862dirty game with @code{yylval}, say storing an @code{int}, reading a
8863@code{char*}, and then storing a @code{double} in it. This is no longer
8864possible with variants: they must be initialized, then assigned to, and
8865eventually, destroyed.
8866
8867@deftypemethod {semantic_type} {T&} build<T> ()
8868Initialize, but leave empty. Returns the address where the actual value may
8869be stored. Requires that the variant was not initialized yet.
8870@end deftypemethod
8871
8872@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8873Initialize, and copy-construct from @var{t}.
8874@end deftypemethod
8875
8876
8877@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8878appeared unacceptable to require Boost on the user's machine (i.e., the
8879machine on which the generated parser will be compiled, not the machine on
8880which @command{bison} was run). Second, for each possible semantic value,
8881Boost.Variant not only stores the value, but also a tag specifying its
8882type. But the parser already ``knows'' the type of the semantic value, so
8883that would be duplicating the information.
8884
8885Therefore we developed light-weight variants whose type tag is external (so
8886they are really like @code{unions} for C++ actually). But our code is much
8887less mature that Boost.Variant. So there is a number of limitations in
8888(the current implementation of) variants:
8889@itemize
8890@item
8891Alignment must be enforced: values should be aligned in memory according to
8892the most demanding type. Computing the smallest alignment possible requires
8893meta-programming techniques that are not currently implemented in Bison, and
8894therefore, since, as far as we know, @code{double} is the most demanding
8895type on all platforms, alignments are enforced for @code{double} whatever
8896types are actually used. This may waste space in some cases.
8897
8898@item
8899Our implementation is not conforming with strict aliasing rules. Alias
8900analysis is a technique used in optimizing compilers to detect when two
8901pointers are disjoint (they cannot ``meet''). Our implementation breaks
8902some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8903alias analysis must be disabled}. Use the option
8904@option{-fno-strict-aliasing} to compile the generated parser.
8905
8906@item
8907There might be portability issues we are not aware of.
8908@end itemize
8909
a6ca4ce2 8910As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8911is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8912
8913@node C++ Location Values
8914@subsection C++ Location Values
8915@c - %locations
8916@c - class Position
8917@c - class Location
16dc6a9e 8918@c - %define filename_type "const symbol::Symbol"
12545799
AD
8919
8920When the directive @code{%locations} is used, the C++ parser supports
8921location tracking, see @ref{Locations, , Locations Overview}. Two
8922auxiliary classes define a @code{position}, a single point in a file,
8923and a @code{location}, a range composed of a pair of
8924@code{position}s (possibly spanning several files).
8925
fa4d969f 8926@deftypemethod {position} {std::string*} file
12545799
AD
8927The name of the file. It will always be handled as a pointer, the
8928parser will never duplicate nor deallocate it. As an experimental
8929feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8930filename_type "@var{type}"}.
12545799
AD
8931@end deftypemethod
8932
8933@deftypemethod {position} {unsigned int} line
8934The line, starting at 1.
8935@end deftypemethod
8936
8937@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8938Advance by @var{height} lines, resetting the column number.
8939@end deftypemethod
8940
8941@deftypemethod {position} {unsigned int} column
8942The column, starting at 0.
8943@end deftypemethod
8944
8945@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8946Advance by @var{width} columns, without changing the line number.
8947@end deftypemethod
8948
8949@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8950@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8951@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8952@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8953Various forms of syntactic sugar for @code{columns}.
8954@end deftypemethod
8955
8956@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8957Report @var{p} on @var{o} like this:
fa4d969f
PE
8958@samp{@var{file}:@var{line}.@var{column}}, or
8959@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8960@end deftypemethod
8961
8962@deftypemethod {location} {position} begin
8963@deftypemethodx {location} {position} end
8964The first, inclusive, position of the range, and the first beyond.
8965@end deftypemethod
8966
8967@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8968@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8969Advance the @code{end} position.
8970@end deftypemethod
8971
8972@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8973@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8974@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8975Various forms of syntactic sugar.
8976@end deftypemethod
8977
8978@deftypemethod {location} {void} step ()
8979Move @code{begin} onto @code{end}.
8980@end deftypemethod
8981
8982
8983@node C++ Parser Interface
8984@subsection C++ Parser Interface
8985@c - define parser_class_name
8986@c - Ctor
8987@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8988@c debug_stream.
8989@c - Reporting errors
8990
8991The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8992declare and define the parser class in the namespace @code{yy}. The
8993class name defaults to @code{parser}, but may be changed using
16dc6a9e 8994@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8995this class is detailed below. It can be extended using the
12545799
AD
8996@code{%parse-param} feature: its semantics is slightly changed since
8997it describes an additional member of the parser class, and an
8998additional argument for its constructor.
8999
3cdc21cf
AD
9000@defcv {Type} {parser} {semantic_type}
9001@defcvx {Type} {parser} {location_type}
9002The types for semantic values and locations (if enabled).
9003@end defcv
9004
86e5b440
AD
9005@defcv {Type} {parser} {token}
9006A structure that contains (only) the definition of the tokens as the
9007@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9008scanner should use @code{yy::parser::token::FOO}. The scanner can use
9009@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9010(@pxref{Calc++ Scanner}).
9011@end defcv
9012
3cdc21cf
AD
9013@defcv {Type} {parser} {syntax_error}
9014This class derives from @code{std::runtime_error}. Throw instances of it
9015from user actions to raise parse errors. This is equivalent with first
9016invoking @code{error} to report the location and message of the syntax
9017error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9018But contrary to @code{YYERROR} which can only be invoked from user actions
9019(i.e., written in the action itself), the exception can be thrown from
9020function invoked from the user action.
8a0adb01 9021@end defcv
12545799
AD
9022
9023@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9024Build a new parser object. There are no arguments by default, unless
9025@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9026@end deftypemethod
9027
3cdc21cf
AD
9028@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9029@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9030Instantiate a syntax-error exception.
9031@end deftypemethod
9032
12545799
AD
9033@deftypemethod {parser} {int} parse ()
9034Run the syntactic analysis, and return 0 on success, 1 otherwise.
9035@end deftypemethod
9036
9037@deftypemethod {parser} {std::ostream&} debug_stream ()
9038@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9039Get or set the stream used for tracing the parsing. It defaults to
9040@code{std::cerr}.
9041@end deftypemethod
9042
9043@deftypemethod {parser} {debug_level_type} debug_level ()
9044@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9045Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9046or nonzero, full tracing.
12545799
AD
9047@end deftypemethod
9048
9049@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9050@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9051The definition for this member function must be supplied by the user:
9052the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9053described by @var{m}. If location tracking is not enabled, the second
9054signature is used.
12545799
AD
9055@end deftypemethod
9056
9057
9058@node C++ Scanner Interface
9059@subsection C++ Scanner Interface
9060@c - prefix for yylex.
9061@c - Pure interface to yylex
9062@c - %lex-param
9063
9064The parser invokes the scanner by calling @code{yylex}. Contrary to C
9065parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9066@samp{%define api.pure} directive. The actual interface with @code{yylex}
9067depends whether you use unions, or variants.
12545799 9068
3cdc21cf
AD
9069@menu
9070* Split Symbols:: Passing symbols as two/three components
9071* Complete Symbols:: Making symbols a whole
9072@end menu
9073
9074@node Split Symbols
9075@subsubsection Split Symbols
9076
9077Therefore the interface is as follows.
9078
86e5b440
AD
9079@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9080@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9081Return the next token. Its type is the return value, its semantic value and
9082location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9083@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9084@end deftypemethod
9085
3cdc21cf
AD
9086Note that when using variants, the interface for @code{yylex} is the same,
9087but @code{yylval} is handled differently.
9088
9089Regular union-based code in Lex scanner typically look like:
9090
9091@example
9092[0-9]+ @{
9093 yylval.ival = text_to_int (yytext);
9094 return yy::parser::INTEGER;
9095 @}
9096[a-z]+ @{
9097 yylval.sval = new std::string (yytext);
9098 return yy::parser::IDENTIFIER;
9099 @}
9100@end example
9101
9102Using variants, @code{yylval} is already constructed, but it is not
9103initialized. So the code would look like:
9104
9105@example
9106[0-9]+ @{
9107 yylval.build<int>() = text_to_int (yytext);
9108 return yy::parser::INTEGER;
9109 @}
9110[a-z]+ @{
9111 yylval.build<std::string> = yytext;
9112 return yy::parser::IDENTIFIER;
9113 @}
9114@end example
9115
9116@noindent
9117or
9118
9119@example
9120[0-9]+ @{
9121 yylval.build(text_to_int (yytext));
9122 return yy::parser::INTEGER;
9123 @}
9124[a-z]+ @{
9125 yylval.build(yytext);
9126 return yy::parser::IDENTIFIER;
9127 @}
9128@end example
9129
9130
9131@node Complete Symbols
9132@subsubsection Complete Symbols
9133
9134If you specified both @code{%define variant} and @code{%define lex_symbol},
9135the @code{parser} class also defines the class @code{parser::symbol_type}
9136which defines a @emph{complete} symbol, aggregating its type (i.e., the
9137traditional value returned by @code{yylex}), its semantic value (i.e., the
9138value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9139
9140@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9141Build a complete terminal symbol which token type is @var{type}, and which
9142semantic value is @var{value}. If location tracking is enabled, also pass
9143the @var{location}.
9144@end deftypemethod
9145
9146This interface is low-level and should not be used for two reasons. First,
9147it is inconvenient, as you still have to build the semantic value, which is
9148a variant, and second, because consistency is not enforced: as with unions,
9149it is still possible to give an integer as semantic value for a string.
9150
9151So for each token type, Bison generates named constructors as follows.
9152
9153@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9154@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9155Build a complete terminal symbol for the token type @var{token} (not
9156including the @code{api.tokens.prefix}) whose possible semantic value is
9157@var{value} of adequate @var{value_type}. If location tracking is enabled,
9158also pass the @var{location}.
9159@end deftypemethod
9160
9161For instance, given the following declarations:
9162
9163@example
9164%define api.tokens.prefix "TOK_"
9165%token <std::string> IDENTIFIER;
9166%token <int> INTEGER;
9167%token COLON;
9168@end example
9169
9170@noindent
9171Bison generates the following functions:
9172
9173@example
9174symbol_type make_IDENTIFIER(const std::string& v,
9175 const location_type& l);
9176symbol_type make_INTEGER(const int& v,
9177 const location_type& loc);
9178symbol_type make_COLON(const location_type& loc);
9179@end example
9180
9181@noindent
9182which should be used in a Lex-scanner as follows.
9183
9184@example
9185[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9186[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9187":" return yy::parser::make_COLON(loc);
9188@end example
9189
9190Tokens that do not have an identifier are not accessible: you cannot simply
9191use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9192
9193@node A Complete C++ Example
8405b70c 9194@subsection A Complete C++ Example
12545799
AD
9195
9196This section demonstrates the use of a C++ parser with a simple but
9197complete example. This example should be available on your system,
3cdc21cf 9198ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9199focuses on the use of Bison, therefore the design of the various C++
9200classes is very naive: no accessors, no encapsulation of members etc.
9201We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9202demonstrate the various interactions. A hand-written scanner is
12545799
AD
9203actually easier to interface with.
9204
9205@menu
9206* Calc++ --- C++ Calculator:: The specifications
9207* Calc++ Parsing Driver:: An active parsing context
9208* Calc++ Parser:: A parser class
9209* Calc++ Scanner:: A pure C++ Flex scanner
9210* Calc++ Top Level:: Conducting the band
9211@end menu
9212
9213@node Calc++ --- C++ Calculator
8405b70c 9214@subsubsection Calc++ --- C++ Calculator
12545799
AD
9215
9216Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9217expression, possibly preceded by variable assignments. An
12545799
AD
9218environment containing possibly predefined variables such as
9219@code{one} and @code{two}, is exchanged with the parser. An example
9220of valid input follows.
9221
9222@example
9223three := 3
9224seven := one + two * three
9225seven * seven
9226@end example
9227
9228@node Calc++ Parsing Driver
8405b70c 9229@subsubsection Calc++ Parsing Driver
12545799
AD
9230@c - An env
9231@c - A place to store error messages
9232@c - A place for the result
9233
9234To support a pure interface with the parser (and the scanner) the
9235technique of the ``parsing context'' is convenient: a structure
9236containing all the data to exchange. Since, in addition to simply
9237launch the parsing, there are several auxiliary tasks to execute (open
9238the file for parsing, instantiate the parser etc.), we recommend
9239transforming the simple parsing context structure into a fully blown
9240@dfn{parsing driver} class.
9241
9242The declaration of this driver class, @file{calc++-driver.hh}, is as
9243follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9244required standard library components, and the declaration of the parser
9245class.
12545799 9246
1c59e0a1 9247@comment file: calc++-driver.hh
12545799
AD
9248@example
9249#ifndef CALCXX_DRIVER_HH
9250# define CALCXX_DRIVER_HH
9251# include <string>
9252# include <map>
fb9712a9 9253# include "calc++-parser.hh"
12545799
AD
9254@end example
9255
12545799
AD
9256
9257@noindent
9258Then comes the declaration of the scanning function. Flex expects
9259the signature of @code{yylex} to be defined in the macro
9260@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9261factor both as follows.
1c59e0a1
AD
9262
9263@comment file: calc++-driver.hh
12545799 9264@example
3dc5e96b 9265// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9266# define YY_DECL \
9267 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9268// ... and declare it for the parser's sake.
9269YY_DECL;
9270@end example
9271
9272@noindent
9273The @code{calcxx_driver} class is then declared with its most obvious
9274members.
9275
1c59e0a1 9276@comment file: calc++-driver.hh
12545799
AD
9277@example
9278// Conducting the whole scanning and parsing of Calc++.
9279class calcxx_driver
9280@{
9281public:
9282 calcxx_driver ();
9283 virtual ~calcxx_driver ();
9284
9285 std::map<std::string, int> variables;
9286
9287 int result;
9288@end example
9289
9290@noindent
3cdc21cf
AD
9291To encapsulate the coordination with the Flex scanner, it is useful to have
9292member functions to open and close the scanning phase.
12545799 9293
1c59e0a1 9294@comment file: calc++-driver.hh
12545799
AD
9295@example
9296 // Handling the scanner.
9297 void scan_begin ();
9298 void scan_end ();
9299 bool trace_scanning;
9300@end example
9301
9302@noindent
9303Similarly for the parser itself.
9304
1c59e0a1 9305@comment file: calc++-driver.hh
12545799 9306@example
3cdc21cf
AD
9307 // Run the parser on file F.
9308 // Return 0 on success.
bb32f4f2 9309 int parse (const std::string& f);
3cdc21cf
AD
9310 // The name of the file being parsed.
9311 // Used later to pass the file name to the location tracker.
12545799 9312 std::string file;
3cdc21cf 9313 // Whether parser traces should be generated.
12545799
AD
9314 bool trace_parsing;
9315@end example
9316
9317@noindent
9318To demonstrate pure handling of parse errors, instead of simply
9319dumping them on the standard error output, we will pass them to the
9320compiler driver using the following two member functions. Finally, we
9321close the class declaration and CPP guard.
9322
1c59e0a1 9323@comment file: calc++-driver.hh
12545799
AD
9324@example
9325 // Error handling.
9326 void error (const yy::location& l, const std::string& m);
9327 void error (const std::string& m);
9328@};
9329#endif // ! CALCXX_DRIVER_HH
9330@end example
9331
9332The implementation of the driver is straightforward. The @code{parse}
9333member function deserves some attention. The @code{error} functions
9334are simple stubs, they should actually register the located error
9335messages and set error state.
9336
1c59e0a1 9337@comment file: calc++-driver.cc
12545799
AD
9338@example
9339#include "calc++-driver.hh"
9340#include "calc++-parser.hh"
9341
9342calcxx_driver::calcxx_driver ()
9343 : trace_scanning (false), trace_parsing (false)
9344@{
9345 variables["one"] = 1;
9346 variables["two"] = 2;
9347@}
9348
9349calcxx_driver::~calcxx_driver ()
9350@{
9351@}
9352
bb32f4f2 9353int
12545799
AD
9354calcxx_driver::parse (const std::string &f)
9355@{
9356 file = f;
9357 scan_begin ();
9358 yy::calcxx_parser parser (*this);
9359 parser.set_debug_level (trace_parsing);
bb32f4f2 9360 int res = parser.parse ();
12545799 9361 scan_end ();
bb32f4f2 9362 return res;
12545799
AD
9363@}
9364
9365void
9366calcxx_driver::error (const yy::location& l, const std::string& m)
9367@{
9368 std::cerr << l << ": " << m << std::endl;
9369@}
9370
9371void
9372calcxx_driver::error (const std::string& m)
9373@{
9374 std::cerr << m << std::endl;
9375@}
9376@end example
9377
9378@node Calc++ Parser
8405b70c 9379@subsubsection Calc++ Parser
12545799 9380
b50d2359 9381The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9382the C++ deterministic parser skeleton, the creation of the parser header
9383file, and specifies the name of the parser class.
9384Because the C++ skeleton changed several times, it is safer to require
9385the version you designed the grammar for.
1c59e0a1
AD
9386
9387@comment file: calc++-parser.yy
12545799 9388@example
ed4d67dc 9389%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9390%require "@value{VERSION}"
12545799 9391%defines
16dc6a9e 9392%define parser_class_name "calcxx_parser"
fb9712a9
AD
9393@end example
9394
3cdc21cf
AD
9395@noindent
9396@findex %define variant
9397@findex %define lex_symbol
9398This example will use genuine C++ objects as semantic values, therefore, we
9399require the variant-based interface. To make sure we properly use it, we
9400enable assertions. To fully benefit from type-safety and more natural
9401definition of ``symbol'', we enable @code{lex_symbol}.
9402
9403@comment file: calc++-parser.yy
9404@example
9405%define variant
9406%define parse.assert
9407%define lex_symbol
9408@end example
9409
fb9712a9 9410@noindent
16dc6a9e 9411@findex %code requires
3cdc21cf
AD
9412Then come the declarations/inclusions needed by the semantic values.
9413Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9414to include the header of the other, which is, of course, insane. This
3cdc21cf 9415mutual dependency will be broken using forward declarations. Because the
fb9712a9 9416driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9417particular its inner types), it is the parser's header which will use a
9418forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9419
9420@comment file: calc++-parser.yy
9421@example
3cdc21cf
AD
9422%code requires
9423@{
12545799 9424# include <string>
fb9712a9 9425class calcxx_driver;
9bc0dd67 9426@}
12545799
AD
9427@end example
9428
9429@noindent
9430The driver is passed by reference to the parser and to the scanner.
9431This provides a simple but effective pure interface, not relying on
9432global variables.
9433
1c59e0a1 9434@comment file: calc++-parser.yy
12545799
AD
9435@example
9436// The parsing context.
2055a44e 9437%param @{ calcxx_driver& driver @}
12545799
AD
9438@end example
9439
9440@noindent
2055a44e 9441Then we request location tracking, and initialize the
f50bfcd6 9442first location's file name. Afterward new locations are computed
12545799 9443relatively to the previous locations: the file name will be
2055a44e 9444propagated.
12545799 9445
1c59e0a1 9446@comment file: calc++-parser.yy
12545799
AD
9447@example
9448%locations
9449%initial-action
9450@{
9451 // Initialize the initial location.
b47dbebe 9452 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9453@};
9454@end example
9455
9456@noindent
2055a44e 9457Use the following two directives to enable parser tracing and verbose
12545799
AD
9458error messages.
9459
1c59e0a1 9460@comment file: calc++-parser.yy
12545799 9461@example
fa819509 9462%define parse.trace
cf499cff 9463%define parse.error verbose
12545799
AD
9464@end example
9465
fb9712a9 9466@noindent
136a0f76
PB
9467@findex %code
9468The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9469@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9470
9471@comment file: calc++-parser.yy
9472@example
3cdc21cf
AD
9473%code
9474@{
fb9712a9 9475# include "calc++-driver.hh"
34f98f46 9476@}
fb9712a9
AD
9477@end example
9478
9479
12545799
AD
9480@noindent
9481The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9482allows for nicer error messages referring to ``end of file'' instead of
9483``$end''. Similarly user friendly names are provided for each symbol.
9484To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9485prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9486
1c59e0a1 9487@comment file: calc++-parser.yy
12545799 9488@example
4c6622c2 9489%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9490%token
9491 END 0 "end of file"
9492 ASSIGN ":="
9493 MINUS "-"
9494 PLUS "+"
9495 STAR "*"
9496 SLASH "/"
9497 LPAREN "("
9498 RPAREN ")"
9499;
12545799
AD
9500@end example
9501
9502@noindent
3cdc21cf
AD
9503Since we use variant-based semantic values, @code{%union} is not used, and
9504both @code{%type} and @code{%token} expect genuine types, as opposed to type
9505tags.
12545799 9506
1c59e0a1 9507@comment file: calc++-parser.yy
12545799 9508@example
3cdc21cf
AD
9509%token <std::string> IDENTIFIER "identifier"
9510%token <int> NUMBER "number"
9511%type <int> exp
9512@end example
9513
9514@noindent
9515No @code{%destructor} is needed to enable memory deallocation during error
9516recovery; the memory, for strings for instance, will be reclaimed by the
9517regular destructors. All the values are printed using their
9518@code{operator<<}.
12545799 9519
3cdc21cf
AD
9520@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9521@comment file: calc++-parser.yy
9522@example
9523%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9524@end example
9525
9526@noindent
3cdc21cf
AD
9527The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9528Location Tracking Calculator: @code{ltcalc}}).
12545799 9529
1c59e0a1 9530@comment file: calc++-parser.yy
12545799
AD
9531@example
9532%%
9533%start unit;
9534unit: assignments exp @{ driver.result = $2; @};
9535
99c08fb6
AD
9536assignments:
9537 assignments assignment @{@}
9538| /* Nothing. */ @{@};
12545799 9539
3dc5e96b 9540assignment:
3cdc21cf 9541 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9542
3cdc21cf
AD
9543%left "+" "-";
9544%left "*" "/";
99c08fb6 9545exp:
3cdc21cf
AD
9546 exp "+" exp @{ $$ = $1 + $3; @}
9547| exp "-" exp @{ $$ = $1 - $3; @}
9548| exp "*" exp @{ $$ = $1 * $3; @}
9549| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9550| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9551| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9552| "number" @{ std::swap ($$, $1); @};
12545799
AD
9553%%
9554@end example
9555
9556@noindent
9557Finally the @code{error} member function registers the errors to the
9558driver.
9559
1c59e0a1 9560@comment file: calc++-parser.yy
12545799
AD
9561@example
9562void
3cdc21cf 9563yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9564 const std::string& m)
12545799
AD
9565@{
9566 driver.error (l, m);
9567@}
9568@end example
9569
9570@node Calc++ Scanner
8405b70c 9571@subsubsection Calc++ Scanner
12545799
AD
9572
9573The Flex scanner first includes the driver declaration, then the
9574parser's to get the set of defined tokens.
9575
1c59e0a1 9576@comment file: calc++-scanner.ll
12545799
AD
9577@example
9578%@{ /* -*- C++ -*- */
3c248d70
AD
9579# include <cerrno>
9580# include <climits>
3cdc21cf 9581# include <cstdlib>
12545799
AD
9582# include <string>
9583# include "calc++-driver.hh"
9584# include "calc++-parser.hh"
eaea13f5 9585
3cdc21cf
AD
9586// Work around an incompatibility in flex (at least versions
9587// 2.5.31 through 2.5.33): it generates code that does
9588// not conform to C89. See Debian bug 333231
9589// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9590# undef yywrap
9591# define yywrap() 1
eaea13f5 9592
3cdc21cf
AD
9593// The location of the current token.
9594static yy::location loc;
12545799
AD
9595%@}
9596@end example
9597
9598@noindent
9599Because there is no @code{#include}-like feature we don't need
9600@code{yywrap}, we don't need @code{unput} either, and we parse an
9601actual file, this is not an interactive session with the user.
3cdc21cf 9602Finally, we enable scanner tracing.
12545799 9603
1c59e0a1 9604@comment file: calc++-scanner.ll
12545799
AD
9605@example
9606%option noyywrap nounput batch debug
9607@end example
9608
9609@noindent
9610Abbreviations allow for more readable rules.
9611
1c59e0a1 9612@comment file: calc++-scanner.ll
12545799
AD
9613@example
9614id [a-zA-Z][a-zA-Z_0-9]*
9615int [0-9]+
9616blank [ \t]
9617@end example
9618
9619@noindent
9d9b8b70 9620The following paragraph suffices to track locations accurately. Each
12545799 9621time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9622position. Then when a pattern is matched, its width is added to the end
9623column. When matching ends of lines, the end
12545799
AD
9624cursor is adjusted, and each time blanks are matched, the begin cursor
9625is moved onto the end cursor to effectively ignore the blanks
9626preceding tokens. Comments would be treated equally.
9627
1c59e0a1 9628@comment file: calc++-scanner.ll
12545799 9629@example
828c373b 9630%@{
3cdc21cf
AD
9631 // Code run each time a pattern is matched.
9632 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9633%@}
12545799
AD
9634%%
9635%@{
3cdc21cf
AD
9636 // Code run each time yylex is called.
9637 loc.step ();
12545799 9638%@}
3cdc21cf
AD
9639@{blank@}+ loc.step ();
9640[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9641@end example
9642
9643@noindent
3cdc21cf 9644The rules are simple. The driver is used to report errors.
12545799 9645
1c59e0a1 9646@comment file: calc++-scanner.ll
12545799 9647@example
3cdc21cf
AD
9648"-" return yy::calcxx_parser::make_MINUS(loc);
9649"+" return yy::calcxx_parser::make_PLUS(loc);
9650"*" return yy::calcxx_parser::make_STAR(loc);
9651"/" return yy::calcxx_parser::make_SLASH(loc);
9652"(" return yy::calcxx_parser::make_LPAREN(loc);
9653")" return yy::calcxx_parser::make_RPAREN(loc);
9654":=" return yy::calcxx_parser::make_ASSIGN(loc);
9655
04098407
PE
9656@{int@} @{
9657 errno = 0;
9658 long n = strtol (yytext, NULL, 10);
9659 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9660 driver.error (loc, "integer is out of range");
9661 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9662@}
3cdc21cf
AD
9663@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9664. driver.error (loc, "invalid character");
9665<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9666%%
9667@end example
9668
9669@noindent
3cdc21cf 9670Finally, because the scanner-related driver's member-functions depend
12545799
AD
9671on the scanner's data, it is simpler to implement them in this file.
9672
1c59e0a1 9673@comment file: calc++-scanner.ll
12545799
AD
9674@example
9675void
9676calcxx_driver::scan_begin ()
9677@{
9678 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9679 if (file == "-")
9680 yyin = stdin;
9681 else if (!(yyin = fopen (file.c_str (), "r")))
9682 @{
3cdc21cf 9683 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9684 exit (1);
9685 @}
12545799
AD
9686@}
9687
9688void
9689calcxx_driver::scan_end ()
9690@{
9691 fclose (yyin);
9692@}
9693@end example
9694
9695@node Calc++ Top Level
8405b70c 9696@subsubsection Calc++ Top Level
12545799
AD
9697
9698The top level file, @file{calc++.cc}, poses no problem.
9699
1c59e0a1 9700@comment file: calc++.cc
12545799
AD
9701@example
9702#include <iostream>
9703#include "calc++-driver.hh"
9704
9705int
fa4d969f 9706main (int argc, char *argv[])
12545799 9707@{
414c76a4 9708 int res = 0;
12545799
AD
9709 calcxx_driver driver;
9710 for (++argv; argv[0]; ++argv)
9711 if (*argv == std::string ("-p"))
9712 driver.trace_parsing = true;
9713 else if (*argv == std::string ("-s"))
9714 driver.trace_scanning = true;
bb32f4f2
AD
9715 else if (!driver.parse (*argv))
9716 std::cout << driver.result << std::endl;
414c76a4
AD
9717 else
9718 res = 1;
9719 return res;
12545799
AD
9720@}
9721@end example
9722
8405b70c
PB
9723@node Java Parsers
9724@section Java Parsers
9725
9726@menu
f5f419de
DJ
9727* Java Bison Interface:: Asking for Java parser generation
9728* Java Semantic Values:: %type and %token vs. Java
9729* Java Location Values:: The position and location classes
9730* Java Parser Interface:: Instantiating and running the parser
9731* Java Scanner Interface:: Specifying the scanner for the parser
9732* Java Action Features:: Special features for use in actions
9733* Java Differences:: Differences between C/C++ and Java Grammars
9734* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9735@end menu
9736
9737@node Java Bison Interface
9738@subsection Java Bison Interface
9739@c - %language "Java"
8405b70c 9740
59da312b
JD
9741(The current Java interface is experimental and may evolve.
9742More user feedback will help to stabilize it.)
9743
e254a580
DJ
9744The Java parser skeletons are selected using the @code{%language "Java"}
9745directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9746
e254a580
DJ
9747@c FIXME: Documented bug.
9748When generating a Java parser, @code{bison @var{basename}.y} will create
9749a single Java source file named @file{@var{basename}.java}. Using an
9750input file without a @file{.y} suffix is currently broken. The basename
9751of the output file can be changed by the @code{%file-prefix} directive
9752or the @option{-p}/@option{--name-prefix} option. The entire output file
9753name can be changed by the @code{%output} directive or the
9754@option{-o}/@option{--output} option. The output file contains a single
9755class for the parser.
8405b70c 9756
e254a580 9757You can create documentation for generated parsers using Javadoc.
8405b70c 9758
e254a580
DJ
9759Contrary to C parsers, Java parsers do not use global variables; the
9760state of the parser is always local to an instance of the parser class.
9761Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9762and @samp{%define api.pure} directives does not do anything when used in
e254a580 9763Java.
8405b70c 9764
e254a580 9765Push parsers are currently unsupported in Java and @code{%define
67212941 9766api.push-pull} have no effect.
01b477c6 9767
8a4281b9 9768GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9769@code{glr-parser} directive.
9770
9771No header file can be generated for Java parsers. Do not use the
9772@code{%defines} directive or the @option{-d}/@option{--defines} options.
9773
9774@c FIXME: Possible code change.
fa819509
AD
9775Currently, support for tracing is always compiled
9776in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9777directives and the
e254a580
DJ
9778@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9779options have no effect. This may change in the future to eliminate
fa819509
AD
9780unused code in the generated parser, so use @samp{%define parse.trace}
9781explicitly
1979121c 9782if needed. Also, in the future the
e254a580
DJ
9783@code{%token-table} directive might enable a public interface to
9784access the token names and codes.
8405b70c 9785
09ccae9b 9786Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9787hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9788Try reducing the amount of code in actions and static initializers;
9789otherwise, report a bug so that the parser skeleton will be improved.
9790
9791
8405b70c
PB
9792@node Java Semantic Values
9793@subsection Java Semantic Values
9794@c - No %union, specify type in %type/%token.
9795@c - YYSTYPE
9796@c - Printer and destructor
9797
9798There is no @code{%union} directive in Java parsers. Instead, the
9799semantic values' types (class names) should be specified in the
9800@code{%type} or @code{%token} directive:
9801
9802@example
9803%type <Expression> expr assignment_expr term factor
9804%type <Integer> number
9805@end example
9806
9807By default, the semantic stack is declared to have @code{Object} members,
9808which means that the class types you specify can be of any class.
9809To improve the type safety of the parser, you can declare the common
67501061 9810superclass of all the semantic values using the @samp{%define stype}
e254a580 9811directive. For example, after the following declaration:
8405b70c
PB
9812
9813@example
e254a580 9814%define stype "ASTNode"
8405b70c
PB
9815@end example
9816
9817@noindent
9818any @code{%type} or @code{%token} specifying a semantic type which
9819is not a subclass of ASTNode, will cause a compile-time error.
9820
e254a580 9821@c FIXME: Documented bug.
8405b70c
PB
9822Types used in the directives may be qualified with a package name.
9823Primitive data types are accepted for Java version 1.5 or later. Note
9824that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9825Generic types may not be used; this is due to a limitation in the
9826implementation of Bison, and may change in future releases.
8405b70c
PB
9827
9828Java parsers do not support @code{%destructor}, since the language
9829adopts garbage collection. The parser will try to hold references
9830to semantic values for as little time as needed.
9831
9832Java parsers do not support @code{%printer}, as @code{toString()}
9833can be used to print the semantic values. This however may change
9834(in a backwards-compatible way) in future versions of Bison.
9835
9836
9837@node Java Location Values
9838@subsection Java Location Values
9839@c - %locations
9840@c - class Position
9841@c - class Location
9842
9843When the directive @code{%locations} is used, the Java parser
9844supports location tracking, see @ref{Locations, , Locations Overview}.
9845An auxiliary user-defined class defines a @dfn{position}, a single point
9846in a file; Bison itself defines a class representing a @dfn{location},
9847a range composed of a pair of positions (possibly spanning several
9848files). The location class is an inner class of the parser; the name
e254a580 9849is @code{Location} by default, and may also be renamed using
cf499cff 9850@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9851
9852The location class treats the position as a completely opaque value.
9853By default, the class name is @code{Position}, but this can be changed
67501061 9854with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9855be supplied by the user.
8405b70c
PB
9856
9857
e254a580
DJ
9858@deftypeivar {Location} {Position} begin
9859@deftypeivarx {Location} {Position} end
8405b70c 9860The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9861@end deftypeivar
9862
9863@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9864Create a @code{Location} denoting an empty range located at a given point.
e254a580 9865@end deftypeop
8405b70c 9866
e254a580
DJ
9867@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9868Create a @code{Location} from the endpoints of the range.
9869@end deftypeop
9870
9871@deftypemethod {Location} {String} toString ()
8405b70c
PB
9872Prints the range represented by the location. For this to work
9873properly, the position class should override the @code{equals} and
9874@code{toString} methods appropriately.
9875@end deftypemethod
9876
9877
9878@node Java Parser Interface
9879@subsection Java Parser Interface
9880@c - define parser_class_name
9881@c - Ctor
9882@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9883@c debug_stream.
9884@c - Reporting errors
9885
e254a580
DJ
9886The name of the generated parser class defaults to @code{YYParser}. The
9887@code{YY} prefix may be changed using the @code{%name-prefix} directive
9888or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9889@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9890the class. The interface of this class is detailed below.
8405b70c 9891
e254a580 9892By default, the parser class has package visibility. A declaration
67501061 9893@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9894according to the Java language specification, the name of the @file{.java}
9895file should match the name of the class in this case. Similarly, you can
9896use @code{abstract}, @code{final} and @code{strictfp} with the
9897@code{%define} declaration to add other modifiers to the parser class.
67501061 9898A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9899be used to add any number of annotations to the parser class.
e254a580
DJ
9900
9901The Java package name of the parser class can be specified using the
67501061 9902@samp{%define package} directive. The superclass and the implemented
e254a580 9903interfaces of the parser class can be specified with the @code{%define
67501061 9904extends} and @samp{%define implements} directives.
e254a580
DJ
9905
9906The parser class defines an inner class, @code{Location}, that is used
9907for location tracking (see @ref{Java Location Values}), and a inner
9908interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9909these inner class/interface, and the members described in the interface
9910below, all the other members and fields are preceded with a @code{yy} or
9911@code{YY} prefix to avoid clashes with user code.
9912
e254a580
DJ
9913The parser class can be extended using the @code{%parse-param}
9914directive. Each occurrence of the directive will add a @code{protected
9915final} field to the parser class, and an argument to its constructor,
9916which initialize them automatically.
9917
e254a580
DJ
9918@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9919Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9920no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9921@code{%lex-param}s are used.
1979121c
DJ
9922
9923Use @code{%code init} for code added to the start of the constructor
9924body. This is especially useful to initialize superclasses. Use
f50bfcd6 9925@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9926@end deftypeop
9927
9928@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9929Build a new parser object using the specified scanner. There are no
2055a44e
AD
9930additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9931used.
e254a580
DJ
9932
9933If the scanner is defined by @code{%code lexer}, this constructor is
9934declared @code{protected} and is called automatically with a scanner
2055a44e 9935created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9936
9937Use @code{%code init} for code added to the start of the constructor
9938body. This is especially useful to initialize superclasses. Use
67501061 9939@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9940@end deftypeop
8405b70c
PB
9941
9942@deftypemethod {YYParser} {boolean} parse ()
9943Run the syntactic analysis, and return @code{true} on success,
9944@code{false} otherwise.
9945@end deftypemethod
9946
1979121c
DJ
9947@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9948@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9949Get or set the option to produce verbose error messages. These are only
cf499cff 9950available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9951verbose error messages.
9952@end deftypemethod
9953
9954@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9955@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9956@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9957Print an error message using the @code{yyerror} method of the scanner
9958instance in use. The @code{Location} and @code{Position} parameters are
9959available only if location tracking is active.
9960@end deftypemethod
9961
01b477c6 9962@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9963During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9964from a syntax error.
9965@xref{Error Recovery}.
8405b70c
PB
9966@end deftypemethod
9967
9968@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9969@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9970Get or set the stream used for tracing the parsing. It defaults to
9971@code{System.err}.
9972@end deftypemethod
9973
9974@deftypemethod {YYParser} {int} getDebugLevel ()
9975@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9976Get or set the tracing level. Currently its value is either 0, no trace,
9977or nonzero, full tracing.
9978@end deftypemethod
9979
1979121c
DJ
9980@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9981@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9982Identify the Bison version and skeleton used to generate this parser.
9983@end deftypecv
9984
8405b70c
PB
9985
9986@node Java Scanner Interface
9987@subsection Java Scanner Interface
01b477c6 9988@c - %code lexer
8405b70c 9989@c - %lex-param
01b477c6 9990@c - Lexer interface
8405b70c 9991
e254a580
DJ
9992There are two possible ways to interface a Bison-generated Java parser
9993with a scanner: the scanner may be defined by @code{%code lexer}, or
9994defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9995@code{Lexer} inner interface of the parser class. This interface also
9996contain constants for all user-defined token names and the predefined
9997@code{EOF} token.
e254a580
DJ
9998
9999In the first case, the body of the scanner class is placed in
10000@code{%code lexer} blocks. If you want to pass parameters from the
10001parser constructor to the scanner constructor, specify them with
10002@code{%lex-param}; they are passed before @code{%parse-param}s to the
10003constructor.
01b477c6 10004
59c5ac72 10005In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10006which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10007The constructor of the parser object will then accept an object
10008implementing the interface; @code{%lex-param} is not used in this
10009case.
10010
10011In both cases, the scanner has to implement the following methods.
10012
e254a580
DJ
10013@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10014This method is defined by the user to emit an error message. The first
10015parameter is omitted if location tracking is not active. Its type can be
67501061 10016changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10017@end deftypemethod
10018
e254a580 10019@deftypemethod {Lexer} {int} yylex ()
8405b70c 10020Return the next token. Its type is the return value, its semantic
f50bfcd6 10021value and location are saved and returned by the their methods in the
e254a580
DJ
10022interface.
10023
67501061 10024Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10025Default is @code{java.io.IOException}.
8405b70c
PB
10026@end deftypemethod
10027
10028@deftypemethod {Lexer} {Position} getStartPos ()
10029@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10030Return respectively the first position of the last token that
10031@code{yylex} returned, and the first position beyond it. These
10032methods are not needed unless location tracking is active.
8405b70c 10033
67501061 10034The return type can be changed using @samp{%define position_type
8405b70c
PB
10035"@var{class-name}".}
10036@end deftypemethod
10037
10038@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10039Return the semantic value of the last token that yylex returned.
8405b70c 10040
67501061 10041The return type can be changed using @samp{%define stype
8405b70c
PB
10042"@var{class-name}".}
10043@end deftypemethod
10044
10045
e254a580
DJ
10046@node Java Action Features
10047@subsection Special Features for Use in Java Actions
10048
10049The following special constructs can be uses in Java actions.
10050Other analogous C action features are currently unavailable for Java.
10051
67501061 10052Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10053actions, and initial actions specified by @code{%initial-action}.
10054
10055@defvar $@var{n}
10056The semantic value for the @var{n}th component of the current rule.
10057This may not be assigned to.
10058@xref{Java Semantic Values}.
10059@end defvar
10060
10061@defvar $<@var{typealt}>@var{n}
10062Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10063@xref{Java Semantic Values}.
10064@end defvar
10065
10066@defvar $$
10067The semantic value for the grouping made by the current rule. As a
10068value, this is in the base type (@code{Object} or as specified by
67501061 10069@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10070casts are not allowed on the left-hand side of Java assignments.
10071Use an explicit Java cast if the correct subtype is needed.
10072@xref{Java Semantic Values}.
10073@end defvar
10074
10075@defvar $<@var{typealt}>$
10076Same as @code{$$} since Java always allow assigning to the base type.
10077Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10078for setting the value but there is currently no easy way to distinguish
10079these constructs.
10080@xref{Java Semantic Values}.
10081@end defvar
10082
10083@defvar @@@var{n}
10084The location information of the @var{n}th component of the current rule.
10085This may not be assigned to.
10086@xref{Java Location Values}.
10087@end defvar
10088
10089@defvar @@$
10090The location information of the grouping made by the current rule.
10091@xref{Java Location Values}.
10092@end defvar
10093
10094@deffn {Statement} {return YYABORT;}
10095Return immediately from the parser, indicating failure.
10096@xref{Java Parser Interface}.
10097@end deffn
8405b70c 10098
e254a580
DJ
10099@deffn {Statement} {return YYACCEPT;}
10100Return immediately from the parser, indicating success.
10101@xref{Java Parser Interface}.
10102@end deffn
8405b70c 10103
e254a580 10104@deffn {Statement} {return YYERROR;}
c265fd6b 10105Start error recovery without printing an error message.
e254a580
DJ
10106@xref{Error Recovery}.
10107@end deffn
8405b70c 10108
e254a580
DJ
10109@deftypefn {Function} {boolean} recovering ()
10110Return whether error recovery is being done. In this state, the parser
10111reads token until it reaches a known state, and then restarts normal
10112operation.
10113@xref{Error Recovery}.
10114@end deftypefn
8405b70c 10115
1979121c
DJ
10116@deftypefn {Function} {void} yyerror (String @var{msg})
10117@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10118@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10119Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10120instance in use. The @code{Location} and @code{Position} parameters are
10121available only if location tracking is active.
e254a580 10122@end deftypefn
8405b70c 10123
8405b70c 10124
8405b70c
PB
10125@node Java Differences
10126@subsection Differences between C/C++ and Java Grammars
10127
10128The different structure of the Java language forces several differences
10129between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10130section summarizes these differences.
8405b70c
PB
10131
10132@itemize
10133@item
01b477c6 10134Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10135@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10136macros. Instead, they should be preceded by @code{return} when they
10137appear in an action. The actual definition of these symbols is
8405b70c
PB
10138opaque to the Bison grammar, and it might change in the future. The
10139only meaningful operation that you can do, is to return them.
e254a580 10140See @pxref{Java Action Features}.
8405b70c
PB
10141
10142Note that of these three symbols, only @code{YYACCEPT} and
10143@code{YYABORT} will cause a return from the @code{yyparse}
10144method@footnote{Java parsers include the actions in a separate
10145method than @code{yyparse} in order to have an intuitive syntax that
10146corresponds to these C macros.}.
10147
e254a580
DJ
10148@item
10149Java lacks unions, so @code{%union} has no effect. Instead, semantic
10150values have a common base type: @code{Object} or as specified by
f50bfcd6 10151@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10152@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10153an union. The type of @code{$$}, even with angle brackets, is the base
10154type since Java casts are not allow on the left-hand side of assignments.
10155Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10156left-hand side of assignments. See @pxref{Java Semantic Values} and
10157@pxref{Java Action Features}.
10158
8405b70c 10159@item
f50bfcd6 10160The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10161@table @asis
10162@item @code{%code imports}
10163blocks are placed at the beginning of the Java source code. They may
10164include copyright notices. For a @code{package} declarations, it is
67501061 10165suggested to use @samp{%define package} instead.
8405b70c 10166
01b477c6
PB
10167@item unqualified @code{%code}
10168blocks are placed inside the parser class.
10169
10170@item @code{%code lexer}
10171blocks, if specified, should include the implementation of the
10172scanner. If there is no such block, the scanner can be any class
10173that implements the appropriate interface (see @pxref{Java Scanner
10174Interface}).
29553547 10175@end table
8405b70c
PB
10176
10177Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10178In particular, @code{%@{ @dots{} %@}} blocks should not be used
10179and may give an error in future versions of Bison.
10180
01b477c6 10181The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10182be used to define other classes used by the parser @emph{outside}
10183the parser class.
8405b70c
PB
10184@end itemize
10185
e254a580
DJ
10186
10187@node Java Declarations Summary
10188@subsection Java Declarations Summary
10189
10190This summary only include declarations specific to Java or have special
10191meaning when used in a Java parser.
10192
10193@deffn {Directive} {%language "Java"}
10194Generate a Java class for the parser.
10195@end deffn
10196
10197@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10198A parameter for the lexer class defined by @code{%code lexer}
10199@emph{only}, added as parameters to the lexer constructor and the parser
10200constructor that @emph{creates} a lexer. Default is none.
10201@xref{Java Scanner Interface}.
10202@end deffn
10203
10204@deffn {Directive} %name-prefix "@var{prefix}"
10205The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10206@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10207@xref{Java Bison Interface}.
10208@end deffn
10209
10210@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10211A parameter for the parser class added as parameters to constructor(s)
10212and as fields initialized by the constructor(s). Default is none.
10213@xref{Java Parser Interface}.
10214@end deffn
10215
10216@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10217Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10218@xref{Java Semantic Values}.
10219@end deffn
10220
10221@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10222Declare the type of nonterminals. Note that the angle brackets enclose
10223a Java @emph{type}.
10224@xref{Java Semantic Values}.
10225@end deffn
10226
10227@deffn {Directive} %code @{ @var{code} @dots{} @}
10228Code appended to the inside of the parser class.
10229@xref{Java Differences}.
10230@end deffn
10231
10232@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10233Code inserted just after the @code{package} declaration.
10234@xref{Java Differences}.
10235@end deffn
10236
1979121c
DJ
10237@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10238Code inserted at the beginning of the parser constructor body.
10239@xref{Java Parser Interface}.
10240@end deffn
10241
e254a580
DJ
10242@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10243Code added to the body of a inner lexer class within the parser class.
10244@xref{Java Scanner Interface}.
10245@end deffn
10246
10247@deffn {Directive} %% @var{code} @dots{}
10248Code (after the second @code{%%}) appended to the end of the file,
10249@emph{outside} the parser class.
10250@xref{Java Differences}.
10251@end deffn
10252
10253@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10254Not supported. Use @code{%code imports} instead.
e254a580
DJ
10255@xref{Java Differences}.
10256@end deffn
10257
10258@deffn {Directive} {%define abstract}
10259Whether the parser class is declared @code{abstract}. Default is false.
10260@xref{Java Bison Interface}.
10261@end deffn
10262
1979121c
DJ
10263@deffn {Directive} {%define annotations} "@var{annotations}"
10264The Java annotations for the parser class. Default is none.
10265@xref{Java Bison Interface}.
10266@end deffn
10267
e254a580
DJ
10268@deffn {Directive} {%define extends} "@var{superclass}"
10269The superclass of the parser class. Default is none.
10270@xref{Java Bison Interface}.
10271@end deffn
10272
10273@deffn {Directive} {%define final}
10274Whether the parser class is declared @code{final}. Default is false.
10275@xref{Java Bison Interface}.
10276@end deffn
10277
10278@deffn {Directive} {%define implements} "@var{interfaces}"
10279The implemented interfaces of the parser class, a comma-separated list.
10280Default is none.
10281@xref{Java Bison Interface}.
10282@end deffn
10283
1979121c
DJ
10284@deffn {Directive} {%define init_throws} "@var{exceptions}"
10285The exceptions thrown by @code{%code init} from the parser class
10286constructor. Default is none.
10287@xref{Java Parser Interface}.
10288@end deffn
10289
e254a580
DJ
10290@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10291The exceptions thrown by the @code{yylex} method of the lexer, a
10292comma-separated list. Default is @code{java.io.IOException}.
10293@xref{Java Scanner Interface}.
10294@end deffn
10295
10296@deffn {Directive} {%define location_type} "@var{class}"
10297The name of the class used for locations (a range between two
10298positions). This class is generated as an inner class of the parser
10299class by @command{bison}. Default is @code{Location}.
10300@xref{Java Location Values}.
10301@end deffn
10302
10303@deffn {Directive} {%define package} "@var{package}"
10304The package to put the parser class in. Default is none.
10305@xref{Java Bison Interface}.
10306@end deffn
10307
10308@deffn {Directive} {%define parser_class_name} "@var{name}"
10309The name of the parser class. Default is @code{YYParser} or
10310@code{@var{name-prefix}Parser}.
10311@xref{Java Bison Interface}.
10312@end deffn
10313
10314@deffn {Directive} {%define position_type} "@var{class}"
10315The name of the class used for positions. This class must be supplied by
10316the user. Default is @code{Position}.
10317@xref{Java Location Values}.
10318@end deffn
10319
10320@deffn {Directive} {%define public}
10321Whether the parser class is declared @code{public}. Default is false.
10322@xref{Java Bison Interface}.
10323@end deffn
10324
10325@deffn {Directive} {%define stype} "@var{class}"
10326The base type of semantic values. Default is @code{Object}.
10327@xref{Java Semantic Values}.
10328@end deffn
10329
10330@deffn {Directive} {%define strictfp}
10331Whether the parser class is declared @code{strictfp}. Default is false.
10332@xref{Java Bison Interface}.
10333@end deffn
10334
10335@deffn {Directive} {%define throws} "@var{exceptions}"
10336The exceptions thrown by user-supplied parser actions and
10337@code{%initial-action}, a comma-separated list. Default is none.
10338@xref{Java Parser Interface}.
10339@end deffn
10340
10341
12545799 10342@c ================================================= FAQ
d1a1114f
AD
10343
10344@node FAQ
10345@chapter Frequently Asked Questions
10346@cindex frequently asked questions
10347@cindex questions
10348
10349Several questions about Bison come up occasionally. Here some of them
10350are addressed.
10351
10352@menu
55ba27be
AD
10353* Memory Exhausted:: Breaking the Stack Limits
10354* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10355* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10356* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10357* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10358* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10359* I can't build Bison:: Troubleshooting
10360* Where can I find help?:: Troubleshouting
10361* Bug Reports:: Troublereporting
8405b70c 10362* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10363* Beta Testing:: Experimenting development versions
10364* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10365@end menu
10366
1a059451
PE
10367@node Memory Exhausted
10368@section Memory Exhausted
d1a1114f
AD
10369
10370@display
1a059451 10371My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10372message. What can I do?
10373@end display
10374
10375This question is already addressed elsewhere, @xref{Recursion,
10376,Recursive Rules}.
10377
e64fec0a
PE
10378@node How Can I Reset the Parser
10379@section How Can I Reset the Parser
5b066063 10380
0e14ad77
PE
10381The following phenomenon has several symptoms, resulting in the
10382following typical questions:
5b066063
AD
10383
10384@display
10385I invoke @code{yyparse} several times, and on correct input it works
10386properly; but when a parse error is found, all the other calls fail
0e14ad77 10387too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10388@end display
10389
10390@noindent
10391or
10392
10393@display
0e14ad77 10394My parser includes support for an @samp{#include}-like feature, in
5b066063 10395which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10396although I did specify @samp{%define api.pure}.
5b066063
AD
10397@end display
10398
0e14ad77
PE
10399These problems typically come not from Bison itself, but from
10400Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10401speed, they might not notice a change of input file. As a
10402demonstration, consider the following source file,
10403@file{first-line.l}:
10404
10405@verbatim
10406%{
10407#include <stdio.h>
10408#include <stdlib.h>
10409%}
10410%%
10411.*\n ECHO; return 1;
10412%%
10413int
0e14ad77 10414yyparse (char const *file)
5b066063
AD
10415{
10416 yyin = fopen (file, "r");
10417 if (!yyin)
10418 exit (2);
fa7e68c3 10419 /* One token only. */
5b066063 10420 yylex ();
0e14ad77 10421 if (fclose (yyin) != 0)
5b066063
AD
10422 exit (3);
10423 return 0;
10424}
10425
10426int
0e14ad77 10427main (void)
5b066063
AD
10428{
10429 yyparse ("input");
10430 yyparse ("input");
10431 return 0;
10432}
10433@end verbatim
10434
10435@noindent
10436If the file @file{input} contains
10437
10438@verbatim
10439input:1: Hello,
10440input:2: World!
10441@end verbatim
10442
10443@noindent
0e14ad77 10444then instead of getting the first line twice, you get:
5b066063
AD
10445
10446@example
10447$ @kbd{flex -ofirst-line.c first-line.l}
10448$ @kbd{gcc -ofirst-line first-line.c -ll}
10449$ @kbd{./first-line}
10450input:1: Hello,
10451input:2: World!
10452@end example
10453
0e14ad77
PE
10454Therefore, whenever you change @code{yyin}, you must tell the
10455Lex-generated scanner to discard its current buffer and switch to the
10456new one. This depends upon your implementation of Lex; see its
10457documentation for more. For Flex, it suffices to call
10458@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10459Flex-generated scanner needs to read from several input streams to
10460handle features like include files, you might consider using Flex
10461functions like @samp{yy_switch_to_buffer} that manipulate multiple
10462input buffers.
5b066063 10463
b165c324
AD
10464If your Flex-generated scanner uses start conditions (@pxref{Start
10465conditions, , Start conditions, flex, The Flex Manual}), you might
10466also want to reset the scanner's state, i.e., go back to the initial
10467start condition, through a call to @samp{BEGIN (0)}.
10468
fef4cb51
AD
10469@node Strings are Destroyed
10470@section Strings are Destroyed
10471
10472@display
c7e441b4 10473My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10474them. Instead of reporting @samp{"foo", "bar"}, it reports
10475@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10476@end display
10477
10478This error is probably the single most frequent ``bug report'' sent to
10479Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10480of the scanner. Consider the following Lex code:
fef4cb51
AD
10481
10482@verbatim
10483%{
10484#include <stdio.h>
10485char *yylval = NULL;
10486%}
10487%%
10488.* yylval = yytext; return 1;
10489\n /* IGNORE */
10490%%
10491int
10492main ()
10493{
fa7e68c3 10494 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10495 char *fst = (yylex (), yylval);
10496 char *snd = (yylex (), yylval);
10497 printf ("\"%s\", \"%s\"\n", fst, snd);
10498 return 0;
10499}
10500@end verbatim
10501
10502If you compile and run this code, you get:
10503
10504@example
10505$ @kbd{flex -osplit-lines.c split-lines.l}
10506$ @kbd{gcc -osplit-lines split-lines.c -ll}
10507$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10508"one
10509two", "two"
10510@end example
10511
10512@noindent
10513this is because @code{yytext} is a buffer provided for @emph{reading}
10514in the action, but if you want to keep it, you have to duplicate it
10515(e.g., using @code{strdup}). Note that the output may depend on how
10516your implementation of Lex handles @code{yytext}. For instance, when
10517given the Lex compatibility option @option{-l} (which triggers the
10518option @samp{%array}) Flex generates a different behavior:
10519
10520@example
10521$ @kbd{flex -l -osplit-lines.c split-lines.l}
10522$ @kbd{gcc -osplit-lines split-lines.c -ll}
10523$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10524"two", "two"
10525@end example
10526
10527
2fa09258
AD
10528@node Implementing Gotos/Loops
10529@section Implementing Gotos/Loops
a06ea4aa
AD
10530
10531@display
10532My simple calculator supports variables, assignments, and functions,
2fa09258 10533but how can I implement gotos, or loops?
a06ea4aa
AD
10534@end display
10535
10536Although very pedagogical, the examples included in the document blur
a1c84f45 10537the distinction to make between the parser---whose job is to recover
a06ea4aa 10538the structure of a text and to transmit it to subsequent modules of
a1c84f45 10539the program---and the processing (such as the execution) of this
a06ea4aa
AD
10540structure. This works well with so called straight line programs,
10541i.e., precisely those that have a straightforward execution model:
10542execute simple instructions one after the others.
10543
10544@cindex abstract syntax tree
8a4281b9 10545@cindex AST
a06ea4aa
AD
10546If you want a richer model, you will probably need to use the parser
10547to construct a tree that does represent the structure it has
10548recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10549or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10550traversing it in various ways, will enable treatments such as its
10551execution or its translation, which will result in an interpreter or a
10552compiler.
10553
10554This topic is way beyond the scope of this manual, and the reader is
10555invited to consult the dedicated literature.
10556
10557
ed2e6384
AD
10558@node Multiple start-symbols
10559@section Multiple start-symbols
10560
10561@display
10562I have several closely related grammars, and I would like to share their
10563implementations. In fact, I could use a single grammar but with
10564multiple entry points.
10565@end display
10566
10567Bison does not support multiple start-symbols, but there is a very
10568simple means to simulate them. If @code{foo} and @code{bar} are the two
10569pseudo start-symbols, then introduce two new tokens, say
10570@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10571real start-symbol:
10572
10573@example
10574%token START_FOO START_BAR;
10575%start start;
10576start: START_FOO foo
10577 | START_BAR bar;
10578@end example
10579
10580These tokens prevents the introduction of new conflicts. As far as the
10581parser goes, that is all that is needed.
10582
10583Now the difficult part is ensuring that the scanner will send these
10584tokens first. If your scanner is hand-written, that should be
10585straightforward. If your scanner is generated by Lex, them there is
10586simple means to do it: recall that anything between @samp{%@{ ... %@}}
10587after the first @code{%%} is copied verbatim in the top of the generated
10588@code{yylex} function. Make sure a variable @code{start_token} is
10589available in the scanner (e.g., a global variable or using
10590@code{%lex-param} etc.), and use the following:
10591
10592@example
10593 /* @r{Prologue.} */
10594%%
10595%@{
10596 if (start_token)
10597 @{
10598 int t = start_token;
10599 start_token = 0;
10600 return t;
10601 @}
10602%@}
10603 /* @r{The rules.} */
10604@end example
10605
10606
55ba27be
AD
10607@node Secure? Conform?
10608@section Secure? Conform?
10609
10610@display
10611Is Bison secure? Does it conform to POSIX?
10612@end display
10613
10614If you're looking for a guarantee or certification, we don't provide it.
10615However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10616POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10617please send us a bug report.
10618
10619@node I can't build Bison
10620@section I can't build Bison
10621
10622@display
8c5b881d
PE
10623I can't build Bison because @command{make} complains that
10624@code{msgfmt} is not found.
55ba27be
AD
10625What should I do?
10626@end display
10627
10628Like most GNU packages with internationalization support, that feature
10629is turned on by default. If you have problems building in the @file{po}
10630subdirectory, it indicates that your system's internationalization
10631support is lacking. You can re-configure Bison with
10632@option{--disable-nls} to turn off this support, or you can install GNU
10633gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10634Bison. See the file @file{ABOUT-NLS} for more information.
10635
10636
10637@node Where can I find help?
10638@section Where can I find help?
10639
10640@display
10641I'm having trouble using Bison. Where can I find help?
10642@end display
10643
10644First, read this fine manual. Beyond that, you can send mail to
10645@email{help-bison@@gnu.org}. This mailing list is intended to be
10646populated with people who are willing to answer questions about using
10647and installing Bison. Please keep in mind that (most of) the people on
10648the list have aspects of their lives which are not related to Bison (!),
10649so you may not receive an answer to your question right away. This can
10650be frustrating, but please try not to honk them off; remember that any
10651help they provide is purely voluntary and out of the kindness of their
10652hearts.
10653
10654@node Bug Reports
10655@section Bug Reports
10656
10657@display
10658I found a bug. What should I include in the bug report?
10659@end display
10660
10661Before you send a bug report, make sure you are using the latest
10662version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10663mirrors. Be sure to include the version number in your bug report. If
10664the bug is present in the latest version but not in a previous version,
10665try to determine the most recent version which did not contain the bug.
10666
10667If the bug is parser-related, you should include the smallest grammar
10668you can which demonstrates the bug. The grammar file should also be
10669complete (i.e., I should be able to run it through Bison without having
10670to edit or add anything). The smaller and simpler the grammar, the
10671easier it will be to fix the bug.
10672
10673Include information about your compilation environment, including your
10674operating system's name and version and your compiler's name and
10675version. If you have trouble compiling, you should also include a
10676transcript of the build session, starting with the invocation of
10677`configure'. Depending on the nature of the bug, you may be asked to
10678send additional files as well (such as `config.h' or `config.cache').
10679
10680Patches are most welcome, but not required. That is, do not hesitate to
10681send a bug report just because you can not provide a fix.
10682
10683Send bug reports to @email{bug-bison@@gnu.org}.
10684
8405b70c
PB
10685@node More Languages
10686@section More Languages
55ba27be
AD
10687
10688@display
8405b70c 10689Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10690favorite language here}?
10691@end display
10692
8405b70c 10693C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10694languages; contributions are welcome.
10695
10696@node Beta Testing
10697@section Beta Testing
10698
10699@display
10700What is involved in being a beta tester?
10701@end display
10702
10703It's not terribly involved. Basically, you would download a test
10704release, compile it, and use it to build and run a parser or two. After
10705that, you would submit either a bug report or a message saying that
10706everything is okay. It is important to report successes as well as
10707failures because test releases eventually become mainstream releases,
10708but only if they are adequately tested. If no one tests, development is
10709essentially halted.
10710
10711Beta testers are particularly needed for operating systems to which the
10712developers do not have easy access. They currently have easy access to
10713recent GNU/Linux and Solaris versions. Reports about other operating
10714systems are especially welcome.
10715
10716@node Mailing Lists
10717@section Mailing Lists
10718
10719@display
10720How do I join the help-bison and bug-bison mailing lists?
10721@end display
10722
10723See @url{http://lists.gnu.org/}.
a06ea4aa 10724
d1a1114f
AD
10725@c ================================================= Table of Symbols
10726
342b8b6e 10727@node Table of Symbols
bfa74976
RS
10728@appendix Bison Symbols
10729@cindex Bison symbols, table of
10730@cindex symbols in Bison, table of
10731
18b519c0 10732@deffn {Variable} @@$
3ded9a63 10733In an action, the location of the left-hand side of the rule.
88bce5a2 10734@xref{Locations, , Locations Overview}.
18b519c0 10735@end deffn
3ded9a63 10736
18b519c0 10737@deffn {Variable} @@@var{n}
3ded9a63
AD
10738In an action, the location of the @var{n}-th symbol of the right-hand
10739side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10740@end deffn
3ded9a63 10741
d013372c
AR
10742@deffn {Variable} @@@var{name}
10743In an action, the location of a symbol addressed by name.
10744@xref{Locations, , Locations Overview}.
10745@end deffn
10746
10747@deffn {Variable} @@[@var{name}]
10748In an action, the location of a symbol addressed by name.
10749@xref{Locations, , Locations Overview}.
10750@end deffn
10751
18b519c0 10752@deffn {Variable} $$
3ded9a63
AD
10753In an action, the semantic value of the left-hand side of the rule.
10754@xref{Actions}.
18b519c0 10755@end deffn
3ded9a63 10756
18b519c0 10757@deffn {Variable} $@var{n}
3ded9a63
AD
10758In an action, the semantic value of the @var{n}-th symbol of the
10759right-hand side of the rule. @xref{Actions}.
18b519c0 10760@end deffn
3ded9a63 10761
d013372c
AR
10762@deffn {Variable} $@var{name}
10763In an action, the semantic value of a symbol addressed by name.
10764@xref{Actions}.
10765@end deffn
10766
10767@deffn {Variable} $[@var{name}]
10768In an action, the semantic value of a symbol addressed by name.
10769@xref{Actions}.
10770@end deffn
10771
dd8d9022
AD
10772@deffn {Delimiter} %%
10773Delimiter used to separate the grammar rule section from the
10774Bison declarations section or the epilogue.
10775@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10776@end deffn
bfa74976 10777
dd8d9022
AD
10778@c Don't insert spaces, or check the DVI output.
10779@deffn {Delimiter} %@{@var{code}%@}
10780All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10781the output file uninterpreted. Such code forms the prologue of the input
10782file. @xref{Grammar Outline, ,Outline of a Bison
10783Grammar}.
18b519c0 10784@end deffn
bfa74976 10785
ca2a6d15
PH
10786@deffn {Directive} %?@{@var{expression}@}
10787Predicate actions. This is a type of action clause that may appear in
10788rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 10789GLR parsers during nondeterministic operation,
ca2a6d15
PH
10790this silently causes an alternative parse to die. During deterministic
10791operation, it is the same as the effect of YYERROR.
10792@xref{Semantic Predicates}.
10793
10794This feature is experimental.
10795More user feedback will help to determine whether it should become a permanent
10796feature.
10797@end deffn
10798
dd8d9022
AD
10799@deffn {Construct} /*@dots{}*/
10800Comment delimiters, as in C.
18b519c0 10801@end deffn
bfa74976 10802
dd8d9022
AD
10803@deffn {Delimiter} :
10804Separates a rule's result from its components. @xref{Rules, ,Syntax of
10805Grammar Rules}.
18b519c0 10806@end deffn
bfa74976 10807
dd8d9022
AD
10808@deffn {Delimiter} ;
10809Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10810@end deffn
bfa74976 10811
dd8d9022
AD
10812@deffn {Delimiter} |
10813Separates alternate rules for the same result nonterminal.
10814@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10815@end deffn
bfa74976 10816
12e35840
JD
10817@deffn {Directive} <*>
10818Used to define a default tagged @code{%destructor} or default tagged
10819@code{%printer}.
85894313
JD
10820
10821This feature is experimental.
10822More user feedback will help to determine whether it should become a permanent
10823feature.
10824
12e35840
JD
10825@xref{Destructor Decl, , Freeing Discarded Symbols}.
10826@end deffn
10827
3ebecc24 10828@deffn {Directive} <>
12e35840
JD
10829Used to define a default tagless @code{%destructor} or default tagless
10830@code{%printer}.
85894313
JD
10831
10832This feature is experimental.
10833More user feedback will help to determine whether it should become a permanent
10834feature.
10835
12e35840
JD
10836@xref{Destructor Decl, , Freeing Discarded Symbols}.
10837@end deffn
10838
dd8d9022
AD
10839@deffn {Symbol} $accept
10840The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10841$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10842Start-Symbol}. It cannot be used in the grammar.
18b519c0 10843@end deffn
bfa74976 10844
136a0f76 10845@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10846@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10847Insert @var{code} verbatim into output parser source.
10848@xref{Decl Summary,,%code}.
9bc0dd67
JD
10849@end deffn
10850
10851@deffn {Directive} %debug
10852Equip the parser for debugging. @xref{Decl Summary}.
10853@end deffn
10854
91d2c560 10855@ifset defaultprec
22fccf95
PE
10856@deffn {Directive} %default-prec
10857Assign a precedence to rules that lack an explicit @samp{%prec}
10858modifier. @xref{Contextual Precedence, ,Context-Dependent
10859Precedence}.
39a06c25 10860@end deffn
91d2c560 10861@end ifset
39a06c25 10862
148d66d8
JD
10863@deffn {Directive} %define @var{define-variable}
10864@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10865@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10866Define a variable to adjust Bison's behavior.
10867@xref{Decl Summary,,%define}.
10868@end deffn
10869
18b519c0 10870@deffn {Directive} %defines
6deb4447
AD
10871Bison declaration to create a header file meant for the scanner.
10872@xref{Decl Summary}.
18b519c0 10873@end deffn
6deb4447 10874
02975b9a
JD
10875@deffn {Directive} %defines @var{defines-file}
10876Same as above, but save in the file @var{defines-file}.
10877@xref{Decl Summary}.
10878@end deffn
10879
18b519c0 10880@deffn {Directive} %destructor
258b75ca 10881Specify how the parser should reclaim the memory associated to
fa7e68c3 10882discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10883@end deffn
72f889cc 10884
18b519c0 10885@deffn {Directive} %dprec
676385e2 10886Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10887time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 10888GLR Parsers}.
18b519c0 10889@end deffn
676385e2 10890
dd8d9022
AD
10891@deffn {Symbol} $end
10892The predefined token marking the end of the token stream. It cannot be
10893used in the grammar.
10894@end deffn
10895
10896@deffn {Symbol} error
10897A token name reserved for error recovery. This token may be used in
10898grammar rules so as to allow the Bison parser to recognize an error in
10899the grammar without halting the process. In effect, a sentence
10900containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10901token @code{error} becomes the current lookahead token. Actions
10902corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10903token is reset to the token that originally caused the violation.
10904@xref{Error Recovery}.
18d192f0
AD
10905@end deffn
10906
18b519c0 10907@deffn {Directive} %error-verbose
cf499cff 10908An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10909@end deffn
2a8d363a 10910
02975b9a 10911@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10912Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10913Summary}.
18b519c0 10914@end deffn
d8988b2f 10915
18b519c0 10916@deffn {Directive} %glr-parser
8a4281b9
JD
10917Bison declaration to produce a GLR parser. @xref{GLR
10918Parsers, ,Writing GLR Parsers}.
18b519c0 10919@end deffn
676385e2 10920
dd8d9022
AD
10921@deffn {Directive} %initial-action
10922Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10923@end deffn
10924
e6e704dc
JD
10925@deffn {Directive} %language
10926Specify the programming language for the generated parser.
10927@xref{Decl Summary}.
10928@end deffn
10929
18b519c0 10930@deffn {Directive} %left
d78f0ac9 10931Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10932@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10933@end deffn
bfa74976 10934
2055a44e
AD
10935@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10936Bison declaration to specifying additional arguments that
2a8d363a
AD
10937@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10938for Pure Parsers}.
18b519c0 10939@end deffn
2a8d363a 10940
18b519c0 10941@deffn {Directive} %merge
676385e2 10942Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10943reduce/reduce conflict with a rule having the same merging function, the
676385e2 10944function is applied to the two semantic values to get a single result.
8a4281b9 10945@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10946@end deffn
676385e2 10947
02975b9a 10948@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10949Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10950@end deffn
d8988b2f 10951
91d2c560 10952@ifset defaultprec
22fccf95
PE
10953@deffn {Directive} %no-default-prec
10954Do not assign a precedence to rules that lack an explicit @samp{%prec}
10955modifier. @xref{Contextual Precedence, ,Context-Dependent
10956Precedence}.
10957@end deffn
91d2c560 10958@end ifset
22fccf95 10959
18b519c0 10960@deffn {Directive} %no-lines
931c7513
RS
10961Bison declaration to avoid generating @code{#line} directives in the
10962parser file. @xref{Decl Summary}.
18b519c0 10963@end deffn
931c7513 10964
18b519c0 10965@deffn {Directive} %nonassoc
d78f0ac9 10966Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10967@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10968@end deffn
bfa74976 10969
02975b9a 10970@deffn {Directive} %output "@var{file}"
72d2299c 10971Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10972Summary}.
18b519c0 10973@end deffn
d8988b2f 10974
2055a44e
AD
10975@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10976Bison declaration to specify additional arguments that both
10977@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10978Parser Function @code{yyparse}}.
10979@end deffn
10980
10981@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10982Bison declaration to specify additional arguments that @code{yyparse}
10983should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10984@end deffn
2a8d363a 10985
18b519c0 10986@deffn {Directive} %prec
bfa74976
RS
10987Bison declaration to assign a precedence to a specific rule.
10988@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10989@end deffn
bfa74976 10990
d78f0ac9
AD
10991@deffn {Directive} %precedence
10992Bison declaration to assign precedence to token(s), but no associativity
10993@xref{Precedence Decl, ,Operator Precedence}.
10994@end deffn
10995
18b519c0 10996@deffn {Directive} %pure-parser
67501061 10997Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10998for which Bison is more careful to warn about unreasonable usage.
18b519c0 10999@end deffn
bfa74976 11000
b50d2359 11001@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11002Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11003Require a Version of Bison}.
b50d2359
AD
11004@end deffn
11005
18b519c0 11006@deffn {Directive} %right
d78f0ac9 11007Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11008@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11009@end deffn
bfa74976 11010
e6e704dc
JD
11011@deffn {Directive} %skeleton
11012Specify the skeleton to use; usually for development.
11013@xref{Decl Summary}.
11014@end deffn
11015
18b519c0 11016@deffn {Directive} %start
704a47c4
AD
11017Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11018Start-Symbol}.
18b519c0 11019@end deffn
bfa74976 11020
18b519c0 11021@deffn {Directive} %token
bfa74976
RS
11022Bison declaration to declare token(s) without specifying precedence.
11023@xref{Token Decl, ,Token Type Names}.
18b519c0 11024@end deffn
bfa74976 11025
18b519c0 11026@deffn {Directive} %token-table
931c7513
RS
11027Bison declaration to include a token name table in the parser file.
11028@xref{Decl Summary}.
18b519c0 11029@end deffn
931c7513 11030
18b519c0 11031@deffn {Directive} %type
704a47c4
AD
11032Bison declaration to declare nonterminals. @xref{Type Decl,
11033,Nonterminal Symbols}.
18b519c0 11034@end deffn
bfa74976 11035
dd8d9022
AD
11036@deffn {Symbol} $undefined
11037The predefined token onto which all undefined values returned by
11038@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11039@code{error}.
11040@end deffn
11041
18b519c0 11042@deffn {Directive} %union
bfa74976
RS
11043Bison declaration to specify several possible data types for semantic
11044values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11045@end deffn
bfa74976 11046
dd8d9022
AD
11047@deffn {Macro} YYABORT
11048Macro to pretend that an unrecoverable syntax error has occurred, by
11049making @code{yyparse} return 1 immediately. The error reporting
11050function @code{yyerror} is not called. @xref{Parser Function, ,The
11051Parser Function @code{yyparse}}.
8405b70c
PB
11052
11053For Java parsers, this functionality is invoked using @code{return YYABORT;}
11054instead.
dd8d9022 11055@end deffn
3ded9a63 11056
dd8d9022
AD
11057@deffn {Macro} YYACCEPT
11058Macro to pretend that a complete utterance of the language has been
11059read, by making @code{yyparse} return 0 immediately.
11060@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11061
11062For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11063instead.
dd8d9022 11064@end deffn
bfa74976 11065
dd8d9022 11066@deffn {Macro} YYBACKUP
742e4900 11067Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11068token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11069@end deffn
bfa74976 11070
dd8d9022 11071@deffn {Variable} yychar
32c29292 11072External integer variable that contains the integer value of the
742e4900 11073lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11074@code{yyparse}.) Error-recovery rule actions may examine this variable.
11075@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11076@end deffn
bfa74976 11077
dd8d9022
AD
11078@deffn {Variable} yyclearin
11079Macro used in error-recovery rule actions. It clears the previous
742e4900 11080lookahead token. @xref{Error Recovery}.
18b519c0 11081@end deffn
bfa74976 11082
dd8d9022
AD
11083@deffn {Macro} YYDEBUG
11084Macro to define to equip the parser with tracing code. @xref{Tracing,
11085,Tracing Your Parser}.
18b519c0 11086@end deffn
bfa74976 11087
dd8d9022
AD
11088@deffn {Variable} yydebug
11089External integer variable set to zero by default. If @code{yydebug}
11090is given a nonzero value, the parser will output information on input
11091symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11092@end deffn
bfa74976 11093
dd8d9022
AD
11094@deffn {Macro} yyerrok
11095Macro to cause parser to recover immediately to its normal mode
11096after a syntax error. @xref{Error Recovery}.
11097@end deffn
11098
11099@deffn {Macro} YYERROR
11100Macro to pretend that a syntax error has just been detected: call
11101@code{yyerror} and then perform normal error recovery if possible
11102(@pxref{Error Recovery}), or (if recovery is impossible) make
11103@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11104
11105For Java parsers, this functionality is invoked using @code{return YYERROR;}
11106instead.
dd8d9022
AD
11107@end deffn
11108
11109@deffn {Function} yyerror
11110User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11111@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11112@end deffn
11113
11114@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11115An obsolete macro used in the @file{yacc.c} skeleton, that you define
11116with @code{#define} in the prologue to request verbose, specific error
11117message strings when @code{yyerror} is called. It doesn't matter what
11118definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11119it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11120(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11121@end deffn
11122
11123@deffn {Macro} YYINITDEPTH
11124Macro for specifying the initial size of the parser stack.
1a059451 11125@xref{Memory Management}.
dd8d9022
AD
11126@end deffn
11127
11128@deffn {Function} yylex
11129User-supplied lexical analyzer function, called with no arguments to get
11130the next token. @xref{Lexical, ,The Lexical Analyzer Function
11131@code{yylex}}.
11132@end deffn
11133
11134@deffn {Macro} YYLEX_PARAM
11135An obsolete macro for specifying an extra argument (or list of extra
32c29292 11136arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11137macro is deprecated, and is supported only for Yacc like parsers.
11138@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11139@end deffn
11140
11141@deffn {Variable} yylloc
11142External variable in which @code{yylex} should place the line and column
11143numbers associated with a token. (In a pure parser, it is a local
11144variable within @code{yyparse}, and its address is passed to
32c29292
JD
11145@code{yylex}.)
11146You can ignore this variable if you don't use the @samp{@@} feature in the
11147grammar actions.
11148@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11149In semantic actions, it stores the location of the lookahead token.
32c29292 11150@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11151@end deffn
11152
11153@deffn {Type} YYLTYPE
11154Data type of @code{yylloc}; by default, a structure with four
11155members. @xref{Location Type, , Data Types of Locations}.
11156@end deffn
11157
11158@deffn {Variable} yylval
11159External variable in which @code{yylex} should place the semantic
11160value associated with a token. (In a pure parser, it is a local
11161variable within @code{yyparse}, and its address is passed to
32c29292
JD
11162@code{yylex}.)
11163@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11164In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11165@xref{Actions, ,Actions}.
dd8d9022
AD
11166@end deffn
11167
11168@deffn {Macro} YYMAXDEPTH
1a059451
PE
11169Macro for specifying the maximum size of the parser stack. @xref{Memory
11170Management}.
dd8d9022
AD
11171@end deffn
11172
11173@deffn {Variable} yynerrs
8a2800e7 11174Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11175(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11176pure push parser, it is a member of yypstate.)
dd8d9022
AD
11177@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11178@end deffn
11179
11180@deffn {Function} yyparse
11181The parser function produced by Bison; call this function to start
11182parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11183@end deffn
11184
9987d1b3 11185@deffn {Function} yypstate_delete
f4101aa6 11186The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11187call this function to delete the memory associated with a parser.
f4101aa6 11188@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11189@code{yypstate_delete}}.
59da312b
JD
11190(The current push parsing interface is experimental and may evolve.
11191More user feedback will help to stabilize it.)
9987d1b3
JD
11192@end deffn
11193
11194@deffn {Function} yypstate_new
f4101aa6 11195The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11196call this function to create a new parser.
f4101aa6 11197@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11198@code{yypstate_new}}.
59da312b
JD
11199(The current push parsing interface is experimental and may evolve.
11200More user feedback will help to stabilize it.)
9987d1b3
JD
11201@end deffn
11202
11203@deffn {Function} yypull_parse
f4101aa6
AD
11204The parser function produced by Bison in push mode; call this function to
11205parse the rest of the input stream.
11206@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11207@code{yypull_parse}}.
59da312b
JD
11208(The current push parsing interface is experimental and may evolve.
11209More user feedback will help to stabilize it.)
9987d1b3
JD
11210@end deffn
11211
11212@deffn {Function} yypush_parse
f4101aa6
AD
11213The parser function produced by Bison in push mode; call this function to
11214parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11215@code{yypush_parse}}.
59da312b
JD
11216(The current push parsing interface is experimental and may evolve.
11217More user feedback will help to stabilize it.)
9987d1b3
JD
11218@end deffn
11219
dd8d9022
AD
11220@deffn {Macro} YYPARSE_PARAM
11221An obsolete macro for specifying the name of a parameter that
11222@code{yyparse} should accept. The use of this macro is deprecated, and
11223is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11224Conventions for Pure Parsers}.
11225@end deffn
11226
11227@deffn {Macro} YYRECOVERING
02103984
PE
11228The expression @code{YYRECOVERING ()} yields 1 when the parser
11229is recovering from a syntax error, and 0 otherwise.
11230@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11231@end deffn
11232
11233@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11234Macro used to control the use of @code{alloca} when the
11235deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11236the parser will use @code{malloc} to extend its stacks. If defined to
112371, the parser will use @code{alloca}. Values other than 0 and 1 are
11238reserved for future Bison extensions. If not defined,
11239@code{YYSTACK_USE_ALLOCA} defaults to 0.
11240
55289366 11241In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11242limited stack and with unreliable stack-overflow checking, you should
11243set @code{YYMAXDEPTH} to a value that cannot possibly result in
11244unchecked stack overflow on any of your target hosts when
11245@code{alloca} is called. You can inspect the code that Bison
11246generates in order to determine the proper numeric values. This will
11247require some expertise in low-level implementation details.
dd8d9022
AD
11248@end deffn
11249
11250@deffn {Type} YYSTYPE
11251Data type of semantic values; @code{int} by default.
11252@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11253@end deffn
bfa74976 11254
342b8b6e 11255@node Glossary
bfa74976
RS
11256@appendix Glossary
11257@cindex glossary
11258
11259@table @asis
eb45ef3b
JD
11260@item Accepting State
11261A state whose only action is the accept action.
11262The accepting state is thus a consistent state.
11263@xref{Understanding,,}.
11264
8a4281b9 11265@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11266Formal method of specifying context-free grammars originally proposed
11267by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11268committee document contributing to what became the Algol 60 report.
11269@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11270
eb45ef3b
JD
11271@item Consistent State
11272A state containing only one possible action.
5bab9d08 11273@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11274
bfa74976
RS
11275@item Context-free grammars
11276Grammars specified as rules that can be applied regardless of context.
11277Thus, if there is a rule which says that an integer can be used as an
11278expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11279permitted. @xref{Language and Grammar, ,Languages and Context-Free
11280Grammars}.
bfa74976 11281
110ef36a
JD
11282@item Default Reduction
11283The reduction that a parser should perform if the current parser state
eb45ef3b 11284contains no other action for the lookahead token.
110ef36a
JD
11285In permitted parser states, Bison declares the reduction with the
11286largest lookahead set to be the default reduction and removes that
11287lookahead set.
5bab9d08 11288@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11289
bfa74976
RS
11290@item Dynamic allocation
11291Allocation of memory that occurs during execution, rather than at
11292compile time or on entry to a function.
11293
11294@item Empty string
11295Analogous to the empty set in set theory, the empty string is a
11296character string of length zero.
11297
11298@item Finite-state stack machine
11299A ``machine'' that has discrete states in which it is said to exist at
11300each instant in time. As input to the machine is processed, the
11301machine moves from state to state as specified by the logic of the
11302machine. In the case of the parser, the input is the language being
11303parsed, and the states correspond to various stages in the grammar
c827f760 11304rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11305
8a4281b9 11306@item Generalized LR (GLR)
676385e2 11307A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11308that are not LR(1). It resolves situations that Bison's
eb45ef3b 11309deterministic parsing
676385e2
PH
11310algorithm cannot by effectively splitting off multiple parsers, trying all
11311possible parsers, and discarding those that fail in the light of additional
c827f760 11312right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11313LR Parsing}.
676385e2 11314
bfa74976
RS
11315@item Grouping
11316A language construct that is (in general) grammatically divisible;
c827f760 11317for example, `expression' or `declaration' in C@.
bfa74976
RS
11318@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11319
8a4281b9
JD
11320@item IELR(1)
11321A minimal LR(1) parser table generation algorithm.
11322That is, given any context-free grammar, IELR(1) generates
eb45ef3b 11323parser tables with the full language recognition power of canonical
8a4281b9
JD
11324LR(1) but with nearly the same number of parser states as
11325LALR(1).
eb45ef3b 11326This reduction in parser states is often an order of magnitude.
8a4281b9 11327More importantly, because canonical LR(1)'s extra parser
eb45ef3b 11328states may contain duplicate conflicts in the case of
8a4281b9
JD
11329non-LR(1) grammars, the number of conflicts for
11330IELR(1) is often an order of magnitude less as well.
eb45ef3b
JD
11331This can significantly reduce the complexity of developing of a grammar.
11332@xref{Decl Summary,,lr.type}.
11333
bfa74976
RS
11334@item Infix operator
11335An arithmetic operator that is placed between the operands on which it
11336performs some operation.
11337
11338@item Input stream
11339A continuous flow of data between devices or programs.
11340
8a4281b9 11341@item LAC (Lookahead Correction)
fcf834f9
JD
11342A parsing mechanism that fixes the problem of delayed syntax error
11343detection, which is caused by LR state merging, default reductions, and
11344the use of @code{%nonassoc}. Delayed syntax error detection results in
11345unexpected semantic actions, initiation of error recovery in the wrong
11346syntactic context, and an incorrect list of expected tokens in a verbose
11347syntax error message. @xref{Decl Summary,,parse.lac}.
11348
bfa74976
RS
11349@item Language construct
11350One of the typical usage schemas of the language. For example, one of
11351the constructs of the C language is the @code{if} statement.
11352@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11353
11354@item Left associativity
11355Operators having left associativity are analyzed from left to right:
11356@samp{a+b+c} first computes @samp{a+b} and then combines with
11357@samp{c}. @xref{Precedence, ,Operator Precedence}.
11358
11359@item Left recursion
89cab50d
AD
11360A rule whose result symbol is also its first component symbol; for
11361example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11362Rules}.
bfa74976
RS
11363
11364@item Left-to-right parsing
11365Parsing a sentence of a language by analyzing it token by token from
c827f760 11366left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11367
11368@item Lexical analyzer (scanner)
11369A function that reads an input stream and returns tokens one by one.
11370@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11371
11372@item Lexical tie-in
11373A flag, set by actions in the grammar rules, which alters the way
11374tokens are parsed. @xref{Lexical Tie-ins}.
11375
931c7513 11376@item Literal string token
14ded682 11377A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11378
742e4900
JD
11379@item Lookahead token
11380A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11381Tokens}.
bfa74976 11382
8a4281b9 11383@item LALR(1)
bfa74976 11384The class of context-free grammars that Bison (like most other parser
8a4281b9 11385generators) can handle by default; a subset of LR(1).
eb45ef3b 11386@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11387
8a4281b9 11388@item LR(1)
bfa74976 11389The class of context-free grammars in which at most one token of
742e4900 11390lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11391
11392@item Nonterminal symbol
11393A grammar symbol standing for a grammatical construct that can
11394be expressed through rules in terms of smaller constructs; in other
11395words, a construct that is not a token. @xref{Symbols}.
11396
bfa74976
RS
11397@item Parser
11398A function that recognizes valid sentences of a language by analyzing
11399the syntax structure of a set of tokens passed to it from a lexical
11400analyzer.
11401
11402@item Postfix operator
11403An arithmetic operator that is placed after the operands upon which it
11404performs some operation.
11405
11406@item Reduction
11407Replacing a string of nonterminals and/or terminals with a single
89cab50d 11408nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11409Parser Algorithm}.
bfa74976
RS
11410
11411@item Reentrant
11412A reentrant subprogram is a subprogram which can be in invoked any
11413number of times in parallel, without interference between the various
11414invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11415
11416@item Reverse polish notation
11417A language in which all operators are postfix operators.
11418
11419@item Right recursion
89cab50d
AD
11420A rule whose result symbol is also its last component symbol; for
11421example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11422Rules}.
bfa74976
RS
11423
11424@item Semantics
11425In computer languages, the semantics are specified by the actions
11426taken for each instance of the language, i.e., the meaning of
11427each statement. @xref{Semantics, ,Defining Language Semantics}.
11428
11429@item Shift
11430A parser is said to shift when it makes the choice of analyzing
11431further input from the stream rather than reducing immediately some
c827f760 11432already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11433
11434@item Single-character literal
11435A single character that is recognized and interpreted as is.
11436@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11437
11438@item Start symbol
11439The nonterminal symbol that stands for a complete valid utterance in
11440the language being parsed. The start symbol is usually listed as the
13863333 11441first nonterminal symbol in a language specification.
bfa74976
RS
11442@xref{Start Decl, ,The Start-Symbol}.
11443
11444@item Symbol table
11445A data structure where symbol names and associated data are stored
11446during parsing to allow for recognition and use of existing
11447information in repeated uses of a symbol. @xref{Multi-function Calc}.
11448
6e649e65
PE
11449@item Syntax error
11450An error encountered during parsing of an input stream due to invalid
11451syntax. @xref{Error Recovery}.
11452
bfa74976
RS
11453@item Token
11454A basic, grammatically indivisible unit of a language. The symbol
11455that describes a token in the grammar is a terminal symbol.
11456The input of the Bison parser is a stream of tokens which comes from
11457the lexical analyzer. @xref{Symbols}.
11458
11459@item Terminal symbol
89cab50d
AD
11460A grammar symbol that has no rules in the grammar and therefore is
11461grammatically indivisible. The piece of text it represents is a token.
11462@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11463@end table
11464
342b8b6e 11465@node Copying This Manual
f2b5126e 11466@appendix Copying This Manual
f2b5126e
PB
11467@include fdl.texi
11468
342b8b6e 11469@node Index
bfa74976
RS
11470@unnumbered Index
11471
11472@printindex cp
11473
bfa74976 11474@bye
a06ea4aa 11475
6b5a0de9
AD
11476@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11477@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11478@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11479@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11480@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11481@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11482@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11483@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11484@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11485@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11486@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11487@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11488@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11489@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11490@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11491@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11492@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11493@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11494@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11495@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11496@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11497@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11498@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11499@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11500@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11501@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11502@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11503@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11504@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11505@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9
AD
11506@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11507@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11508@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11509@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11510@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11511@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11512@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11513@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11514@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11515@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11516@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11517@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11518@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11519@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11520@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11521@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11522@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11523@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11524@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11525@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
1625df5b 11526@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
6b5a0de9 11527@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11528
11529@c Local Variables:
11530@c ispell-dictionary: "american"
11531@c fill-column: 76
11532@c End: