]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
%define: accept unquoted values.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
34a6c2d1
JD
354annotated context-free grammar into a deterministic or @acronym{GLR}
355parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
356@acronym{LR}(1) parser tables.
357Once you are proficient with Bison, you can use it to develop a wide
358range of language parsers, from those used in simple desk calculators to
359complex programming languages.
bfa74976
RS
360
361Bison is upward compatible with Yacc: all properly-written Yacc grammars
362ought to work with Bison with no change. Anyone familiar with Yacc
363should be able to use Bison with little trouble. You need to be fluent in
1e137b71 364C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
365
366We begin with tutorial chapters that explain the basic concepts of using
367Bison and show three explained examples, each building on the last. If you
368don't know Bison or Yacc, start by reading these chapters. Reference
369chapters follow which describe specific aspects of Bison in detail.
370
931c7513
RS
371Bison was written primarily by Robert Corbett; Richard Stallman made it
372Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 373multi-character string literals and other features.
931c7513 374
df1af54c 375This edition corresponds to version @value{VERSION} of Bison.
bfa74976 376
342b8b6e 377@node Conditions
bfa74976
RS
378@unnumbered Conditions for Using Bison
379
193d7c70
PE
380The distribution terms for Bison-generated parsers permit using the
381parsers in nonfree programs. Before Bison version 2.2, these extra
382permissions applied only when Bison was generating @acronym{LALR}(1)
383parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 384parsers could be used only in programs that were free software.
a31239f1 385
c827f760
PE
386The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
387compiler, have never
9ecbd125 388had such a requirement. They could always be used for nonfree
a31239f1
RS
389software. The reason Bison was different was not due to a special
390policy decision; it resulted from applying the usual General Public
391License to all of the Bison source code.
392
393The output of the Bison utility---the Bison parser file---contains a
394verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
395parser's implementation. (The actions from your grammar are inserted
396into this implementation at one point, but most of the rest of the
397implementation is not changed.) When we applied the @acronym{GPL}
398terms to the skeleton code for the parser's implementation,
a31239f1
RS
399the effect was to restrict the use of Bison output to free software.
400
401We didn't change the terms because of sympathy for people who want to
402make software proprietary. @strong{Software should be free.} But we
403concluded that limiting Bison's use to free software was doing little to
404encourage people to make other software free. So we decided to make the
405practical conditions for using Bison match the practical conditions for
c827f760 406using the other @acronym{GNU} tools.
bfa74976 407
193d7c70
PE
408This exception applies when Bison is generating code for a parser.
409You can tell whether the exception applies to a Bison output file by
410inspecting the file for text beginning with ``As a special
411exception@dots{}''. The text spells out the exact terms of the
412exception.
262aa8dd 413
f16b0819
PE
414@node Copying
415@unnumbered GNU GENERAL PUBLIC LICENSE
416@include gpl-3.0.texi
bfa74976 417
342b8b6e 418@node Concepts
bfa74976
RS
419@chapter The Concepts of Bison
420
421This chapter introduces many of the basic concepts without which the
422details of Bison will not make sense. If you do not already know how to
423use Bison or Yacc, we suggest you start by reading this chapter carefully.
424
425@menu
f56274a8
DJ
426* Language and Grammar:: Languages and context-free grammars,
427 as mathematical ideas.
428* Grammar in Bison:: How we represent grammars for Bison's sake.
429* Semantic Values:: Each token or syntactic grouping can have
430 a semantic value (the value of an integer,
431 the name of an identifier, etc.).
432* Semantic Actions:: Each rule can have an action containing C code.
433* GLR Parsers:: Writing parsers for general context-free languages.
434* Locations Overview:: Tracking Locations.
435* Bison Parser:: What are Bison's input and output,
436 how is the output used?
437* Stages:: Stages in writing and running Bison grammars.
438* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
439@end menu
440
342b8b6e 441@node Language and Grammar
bfa74976
RS
442@section Languages and Context-Free Grammars
443
bfa74976
RS
444@cindex context-free grammar
445@cindex grammar, context-free
446In order for Bison to parse a language, it must be described by a
447@dfn{context-free grammar}. This means that you specify one or more
448@dfn{syntactic groupings} and give rules for constructing them from their
449parts. For example, in the C language, one kind of grouping is called an
450`expression'. One rule for making an expression might be, ``An expression
451can be made of a minus sign and another expression''. Another would be,
452``An expression can be an integer''. As you can see, rules are often
453recursive, but there must be at least one rule which leads out of the
454recursion.
455
c827f760 456@cindex @acronym{BNF}
bfa74976
RS
457@cindex Backus-Naur form
458The most common formal system for presenting such rules for humans to read
c827f760
PE
459is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
460order to specify the language Algol 60. Any grammar expressed in
461@acronym{BNF} is a context-free grammar. The input to Bison is
462essentially machine-readable @acronym{BNF}.
bfa74976 463
c827f760 464@cindex @acronym{LALR}(1) grammars
34a6c2d1 465@cindex @acronym{IELR}(1) grammars
c827f760 466@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
467There are various important subclasses of context-free grammars.
468Although it can handle almost all context-free grammars, Bison is
469optimized for what are called @acronym{LR}(1) grammars.
470In brief, in these grammars, it must be possible to tell how to parse
471any portion of an input string with just a single token of lookahead.
472For historical reasons, Bison by default is limited by the additional
473restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
34a6c2d1
JD
476To escape these additional restrictions, you can request
477@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
478@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 479
c827f760
PE
480@cindex @acronym{GLR} parsing
481@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 482@cindex ambiguous grammars
9d9b8b70 483@cindex nondeterministic parsing
9501dc6e 484
34a6c2d1 485Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
486roughly that the next grammar rule to apply at any point in the input is
487uniquely determined by the preceding input and a fixed, finite portion
742e4900 488(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 489grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 490apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 491grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 492lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
493With the proper declarations, Bison is also able to parse these more
494general context-free grammars, using a technique known as @acronym{GLR}
495parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
496are able to handle any context-free grammar for which the number of
497possible parses of any given string is finite.
676385e2 498
bfa74976
RS
499@cindex symbols (abstract)
500@cindex token
501@cindex syntactic grouping
502@cindex grouping, syntactic
9501dc6e
AD
503In the formal grammatical rules for a language, each kind of syntactic
504unit or grouping is named by a @dfn{symbol}. Those which are built by
505grouping smaller constructs according to grammatical rules are called
bfa74976
RS
506@dfn{nonterminal symbols}; those which can't be subdivided are called
507@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
508corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 509corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
510
511We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
512nonterminal, mean. The tokens of C are identifiers, constants (numeric
513and string), and the various keywords, arithmetic operators and
514punctuation marks. So the terminal symbols of a grammar for C include
515`identifier', `number', `string', plus one symbol for each keyword,
516operator or punctuation mark: `if', `return', `const', `static', `int',
517`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
518(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
519lexicography, not grammar.)
520
521Here is a simple C function subdivided into tokens:
522
9edcd895
AD
523@ifinfo
524@example
525int /* @r{keyword `int'} */
14d4662b 526square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
527 @r{identifier, close-paren} */
528@{ /* @r{open-brace} */
aa08666d
AD
529 return x * x; /* @r{keyword `return', identifier, asterisk,}
530 @r{identifier, semicolon} */
9edcd895
AD
531@} /* @r{close-brace} */
532@end example
533@end ifinfo
534@ifnotinfo
bfa74976
RS
535@example
536int /* @r{keyword `int'} */
14d4662b 537square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 538@{ /* @r{open-brace} */
9edcd895 539 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
540@} /* @r{close-brace} */
541@end example
9edcd895 542@end ifnotinfo
bfa74976
RS
543
544The syntactic groupings of C include the expression, the statement, the
545declaration, and the function definition. These are represented in the
546grammar of C by nonterminal symbols `expression', `statement',
547`declaration' and `function definition'. The full grammar uses dozens of
548additional language constructs, each with its own nonterminal symbol, in
549order to express the meanings of these four. The example above is a
550function definition; it contains one declaration, and one statement. In
551the statement, each @samp{x} is an expression and so is @samp{x * x}.
552
553Each nonterminal symbol must have grammatical rules showing how it is made
554out of simpler constructs. For example, one kind of C statement is the
555@code{return} statement; this would be described with a grammar rule which
556reads informally as follows:
557
558@quotation
559A `statement' can be made of a `return' keyword, an `expression' and a
560`semicolon'.
561@end quotation
562
563@noindent
564There would be many other rules for `statement', one for each kind of
565statement in C.
566
567@cindex start symbol
568One nonterminal symbol must be distinguished as the special one which
569defines a complete utterance in the language. It is called the @dfn{start
570symbol}. In a compiler, this means a complete input program. In the C
571language, the nonterminal symbol `sequence of definitions and declarations'
572plays this role.
573
574For example, @samp{1 + 2} is a valid C expression---a valid part of a C
575program---but it is not valid as an @emph{entire} C program. In the
576context-free grammar of C, this follows from the fact that `expression' is
577not the start symbol.
578
579The Bison parser reads a sequence of tokens as its input, and groups the
580tokens using the grammar rules. If the input is valid, the end result is
581that the entire token sequence reduces to a single grouping whose symbol is
582the grammar's start symbol. If we use a grammar for C, the entire input
583must be a `sequence of definitions and declarations'. If not, the parser
584reports a syntax error.
585
342b8b6e 586@node Grammar in Bison
bfa74976
RS
587@section From Formal Rules to Bison Input
588@cindex Bison grammar
589@cindex grammar, Bison
590@cindex formal grammar
591
592A formal grammar is a mathematical construct. To define the language
593for Bison, you must write a file expressing the grammar in Bison syntax:
594a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
595
596A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 597as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
598in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
599
600The Bison representation for a terminal symbol is also called a @dfn{token
601type}. Token types as well can be represented as C-like identifiers. By
602convention, these identifiers should be upper case to distinguish them from
603nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
604@code{RETURN}. A terminal symbol that stands for a particular keyword in
605the language should be named after that keyword converted to upper case.
606The terminal symbol @code{error} is reserved for error recovery.
931c7513 607@xref{Symbols}.
bfa74976
RS
608
609A terminal symbol can also be represented as a character literal, just like
610a C character constant. You should do this whenever a token is just a
611single character (parenthesis, plus-sign, etc.): use that same character in
612a literal as the terminal symbol for that token.
613
931c7513
RS
614A third way to represent a terminal symbol is with a C string constant
615containing several characters. @xref{Symbols}, for more information.
616
bfa74976
RS
617The grammar rules also have an expression in Bison syntax. For example,
618here is the Bison rule for a C @code{return} statement. The semicolon in
619quotes is a literal character token, representing part of the C syntax for
620the statement; the naked semicolon, and the colon, are Bison punctuation
621used in every rule.
622
623@example
624stmt: RETURN expr ';'
625 ;
626@end example
627
628@noindent
629@xref{Rules, ,Syntax of Grammar Rules}.
630
342b8b6e 631@node Semantic Values
bfa74976
RS
632@section Semantic Values
633@cindex semantic value
634@cindex value, semantic
635
636A formal grammar selects tokens only by their classifications: for example,
637if a rule mentions the terminal symbol `integer constant', it means that
638@emph{any} integer constant is grammatically valid in that position. The
639precise value of the constant is irrelevant to how to parse the input: if
640@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 641grammatical.
bfa74976
RS
642
643But the precise value is very important for what the input means once it is
644parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6453989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
646has both a token type and a @dfn{semantic value}. @xref{Semantics,
647,Defining Language Semantics},
bfa74976
RS
648for details.
649
650The token type is a terminal symbol defined in the grammar, such as
651@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
652you need to know to decide where the token may validly appear and how to
653group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 654except their types.
bfa74976
RS
655
656The semantic value has all the rest of the information about the
657meaning of the token, such as the value of an integer, or the name of an
658identifier. (A token such as @code{','} which is just punctuation doesn't
659need to have any semantic value.)
660
661For example, an input token might be classified as token type
662@code{INTEGER} and have the semantic value 4. Another input token might
663have the same token type @code{INTEGER} but value 3989. When a grammar
664rule says that @code{INTEGER} is allowed, either of these tokens is
665acceptable because each is an @code{INTEGER}. When the parser accepts the
666token, it keeps track of the token's semantic value.
667
668Each grouping can also have a semantic value as well as its nonterminal
669symbol. For example, in a calculator, an expression typically has a
670semantic value that is a number. In a compiler for a programming
671language, an expression typically has a semantic value that is a tree
672structure describing the meaning of the expression.
673
342b8b6e 674@node Semantic Actions
bfa74976
RS
675@section Semantic Actions
676@cindex semantic actions
677@cindex actions, semantic
678
679In order to be useful, a program must do more than parse input; it must
680also produce some output based on the input. In a Bison grammar, a grammar
681rule can have an @dfn{action} made up of C statements. Each time the
682parser recognizes a match for that rule, the action is executed.
683@xref{Actions}.
13863333 684
bfa74976
RS
685Most of the time, the purpose of an action is to compute the semantic value
686of the whole construct from the semantic values of its parts. For example,
687suppose we have a rule which says an expression can be the sum of two
688expressions. When the parser recognizes such a sum, each of the
689subexpressions has a semantic value which describes how it was built up.
690The action for this rule should create a similar sort of value for the
691newly recognized larger expression.
692
693For example, here is a rule that says an expression can be the sum of
694two subexpressions:
695
696@example
697expr: expr '+' expr @{ $$ = $1 + $3; @}
698 ;
699@end example
700
701@noindent
702The action says how to produce the semantic value of the sum expression
703from the values of the two subexpressions.
704
676385e2 705@node GLR Parsers
c827f760
PE
706@section Writing @acronym{GLR} Parsers
707@cindex @acronym{GLR} parsing
708@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
709@findex %glr-parser
710@cindex conflicts
711@cindex shift/reduce conflicts
fa7e68c3 712@cindex reduce/reduce conflicts
676385e2 713
34a6c2d1
JD
714In some grammars, Bison's deterministic
715@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
716certain grammar rule at a given point. That is, it may not be able to
717decide (on the basis of the input read so far) which of two possible
718reductions (applications of a grammar rule) applies, or whether to apply
719a reduction or read more of the input and apply a reduction later in the
720input. These are known respectively as @dfn{reduce/reduce} conflicts
721(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
722(@pxref{Shift/Reduce}).
723
34a6c2d1 724To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 725more general parsing algorithm is sometimes necessary. If you include
676385e2 726@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 727(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
728(@acronym{GLR}) parser. These parsers handle Bison grammars that
729contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 730declarations) identically to deterministic parsers. However, when
9501dc6e
AD
731faced with unresolved shift/reduce and reduce/reduce conflicts,
732@acronym{GLR} parsers use the simple expedient of doing both,
733effectively cloning the parser to follow both possibilities. Each of
734the resulting parsers can again split, so that at any given time, there
735can be any number of possible parses being explored. The parsers
676385e2
PH
736proceed in lockstep; that is, all of them consume (shift) a given input
737symbol before any of them proceed to the next. Each of the cloned
738parsers eventually meets one of two possible fates: either it runs into
739a parsing error, in which case it simply vanishes, or it merges with
740another parser, because the two of them have reduced the input to an
741identical set of symbols.
742
743During the time that there are multiple parsers, semantic actions are
744recorded, but not performed. When a parser disappears, its recorded
745semantic actions disappear as well, and are never performed. When a
746reduction makes two parsers identical, causing them to merge, Bison
747records both sets of semantic actions. Whenever the last two parsers
748merge, reverting to the single-parser case, Bison resolves all the
749outstanding actions either by precedences given to the grammar rules
750involved, or by performing both actions, and then calling a designated
751user-defined function on the resulting values to produce an arbitrary
752merged result.
753
fa7e68c3 754@menu
f56274a8
DJ
755* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
756* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
757* GLR Semantic Actions:: Deferred semantic actions have special concerns.
758* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
759@end menu
760
761@node Simple GLR Parsers
762@subsection Using @acronym{GLR} on Unambiguous Grammars
763@cindex @acronym{GLR} parsing, unambiguous grammars
764@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
765@findex %glr-parser
766@findex %expect-rr
767@cindex conflicts
768@cindex reduce/reduce conflicts
769@cindex shift/reduce conflicts
770
771In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
772to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
773Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
34a6c2d1 810With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
849lookahead than the underlying @acronym{LR}(1) algorithm actually allows
850for. In this example, @acronym{LR}(2) would suffice, but also some cases
851that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
34a6c2d1 904When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
34a6c2d1 936@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1156the same as its effect in a deterministic parser.
32c29292
JD
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313 2707
2cbe6b7f
JD
2708The functionality of @var{Prologue} sections can often be subtle and
2709inflexible.
8e0a5e9e
JD
2710As an alternative, Bison provides a %code directive with an explicit qualifier
2711field, which identifies the purpose of the code and thus the location(s) where
2712Bison should generate it.
2713For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2714one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2715@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2716
2717Look again at the example of the previous section:
2718
2719@smallexample
2720%@{
2721 #define _GNU_SOURCE
2722 #include <stdio.h>
2723 #include "ptypes.h"
2724%@}
2725
2726%union @{
2727 long int n;
2728 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2729@}
2730
2731%@{
2732 static void print_token_value (FILE *, int, YYSTYPE);
2733 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2734%@}
2735
2736@dots{}
2737@end smallexample
2738
2739@noindent
2740Notice that there are two @var{Prologue} sections here, but there's a subtle
2741distinction between their functionality.
2742For example, if you decide to override Bison's default definition for
2743@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2744definition?
2745You should write it in the first since Bison will insert that code into the
8e0a5e9e 2746parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2747In which @var{Prologue} section should you prototype an internal function,
2748@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2749arguments?
2750You should prototype it in the second since Bison will insert that code
2751@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2752
2753This distinction in functionality between the two @var{Prologue} sections is
2754established by the appearance of the @code{%union} between them.
a501eca9 2755This behavior raises a few questions.
2cbe6b7f
JD
2756First, why should the position of a @code{%union} affect definitions related to
2757@code{YYLTYPE} and @code{yytokentype}?
2758Second, what if there is no @code{%union}?
2759In that case, the second kind of @var{Prologue} section is not available.
2760This behavior is not intuitive.
2761
8e0a5e9e 2762To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2763@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2764Let's go ahead and add the new @code{YYLTYPE} definition and the
2765@code{trace_token} prototype at the same time:
2766
2767@smallexample
16dc6a9e 2768%code top @{
2cbe6b7f
JD
2769 #define _GNU_SOURCE
2770 #include <stdio.h>
8e0a5e9e
JD
2771
2772 /* WARNING: The following code really belongs
16dc6a9e 2773 * in a `%code requires'; see below. */
8e0a5e9e 2774
2cbe6b7f
JD
2775 #include "ptypes.h"
2776 #define YYLTYPE YYLTYPE
2777 typedef struct YYLTYPE
2778 @{
2779 int first_line;
2780 int first_column;
2781 int last_line;
2782 int last_column;
2783 char *filename;
2784 @} YYLTYPE;
2785@}
2786
2787%union @{
2788 long int n;
2789 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2790@}
2791
2792%code @{
2793 static void print_token_value (FILE *, int, YYSTYPE);
2794 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2795 static void trace_token (enum yytokentype token, YYLTYPE loc);
2796@}
2797
2798@dots{}
2799@end smallexample
2800
2801@noindent
16dc6a9e
JD
2802In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2803functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2804explicit which kind you intend.
2cbe6b7f
JD
2805Moreover, both kinds are always available even in the absence of @code{%union}.
2806
16dc6a9e 2807The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2808The first two lines before the warning need to appear near the top of the
2809parser source code file.
2810The first line after the warning is required by @code{YYSTYPE} and thus also
2811needs to appear in the parser source code file.
2cbe6b7f 2812However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2813(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2814the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2815The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2816override the default @code{YYLTYPE} definition there.
2817
16dc6a9e 2818In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2819lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2820definitions.
16dc6a9e 2821Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2822
2823@smallexample
16dc6a9e 2824%code top @{
2cbe6b7f
JD
2825 #define _GNU_SOURCE
2826 #include <stdio.h>
2827@}
2828
16dc6a9e 2829%code requires @{
9bc0dd67
JD
2830 #include "ptypes.h"
2831@}
2832%union @{
2833 long int n;
2834 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2835@}
2836
16dc6a9e 2837%code requires @{
2cbe6b7f
JD
2838 #define YYLTYPE YYLTYPE
2839 typedef struct YYLTYPE
2840 @{
2841 int first_line;
2842 int first_column;
2843 int last_line;
2844 int last_column;
2845 char *filename;
2846 @} YYLTYPE;
2847@}
2848
136a0f76 2849%code @{
2cbe6b7f
JD
2850 static void print_token_value (FILE *, int, YYSTYPE);
2851 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2852 static void trace_token (enum yytokentype token, YYLTYPE loc);
2853@}
2854
2855@dots{}
2856@end smallexample
2857
2858@noindent
2859Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2860definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2861definitions in both the parser source code file and the parser header file.
16dc6a9e 2862(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2863place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2864
a501eca9 2865When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2866should prefer @code{%code requires} over @code{%code top} regardless of whether
2867you instruct Bison to generate a parser header file.
a501eca9 2868When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2869source code file and that has no special need to appear at the top of that
16dc6a9e 2870file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2871These practices will make the purpose of each block of your code explicit to
2872Bison and to other developers reading your grammar file.
8e0a5e9e 2873Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2874@code{%code requires} to be the most important of the four @var{Prologue}
2875alternatives.
a501eca9 2876
2cbe6b7f
JD
2877At some point while developing your parser, you might decide to provide
2878@code{trace_token} to modules that are external to your parser.
2879Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2880header file and the parser source code file.
2881Since this function is not a dependency required by @code{YYSTYPE} or
2882@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2883@code{%code requires}.
2cbe6b7f 2884More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2885@code{%code requires} is not sufficient.
8e0a5e9e 2886Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2887@code{%code provides}:
2cbe6b7f
JD
2888
2889@smallexample
16dc6a9e 2890%code top @{
2cbe6b7f 2891 #define _GNU_SOURCE
136a0f76 2892 #include <stdio.h>
2cbe6b7f 2893@}
136a0f76 2894
16dc6a9e 2895%code requires @{
2cbe6b7f
JD
2896 #include "ptypes.h"
2897@}
2898%union @{
2899 long int n;
2900 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2901@}
2902
16dc6a9e 2903%code requires @{
2cbe6b7f
JD
2904 #define YYLTYPE YYLTYPE
2905 typedef struct YYLTYPE
2906 @{
2907 int first_line;
2908 int first_column;
2909 int last_line;
2910 int last_column;
2911 char *filename;
2912 @} YYLTYPE;
2913@}
2914
16dc6a9e 2915%code provides @{
2cbe6b7f
JD
2916 void trace_token (enum yytokentype token, YYLTYPE loc);
2917@}
2918
2919%code @{
9bc0dd67
JD
2920 static void print_token_value (FILE *, int, YYSTYPE);
2921 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2922@}
9bc0dd67
JD
2923
2924@dots{}
2925@end smallexample
2926
2cbe6b7f
JD
2927@noindent
2928Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2929file and the parser source code file after the definitions for
2930@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2931
2932The above examples are careful to write directives in an order that reflects
8e0a5e9e 2933the layout of the generated parser source code and header files:
16dc6a9e 2934@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2935@code{%code}.
a501eca9 2936While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2937this order, Bison does not require it.
2938Instead, Bison lets you choose an organization that makes sense to you.
2939
a501eca9 2940You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2941In that case, Bison concatenates the contained code in declaration order.
2942This is the only way in which the position of one of these directives within
2943the grammar file affects its functionality.
2944
2945The result of the previous two properties is greater flexibility in how you may
2946organize your grammar file.
2947For example, you may organize semantic-type-related directives by semantic
2948type:
2949
2950@smallexample
16dc6a9e 2951%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2952%union @{ type1 field1; @}
2953%destructor @{ type1_free ($$); @} <field1>
2954%printer @{ type1_print ($$); @} <field1>
2955
16dc6a9e 2956%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2957%union @{ type2 field2; @}
2958%destructor @{ type2_free ($$); @} <field2>
2959%printer @{ type2_print ($$); @} <field2>
2960@end smallexample
2961
2962@noindent
2963You could even place each of the above directive groups in the rules section of
2964the grammar file next to the set of rules that uses the associated semantic
2965type.
61fee93e
JD
2966(In the rules section, you must terminate each of those directives with a
2967semicolon.)
2cbe6b7f
JD
2968And you don't have to worry that some directive (like a @code{%union}) in the
2969definitions section is going to adversely affect their functionality in some
2970counter-intuitive manner just because it comes first.
2971Such an organization is not possible using @var{Prologue} sections.
2972
a501eca9 2973This section has been concerned with explaining the advantages of the four
8e0a5e9e 2974@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2975However, in most cases when using these directives, you shouldn't need to
2976think about all the low-level ordering issues discussed here.
2977Instead, you should simply use these directives to label each block of your
2978code according to its purpose and let Bison handle the ordering.
2979@code{%code} is the most generic label.
16dc6a9e
JD
2980Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2981as needed.
a501eca9 2982
342b8b6e 2983@node Bison Declarations
bfa74976
RS
2984@subsection The Bison Declarations Section
2985@cindex Bison declarations (introduction)
2986@cindex declarations, Bison (introduction)
2987
2988The @var{Bison declarations} section contains declarations that define
2989terminal and nonterminal symbols, specify precedence, and so on.
2990In some simple grammars you may not need any declarations.
2991@xref{Declarations, ,Bison Declarations}.
2992
342b8b6e 2993@node Grammar Rules
bfa74976
RS
2994@subsection The Grammar Rules Section
2995@cindex grammar rules section
2996@cindex rules section for grammar
2997
2998The @dfn{grammar rules} section contains one or more Bison grammar
2999rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3000
3001There must always be at least one grammar rule, and the first
3002@samp{%%} (which precedes the grammar rules) may never be omitted even
3003if it is the first thing in the file.
3004
38a92d50 3005@node Epilogue
75f5aaea 3006@subsection The epilogue
bfa74976 3007@cindex additional C code section
75f5aaea 3008@cindex epilogue
bfa74976
RS
3009@cindex C code, section for additional
3010
08e49d20
PE
3011The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3012the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3013place to put anything that you want to have in the parser file but which need
3014not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3015definitions of @code{yylex} and @code{yyerror} often go here. Because
3016C requires functions to be declared before being used, you often need
3017to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3018even if you define them in the Epilogue.
75f5aaea 3019@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3020
3021If the last section is empty, you may omit the @samp{%%} that separates it
3022from the grammar rules.
3023
f8e1c9e5
AD
3024The Bison parser itself contains many macros and identifiers whose names
3025start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3026any such names (except those documented in this manual) in the epilogue
3027of the grammar file.
bfa74976 3028
342b8b6e 3029@node Symbols
bfa74976
RS
3030@section Symbols, Terminal and Nonterminal
3031@cindex nonterminal symbol
3032@cindex terminal symbol
3033@cindex token type
3034@cindex symbol
3035
3036@dfn{Symbols} in Bison grammars represent the grammatical classifications
3037of the language.
3038
3039A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3040class of syntactically equivalent tokens. You use the symbol in grammar
3041rules to mean that a token in that class is allowed. The symbol is
3042represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3043function returns a token type code to indicate what kind of token has
3044been read. You don't need to know what the code value is; you can use
3045the symbol to stand for it.
bfa74976 3046
f8e1c9e5
AD
3047A @dfn{nonterminal symbol} stands for a class of syntactically
3048equivalent groupings. The symbol name is used in writing grammar rules.
3049By convention, it should be all lower case.
bfa74976 3050
c046698e
AD
3051Symbol names can contain letters, underscores, periods, dashes, and (not
3052at the beginning) digits. Dashes in symbol names are a GNU
663ce7bb
AD
3053extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3054that contain periods or dashes make little sense: since they are not
3055valid symbols (in most programming languages) they are not exported as
3056token names.
bfa74976 3057
931c7513 3058There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3059
3060@itemize @bullet
3061@item
3062A @dfn{named token type} is written with an identifier, like an
c827f760 3063identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3064such name must be defined with a Bison declaration such as
3065@code{%token}. @xref{Token Decl, ,Token Type Names}.
3066
3067@item
3068@cindex character token
3069@cindex literal token
3070@cindex single-character literal
931c7513
RS
3071A @dfn{character token type} (or @dfn{literal character token}) is
3072written in the grammar using the same syntax used in C for character
3073constants; for example, @code{'+'} is a character token type. A
3074character token type doesn't need to be declared unless you need to
3075specify its semantic value data type (@pxref{Value Type, ,Data Types of
3076Semantic Values}), associativity, or precedence (@pxref{Precedence,
3077,Operator Precedence}).
bfa74976
RS
3078
3079By convention, a character token type is used only to represent a
3080token that consists of that particular character. Thus, the token
3081type @code{'+'} is used to represent the character @samp{+} as a
3082token. Nothing enforces this convention, but if you depart from it,
3083your program will confuse other readers.
3084
3085All the usual escape sequences used in character literals in C can be
3086used in Bison as well, but you must not use the null character as a
72d2299c
PE
3087character literal because its numeric code, zero, signifies
3088end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3089for @code{yylex}}). Also, unlike standard C, trigraphs have no
3090special meaning in Bison character literals, nor is backslash-newline
3091allowed.
931c7513
RS
3092
3093@item
3094@cindex string token
3095@cindex literal string token
9ecbd125 3096@cindex multicharacter literal
931c7513
RS
3097A @dfn{literal string token} is written like a C string constant; for
3098example, @code{"<="} is a literal string token. A literal string token
3099doesn't need to be declared unless you need to specify its semantic
14ded682 3100value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3101(@pxref{Precedence}).
3102
3103You can associate the literal string token with a symbolic name as an
3104alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3105Declarations}). If you don't do that, the lexical analyzer has to
3106retrieve the token number for the literal string token from the
3107@code{yytname} table (@pxref{Calling Convention}).
3108
c827f760 3109@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3110
3111By convention, a literal string token is used only to represent a token
3112that consists of that particular string. Thus, you should use the token
3113type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3114does not enforce this convention, but if you depart from it, people who
931c7513
RS
3115read your program will be confused.
3116
3117All the escape sequences used in string literals in C can be used in
92ac3705
PE
3118Bison as well, except that you must not use a null character within a
3119string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3120meaning in Bison string literals, nor is backslash-newline allowed. A
3121literal string token must contain two or more characters; for a token
3122containing just one character, use a character token (see above).
bfa74976
RS
3123@end itemize
3124
3125How you choose to write a terminal symbol has no effect on its
3126grammatical meaning. That depends only on where it appears in rules and
3127on when the parser function returns that symbol.
3128
72d2299c
PE
3129The value returned by @code{yylex} is always one of the terminal
3130symbols, except that a zero or negative value signifies end-of-input.
3131Whichever way you write the token type in the grammar rules, you write
3132it the same way in the definition of @code{yylex}. The numeric code
3133for a character token type is simply the positive numeric code of the
3134character, so @code{yylex} can use the identical value to generate the
3135requisite code, though you may need to convert it to @code{unsigned
3136char} to avoid sign-extension on hosts where @code{char} is signed.
3137Each named token type becomes a C macro in
bfa74976 3138the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3139(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3140@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3141
3142If @code{yylex} is defined in a separate file, you need to arrange for the
3143token-type macro definitions to be available there. Use the @samp{-d}
3144option when you run Bison, so that it will write these macro definitions
3145into a separate header file @file{@var{name}.tab.h} which you can include
3146in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3147
72d2299c 3148If you want to write a grammar that is portable to any Standard C
9d9b8b70 3149host, you must use only nonnull character tokens taken from the basic
c827f760 3150execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3151digits, the 52 lower- and upper-case English letters, and the
3152characters in the following C-language string:
3153
3154@example
3155"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3156@end example
3157
f8e1c9e5
AD
3158The @code{yylex} function and Bison must use a consistent character set
3159and encoding for character tokens. For example, if you run Bison in an
3160@acronym{ASCII} environment, but then compile and run the resulting
3161program in an environment that uses an incompatible character set like
3162@acronym{EBCDIC}, the resulting program may not work because the tables
3163generated by Bison will assume @acronym{ASCII} numeric values for
3164character tokens. It is standard practice for software distributions to
3165contain C source files that were generated by Bison in an
3166@acronym{ASCII} environment, so installers on platforms that are
3167incompatible with @acronym{ASCII} must rebuild those files before
3168compiling them.
e966383b 3169
bfa74976
RS
3170The symbol @code{error} is a terminal symbol reserved for error recovery
3171(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3172In particular, @code{yylex} should never return this value. The default
3173value of the error token is 256, unless you explicitly assigned 256 to
3174one of your tokens with a @code{%token} declaration.
bfa74976 3175
342b8b6e 3176@node Rules
bfa74976
RS
3177@section Syntax of Grammar Rules
3178@cindex rule syntax
3179@cindex grammar rule syntax
3180@cindex syntax of grammar rules
3181
3182A Bison grammar rule has the following general form:
3183
3184@example
e425e872 3185@group
bfa74976
RS
3186@var{result}: @var{components}@dots{}
3187 ;
e425e872 3188@end group
bfa74976
RS
3189@end example
3190
3191@noindent
9ecbd125 3192where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3193and @var{components} are various terminal and nonterminal symbols that
13863333 3194are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3195
3196For example,
3197
3198@example
3199@group
3200exp: exp '+' exp
3201 ;
3202@end group
3203@end example
3204
3205@noindent
3206says that two groupings of type @code{exp}, with a @samp{+} token in between,
3207can be combined into a larger grouping of type @code{exp}.
3208
72d2299c
PE
3209White space in rules is significant only to separate symbols. You can add
3210extra white space as you wish.
bfa74976
RS
3211
3212Scattered among the components can be @var{actions} that determine
3213the semantics of the rule. An action looks like this:
3214
3215@example
3216@{@var{C statements}@}
3217@end example
3218
3219@noindent
287c78f6
PE
3220@cindex braced code
3221This is an example of @dfn{braced code}, that is, C code surrounded by
3222braces, much like a compound statement in C@. Braced code can contain
3223any sequence of C tokens, so long as its braces are balanced. Bison
3224does not check the braced code for correctness directly; it merely
3225copies the code to the output file, where the C compiler can check it.
3226
3227Within braced code, the balanced-brace count is not affected by braces
3228within comments, string literals, or character constants, but it is
3229affected by the C digraphs @samp{<%} and @samp{%>} that represent
3230braces. At the top level braced code must be terminated by @samp{@}}
3231and not by a digraph. Bison does not look for trigraphs, so if braced
3232code uses trigraphs you should ensure that they do not affect the
3233nesting of braces or the boundaries of comments, string literals, or
3234character constants.
3235
bfa74976
RS
3236Usually there is only one action and it follows the components.
3237@xref{Actions}.
3238
3239@findex |
3240Multiple rules for the same @var{result} can be written separately or can
3241be joined with the vertical-bar character @samp{|} as follows:
3242
bfa74976
RS
3243@example
3244@group
3245@var{result}: @var{rule1-components}@dots{}
3246 | @var{rule2-components}@dots{}
3247 @dots{}
3248 ;
3249@end group
3250@end example
bfa74976
RS
3251
3252@noindent
3253They are still considered distinct rules even when joined in this way.
3254
3255If @var{components} in a rule is empty, it means that @var{result} can
3256match the empty string. For example, here is how to define a
3257comma-separated sequence of zero or more @code{exp} groupings:
3258
3259@example
3260@group
3261expseq: /* empty */
3262 | expseq1
3263 ;
3264@end group
3265
3266@group
3267expseq1: exp
3268 | expseq1 ',' exp
3269 ;
3270@end group
3271@end example
3272
3273@noindent
3274It is customary to write a comment @samp{/* empty */} in each rule
3275with no components.
3276
342b8b6e 3277@node Recursion
bfa74976
RS
3278@section Recursive Rules
3279@cindex recursive rule
3280
f8e1c9e5
AD
3281A rule is called @dfn{recursive} when its @var{result} nonterminal
3282appears also on its right hand side. Nearly all Bison grammars need to
3283use recursion, because that is the only way to define a sequence of any
3284number of a particular thing. Consider this recursive definition of a
9ecbd125 3285comma-separated sequence of one or more expressions:
bfa74976
RS
3286
3287@example
3288@group
3289expseq1: exp
3290 | expseq1 ',' exp
3291 ;
3292@end group
3293@end example
3294
3295@cindex left recursion
3296@cindex right recursion
3297@noindent
3298Since the recursive use of @code{expseq1} is the leftmost symbol in the
3299right hand side, we call this @dfn{left recursion}. By contrast, here
3300the same construct is defined using @dfn{right recursion}:
3301
3302@example
3303@group
3304expseq1: exp
3305 | exp ',' expseq1
3306 ;
3307@end group
3308@end example
3309
3310@noindent
ec3bc396
AD
3311Any kind of sequence can be defined using either left recursion or right
3312recursion, but you should always use left recursion, because it can
3313parse a sequence of any number of elements with bounded stack space.
3314Right recursion uses up space on the Bison stack in proportion to the
3315number of elements in the sequence, because all the elements must be
3316shifted onto the stack before the rule can be applied even once.
3317@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3318of this.
bfa74976
RS
3319
3320@cindex mutual recursion
3321@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3322rule does not appear directly on its right hand side, but does appear
3323in rules for other nonterminals which do appear on its right hand
13863333 3324side.
bfa74976
RS
3325
3326For example:
3327
3328@example
3329@group
3330expr: primary
3331 | primary '+' primary
3332 ;
3333@end group
3334
3335@group
3336primary: constant
3337 | '(' expr ')'
3338 ;
3339@end group
3340@end example
3341
3342@noindent
3343defines two mutually-recursive nonterminals, since each refers to the
3344other.
3345
342b8b6e 3346@node Semantics
bfa74976
RS
3347@section Defining Language Semantics
3348@cindex defining language semantics
13863333 3349@cindex language semantics, defining
bfa74976
RS
3350
3351The grammar rules for a language determine only the syntax. The semantics
3352are determined by the semantic values associated with various tokens and
3353groupings, and by the actions taken when various groupings are recognized.
3354
3355For example, the calculator calculates properly because the value
3356associated with each expression is the proper number; it adds properly
3357because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3358the numbers associated with @var{x} and @var{y}.
3359
3360@menu
3361* Value Type:: Specifying one data type for all semantic values.
3362* Multiple Types:: Specifying several alternative data types.
3363* Actions:: An action is the semantic definition of a grammar rule.
3364* Action Types:: Specifying data types for actions to operate on.
3365* Mid-Rule Actions:: Most actions go at the end of a rule.
3366 This says when, why and how to use the exceptional
3367 action in the middle of a rule.
3368@end menu
3369
342b8b6e 3370@node Value Type
bfa74976
RS
3371@subsection Data Types of Semantic Values
3372@cindex semantic value type
3373@cindex value type, semantic
3374@cindex data types of semantic values
3375@cindex default data type
3376
3377In a simple program it may be sufficient to use the same data type for
3378the semantic values of all language constructs. This was true in the
c827f760 3379@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3380Notation Calculator}).
bfa74976 3381
ddc8ede1
PE
3382Bison normally uses the type @code{int} for semantic values if your
3383program uses the same data type for all language constructs. To
bfa74976
RS
3384specify some other type, define @code{YYSTYPE} as a macro, like this:
3385
3386@example
3387#define YYSTYPE double
3388@end example
3389
3390@noindent
50cce58e
PE
3391@code{YYSTYPE}'s replacement list should be a type name
3392that does not contain parentheses or square brackets.
342b8b6e 3393This macro definition must go in the prologue of the grammar file
75f5aaea 3394(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3395
342b8b6e 3396@node Multiple Types
bfa74976
RS
3397@subsection More Than One Value Type
3398
3399In most programs, you will need different data types for different kinds
3400of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3401@code{int} or @code{long int}, while a string constant needs type
3402@code{char *}, and an identifier might need a pointer to an entry in the
3403symbol table.
bfa74976
RS
3404
3405To use more than one data type for semantic values in one parser, Bison
3406requires you to do two things:
3407
3408@itemize @bullet
3409@item
ddc8ede1 3410Specify the entire collection of possible data types, either by using the
704a47c4 3411@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3412Value Types}), or by using a @code{typedef} or a @code{#define} to
3413define @code{YYSTYPE} to be a union type whose member names are
3414the type tags.
bfa74976
RS
3415
3416@item
14ded682
AD
3417Choose one of those types for each symbol (terminal or nonterminal) for
3418which semantic values are used. This is done for tokens with the
3419@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3420and for groupings with the @code{%type} Bison declaration (@pxref{Type
3421Decl, ,Nonterminal Symbols}).
bfa74976
RS
3422@end itemize
3423
342b8b6e 3424@node Actions
bfa74976
RS
3425@subsection Actions
3426@cindex action
3427@vindex $$
3428@vindex $@var{n}
3429
3430An action accompanies a syntactic rule and contains C code to be executed
3431each time an instance of that rule is recognized. The task of most actions
3432is to compute a semantic value for the grouping built by the rule from the
3433semantic values associated with tokens or smaller groupings.
3434
287c78f6
PE
3435An action consists of braced code containing C statements, and can be
3436placed at any position in the rule;
704a47c4
AD
3437it is executed at that position. Most rules have just one action at the
3438end of the rule, following all the components. Actions in the middle of
3439a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3440Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3441
3442The C code in an action can refer to the semantic values of the components
3443matched by the rule with the construct @code{$@var{n}}, which stands for
3444the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3445being constructed is @code{$$}. Bison translates both of these
3446constructs into expressions of the appropriate type when it copies the
3447actions into the parser file. @code{$$} is translated to a modifiable
3448lvalue, so it can be assigned to.
bfa74976
RS
3449
3450Here is a typical example:
3451
3452@example
3453@group
3454exp: @dots{}
3455 | exp '+' exp
3456 @{ $$ = $1 + $3; @}
3457@end group
3458@end example
3459
3460@noindent
3461This rule constructs an @code{exp} from two smaller @code{exp} groupings
3462connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3463refer to the semantic values of the two component @code{exp} groupings,
3464which are the first and third symbols on the right hand side of the rule.
3465The sum is stored into @code{$$} so that it becomes the semantic value of
3466the addition-expression just recognized by the rule. If there were a
3467useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3468referred to as @code{$2}.
bfa74976 3469
3ded9a63
AD
3470Note that the vertical-bar character @samp{|} is really a rule
3471separator, and actions are attached to a single rule. This is a
3472difference with tools like Flex, for which @samp{|} stands for either
3473``or'', or ``the same action as that of the next rule''. In the
3474following example, the action is triggered only when @samp{b} is found:
3475
3476@example
3477@group
3478a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3479@end group
3480@end example
3481
bfa74976
RS
3482@cindex default action
3483If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3484@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3485becomes the value of the whole rule. Of course, the default action is
3486valid only if the two data types match. There is no meaningful default
3487action for an empty rule; every empty rule must have an explicit action
3488unless the rule's value does not matter.
bfa74976
RS
3489
3490@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3491to tokens and groupings on the stack @emph{before} those that match the
3492current rule. This is a very risky practice, and to use it reliably
3493you must be certain of the context in which the rule is applied. Here
3494is a case in which you can use this reliably:
3495
3496@example
3497@group
3498foo: expr bar '+' expr @{ @dots{} @}
3499 | expr bar '-' expr @{ @dots{} @}
3500 ;
3501@end group
3502
3503@group
3504bar: /* empty */
3505 @{ previous_expr = $0; @}
3506 ;
3507@end group
3508@end example
3509
3510As long as @code{bar} is used only in the fashion shown here, @code{$0}
3511always refers to the @code{expr} which precedes @code{bar} in the
3512definition of @code{foo}.
3513
32c29292 3514@vindex yylval
742e4900 3515It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3516any, from a semantic action.
3517This semantic value is stored in @code{yylval}.
3518@xref{Action Features, ,Special Features for Use in Actions}.
3519
342b8b6e 3520@node Action Types
bfa74976
RS
3521@subsection Data Types of Values in Actions
3522@cindex action data types
3523@cindex data types in actions
3524
3525If you have chosen a single data type for semantic values, the @code{$$}
3526and @code{$@var{n}} constructs always have that data type.
3527
3528If you have used @code{%union} to specify a variety of data types, then you
3529must declare a choice among these types for each terminal or nonterminal
3530symbol that can have a semantic value. Then each time you use @code{$$} or
3531@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3532in the rule. In this example,
bfa74976
RS
3533
3534@example
3535@group
3536exp: @dots{}
3537 | exp '+' exp
3538 @{ $$ = $1 + $3; @}
3539@end group
3540@end example
3541
3542@noindent
3543@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3544have the data type declared for the nonterminal symbol @code{exp}. If
3545@code{$2} were used, it would have the data type declared for the
e0c471a9 3546terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3547
3548Alternatively, you can specify the data type when you refer to the value,
3549by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3550reference. For example, if you have defined types as shown here:
3551
3552@example
3553@group
3554%union @{
3555 int itype;
3556 double dtype;
3557@}
3558@end group
3559@end example
3560
3561@noindent
3562then you can write @code{$<itype>1} to refer to the first subunit of the
3563rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3564
342b8b6e 3565@node Mid-Rule Actions
bfa74976
RS
3566@subsection Actions in Mid-Rule
3567@cindex actions in mid-rule
3568@cindex mid-rule actions
3569
3570Occasionally it is useful to put an action in the middle of a rule.
3571These actions are written just like usual end-of-rule actions, but they
3572are executed before the parser even recognizes the following components.
3573
3574A mid-rule action may refer to the components preceding it using
3575@code{$@var{n}}, but it may not refer to subsequent components because
3576it is run before they are parsed.
3577
3578The mid-rule action itself counts as one of the components of the rule.
3579This makes a difference when there is another action later in the same rule
3580(and usually there is another at the end): you have to count the actions
3581along with the symbols when working out which number @var{n} to use in
3582@code{$@var{n}}.
3583
3584The mid-rule action can also have a semantic value. The action can set
3585its value with an assignment to @code{$$}, and actions later in the rule
3586can refer to the value using @code{$@var{n}}. Since there is no symbol
3587to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3588in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3589specify a data type each time you refer to this value.
bfa74976
RS
3590
3591There is no way to set the value of the entire rule with a mid-rule
3592action, because assignments to @code{$$} do not have that effect. The
3593only way to set the value for the entire rule is with an ordinary action
3594at the end of the rule.
3595
3596Here is an example from a hypothetical compiler, handling a @code{let}
3597statement that looks like @samp{let (@var{variable}) @var{statement}} and
3598serves to create a variable named @var{variable} temporarily for the
3599duration of @var{statement}. To parse this construct, we must put
3600@var{variable} into the symbol table while @var{statement} is parsed, then
3601remove it afterward. Here is how it is done:
3602
3603@example
3604@group
3605stmt: LET '(' var ')'
3606 @{ $<context>$ = push_context ();
3607 declare_variable ($3); @}
3608 stmt @{ $$ = $6;
3609 pop_context ($<context>5); @}
3610@end group
3611@end example
3612
3613@noindent
3614As soon as @samp{let (@var{variable})} has been recognized, the first
3615action is run. It saves a copy of the current semantic context (the
3616list of accessible variables) as its semantic value, using alternative
3617@code{context} in the data-type union. Then it calls
3618@code{declare_variable} to add the new variable to that list. Once the
3619first action is finished, the embedded statement @code{stmt} can be
3620parsed. Note that the mid-rule action is component number 5, so the
3621@samp{stmt} is component number 6.
3622
3623After the embedded statement is parsed, its semantic value becomes the
3624value of the entire @code{let}-statement. Then the semantic value from the
3625earlier action is used to restore the prior list of variables. This
3626removes the temporary @code{let}-variable from the list so that it won't
3627appear to exist while the rest of the program is parsed.
3628
841a7737
JD
3629@findex %destructor
3630@cindex discarded symbols, mid-rule actions
3631@cindex error recovery, mid-rule actions
3632In the above example, if the parser initiates error recovery (@pxref{Error
3633Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3634it might discard the previous semantic context @code{$<context>5} without
3635restoring it.
3636Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3637Discarded Symbols}).
ec5479ce
JD
3638However, Bison currently provides no means to declare a destructor specific to
3639a particular mid-rule action's semantic value.
841a7737
JD
3640
3641One solution is to bury the mid-rule action inside a nonterminal symbol and to
3642declare a destructor for that symbol:
3643
3644@example
3645@group
3646%type <context> let
3647%destructor @{ pop_context ($$); @} let
3648
3649%%
3650
3651stmt: let stmt
3652 @{ $$ = $2;
3653 pop_context ($1); @}
3654 ;
3655
3656let: LET '(' var ')'
3657 @{ $$ = push_context ();
3658 declare_variable ($3); @}
3659 ;
3660
3661@end group
3662@end example
3663
3664@noindent
3665Note that the action is now at the end of its rule.
3666Any mid-rule action can be converted to an end-of-rule action in this way, and
3667this is what Bison actually does to implement mid-rule actions.
3668
bfa74976
RS
3669Taking action before a rule is completely recognized often leads to
3670conflicts since the parser must commit to a parse in order to execute the
3671action. For example, the following two rules, without mid-rule actions,
3672can coexist in a working parser because the parser can shift the open-brace
3673token and look at what follows before deciding whether there is a
3674declaration or not:
3675
3676@example
3677@group
3678compound: '@{' declarations statements '@}'
3679 | '@{' statements '@}'
3680 ;
3681@end group
3682@end example
3683
3684@noindent
3685But when we add a mid-rule action as follows, the rules become nonfunctional:
3686
3687@example
3688@group
3689compound: @{ prepare_for_local_variables (); @}
3690 '@{' declarations statements '@}'
3691@end group
3692@group
3693 | '@{' statements '@}'
3694 ;
3695@end group
3696@end example
3697
3698@noindent
3699Now the parser is forced to decide whether to run the mid-rule action
3700when it has read no farther than the open-brace. In other words, it
3701must commit to using one rule or the other, without sufficient
3702information to do it correctly. (The open-brace token is what is called
742e4900
JD
3703the @dfn{lookahead} token at this time, since the parser is still
3704deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3705
3706You might think that you could correct the problem by putting identical
3707actions into the two rules, like this:
3708
3709@example
3710@group
3711compound: @{ prepare_for_local_variables (); @}
3712 '@{' declarations statements '@}'
3713 | @{ prepare_for_local_variables (); @}
3714 '@{' statements '@}'
3715 ;
3716@end group
3717@end example
3718
3719@noindent
3720But this does not help, because Bison does not realize that the two actions
3721are identical. (Bison never tries to understand the C code in an action.)
3722
3723If the grammar is such that a declaration can be distinguished from a
3724statement by the first token (which is true in C), then one solution which
3725does work is to put the action after the open-brace, like this:
3726
3727@example
3728@group
3729compound: '@{' @{ prepare_for_local_variables (); @}
3730 declarations statements '@}'
3731 | '@{' statements '@}'
3732 ;
3733@end group
3734@end example
3735
3736@noindent
3737Now the first token of the following declaration or statement,
3738which would in any case tell Bison which rule to use, can still do so.
3739
3740Another solution is to bury the action inside a nonterminal symbol which
3741serves as a subroutine:
3742
3743@example
3744@group
3745subroutine: /* empty */
3746 @{ prepare_for_local_variables (); @}
3747 ;
3748
3749@end group
3750
3751@group
3752compound: subroutine
3753 '@{' declarations statements '@}'
3754 | subroutine
3755 '@{' statements '@}'
3756 ;
3757@end group
3758@end example
3759
3760@noindent
3761Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3762deciding which rule for @code{compound} it will eventually use.
bfa74976 3763
342b8b6e 3764@node Locations
847bf1f5
AD
3765@section Tracking Locations
3766@cindex location
95923bd6
AD
3767@cindex textual location
3768@cindex location, textual
847bf1f5
AD
3769
3770Though grammar rules and semantic actions are enough to write a fully
72d2299c 3771functional parser, it can be useful to process some additional information,
3e259915
MA
3772especially symbol locations.
3773
704a47c4
AD
3774The way locations are handled is defined by providing a data type, and
3775actions to take when rules are matched.
847bf1f5
AD
3776
3777@menu
3778* Location Type:: Specifying a data type for locations.
3779* Actions and Locations:: Using locations in actions.
3780* Location Default Action:: Defining a general way to compute locations.
3781@end menu
3782
342b8b6e 3783@node Location Type
847bf1f5
AD
3784@subsection Data Type of Locations
3785@cindex data type of locations
3786@cindex default location type
3787
3788Defining a data type for locations is much simpler than for semantic values,
3789since all tokens and groupings always use the same type.
3790
50cce58e
PE
3791You can specify the type of locations by defining a macro called
3792@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3793defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3794When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3795four members:
3796
3797@example
6273355b 3798typedef struct YYLTYPE
847bf1f5
AD
3799@{
3800 int first_line;
3801 int first_column;
3802 int last_line;
3803 int last_column;
6273355b 3804@} YYLTYPE;
847bf1f5
AD
3805@end example
3806
8fbbeba2
AD
3807When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3808initializes all these fields to 1 for @code{yylloc}. To initialize
3809@code{yylloc} with a custom location type (or to chose a different
3810initialization), use the @code{%initial-action} directive. @xref{Initial
3811Action Decl, , Performing Actions before Parsing}.
cd48d21d 3812
342b8b6e 3813@node Actions and Locations
847bf1f5
AD
3814@subsection Actions and Locations
3815@cindex location actions
3816@cindex actions, location
3817@vindex @@$
3818@vindex @@@var{n}
3819
3820Actions are not only useful for defining language semantics, but also for
3821describing the behavior of the output parser with locations.
3822
3823The most obvious way for building locations of syntactic groupings is very
72d2299c 3824similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3825constructs can be used to access the locations of the elements being matched.
3826The location of the @var{n}th component of the right hand side is
3827@code{@@@var{n}}, while the location of the left hand side grouping is
3828@code{@@$}.
3829
3e259915 3830Here is a basic example using the default data type for locations:
847bf1f5
AD
3831
3832@example
3833@group
3834exp: @dots{}
3e259915 3835 | exp '/' exp
847bf1f5 3836 @{
3e259915
MA
3837 @@$.first_column = @@1.first_column;
3838 @@$.first_line = @@1.first_line;
847bf1f5
AD
3839 @@$.last_column = @@3.last_column;
3840 @@$.last_line = @@3.last_line;
3e259915
MA
3841 if ($3)
3842 $$ = $1 / $3;
3843 else
3844 @{
3845 $$ = 1;
4e03e201
AD
3846 fprintf (stderr,
3847 "Division by zero, l%d,c%d-l%d,c%d",
3848 @@3.first_line, @@3.first_column,
3849 @@3.last_line, @@3.last_column);
3e259915 3850 @}
847bf1f5
AD
3851 @}
3852@end group
3853@end example
3854
3e259915 3855As for semantic values, there is a default action for locations that is
72d2299c 3856run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3857beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3858last symbol.
3e259915 3859
72d2299c 3860With this default action, the location tracking can be fully automatic. The
3e259915
MA
3861example above simply rewrites this way:
3862
3863@example
3864@group
3865exp: @dots{}
3866 | exp '/' exp
3867 @{
3868 if ($3)
3869 $$ = $1 / $3;
3870 else
3871 @{
3872 $$ = 1;
4e03e201
AD
3873 fprintf (stderr,
3874 "Division by zero, l%d,c%d-l%d,c%d",
3875 @@3.first_line, @@3.first_column,
3876 @@3.last_line, @@3.last_column);
3e259915
MA
3877 @}
3878 @}
3879@end group
3880@end example
847bf1f5 3881
32c29292 3882@vindex yylloc
742e4900 3883It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3884from a semantic action.
3885This location is stored in @code{yylloc}.
3886@xref{Action Features, ,Special Features for Use in Actions}.
3887
342b8b6e 3888@node Location Default Action
847bf1f5
AD
3889@subsection Default Action for Locations
3890@vindex YYLLOC_DEFAULT
8710fc41 3891@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3892
72d2299c 3893Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3894locations are much more general than semantic values, there is room in
3895the output parser to redefine the default action to take for each
72d2299c 3896rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3897matched, before the associated action is run. It is also invoked
3898while processing a syntax error, to compute the error's location.
8710fc41
JD
3899Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3900parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3901of that ambiguity.
847bf1f5 3902
3e259915 3903Most of the time, this macro is general enough to suppress location
79282c6c 3904dedicated code from semantic actions.
847bf1f5 3905
72d2299c 3906The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3907the location of the grouping (the result of the computation). When a
766de5eb 3908rule is matched, the second parameter identifies locations of
96b93a3d 3909all right hand side elements of the rule being matched, and the third
8710fc41
JD
3910parameter is the size of the rule's right hand side.
3911When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3912right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3913When processing a syntax error, the second parameter identifies locations
3914of the symbols that were discarded during error processing, and the third
96b93a3d 3915parameter is the number of discarded symbols.
847bf1f5 3916
766de5eb 3917By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3918
766de5eb 3919@smallexample
847bf1f5 3920@group
766de5eb
PE
3921# define YYLLOC_DEFAULT(Current, Rhs, N) \
3922 do \
3923 if (N) \
3924 @{ \
3925 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3926 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3927 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3928 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3929 @} \
3930 else \
3931 @{ \
3932 (Current).first_line = (Current).last_line = \
3933 YYRHSLOC(Rhs, 0).last_line; \
3934 (Current).first_column = (Current).last_column = \
3935 YYRHSLOC(Rhs, 0).last_column; \
3936 @} \
3937 while (0)
847bf1f5 3938@end group
766de5eb 3939@end smallexample
676385e2 3940
766de5eb
PE
3941where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3942in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3943just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3944
3e259915 3945When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3946
3e259915 3947@itemize @bullet
79282c6c 3948@item
72d2299c 3949All arguments are free of side-effects. However, only the first one (the
3e259915 3950result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3951
3e259915 3952@item
766de5eb
PE
3953For consistency with semantic actions, valid indexes within the
3954right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3955valid index, and it refers to the symbol just before the reduction.
3956During error processing @var{n} is always positive.
0ae99356
PE
3957
3958@item
3959Your macro should parenthesize its arguments, if need be, since the
3960actual arguments may not be surrounded by parentheses. Also, your
3961macro should expand to something that can be used as a single
3962statement when it is followed by a semicolon.
3e259915 3963@end itemize
847bf1f5 3964
342b8b6e 3965@node Declarations
bfa74976
RS
3966@section Bison Declarations
3967@cindex declarations, Bison
3968@cindex Bison declarations
3969
3970The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3971used in formulating the grammar and the data types of semantic values.
3972@xref{Symbols}.
3973
3974All token type names (but not single-character literal tokens such as
3975@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3976declared if you need to specify which data type to use for the semantic
3977value (@pxref{Multiple Types, ,More Than One Value Type}).
3978
3979The first rule in the file also specifies the start symbol, by default.
3980If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3981it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3982Grammars}).
bfa74976
RS
3983
3984@menu
b50d2359 3985* Require Decl:: Requiring a Bison version.
bfa74976
RS
3986* Token Decl:: Declaring terminal symbols.
3987* Precedence Decl:: Declaring terminals with precedence and associativity.
3988* Union Decl:: Declaring the set of all semantic value types.
3989* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3990* Initial Action Decl:: Code run before parsing starts.
72f889cc 3991* Destructor Decl:: Declaring how symbols are freed.
d6328241 3992* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3993* Start Decl:: Specifying the start symbol.
3994* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3995* Push Decl:: Requesting a push parser.
bfa74976
RS
3996* Decl Summary:: Table of all Bison declarations.
3997@end menu
3998
b50d2359
AD
3999@node Require Decl
4000@subsection Require a Version of Bison
4001@cindex version requirement
4002@cindex requiring a version of Bison
4003@findex %require
4004
4005You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4006the requirement is not met, @command{bison} exits with an error (exit
4007status 63).
b50d2359
AD
4008
4009@example
4010%require "@var{version}"
4011@end example
4012
342b8b6e 4013@node Token Decl
bfa74976
RS
4014@subsection Token Type Names
4015@cindex declaring token type names
4016@cindex token type names, declaring
931c7513 4017@cindex declaring literal string tokens
bfa74976
RS
4018@findex %token
4019
4020The basic way to declare a token type name (terminal symbol) is as follows:
4021
4022@example
4023%token @var{name}
4024@end example
4025
4026Bison will convert this into a @code{#define} directive in
4027the parser, so that the function @code{yylex} (if it is in this file)
4028can use the name @var{name} to stand for this token type's code.
4029
14ded682
AD
4030Alternatively, you can use @code{%left}, @code{%right}, or
4031@code{%nonassoc} instead of @code{%token}, if you wish to specify
4032associativity and precedence. @xref{Precedence Decl, ,Operator
4033Precedence}.
bfa74976
RS
4034
4035You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4036a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4037following the token name:
bfa74976
RS
4038
4039@example
4040%token NUM 300
1452af69 4041%token XNUM 0x12d // a GNU extension
bfa74976
RS
4042@end example
4043
4044@noindent
4045It is generally best, however, to let Bison choose the numeric codes for
4046all token types. Bison will automatically select codes that don't conflict
e966383b 4047with each other or with normal characters.
bfa74976
RS
4048
4049In the event that the stack type is a union, you must augment the
4050@code{%token} or other token declaration to include the data type
704a47c4
AD
4051alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4052Than One Value Type}).
bfa74976
RS
4053
4054For example:
4055
4056@example
4057@group
4058%union @{ /* define stack type */
4059 double val;
4060 symrec *tptr;
4061@}
4062%token <val> NUM /* define token NUM and its type */
4063@end group
4064@end example
4065
931c7513
RS
4066You can associate a literal string token with a token type name by
4067writing the literal string at the end of a @code{%token}
4068declaration which declares the name. For example:
4069
4070@example
4071%token arrow "=>"
4072@end example
4073
4074@noindent
4075For example, a grammar for the C language might specify these names with
4076equivalent literal string tokens:
4077
4078@example
4079%token <operator> OR "||"
4080%token <operator> LE 134 "<="
4081%left OR "<="
4082@end example
4083
4084@noindent
4085Once you equate the literal string and the token name, you can use them
4086interchangeably in further declarations or the grammar rules. The
4087@code{yylex} function can use the token name or the literal string to
4088obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4089Syntax error messages passed to @code{yyerror} from the parser will reference
4090the literal string instead of the token name.
4091
4092The token numbered as 0 corresponds to end of file; the following line
4093allows for nicer error messages referring to ``end of file'' instead
4094of ``$end'':
4095
4096@example
4097%token END 0 "end of file"
4098@end example
931c7513 4099
342b8b6e 4100@node Precedence Decl
bfa74976
RS
4101@subsection Operator Precedence
4102@cindex precedence declarations
4103@cindex declaring operator precedence
4104@cindex operator precedence, declaring
4105
4106Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4107declare a token and specify its precedence and associativity, all at
4108once. These are called @dfn{precedence declarations}.
704a47c4
AD
4109@xref{Precedence, ,Operator Precedence}, for general information on
4110operator precedence.
bfa74976 4111
ab7f29f8 4112The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4113@code{%token}: either
4114
4115@example
4116%left @var{symbols}@dots{}
4117@end example
4118
4119@noindent
4120or
4121
4122@example
4123%left <@var{type}> @var{symbols}@dots{}
4124@end example
4125
4126And indeed any of these declarations serves the purposes of @code{%token}.
4127But in addition, they specify the associativity and relative precedence for
4128all the @var{symbols}:
4129
4130@itemize @bullet
4131@item
4132The associativity of an operator @var{op} determines how repeated uses
4133of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4134@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4135grouping @var{y} with @var{z} first. @code{%left} specifies
4136left-associativity (grouping @var{x} with @var{y} first) and
4137@code{%right} specifies right-associativity (grouping @var{y} with
4138@var{z} first). @code{%nonassoc} specifies no associativity, which
4139means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4140considered a syntax error.
4141
4142@item
4143The precedence of an operator determines how it nests with other operators.
4144All the tokens declared in a single precedence declaration have equal
4145precedence and nest together according to their associativity.
4146When two tokens declared in different precedence declarations associate,
4147the one declared later has the higher precedence and is grouped first.
4148@end itemize
4149
ab7f29f8
JD
4150For backward compatibility, there is a confusing difference between the
4151argument lists of @code{%token} and precedence declarations.
4152Only a @code{%token} can associate a literal string with a token type name.
4153A precedence declaration always interprets a literal string as a reference to a
4154separate token.
4155For example:
4156
4157@example
4158%left OR "<=" // Does not declare an alias.
4159%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4160@end example
4161
342b8b6e 4162@node Union Decl
bfa74976
RS
4163@subsection The Collection of Value Types
4164@cindex declaring value types
4165@cindex value types, declaring
4166@findex %union
4167
287c78f6
PE
4168The @code{%union} declaration specifies the entire collection of
4169possible data types for semantic values. The keyword @code{%union} is
4170followed by braced code containing the same thing that goes inside a
4171@code{union} in C@.
bfa74976
RS
4172
4173For example:
4174
4175@example
4176@group
4177%union @{
4178 double val;
4179 symrec *tptr;
4180@}
4181@end group
4182@end example
4183
4184@noindent
4185This says that the two alternative types are @code{double} and @code{symrec
4186*}. They are given names @code{val} and @code{tptr}; these names are used
4187in the @code{%token} and @code{%type} declarations to pick one of the types
4188for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4189
6273355b
PE
4190As an extension to @acronym{POSIX}, a tag is allowed after the
4191@code{union}. For example:
4192
4193@example
4194@group
4195%union value @{
4196 double val;
4197 symrec *tptr;
4198@}
4199@end group
4200@end example
4201
d6ca7905 4202@noindent
6273355b
PE
4203specifies the union tag @code{value}, so the corresponding C type is
4204@code{union value}. If you do not specify a tag, it defaults to
4205@code{YYSTYPE}.
4206
d6ca7905
PE
4207As another extension to @acronym{POSIX}, you may specify multiple
4208@code{%union} declarations; their contents are concatenated. However,
4209only the first @code{%union} declaration can specify a tag.
4210
6273355b 4211Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4212a semicolon after the closing brace.
4213
ddc8ede1
PE
4214Instead of @code{%union}, you can define and use your own union type
4215@code{YYSTYPE} if your grammar contains at least one
4216@samp{<@var{type}>} tag. For example, you can put the following into
4217a header file @file{parser.h}:
4218
4219@example
4220@group
4221union YYSTYPE @{
4222 double val;
4223 symrec *tptr;
4224@};
4225typedef union YYSTYPE YYSTYPE;
4226@end group
4227@end example
4228
4229@noindent
4230and then your grammar can use the following
4231instead of @code{%union}:
4232
4233@example
4234@group
4235%@{
4236#include "parser.h"
4237%@}
4238%type <val> expr
4239%token <tptr> ID
4240@end group
4241@end example
4242
342b8b6e 4243@node Type Decl
bfa74976
RS
4244@subsection Nonterminal Symbols
4245@cindex declaring value types, nonterminals
4246@cindex value types, nonterminals, declaring
4247@findex %type
4248
4249@noindent
4250When you use @code{%union} to specify multiple value types, you must
4251declare the value type of each nonterminal symbol for which values are
4252used. This is done with a @code{%type} declaration, like this:
4253
4254@example
4255%type <@var{type}> @var{nonterminal}@dots{}
4256@end example
4257
4258@noindent
704a47c4
AD
4259Here @var{nonterminal} is the name of a nonterminal symbol, and
4260@var{type} is the name given in the @code{%union} to the alternative
4261that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4262can give any number of nonterminal symbols in the same @code{%type}
4263declaration, if they have the same value type. Use spaces to separate
4264the symbol names.
bfa74976 4265
931c7513
RS
4266You can also declare the value type of a terminal symbol. To do this,
4267use the same @code{<@var{type}>} construction in a declaration for the
4268terminal symbol. All kinds of token declarations allow
4269@code{<@var{type}>}.
4270
18d192f0
AD
4271@node Initial Action Decl
4272@subsection Performing Actions before Parsing
4273@findex %initial-action
4274
4275Sometimes your parser needs to perform some initializations before
4276parsing. The @code{%initial-action} directive allows for such arbitrary
4277code.
4278
4279@deffn {Directive} %initial-action @{ @var{code} @}
4280@findex %initial-action
287c78f6 4281Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4282@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4283@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4284@code{%parse-param}.
18d192f0
AD
4285@end deffn
4286
451364ed
AD
4287For instance, if your locations use a file name, you may use
4288
4289@example
48b16bbc 4290%parse-param @{ char const *file_name @};
451364ed
AD
4291%initial-action
4292@{
4626a15d 4293 @@$.initialize (file_name);
451364ed
AD
4294@};
4295@end example
4296
18d192f0 4297
72f889cc
AD
4298@node Destructor Decl
4299@subsection Freeing Discarded Symbols
4300@cindex freeing discarded symbols
4301@findex %destructor
12e35840 4302@findex <*>
3ebecc24 4303@findex <>
a85284cf
AD
4304During error recovery (@pxref{Error Recovery}), symbols already pushed
4305on the stack and tokens coming from the rest of the file are discarded
4306until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4307or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4308symbols on the stack must be discarded. Even if the parser succeeds, it
4309must discard the start symbol.
258b75ca
PE
4310
4311When discarded symbols convey heap based information, this memory is
4312lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4313in traditional compilers, it is unacceptable for programs like shells or
4314protocol implementations that may parse and execute indefinitely.
258b75ca 4315
a85284cf
AD
4316The @code{%destructor} directive defines code that is called when a
4317symbol is automatically discarded.
72f889cc
AD
4318
4319@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4320@findex %destructor
287c78f6
PE
4321Invoke the braced @var{code} whenever the parser discards one of the
4322@var{symbols}.
4b367315 4323Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4324with the discarded symbol, and @code{@@$} designates its location.
4325The additional parser parameters are also available (@pxref{Parser Function, ,
4326The Parser Function @code{yyparse}}).
ec5479ce 4327
b2a0b7ca
JD
4328When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4329per-symbol @code{%destructor}.
4330You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4331tag among @var{symbols}.
b2a0b7ca 4332In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4333grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4334per-symbol @code{%destructor}.
4335
12e35840 4336Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4337(These default forms are experimental.
4338More user feedback will help to determine whether they should become permanent
4339features.)
3ebecc24 4340You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4341exactly one @code{%destructor} declaration in your grammar file.
4342The parser will invoke the @var{code} associated with one of these whenever it
4343discards any user-defined grammar symbol that has no per-symbol and no per-type
4344@code{%destructor}.
4345The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4346symbol for which you have formally declared a semantic type tag (@code{%type}
4347counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4348The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4349symbol that has no declared semantic type tag.
72f889cc
AD
4350@end deffn
4351
b2a0b7ca 4352@noindent
12e35840 4353For example:
72f889cc
AD
4354
4355@smallexample
ec5479ce
JD
4356%union @{ char *string; @}
4357%token <string> STRING1
4358%token <string> STRING2
4359%type <string> string1
4360%type <string> string2
b2a0b7ca
JD
4361%union @{ char character; @}
4362%token <character> CHR
4363%type <character> chr
12e35840
JD
4364%token TAGLESS
4365
b2a0b7ca 4366%destructor @{ @} <character>
12e35840
JD
4367%destructor @{ free ($$); @} <*>
4368%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4369%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4370@end smallexample
4371
4372@noindent
b2a0b7ca
JD
4373guarantees that, when the parser discards any user-defined symbol that has a
4374semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4375to @code{free} by default.
ec5479ce
JD
4376However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4377prints its line number to @code{stdout}.
4378It performs only the second @code{%destructor} in this case, so it invokes
4379@code{free} only once.
12e35840
JD
4380Finally, the parser merely prints a message whenever it discards any symbol,
4381such as @code{TAGLESS}, that has no semantic type tag.
4382
4383A Bison-generated parser invokes the default @code{%destructor}s only for
4384user-defined as opposed to Bison-defined symbols.
4385For example, the parser will not invoke either kind of default
4386@code{%destructor} for the special Bison-defined symbols @code{$accept},
4387@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4388none of which you can reference in your grammar.
4389It also will not invoke either for the @code{error} token (@pxref{Table of
4390Symbols, ,error}), which is always defined by Bison regardless of whether you
4391reference it in your grammar.
4392However, it may invoke one of them for the end token (token 0) if you
4393redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4394
4395@smallexample
4396%token END 0
4397@end smallexample
4398
12e35840
JD
4399@cindex actions in mid-rule
4400@cindex mid-rule actions
4401Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4402mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4403That is, Bison does not consider a mid-rule to have a semantic value if you do
4404not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4405@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4406rule.
4407However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4408@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4409
3508ce36
JD
4410@ignore
4411@noindent
4412In the future, it may be possible to redefine the @code{error} token as a
4413nonterminal that captures the discarded symbols.
4414In that case, the parser will invoke the default destructor for it as well.
4415@end ignore
4416
e757bb10
AD
4417@sp 1
4418
4419@cindex discarded symbols
4420@dfn{Discarded symbols} are the following:
4421
4422@itemize
4423@item
4424stacked symbols popped during the first phase of error recovery,
4425@item
4426incoming terminals during the second phase of error recovery,
4427@item
742e4900 4428the current lookahead and the entire stack (except the current
9d9b8b70 4429right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4430@item
4431the start symbol, when the parser succeeds.
e757bb10
AD
4432@end itemize
4433
9d9b8b70
PE
4434The parser can @dfn{return immediately} because of an explicit call to
4435@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4436exhaustion.
4437
29553547 4438Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4439error via @code{YYERROR} are not discarded automatically. As a rule
4440of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4441the memory.
e757bb10 4442
342b8b6e 4443@node Expect Decl
bfa74976
RS
4444@subsection Suppressing Conflict Warnings
4445@cindex suppressing conflict warnings
4446@cindex preventing warnings about conflicts
4447@cindex warnings, preventing
4448@cindex conflicts, suppressing warnings of
4449@findex %expect
d6328241 4450@findex %expect-rr
bfa74976
RS
4451
4452Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4453(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4454have harmless shift/reduce conflicts which are resolved in a predictable
4455way and would be difficult to eliminate. It is desirable to suppress
4456the warning about these conflicts unless the number of conflicts
4457changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4458
4459The declaration looks like this:
4460
4461@example
4462%expect @var{n}
4463@end example
4464
035aa4a0
PE
4465Here @var{n} is a decimal integer. The declaration says there should
4466be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4467Bison reports an error if the number of shift/reduce conflicts differs
4468from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4469
34a6c2d1 4470For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4471serious, and should be eliminated entirely. Bison will always report
4472reduce/reduce conflicts for these parsers. With @acronym{GLR}
4473parsers, however, both kinds of conflicts are routine; otherwise,
4474there would be no need to use @acronym{GLR} parsing. Therefore, it is
4475also possible to specify an expected number of reduce/reduce conflicts
4476in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4477
4478@example
4479%expect-rr @var{n}
4480@end example
4481
bfa74976
RS
4482In general, using @code{%expect} involves these steps:
4483
4484@itemize @bullet
4485@item
4486Compile your grammar without @code{%expect}. Use the @samp{-v} option
4487to get a verbose list of where the conflicts occur. Bison will also
4488print the number of conflicts.
4489
4490@item
4491Check each of the conflicts to make sure that Bison's default
4492resolution is what you really want. If not, rewrite the grammar and
4493go back to the beginning.
4494
4495@item
4496Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4497number which Bison printed. With @acronym{GLR} parsers, add an
4498@code{%expect-rr} declaration as well.
bfa74976
RS
4499@end itemize
4500
035aa4a0
PE
4501Now Bison will warn you if you introduce an unexpected conflict, but
4502will keep silent otherwise.
bfa74976 4503
342b8b6e 4504@node Start Decl
bfa74976
RS
4505@subsection The Start-Symbol
4506@cindex declaring the start symbol
4507@cindex start symbol, declaring
4508@cindex default start symbol
4509@findex %start
4510
4511Bison assumes by default that the start symbol for the grammar is the first
4512nonterminal specified in the grammar specification section. The programmer
4513may override this restriction with the @code{%start} declaration as follows:
4514
4515@example
4516%start @var{symbol}
4517@end example
4518
342b8b6e 4519@node Pure Decl
bfa74976
RS
4520@subsection A Pure (Reentrant) Parser
4521@cindex reentrant parser
4522@cindex pure parser
d9df47b6 4523@findex %define api.pure
bfa74976
RS
4524
4525A @dfn{reentrant} program is one which does not alter in the course of
4526execution; in other words, it consists entirely of @dfn{pure} (read-only)
4527code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4528for example, a nonreentrant program may not be safe to call from a signal
4529handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4530program must be called only within interlocks.
4531
70811b85 4532Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4533suitable for most uses, and it permits compatibility with Yacc. (The
4534standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4535statically allocated variables for communication with @code{yylex},
4536including @code{yylval} and @code{yylloc}.)
bfa74976 4537
70811b85 4538Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4539declaration @code{%define api.pure} says that you want the parser to be
70811b85 4540reentrant. It looks like this:
bfa74976
RS
4541
4542@example
d9df47b6 4543%define api.pure
bfa74976
RS
4544@end example
4545
70811b85
RS
4546The result is that the communication variables @code{yylval} and
4547@code{yylloc} become local variables in @code{yyparse}, and a different
4548calling convention is used for the lexical analyzer function
4549@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4550Parsers}, for the details of this. The variable @code{yynerrs}
4551becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4552of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4553Reporting Function @code{yyerror}}). The convention for calling
4554@code{yyparse} itself is unchanged.
4555
4556Whether the parser is pure has nothing to do with the grammar rules.
4557You can generate either a pure parser or a nonreentrant parser from any
4558valid grammar.
bfa74976 4559
9987d1b3
JD
4560@node Push Decl
4561@subsection A Push Parser
4562@cindex push parser
4563@cindex push parser
812775a0 4564@findex %define api.push-pull
9987d1b3 4565
59da312b
JD
4566(The current push parsing interface is experimental and may evolve.
4567More user feedback will help to stabilize it.)
4568
f4101aa6
AD
4569A pull parser is called once and it takes control until all its input
4570is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4571each time a new token is made available.
4572
f4101aa6 4573A push parser is typically useful when the parser is part of a
9987d1b3 4574main event loop in the client's application. This is typically
f4101aa6
AD
4575a requirement of a GUI, when the main event loop needs to be triggered
4576within a certain time period.
9987d1b3 4577
d782395d
JD
4578Normally, Bison generates a pull parser.
4579The following Bison declaration says that you want the parser to be a push
812775a0 4580parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4581
4582@example
f37495f6 4583%define api.push-pull push
9987d1b3
JD
4584@end example
4585
4586In almost all cases, you want to ensure that your push parser is also
4587a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4588time you should create an impure push parser is to have backwards
9987d1b3
JD
4589compatibility with the impure Yacc pull mode interface. Unless you know
4590what you are doing, your declarations should look like this:
4591
4592@example
d9df47b6 4593%define api.pure
f37495f6 4594%define api.push-pull push
9987d1b3
JD
4595@end example
4596
f4101aa6
AD
4597There is a major notable functional difference between the pure push parser
4598and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4599many parser instances, of the same type of parser, in memory at the same time.
4600An impure push parser should only use one parser at a time.
4601
4602When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4603the generated parser. @code{yypstate} is a structure that the generated
4604parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4605function that will create a new parser instance. @code{yypstate_delete}
4606will free the resources associated with the corresponding parser instance.
f4101aa6 4607Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4608token is available to provide the parser. A trivial example
4609of using a pure push parser would look like this:
4610
4611@example
4612int status;
4613yypstate *ps = yypstate_new ();
4614do @{
4615 status = yypush_parse (ps, yylex (), NULL);
4616@} while (status == YYPUSH_MORE);
4617yypstate_delete (ps);
4618@end example
4619
4620If the user decided to use an impure push parser, a few things about
f4101aa6 4621the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4622a global variable instead of a variable in the @code{yypush_parse} function.
4623For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4624changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4625example would thus look like this:
4626
4627@example
4628extern int yychar;
4629int status;
4630yypstate *ps = yypstate_new ();
4631do @{
4632 yychar = yylex ();
4633 status = yypush_parse (ps);
4634@} while (status == YYPUSH_MORE);
4635yypstate_delete (ps);
4636@end example
4637
f4101aa6 4638That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4639for use by the next invocation of the @code{yypush_parse} function.
4640
f4101aa6 4641Bison also supports both the push parser interface along with the pull parser
9987d1b3 4642interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4643you should replace the @code{%define api.push-pull push} declaration with the
4644@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4645the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4646and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4647would be used. However, the user should note that it is implemented in the
d782395d
JD
4648generated parser by calling @code{yypull_parse}.
4649This makes the @code{yyparse} function that is generated with the
f37495f6 4650@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4651@code{yyparse} function. If the user
4652calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4653stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4654and then @code{yypull_parse} the rest of the input stream. If you would like
4655to switch back and forth between between parsing styles, you would have to
4656write your own @code{yypull_parse} function that knows when to quit looking
4657for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4658like this:
4659
4660@example
4661yypstate *ps = yypstate_new ();
4662yypull_parse (ps); /* Will call the lexer */
4663yypstate_delete (ps);
4664@end example
4665
d9df47b6 4666Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4667the generated parser with @code{%define api.push-pull both} as it did for
4668@code{%define api.push-pull push}.
9987d1b3 4669
342b8b6e 4670@node Decl Summary
bfa74976
RS
4671@subsection Bison Declaration Summary
4672@cindex Bison declaration summary
4673@cindex declaration summary
4674@cindex summary, Bison declaration
4675
d8988b2f 4676Here is a summary of the declarations used to define a grammar:
bfa74976 4677
18b519c0 4678@deffn {Directive} %union
bfa74976
RS
4679Declare the collection of data types that semantic values may have
4680(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4681@end deffn
bfa74976 4682
18b519c0 4683@deffn {Directive} %token
bfa74976
RS
4684Declare a terminal symbol (token type name) with no precedence
4685or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %right
bfa74976
RS
4689Declare a terminal symbol (token type name) that is right-associative
4690(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %left
bfa74976
RS
4694Declare a terminal symbol (token type name) that is left-associative
4695(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4696@end deffn
bfa74976 4697
18b519c0 4698@deffn {Directive} %nonassoc
bfa74976 4699Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4700(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4701Using it in a way that would be associative is a syntax error.
4702@end deffn
4703
91d2c560 4704@ifset defaultprec
39a06c25 4705@deffn {Directive} %default-prec
22fccf95 4706Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4707(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4708@end deffn
91d2c560 4709@end ifset
bfa74976 4710
18b519c0 4711@deffn {Directive} %type
bfa74976
RS
4712Declare the type of semantic values for a nonterminal symbol
4713(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4714@end deffn
bfa74976 4715
18b519c0 4716@deffn {Directive} %start
89cab50d
AD
4717Specify the grammar's start symbol (@pxref{Start Decl, ,The
4718Start-Symbol}).
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Directive} %expect
bfa74976
RS
4722Declare the expected number of shift-reduce conflicts
4723(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4724@end deffn
4725
bfa74976 4726
d8988b2f
AD
4727@sp 1
4728@noindent
4729In order to change the behavior of @command{bison}, use the following
4730directives:
4731
148d66d8
JD
4732@deffn {Directive} %code @{@var{code}@}
4733@findex %code
4734This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4735It inserts @var{code} verbatim at a language-dependent default location in the
4736output@footnote{The default location is actually skeleton-dependent;
4737 writers of non-standard skeletons however should choose the default location
4738 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4739
4740@cindex Prologue
8405b70c 4741For C/C++, the default location is the parser source code
148d66d8
JD
4742file after the usual contents of the parser header file.
4743Thus, @code{%code} replaces the traditional Yacc prologue,
4744@code{%@{@var{code}%@}}, for most purposes.
4745For a detailed discussion, see @ref{Prologue Alternatives}.
4746
8405b70c 4747For Java, the default location is inside the parser class.
148d66d8
JD
4748@end deffn
4749
4750@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4751This is the qualified form of the @code{%code} directive.
4752If you need to specify location-sensitive verbatim @var{code} that does not
4753belong at the default location selected by the unqualified @code{%code} form,
4754use this form instead.
4755
4756@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4757where Bison should generate it.
4758Not all values of @var{qualifier} are available for all target languages:
4759
4760@itemize @bullet
148d66d8 4761@item requires
793fbca5 4762@findex %code requires
148d66d8
JD
4763
4764@itemize @bullet
4765@item Language(s): C, C++
4766
4767@item Purpose: This is the best place to write dependency code required for
4768@code{YYSTYPE} and @code{YYLTYPE}.
4769In other words, it's the best place to define types referenced in @code{%union}
4770directives, and it's the best place to override Bison's default @code{YYSTYPE}
4771and @code{YYLTYPE} definitions.
4772
4773@item Location(s): The parser header file and the parser source code file
4774before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4775@end itemize
4776
4777@item provides
4778@findex %code provides
4779
4780@itemize @bullet
4781@item Language(s): C, C++
4782
4783@item Purpose: This is the best place to write additional definitions and
4784declarations that should be provided to other modules.
4785
4786@item Location(s): The parser header file and the parser source code file after
4787the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4788@end itemize
4789
4790@item top
4791@findex %code top
4792
4793@itemize @bullet
4794@item Language(s): C, C++
4795
4796@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4797usually be more appropriate than @code{%code top}.
4798However, occasionally it is necessary to insert code much nearer the top of the
4799parser source code file.
4800For example:
4801
4802@smallexample
4803%code top @{
4804 #define _GNU_SOURCE
4805 #include <stdio.h>
4806@}
4807@end smallexample
4808
4809@item Location(s): Near the top of the parser source code file.
4810@end itemize
8405b70c 4811
148d66d8
JD
4812@item imports
4813@findex %code imports
4814
4815@itemize @bullet
4816@item Language(s): Java
4817
4818@item Purpose: This is the best place to write Java import directives.
4819
4820@item Location(s): The parser Java file after any Java package directive and
4821before any class definitions.
4822@end itemize
148d66d8
JD
4823@end itemize
4824
148d66d8
JD
4825@cindex Prologue
4826For a detailed discussion of how to use @code{%code} in place of the
4827traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4828@end deffn
4829
18b519c0 4830@deffn {Directive} %debug
4947ebdb
PE
4831In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4832already defined, so that the debugging facilities are compiled.
ec3bc396 4833@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4834@end deffn
d8988b2f 4835
c1d19e10 4836@deffn {Directive} %define @var{variable}
f37495f6 4837@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4838@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4839Define a variable to adjust Bison's behavior.
4840The possible choices for @var{variable}, as well as their meanings, depend on
4841the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4842Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2 4843
e3a33f7c 4844It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4845times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4846
f37495f6
JD
4847@var{value} must be placed in quotation marks if it contains any
4848character other than a letter, underscore, period, dash, or non-initial
4849digit.
4850
4851Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4852@code{""}.
4853
922bdd7f 4854Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4855In this case, Bison will complain if the variable definition does not meet one
4856of the following four conditions:
4857
4858@enumerate
f37495f6 4859@item @code{@var{value}} is @code{true}
9611cfa2 4860
f37495f6
JD
4861@item @code{@var{value}} is omitted (or @code{""} is specified).
4862This is equivalent to @code{true}.
9611cfa2 4863
f37495f6 4864@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4865
4866@item @var{variable} is never defined.
4867In this case, Bison selects a default value, which may depend on the selected
4868target language and/or parser skeleton.
4869@end enumerate
148d66d8 4870
793fbca5
JD
4871Some of the accepted @var{variable}s are:
4872
4873@itemize @bullet
d9df47b6
JD
4874@item api.pure
4875@findex %define api.pure
4876
4877@itemize @bullet
4878@item Language(s): C
4879
4880@item Purpose: Request a pure (reentrant) parser program.
4881@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4882
4883@item Accepted Values: Boolean
4884
f37495f6 4885@item Default Value: @code{false}
d9df47b6
JD
4886@end itemize
4887
812775a0
JD
4888@item api.push-pull
4889@findex %define api.push-pull
793fbca5
JD
4890
4891@itemize @bullet
34a6c2d1 4892@item Language(s): C (deterministic parsers only)
793fbca5
JD
4893
4894@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4895@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4896(The current push parsing interface is experimental and may evolve.
4897More user feedback will help to stabilize it.)
793fbca5 4898
f37495f6 4899@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 4900
f37495f6 4901@item Default Value: @code{pull}
793fbca5
JD
4902@end itemize
4903
1d0f55cc 4904@item lr.default-reductions
620b5727 4905@cindex default reductions
1d0f55cc 4906@findex %define lr.default-reductions
34a6c2d1
JD
4907@cindex delayed syntax errors
4908@cindex syntax errors delayed
4909
4910@itemize @bullet
4911@item Language(s): all
4912
4913@item Purpose: Specifies the kind of states that are permitted to
620b5727
JD
4914contain default reductions.
4915That is, in such a state, Bison declares the reduction with the largest
4916lookahead set to be the default reduction and then removes that
4917lookahead set.
4918The advantages of default reductions are discussed below.
34a6c2d1
JD
4919The disadvantage is that, when the generated parser encounters a
4920syntactically unacceptable token, the parser might then perform
620b5727 4921unnecessary default reductions before it can detect the syntax error.
34a6c2d1
JD
4922
4923(This feature is experimental.
4924More user feedback will help to stabilize it.)
4925
4926@item Accepted Values:
4927@itemize
f37495f6 4928@item @code{all}.
34a6c2d1
JD
4929For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
4930Summary,,lr.type}) by default, all states are permitted to contain
620b5727 4931default reductions.
34a6c2d1
JD
4932The advantage is that parser table sizes can be significantly reduced.
4933The reason Bison does not by default attempt to address the disadvantage
4934of delayed syntax error detection is that this disadvantage is already
4935inherent in @acronym{LALR} and @acronym{IELR} parser tables.
620b5727
JD
4936That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
4937reductions in an @acronym{LALR} or @acronym{IELR} state can contain
4938tokens that are syntactically incorrect for some left contexts.
34a6c2d1 4939
f37495f6 4940@item @code{consistent}.
34a6c2d1
JD
4941@cindex consistent states
4942A consistent state is a state that has only one possible action.
4943If that action is a reduction, then the parser does not need to request
4944a lookahead token from the scanner before performing that action.
4945However, the parser only recognizes the ability to ignore the lookahead
620b5727
JD
4946token when such a reduction is encoded as a default reduction.
4947Thus, if default reductions are permitted in and only in consistent
4948states, then a canonical @acronym{LR} parser reports a syntax error as
4949soon as it @emph{needs} the syntactically unacceptable token from the
4950scanner.
34a6c2d1 4951
f37495f6 4952@item @code{accepting}.
34a6c2d1 4953@cindex accepting state
620b5727
JD
4954By default, the only default reduction permitted in a canonical
4955@acronym{LR} parser is the accept action in the accepting state, which
4956the parser reaches only after reading all tokens from the input.
34a6c2d1
JD
4957Thus, the default canonical @acronym{LR} parser reports a syntax error
4958as soon as it @emph{reaches} the syntactically unacceptable token
4959without performing any extra reductions.
4960@end itemize
4961
4962@item Default Value:
4963@itemize
f37495f6
JD
4964@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
4965@item @code{all} otherwise.
34a6c2d1
JD
4966@end itemize
4967@end itemize
4968
812775a0
JD
4969@item lr.keep-unreachable-states
4970@findex %define lr.keep-unreachable-states
31984206
JD
4971
4972@itemize @bullet
4973@item Language(s): all
4974
4975@item Purpose: Requests that Bison allow unreachable parser states to remain in
4976the parser tables.
4977Bison considers a state to be unreachable if there exists no sequence of
4978transitions from the start state to that state.
4979A state can become unreachable during conflict resolution if Bison disables a
4980shift action leading to it from a predecessor state.
4981Keeping unreachable states is sometimes useful for analysis purposes, but they
4982are useless in the generated parser.
4983
4984@item Accepted Values: Boolean
4985
f37495f6 4986@item Default Value: @code{false}
31984206
JD
4987
4988@item Caveats:
4989
4990@itemize @bullet
cff03fb2
JD
4991
4992@item Unreachable states may contain conflicts and may use rules not used in
4993any other state.
31984206
JD
4994Thus, keeping unreachable states may induce warnings that are irrelevant to
4995your parser's behavior, and it may eliminate warnings that are relevant.
4996Of course, the change in warnings may actually be relevant to a parser table
4997analysis that wants to keep unreachable states, so this behavior will likely
4998remain in future Bison releases.
4999
5000@item While Bison is able to remove unreachable states, it is not guaranteed to
5001remove other kinds of useless states.
5002Specifically, when Bison disables reduce actions during conflict resolution,
5003some goto actions may become useless, and thus some additional states may
5004become useless.
5005If Bison were to compute which goto actions were useless and then disable those
5006actions, it could identify such states as unreachable and then remove those
5007states.
5008However, Bison does not compute which goto actions are useless.
5009@end itemize
5010@end itemize
5011
34a6c2d1
JD
5012@item lr.type
5013@findex %define lr.type
5014@cindex @acronym{LALR}
5015@cindex @acronym{IELR}
5016@cindex @acronym{LR}
5017
5018@itemize @bullet
5019@item Language(s): all
5020
5021@item Purpose: Specifies the type of parser tables within the
5022@acronym{LR}(1) family.
5023(This feature is experimental.
5024More user feedback will help to stabilize it.)
5025
5026@item Accepted Values:
5027@itemize
f37495f6 5028@item @code{lalr}.
34a6c2d1
JD
5029While Bison generates @acronym{LALR} parser tables by default for
5030historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5031always preferable for deterministic parsers.
5032The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5033mysterious conflicts and thus may not accept the full set of sentences
5034that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5035@xref{Mystery Conflicts}, for details.
5036However, there are at least two scenarios where @acronym{LALR} may be
5037worthwhile:
5038@itemize
5039@cindex @acronym{GLR} with @acronym{LALR}
5040@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5041do not resolve any conflicts statically (for example, with @code{%left}
5042or @code{%prec}), then the parser explores all potential parses of any
5043given input.
620b5727
JD
5044In this case, the use of @acronym{LALR} parser tables is guaranteed not
5045to alter the language accepted by the parser.
34a6c2d1
JD
5046@acronym{LALR} parser tables are the smallest parser tables Bison can
5047currently generate, so they may be preferable.
5048
5049@item Occasionally during development, an especially malformed grammar
5050with a major recurring flaw may severely impede the @acronym{IELR} or
5051canonical @acronym{LR} parser table generation algorithm.
5052@acronym{LALR} can be a quick way to generate parser tables in order to
5053investigate such problems while ignoring the more subtle differences
5054from @acronym{IELR} and canonical @acronym{LR}.
5055@end itemize
5056
f37495f6 5057@item @code{ielr}.
34a6c2d1
JD
5058@acronym{IELR} is a minimal @acronym{LR} algorithm.
5059That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5060@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5061set of sentences.
5062However, as for @acronym{LALR}, the number of parser states is often an
5063order of magnitude less for @acronym{IELR} than for canonical
5064@acronym{LR}.
5065More importantly, because canonical @acronym{LR}'s extra parser states
5066may contain duplicate conflicts in the case of non-@acronym{LR}
5067grammars, the number of conflicts for @acronym{IELR} is often an order
5068of magnitude less as well.
5069This can significantly reduce the complexity of developing of a grammar.
5070
f37495f6 5071@item @code{canonical-lr}.
34a6c2d1
JD
5072@cindex delayed syntax errors
5073@cindex syntax errors delayed
620b5727
JD
5074The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5075that, for every left context of every canonical @acronym{LR} state, the
5076set of tokens accepted by that state is the exact set of tokens that is
5077syntactically acceptable in that left context.
5078Thus, the only difference in parsing behavior is that the canonical
34a6c2d1
JD
5079@acronym{LR} parser can report a syntax error as soon as possible
5080without performing any unnecessary reductions.
1d0f55cc 5081@xref{Decl Summary,,lr.default-reductions}, for further details.
34a6c2d1
JD
5082Even when canonical @acronym{LR} behavior is ultimately desired,
5083@acronym{IELR}'s elimination of duplicate conflicts should still
5084facilitate the development of a grammar.
5085@end itemize
5086
f37495f6 5087@item Default Value: @code{lalr}
34a6c2d1
JD
5088@end itemize
5089
793fbca5
JD
5090@item namespace
5091@findex %define namespace
5092
5093@itemize
5094@item Languages(s): C++
5095
5096@item Purpose: Specifies the namespace for the parser class.
5097For example, if you specify:
5098
5099@smallexample
5100%define namespace "foo::bar"
5101@end smallexample
5102
5103Bison uses @code{foo::bar} verbatim in references such as:
5104
5105@smallexample
5106foo::bar::parser::semantic_type
5107@end smallexample
5108
5109However, to open a namespace, Bison removes any leading @code{::} and then
5110splits on any remaining occurrences:
5111
5112@smallexample
5113namespace foo @{ namespace bar @{
5114 class position;
5115 class location;
5116@} @}
5117@end smallexample
5118
5119@item Accepted Values: Any absolute or relative C++ namespace reference without
5120a trailing @code{"::"}.
5121For example, @code{"foo"} or @code{"::foo::bar"}.
5122
5123@item Default Value: The value specified by @code{%name-prefix}, which defaults
5124to @code{yy}.
5125This usage of @code{%name-prefix} is for backward compatibility and can be
5126confusing since @code{%name-prefix} also specifies the textual prefix for the
5127lexical analyzer function.
5128Thus, if you specify @code{%name-prefix}, it is best to also specify
5129@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5130lexical analyzer function.
5131For example, if you specify:
5132
5133@smallexample
5134%define namespace "foo"
5135%name-prefix "bar::"
5136@end smallexample
5137
5138The parser namespace is @code{foo} and @code{yylex} is referenced as
5139@code{bar::lex}.
5140@end itemize
5141@end itemize
5142
d782395d
JD
5143@end deffn
5144
18b519c0 5145@deffn {Directive} %defines
4bfd5e4e
PE
5146Write a header file containing macro definitions for the token type
5147names defined in the grammar as well as a few other declarations.
d8988b2f 5148If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5149is named @file{@var{name}.h}.
d8988b2f 5150
b321737f 5151For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5152@code{YYSTYPE} is already defined as a macro or you have used a
5153@code{<@var{type}>} tag without using @code{%union}.
5154Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5155(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5156require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5157or type definition
f8e1c9e5
AD
5158(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5159arrange for these definitions to be propagated to all modules, e.g., by
5160putting them in a prerequisite header that is included both by your
5161parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5162
5163Unless your parser is pure, the output header declares @code{yylval}
5164as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5165Parser}.
5166
5167If you have also used locations, the output header declares
5168@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5169the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5170Locations}.
5171
f8e1c9e5
AD
5172This output file is normally essential if you wish to put the definition
5173of @code{yylex} in a separate source file, because @code{yylex}
5174typically needs to be able to refer to the above-mentioned declarations
5175and to the token type codes. @xref{Token Values, ,Semantic Values of
5176Tokens}.
9bc0dd67 5177
16dc6a9e
JD
5178@findex %code requires
5179@findex %code provides
5180If you have declared @code{%code requires} or @code{%code provides}, the output
5181header also contains their code.
148d66d8 5182@xref{Decl Summary, ,%code}.
592d0b1e
PB
5183@end deffn
5184
02975b9a
JD
5185@deffn {Directive} %defines @var{defines-file}
5186Same as above, but save in the file @var{defines-file}.
5187@end deffn
5188
18b519c0 5189@deffn {Directive} %destructor
258b75ca 5190Specify how the parser should reclaim the memory associated to
fa7e68c3 5191discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5192@end deffn
72f889cc 5193
02975b9a 5194@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5195Specify a prefix to use for all Bison output file names. The names are
5196chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5197@end deffn
d8988b2f 5198
e6e704dc 5199@deffn {Directive} %language "@var{language}"
0e021770 5200Specify the programming language for the generated parser. Currently
59da312b 5201supported languages include C, C++, and Java.
e6e704dc 5202@var{language} is case-insensitive.
ed4d67dc
JD
5203
5204This directive is experimental and its effect may be modified in future
5205releases.
0e021770
PE
5206@end deffn
5207
18b519c0 5208@deffn {Directive} %locations
89cab50d
AD
5209Generate the code processing the locations (@pxref{Action Features,
5210,Special Features for Use in Actions}). This mode is enabled as soon as
5211the grammar uses the special @samp{@@@var{n}} tokens, but if your
5212grammar does not use it, using @samp{%locations} allows for more
6e649e65 5213accurate syntax error messages.
18b519c0 5214@end deffn
89cab50d 5215
02975b9a 5216@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5217Rename the external symbols used in the parser so that they start with
5218@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5219in C parsers
d8988b2f 5220is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5221@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5222(if locations are used) @code{yylloc}. If you use a push parser,
5223@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5224@code{yypstate_new} and @code{yypstate_delete} will
5225also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5226names become @code{c_parse}, @code{c_lex}, and so on.
5227For C++ parsers, see the @code{%define namespace} documentation in this
5228section.
aa08666d 5229@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5230@end deffn
931c7513 5231
91d2c560 5232@ifset defaultprec
22fccf95
PE
5233@deffn {Directive} %no-default-prec
5234Do not assign a precedence to rules lacking an explicit @code{%prec}
5235modifier (@pxref{Contextual Precedence, ,Context-Dependent
5236Precedence}).
5237@end deffn
91d2c560 5238@end ifset
22fccf95 5239
18b519c0 5240@deffn {Directive} %no-lines
931c7513
RS
5241Don't generate any @code{#line} preprocessor commands in the parser
5242file. Ordinarily Bison writes these commands in the parser file so that
5243the C compiler and debuggers will associate errors and object code with
5244your source file (the grammar file). This directive causes them to
5245associate errors with the parser file, treating it an independent source
5246file in its own right.
18b519c0 5247@end deffn
931c7513 5248
02975b9a 5249@deffn {Directive} %output "@var{file}"
fa4d969f 5250Specify @var{file} for the parser file.
18b519c0 5251@end deffn
6deb4447 5252
18b519c0 5253@deffn {Directive} %pure-parser
d9df47b6
JD
5254Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5255for which Bison is more careful to warn about unreasonable usage.
18b519c0 5256@end deffn
6deb4447 5257
b50d2359 5258@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5259Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5260Require a Version of Bison}.
b50d2359
AD
5261@end deffn
5262
0e021770 5263@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5264Specify the skeleton to use.
5265
ed4d67dc
JD
5266@c You probably don't need this option unless you are developing Bison.
5267@c You should use @code{%language} if you want to specify the skeleton for a
5268@c different language, because it is clearer and because it will always choose the
5269@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5270
5271If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5272file in the Bison installation directory.
5273If it does, @var{file} is an absolute file name or a file name relative to the
5274directory of the grammar file.
5275This is similar to how most shells resolve commands.
0e021770
PE
5276@end deffn
5277
18b519c0 5278@deffn {Directive} %token-table
931c7513
RS
5279Generate an array of token names in the parser file. The name of the
5280array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5281token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5282three elements of @code{yytname} correspond to the predefined tokens
5283@code{"$end"},
88bce5a2
AD
5284@code{"error"}, and @code{"$undefined"}; after these come the symbols
5285defined in the grammar file.
931c7513 5286
9e0876fb
PE
5287The name in the table includes all the characters needed to represent
5288the token in Bison. For single-character literals and literal
5289strings, this includes the surrounding quoting characters and any
5290escape sequences. For example, the Bison single-character literal
5291@code{'+'} corresponds to a three-character name, represented in C as
5292@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5293corresponds to a five-character name, represented in C as
5294@code{"\"\\\\/\""}.
931c7513 5295
8c9a50be 5296When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5297definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5298@code{YYNRULES}, and @code{YYNSTATES}:
5299
5300@table @code
5301@item YYNTOKENS
5302The highest token number, plus one.
5303@item YYNNTS
9ecbd125 5304The number of nonterminal symbols.
931c7513
RS
5305@item YYNRULES
5306The number of grammar rules,
5307@item YYNSTATES
5308The number of parser states (@pxref{Parser States}).
5309@end table
18b519c0 5310@end deffn
d8988b2f 5311
18b519c0 5312@deffn {Directive} %verbose
d8988b2f 5313Write an extra output file containing verbose descriptions of the
742e4900 5314parser states and what is done for each type of lookahead token in
72d2299c 5315that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5316information.
18b519c0 5317@end deffn
d8988b2f 5318
18b519c0 5319@deffn {Directive} %yacc
d8988b2f
AD
5320Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5321including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5322@end deffn
d8988b2f
AD
5323
5324
342b8b6e 5325@node Multiple Parsers
bfa74976
RS
5326@section Multiple Parsers in the Same Program
5327
5328Most programs that use Bison parse only one language and therefore contain
5329only one Bison parser. But what if you want to parse more than one
5330language with the same program? Then you need to avoid a name conflict
5331between different definitions of @code{yyparse}, @code{yylval}, and so on.
5332
5333The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5334(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5335functions and variables of the Bison parser to start with @var{prefix}
5336instead of @samp{yy}. You can use this to give each parser distinct
5337names that do not conflict.
bfa74976
RS
5338
5339The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5340@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5341@code{yychar} and @code{yydebug}. If you use a push parser,
5342@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5343@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5344For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5345@code{clex}, and so on.
bfa74976
RS
5346
5347@strong{All the other variables and macros associated with Bison are not
5348renamed.} These others are not global; there is no conflict if the same
5349name is used in different parsers. For example, @code{YYSTYPE} is not
5350renamed, but defining this in different ways in different parsers causes
5351no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5352
5353The @samp{-p} option works by adding macro definitions to the beginning
5354of the parser source file, defining @code{yyparse} as
5355@code{@var{prefix}parse}, and so on. This effectively substitutes one
5356name for the other in the entire parser file.
5357
342b8b6e 5358@node Interface
bfa74976
RS
5359@chapter Parser C-Language Interface
5360@cindex C-language interface
5361@cindex interface
5362
5363The Bison parser is actually a C function named @code{yyparse}. Here we
5364describe the interface conventions of @code{yyparse} and the other
5365functions that it needs to use.
5366
5367Keep in mind that the parser uses many C identifiers starting with
5368@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5369identifier (aside from those in this manual) in an action or in epilogue
5370in the grammar file, you are likely to run into trouble.
bfa74976
RS
5371
5372@menu
f56274a8
DJ
5373* Parser Function:: How to call @code{yyparse} and what it returns.
5374* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5375* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5376* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5377* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5378* Lexical:: You must supply a function @code{yylex}
5379 which reads tokens.
5380* Error Reporting:: You must supply a function @code{yyerror}.
5381* Action Features:: Special features for use in actions.
5382* Internationalization:: How to let the parser speak in the user's
5383 native language.
bfa74976
RS
5384@end menu
5385
342b8b6e 5386@node Parser Function
bfa74976
RS
5387@section The Parser Function @code{yyparse}
5388@findex yyparse
5389
5390You call the function @code{yyparse} to cause parsing to occur. This
5391function reads tokens, executes actions, and ultimately returns when it
5392encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5393write an action which directs @code{yyparse} to return immediately
5394without reading further.
bfa74976 5395
2a8d363a
AD
5396
5397@deftypefun int yyparse (void)
bfa74976
RS
5398The value returned by @code{yyparse} is 0 if parsing was successful (return
5399is due to end-of-input).
5400
b47dbebe
PE
5401The value is 1 if parsing failed because of invalid input, i.e., input
5402that contains a syntax error or that causes @code{YYABORT} to be
5403invoked.
5404
5405The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5406@end deftypefun
bfa74976
RS
5407
5408In an action, you can cause immediate return from @code{yyparse} by using
5409these macros:
5410
2a8d363a 5411@defmac YYACCEPT
bfa74976
RS
5412@findex YYACCEPT
5413Return immediately with value 0 (to report success).
2a8d363a 5414@end defmac
bfa74976 5415
2a8d363a 5416@defmac YYABORT
bfa74976
RS
5417@findex YYABORT
5418Return immediately with value 1 (to report failure).
2a8d363a
AD
5419@end defmac
5420
5421If you use a reentrant parser, you can optionally pass additional
5422parameter information to it in a reentrant way. To do so, use the
5423declaration @code{%parse-param}:
5424
feeb0eda 5425@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5426@findex %parse-param
287c78f6
PE
5427Declare that an argument declared by the braced-code
5428@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5429The @var{argument-declaration} is used when declaring
feeb0eda
PE
5430functions or prototypes. The last identifier in
5431@var{argument-declaration} must be the argument name.
2a8d363a
AD
5432@end deffn
5433
5434Here's an example. Write this in the parser:
5435
5436@example
feeb0eda
PE
5437%parse-param @{int *nastiness@}
5438%parse-param @{int *randomness@}
2a8d363a
AD
5439@end example
5440
5441@noindent
5442Then call the parser like this:
5443
5444@example
5445@{
5446 int nastiness, randomness;
5447 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5448 value = yyparse (&nastiness, &randomness);
5449 @dots{}
5450@}
5451@end example
5452
5453@noindent
5454In the grammar actions, use expressions like this to refer to the data:
5455
5456@example
5457exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5458@end example
5459
9987d1b3
JD
5460@node Push Parser Function
5461@section The Push Parser Function @code{yypush_parse}
5462@findex yypush_parse
5463
59da312b
JD
5464(The current push parsing interface is experimental and may evolve.
5465More user feedback will help to stabilize it.)
5466
f4101aa6 5467You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5468function is available if either the @code{%define api.push-pull push} or
5469@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5470@xref{Push Decl, ,A Push Parser}.
5471
5472@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5473The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5474following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5475is required to finish parsing the grammar.
5476@end deftypefun
5477
5478@node Pull Parser Function
5479@section The Pull Parser Function @code{yypull_parse}
5480@findex yypull_parse
5481
59da312b
JD
5482(The current push parsing interface is experimental and may evolve.
5483More user feedback will help to stabilize it.)
5484
f4101aa6 5485You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5486stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5487declaration is used.
9987d1b3
JD
5488@xref{Push Decl, ,A Push Parser}.
5489
5490@deftypefun int yypull_parse (yypstate *yyps)
5491The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5492@end deftypefun
5493
5494@node Parser Create Function
5495@section The Parser Create Function @code{yystate_new}
5496@findex yypstate_new
5497
59da312b
JD
5498(The current push parsing interface is experimental and may evolve.
5499More user feedback will help to stabilize it.)
5500
f4101aa6 5501You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5502This function is available if either the @code{%define api.push-pull push} or
5503@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5504@xref{Push Decl, ,A Push Parser}.
5505
5506@deftypefun yypstate *yypstate_new (void)
5507The fuction will return a valid parser instance if there was memory available
333e670c
JD
5508or 0 if no memory was available.
5509In impure mode, it will also return 0 if a parser instance is currently
5510allocated.
9987d1b3
JD
5511@end deftypefun
5512
5513@node Parser Delete Function
5514@section The Parser Delete Function @code{yystate_delete}
5515@findex yypstate_delete
5516
59da312b
JD
5517(The current push parsing interface is experimental and may evolve.
5518More user feedback will help to stabilize it.)
5519
9987d1b3 5520You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5521function is available if either the @code{%define api.push-pull push} or
5522@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5523@xref{Push Decl, ,A Push Parser}.
5524
5525@deftypefun void yypstate_delete (yypstate *yyps)
5526This function will reclaim the memory associated with a parser instance.
5527After this call, you should no longer attempt to use the parser instance.
5528@end deftypefun
bfa74976 5529
342b8b6e 5530@node Lexical
bfa74976
RS
5531@section The Lexical Analyzer Function @code{yylex}
5532@findex yylex
5533@cindex lexical analyzer
5534
5535The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5536the input stream and returns them to the parser. Bison does not create
5537this function automatically; you must write it so that @code{yyparse} can
5538call it. The function is sometimes referred to as a lexical scanner.
5539
5540In simple programs, @code{yylex} is often defined at the end of the Bison
5541grammar file. If @code{yylex} is defined in a separate source file, you
5542need to arrange for the token-type macro definitions to be available there.
5543To do this, use the @samp{-d} option when you run Bison, so that it will
5544write these macro definitions into a separate header file
5545@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5546that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5547
5548@menu
5549* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5550* Token Values:: How @code{yylex} must return the semantic value
5551 of the token it has read.
5552* Token Locations:: How @code{yylex} must return the text location
5553 (line number, etc.) of the token, if the
5554 actions want that.
5555* Pure Calling:: How the calling convention differs in a pure parser
5556 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5557@end menu
5558
342b8b6e 5559@node Calling Convention
bfa74976
RS
5560@subsection Calling Convention for @code{yylex}
5561
72d2299c
PE
5562The value that @code{yylex} returns must be the positive numeric code
5563for the type of token it has just found; a zero or negative value
5564signifies end-of-input.
bfa74976
RS
5565
5566When a token is referred to in the grammar rules by a name, that name
5567in the parser file becomes a C macro whose definition is the proper
5568numeric code for that token type. So @code{yylex} can use the name
5569to indicate that type. @xref{Symbols}.
5570
5571When a token is referred to in the grammar rules by a character literal,
5572the numeric code for that character is also the code for the token type.
72d2299c
PE
5573So @code{yylex} can simply return that character code, possibly converted
5574to @code{unsigned char} to avoid sign-extension. The null character
5575must not be used this way, because its code is zero and that
bfa74976
RS
5576signifies end-of-input.
5577
5578Here is an example showing these things:
5579
5580@example
13863333
AD
5581int
5582yylex (void)
bfa74976
RS
5583@{
5584 @dots{}
72d2299c 5585 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5586 return 0;
5587 @dots{}
5588 if (c == '+' || c == '-')
72d2299c 5589 return c; /* Assume token type for `+' is '+'. */
bfa74976 5590 @dots{}
72d2299c 5591 return INT; /* Return the type of the token. */
bfa74976
RS
5592 @dots{}
5593@}
5594@end example
5595
5596@noindent
5597This interface has been designed so that the output from the @code{lex}
5598utility can be used without change as the definition of @code{yylex}.
5599
931c7513
RS
5600If the grammar uses literal string tokens, there are two ways that
5601@code{yylex} can determine the token type codes for them:
5602
5603@itemize @bullet
5604@item
5605If the grammar defines symbolic token names as aliases for the
5606literal string tokens, @code{yylex} can use these symbolic names like
5607all others. In this case, the use of the literal string tokens in
5608the grammar file has no effect on @code{yylex}.
5609
5610@item
9ecbd125 5611@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5612table. The index of the token in the table is the token type's code.
9ecbd125 5613The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5614double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5615token's characters are escaped as necessary to be suitable as input
5616to Bison.
931c7513 5617
9e0876fb
PE
5618Here's code for looking up a multicharacter token in @code{yytname},
5619assuming that the characters of the token are stored in
5620@code{token_buffer}, and assuming that the token does not contain any
5621characters like @samp{"} that require escaping.
931c7513
RS
5622
5623@smallexample
5624for (i = 0; i < YYNTOKENS; i++)
5625 @{
5626 if (yytname[i] != 0
5627 && yytname[i][0] == '"'
68449b3a
PE
5628 && ! strncmp (yytname[i] + 1, token_buffer,
5629 strlen (token_buffer))
931c7513
RS
5630 && yytname[i][strlen (token_buffer) + 1] == '"'
5631 && yytname[i][strlen (token_buffer) + 2] == 0)
5632 break;
5633 @}
5634@end smallexample
5635
5636The @code{yytname} table is generated only if you use the
8c9a50be 5637@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5638@end itemize
5639
342b8b6e 5640@node Token Values
bfa74976
RS
5641@subsection Semantic Values of Tokens
5642
5643@vindex yylval
9d9b8b70 5644In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5645be stored into the global variable @code{yylval}. When you are using
5646just one data type for semantic values, @code{yylval} has that type.
5647Thus, if the type is @code{int} (the default), you might write this in
5648@code{yylex}:
5649
5650@example
5651@group
5652 @dots{}
72d2299c
PE
5653 yylval = value; /* Put value onto Bison stack. */
5654 return INT; /* Return the type of the token. */
bfa74976
RS
5655 @dots{}
5656@end group
5657@end example
5658
5659When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5660made from the @code{%union} declaration (@pxref{Union Decl, ,The
5661Collection of Value Types}). So when you store a token's value, you
5662must use the proper member of the union. If the @code{%union}
5663declaration looks like this:
bfa74976
RS
5664
5665@example
5666@group
5667%union @{
5668 int intval;
5669 double val;
5670 symrec *tptr;
5671@}
5672@end group
5673@end example
5674
5675@noindent
5676then the code in @code{yylex} might look like this:
5677
5678@example
5679@group
5680 @dots{}
72d2299c
PE
5681 yylval.intval = value; /* Put value onto Bison stack. */
5682 return INT; /* Return the type of the token. */
bfa74976
RS
5683 @dots{}
5684@end group
5685@end example
5686
95923bd6
AD
5687@node Token Locations
5688@subsection Textual Locations of Tokens
bfa74976
RS
5689
5690@vindex yylloc
847bf1f5 5691If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5692Tracking Locations}) in actions to keep track of the textual locations
5693of tokens and groupings, then you must provide this information in
5694@code{yylex}. The function @code{yyparse} expects to find the textual
5695location of a token just parsed in the global variable @code{yylloc}.
5696So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5697
5698By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5699initialize the members that are going to be used by the actions. The
5700four members are called @code{first_line}, @code{first_column},
5701@code{last_line} and @code{last_column}. Note that the use of this
5702feature makes the parser noticeably slower.
bfa74976
RS
5703
5704@tindex YYLTYPE
5705The data type of @code{yylloc} has the name @code{YYLTYPE}.
5706
342b8b6e 5707@node Pure Calling
c656404a 5708@subsection Calling Conventions for Pure Parsers
bfa74976 5709
d9df47b6 5710When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5711pure, reentrant parser, the global communication variables @code{yylval}
5712and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5713Parser}.) In such parsers the two global variables are replaced by
5714pointers passed as arguments to @code{yylex}. You must declare them as
5715shown here, and pass the information back by storing it through those
5716pointers.
bfa74976
RS
5717
5718@example
13863333
AD
5719int
5720yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5721@{
5722 @dots{}
5723 *lvalp = value; /* Put value onto Bison stack. */
5724 return INT; /* Return the type of the token. */
5725 @dots{}
5726@}
5727@end example
5728
5729If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5730textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5731this case, omit the second argument; @code{yylex} will be called with
5732only one argument.
5733
e425e872 5734
2a8d363a
AD
5735If you wish to pass the additional parameter data to @code{yylex}, use
5736@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5737Function}).
e425e872 5738
feeb0eda 5739@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5740@findex %lex-param
287c78f6
PE
5741Declare that the braced-code @var{argument-declaration} is an
5742additional @code{yylex} argument declaration.
2a8d363a 5743@end deffn
e425e872 5744
2a8d363a 5745For instance:
e425e872
RS
5746
5747@example
feeb0eda
PE
5748%parse-param @{int *nastiness@}
5749%lex-param @{int *nastiness@}
5750%parse-param @{int *randomness@}
e425e872
RS
5751@end example
5752
5753@noindent
2a8d363a 5754results in the following signature:
e425e872
RS
5755
5756@example
2a8d363a
AD
5757int yylex (int *nastiness);
5758int yyparse (int *nastiness, int *randomness);
e425e872
RS
5759@end example
5760
d9df47b6 5761If @code{%define api.pure} is added:
c656404a
RS
5762
5763@example
2a8d363a
AD
5764int yylex (YYSTYPE *lvalp, int *nastiness);
5765int yyparse (int *nastiness, int *randomness);
c656404a
RS
5766@end example
5767
2a8d363a 5768@noindent
d9df47b6 5769and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5770
2a8d363a
AD
5771@example
5772int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5773int yyparse (int *nastiness, int *randomness);
5774@end example
931c7513 5775
342b8b6e 5776@node Error Reporting
bfa74976
RS
5777@section The Error Reporting Function @code{yyerror}
5778@cindex error reporting function
5779@findex yyerror
5780@cindex parse error
5781@cindex syntax error
5782
6e649e65 5783The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5784whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5785action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5786macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5787in Actions}).
bfa74976
RS
5788
5789The Bison parser expects to report the error by calling an error
5790reporting function named @code{yyerror}, which you must supply. It is
5791called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5792receives one argument. For a syntax error, the string is normally
5793@w{@code{"syntax error"}}.
bfa74976 5794
2a8d363a
AD
5795@findex %error-verbose
5796If you invoke the directive @code{%error-verbose} in the Bison
5797declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5798Section}), then Bison provides a more verbose and specific error message
6e649e65 5799string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5800
1a059451
PE
5801The parser can detect one other kind of error: memory exhaustion. This
5802can happen when the input contains constructions that are very deeply
bfa74976 5803nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5804parser normally extends its stack automatically up to a very large limit. But
5805if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5806fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5807
5808In some cases diagnostics like @w{@code{"syntax error"}} are
5809translated automatically from English to some other language before
5810they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5811
5812The following definition suffices in simple programs:
5813
5814@example
5815@group
13863333 5816void
38a92d50 5817yyerror (char const *s)
bfa74976
RS
5818@{
5819@end group
5820@group
5821 fprintf (stderr, "%s\n", s);
5822@}
5823@end group
5824@end example
5825
5826After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5827error recovery if you have written suitable error recovery grammar rules
5828(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5829immediately return 1.
5830
93724f13 5831Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5832an access to the current location.
5833This is indeed the case for the @acronym{GLR}
2a8d363a 5834parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5835@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5836@code{yyerror} are:
5837
5838@example
38a92d50
PE
5839void yyerror (char const *msg); /* Yacc parsers. */
5840void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5841@end example
5842
feeb0eda 5843If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5844
5845@example
b317297e
PE
5846void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5847void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5848@end example
5849
fa7e68c3 5850Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5851convention for absolutely pure parsers, i.e., when the calling
5852convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5853@code{%define api.pure} are pure.
5854I.e.:
2a8d363a
AD
5855
5856@example
5857/* Location tracking. */
5858%locations
5859/* Pure yylex. */
d9df47b6 5860%define api.pure
feeb0eda 5861%lex-param @{int *nastiness@}
2a8d363a 5862/* Pure yyparse. */
feeb0eda
PE
5863%parse-param @{int *nastiness@}
5864%parse-param @{int *randomness@}
2a8d363a
AD
5865@end example
5866
5867@noindent
5868results in the following signatures for all the parser kinds:
5869
5870@example
5871int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5872int yyparse (int *nastiness, int *randomness);
93724f13
AD
5873void yyerror (YYLTYPE *locp,
5874 int *nastiness, int *randomness,
38a92d50 5875 char const *msg);
2a8d363a
AD
5876@end example
5877
1c0c3e95 5878@noindent
38a92d50
PE
5879The prototypes are only indications of how the code produced by Bison
5880uses @code{yyerror}. Bison-generated code always ignores the returned
5881value, so @code{yyerror} can return any type, including @code{void}.
5882Also, @code{yyerror} can be a variadic function; that is why the
5883message is always passed last.
5884
5885Traditionally @code{yyerror} returns an @code{int} that is always
5886ignored, but this is purely for historical reasons, and @code{void} is
5887preferable since it more accurately describes the return type for
5888@code{yyerror}.
93724f13 5889
bfa74976
RS
5890@vindex yynerrs
5891The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5892reported so far. Normally this variable is global; but if you
704a47c4
AD
5893request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5894then it is a local variable which only the actions can access.
bfa74976 5895
342b8b6e 5896@node Action Features
bfa74976
RS
5897@section Special Features for Use in Actions
5898@cindex summary, action features
5899@cindex action features summary
5900
5901Here is a table of Bison constructs, variables and macros that
5902are useful in actions.
5903
18b519c0 5904@deffn {Variable} $$
bfa74976
RS
5905Acts like a variable that contains the semantic value for the
5906grouping made by the current rule. @xref{Actions}.
18b519c0 5907@end deffn
bfa74976 5908
18b519c0 5909@deffn {Variable} $@var{n}
bfa74976
RS
5910Acts like a variable that contains the semantic value for the
5911@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5912@end deffn
bfa74976 5913
18b519c0 5914@deffn {Variable} $<@var{typealt}>$
bfa74976 5915Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5916specified by the @code{%union} declaration. @xref{Action Types, ,Data
5917Types of Values in Actions}.
18b519c0 5918@end deffn
bfa74976 5919
18b519c0 5920@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5921Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5922union specified by the @code{%union} declaration.
e0c471a9 5923@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5924@end deffn
bfa74976 5925
18b519c0 5926@deffn {Macro} YYABORT;
bfa74976
RS
5927Return immediately from @code{yyparse}, indicating failure.
5928@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5929@end deffn
bfa74976 5930
18b519c0 5931@deffn {Macro} YYACCEPT;
bfa74976
RS
5932Return immediately from @code{yyparse}, indicating success.
5933@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5934@end deffn
bfa74976 5935
18b519c0 5936@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5937@findex YYBACKUP
5938Unshift a token. This macro is allowed only for rules that reduce
742e4900 5939a single value, and only when there is no lookahead token.
c827f760 5940It is also disallowed in @acronym{GLR} parsers.
742e4900 5941It installs a lookahead token with token type @var{token} and
bfa74976
RS
5942semantic value @var{value}; then it discards the value that was
5943going to be reduced by this rule.
5944
5945If the macro is used when it is not valid, such as when there is
742e4900 5946a lookahead token already, then it reports a syntax error with
bfa74976
RS
5947a message @samp{cannot back up} and performs ordinary error
5948recovery.
5949
5950In either case, the rest of the action is not executed.
18b519c0 5951@end deffn
bfa74976 5952
18b519c0 5953@deffn {Macro} YYEMPTY
bfa74976 5954@vindex YYEMPTY
742e4900 5955Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5956@end deffn
bfa74976 5957
32c29292
JD
5958@deffn {Macro} YYEOF
5959@vindex YYEOF
742e4900 5960Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5961stream.
5962@end deffn
5963
18b519c0 5964@deffn {Macro} YYERROR;
bfa74976
RS
5965@findex YYERROR
5966Cause an immediate syntax error. This statement initiates error
5967recovery just as if the parser itself had detected an error; however, it
5968does not call @code{yyerror}, and does not print any message. If you
5969want to print an error message, call @code{yyerror} explicitly before
5970the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5971@end deffn
bfa74976 5972
18b519c0 5973@deffn {Macro} YYRECOVERING
02103984
PE
5974@findex YYRECOVERING
5975The expression @code{YYRECOVERING ()} yields 1 when the parser
5976is recovering from a syntax error, and 0 otherwise.
bfa74976 5977@xref{Error Recovery}.
18b519c0 5978@end deffn
bfa74976 5979
18b519c0 5980@deffn {Variable} yychar
742e4900
JD
5981Variable containing either the lookahead token, or @code{YYEOF} when the
5982lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5983has been performed so the next token is not yet known.
5984Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5985Actions}).
742e4900 5986@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5987@end deffn
bfa74976 5988
18b519c0 5989@deffn {Macro} yyclearin;
742e4900 5990Discard the current lookahead token. This is useful primarily in
32c29292
JD
5991error rules.
5992Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5993Semantic Actions}).
5994@xref{Error Recovery}.
18b519c0 5995@end deffn
bfa74976 5996
18b519c0 5997@deffn {Macro} yyerrok;
bfa74976 5998Resume generating error messages immediately for subsequent syntax
13863333 5999errors. This is useful primarily in error rules.
bfa74976 6000@xref{Error Recovery}.
18b519c0 6001@end deffn
bfa74976 6002
32c29292 6003@deffn {Variable} yylloc
742e4900 6004Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6005to @code{YYEMPTY} or @code{YYEOF}.
6006Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6007Actions}).
6008@xref{Actions and Locations, ,Actions and Locations}.
6009@end deffn
6010
6011@deffn {Variable} yylval
742e4900 6012Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6013not set to @code{YYEMPTY} or @code{YYEOF}.
6014Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6015Actions}).
6016@xref{Actions, ,Actions}.
6017@end deffn
6018
18b519c0 6019@deffn {Value} @@$
847bf1f5 6020@findex @@$
95923bd6 6021Acts like a structure variable containing information on the textual location
847bf1f5
AD
6022of the grouping made by the current rule. @xref{Locations, ,
6023Tracking Locations}.
bfa74976 6024
847bf1f5
AD
6025@c Check if those paragraphs are still useful or not.
6026
6027@c @example
6028@c struct @{
6029@c int first_line, last_line;
6030@c int first_column, last_column;
6031@c @};
6032@c @end example
6033
6034@c Thus, to get the starting line number of the third component, you would
6035@c use @samp{@@3.first_line}.
bfa74976 6036
847bf1f5
AD
6037@c In order for the members of this structure to contain valid information,
6038@c you must make @code{yylex} supply this information about each token.
6039@c If you need only certain members, then @code{yylex} need only fill in
6040@c those members.
bfa74976 6041
847bf1f5 6042@c The use of this feature makes the parser noticeably slower.
18b519c0 6043@end deffn
847bf1f5 6044
18b519c0 6045@deffn {Value} @@@var{n}
847bf1f5 6046@findex @@@var{n}
95923bd6 6047Acts like a structure variable containing information on the textual location
847bf1f5
AD
6048of the @var{n}th component of the current rule. @xref{Locations, ,
6049Tracking Locations}.
18b519c0 6050@end deffn
bfa74976 6051
f7ab6a50
PE
6052@node Internationalization
6053@section Parser Internationalization
6054@cindex internationalization
6055@cindex i18n
6056@cindex NLS
6057@cindex gettext
6058@cindex bison-po
6059
6060A Bison-generated parser can print diagnostics, including error and
6061tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6062also supports outputting diagnostics in the user's native language. To
6063make this work, the user should set the usual environment variables.
6064@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6065For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6066set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6067encoding. The exact set of available locales depends on the user's
6068installation.
6069
6070The maintainer of a package that uses a Bison-generated parser enables
6071the internationalization of the parser's output through the following
6072steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6073@acronym{GNU} Automake.
6074
6075@enumerate
6076@item
30757c8c 6077@cindex bison-i18n.m4
f7ab6a50
PE
6078Into the directory containing the @acronym{GNU} Autoconf macros used
6079by the package---often called @file{m4}---copy the
6080@file{bison-i18n.m4} file installed by Bison under
6081@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6082For example:
6083
6084@example
6085cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6086@end example
6087
6088@item
30757c8c
PE
6089@findex BISON_I18N
6090@vindex BISON_LOCALEDIR
6091@vindex YYENABLE_NLS
f7ab6a50
PE
6092In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6093invocation, add an invocation of @code{BISON_I18N}. This macro is
6094defined in the file @file{bison-i18n.m4} that you copied earlier. It
6095causes @samp{configure} to find the value of the
30757c8c
PE
6096@code{BISON_LOCALEDIR} variable, and it defines the source-language
6097symbol @code{YYENABLE_NLS} to enable translations in the
6098Bison-generated parser.
f7ab6a50
PE
6099
6100@item
6101In the @code{main} function of your program, designate the directory
6102containing Bison's runtime message catalog, through a call to
6103@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6104For example:
6105
6106@example
6107bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6108@end example
6109
6110Typically this appears after any other call @code{bindtextdomain
6111(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6112@samp{BISON_LOCALEDIR} to be defined as a string through the
6113@file{Makefile}.
6114
6115@item
6116In the @file{Makefile.am} that controls the compilation of the @code{main}
6117function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6118either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6119
6120@example
6121DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6122@end example
6123
6124or:
6125
6126@example
6127AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6128@end example
6129
6130@item
6131Finally, invoke the command @command{autoreconf} to generate the build
6132infrastructure.
6133@end enumerate
6134
bfa74976 6135
342b8b6e 6136@node Algorithm
13863333
AD
6137@chapter The Bison Parser Algorithm
6138@cindex Bison parser algorithm
bfa74976
RS
6139@cindex algorithm of parser
6140@cindex shifting
6141@cindex reduction
6142@cindex parser stack
6143@cindex stack, parser
6144
6145As Bison reads tokens, it pushes them onto a stack along with their
6146semantic values. The stack is called the @dfn{parser stack}. Pushing a
6147token is traditionally called @dfn{shifting}.
6148
6149For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6150@samp{3} to come. The stack will have four elements, one for each token
6151that was shifted.
6152
6153But the stack does not always have an element for each token read. When
6154the last @var{n} tokens and groupings shifted match the components of a
6155grammar rule, they can be combined according to that rule. This is called
6156@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6157single grouping whose symbol is the result (left hand side) of that rule.
6158Running the rule's action is part of the process of reduction, because this
6159is what computes the semantic value of the resulting grouping.
6160
6161For example, if the infix calculator's parser stack contains this:
6162
6163@example
61641 + 5 * 3
6165@end example
6166
6167@noindent
6168and the next input token is a newline character, then the last three
6169elements can be reduced to 15 via the rule:
6170
6171@example
6172expr: expr '*' expr;
6173@end example
6174
6175@noindent
6176Then the stack contains just these three elements:
6177
6178@example
61791 + 15
6180@end example
6181
6182@noindent
6183At this point, another reduction can be made, resulting in the single value
618416. Then the newline token can be shifted.
6185
6186The parser tries, by shifts and reductions, to reduce the entire input down
6187to a single grouping whose symbol is the grammar's start-symbol
6188(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6189
6190This kind of parser is known in the literature as a bottom-up parser.
6191
6192@menu
742e4900 6193* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6194* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6195* Precedence:: Operator precedence works by resolving conflicts.
6196* Contextual Precedence:: When an operator's precedence depends on context.
6197* Parser States:: The parser is a finite-state-machine with stack.
6198* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6199* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6200* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6201* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6202@end menu
6203
742e4900
JD
6204@node Lookahead
6205@section Lookahead Tokens
6206@cindex lookahead token
bfa74976
RS
6207
6208The Bison parser does @emph{not} always reduce immediately as soon as the
6209last @var{n} tokens and groupings match a rule. This is because such a
6210simple strategy is inadequate to handle most languages. Instead, when a
6211reduction is possible, the parser sometimes ``looks ahead'' at the next
6212token in order to decide what to do.
6213
6214When a token is read, it is not immediately shifted; first it becomes the
742e4900 6215@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6216perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6217the lookahead token remains off to the side. When no more reductions
6218should take place, the lookahead token is shifted onto the stack. This
bfa74976 6219does not mean that all possible reductions have been done; depending on the
742e4900 6220token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6221application.
6222
742e4900 6223Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6224expressions which contain binary addition operators and postfix unary
6225factorial operators (@samp{!}), and allow parentheses for grouping.
6226
6227@example
6228@group
6229expr: term '+' expr
6230 | term
6231 ;
6232@end group
6233
6234@group
6235term: '(' expr ')'
6236 | term '!'
6237 | NUMBER
6238 ;
6239@end group
6240@end example
6241
6242Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6243should be done? If the following token is @samp{)}, then the first three
6244tokens must be reduced to form an @code{expr}. This is the only valid
6245course, because shifting the @samp{)} would produce a sequence of symbols
6246@w{@code{term ')'}}, and no rule allows this.
6247
6248If the following token is @samp{!}, then it must be shifted immediately so
6249that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6250parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6251@code{expr}. It would then be impossible to shift the @samp{!} because
6252doing so would produce on the stack the sequence of symbols @code{expr
6253'!'}. No rule allows that sequence.
6254
6255@vindex yychar
32c29292
JD
6256@vindex yylval
6257@vindex yylloc
742e4900 6258The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6259Its semantic value and location, if any, are stored in the variables
6260@code{yylval} and @code{yylloc}.
bfa74976
RS
6261@xref{Action Features, ,Special Features for Use in Actions}.
6262
342b8b6e 6263@node Shift/Reduce
bfa74976
RS
6264@section Shift/Reduce Conflicts
6265@cindex conflicts
6266@cindex shift/reduce conflicts
6267@cindex dangling @code{else}
6268@cindex @code{else}, dangling
6269
6270Suppose we are parsing a language which has if-then and if-then-else
6271statements, with a pair of rules like this:
6272
6273@example
6274@group
6275if_stmt:
6276 IF expr THEN stmt
6277 | IF expr THEN stmt ELSE stmt
6278 ;
6279@end group
6280@end example
6281
6282@noindent
6283Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6284terminal symbols for specific keyword tokens.
6285
742e4900 6286When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6287contents of the stack (assuming the input is valid) are just right for
6288reduction by the first rule. But it is also legitimate to shift the
6289@code{ELSE}, because that would lead to eventual reduction by the second
6290rule.
6291
6292This situation, where either a shift or a reduction would be valid, is
6293called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6294these conflicts by choosing to shift, unless otherwise directed by
6295operator precedence declarations. To see the reason for this, let's
6296contrast it with the other alternative.
6297
6298Since the parser prefers to shift the @code{ELSE}, the result is to attach
6299the else-clause to the innermost if-statement, making these two inputs
6300equivalent:
6301
6302@example
6303if x then if y then win (); else lose;
6304
6305if x then do; if y then win (); else lose; end;
6306@end example
6307
6308But if the parser chose to reduce when possible rather than shift, the
6309result would be to attach the else-clause to the outermost if-statement,
6310making these two inputs equivalent:
6311
6312@example
6313if x then if y then win (); else lose;
6314
6315if x then do; if y then win (); end; else lose;
6316@end example
6317
6318The conflict exists because the grammar as written is ambiguous: either
6319parsing of the simple nested if-statement is legitimate. The established
6320convention is that these ambiguities are resolved by attaching the
6321else-clause to the innermost if-statement; this is what Bison accomplishes
6322by choosing to shift rather than reduce. (It would ideally be cleaner to
6323write an unambiguous grammar, but that is very hard to do in this case.)
6324This particular ambiguity was first encountered in the specifications of
6325Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6326
6327To avoid warnings from Bison about predictable, legitimate shift/reduce
6328conflicts, use the @code{%expect @var{n}} declaration. There will be no
6329warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6330@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6331
6332The definition of @code{if_stmt} above is solely to blame for the
6333conflict, but the conflict does not actually appear without additional
6334rules. Here is a complete Bison input file that actually manifests the
6335conflict:
6336
6337@example
6338@group
6339%token IF THEN ELSE variable
6340%%
6341@end group
6342@group
6343stmt: expr
6344 | if_stmt
6345 ;
6346@end group
6347
6348@group
6349if_stmt:
6350 IF expr THEN stmt
6351 | IF expr THEN stmt ELSE stmt
6352 ;
6353@end group
6354
6355expr: variable
6356 ;
6357@end example
6358
342b8b6e 6359@node Precedence
bfa74976
RS
6360@section Operator Precedence
6361@cindex operator precedence
6362@cindex precedence of operators
6363
6364Another situation where shift/reduce conflicts appear is in arithmetic
6365expressions. Here shifting is not always the preferred resolution; the
6366Bison declarations for operator precedence allow you to specify when to
6367shift and when to reduce.
6368
6369@menu
6370* Why Precedence:: An example showing why precedence is needed.
6371* Using Precedence:: How to specify precedence in Bison grammars.
6372* Precedence Examples:: How these features are used in the previous example.
6373* How Precedence:: How they work.
6374@end menu
6375
342b8b6e 6376@node Why Precedence
bfa74976
RS
6377@subsection When Precedence is Needed
6378
6379Consider the following ambiguous grammar fragment (ambiguous because the
6380input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6381
6382@example
6383@group
6384expr: expr '-' expr
6385 | expr '*' expr
6386 | expr '<' expr
6387 | '(' expr ')'
6388 @dots{}
6389 ;
6390@end group
6391@end example
6392
6393@noindent
6394Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6395should it reduce them via the rule for the subtraction operator? It
6396depends on the next token. Of course, if the next token is @samp{)}, we
6397must reduce; shifting is invalid because no single rule can reduce the
6398token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6399the next token is @samp{*} or @samp{<}, we have a choice: either
6400shifting or reduction would allow the parse to complete, but with
6401different results.
6402
6403To decide which one Bison should do, we must consider the results. If
6404the next operator token @var{op} is shifted, then it must be reduced
6405first in order to permit another opportunity to reduce the difference.
6406The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6407hand, if the subtraction is reduced before shifting @var{op}, the result
6408is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6409reduce should depend on the relative precedence of the operators
6410@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6411@samp{<}.
bfa74976
RS
6412
6413@cindex associativity
6414What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6415@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6416operators we prefer the former, which is called @dfn{left association}.
6417The latter alternative, @dfn{right association}, is desirable for
6418assignment operators. The choice of left or right association is a
6419matter of whether the parser chooses to shift or reduce when the stack
742e4900 6420contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6421makes right-associativity.
bfa74976 6422
342b8b6e 6423@node Using Precedence
bfa74976
RS
6424@subsection Specifying Operator Precedence
6425@findex %left
6426@findex %right
6427@findex %nonassoc
6428
6429Bison allows you to specify these choices with the operator precedence
6430declarations @code{%left} and @code{%right}. Each such declaration
6431contains a list of tokens, which are operators whose precedence and
6432associativity is being declared. The @code{%left} declaration makes all
6433those operators left-associative and the @code{%right} declaration makes
6434them right-associative. A third alternative is @code{%nonassoc}, which
6435declares that it is a syntax error to find the same operator twice ``in a
6436row''.
6437
6438The relative precedence of different operators is controlled by the
6439order in which they are declared. The first @code{%left} or
6440@code{%right} declaration in the file declares the operators whose
6441precedence is lowest, the next such declaration declares the operators
6442whose precedence is a little higher, and so on.
6443
342b8b6e 6444@node Precedence Examples
bfa74976
RS
6445@subsection Precedence Examples
6446
6447In our example, we would want the following declarations:
6448
6449@example
6450%left '<'
6451%left '-'
6452%left '*'
6453@end example
6454
6455In a more complete example, which supports other operators as well, we
6456would declare them in groups of equal precedence. For example, @code{'+'} is
6457declared with @code{'-'}:
6458
6459@example
6460%left '<' '>' '=' NE LE GE
6461%left '+' '-'
6462%left '*' '/'
6463@end example
6464
6465@noindent
6466(Here @code{NE} and so on stand for the operators for ``not equal''
6467and so on. We assume that these tokens are more than one character long
6468and therefore are represented by names, not character literals.)
6469
342b8b6e 6470@node How Precedence
bfa74976
RS
6471@subsection How Precedence Works
6472
6473The first effect of the precedence declarations is to assign precedence
6474levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6475precedence levels to certain rules: each rule gets its precedence from
6476the last terminal symbol mentioned in the components. (You can also
6477specify explicitly the precedence of a rule. @xref{Contextual
6478Precedence, ,Context-Dependent Precedence}.)
6479
6480Finally, the resolution of conflicts works by comparing the precedence
742e4900 6481of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6482token's precedence is higher, the choice is to shift. If the rule's
6483precedence is higher, the choice is to reduce. If they have equal
6484precedence, the choice is made based on the associativity of that
6485precedence level. The verbose output file made by @samp{-v}
6486(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6487resolved.
bfa74976
RS
6488
6489Not all rules and not all tokens have precedence. If either the rule or
742e4900 6490the lookahead token has no precedence, then the default is to shift.
bfa74976 6491
342b8b6e 6492@node Contextual Precedence
bfa74976
RS
6493@section Context-Dependent Precedence
6494@cindex context-dependent precedence
6495@cindex unary operator precedence
6496@cindex precedence, context-dependent
6497@cindex precedence, unary operator
6498@findex %prec
6499
6500Often the precedence of an operator depends on the context. This sounds
6501outlandish at first, but it is really very common. For example, a minus
6502sign typically has a very high precedence as a unary operator, and a
6503somewhat lower precedence (lower than multiplication) as a binary operator.
6504
6505The Bison precedence declarations, @code{%left}, @code{%right} and
6506@code{%nonassoc}, can only be used once for a given token; so a token has
6507only one precedence declared in this way. For context-dependent
6508precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6509modifier for rules.
bfa74976
RS
6510
6511The @code{%prec} modifier declares the precedence of a particular rule by
6512specifying a terminal symbol whose precedence should be used for that rule.
6513It's not necessary for that symbol to appear otherwise in the rule. The
6514modifier's syntax is:
6515
6516@example
6517%prec @var{terminal-symbol}
6518@end example
6519
6520@noindent
6521and it is written after the components of the rule. Its effect is to
6522assign the rule the precedence of @var{terminal-symbol}, overriding
6523the precedence that would be deduced for it in the ordinary way. The
6524altered rule precedence then affects how conflicts involving that rule
6525are resolved (@pxref{Precedence, ,Operator Precedence}).
6526
6527Here is how @code{%prec} solves the problem of unary minus. First, declare
6528a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6529are no tokens of this type, but the symbol serves to stand for its
6530precedence:
6531
6532@example
6533@dots{}
6534%left '+' '-'
6535%left '*'
6536%left UMINUS
6537@end example
6538
6539Now the precedence of @code{UMINUS} can be used in specific rules:
6540
6541@example
6542@group
6543exp: @dots{}
6544 | exp '-' exp
6545 @dots{}
6546 | '-' exp %prec UMINUS
6547@end group
6548@end example
6549
91d2c560 6550@ifset defaultprec
39a06c25
PE
6551If you forget to append @code{%prec UMINUS} to the rule for unary
6552minus, Bison silently assumes that minus has its usual precedence.
6553This kind of problem can be tricky to debug, since one typically
6554discovers the mistake only by testing the code.
6555
22fccf95 6556The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6557this kind of problem systematically. It causes rules that lack a
6558@code{%prec} modifier to have no precedence, even if the last terminal
6559symbol mentioned in their components has a declared precedence.
6560
22fccf95 6561If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6562for all rules that participate in precedence conflict resolution.
6563Then you will see any shift/reduce conflict until you tell Bison how
6564to resolve it, either by changing your grammar or by adding an
6565explicit precedence. This will probably add declarations to the
6566grammar, but it helps to protect against incorrect rule precedences.
6567
22fccf95
PE
6568The effect of @code{%no-default-prec;} can be reversed by giving
6569@code{%default-prec;}, which is the default.
91d2c560 6570@end ifset
39a06c25 6571
342b8b6e 6572@node Parser States
bfa74976
RS
6573@section Parser States
6574@cindex finite-state machine
6575@cindex parser state
6576@cindex state (of parser)
6577
6578The function @code{yyparse} is implemented using a finite-state machine.
6579The values pushed on the parser stack are not simply token type codes; they
6580represent the entire sequence of terminal and nonterminal symbols at or
6581near the top of the stack. The current state collects all the information
6582about previous input which is relevant to deciding what to do next.
6583
742e4900
JD
6584Each time a lookahead token is read, the current parser state together
6585with the type of lookahead token are looked up in a table. This table
6586entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6587specifies the new parser state, which is pushed onto the top of the
6588parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6589This means that a certain number of tokens or groupings are taken off
6590the top of the stack, and replaced by one grouping. In other words,
6591that number of states are popped from the stack, and one new state is
6592pushed.
6593
742e4900 6594There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6595is erroneous in the current state. This causes error processing to begin
6596(@pxref{Error Recovery}).
6597
342b8b6e 6598@node Reduce/Reduce
bfa74976
RS
6599@section Reduce/Reduce Conflicts
6600@cindex reduce/reduce conflict
6601@cindex conflicts, reduce/reduce
6602
6603A reduce/reduce conflict occurs if there are two or more rules that apply
6604to the same sequence of input. This usually indicates a serious error
6605in the grammar.
6606
6607For example, here is an erroneous attempt to define a sequence
6608of zero or more @code{word} groupings.
6609
6610@example
6611sequence: /* empty */
6612 @{ printf ("empty sequence\n"); @}
6613 | maybeword
6614 | sequence word
6615 @{ printf ("added word %s\n", $2); @}
6616 ;
6617
6618maybeword: /* empty */
6619 @{ printf ("empty maybeword\n"); @}
6620 | word
6621 @{ printf ("single word %s\n", $1); @}
6622 ;
6623@end example
6624
6625@noindent
6626The error is an ambiguity: there is more than one way to parse a single
6627@code{word} into a @code{sequence}. It could be reduced to a
6628@code{maybeword} and then into a @code{sequence} via the second rule.
6629Alternatively, nothing-at-all could be reduced into a @code{sequence}
6630via the first rule, and this could be combined with the @code{word}
6631using the third rule for @code{sequence}.
6632
6633There is also more than one way to reduce nothing-at-all into a
6634@code{sequence}. This can be done directly via the first rule,
6635or indirectly via @code{maybeword} and then the second rule.
6636
6637You might think that this is a distinction without a difference, because it
6638does not change whether any particular input is valid or not. But it does
6639affect which actions are run. One parsing order runs the second rule's
6640action; the other runs the first rule's action and the third rule's action.
6641In this example, the output of the program changes.
6642
6643Bison resolves a reduce/reduce conflict by choosing to use the rule that
6644appears first in the grammar, but it is very risky to rely on this. Every
6645reduce/reduce conflict must be studied and usually eliminated. Here is the
6646proper way to define @code{sequence}:
6647
6648@example
6649sequence: /* empty */
6650 @{ printf ("empty sequence\n"); @}
6651 | sequence word
6652 @{ printf ("added word %s\n", $2); @}
6653 ;
6654@end example
6655
6656Here is another common error that yields a reduce/reduce conflict:
6657
6658@example
6659sequence: /* empty */
6660 | sequence words
6661 | sequence redirects
6662 ;
6663
6664words: /* empty */
6665 | words word
6666 ;
6667
6668redirects:/* empty */
6669 | redirects redirect
6670 ;
6671@end example
6672
6673@noindent
6674The intention here is to define a sequence which can contain either
6675@code{word} or @code{redirect} groupings. The individual definitions of
6676@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6677three together make a subtle ambiguity: even an empty input can be parsed
6678in infinitely many ways!
6679
6680Consider: nothing-at-all could be a @code{words}. Or it could be two
6681@code{words} in a row, or three, or any number. It could equally well be a
6682@code{redirects}, or two, or any number. Or it could be a @code{words}
6683followed by three @code{redirects} and another @code{words}. And so on.
6684
6685Here are two ways to correct these rules. First, to make it a single level
6686of sequence:
6687
6688@example
6689sequence: /* empty */
6690 | sequence word
6691 | sequence redirect
6692 ;
6693@end example
6694
6695Second, to prevent either a @code{words} or a @code{redirects}
6696from being empty:
6697
6698@example
6699sequence: /* empty */
6700 | sequence words
6701 | sequence redirects
6702 ;
6703
6704words: word
6705 | words word
6706 ;
6707
6708redirects:redirect
6709 | redirects redirect
6710 ;
6711@end example
6712
342b8b6e 6713@node Mystery Conflicts
bfa74976
RS
6714@section Mysterious Reduce/Reduce Conflicts
6715
6716Sometimes reduce/reduce conflicts can occur that don't look warranted.
6717Here is an example:
6718
6719@example
6720@group
6721%token ID
6722
6723%%
6724def: param_spec return_spec ','
6725 ;
6726param_spec:
6727 type
6728 | name_list ':' type
6729 ;
6730@end group
6731@group
6732return_spec:
6733 type
6734 | name ':' type
6735 ;
6736@end group
6737@group
6738type: ID
6739 ;
6740@end group
6741@group
6742name: ID
6743 ;
6744name_list:
6745 name
6746 | name ',' name_list
6747 ;
6748@end group
6749@end example
6750
6751It would seem that this grammar can be parsed with only a single token
742e4900 6752of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6753a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6754@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6755
c827f760
PE
6756@cindex @acronym{LR}(1)
6757@cindex @acronym{LALR}(1)
34a6c2d1
JD
6758However, for historical reasons, Bison cannot by default handle all
6759@acronym{LR}(1) grammars.
6760In this grammar, two contexts, that after an @code{ID} at the beginning
6761of a @code{param_spec} and likewise at the beginning of a
6762@code{return_spec}, are similar enough that Bison assumes they are the
6763same.
6764They appear similar because the same set of rules would be
bfa74976
RS
6765active---the rule for reducing to a @code{name} and that for reducing to
6766a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6767that the rules would require different lookahead tokens in the two
bfa74976
RS
6768contexts, so it makes a single parser state for them both. Combining
6769the two contexts causes a conflict later. In parser terminology, this
c827f760 6770occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6771
34a6c2d1
JD
6772For many practical grammars (specifically those that fall into the
6773non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6774difficulties beyond just mysterious reduce/reduce conflicts.
6775The best way to fix all these problems is to select a different parser
6776table generation algorithm.
6777Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6778the former is more efficient and easier to debug during development.
6779@xref{Decl Summary,,lr.type}, for details.
6780(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6781are experimental.
6782More user feedback will help to stabilize them.)
6783
6784If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6785can often fix a mysterious conflict by identifying the two parser states
6786that are being confused, and adding something to make them look
6787distinct. In the above example, adding one rule to
bfa74976
RS
6788@code{return_spec} as follows makes the problem go away:
6789
6790@example
6791@group
6792%token BOGUS
6793@dots{}
6794%%
6795@dots{}
6796return_spec:
6797 type
6798 | name ':' type
6799 /* This rule is never used. */
6800 | ID BOGUS
6801 ;
6802@end group
6803@end example
6804
6805This corrects the problem because it introduces the possibility of an
6806additional active rule in the context after the @code{ID} at the beginning of
6807@code{return_spec}. This rule is not active in the corresponding context
6808in a @code{param_spec}, so the two contexts receive distinct parser states.
6809As long as the token @code{BOGUS} is never generated by @code{yylex},
6810the added rule cannot alter the way actual input is parsed.
6811
6812In this particular example, there is another way to solve the problem:
6813rewrite the rule for @code{return_spec} to use @code{ID} directly
6814instead of via @code{name}. This also causes the two confusing
6815contexts to have different sets of active rules, because the one for
6816@code{return_spec} activates the altered rule for @code{return_spec}
6817rather than the one for @code{name}.
6818
6819@example
6820param_spec:
6821 type
6822 | name_list ':' type
6823 ;
6824return_spec:
6825 type
6826 | ID ':' type
6827 ;
6828@end example
6829
e054b190
PE
6830For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6831generators, please see:
6832Frank DeRemer and Thomas Pennello, Efficient Computation of
6833@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6834Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6835pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6836
fae437e8 6837@node Generalized LR Parsing
c827f760
PE
6838@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6839@cindex @acronym{GLR} parsing
6840@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6841@cindex ambiguous grammars
9d9b8b70 6842@cindex nondeterministic parsing
676385e2 6843
fae437e8
AD
6844Bison produces @emph{deterministic} parsers that choose uniquely
6845when to reduce and which reduction to apply
742e4900 6846based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6847As a result, normal Bison handles a proper subset of the family of
6848context-free languages.
fae437e8 6849Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6850sequence of reductions cannot have deterministic parsers in this sense.
6851The same is true of languages that require more than one symbol of
742e4900 6852lookahead, since the parser lacks the information necessary to make a
676385e2 6853decision at the point it must be made in a shift-reduce parser.
fae437e8 6854Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 6855there are languages where Bison's default choice of how to
676385e2
PH
6856summarize the input seen so far loses necessary information.
6857
6858When you use the @samp{%glr-parser} declaration in your grammar file,
6859Bison generates a parser that uses a different algorithm, called
c827f760
PE
6860Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6861parser uses the same basic
676385e2
PH
6862algorithm for parsing as an ordinary Bison parser, but behaves
6863differently in cases where there is a shift-reduce conflict that has not
fae437e8 6864been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6865reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6866situation, it
fae437e8 6867effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6868shift or reduction. These parsers then proceed as usual, consuming
6869tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6870and split further, with the result that instead of a sequence of states,
c827f760 6871a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6872
6873In effect, each stack represents a guess as to what the proper parse
6874is. Additional input may indicate that a guess was wrong, in which case
6875the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6876actions generated in each stack are saved, rather than being executed
676385e2 6877immediately. When a stack disappears, its saved semantic actions never
fae437e8 6878get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6879their sets of semantic actions are both saved with the state that
6880results from the reduction. We say that two stacks are equivalent
fae437e8 6881when they both represent the same sequence of states,
676385e2
PH
6882and each pair of corresponding states represents a
6883grammar symbol that produces the same segment of the input token
6884stream.
6885
6886Whenever the parser makes a transition from having multiple
34a6c2d1 6887states to having one, it reverts to the normal deterministic parsing
676385e2
PH
6888algorithm, after resolving and executing the saved-up actions.
6889At this transition, some of the states on the stack will have semantic
6890values that are sets (actually multisets) of possible actions. The
6891parser tries to pick one of the actions by first finding one whose rule
6892has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6893declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6894precedence, but there the same merging function is declared for both
fae437e8 6895rules by the @samp{%merge} declaration,
676385e2
PH
6896Bison resolves and evaluates both and then calls the merge function on
6897the result. Otherwise, it reports an ambiguity.
6898
c827f760 6899It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 6900permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 6901size of the input), any unambiguous (not necessarily
34a6c2d1 6902@acronym{LR}(1)) grammar in
fae437e8 6903quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6904context-free grammar in cubic worst-case time. However, Bison currently
6905uses a simpler data structure that requires time proportional to the
6906length of the input times the maximum number of stacks required for any
9d9b8b70 6907prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6908grammars can require exponential time and space to process. Such badly
6909behaving examples, however, are not generally of practical interest.
9d9b8b70 6910Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6911doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
6912structure should generally be adequate. On @acronym{LR}(1) portions of a
6913grammar, in particular, it is only slightly slower than with the
6914deterministic @acronym{LR}(1) Bison parser.
676385e2 6915
fa7e68c3 6916For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6917Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6918Generalised @acronym{LR} Parsers, Royal Holloway, University of
6919London, Department of Computer Science, TR-00-12,
6920@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6921(2000-12-24).
6922
1a059451
PE
6923@node Memory Management
6924@section Memory Management, and How to Avoid Memory Exhaustion
6925@cindex memory exhaustion
6926@cindex memory management
bfa74976
RS
6927@cindex stack overflow
6928@cindex parser stack overflow
6929@cindex overflow of parser stack
6930
1a059451 6931The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6932not reduced. When this happens, the parser function @code{yyparse}
1a059451 6933calls @code{yyerror} and then returns 2.
bfa74976 6934
c827f760 6935Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6936usually results from using a right recursion instead of a left
6937recursion, @xref{Recursion, ,Recursive Rules}.
6938
bfa74976
RS
6939@vindex YYMAXDEPTH
6940By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6941parser stack can become before memory is exhausted. Define the
bfa74976
RS
6942macro with a value that is an integer. This value is the maximum number
6943of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6944
6945The stack space allowed is not necessarily allocated. If you specify a
1a059451 6946large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6947stack at first, and then makes it bigger by stages as needed. This
6948increasing allocation happens automatically and silently. Therefore,
6949you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6950space for ordinary inputs that do not need much stack.
6951
d7e14fc0
PE
6952However, do not allow @code{YYMAXDEPTH} to be a value so large that
6953arithmetic overflow could occur when calculating the size of the stack
6954space. Also, do not allow @code{YYMAXDEPTH} to be less than
6955@code{YYINITDEPTH}.
6956
bfa74976
RS
6957@cindex default stack limit
6958The default value of @code{YYMAXDEPTH}, if you do not define it, is
695910000.
6960
6961@vindex YYINITDEPTH
6962You can control how much stack is allocated initially by defining the
34a6c2d1
JD
6963macro @code{YYINITDEPTH} to a positive integer. For the deterministic
6964parser in C, this value must be a compile-time constant
d7e14fc0
PE
6965unless you are assuming C99 or some other target language or compiler
6966that allows variable-length arrays. The default is 200.
6967
1a059451 6968Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6969
d1a1114f 6970@c FIXME: C++ output.
34a6c2d1
JD
6971Because of semantical differences between C and C++, the deterministic
6972parsers in C produced by Bison cannot grow when compiled
1a059451
PE
6973by C++ compilers. In this precise case (compiling a C parser as C++) you are
6974suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6975this deficiency in a future release.
d1a1114f 6976
342b8b6e 6977@node Error Recovery
bfa74976
RS
6978@chapter Error Recovery
6979@cindex error recovery
6980@cindex recovery from errors
6981
6e649e65 6982It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6983error. For example, a compiler should recover sufficiently to parse the
6984rest of the input file and check it for errors; a calculator should accept
6985another expression.
6986
6987In a simple interactive command parser where each input is one line, it may
6988be sufficient to allow @code{yyparse} to return 1 on error and have the
6989caller ignore the rest of the input line when that happens (and then call
6990@code{yyparse} again). But this is inadequate for a compiler, because it
6991forgets all the syntactic context leading up to the error. A syntax error
6992deep within a function in the compiler input should not cause the compiler
6993to treat the following line like the beginning of a source file.
6994
6995@findex error
6996You can define how to recover from a syntax error by writing rules to
6997recognize the special token @code{error}. This is a terminal symbol that
6998is always defined (you need not declare it) and reserved for error
6999handling. The Bison parser generates an @code{error} token whenever a
7000syntax error happens; if you have provided a rule to recognize this token
13863333 7001in the current context, the parse can continue.
bfa74976
RS
7002
7003For example:
7004
7005@example
7006stmnts: /* empty string */
7007 | stmnts '\n'
7008 | stmnts exp '\n'
7009 | stmnts error '\n'
7010@end example
7011
7012The fourth rule in this example says that an error followed by a newline
7013makes a valid addition to any @code{stmnts}.
7014
7015What happens if a syntax error occurs in the middle of an @code{exp}? The
7016error recovery rule, interpreted strictly, applies to the precise sequence
7017of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7018the middle of an @code{exp}, there will probably be some additional tokens
7019and subexpressions on the stack after the last @code{stmnts}, and there
7020will be tokens to read before the next newline. So the rule is not
7021applicable in the ordinary way.
7022
7023But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7024the semantic context and part of the input. First it discards states
7025and objects from the stack until it gets back to a state in which the
bfa74976 7026@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7027already parsed are discarded, back to the last complete @code{stmnts}.)
7028At this point the @code{error} token can be shifted. Then, if the old
742e4900 7029lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7030tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7031this example, Bison reads and discards input until the next newline so
7032that the fourth rule can apply. Note that discarded symbols are
7033possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7034Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7035
7036The choice of error rules in the grammar is a choice of strategies for
7037error recovery. A simple and useful strategy is simply to skip the rest of
7038the current input line or current statement if an error is detected:
7039
7040@example
72d2299c 7041stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7042@end example
7043
7044It is also useful to recover to the matching close-delimiter of an
7045opening-delimiter that has already been parsed. Otherwise the
7046close-delimiter will probably appear to be unmatched, and generate another,
7047spurious error message:
7048
7049@example
7050primary: '(' expr ')'
7051 | '(' error ')'
7052 @dots{}
7053 ;
7054@end example
7055
7056Error recovery strategies are necessarily guesses. When they guess wrong,
7057one syntax error often leads to another. In the above example, the error
7058recovery rule guesses that an error is due to bad input within one
7059@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7060middle of a valid @code{stmnt}. After the error recovery rule recovers
7061from the first error, another syntax error will be found straightaway,
7062since the text following the spurious semicolon is also an invalid
7063@code{stmnt}.
7064
7065To prevent an outpouring of error messages, the parser will output no error
7066message for another syntax error that happens shortly after the first; only
7067after three consecutive input tokens have been successfully shifted will
7068error messages resume.
7069
7070Note that rules which accept the @code{error} token may have actions, just
7071as any other rules can.
7072
7073@findex yyerrok
7074You can make error messages resume immediately by using the macro
7075@code{yyerrok} in an action. If you do this in the error rule's action, no
7076error messages will be suppressed. This macro requires no arguments;
7077@samp{yyerrok;} is a valid C statement.
7078
7079@findex yyclearin
742e4900 7080The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7081this is unacceptable, then the macro @code{yyclearin} may be used to clear
7082this token. Write the statement @samp{yyclearin;} in the error rule's
7083action.
32c29292 7084@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7085
6e649e65 7086For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7087called that advances the input stream to some point where parsing should
7088once again commence. The next symbol returned by the lexical scanner is
742e4900 7089probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7090with @samp{yyclearin;}.
7091
7092@vindex YYRECOVERING
02103984
PE
7093The expression @code{YYRECOVERING ()} yields 1 when the parser
7094is recovering from a syntax error, and 0 otherwise.
7095Syntax error diagnostics are suppressed while recovering from a syntax
7096error.
bfa74976 7097
342b8b6e 7098@node Context Dependency
bfa74976
RS
7099@chapter Handling Context Dependencies
7100
7101The Bison paradigm is to parse tokens first, then group them into larger
7102syntactic units. In many languages, the meaning of a token is affected by
7103its context. Although this violates the Bison paradigm, certain techniques
7104(known as @dfn{kludges}) may enable you to write Bison parsers for such
7105languages.
7106
7107@menu
7108* Semantic Tokens:: Token parsing can depend on the semantic context.
7109* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7110* Tie-in Recovery:: Lexical tie-ins have implications for how
7111 error recovery rules must be written.
7112@end menu
7113
7114(Actually, ``kludge'' means any technique that gets its job done but is
7115neither clean nor robust.)
7116
342b8b6e 7117@node Semantic Tokens
bfa74976
RS
7118@section Semantic Info in Token Types
7119
7120The C language has a context dependency: the way an identifier is used
7121depends on what its current meaning is. For example, consider this:
7122
7123@example
7124foo (x);
7125@end example
7126
7127This looks like a function call statement, but if @code{foo} is a typedef
7128name, then this is actually a declaration of @code{x}. How can a Bison
7129parser for C decide how to parse this input?
7130
c827f760 7131The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7132@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7133identifier, it looks up the current declaration of the identifier in order
7134to decide which token type to return: @code{TYPENAME} if the identifier is
7135declared as a typedef, @code{IDENTIFIER} otherwise.
7136
7137The grammar rules can then express the context dependency by the choice of
7138token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7139but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7140@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7141is @emph{not} significant, such as in declarations that can shadow a
7142typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7143accepted---there is one rule for each of the two token types.
7144
7145This technique is simple to use if the decision of which kinds of
7146identifiers to allow is made at a place close to where the identifier is
7147parsed. But in C this is not always so: C allows a declaration to
7148redeclare a typedef name provided an explicit type has been specified
7149earlier:
7150
7151@example
3a4f411f
PE
7152typedef int foo, bar;
7153int baz (void)
7154@{
7155 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7156 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7157 return foo (bar);
7158@}
bfa74976
RS
7159@end example
7160
7161Unfortunately, the name being declared is separated from the declaration
7162construct itself by a complicated syntactic structure---the ``declarator''.
7163
9ecbd125 7164As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7165all the nonterminal names changed: once for parsing a declaration in
7166which a typedef name can be redefined, and once for parsing a
7167declaration in which that can't be done. Here is a part of the
7168duplication, with actions omitted for brevity:
bfa74976
RS
7169
7170@example
7171initdcl:
7172 declarator maybeasm '='
7173 init
7174 | declarator maybeasm
7175 ;
7176
7177notype_initdcl:
7178 notype_declarator maybeasm '='
7179 init
7180 | notype_declarator maybeasm
7181 ;
7182@end example
7183
7184@noindent
7185Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7186cannot. The distinction between @code{declarator} and
7187@code{notype_declarator} is the same sort of thing.
7188
7189There is some similarity between this technique and a lexical tie-in
7190(described next), in that information which alters the lexical analysis is
7191changed during parsing by other parts of the program. The difference is
7192here the information is global, and is used for other purposes in the
7193program. A true lexical tie-in has a special-purpose flag controlled by
7194the syntactic context.
7195
342b8b6e 7196@node Lexical Tie-ins
bfa74976
RS
7197@section Lexical Tie-ins
7198@cindex lexical tie-in
7199
7200One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7201which is set by Bison actions, whose purpose is to alter the way tokens are
7202parsed.
7203
7204For example, suppose we have a language vaguely like C, but with a special
7205construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7206an expression in parentheses in which all integers are hexadecimal. In
7207particular, the token @samp{a1b} must be treated as an integer rather than
7208as an identifier if it appears in that context. Here is how you can do it:
7209
7210@example
7211@group
7212%@{
38a92d50
PE
7213 int hexflag;
7214 int yylex (void);
7215 void yyerror (char const *);
bfa74976
RS
7216%@}
7217%%
7218@dots{}
7219@end group
7220@group
7221expr: IDENTIFIER
7222 | constant
7223 | HEX '('
7224 @{ hexflag = 1; @}
7225 expr ')'
7226 @{ hexflag = 0;
7227 $$ = $4; @}
7228 | expr '+' expr
7229 @{ $$ = make_sum ($1, $3); @}
7230 @dots{}
7231 ;
7232@end group
7233
7234@group
7235constant:
7236 INTEGER
7237 | STRING
7238 ;
7239@end group
7240@end example
7241
7242@noindent
7243Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7244it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7245with letters are parsed as integers if possible.
7246
342b8b6e
AD
7247The declaration of @code{hexflag} shown in the prologue of the parser file
7248is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7249You must also write the code in @code{yylex} to obey the flag.
bfa74976 7250
342b8b6e 7251@node Tie-in Recovery
bfa74976
RS
7252@section Lexical Tie-ins and Error Recovery
7253
7254Lexical tie-ins make strict demands on any error recovery rules you have.
7255@xref{Error Recovery}.
7256
7257The reason for this is that the purpose of an error recovery rule is to
7258abort the parsing of one construct and resume in some larger construct.
7259For example, in C-like languages, a typical error recovery rule is to skip
7260tokens until the next semicolon, and then start a new statement, like this:
7261
7262@example
7263stmt: expr ';'
7264 | IF '(' expr ')' stmt @{ @dots{} @}
7265 @dots{}
7266 error ';'
7267 @{ hexflag = 0; @}
7268 ;
7269@end example
7270
7271If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7272construct, this error rule will apply, and then the action for the
7273completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7274remain set for the entire rest of the input, or until the next @code{hex}
7275keyword, causing identifiers to be misinterpreted as integers.
7276
7277To avoid this problem the error recovery rule itself clears @code{hexflag}.
7278
7279There may also be an error recovery rule that works within expressions.
7280For example, there could be a rule which applies within parentheses
7281and skips to the close-parenthesis:
7282
7283@example
7284@group
7285expr: @dots{}
7286 | '(' expr ')'
7287 @{ $$ = $2; @}
7288 | '(' error ')'
7289 @dots{}
7290@end group
7291@end example
7292
7293If this rule acts within the @code{hex} construct, it is not going to abort
7294that construct (since it applies to an inner level of parentheses within
7295the construct). Therefore, it should not clear the flag: the rest of
7296the @code{hex} construct should be parsed with the flag still in effect.
7297
7298What if there is an error recovery rule which might abort out of the
7299@code{hex} construct or might not, depending on circumstances? There is no
7300way you can write the action to determine whether a @code{hex} construct is
7301being aborted or not. So if you are using a lexical tie-in, you had better
7302make sure your error recovery rules are not of this kind. Each rule must
7303be such that you can be sure that it always will, or always won't, have to
7304clear the flag.
7305
ec3bc396
AD
7306@c ================================================== Debugging Your Parser
7307
342b8b6e 7308@node Debugging
bfa74976 7309@chapter Debugging Your Parser
ec3bc396
AD
7310
7311Developing a parser can be a challenge, especially if you don't
7312understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7313Algorithm}). Even so, sometimes a detailed description of the automaton
7314can help (@pxref{Understanding, , Understanding Your Parser}), or
7315tracing the execution of the parser can give some insight on why it
7316behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7317
7318@menu
7319* Understanding:: Understanding the structure of your parser.
7320* Tracing:: Tracing the execution of your parser.
7321@end menu
7322
7323@node Understanding
7324@section Understanding Your Parser
7325
7326As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7327Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7328frequent than one would hope), looking at this automaton is required to
7329tune or simply fix a parser. Bison provides two different
35fe0834 7330representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7331
7332The textual file is generated when the options @option{--report} or
7333@option{--verbose} are specified, see @xref{Invocation, , Invoking
7334Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7335the parser output file name, and adding @samp{.output} instead.
7336Therefore, if the input file is @file{foo.y}, then the parser file is
7337called @file{foo.tab.c} by default. As a consequence, the verbose
7338output file is called @file{foo.output}.
7339
7340The following grammar file, @file{calc.y}, will be used in the sequel:
7341
7342@example
7343%token NUM STR
7344%left '+' '-'
7345%left '*'
7346%%
7347exp: exp '+' exp
7348 | exp '-' exp
7349 | exp '*' exp
7350 | exp '/' exp
7351 | NUM
7352 ;
7353useless: STR;
7354%%
7355@end example
7356
88bce5a2
AD
7357@command{bison} reports:
7358
7359@example
379261b3
JD
7360calc.y: warning: 1 nonterminal useless in grammar
7361calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7362calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7363calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7364calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7365@end example
7366
7367When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7368creates a file @file{calc.output} with contents detailed below. The
7369order of the output and the exact presentation might vary, but the
7370interpretation is the same.
ec3bc396
AD
7371
7372The first section includes details on conflicts that were solved thanks
7373to precedence and/or associativity:
7374
7375@example
7376Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7377Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7378Conflict in state 8 between rule 2 and token '*' resolved as shift.
7379@exdent @dots{}
7380@end example
7381
7382@noindent
7383The next section lists states that still have conflicts.
7384
7385@example
5a99098d
PE
7386State 8 conflicts: 1 shift/reduce
7387State 9 conflicts: 1 shift/reduce
7388State 10 conflicts: 1 shift/reduce
7389State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7390@end example
7391
7392@noindent
7393@cindex token, useless
7394@cindex useless token
7395@cindex nonterminal, useless
7396@cindex useless nonterminal
7397@cindex rule, useless
7398@cindex useless rule
7399The next section reports useless tokens, nonterminal and rules. Useless
7400nonterminals and rules are removed in order to produce a smaller parser,
7401but useless tokens are preserved, since they might be used by the
d80fb37a 7402scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7403below):
7404
7405@example
d80fb37a 7406Nonterminals useless in grammar:
ec3bc396
AD
7407 useless
7408
d80fb37a 7409Terminals unused in grammar:
ec3bc396
AD
7410 STR
7411
cff03fb2 7412Rules useless in grammar:
ec3bc396
AD
7413#6 useless: STR;
7414@end example
7415
7416@noindent
7417The next section reproduces the exact grammar that Bison used:
7418
7419@example
7420Grammar
7421
7422 Number, Line, Rule
88bce5a2 7423 0 5 $accept -> exp $end
ec3bc396
AD
7424 1 5 exp -> exp '+' exp
7425 2 6 exp -> exp '-' exp
7426 3 7 exp -> exp '*' exp
7427 4 8 exp -> exp '/' exp
7428 5 9 exp -> NUM
7429@end example
7430
7431@noindent
7432and reports the uses of the symbols:
7433
7434@example
7435Terminals, with rules where they appear
7436
88bce5a2 7437$end (0) 0
ec3bc396
AD
7438'*' (42) 3
7439'+' (43) 1
7440'-' (45) 2
7441'/' (47) 4
7442error (256)
7443NUM (258) 5
7444
7445Nonterminals, with rules where they appear
7446
88bce5a2 7447$accept (8)
ec3bc396
AD
7448 on left: 0
7449exp (9)
7450 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7451@end example
7452
7453@noindent
7454@cindex item
7455@cindex pointed rule
7456@cindex rule, pointed
7457Bison then proceeds onto the automaton itself, describing each state
7458with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7459item is a production rule together with a point (marked by @samp{.})
7460that the input cursor.
7461
7462@example
7463state 0
7464
88bce5a2 7465 $accept -> . exp $ (rule 0)
ec3bc396 7466
2a8d363a 7467 NUM shift, and go to state 1
ec3bc396 7468
2a8d363a 7469 exp go to state 2
ec3bc396
AD
7470@end example
7471
7472This reads as follows: ``state 0 corresponds to being at the very
7473beginning of the parsing, in the initial rule, right before the start
7474symbol (here, @code{exp}). When the parser returns to this state right
7475after having reduced a rule that produced an @code{exp}, the control
7476flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7477symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7478the parse stack, and the control flow jumps to state 1. Any other
742e4900 7479lookahead triggers a syntax error.''
ec3bc396
AD
7480
7481@cindex core, item set
7482@cindex item set core
7483@cindex kernel, item set
7484@cindex item set core
7485Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7486report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7487at the beginning of any rule deriving an @code{exp}. By default Bison
7488reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7489you want to see more detail you can invoke @command{bison} with
7490@option{--report=itemset} to list all the items, include those that can
7491be derived:
7492
7493@example
7494state 0
7495
88bce5a2 7496 $accept -> . exp $ (rule 0)
ec3bc396
AD
7497 exp -> . exp '+' exp (rule 1)
7498 exp -> . exp '-' exp (rule 2)
7499 exp -> . exp '*' exp (rule 3)
7500 exp -> . exp '/' exp (rule 4)
7501 exp -> . NUM (rule 5)
7502
7503 NUM shift, and go to state 1
7504
7505 exp go to state 2
7506@end example
7507
7508@noindent
7509In the state 1...
7510
7511@example
7512state 1
7513
7514 exp -> NUM . (rule 5)
7515
2a8d363a 7516 $default reduce using rule 5 (exp)
ec3bc396
AD
7517@end example
7518
7519@noindent
742e4900 7520the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7521(@samp{$default}), the parser will reduce it. If it was coming from
7522state 0, then, after this reduction it will return to state 0, and will
7523jump to state 2 (@samp{exp: go to state 2}).
7524
7525@example
7526state 2
7527
88bce5a2 7528 $accept -> exp . $ (rule 0)
ec3bc396
AD
7529 exp -> exp . '+' exp (rule 1)
7530 exp -> exp . '-' exp (rule 2)
7531 exp -> exp . '*' exp (rule 3)
7532 exp -> exp . '/' exp (rule 4)
7533
2a8d363a
AD
7534 $ shift, and go to state 3
7535 '+' shift, and go to state 4
7536 '-' shift, and go to state 5
7537 '*' shift, and go to state 6
7538 '/' shift, and go to state 7
ec3bc396
AD
7539@end example
7540
7541@noindent
7542In state 2, the automaton can only shift a symbol. For instance,
742e4900 7543because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7544@samp{+}, it will be shifted on the parse stack, and the automaton
7545control will jump to state 4, corresponding to the item @samp{exp -> exp
7546'+' . exp}. Since there is no default action, any other token than
6e649e65 7547those listed above will trigger a syntax error.
ec3bc396 7548
34a6c2d1 7549@cindex accepting state
ec3bc396
AD
7550The state 3 is named the @dfn{final state}, or the @dfn{accepting
7551state}:
7552
7553@example
7554state 3
7555
88bce5a2 7556 $accept -> exp $ . (rule 0)
ec3bc396 7557
2a8d363a 7558 $default accept
ec3bc396
AD
7559@end example
7560
7561@noindent
7562the initial rule is completed (the start symbol and the end
7563of input were read), the parsing exits successfully.
7564
7565The interpretation of states 4 to 7 is straightforward, and is left to
7566the reader.
7567
7568@example
7569state 4
7570
7571 exp -> exp '+' . exp (rule 1)
7572
2a8d363a 7573 NUM shift, and go to state 1
ec3bc396 7574
2a8d363a 7575 exp go to state 8
ec3bc396
AD
7576
7577state 5
7578
7579 exp -> exp '-' . exp (rule 2)
7580
2a8d363a 7581 NUM shift, and go to state 1
ec3bc396 7582
2a8d363a 7583 exp go to state 9
ec3bc396
AD
7584
7585state 6
7586
7587 exp -> exp '*' . exp (rule 3)
7588
2a8d363a 7589 NUM shift, and go to state 1
ec3bc396 7590
2a8d363a 7591 exp go to state 10
ec3bc396
AD
7592
7593state 7
7594
7595 exp -> exp '/' . exp (rule 4)
7596
2a8d363a 7597 NUM shift, and go to state 1
ec3bc396 7598
2a8d363a 7599 exp go to state 11
ec3bc396
AD
7600@end example
7601
5a99098d
PE
7602As was announced in beginning of the report, @samp{State 8 conflicts:
76031 shift/reduce}:
ec3bc396
AD
7604
7605@example
7606state 8
7607
7608 exp -> exp . '+' exp (rule 1)
7609 exp -> exp '+' exp . (rule 1)
7610 exp -> exp . '-' exp (rule 2)
7611 exp -> exp . '*' exp (rule 3)
7612 exp -> exp . '/' exp (rule 4)
7613
2a8d363a
AD
7614 '*' shift, and go to state 6
7615 '/' shift, and go to state 7
ec3bc396 7616
2a8d363a
AD
7617 '/' [reduce using rule 1 (exp)]
7618 $default reduce using rule 1 (exp)
ec3bc396
AD
7619@end example
7620
742e4900 7621Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7622either shifting (and going to state 7), or reducing rule 1. The
7623conflict means that either the grammar is ambiguous, or the parser lacks
7624information to make the right decision. Indeed the grammar is
7625ambiguous, as, since we did not specify the precedence of @samp{/}, the
7626sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7627NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7628NUM}, which corresponds to reducing rule 1.
7629
34a6c2d1 7630Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7631arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7632Shift/Reduce Conflicts}. Discarded actions are reported in between
7633square brackets.
7634
7635Note that all the previous states had a single possible action: either
7636shifting the next token and going to the corresponding state, or
7637reducing a single rule. In the other cases, i.e., when shifting
7638@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7639possible, the lookahead is required to select the action. State 8 is
7640one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7641is shifting, otherwise the action is reducing rule 1. In other words,
7642the first two items, corresponding to rule 1, are not eligible when the
742e4900 7643lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7644precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7645with some set of possible lookahead tokens. When run with
7646@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7647
7648@example
7649state 8
7650
88c78747 7651 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7652 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7653 exp -> exp . '-' exp (rule 2)
7654 exp -> exp . '*' exp (rule 3)
7655 exp -> exp . '/' exp (rule 4)
7656
7657 '*' shift, and go to state 6
7658 '/' shift, and go to state 7
7659
7660 '/' [reduce using rule 1 (exp)]
7661 $default reduce using rule 1 (exp)
7662@end example
7663
7664The remaining states are similar:
7665
7666@example
7667state 9
7668
7669 exp -> exp . '+' exp (rule 1)
7670 exp -> exp . '-' exp (rule 2)
7671 exp -> exp '-' exp . (rule 2)
7672 exp -> exp . '*' exp (rule 3)
7673 exp -> exp . '/' exp (rule 4)
7674
2a8d363a
AD
7675 '*' shift, and go to state 6
7676 '/' shift, and go to state 7
ec3bc396 7677
2a8d363a
AD
7678 '/' [reduce using rule 2 (exp)]
7679 $default reduce using rule 2 (exp)
ec3bc396
AD
7680
7681state 10
7682
7683 exp -> exp . '+' exp (rule 1)
7684 exp -> exp . '-' exp (rule 2)
7685 exp -> exp . '*' exp (rule 3)
7686 exp -> exp '*' exp . (rule 3)
7687 exp -> exp . '/' exp (rule 4)
7688
2a8d363a 7689 '/' shift, and go to state 7
ec3bc396 7690
2a8d363a
AD
7691 '/' [reduce using rule 3 (exp)]
7692 $default reduce using rule 3 (exp)
ec3bc396
AD
7693
7694state 11
7695
7696 exp -> exp . '+' exp (rule 1)
7697 exp -> exp . '-' exp (rule 2)
7698 exp -> exp . '*' exp (rule 3)
7699 exp -> exp . '/' exp (rule 4)
7700 exp -> exp '/' exp . (rule 4)
7701
2a8d363a
AD
7702 '+' shift, and go to state 4
7703 '-' shift, and go to state 5
7704 '*' shift, and go to state 6
7705 '/' shift, and go to state 7
ec3bc396 7706
2a8d363a
AD
7707 '+' [reduce using rule 4 (exp)]
7708 '-' [reduce using rule 4 (exp)]
7709 '*' [reduce using rule 4 (exp)]
7710 '/' [reduce using rule 4 (exp)]
7711 $default reduce using rule 4 (exp)
ec3bc396
AD
7712@end example
7713
7714@noindent
fa7e68c3
PE
7715Observe that state 11 contains conflicts not only due to the lack of
7716precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7717@samp{*}, but also because the
ec3bc396
AD
7718associativity of @samp{/} is not specified.
7719
7720
7721@node Tracing
7722@section Tracing Your Parser
bfa74976
RS
7723@findex yydebug
7724@cindex debugging
7725@cindex tracing the parser
7726
7727If a Bison grammar compiles properly but doesn't do what you want when it
7728runs, the @code{yydebug} parser-trace feature can help you figure out why.
7729
3ded9a63
AD
7730There are several means to enable compilation of trace facilities:
7731
7732@table @asis
7733@item the macro @code{YYDEBUG}
7734@findex YYDEBUG
7735Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7736parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7737@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7738YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7739Prologue}).
7740
7741@item the option @option{-t}, @option{--debug}
7742Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7743,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7744
7745@item the directive @samp{%debug}
7746@findex %debug
7747Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7748Declaration Summary}). This is a Bison extension, which will prove
7749useful when Bison will output parsers for languages that don't use a
c827f760
PE
7750preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7751you, this is
3ded9a63
AD
7752the preferred solution.
7753@end table
7754
7755We suggest that you always enable the debug option so that debugging is
7756always possible.
bfa74976 7757
02a81e05 7758The trace facility outputs messages with macro calls of the form
e2742e46 7759@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7760@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7761arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7762define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7763and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7764
7765Once you have compiled the program with trace facilities, the way to
7766request a trace is to store a nonzero value in the variable @code{yydebug}.
7767You can do this by making the C code do it (in @code{main}, perhaps), or
7768you can alter the value with a C debugger.
7769
7770Each step taken by the parser when @code{yydebug} is nonzero produces a
7771line or two of trace information, written on @code{stderr}. The trace
7772messages tell you these things:
7773
7774@itemize @bullet
7775@item
7776Each time the parser calls @code{yylex}, what kind of token was read.
7777
7778@item
7779Each time a token is shifted, the depth and complete contents of the
7780state stack (@pxref{Parser States}).
7781
7782@item
7783Each time a rule is reduced, which rule it is, and the complete contents
7784of the state stack afterward.
7785@end itemize
7786
7787To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7788produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7789Bison}). This file shows the meaning of each state in terms of
7790positions in various rules, and also what each state will do with each
7791possible input token. As you read the successive trace messages, you
7792can see that the parser is functioning according to its specification in
7793the listing file. Eventually you will arrive at the place where
7794something undesirable happens, and you will see which parts of the
7795grammar are to blame.
bfa74976
RS
7796
7797The parser file is a C program and you can use C debuggers on it, but it's
7798not easy to interpret what it is doing. The parser function is a
7799finite-state machine interpreter, and aside from the actions it executes
7800the same code over and over. Only the values of variables show where in
7801the grammar it is working.
7802
7803@findex YYPRINT
7804The debugging information normally gives the token type of each token
7805read, but not its semantic value. You can optionally define a macro
7806named @code{YYPRINT} to provide a way to print the value. If you define
7807@code{YYPRINT}, it should take three arguments. The parser will pass a
7808standard I/O stream, the numeric code for the token type, and the token
7809value (from @code{yylval}).
7810
7811Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7812calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7813
7814@smallexample
38a92d50
PE
7815%@{
7816 static void print_token_value (FILE *, int, YYSTYPE);
7817 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7818%@}
7819
7820@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7821
7822static void
831d3c99 7823print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7824@{
7825 if (type == VAR)
d3c4e709 7826 fprintf (file, "%s", value.tptr->name);
bfa74976 7827 else if (type == NUM)
d3c4e709 7828 fprintf (file, "%d", value.val);
bfa74976
RS
7829@}
7830@end smallexample
7831
ec3bc396
AD
7832@c ================================================= Invoking Bison
7833
342b8b6e 7834@node Invocation
bfa74976
RS
7835@chapter Invoking Bison
7836@cindex invoking Bison
7837@cindex Bison invocation
7838@cindex options for invoking Bison
7839
7840The usual way to invoke Bison is as follows:
7841
7842@example
7843bison @var{infile}
7844@end example
7845
7846Here @var{infile} is the grammar file name, which usually ends in
7847@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7848with @samp{.tab.c} and removing any leading directory. Thus, the
7849@samp{bison foo.y} file name yields
7850@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7851@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7852C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7853or @file{foo.y++}. Then, the output files will take an extension like
7854the given one as input (respectively @file{foo.tab.cpp} and
7855@file{foo.tab.c++}).
fa4d969f 7856This feature takes effect with all options that manipulate file names like
234a3be3
AD
7857@samp{-o} or @samp{-d}.
7858
7859For example :
7860
7861@example
7862bison -d @var{infile.yxx}
7863@end example
84163231 7864@noindent
72d2299c 7865will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7866
7867@example
b56471a6 7868bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7869@end example
84163231 7870@noindent
234a3be3
AD
7871will produce @file{output.c++} and @file{outfile.h++}.
7872
397ec073
PE
7873For compatibility with @acronym{POSIX}, the standard Bison
7874distribution also contains a shell script called @command{yacc} that
7875invokes Bison with the @option{-y} option.
7876
bfa74976 7877@menu
13863333 7878* Bison Options:: All the options described in detail,
c827f760 7879 in alphabetical order by short options.
bfa74976 7880* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7881* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7882@end menu
7883
342b8b6e 7884@node Bison Options
bfa74976
RS
7885@section Bison Options
7886
7887Bison supports both traditional single-letter options and mnemonic long
7888option names. Long option names are indicated with @samp{--} instead of
7889@samp{-}. Abbreviations for option names are allowed as long as they
7890are unique. When a long option takes an argument, like
7891@samp{--file-prefix}, connect the option name and the argument with
7892@samp{=}.
7893
7894Here is a list of options that can be used with Bison, alphabetized by
7895short option. It is followed by a cross key alphabetized by long
7896option.
7897
89cab50d
AD
7898@c Please, keep this ordered as in `bison --help'.
7899@noindent
7900Operations modes:
7901@table @option
7902@item -h
7903@itemx --help
7904Print a summary of the command-line options to Bison and exit.
bfa74976 7905
89cab50d
AD
7906@item -V
7907@itemx --version
7908Print the version number of Bison and exit.
bfa74976 7909
f7ab6a50
PE
7910@item --print-localedir
7911Print the name of the directory containing locale-dependent data.
7912
a0de5091
JD
7913@item --print-datadir
7914Print the name of the directory containing skeletons and XSLT.
7915
89cab50d
AD
7916@item -y
7917@itemx --yacc
54662697
PE
7918Act more like the traditional Yacc command. This can cause
7919different diagnostics to be generated, and may change behavior in
7920other minor ways. Most importantly, imitate Yacc's output
7921file name conventions, so that the parser output file is called
89cab50d 7922@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 7923@file{y.tab.h}.
34a6c2d1 7924Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
7925statements in addition to an @code{enum} to associate token numbers with token
7926names.
7927Thus, the following shell script can substitute for Yacc, and the Bison
7928distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7929
89cab50d 7930@example
397ec073 7931#! /bin/sh
26e06a21 7932bison -y "$@@"
89cab50d 7933@end example
54662697
PE
7934
7935The @option{-y}/@option{--yacc} option is intended for use with
7936traditional Yacc grammars. If your grammar uses a Bison extension
7937like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7938this option is specified.
7939
ecd1b61c
JD
7940@item -W [@var{category}]
7941@itemx --warnings[=@var{category}]
118d4978
AD
7942Output warnings falling in @var{category}. @var{category} can be one
7943of:
7944@table @code
7945@item midrule-values
8e55b3aa
JD
7946Warn about mid-rule values that are set but not used within any of the actions
7947of the parent rule.
7948For example, warn about unused @code{$2} in:
118d4978
AD
7949
7950@example
7951exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7952@end example
7953
8e55b3aa
JD
7954Also warn about mid-rule values that are used but not set.
7955For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7956
7957@example
7958 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7959@end example
7960
7961These warnings are not enabled by default since they sometimes prove to
7962be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7963@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7964
7965
7966@item yacc
7967Incompatibilities with @acronym{POSIX} Yacc.
7968
7969@item all
8e55b3aa 7970All the warnings.
118d4978 7971@item none
8e55b3aa 7972Turn off all the warnings.
118d4978 7973@item error
8e55b3aa 7974Treat warnings as errors.
118d4978
AD
7975@end table
7976
7977A category can be turned off by prefixing its name with @samp{no-}. For
7978instance, @option{-Wno-syntax} will hide the warnings about unused
7979variables.
89cab50d
AD
7980@end table
7981
7982@noindent
7983Tuning the parser:
7984
7985@table @option
7986@item -t
7987@itemx --debug
4947ebdb
PE
7988In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7989already defined, so that the debugging facilities are compiled.
ec3bc396 7990@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7991
e14c6831
AD
7992@item -D @var{name}[=@var{value}]
7993@itemx --define=@var{name}[=@var{value}]
c33bc800 7994@itemx -F @var{name}[=@var{value}]
34d41938
JD
7995@itemx --force-define=@var{name}[=@var{value}]
7996Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
7997(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
7998definitions for the same @var{name} as follows:
7999
8000@itemize
8001@item
e3a33f7c
JD
8002Bison quietly ignores all command-line definitions for @var{name} except
8003the last.
34d41938 8004@item
e3a33f7c
JD
8005If that command-line definition is specified by a @code{-D} or
8006@code{--define}, Bison reports an error for any @code{%define}
8007definition for @var{name}.
34d41938 8008@item
e3a33f7c
JD
8009If that command-line definition is specified by a @code{-F} or
8010@code{--force-define} instead, Bison quietly ignores all @code{%define}
8011definitions for @var{name}.
8012@item
8013Otherwise, Bison reports an error if there are multiple @code{%define}
8014definitions for @var{name}.
34d41938
JD
8015@end itemize
8016
8017You should avoid using @code{-F} and @code{--force-define} in your
8018makefiles unless you are confident that it is safe to quietly ignore any
8019conflicting @code{%define} that may be added to the grammar file.
e14c6831 8020
0e021770
PE
8021@item -L @var{language}
8022@itemx --language=@var{language}
8023Specify the programming language for the generated parser, as if
8024@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8025Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8026@var{language} is case-insensitive.
0e021770 8027
ed4d67dc
JD
8028This option is experimental and its effect may be modified in future
8029releases.
8030
89cab50d 8031@item --locations
d8988b2f 8032Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8033
8034@item -p @var{prefix}
8035@itemx --name-prefix=@var{prefix}
02975b9a 8036Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8037@xref{Decl Summary}.
bfa74976
RS
8038
8039@item -l
8040@itemx --no-lines
8041Don't put any @code{#line} preprocessor commands in the parser file.
8042Ordinarily Bison puts them in the parser file so that the C compiler
8043and debuggers will associate errors with your source file, the
8044grammar file. This option causes them to associate errors with the
95e742f7 8045parser file, treating it as an independent source file in its own right.
bfa74976 8046
e6e704dc
JD
8047@item -S @var{file}
8048@itemx --skeleton=@var{file}
a7867f53 8049Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8050(@pxref{Decl Summary, , Bison Declaration Summary}).
8051
ed4d67dc
JD
8052@c You probably don't need this option unless you are developing Bison.
8053@c You should use @option{--language} if you want to specify the skeleton for a
8054@c different language, because it is clearer and because it will always
8055@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8056
a7867f53
JD
8057If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8058file in the Bison installation directory.
8059If it does, @var{file} is an absolute file name or a file name relative to the
8060current working directory.
8061This is similar to how most shells resolve commands.
8062
89cab50d
AD
8063@item -k
8064@itemx --token-table
d8988b2f 8065Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8066@end table
bfa74976 8067
89cab50d
AD
8068@noindent
8069Adjust the output:
bfa74976 8070
89cab50d 8071@table @option
8e55b3aa 8072@item --defines[=@var{file}]
d8988b2f 8073Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8074file containing macro definitions for the token type names defined in
4bfd5e4e 8075the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8076
8e55b3aa
JD
8077@item -d
8078This is the same as @code{--defines} except @code{-d} does not accept a
8079@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8080with other short options.
342b8b6e 8081
89cab50d
AD
8082@item -b @var{file-prefix}
8083@itemx --file-prefix=@var{prefix}
9c437126 8084Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8085for all Bison output file names. @xref{Decl Summary}.
bfa74976 8086
ec3bc396
AD
8087@item -r @var{things}
8088@itemx --report=@var{things}
8089Write an extra output file containing verbose description of the comma
8090separated list of @var{things} among:
8091
8092@table @code
8093@item state
8094Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8095parser's automaton.
ec3bc396 8096
742e4900 8097@item lookahead
ec3bc396 8098Implies @code{state} and augments the description of the automaton with
742e4900 8099each rule's lookahead set.
ec3bc396
AD
8100
8101@item itemset
8102Implies @code{state} and augments the description of the automaton with
8103the full set of items for each state, instead of its core only.
8104@end table
8105
1bb2bd75
JD
8106@item --report-file=@var{file}
8107Specify the @var{file} for the verbose description.
8108
bfa74976
RS
8109@item -v
8110@itemx --verbose
9c437126 8111Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8112file containing verbose descriptions of the grammar and
72d2299c 8113parser. @xref{Decl Summary}.
bfa74976 8114
fa4d969f
PE
8115@item -o @var{file}
8116@itemx --output=@var{file}
8117Specify the @var{file} for the parser file.
bfa74976 8118
fa4d969f 8119The other output files' names are constructed from @var{file} as
d8988b2f 8120described under the @samp{-v} and @samp{-d} options.
342b8b6e 8121
72183df4 8122@item -g [@var{file}]
8e55b3aa 8123@itemx --graph[=@var{file}]
34a6c2d1 8124Output a graphical representation of the parser's
35fe0834
PE
8125automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8126@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8127@code{@var{file}} is optional.
8128If omitted and the grammar file is @file{foo.y}, the output file will be
8129@file{foo.dot}.
59da312b 8130
72183df4 8131@item -x [@var{file}]
8e55b3aa 8132@itemx --xml[=@var{file}]
34a6c2d1 8133Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8134@code{@var{file}} is optional.
59da312b
JD
8135If omitted and the grammar file is @file{foo.y}, the output file will be
8136@file{foo.xml}.
8137(The current XML schema is experimental and may evolve.
8138More user feedback will help to stabilize it.)
bfa74976
RS
8139@end table
8140
342b8b6e 8141@node Option Cross Key
bfa74976
RS
8142@section Option Cross Key
8143
8144Here is a list of options, alphabetized by long option, to help you find
34d41938 8145the corresponding short option and directive.
bfa74976 8146
34d41938 8147@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8148@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8149@include cross-options.texi
aa08666d 8150@end multitable
bfa74976 8151
93dd49ab
PE
8152@node Yacc Library
8153@section Yacc Library
8154
8155The Yacc library contains default implementations of the
8156@code{yyerror} and @code{main} functions. These default
8157implementations are normally not useful, but @acronym{POSIX} requires
8158them. To use the Yacc library, link your program with the
8159@option{-ly} option. Note that Bison's implementation of the Yacc
8160library is distributed under the terms of the @acronym{GNU} General
8161Public License (@pxref{Copying}).
8162
8163If you use the Yacc library's @code{yyerror} function, you should
8164declare @code{yyerror} as follows:
8165
8166@example
8167int yyerror (char const *);
8168@end example
8169
8170Bison ignores the @code{int} value returned by this @code{yyerror}.
8171If you use the Yacc library's @code{main} function, your
8172@code{yyparse} function should have the following type signature:
8173
8174@example
8175int yyparse (void);
8176@end example
8177
12545799
AD
8178@c ================================================= C++ Bison
8179
8405b70c
PB
8180@node Other Languages
8181@chapter Parsers Written In Other Languages
12545799
AD
8182
8183@menu
8184* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8185* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8186@end menu
8187
8188@node C++ Parsers
8189@section C++ Parsers
8190
8191@menu
8192* C++ Bison Interface:: Asking for C++ parser generation
8193* C++ Semantic Values:: %union vs. C++
8194* C++ Location Values:: The position and location classes
8195* C++ Parser Interface:: Instantiating and running the parser
8196* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8197* A Complete C++ Example:: Demonstrating their use
12545799
AD
8198@end menu
8199
8200@node C++ Bison Interface
8201@subsection C++ Bison Interface
ed4d67dc 8202@c - %skeleton "lalr1.cc"
12545799
AD
8203@c - Always pure
8204@c - initial action
8205
34a6c2d1 8206The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8207@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8208@option{--skeleton=lalr1.c}.
e6e704dc 8209@xref{Decl Summary}.
0e021770 8210
793fbca5
JD
8211When run, @command{bison} will create several entities in the @samp{yy}
8212namespace.
8213@findex %define namespace
8214Use the @samp{%define namespace} directive to change the namespace name, see
8215@ref{Decl Summary}.
8216The various classes are generated in the following files:
aa08666d 8217
12545799
AD
8218@table @file
8219@item position.hh
8220@itemx location.hh
8221The definition of the classes @code{position} and @code{location},
8222used for location tracking. @xref{C++ Location Values}.
8223
8224@item stack.hh
8225An auxiliary class @code{stack} used by the parser.
8226
fa4d969f
PE
8227@item @var{file}.hh
8228@itemx @var{file}.cc
cd8b5791
AD
8229(Assuming the extension of the input file was @samp{.yy}.) The
8230declaration and implementation of the C++ parser class. The basename
8231and extension of these two files follow the same rules as with regular C
8232parsers (@pxref{Invocation}).
12545799 8233
cd8b5791
AD
8234The header is @emph{mandatory}; you must either pass
8235@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8236@samp{%defines} directive.
8237@end table
8238
8239All these files are documented using Doxygen; run @command{doxygen}
8240for a complete and accurate documentation.
8241
8242@node C++ Semantic Values
8243@subsection C++ Semantic Values
8244@c - No objects in unions
178e123e 8245@c - YYSTYPE
12545799
AD
8246@c - Printer and destructor
8247
8248The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8249Collection of Value Types}. In particular it produces a genuine
8250@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8251within pseudo-unions (similar to Boost variants) might be implemented to
8252alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8253@itemize @minus
8254@item
fb9712a9
AD
8255The type @code{YYSTYPE} is defined but its use is discouraged: rather
8256you should refer to the parser's encapsulated type
8257@code{yy::parser::semantic_type}.
12545799
AD
8258@item
8259Non POD (Plain Old Data) types cannot be used. C++ forbids any
8260instance of classes with constructors in unions: only @emph{pointers}
8261to such objects are allowed.
8262@end itemize
8263
8264Because objects have to be stored via pointers, memory is not
8265reclaimed automatically: using the @code{%destructor} directive is the
8266only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8267Symbols}.
8268
8269
8270@node C++ Location Values
8271@subsection C++ Location Values
8272@c - %locations
8273@c - class Position
8274@c - class Location
16dc6a9e 8275@c - %define filename_type "const symbol::Symbol"
12545799
AD
8276
8277When the directive @code{%locations} is used, the C++ parser supports
8278location tracking, see @ref{Locations, , Locations Overview}. Two
8279auxiliary classes define a @code{position}, a single point in a file,
8280and a @code{location}, a range composed of a pair of
8281@code{position}s (possibly spanning several files).
8282
fa4d969f 8283@deftypemethod {position} {std::string*} file
12545799
AD
8284The name of the file. It will always be handled as a pointer, the
8285parser will never duplicate nor deallocate it. As an experimental
8286feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8287filename_type "@var{type}"}.
12545799
AD
8288@end deftypemethod
8289
8290@deftypemethod {position} {unsigned int} line
8291The line, starting at 1.
8292@end deftypemethod
8293
8294@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8295Advance by @var{height} lines, resetting the column number.
8296@end deftypemethod
8297
8298@deftypemethod {position} {unsigned int} column
8299The column, starting at 0.
8300@end deftypemethod
8301
8302@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8303Advance by @var{width} columns, without changing the line number.
8304@end deftypemethod
8305
8306@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8307@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8308@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8309@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8310Various forms of syntactic sugar for @code{columns}.
8311@end deftypemethod
8312
8313@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8314Report @var{p} on @var{o} like this:
fa4d969f
PE
8315@samp{@var{file}:@var{line}.@var{column}}, or
8316@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8317@end deftypemethod
8318
8319@deftypemethod {location} {position} begin
8320@deftypemethodx {location} {position} end
8321The first, inclusive, position of the range, and the first beyond.
8322@end deftypemethod
8323
8324@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8325@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8326Advance the @code{end} position.
8327@end deftypemethod
8328
8329@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8330@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8331@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8332Various forms of syntactic sugar.
8333@end deftypemethod
8334
8335@deftypemethod {location} {void} step ()
8336Move @code{begin} onto @code{end}.
8337@end deftypemethod
8338
8339
8340@node C++ Parser Interface
8341@subsection C++ Parser Interface
8342@c - define parser_class_name
8343@c - Ctor
8344@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8345@c debug_stream.
8346@c - Reporting errors
8347
8348The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8349declare and define the parser class in the namespace @code{yy}. The
8350class name defaults to @code{parser}, but may be changed using
16dc6a9e 8351@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8352this class is detailed below. It can be extended using the
12545799
AD
8353@code{%parse-param} feature: its semantics is slightly changed since
8354it describes an additional member of the parser class, and an
8355additional argument for its constructor.
8356
8a0adb01
AD
8357@defcv {Type} {parser} {semantic_value_type}
8358@defcvx {Type} {parser} {location_value_type}
12545799 8359The types for semantics value and locations.
8a0adb01 8360@end defcv
12545799
AD
8361
8362@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8363Build a new parser object. There are no arguments by default, unless
8364@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8365@end deftypemethod
8366
8367@deftypemethod {parser} {int} parse ()
8368Run the syntactic analysis, and return 0 on success, 1 otherwise.
8369@end deftypemethod
8370
8371@deftypemethod {parser} {std::ostream&} debug_stream ()
8372@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8373Get or set the stream used for tracing the parsing. It defaults to
8374@code{std::cerr}.
8375@end deftypemethod
8376
8377@deftypemethod {parser} {debug_level_type} debug_level ()
8378@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8379Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8380or nonzero, full tracing.
12545799
AD
8381@end deftypemethod
8382
8383@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8384The definition for this member function must be supplied by the user:
8385the parser uses it to report a parser error occurring at @var{l},
8386described by @var{m}.
8387@end deftypemethod
8388
8389
8390@node C++ Scanner Interface
8391@subsection C++ Scanner Interface
8392@c - prefix for yylex.
8393@c - Pure interface to yylex
8394@c - %lex-param
8395
8396The parser invokes the scanner by calling @code{yylex}. Contrary to C
8397parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8398@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8399
8400@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8401Return the next token. Its type is the return value, its semantic
8402value and location being @var{yylval} and @var{yylloc}. Invocations of
8403@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8404@end deftypemethod
8405
8406
8407@node A Complete C++ Example
8405b70c 8408@subsection A Complete C++ Example
12545799
AD
8409
8410This section demonstrates the use of a C++ parser with a simple but
8411complete example. This example should be available on your system,
8412ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8413focuses on the use of Bison, therefore the design of the various C++
8414classes is very naive: no accessors, no encapsulation of members etc.
8415We will use a Lex scanner, and more precisely, a Flex scanner, to
8416demonstrate the various interaction. A hand written scanner is
8417actually easier to interface with.
8418
8419@menu
8420* Calc++ --- C++ Calculator:: The specifications
8421* Calc++ Parsing Driver:: An active parsing context
8422* Calc++ Parser:: A parser class
8423* Calc++ Scanner:: A pure C++ Flex scanner
8424* Calc++ Top Level:: Conducting the band
8425@end menu
8426
8427@node Calc++ --- C++ Calculator
8405b70c 8428@subsubsection Calc++ --- C++ Calculator
12545799
AD
8429
8430Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8431expression, possibly preceded by variable assignments. An
12545799
AD
8432environment containing possibly predefined variables such as
8433@code{one} and @code{two}, is exchanged with the parser. An example
8434of valid input follows.
8435
8436@example
8437three := 3
8438seven := one + two * three
8439seven * seven
8440@end example
8441
8442@node Calc++ Parsing Driver
8405b70c 8443@subsubsection Calc++ Parsing Driver
12545799
AD
8444@c - An env
8445@c - A place to store error messages
8446@c - A place for the result
8447
8448To support a pure interface with the parser (and the scanner) the
8449technique of the ``parsing context'' is convenient: a structure
8450containing all the data to exchange. Since, in addition to simply
8451launch the parsing, there are several auxiliary tasks to execute (open
8452the file for parsing, instantiate the parser etc.), we recommend
8453transforming the simple parsing context structure into a fully blown
8454@dfn{parsing driver} class.
8455
8456The declaration of this driver class, @file{calc++-driver.hh}, is as
8457follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8458required standard library components, and the declaration of the parser
8459class.
12545799 8460
1c59e0a1 8461@comment file: calc++-driver.hh
12545799
AD
8462@example
8463#ifndef CALCXX_DRIVER_HH
8464# define CALCXX_DRIVER_HH
8465# include <string>
8466# include <map>
fb9712a9 8467# include "calc++-parser.hh"
12545799
AD
8468@end example
8469
12545799
AD
8470
8471@noindent
8472Then comes the declaration of the scanning function. Flex expects
8473the signature of @code{yylex} to be defined in the macro
8474@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8475factor both as follows.
1c59e0a1
AD
8476
8477@comment file: calc++-driver.hh
12545799 8478@example
3dc5e96b
PE
8479// Tell Flex the lexer's prototype ...
8480# define YY_DECL \
c095d689
AD
8481 yy::calcxx_parser::token_type \
8482 yylex (yy::calcxx_parser::semantic_type* yylval, \
8483 yy::calcxx_parser::location_type* yylloc, \
8484 calcxx_driver& driver)
12545799
AD
8485// ... and declare it for the parser's sake.
8486YY_DECL;
8487@end example
8488
8489@noindent
8490The @code{calcxx_driver} class is then declared with its most obvious
8491members.
8492
1c59e0a1 8493@comment file: calc++-driver.hh
12545799
AD
8494@example
8495// Conducting the whole scanning and parsing of Calc++.
8496class calcxx_driver
8497@{
8498public:
8499 calcxx_driver ();
8500 virtual ~calcxx_driver ();
8501
8502 std::map<std::string, int> variables;
8503
8504 int result;
8505@end example
8506
8507@noindent
8508To encapsulate the coordination with the Flex scanner, it is useful to
8509have two members function to open and close the scanning phase.
12545799 8510
1c59e0a1 8511@comment file: calc++-driver.hh
12545799
AD
8512@example
8513 // Handling the scanner.
8514 void scan_begin ();
8515 void scan_end ();
8516 bool trace_scanning;
8517@end example
8518
8519@noindent
8520Similarly for the parser itself.
8521
1c59e0a1 8522@comment file: calc++-driver.hh
12545799 8523@example
bb32f4f2
AD
8524 // Run the parser. Return 0 on success.
8525 int parse (const std::string& f);
12545799
AD
8526 std::string file;
8527 bool trace_parsing;
8528@end example
8529
8530@noindent
8531To demonstrate pure handling of parse errors, instead of simply
8532dumping them on the standard error output, we will pass them to the
8533compiler driver using the following two member functions. Finally, we
8534close the class declaration and CPP guard.
8535
1c59e0a1 8536@comment file: calc++-driver.hh
12545799
AD
8537@example
8538 // Error handling.
8539 void error (const yy::location& l, const std::string& m);
8540 void error (const std::string& m);
8541@};
8542#endif // ! CALCXX_DRIVER_HH
8543@end example
8544
8545The implementation of the driver is straightforward. The @code{parse}
8546member function deserves some attention. The @code{error} functions
8547are simple stubs, they should actually register the located error
8548messages and set error state.
8549
1c59e0a1 8550@comment file: calc++-driver.cc
12545799
AD
8551@example
8552#include "calc++-driver.hh"
8553#include "calc++-parser.hh"
8554
8555calcxx_driver::calcxx_driver ()
8556 : trace_scanning (false), trace_parsing (false)
8557@{
8558 variables["one"] = 1;
8559 variables["two"] = 2;
8560@}
8561
8562calcxx_driver::~calcxx_driver ()
8563@{
8564@}
8565
bb32f4f2 8566int
12545799
AD
8567calcxx_driver::parse (const std::string &f)
8568@{
8569 file = f;
8570 scan_begin ();
8571 yy::calcxx_parser parser (*this);
8572 parser.set_debug_level (trace_parsing);
bb32f4f2 8573 int res = parser.parse ();
12545799 8574 scan_end ();
bb32f4f2 8575 return res;
12545799
AD
8576@}
8577
8578void
8579calcxx_driver::error (const yy::location& l, const std::string& m)
8580@{
8581 std::cerr << l << ": " << m << std::endl;
8582@}
8583
8584void
8585calcxx_driver::error (const std::string& m)
8586@{
8587 std::cerr << m << std::endl;
8588@}
8589@end example
8590
8591@node Calc++ Parser
8405b70c 8592@subsubsection Calc++ Parser
12545799 8593
b50d2359 8594The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8595the C++ deterministic parser skeleton, the creation of the parser header
8596file, and specifies the name of the parser class.
8597Because the C++ skeleton changed several times, it is safer to require
8598the version you designed the grammar for.
1c59e0a1
AD
8599
8600@comment file: calc++-parser.yy
12545799 8601@example
ed4d67dc 8602%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8603%require "@value{VERSION}"
12545799 8604%defines
16dc6a9e 8605%define parser_class_name "calcxx_parser"
fb9712a9
AD
8606@end example
8607
8608@noindent
16dc6a9e 8609@findex %code requires
fb9712a9
AD
8610Then come the declarations/inclusions needed to define the
8611@code{%union}. Because the parser uses the parsing driver and
8612reciprocally, both cannot include the header of the other. Because the
8613driver's header needs detailed knowledge about the parser class (in
8614particular its inner types), it is the parser's header which will simply
8615use a forward declaration of the driver.
148d66d8 8616@xref{Decl Summary, ,%code}.
fb9712a9
AD
8617
8618@comment file: calc++-parser.yy
8619@example
16dc6a9e 8620%code requires @{
12545799 8621# include <string>
fb9712a9 8622class calcxx_driver;
9bc0dd67 8623@}
12545799
AD
8624@end example
8625
8626@noindent
8627The driver is passed by reference to the parser and to the scanner.
8628This provides a simple but effective pure interface, not relying on
8629global variables.
8630
1c59e0a1 8631@comment file: calc++-parser.yy
12545799
AD
8632@example
8633// The parsing context.
8634%parse-param @{ calcxx_driver& driver @}
8635%lex-param @{ calcxx_driver& driver @}
8636@end example
8637
8638@noindent
8639Then we request the location tracking feature, and initialize the
8640first location's file name. Afterwards new locations are computed
8641relatively to the previous locations: the file name will be
8642automatically propagated.
8643
1c59e0a1 8644@comment file: calc++-parser.yy
12545799
AD
8645@example
8646%locations
8647%initial-action
8648@{
8649 // Initialize the initial location.
b47dbebe 8650 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8651@};
8652@end example
8653
8654@noindent
8655Use the two following directives to enable parser tracing and verbose
8656error messages.
8657
1c59e0a1 8658@comment file: calc++-parser.yy
12545799
AD
8659@example
8660%debug
8661%error-verbose
8662@end example
8663
8664@noindent
8665Semantic values cannot use ``real'' objects, but only pointers to
8666them.
8667
1c59e0a1 8668@comment file: calc++-parser.yy
12545799
AD
8669@example
8670// Symbols.
8671%union
8672@{
8673 int ival;
8674 std::string *sval;
8675@};
8676@end example
8677
fb9712a9 8678@noindent
136a0f76
PB
8679@findex %code
8680The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8681@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8682
8683@comment file: calc++-parser.yy
8684@example
136a0f76 8685%code @{
fb9712a9 8686# include "calc++-driver.hh"
34f98f46 8687@}
fb9712a9
AD
8688@end example
8689
8690
12545799
AD
8691@noindent
8692The token numbered as 0 corresponds to end of file; the following line
8693allows for nicer error messages referring to ``end of file'' instead
8694of ``$end''. Similarly user friendly named are provided for each
8695symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8696avoid name clashes.
8697
1c59e0a1 8698@comment file: calc++-parser.yy
12545799 8699@example
fb9712a9
AD
8700%token END 0 "end of file"
8701%token ASSIGN ":="
8702%token <sval> IDENTIFIER "identifier"
8703%token <ival> NUMBER "number"
a8c2e813 8704%type <ival> exp
12545799
AD
8705@end example
8706
8707@noindent
8708To enable memory deallocation during error recovery, use
8709@code{%destructor}.
8710
287c78f6 8711@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8712@comment file: calc++-parser.yy
12545799
AD
8713@example
8714%printer @{ debug_stream () << *$$; @} "identifier"
8715%destructor @{ delete $$; @} "identifier"
8716
a8c2e813 8717%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8718@end example
8719
8720@noindent
8721The grammar itself is straightforward.
8722
1c59e0a1 8723@comment file: calc++-parser.yy
12545799
AD
8724@example
8725%%
8726%start unit;
8727unit: assignments exp @{ driver.result = $2; @};
8728
8729assignments: assignments assignment @{@}
9d9b8b70 8730 | /* Nothing. */ @{@};
12545799 8731
3dc5e96b
PE
8732assignment:
8733 "identifier" ":=" exp
8734 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8735
8736%left '+' '-';
8737%left '*' '/';
8738exp: exp '+' exp @{ $$ = $1 + $3; @}
8739 | exp '-' exp @{ $$ = $1 - $3; @}
8740 | exp '*' exp @{ $$ = $1 * $3; @}
8741 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8742 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8743 | "number" @{ $$ = $1; @};
12545799
AD
8744%%
8745@end example
8746
8747@noindent
8748Finally the @code{error} member function registers the errors to the
8749driver.
8750
1c59e0a1 8751@comment file: calc++-parser.yy
12545799
AD
8752@example
8753void
1c59e0a1
AD
8754yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8755 const std::string& m)
12545799
AD
8756@{
8757 driver.error (l, m);
8758@}
8759@end example
8760
8761@node Calc++ Scanner
8405b70c 8762@subsubsection Calc++ Scanner
12545799
AD
8763
8764The Flex scanner first includes the driver declaration, then the
8765parser's to get the set of defined tokens.
8766
1c59e0a1 8767@comment file: calc++-scanner.ll
12545799
AD
8768@example
8769%@{ /* -*- C++ -*- */
04098407 8770# include <cstdlib>
b10dd689
AD
8771# include <cerrno>
8772# include <climits>
12545799
AD
8773# include <string>
8774# include "calc++-driver.hh"
8775# include "calc++-parser.hh"
eaea13f5
PE
8776
8777/* Work around an incompatibility in flex (at least versions
8778 2.5.31 through 2.5.33): it generates code that does
8779 not conform to C89. See Debian bug 333231
8780 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8781# undef yywrap
8782# define yywrap() 1
eaea13f5 8783
c095d689
AD
8784/* By default yylex returns int, we use token_type.
8785 Unfortunately yyterminate by default returns 0, which is
8786 not of token_type. */
8c5b881d 8787#define yyterminate() return token::END
12545799
AD
8788%@}
8789@end example
8790
8791@noindent
8792Because there is no @code{#include}-like feature we don't need
8793@code{yywrap}, we don't need @code{unput} either, and we parse an
8794actual file, this is not an interactive session with the user.
8795Finally we enable the scanner tracing features.
8796
1c59e0a1 8797@comment file: calc++-scanner.ll
12545799
AD
8798@example
8799%option noyywrap nounput batch debug
8800@end example
8801
8802@noindent
8803Abbreviations allow for more readable rules.
8804
1c59e0a1 8805@comment file: calc++-scanner.ll
12545799
AD
8806@example
8807id [a-zA-Z][a-zA-Z_0-9]*
8808int [0-9]+
8809blank [ \t]
8810@end example
8811
8812@noindent
9d9b8b70 8813The following paragraph suffices to track locations accurately. Each
12545799
AD
8814time @code{yylex} is invoked, the begin position is moved onto the end
8815position. Then when a pattern is matched, the end position is
8816advanced of its width. In case it matched ends of lines, the end
8817cursor is adjusted, and each time blanks are matched, the begin cursor
8818is moved onto the end cursor to effectively ignore the blanks
8819preceding tokens. Comments would be treated equally.
8820
1c59e0a1 8821@comment file: calc++-scanner.ll
12545799 8822@example
828c373b
AD
8823%@{
8824# define YY_USER_ACTION yylloc->columns (yyleng);
8825%@}
12545799
AD
8826%%
8827%@{
8828 yylloc->step ();
12545799
AD
8829%@}
8830@{blank@}+ yylloc->step ();
8831[\n]+ yylloc->lines (yyleng); yylloc->step ();
8832@end example
8833
8834@noindent
fb9712a9
AD
8835The rules are simple, just note the use of the driver to report errors.
8836It is convenient to use a typedef to shorten
8837@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8838@code{token::identifier} for instance.
12545799 8839
1c59e0a1 8840@comment file: calc++-scanner.ll
12545799 8841@example
fb9712a9
AD
8842%@{
8843 typedef yy::calcxx_parser::token token;
8844%@}
8c5b881d 8845 /* Convert ints to the actual type of tokens. */
c095d689 8846[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8847":=" return token::ASSIGN;
04098407
PE
8848@{int@} @{
8849 errno = 0;
8850 long n = strtol (yytext, NULL, 10);
8851 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8852 driver.error (*yylloc, "integer is out of range");
8853 yylval->ival = n;
fb9712a9 8854 return token::NUMBER;
04098407 8855@}
fb9712a9 8856@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8857. driver.error (*yylloc, "invalid character");
8858%%
8859@end example
8860
8861@noindent
8862Finally, because the scanner related driver's member function depend
8863on the scanner's data, it is simpler to implement them in this file.
8864
1c59e0a1 8865@comment file: calc++-scanner.ll
12545799
AD
8866@example
8867void
8868calcxx_driver::scan_begin ()
8869@{
8870 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8871 if (file == "-")
8872 yyin = stdin;
8873 else if (!(yyin = fopen (file.c_str (), "r")))
8874 @{
8875 error (std::string ("cannot open ") + file);
8876 exit (1);
8877 @}
12545799
AD
8878@}
8879
8880void
8881calcxx_driver::scan_end ()
8882@{
8883 fclose (yyin);
8884@}
8885@end example
8886
8887@node Calc++ Top Level
8405b70c 8888@subsubsection Calc++ Top Level
12545799
AD
8889
8890The top level file, @file{calc++.cc}, poses no problem.
8891
1c59e0a1 8892@comment file: calc++.cc
12545799
AD
8893@example
8894#include <iostream>
8895#include "calc++-driver.hh"
8896
8897int
fa4d969f 8898main (int argc, char *argv[])
12545799
AD
8899@{
8900 calcxx_driver driver;
8901 for (++argv; argv[0]; ++argv)
8902 if (*argv == std::string ("-p"))
8903 driver.trace_parsing = true;
8904 else if (*argv == std::string ("-s"))
8905 driver.trace_scanning = true;
bb32f4f2
AD
8906 else if (!driver.parse (*argv))
8907 std::cout << driver.result << std::endl;
12545799
AD
8908@}
8909@end example
8910
8405b70c
PB
8911@node Java Parsers
8912@section Java Parsers
8913
8914@menu
f56274a8
DJ
8915* Java Bison Interface:: Asking for Java parser generation
8916* Java Semantic Values:: %type and %token vs. Java
8917* Java Location Values:: The position and location classes
8918* Java Parser Interface:: Instantiating and running the parser
8919* Java Scanner Interface:: Specifying the scanner for the parser
8920* Java Action Features:: Special features for use in actions
8921* Java Differences:: Differences between C/C++ and Java Grammars
8922* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8923@end menu
8924
8925@node Java Bison Interface
8926@subsection Java Bison Interface
8927@c - %language "Java"
8405b70c 8928
59da312b
JD
8929(The current Java interface is experimental and may evolve.
8930More user feedback will help to stabilize it.)
8931
e254a580
DJ
8932The Java parser skeletons are selected using the @code{%language "Java"}
8933directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8934
e254a580
DJ
8935@c FIXME: Documented bug.
8936When generating a Java parser, @code{bison @var{basename}.y} will create
8937a single Java source file named @file{@var{basename}.java}. Using an
8938input file without a @file{.y} suffix is currently broken. The basename
8939of the output file can be changed by the @code{%file-prefix} directive
8940or the @option{-p}/@option{--name-prefix} option. The entire output file
8941name can be changed by the @code{%output} directive or the
8942@option{-o}/@option{--output} option. The output file contains a single
8943class for the parser.
8405b70c 8944
e254a580 8945You can create documentation for generated parsers using Javadoc.
8405b70c 8946
e254a580
DJ
8947Contrary to C parsers, Java parsers do not use global variables; the
8948state of the parser is always local to an instance of the parser class.
8949Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8950and @code{%define api.pure} directives does not do anything when used in
8951Java.
8405b70c 8952
e254a580 8953Push parsers are currently unsupported in Java and @code{%define
812775a0 8954api.push-pull} have no effect.
01b477c6 8955
e254a580
DJ
8956@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8957@code{glr-parser} directive.
8958
8959No header file can be generated for Java parsers. Do not use the
8960@code{%defines} directive or the @option{-d}/@option{--defines} options.
8961
8962@c FIXME: Possible code change.
8963Currently, support for debugging and verbose errors are always compiled
8964in. Thus the @code{%debug} and @code{%token-table} directives and the
8965@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8966options have no effect. This may change in the future to eliminate
8967unused code in the generated parser, so use @code{%debug} and
8968@code{%verbose-error} explicitly if needed. Also, in the future the
8969@code{%token-table} directive might enable a public interface to
8970access the token names and codes.
8405b70c
PB
8971
8972@node Java Semantic Values
8973@subsection Java Semantic Values
8974@c - No %union, specify type in %type/%token.
8975@c - YYSTYPE
8976@c - Printer and destructor
8977
8978There is no @code{%union} directive in Java parsers. Instead, the
8979semantic values' types (class names) should be specified in the
8980@code{%type} or @code{%token} directive:
8981
8982@example
8983%type <Expression> expr assignment_expr term factor
8984%type <Integer> number
8985@end example
8986
8987By default, the semantic stack is declared to have @code{Object} members,
8988which means that the class types you specify can be of any class.
8989To improve the type safety of the parser, you can declare the common
e254a580
DJ
8990superclass of all the semantic values using the @code{%define stype}
8991directive. For example, after the following declaration:
8405b70c
PB
8992
8993@example
e254a580 8994%define stype "ASTNode"
8405b70c
PB
8995@end example
8996
8997@noindent
8998any @code{%type} or @code{%token} specifying a semantic type which
8999is not a subclass of ASTNode, will cause a compile-time error.
9000
e254a580 9001@c FIXME: Documented bug.
8405b70c
PB
9002Types used in the directives may be qualified with a package name.
9003Primitive data types are accepted for Java version 1.5 or later. Note
9004that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9005Generic types may not be used; this is due to a limitation in the
9006implementation of Bison, and may change in future releases.
8405b70c
PB
9007
9008Java parsers do not support @code{%destructor}, since the language
9009adopts garbage collection. The parser will try to hold references
9010to semantic values for as little time as needed.
9011
9012Java parsers do not support @code{%printer}, as @code{toString()}
9013can be used to print the semantic values. This however may change
9014(in a backwards-compatible way) in future versions of Bison.
9015
9016
9017@node Java Location Values
9018@subsection Java Location Values
9019@c - %locations
9020@c - class Position
9021@c - class Location
9022
9023When the directive @code{%locations} is used, the Java parser
9024supports location tracking, see @ref{Locations, , Locations Overview}.
9025An auxiliary user-defined class defines a @dfn{position}, a single point
9026in a file; Bison itself defines a class representing a @dfn{location},
9027a range composed of a pair of positions (possibly spanning several
9028files). The location class is an inner class of the parser; the name
e254a580 9029is @code{Location} by default, and may also be renamed using
f37495f6 9030@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9031
9032The location class treats the position as a completely opaque value.
9033By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9034with @code{%define position_type "@var{class-name}"}. This class must
9035be supplied by the user.
8405b70c
PB
9036
9037
e254a580
DJ
9038@deftypeivar {Location} {Position} begin
9039@deftypeivarx {Location} {Position} end
8405b70c 9040The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9041@end deftypeivar
9042
9043@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9044Create a @code{Location} denoting an empty range located at a given point.
e254a580 9045@end deftypeop
8405b70c 9046
e254a580
DJ
9047@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9048Create a @code{Location} from the endpoints of the range.
9049@end deftypeop
9050
9051@deftypemethod {Location} {String} toString ()
8405b70c
PB
9052Prints the range represented by the location. For this to work
9053properly, the position class should override the @code{equals} and
9054@code{toString} methods appropriately.
9055@end deftypemethod
9056
9057
9058@node Java Parser Interface
9059@subsection Java Parser Interface
9060@c - define parser_class_name
9061@c - Ctor
9062@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9063@c debug_stream.
9064@c - Reporting errors
9065
e254a580
DJ
9066The name of the generated parser class defaults to @code{YYParser}. The
9067@code{YY} prefix may be changed using the @code{%name-prefix} directive
9068or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9069@code{%define parser_class_name "@var{name}"} to give a custom name to
9070the class. The interface of this class is detailed below.
8405b70c 9071
e254a580
DJ
9072By default, the parser class has package visibility. A declaration
9073@code{%define public} will change to public visibility. Remember that,
9074according to the Java language specification, the name of the @file{.java}
9075file should match the name of the class in this case. Similarly, you can
9076use @code{abstract}, @code{final} and @code{strictfp} with the
9077@code{%define} declaration to add other modifiers to the parser class.
9078
9079The Java package name of the parser class can be specified using the
9080@code{%define package} directive. The superclass and the implemented
9081interfaces of the parser class can be specified with the @code{%define
9082extends} and @code{%define implements} directives.
9083
9084The parser class defines an inner class, @code{Location}, that is used
9085for location tracking (see @ref{Java Location Values}), and a inner
9086interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9087these inner class/interface, and the members described in the interface
9088below, all the other members and fields are preceded with a @code{yy} or
9089@code{YY} prefix to avoid clashes with user code.
9090
9091@c FIXME: The following constants and variables are still undocumented:
9092@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9093
9094The parser class can be extended using the @code{%parse-param}
9095directive. Each occurrence of the directive will add a @code{protected
9096final} field to the parser class, and an argument to its constructor,
9097which initialize them automatically.
9098
9099Token names defined by @code{%token} and the predefined @code{EOF} token
9100name are added as constant fields to the parser class.
9101
9102@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9103Build a new parser object with embedded @code{%code lexer}. There are
9104no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9105used.
9106@end deftypeop
9107
9108@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9109Build a new parser object using the specified scanner. There are no
9110additional parameters unless @code{%parse-param}s are used.
9111
9112If the scanner is defined by @code{%code lexer}, this constructor is
9113declared @code{protected} and is called automatically with a scanner
9114created with the correct @code{%lex-param}s.
9115@end deftypeop
8405b70c
PB
9116
9117@deftypemethod {YYParser} {boolean} parse ()
9118Run the syntactic analysis, and return @code{true} on success,
9119@code{false} otherwise.
9120@end deftypemethod
9121
01b477c6 9122@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9123During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9124from a syntax error.
9125@xref{Error Recovery}.
8405b70c
PB
9126@end deftypemethod
9127
9128@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9129@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9130Get or set the stream used for tracing the parsing. It defaults to
9131@code{System.err}.
9132@end deftypemethod
9133
9134@deftypemethod {YYParser} {int} getDebugLevel ()
9135@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9136Get or set the tracing level. Currently its value is either 0, no trace,
9137or nonzero, full tracing.
9138@end deftypemethod
9139
8405b70c
PB
9140
9141@node Java Scanner Interface
9142@subsection Java Scanner Interface
01b477c6 9143@c - %code lexer
8405b70c 9144@c - %lex-param
01b477c6 9145@c - Lexer interface
8405b70c 9146
e254a580
DJ
9147There are two possible ways to interface a Bison-generated Java parser
9148with a scanner: the scanner may be defined by @code{%code lexer}, or
9149defined elsewhere. In either case, the scanner has to implement the
9150@code{Lexer} inner interface of the parser class.
9151
9152In the first case, the body of the scanner class is placed in
9153@code{%code lexer} blocks. If you want to pass parameters from the
9154parser constructor to the scanner constructor, specify them with
9155@code{%lex-param}; they are passed before @code{%parse-param}s to the
9156constructor.
01b477c6 9157
59c5ac72 9158In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9159which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9160The constructor of the parser object will then accept an object
9161implementing the interface; @code{%lex-param} is not used in this
9162case.
9163
9164In both cases, the scanner has to implement the following methods.
9165
e254a580
DJ
9166@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9167This method is defined by the user to emit an error message. The first
9168parameter is omitted if location tracking is not active. Its type can be
9169changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9170@end deftypemethod
9171
e254a580 9172@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9173Return the next token. Its type is the return value, its semantic
9174value and location are saved and returned by the ther methods in the
e254a580
DJ
9175interface.
9176
9177Use @code{%define lex_throws} to specify any uncaught exceptions.
9178Default is @code{java.io.IOException}.
8405b70c
PB
9179@end deftypemethod
9180
9181@deftypemethod {Lexer} {Position} getStartPos ()
9182@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9183Return respectively the first position of the last token that
9184@code{yylex} returned, and the first position beyond it. These
9185methods are not needed unless location tracking is active.
8405b70c 9186
e254a580 9187The return type can be changed using @code{%define position_type
8405b70c
PB
9188"@var{class-name}".}
9189@end deftypemethod
9190
9191@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9192Return the semantical value of the last token that yylex returned.
8405b70c 9193
e254a580 9194The return type can be changed using @code{%define stype
8405b70c
PB
9195"@var{class-name}".}
9196@end deftypemethod
9197
9198
e254a580
DJ
9199@node Java Action Features
9200@subsection Special Features for Use in Java Actions
9201
9202The following special constructs can be uses in Java actions.
9203Other analogous C action features are currently unavailable for Java.
9204
9205Use @code{%define throws} to specify any uncaught exceptions from parser
9206actions, and initial actions specified by @code{%initial-action}.
9207
9208@defvar $@var{n}
9209The semantic value for the @var{n}th component of the current rule.
9210This may not be assigned to.
9211@xref{Java Semantic Values}.
9212@end defvar
9213
9214@defvar $<@var{typealt}>@var{n}
9215Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9216@xref{Java Semantic Values}.
9217@end defvar
9218
9219@defvar $$
9220The semantic value for the grouping made by the current rule. As a
9221value, this is in the base type (@code{Object} or as specified by
9222@code{%define stype}) as in not cast to the declared subtype because
9223casts are not allowed on the left-hand side of Java assignments.
9224Use an explicit Java cast if the correct subtype is needed.
9225@xref{Java Semantic Values}.
9226@end defvar
9227
9228@defvar $<@var{typealt}>$
9229Same as @code{$$} since Java always allow assigning to the base type.
9230Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9231for setting the value but there is currently no easy way to distinguish
9232these constructs.
9233@xref{Java Semantic Values}.
9234@end defvar
9235
9236@defvar @@@var{n}
9237The location information of the @var{n}th component of the current rule.
9238This may not be assigned to.
9239@xref{Java Location Values}.
9240@end defvar
9241
9242@defvar @@$
9243The location information of the grouping made by the current rule.
9244@xref{Java Location Values}.
9245@end defvar
9246
9247@deffn {Statement} {return YYABORT;}
9248Return immediately from the parser, indicating failure.
9249@xref{Java Parser Interface}.
9250@end deffn
8405b70c 9251
e254a580
DJ
9252@deffn {Statement} {return YYACCEPT;}
9253Return immediately from the parser, indicating success.
9254@xref{Java Parser Interface}.
9255@end deffn
8405b70c 9256
e254a580 9257@deffn {Statement} {return YYERROR;}
c046698e 9258Start error recovery without printing an error message.
e254a580
DJ
9259@xref{Error Recovery}.
9260@end deffn
8405b70c 9261
e254a580 9262@deffn {Statement} {return YYFAIL;}
c046698e 9263Print an error message and start error recovery.
e254a580
DJ
9264@xref{Error Recovery}.
9265@end deffn
8405b70c 9266
e254a580
DJ
9267@deftypefn {Function} {boolean} recovering ()
9268Return whether error recovery is being done. In this state, the parser
9269reads token until it reaches a known state, and then restarts normal
9270operation.
9271@xref{Error Recovery}.
9272@end deftypefn
8405b70c 9273
e254a580
DJ
9274@deftypefn {Function} {protected void} yyerror (String msg)
9275@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9276@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9277Print an error message using the @code{yyerror} method of the scanner
9278instance in use.
9279@end deftypefn
8405b70c 9280
8405b70c 9281
8405b70c
PB
9282@node Java Differences
9283@subsection Differences between C/C++ and Java Grammars
9284
9285The different structure of the Java language forces several differences
9286between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9287section summarizes these differences.
8405b70c
PB
9288
9289@itemize
9290@item
01b477c6 9291Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9292@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9293macros. Instead, they should be preceded by @code{return} when they
9294appear in an action. The actual definition of these symbols is
8405b70c
PB
9295opaque to the Bison grammar, and it might change in the future. The
9296only meaningful operation that you can do, is to return them.
e254a580 9297See @pxref{Java Action Features}.
8405b70c
PB
9298
9299Note that of these three symbols, only @code{YYACCEPT} and
9300@code{YYABORT} will cause a return from the @code{yyparse}
9301method@footnote{Java parsers include the actions in a separate
9302method than @code{yyparse} in order to have an intuitive syntax that
9303corresponds to these C macros.}.
9304
e254a580
DJ
9305@item
9306Java lacks unions, so @code{%union} has no effect. Instead, semantic
9307values have a common base type: @code{Object} or as specified by
9308@code{%define stype}. Angle backets on @code{%token}, @code{type},
9309@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9310an union. The type of @code{$$}, even with angle brackets, is the base
9311type since Java casts are not allow on the left-hand side of assignments.
9312Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9313left-hand side of assignments. See @pxref{Java Semantic Values} and
9314@pxref{Java Action Features}.
9315
8405b70c
PB
9316@item
9317The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9318@table @asis
9319@item @code{%code imports}
9320blocks are placed at the beginning of the Java source code. They may
9321include copyright notices. For a @code{package} declarations, it is
9322suggested to use @code{%define package} instead.
8405b70c 9323
01b477c6
PB
9324@item unqualified @code{%code}
9325blocks are placed inside the parser class.
9326
9327@item @code{%code lexer}
9328blocks, if specified, should include the implementation of the
9329scanner. If there is no such block, the scanner can be any class
9330that implements the appropriate interface (see @pxref{Java Scanner
9331Interface}).
29553547 9332@end table
8405b70c
PB
9333
9334Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9335In particular, @code{%@{ @dots{} %@}} blocks should not be used
9336and may give an error in future versions of Bison.
9337
01b477c6 9338The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9339be used to define other classes used by the parser @emph{outside}
9340the parser class.
8405b70c
PB
9341@end itemize
9342
e254a580
DJ
9343
9344@node Java Declarations Summary
9345@subsection Java Declarations Summary
9346
9347This summary only include declarations specific to Java or have special
9348meaning when used in a Java parser.
9349
9350@deffn {Directive} {%language "Java"}
9351Generate a Java class for the parser.
9352@end deffn
9353
9354@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9355A parameter for the lexer class defined by @code{%code lexer}
9356@emph{only}, added as parameters to the lexer constructor and the parser
9357constructor that @emph{creates} a lexer. Default is none.
9358@xref{Java Scanner Interface}.
9359@end deffn
9360
9361@deffn {Directive} %name-prefix "@var{prefix}"
9362The prefix of the parser class name @code{@var{prefix}Parser} if
9363@code{%define parser_class_name} is not used. Default is @code{YY}.
9364@xref{Java Bison Interface}.
9365@end deffn
9366
9367@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9368A parameter for the parser class added as parameters to constructor(s)
9369and as fields initialized by the constructor(s). Default is none.
9370@xref{Java Parser Interface}.
9371@end deffn
9372
9373@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9374Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9375@xref{Java Semantic Values}.
9376@end deffn
9377
9378@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9379Declare the type of nonterminals. Note that the angle brackets enclose
9380a Java @emph{type}.
9381@xref{Java Semantic Values}.
9382@end deffn
9383
9384@deffn {Directive} %code @{ @var{code} @dots{} @}
9385Code appended to the inside of the parser class.
9386@xref{Java Differences}.
9387@end deffn
9388
9389@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9390Code inserted just after the @code{package} declaration.
9391@xref{Java Differences}.
9392@end deffn
9393
9394@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9395Code added to the body of a inner lexer class within the parser class.
9396@xref{Java Scanner Interface}.
9397@end deffn
9398
9399@deffn {Directive} %% @var{code} @dots{}
9400Code (after the second @code{%%}) appended to the end of the file,
9401@emph{outside} the parser class.
9402@xref{Java Differences}.
9403@end deffn
9404
9405@deffn {Directive} %@{ @var{code} @dots{} %@}
9406Not supported. Use @code{%code import} instead.
9407@xref{Java Differences}.
9408@end deffn
9409
9410@deffn {Directive} {%define abstract}
9411Whether the parser class is declared @code{abstract}. Default is false.
9412@xref{Java Bison Interface}.
9413@end deffn
9414
9415@deffn {Directive} {%define extends} "@var{superclass}"
9416The superclass of the parser class. Default is none.
9417@xref{Java Bison Interface}.
9418@end deffn
9419
9420@deffn {Directive} {%define final}
9421Whether the parser class is declared @code{final}. Default is false.
9422@xref{Java Bison Interface}.
9423@end deffn
9424
9425@deffn {Directive} {%define implements} "@var{interfaces}"
9426The implemented interfaces of the parser class, a comma-separated list.
9427Default is none.
9428@xref{Java Bison Interface}.
9429@end deffn
9430
9431@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9432The exceptions thrown by the @code{yylex} method of the lexer, a
9433comma-separated list. Default is @code{java.io.IOException}.
9434@xref{Java Scanner Interface}.
9435@end deffn
9436
9437@deffn {Directive} {%define location_type} "@var{class}"
9438The name of the class used for locations (a range between two
9439positions). This class is generated as an inner class of the parser
9440class by @command{bison}. Default is @code{Location}.
9441@xref{Java Location Values}.
9442@end deffn
9443
9444@deffn {Directive} {%define package} "@var{package}"
9445The package to put the parser class in. Default is none.
9446@xref{Java Bison Interface}.
9447@end deffn
9448
9449@deffn {Directive} {%define parser_class_name} "@var{name}"
9450The name of the parser class. Default is @code{YYParser} or
9451@code{@var{name-prefix}Parser}.
9452@xref{Java Bison Interface}.
9453@end deffn
9454
9455@deffn {Directive} {%define position_type} "@var{class}"
9456The name of the class used for positions. This class must be supplied by
9457the user. Default is @code{Position}.
9458@xref{Java Location Values}.
9459@end deffn
9460
9461@deffn {Directive} {%define public}
9462Whether the parser class is declared @code{public}. Default is false.
9463@xref{Java Bison Interface}.
9464@end deffn
9465
9466@deffn {Directive} {%define stype} "@var{class}"
9467The base type of semantic values. Default is @code{Object}.
9468@xref{Java Semantic Values}.
9469@end deffn
9470
9471@deffn {Directive} {%define strictfp}
9472Whether the parser class is declared @code{strictfp}. Default is false.
9473@xref{Java Bison Interface}.
9474@end deffn
9475
9476@deffn {Directive} {%define throws} "@var{exceptions}"
9477The exceptions thrown by user-supplied parser actions and
9478@code{%initial-action}, a comma-separated list. Default is none.
9479@xref{Java Parser Interface}.
9480@end deffn
9481
9482
12545799 9483@c ================================================= FAQ
d1a1114f
AD
9484
9485@node FAQ
9486@chapter Frequently Asked Questions
9487@cindex frequently asked questions
9488@cindex questions
9489
9490Several questions about Bison come up occasionally. Here some of them
9491are addressed.
9492
9493@menu
55ba27be
AD
9494* Memory Exhausted:: Breaking the Stack Limits
9495* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9496* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9497* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9498* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9499* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9500* I can't build Bison:: Troubleshooting
9501* Where can I find help?:: Troubleshouting
9502* Bug Reports:: Troublereporting
8405b70c 9503* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9504* Beta Testing:: Experimenting development versions
9505* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9506@end menu
9507
1a059451
PE
9508@node Memory Exhausted
9509@section Memory Exhausted
d1a1114f
AD
9510
9511@display
1a059451 9512My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9513message. What can I do?
9514@end display
9515
9516This question is already addressed elsewhere, @xref{Recursion,
9517,Recursive Rules}.
9518
e64fec0a
PE
9519@node How Can I Reset the Parser
9520@section How Can I Reset the Parser
5b066063 9521
0e14ad77
PE
9522The following phenomenon has several symptoms, resulting in the
9523following typical questions:
5b066063
AD
9524
9525@display
9526I invoke @code{yyparse} several times, and on correct input it works
9527properly; but when a parse error is found, all the other calls fail
0e14ad77 9528too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9529@end display
9530
9531@noindent
9532or
9533
9534@display
0e14ad77 9535My parser includes support for an @samp{#include}-like feature, in
5b066063 9536which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9537although I did specify @code{%define api.pure}.
5b066063
AD
9538@end display
9539
0e14ad77
PE
9540These problems typically come not from Bison itself, but from
9541Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9542speed, they might not notice a change of input file. As a
9543demonstration, consider the following source file,
9544@file{first-line.l}:
9545
9546@verbatim
9547%{
9548#include <stdio.h>
9549#include <stdlib.h>
9550%}
9551%%
9552.*\n ECHO; return 1;
9553%%
9554int
0e14ad77 9555yyparse (char const *file)
5b066063
AD
9556{
9557 yyin = fopen (file, "r");
9558 if (!yyin)
9559 exit (2);
fa7e68c3 9560 /* One token only. */
5b066063 9561 yylex ();
0e14ad77 9562 if (fclose (yyin) != 0)
5b066063
AD
9563 exit (3);
9564 return 0;
9565}
9566
9567int
0e14ad77 9568main (void)
5b066063
AD
9569{
9570 yyparse ("input");
9571 yyparse ("input");
9572 return 0;
9573}
9574@end verbatim
9575
9576@noindent
9577If the file @file{input} contains
9578
9579@verbatim
9580input:1: Hello,
9581input:2: World!
9582@end verbatim
9583
9584@noindent
0e14ad77 9585then instead of getting the first line twice, you get:
5b066063
AD
9586
9587@example
9588$ @kbd{flex -ofirst-line.c first-line.l}
9589$ @kbd{gcc -ofirst-line first-line.c -ll}
9590$ @kbd{./first-line}
9591input:1: Hello,
9592input:2: World!
9593@end example
9594
0e14ad77
PE
9595Therefore, whenever you change @code{yyin}, you must tell the
9596Lex-generated scanner to discard its current buffer and switch to the
9597new one. This depends upon your implementation of Lex; see its
9598documentation for more. For Flex, it suffices to call
9599@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9600Flex-generated scanner needs to read from several input streams to
9601handle features like include files, you might consider using Flex
9602functions like @samp{yy_switch_to_buffer} that manipulate multiple
9603input buffers.
5b066063 9604
b165c324
AD
9605If your Flex-generated scanner uses start conditions (@pxref{Start
9606conditions, , Start conditions, flex, The Flex Manual}), you might
9607also want to reset the scanner's state, i.e., go back to the initial
9608start condition, through a call to @samp{BEGIN (0)}.
9609
fef4cb51
AD
9610@node Strings are Destroyed
9611@section Strings are Destroyed
9612
9613@display
c7e441b4 9614My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9615them. Instead of reporting @samp{"foo", "bar"}, it reports
9616@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9617@end display
9618
9619This error is probably the single most frequent ``bug report'' sent to
9620Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9621of the scanner. Consider the following Lex code:
fef4cb51
AD
9622
9623@verbatim
9624%{
9625#include <stdio.h>
9626char *yylval = NULL;
9627%}
9628%%
9629.* yylval = yytext; return 1;
9630\n /* IGNORE */
9631%%
9632int
9633main ()
9634{
fa7e68c3 9635 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9636 char *fst = (yylex (), yylval);
9637 char *snd = (yylex (), yylval);
9638 printf ("\"%s\", \"%s\"\n", fst, snd);
9639 return 0;
9640}
9641@end verbatim
9642
9643If you compile and run this code, you get:
9644
9645@example
9646$ @kbd{flex -osplit-lines.c split-lines.l}
9647$ @kbd{gcc -osplit-lines split-lines.c -ll}
9648$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9649"one
9650two", "two"
9651@end example
9652
9653@noindent
9654this is because @code{yytext} is a buffer provided for @emph{reading}
9655in the action, but if you want to keep it, you have to duplicate it
9656(e.g., using @code{strdup}). Note that the output may depend on how
9657your implementation of Lex handles @code{yytext}. For instance, when
9658given the Lex compatibility option @option{-l} (which triggers the
9659option @samp{%array}) Flex generates a different behavior:
9660
9661@example
9662$ @kbd{flex -l -osplit-lines.c split-lines.l}
9663$ @kbd{gcc -osplit-lines split-lines.c -ll}
9664$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9665"two", "two"
9666@end example
9667
9668
2fa09258
AD
9669@node Implementing Gotos/Loops
9670@section Implementing Gotos/Loops
a06ea4aa
AD
9671
9672@display
9673My simple calculator supports variables, assignments, and functions,
2fa09258 9674but how can I implement gotos, or loops?
a06ea4aa
AD
9675@end display
9676
9677Although very pedagogical, the examples included in the document blur
a1c84f45 9678the distinction to make between the parser---whose job is to recover
a06ea4aa 9679the structure of a text and to transmit it to subsequent modules of
a1c84f45 9680the program---and the processing (such as the execution) of this
a06ea4aa
AD
9681structure. This works well with so called straight line programs,
9682i.e., precisely those that have a straightforward execution model:
9683execute simple instructions one after the others.
9684
9685@cindex abstract syntax tree
9686@cindex @acronym{AST}
9687If you want a richer model, you will probably need to use the parser
9688to construct a tree that does represent the structure it has
9689recovered; this tree is usually called the @dfn{abstract syntax tree},
9690or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9691traversing it in various ways, will enable treatments such as its
9692execution or its translation, which will result in an interpreter or a
9693compiler.
9694
9695This topic is way beyond the scope of this manual, and the reader is
9696invited to consult the dedicated literature.
9697
9698
ed2e6384
AD
9699@node Multiple start-symbols
9700@section Multiple start-symbols
9701
9702@display
9703I have several closely related grammars, and I would like to share their
9704implementations. In fact, I could use a single grammar but with
9705multiple entry points.
9706@end display
9707
9708Bison does not support multiple start-symbols, but there is a very
9709simple means to simulate them. If @code{foo} and @code{bar} are the two
9710pseudo start-symbols, then introduce two new tokens, say
9711@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9712real start-symbol:
9713
9714@example
9715%token START_FOO START_BAR;
9716%start start;
9717start: START_FOO foo
9718 | START_BAR bar;
9719@end example
9720
9721These tokens prevents the introduction of new conflicts. As far as the
9722parser goes, that is all that is needed.
9723
9724Now the difficult part is ensuring that the scanner will send these
9725tokens first. If your scanner is hand-written, that should be
9726straightforward. If your scanner is generated by Lex, them there is
9727simple means to do it: recall that anything between @samp{%@{ ... %@}}
9728after the first @code{%%} is copied verbatim in the top of the generated
9729@code{yylex} function. Make sure a variable @code{start_token} is
9730available in the scanner (e.g., a global variable or using
9731@code{%lex-param} etc.), and use the following:
9732
9733@example
9734 /* @r{Prologue.} */
9735%%
9736%@{
9737 if (start_token)
9738 @{
9739 int t = start_token;
9740 start_token = 0;
9741 return t;
9742 @}
9743%@}
9744 /* @r{The rules.} */
9745@end example
9746
9747
55ba27be
AD
9748@node Secure? Conform?
9749@section Secure? Conform?
9750
9751@display
9752Is Bison secure? Does it conform to POSIX?
9753@end display
9754
9755If you're looking for a guarantee or certification, we don't provide it.
9756However, Bison is intended to be a reliable program that conforms to the
9757@acronym{POSIX} specification for Yacc. If you run into problems,
9758please send us a bug report.
9759
9760@node I can't build Bison
9761@section I can't build Bison
9762
9763@display
8c5b881d
PE
9764I can't build Bison because @command{make} complains that
9765@code{msgfmt} is not found.
55ba27be
AD
9766What should I do?
9767@end display
9768
9769Like most GNU packages with internationalization support, that feature
9770is turned on by default. If you have problems building in the @file{po}
9771subdirectory, it indicates that your system's internationalization
9772support is lacking. You can re-configure Bison with
9773@option{--disable-nls} to turn off this support, or you can install GNU
9774gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9775Bison. See the file @file{ABOUT-NLS} for more information.
9776
9777
9778@node Where can I find help?
9779@section Where can I find help?
9780
9781@display
9782I'm having trouble using Bison. Where can I find help?
9783@end display
9784
9785First, read this fine manual. Beyond that, you can send mail to
9786@email{help-bison@@gnu.org}. This mailing list is intended to be
9787populated with people who are willing to answer questions about using
9788and installing Bison. Please keep in mind that (most of) the people on
9789the list have aspects of their lives which are not related to Bison (!),
9790so you may not receive an answer to your question right away. This can
9791be frustrating, but please try not to honk them off; remember that any
9792help they provide is purely voluntary and out of the kindness of their
9793hearts.
9794
9795@node Bug Reports
9796@section Bug Reports
9797
9798@display
9799I found a bug. What should I include in the bug report?
9800@end display
9801
9802Before you send a bug report, make sure you are using the latest
9803version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9804mirrors. Be sure to include the version number in your bug report. If
9805the bug is present in the latest version but not in a previous version,
9806try to determine the most recent version which did not contain the bug.
9807
9808If the bug is parser-related, you should include the smallest grammar
9809you can which demonstrates the bug. The grammar file should also be
9810complete (i.e., I should be able to run it through Bison without having
9811to edit or add anything). The smaller and simpler the grammar, the
9812easier it will be to fix the bug.
9813
9814Include information about your compilation environment, including your
9815operating system's name and version and your compiler's name and
9816version. If you have trouble compiling, you should also include a
9817transcript of the build session, starting with the invocation of
9818`configure'. Depending on the nature of the bug, you may be asked to
9819send additional files as well (such as `config.h' or `config.cache').
9820
9821Patches are most welcome, but not required. That is, do not hesitate to
9822send a bug report just because you can not provide a fix.
9823
9824Send bug reports to @email{bug-bison@@gnu.org}.
9825
8405b70c
PB
9826@node More Languages
9827@section More Languages
55ba27be
AD
9828
9829@display
8405b70c 9830Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9831favorite language here}?
9832@end display
9833
8405b70c 9834C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9835languages; contributions are welcome.
9836
9837@node Beta Testing
9838@section Beta Testing
9839
9840@display
9841What is involved in being a beta tester?
9842@end display
9843
9844It's not terribly involved. Basically, you would download a test
9845release, compile it, and use it to build and run a parser or two. After
9846that, you would submit either a bug report or a message saying that
9847everything is okay. It is important to report successes as well as
9848failures because test releases eventually become mainstream releases,
9849but only if they are adequately tested. If no one tests, development is
9850essentially halted.
9851
9852Beta testers are particularly needed for operating systems to which the
9853developers do not have easy access. They currently have easy access to
9854recent GNU/Linux and Solaris versions. Reports about other operating
9855systems are especially welcome.
9856
9857@node Mailing Lists
9858@section Mailing Lists
9859
9860@display
9861How do I join the help-bison and bug-bison mailing lists?
9862@end display
9863
9864See @url{http://lists.gnu.org/}.
a06ea4aa 9865
d1a1114f
AD
9866@c ================================================= Table of Symbols
9867
342b8b6e 9868@node Table of Symbols
bfa74976
RS
9869@appendix Bison Symbols
9870@cindex Bison symbols, table of
9871@cindex symbols in Bison, table of
9872
18b519c0 9873@deffn {Variable} @@$
3ded9a63 9874In an action, the location of the left-hand side of the rule.
88bce5a2 9875@xref{Locations, , Locations Overview}.
18b519c0 9876@end deffn
3ded9a63 9877
18b519c0 9878@deffn {Variable} @@@var{n}
3ded9a63
AD
9879In an action, the location of the @var{n}-th symbol of the right-hand
9880side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9881@end deffn
3ded9a63 9882
18b519c0 9883@deffn {Variable} $$
3ded9a63
AD
9884In an action, the semantic value of the left-hand side of the rule.
9885@xref{Actions}.
18b519c0 9886@end deffn
3ded9a63 9887
18b519c0 9888@deffn {Variable} $@var{n}
3ded9a63
AD
9889In an action, the semantic value of the @var{n}-th symbol of the
9890right-hand side of the rule. @xref{Actions}.
18b519c0 9891@end deffn
3ded9a63 9892
dd8d9022
AD
9893@deffn {Delimiter} %%
9894Delimiter used to separate the grammar rule section from the
9895Bison declarations section or the epilogue.
9896@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9897@end deffn
bfa74976 9898
dd8d9022
AD
9899@c Don't insert spaces, or check the DVI output.
9900@deffn {Delimiter} %@{@var{code}%@}
9901All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9902the output file uninterpreted. Such code forms the prologue of the input
9903file. @xref{Grammar Outline, ,Outline of a Bison
9904Grammar}.
18b519c0 9905@end deffn
bfa74976 9906
dd8d9022
AD
9907@deffn {Construct} /*@dots{}*/
9908Comment delimiters, as in C.
18b519c0 9909@end deffn
bfa74976 9910
dd8d9022
AD
9911@deffn {Delimiter} :
9912Separates a rule's result from its components. @xref{Rules, ,Syntax of
9913Grammar Rules}.
18b519c0 9914@end deffn
bfa74976 9915
dd8d9022
AD
9916@deffn {Delimiter} ;
9917Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9918@end deffn
bfa74976 9919
dd8d9022
AD
9920@deffn {Delimiter} |
9921Separates alternate rules for the same result nonterminal.
9922@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9923@end deffn
bfa74976 9924
12e35840
JD
9925@deffn {Directive} <*>
9926Used to define a default tagged @code{%destructor} or default tagged
9927@code{%printer}.
85894313
JD
9928
9929This feature is experimental.
9930More user feedback will help to determine whether it should become a permanent
9931feature.
9932
12e35840
JD
9933@xref{Destructor Decl, , Freeing Discarded Symbols}.
9934@end deffn
9935
3ebecc24 9936@deffn {Directive} <>
12e35840
JD
9937Used to define a default tagless @code{%destructor} or default tagless
9938@code{%printer}.
85894313
JD
9939
9940This feature is experimental.
9941More user feedback will help to determine whether it should become a permanent
9942feature.
9943
12e35840
JD
9944@xref{Destructor Decl, , Freeing Discarded Symbols}.
9945@end deffn
9946
dd8d9022
AD
9947@deffn {Symbol} $accept
9948The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9949$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9950Start-Symbol}. It cannot be used in the grammar.
18b519c0 9951@end deffn
bfa74976 9952
136a0f76 9953@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9954@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9955Insert @var{code} verbatim into output parser source.
9956@xref{Decl Summary,,%code}.
9bc0dd67 9957@end deffn
9bc0dd67 9958
18b519c0 9959@deffn {Directive} %debug
6deb4447 9960Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9961@end deffn
6deb4447 9962
91d2c560 9963@ifset defaultprec
22fccf95
PE
9964@deffn {Directive} %default-prec
9965Assign a precedence to rules that lack an explicit @samp{%prec}
9966modifier. @xref{Contextual Precedence, ,Context-Dependent
9967Precedence}.
39a06c25 9968@end deffn
91d2c560 9969@end ifset
39a06c25 9970
148d66d8
JD
9971@deffn {Directive} %define @var{define-variable}
9972@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 9973@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
9974Define a variable to adjust Bison's behavior.
9975@xref{Decl Summary,,%define}.
9976@end deffn
9977
18b519c0 9978@deffn {Directive} %defines
6deb4447
AD
9979Bison declaration to create a header file meant for the scanner.
9980@xref{Decl Summary}.
18b519c0 9981@end deffn
6deb4447 9982
02975b9a
JD
9983@deffn {Directive} %defines @var{defines-file}
9984Same as above, but save in the file @var{defines-file}.
9985@xref{Decl Summary}.
9986@end deffn
9987
18b519c0 9988@deffn {Directive} %destructor
258b75ca 9989Specify how the parser should reclaim the memory associated to
fa7e68c3 9990discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9991@end deffn
72f889cc 9992
18b519c0 9993@deffn {Directive} %dprec
676385e2 9994Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9995time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9996@acronym{GLR} Parsers}.
18b519c0 9997@end deffn
676385e2 9998
dd8d9022
AD
9999@deffn {Symbol} $end
10000The predefined token marking the end of the token stream. It cannot be
10001used in the grammar.
10002@end deffn
10003
10004@deffn {Symbol} error
10005A token name reserved for error recovery. This token may be used in
10006grammar rules so as to allow the Bison parser to recognize an error in
10007the grammar without halting the process. In effect, a sentence
10008containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10009token @code{error} becomes the current lookahead token. Actions
10010corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10011token is reset to the token that originally caused the violation.
10012@xref{Error Recovery}.
18d192f0
AD
10013@end deffn
10014
18b519c0 10015@deffn {Directive} %error-verbose
2a8d363a
AD
10016Bison declaration to request verbose, specific error message strings
10017when @code{yyerror} is called.
18b519c0 10018@end deffn
2a8d363a 10019
02975b9a 10020@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10021Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10022Summary}.
18b519c0 10023@end deffn
d8988b2f 10024
18b519c0 10025@deffn {Directive} %glr-parser
c827f760
PE
10026Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10027Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10028@end deffn
676385e2 10029
dd8d9022
AD
10030@deffn {Directive} %initial-action
10031Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10032@end deffn
10033
e6e704dc
JD
10034@deffn {Directive} %language
10035Specify the programming language for the generated parser.
10036@xref{Decl Summary}.
10037@end deffn
10038
18b519c0 10039@deffn {Directive} %left
bfa74976
RS
10040Bison declaration to assign left associativity to token(s).
10041@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10042@end deffn
bfa74976 10043
feeb0eda 10044@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10045Bison declaration to specifying an additional parameter that
10046@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10047for Pure Parsers}.
18b519c0 10048@end deffn
2a8d363a 10049
18b519c0 10050@deffn {Directive} %merge
676385e2 10051Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10052reduce/reduce conflict with a rule having the same merging function, the
676385e2 10053function is applied to the two semantic values to get a single result.
c827f760 10054@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10055@end deffn
676385e2 10056
02975b9a 10057@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10058Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10059@end deffn
d8988b2f 10060
91d2c560 10061@ifset defaultprec
22fccf95
PE
10062@deffn {Directive} %no-default-prec
10063Do not assign a precedence to rules that lack an explicit @samp{%prec}
10064modifier. @xref{Contextual Precedence, ,Context-Dependent
10065Precedence}.
10066@end deffn
91d2c560 10067@end ifset
22fccf95 10068
18b519c0 10069@deffn {Directive} %no-lines
931c7513
RS
10070Bison declaration to avoid generating @code{#line} directives in the
10071parser file. @xref{Decl Summary}.
18b519c0 10072@end deffn
931c7513 10073
18b519c0 10074@deffn {Directive} %nonassoc
9d9b8b70 10075Bison declaration to assign nonassociativity to token(s).
bfa74976 10076@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10077@end deffn
bfa74976 10078
02975b9a 10079@deffn {Directive} %output "@var{file}"
72d2299c 10080Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10081Summary}.
18b519c0 10082@end deffn
d8988b2f 10083
feeb0eda 10084@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10085Bison declaration to specifying an additional parameter that
10086@code{yyparse} should accept. @xref{Parser Function,, The Parser
10087Function @code{yyparse}}.
18b519c0 10088@end deffn
2a8d363a 10089
18b519c0 10090@deffn {Directive} %prec
bfa74976
RS
10091Bison declaration to assign a precedence to a specific rule.
10092@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10093@end deffn
bfa74976 10094
18b519c0 10095@deffn {Directive} %pure-parser
d9df47b6
JD
10096Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10097for which Bison is more careful to warn about unreasonable usage.
18b519c0 10098@end deffn
bfa74976 10099
b50d2359 10100@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10101Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10102Require a Version of Bison}.
b50d2359
AD
10103@end deffn
10104
18b519c0 10105@deffn {Directive} %right
bfa74976
RS
10106Bison declaration to assign right associativity to token(s).
10107@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10108@end deffn
bfa74976 10109
e6e704dc
JD
10110@deffn {Directive} %skeleton
10111Specify the skeleton to use; usually for development.
10112@xref{Decl Summary}.
10113@end deffn
10114
18b519c0 10115@deffn {Directive} %start
704a47c4
AD
10116Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10117Start-Symbol}.
18b519c0 10118@end deffn
bfa74976 10119
18b519c0 10120@deffn {Directive} %token
bfa74976
RS
10121Bison declaration to declare token(s) without specifying precedence.
10122@xref{Token Decl, ,Token Type Names}.
18b519c0 10123@end deffn
bfa74976 10124
18b519c0 10125@deffn {Directive} %token-table
931c7513
RS
10126Bison declaration to include a token name table in the parser file.
10127@xref{Decl Summary}.
18b519c0 10128@end deffn
931c7513 10129
18b519c0 10130@deffn {Directive} %type
704a47c4
AD
10131Bison declaration to declare nonterminals. @xref{Type Decl,
10132,Nonterminal Symbols}.
18b519c0 10133@end deffn
bfa74976 10134
dd8d9022
AD
10135@deffn {Symbol} $undefined
10136The predefined token onto which all undefined values returned by
10137@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10138@code{error}.
10139@end deffn
10140
18b519c0 10141@deffn {Directive} %union
bfa74976
RS
10142Bison declaration to specify several possible data types for semantic
10143values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10144@end deffn
bfa74976 10145
dd8d9022
AD
10146@deffn {Macro} YYABORT
10147Macro to pretend that an unrecoverable syntax error has occurred, by
10148making @code{yyparse} return 1 immediately. The error reporting
10149function @code{yyerror} is not called. @xref{Parser Function, ,The
10150Parser Function @code{yyparse}}.
8405b70c
PB
10151
10152For Java parsers, this functionality is invoked using @code{return YYABORT;}
10153instead.
dd8d9022 10154@end deffn
3ded9a63 10155
dd8d9022
AD
10156@deffn {Macro} YYACCEPT
10157Macro to pretend that a complete utterance of the language has been
10158read, by making @code{yyparse} return 0 immediately.
10159@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10160
10161For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10162instead.
dd8d9022 10163@end deffn
bfa74976 10164
dd8d9022 10165@deffn {Macro} YYBACKUP
742e4900 10166Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10167token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10168@end deffn
bfa74976 10169
dd8d9022 10170@deffn {Variable} yychar
32c29292 10171External integer variable that contains the integer value of the
742e4900 10172lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10173@code{yyparse}.) Error-recovery rule actions may examine this variable.
10174@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10175@end deffn
bfa74976 10176
dd8d9022
AD
10177@deffn {Variable} yyclearin
10178Macro used in error-recovery rule actions. It clears the previous
742e4900 10179lookahead token. @xref{Error Recovery}.
18b519c0 10180@end deffn
bfa74976 10181
dd8d9022
AD
10182@deffn {Macro} YYDEBUG
10183Macro to define to equip the parser with tracing code. @xref{Tracing,
10184,Tracing Your Parser}.
18b519c0 10185@end deffn
bfa74976 10186
dd8d9022
AD
10187@deffn {Variable} yydebug
10188External integer variable set to zero by default. If @code{yydebug}
10189is given a nonzero value, the parser will output information on input
10190symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10191@end deffn
bfa74976 10192
dd8d9022
AD
10193@deffn {Macro} yyerrok
10194Macro to cause parser to recover immediately to its normal mode
10195after a syntax error. @xref{Error Recovery}.
10196@end deffn
10197
10198@deffn {Macro} YYERROR
10199Macro to pretend that a syntax error has just been detected: call
10200@code{yyerror} and then perform normal error recovery if possible
10201(@pxref{Error Recovery}), or (if recovery is impossible) make
10202@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10203
10204For Java parsers, this functionality is invoked using @code{return YYERROR;}
10205instead.
dd8d9022
AD
10206@end deffn
10207
10208@deffn {Function} yyerror
10209User-supplied function to be called by @code{yyparse} on error.
10210@xref{Error Reporting, ,The Error
10211Reporting Function @code{yyerror}}.
10212@end deffn
10213
10214@deffn {Macro} YYERROR_VERBOSE
10215An obsolete macro that you define with @code{#define} in the prologue
10216to request verbose, specific error message strings
10217when @code{yyerror} is called. It doesn't matter what definition you
10218use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10219@code{%error-verbose} is preferred.
10220@end deffn
10221
10222@deffn {Macro} YYINITDEPTH
10223Macro for specifying the initial size of the parser stack.
1a059451 10224@xref{Memory Management}.
dd8d9022
AD
10225@end deffn
10226
10227@deffn {Function} yylex
10228User-supplied lexical analyzer function, called with no arguments to get
10229the next token. @xref{Lexical, ,The Lexical Analyzer Function
10230@code{yylex}}.
10231@end deffn
10232
10233@deffn {Macro} YYLEX_PARAM
10234An obsolete macro for specifying an extra argument (or list of extra
32c29292 10235arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10236macro is deprecated, and is supported only for Yacc like parsers.
10237@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10238@end deffn
10239
10240@deffn {Variable} yylloc
10241External variable in which @code{yylex} should place the line and column
10242numbers associated with a token. (In a pure parser, it is a local
10243variable within @code{yyparse}, and its address is passed to
32c29292
JD
10244@code{yylex}.)
10245You can ignore this variable if you don't use the @samp{@@} feature in the
10246grammar actions.
10247@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10248In semantic actions, it stores the location of the lookahead token.
32c29292 10249@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10250@end deffn
10251
10252@deffn {Type} YYLTYPE
10253Data type of @code{yylloc}; by default, a structure with four
10254members. @xref{Location Type, , Data Types of Locations}.
10255@end deffn
10256
10257@deffn {Variable} yylval
10258External variable in which @code{yylex} should place the semantic
10259value associated with a token. (In a pure parser, it is a local
10260variable within @code{yyparse}, and its address is passed to
32c29292
JD
10261@code{yylex}.)
10262@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10263In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10264@xref{Actions, ,Actions}.
dd8d9022
AD
10265@end deffn
10266
10267@deffn {Macro} YYMAXDEPTH
1a059451
PE
10268Macro for specifying the maximum size of the parser stack. @xref{Memory
10269Management}.
dd8d9022
AD
10270@end deffn
10271
10272@deffn {Variable} yynerrs
8a2800e7 10273Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10274(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10275pure push parser, it is a member of yypstate.)
dd8d9022
AD
10276@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10277@end deffn
10278
10279@deffn {Function} yyparse
10280The parser function produced by Bison; call this function to start
10281parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10282@end deffn
10283
9987d1b3 10284@deffn {Function} yypstate_delete
f4101aa6 10285The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10286call this function to delete the memory associated with a parser.
f4101aa6 10287@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10288@code{yypstate_delete}}.
59da312b
JD
10289(The current push parsing interface is experimental and may evolve.
10290More user feedback will help to stabilize it.)
9987d1b3
JD
10291@end deffn
10292
10293@deffn {Function} yypstate_new
f4101aa6 10294The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10295call this function to create a new parser.
f4101aa6 10296@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10297@code{yypstate_new}}.
59da312b
JD
10298(The current push parsing interface is experimental and may evolve.
10299More user feedback will help to stabilize it.)
9987d1b3
JD
10300@end deffn
10301
10302@deffn {Function} yypull_parse
f4101aa6
AD
10303The parser function produced by Bison in push mode; call this function to
10304parse the rest of the input stream.
10305@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10306@code{yypull_parse}}.
59da312b
JD
10307(The current push parsing interface is experimental and may evolve.
10308More user feedback will help to stabilize it.)
9987d1b3
JD
10309@end deffn
10310
10311@deffn {Function} yypush_parse
f4101aa6
AD
10312The parser function produced by Bison in push mode; call this function to
10313parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10314@code{yypush_parse}}.
59da312b
JD
10315(The current push parsing interface is experimental and may evolve.
10316More user feedback will help to stabilize it.)
9987d1b3
JD
10317@end deffn
10318
dd8d9022
AD
10319@deffn {Macro} YYPARSE_PARAM
10320An obsolete macro for specifying the name of a parameter that
10321@code{yyparse} should accept. The use of this macro is deprecated, and
10322is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10323Conventions for Pure Parsers}.
10324@end deffn
10325
10326@deffn {Macro} YYRECOVERING
02103984
PE
10327The expression @code{YYRECOVERING ()} yields 1 when the parser
10328is recovering from a syntax error, and 0 otherwise.
10329@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10330@end deffn
10331
10332@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10333Macro used to control the use of @code{alloca} when the
10334deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10335the parser will use @code{malloc} to extend its stacks. If defined to
103361, the parser will use @code{alloca}. Values other than 0 and 1 are
10337reserved for future Bison extensions. If not defined,
10338@code{YYSTACK_USE_ALLOCA} defaults to 0.
10339
55289366 10340In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10341limited stack and with unreliable stack-overflow checking, you should
10342set @code{YYMAXDEPTH} to a value that cannot possibly result in
10343unchecked stack overflow on any of your target hosts when
10344@code{alloca} is called. You can inspect the code that Bison
10345generates in order to determine the proper numeric values. This will
10346require some expertise in low-level implementation details.
dd8d9022
AD
10347@end deffn
10348
10349@deffn {Type} YYSTYPE
10350Data type of semantic values; @code{int} by default.
10351@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10352@end deffn
bfa74976 10353
342b8b6e 10354@node Glossary
bfa74976
RS
10355@appendix Glossary
10356@cindex glossary
10357
10358@table @asis
34a6c2d1
JD
10359@item Accepting State
10360A state whose only action is the accept action.
10361The accepting state is thus a consistent state.
10362@xref{Understanding,,}.
10363
c827f760
PE
10364@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10365Formal method of specifying context-free grammars originally proposed
10366by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10367committee document contributing to what became the Algol 60 report.
10368@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10369
34a6c2d1
JD
10370@item Consistent State
10371A state containing only one possible action.
1d0f55cc 10372@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10373
bfa74976
RS
10374@item Context-free grammars
10375Grammars specified as rules that can be applied regardless of context.
10376Thus, if there is a rule which says that an integer can be used as an
10377expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10378permitted. @xref{Language and Grammar, ,Languages and Context-Free
10379Grammars}.
bfa74976 10380
620b5727
JD
10381@item Default Reduction
10382The reduction that a parser should perform if the current parser state
34a6c2d1 10383contains no other action for the lookahead token.
620b5727
JD
10384In permitted parser states, Bison declares the reduction with the
10385largest lookahead set to be the default reduction and removes that
10386lookahead set.
1d0f55cc 10387@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10388
bfa74976
RS
10389@item Dynamic allocation
10390Allocation of memory that occurs during execution, rather than at
10391compile time or on entry to a function.
10392
10393@item Empty string
10394Analogous to the empty set in set theory, the empty string is a
10395character string of length zero.
10396
10397@item Finite-state stack machine
10398A ``machine'' that has discrete states in which it is said to exist at
10399each instant in time. As input to the machine is processed, the
10400machine moves from state to state as specified by the logic of the
10401machine. In the case of the parser, the input is the language being
10402parsed, and the states correspond to various stages in the grammar
c827f760 10403rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10404
c827f760 10405@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10406A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10407that are not @acronym{LR}(1). It resolves situations that Bison's
10408deterministic parsing
676385e2
PH
10409algorithm cannot by effectively splitting off multiple parsers, trying all
10410possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10411right context. @xref{Generalized LR Parsing, ,Generalized
10412@acronym{LR} Parsing}.
676385e2 10413
bfa74976
RS
10414@item Grouping
10415A language construct that is (in general) grammatically divisible;
c827f760 10416for example, `expression' or `declaration' in C@.
bfa74976
RS
10417@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10418
34a6c2d1
JD
10419@item @acronym{IELR}(1)
10420A minimal @acronym{LR}(1) parser table generation algorithm.
10421That is, given any context-free grammar, @acronym{IELR}(1) generates
10422parser tables with the full language recognition power of canonical
10423@acronym{LR}(1) but with nearly the same number of parser states as
10424@acronym{LALR}(1).
10425This reduction in parser states is often an order of magnitude.
10426More importantly, because canonical @acronym{LR}(1)'s extra parser
10427states may contain duplicate conflicts in the case of
10428non-@acronym{LR}(1) grammars, the number of conflicts for
10429@acronym{IELR}(1) is often an order of magnitude less as well.
10430This can significantly reduce the complexity of developing of a grammar.
10431@xref{Decl Summary,,lr.type}.
10432
bfa74976
RS
10433@item Infix operator
10434An arithmetic operator that is placed between the operands on which it
10435performs some operation.
10436
10437@item Input stream
10438A continuous flow of data between devices or programs.
10439
10440@item Language construct
10441One of the typical usage schemas of the language. For example, one of
10442the constructs of the C language is the @code{if} statement.
10443@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10444
10445@item Left associativity
10446Operators having left associativity are analyzed from left to right:
10447@samp{a+b+c} first computes @samp{a+b} and then combines with
10448@samp{c}. @xref{Precedence, ,Operator Precedence}.
10449
10450@item Left recursion
89cab50d
AD
10451A rule whose result symbol is also its first component symbol; for
10452example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10453Rules}.
bfa74976
RS
10454
10455@item Left-to-right parsing
10456Parsing a sentence of a language by analyzing it token by token from
c827f760 10457left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10458
10459@item Lexical analyzer (scanner)
10460A function that reads an input stream and returns tokens one by one.
10461@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10462
10463@item Lexical tie-in
10464A flag, set by actions in the grammar rules, which alters the way
10465tokens are parsed. @xref{Lexical Tie-ins}.
10466
931c7513 10467@item Literal string token
14ded682 10468A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10469
742e4900
JD
10470@item Lookahead token
10471A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10472Tokens}.
bfa74976 10473
c827f760 10474@item @acronym{LALR}(1)
bfa74976 10475The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10476generators) can handle by default; a subset of @acronym{LR}(1).
10477@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10478
c827f760 10479@item @acronym{LR}(1)
bfa74976 10480The class of context-free grammars in which at most one token of
742e4900 10481lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10482
10483@item Nonterminal symbol
10484A grammar symbol standing for a grammatical construct that can
10485be expressed through rules in terms of smaller constructs; in other
10486words, a construct that is not a token. @xref{Symbols}.
10487
bfa74976
RS
10488@item Parser
10489A function that recognizes valid sentences of a language by analyzing
10490the syntax structure of a set of tokens passed to it from a lexical
10491analyzer.
10492
10493@item Postfix operator
10494An arithmetic operator that is placed after the operands upon which it
10495performs some operation.
10496
10497@item Reduction
10498Replacing a string of nonterminals and/or terminals with a single
89cab50d 10499nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10500Parser Algorithm}.
bfa74976
RS
10501
10502@item Reentrant
10503A reentrant subprogram is a subprogram which can be in invoked any
10504number of times in parallel, without interference between the various
10505invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10506
10507@item Reverse polish notation
10508A language in which all operators are postfix operators.
10509
10510@item Right recursion
89cab50d
AD
10511A rule whose result symbol is also its last component symbol; for
10512example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10513Rules}.
bfa74976
RS
10514
10515@item Semantics
10516In computer languages, the semantics are specified by the actions
10517taken for each instance of the language, i.e., the meaning of
10518each statement. @xref{Semantics, ,Defining Language Semantics}.
10519
10520@item Shift
10521A parser is said to shift when it makes the choice of analyzing
10522further input from the stream rather than reducing immediately some
c827f760 10523already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10524
10525@item Single-character literal
10526A single character that is recognized and interpreted as is.
10527@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10528
10529@item Start symbol
10530The nonterminal symbol that stands for a complete valid utterance in
10531the language being parsed. The start symbol is usually listed as the
13863333 10532first nonterminal symbol in a language specification.
bfa74976
RS
10533@xref{Start Decl, ,The Start-Symbol}.
10534
10535@item Symbol table
10536A data structure where symbol names and associated data are stored
10537during parsing to allow for recognition and use of existing
10538information in repeated uses of a symbol. @xref{Multi-function Calc}.
10539
6e649e65
PE
10540@item Syntax error
10541An error encountered during parsing of an input stream due to invalid
10542syntax. @xref{Error Recovery}.
10543
bfa74976
RS
10544@item Token
10545A basic, grammatically indivisible unit of a language. The symbol
10546that describes a token in the grammar is a terminal symbol.
10547The input of the Bison parser is a stream of tokens which comes from
10548the lexical analyzer. @xref{Symbols}.
10549
10550@item Terminal symbol
89cab50d
AD
10551A grammar symbol that has no rules in the grammar and therefore is
10552grammatically indivisible. The piece of text it represents is a token.
10553@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10554@end table
10555
342b8b6e 10556@node Copying This Manual
f2b5126e 10557@appendix Copying This Manual
f2b5126e
PB
10558@include fdl.texi
10559
342b8b6e 10560@node Index
bfa74976
RS
10561@unnumbered Index
10562
10563@printindex cp
10564
bfa74976 10565@bye
a06ea4aa 10566
8fbbeba2
AD
10567@c Local Variables:
10568@c fill-column: 76
10569@c End:
10570
a06ea4aa
AD
10571@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10572@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10573@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10574@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10575@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10576@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10577@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10578@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10579@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10580@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10581@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10582@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10583@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10584@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10585@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10586@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10587@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10588@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10589@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10590@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10591@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10592@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10593@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10594@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10595@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10596@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10597@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10598@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
34a6c2d1 10599@c LocalWords: YYSTACK DVI fdl printindex IELR