]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Convert multiple variable definition warnings to complaints.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
34a6c2d1
JD
354annotated context-free grammar into a deterministic or @acronym{GLR}
355parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
356@acronym{LR}(1) parser tables.
357Once you are proficient with Bison, you can use it to develop a wide
358range of language parsers, from those used in simple desk calculators to
359complex programming languages.
bfa74976
RS
360
361Bison is upward compatible with Yacc: all properly-written Yacc grammars
362ought to work with Bison with no change. Anyone familiar with Yacc
363should be able to use Bison with little trouble. You need to be fluent in
1e137b71 364C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
365
366We begin with tutorial chapters that explain the basic concepts of using
367Bison and show three explained examples, each building on the last. If you
368don't know Bison or Yacc, start by reading these chapters. Reference
369chapters follow which describe specific aspects of Bison in detail.
370
931c7513
RS
371Bison was written primarily by Robert Corbett; Richard Stallman made it
372Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 373multi-character string literals and other features.
931c7513 374
df1af54c 375This edition corresponds to version @value{VERSION} of Bison.
bfa74976 376
342b8b6e 377@node Conditions
bfa74976
RS
378@unnumbered Conditions for Using Bison
379
193d7c70
PE
380The distribution terms for Bison-generated parsers permit using the
381parsers in nonfree programs. Before Bison version 2.2, these extra
382permissions applied only when Bison was generating @acronym{LALR}(1)
383parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 384parsers could be used only in programs that were free software.
a31239f1 385
c827f760
PE
386The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
387compiler, have never
9ecbd125 388had such a requirement. They could always be used for nonfree
a31239f1
RS
389software. The reason Bison was different was not due to a special
390policy decision; it resulted from applying the usual General Public
391License to all of the Bison source code.
392
393The output of the Bison utility---the Bison parser file---contains a
394verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
395parser's implementation. (The actions from your grammar are inserted
396into this implementation at one point, but most of the rest of the
397implementation is not changed.) When we applied the @acronym{GPL}
398terms to the skeleton code for the parser's implementation,
a31239f1
RS
399the effect was to restrict the use of Bison output to free software.
400
401We didn't change the terms because of sympathy for people who want to
402make software proprietary. @strong{Software should be free.} But we
403concluded that limiting Bison's use to free software was doing little to
404encourage people to make other software free. So we decided to make the
405practical conditions for using Bison match the practical conditions for
c827f760 406using the other @acronym{GNU} tools.
bfa74976 407
193d7c70
PE
408This exception applies when Bison is generating code for a parser.
409You can tell whether the exception applies to a Bison output file by
410inspecting the file for text beginning with ``As a special
411exception@dots{}''. The text spells out the exact terms of the
412exception.
262aa8dd 413
f16b0819
PE
414@node Copying
415@unnumbered GNU GENERAL PUBLIC LICENSE
416@include gpl-3.0.texi
bfa74976 417
342b8b6e 418@node Concepts
bfa74976
RS
419@chapter The Concepts of Bison
420
421This chapter introduces many of the basic concepts without which the
422details of Bison will not make sense. If you do not already know how to
423use Bison or Yacc, we suggest you start by reading this chapter carefully.
424
425@menu
f56274a8
DJ
426* Language and Grammar:: Languages and context-free grammars,
427 as mathematical ideas.
428* Grammar in Bison:: How we represent grammars for Bison's sake.
429* Semantic Values:: Each token or syntactic grouping can have
430 a semantic value (the value of an integer,
431 the name of an identifier, etc.).
432* Semantic Actions:: Each rule can have an action containing C code.
433* GLR Parsers:: Writing parsers for general context-free languages.
434* Locations Overview:: Tracking Locations.
435* Bison Parser:: What are Bison's input and output,
436 how is the output used?
437* Stages:: Stages in writing and running Bison grammars.
438* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
439@end menu
440
342b8b6e 441@node Language and Grammar
bfa74976
RS
442@section Languages and Context-Free Grammars
443
bfa74976
RS
444@cindex context-free grammar
445@cindex grammar, context-free
446In order for Bison to parse a language, it must be described by a
447@dfn{context-free grammar}. This means that you specify one or more
448@dfn{syntactic groupings} and give rules for constructing them from their
449parts. For example, in the C language, one kind of grouping is called an
450`expression'. One rule for making an expression might be, ``An expression
451can be made of a minus sign and another expression''. Another would be,
452``An expression can be an integer''. As you can see, rules are often
453recursive, but there must be at least one rule which leads out of the
454recursion.
455
c827f760 456@cindex @acronym{BNF}
bfa74976
RS
457@cindex Backus-Naur form
458The most common formal system for presenting such rules for humans to read
c827f760
PE
459is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
460order to specify the language Algol 60. Any grammar expressed in
461@acronym{BNF} is a context-free grammar. The input to Bison is
462essentially machine-readable @acronym{BNF}.
bfa74976 463
c827f760 464@cindex @acronym{LALR}(1) grammars
34a6c2d1 465@cindex @acronym{IELR}(1) grammars
c827f760 466@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
467There are various important subclasses of context-free grammars.
468Although it can handle almost all context-free grammars, Bison is
469optimized for what are called @acronym{LR}(1) grammars.
470In brief, in these grammars, it must be possible to tell how to parse
471any portion of an input string with just a single token of lookahead.
472For historical reasons, Bison by default is limited by the additional
473restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
34a6c2d1
JD
476To escape these additional restrictions, you can request
477@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
478@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 479
c827f760
PE
480@cindex @acronym{GLR} parsing
481@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 482@cindex ambiguous grammars
9d9b8b70 483@cindex nondeterministic parsing
9501dc6e 484
34a6c2d1 485Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
486roughly that the next grammar rule to apply at any point in the input is
487uniquely determined by the preceding input and a fixed, finite portion
742e4900 488(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 489grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 490apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 491grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 492lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
493With the proper declarations, Bison is also able to parse these more
494general context-free grammars, using a technique known as @acronym{GLR}
495parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
496are able to handle any context-free grammar for which the number of
497possible parses of any given string is finite.
676385e2 498
bfa74976
RS
499@cindex symbols (abstract)
500@cindex token
501@cindex syntactic grouping
502@cindex grouping, syntactic
9501dc6e
AD
503In the formal grammatical rules for a language, each kind of syntactic
504unit or grouping is named by a @dfn{symbol}. Those which are built by
505grouping smaller constructs according to grammatical rules are called
bfa74976
RS
506@dfn{nonterminal symbols}; those which can't be subdivided are called
507@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
508corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 509corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
510
511We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
512nonterminal, mean. The tokens of C are identifiers, constants (numeric
513and string), and the various keywords, arithmetic operators and
514punctuation marks. So the terminal symbols of a grammar for C include
515`identifier', `number', `string', plus one symbol for each keyword,
516operator or punctuation mark: `if', `return', `const', `static', `int',
517`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
518(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
519lexicography, not grammar.)
520
521Here is a simple C function subdivided into tokens:
522
9edcd895
AD
523@ifinfo
524@example
525int /* @r{keyword `int'} */
14d4662b 526square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
527 @r{identifier, close-paren} */
528@{ /* @r{open-brace} */
aa08666d
AD
529 return x * x; /* @r{keyword `return', identifier, asterisk,}
530 @r{identifier, semicolon} */
9edcd895
AD
531@} /* @r{close-brace} */
532@end example
533@end ifinfo
534@ifnotinfo
bfa74976
RS
535@example
536int /* @r{keyword `int'} */
14d4662b 537square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 538@{ /* @r{open-brace} */
9edcd895 539 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
540@} /* @r{close-brace} */
541@end example
9edcd895 542@end ifnotinfo
bfa74976
RS
543
544The syntactic groupings of C include the expression, the statement, the
545declaration, and the function definition. These are represented in the
546grammar of C by nonterminal symbols `expression', `statement',
547`declaration' and `function definition'. The full grammar uses dozens of
548additional language constructs, each with its own nonterminal symbol, in
549order to express the meanings of these four. The example above is a
550function definition; it contains one declaration, and one statement. In
551the statement, each @samp{x} is an expression and so is @samp{x * x}.
552
553Each nonterminal symbol must have grammatical rules showing how it is made
554out of simpler constructs. For example, one kind of C statement is the
555@code{return} statement; this would be described with a grammar rule which
556reads informally as follows:
557
558@quotation
559A `statement' can be made of a `return' keyword, an `expression' and a
560`semicolon'.
561@end quotation
562
563@noindent
564There would be many other rules for `statement', one for each kind of
565statement in C.
566
567@cindex start symbol
568One nonterminal symbol must be distinguished as the special one which
569defines a complete utterance in the language. It is called the @dfn{start
570symbol}. In a compiler, this means a complete input program. In the C
571language, the nonterminal symbol `sequence of definitions and declarations'
572plays this role.
573
574For example, @samp{1 + 2} is a valid C expression---a valid part of a C
575program---but it is not valid as an @emph{entire} C program. In the
576context-free grammar of C, this follows from the fact that `expression' is
577not the start symbol.
578
579The Bison parser reads a sequence of tokens as its input, and groups the
580tokens using the grammar rules. If the input is valid, the end result is
581that the entire token sequence reduces to a single grouping whose symbol is
582the grammar's start symbol. If we use a grammar for C, the entire input
583must be a `sequence of definitions and declarations'. If not, the parser
584reports a syntax error.
585
342b8b6e 586@node Grammar in Bison
bfa74976
RS
587@section From Formal Rules to Bison Input
588@cindex Bison grammar
589@cindex grammar, Bison
590@cindex formal grammar
591
592A formal grammar is a mathematical construct. To define the language
593for Bison, you must write a file expressing the grammar in Bison syntax:
594a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
595
596A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 597as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
598in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
599
600The Bison representation for a terminal symbol is also called a @dfn{token
601type}. Token types as well can be represented as C-like identifiers. By
602convention, these identifiers should be upper case to distinguish them from
603nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
604@code{RETURN}. A terminal symbol that stands for a particular keyword in
605the language should be named after that keyword converted to upper case.
606The terminal symbol @code{error} is reserved for error recovery.
931c7513 607@xref{Symbols}.
bfa74976
RS
608
609A terminal symbol can also be represented as a character literal, just like
610a C character constant. You should do this whenever a token is just a
611single character (parenthesis, plus-sign, etc.): use that same character in
612a literal as the terminal symbol for that token.
613
931c7513
RS
614A third way to represent a terminal symbol is with a C string constant
615containing several characters. @xref{Symbols}, for more information.
616
bfa74976
RS
617The grammar rules also have an expression in Bison syntax. For example,
618here is the Bison rule for a C @code{return} statement. The semicolon in
619quotes is a literal character token, representing part of the C syntax for
620the statement; the naked semicolon, and the colon, are Bison punctuation
621used in every rule.
622
623@example
624stmt: RETURN expr ';'
625 ;
626@end example
627
628@noindent
629@xref{Rules, ,Syntax of Grammar Rules}.
630
342b8b6e 631@node Semantic Values
bfa74976
RS
632@section Semantic Values
633@cindex semantic value
634@cindex value, semantic
635
636A formal grammar selects tokens only by their classifications: for example,
637if a rule mentions the terminal symbol `integer constant', it means that
638@emph{any} integer constant is grammatically valid in that position. The
639precise value of the constant is irrelevant to how to parse the input: if
640@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 641grammatical.
bfa74976
RS
642
643But the precise value is very important for what the input means once it is
644parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6453989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
646has both a token type and a @dfn{semantic value}. @xref{Semantics,
647,Defining Language Semantics},
bfa74976
RS
648for details.
649
650The token type is a terminal symbol defined in the grammar, such as
651@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
652you need to know to decide where the token may validly appear and how to
653group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 654except their types.
bfa74976
RS
655
656The semantic value has all the rest of the information about the
657meaning of the token, such as the value of an integer, or the name of an
658identifier. (A token such as @code{','} which is just punctuation doesn't
659need to have any semantic value.)
660
661For example, an input token might be classified as token type
662@code{INTEGER} and have the semantic value 4. Another input token might
663have the same token type @code{INTEGER} but value 3989. When a grammar
664rule says that @code{INTEGER} is allowed, either of these tokens is
665acceptable because each is an @code{INTEGER}. When the parser accepts the
666token, it keeps track of the token's semantic value.
667
668Each grouping can also have a semantic value as well as its nonterminal
669symbol. For example, in a calculator, an expression typically has a
670semantic value that is a number. In a compiler for a programming
671language, an expression typically has a semantic value that is a tree
672structure describing the meaning of the expression.
673
342b8b6e 674@node Semantic Actions
bfa74976
RS
675@section Semantic Actions
676@cindex semantic actions
677@cindex actions, semantic
678
679In order to be useful, a program must do more than parse input; it must
680also produce some output based on the input. In a Bison grammar, a grammar
681rule can have an @dfn{action} made up of C statements. Each time the
682parser recognizes a match for that rule, the action is executed.
683@xref{Actions}.
13863333 684
bfa74976
RS
685Most of the time, the purpose of an action is to compute the semantic value
686of the whole construct from the semantic values of its parts. For example,
687suppose we have a rule which says an expression can be the sum of two
688expressions. When the parser recognizes such a sum, each of the
689subexpressions has a semantic value which describes how it was built up.
690The action for this rule should create a similar sort of value for the
691newly recognized larger expression.
692
693For example, here is a rule that says an expression can be the sum of
694two subexpressions:
695
696@example
697expr: expr '+' expr @{ $$ = $1 + $3; @}
698 ;
699@end example
700
701@noindent
702The action says how to produce the semantic value of the sum expression
703from the values of the two subexpressions.
704
676385e2 705@node GLR Parsers
c827f760
PE
706@section Writing @acronym{GLR} Parsers
707@cindex @acronym{GLR} parsing
708@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
709@findex %glr-parser
710@cindex conflicts
711@cindex shift/reduce conflicts
fa7e68c3 712@cindex reduce/reduce conflicts
676385e2 713
34a6c2d1
JD
714In some grammars, Bison's deterministic
715@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
716certain grammar rule at a given point. That is, it may not be able to
717decide (on the basis of the input read so far) which of two possible
718reductions (applications of a grammar rule) applies, or whether to apply
719a reduction or read more of the input and apply a reduction later in the
720input. These are known respectively as @dfn{reduce/reduce} conflicts
721(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
722(@pxref{Shift/Reduce}).
723
34a6c2d1 724To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 725more general parsing algorithm is sometimes necessary. If you include
676385e2 726@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 727(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
728(@acronym{GLR}) parser. These parsers handle Bison grammars that
729contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 730declarations) identically to deterministic parsers. However, when
9501dc6e
AD
731faced with unresolved shift/reduce and reduce/reduce conflicts,
732@acronym{GLR} parsers use the simple expedient of doing both,
733effectively cloning the parser to follow both possibilities. Each of
734the resulting parsers can again split, so that at any given time, there
735can be any number of possible parses being explored. The parsers
676385e2
PH
736proceed in lockstep; that is, all of them consume (shift) a given input
737symbol before any of them proceed to the next. Each of the cloned
738parsers eventually meets one of two possible fates: either it runs into
739a parsing error, in which case it simply vanishes, or it merges with
740another parser, because the two of them have reduced the input to an
741identical set of symbols.
742
743During the time that there are multiple parsers, semantic actions are
744recorded, but not performed. When a parser disappears, its recorded
745semantic actions disappear as well, and are never performed. When a
746reduction makes two parsers identical, causing them to merge, Bison
747records both sets of semantic actions. Whenever the last two parsers
748merge, reverting to the single-parser case, Bison resolves all the
749outstanding actions either by precedences given to the grammar rules
750involved, or by performing both actions, and then calling a designated
751user-defined function on the resulting values to produce an arbitrary
752merged result.
753
fa7e68c3 754@menu
f56274a8
DJ
755* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
756* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
757* GLR Semantic Actions:: Deferred semantic actions have special concerns.
758* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
759@end menu
760
761@node Simple GLR Parsers
762@subsection Using @acronym{GLR} on Unambiguous Grammars
763@cindex @acronym{GLR} parsing, unambiguous grammars
764@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
765@findex %glr-parser
766@findex %expect-rr
767@cindex conflicts
768@cindex reduce/reduce conflicts
769@cindex shift/reduce conflicts
770
771In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
772to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
773Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
34a6c2d1 810With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
849lookahead than the underlying @acronym{LR}(1) algorithm actually allows
850for. In this example, @acronym{LR}(2) would suffice, but also some cases
851that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
34a6c2d1 904When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
34a6c2d1 936@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1156the same as its effect in a deterministic parser.
32c29292
JD
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313 2707
2cbe6b7f
JD
2708The functionality of @var{Prologue} sections can often be subtle and
2709inflexible.
8e0a5e9e
JD
2710As an alternative, Bison provides a %code directive with an explicit qualifier
2711field, which identifies the purpose of the code and thus the location(s) where
2712Bison should generate it.
2713For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2714one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2715@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2716
2717Look again at the example of the previous section:
2718
2719@smallexample
2720%@{
2721 #define _GNU_SOURCE
2722 #include <stdio.h>
2723 #include "ptypes.h"
2724%@}
2725
2726%union @{
2727 long int n;
2728 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2729@}
2730
2731%@{
2732 static void print_token_value (FILE *, int, YYSTYPE);
2733 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2734%@}
2735
2736@dots{}
2737@end smallexample
2738
2739@noindent
2740Notice that there are two @var{Prologue} sections here, but there's a subtle
2741distinction between their functionality.
2742For example, if you decide to override Bison's default definition for
2743@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2744definition?
2745You should write it in the first since Bison will insert that code into the
8e0a5e9e 2746parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2747In which @var{Prologue} section should you prototype an internal function,
2748@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2749arguments?
2750You should prototype it in the second since Bison will insert that code
2751@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2752
2753This distinction in functionality between the two @var{Prologue} sections is
2754established by the appearance of the @code{%union} between them.
a501eca9 2755This behavior raises a few questions.
2cbe6b7f
JD
2756First, why should the position of a @code{%union} affect definitions related to
2757@code{YYLTYPE} and @code{yytokentype}?
2758Second, what if there is no @code{%union}?
2759In that case, the second kind of @var{Prologue} section is not available.
2760This behavior is not intuitive.
2761
8e0a5e9e 2762To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2763@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2764Let's go ahead and add the new @code{YYLTYPE} definition and the
2765@code{trace_token} prototype at the same time:
2766
2767@smallexample
16dc6a9e 2768%code top @{
2cbe6b7f
JD
2769 #define _GNU_SOURCE
2770 #include <stdio.h>
8e0a5e9e
JD
2771
2772 /* WARNING: The following code really belongs
16dc6a9e 2773 * in a `%code requires'; see below. */
8e0a5e9e 2774
2cbe6b7f
JD
2775 #include "ptypes.h"
2776 #define YYLTYPE YYLTYPE
2777 typedef struct YYLTYPE
2778 @{
2779 int first_line;
2780 int first_column;
2781 int last_line;
2782 int last_column;
2783 char *filename;
2784 @} YYLTYPE;
2785@}
2786
2787%union @{
2788 long int n;
2789 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2790@}
2791
2792%code @{
2793 static void print_token_value (FILE *, int, YYSTYPE);
2794 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2795 static void trace_token (enum yytokentype token, YYLTYPE loc);
2796@}
2797
2798@dots{}
2799@end smallexample
2800
2801@noindent
16dc6a9e
JD
2802In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2803functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2804explicit which kind you intend.
2cbe6b7f
JD
2805Moreover, both kinds are always available even in the absence of @code{%union}.
2806
16dc6a9e 2807The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2808The first two lines before the warning need to appear near the top of the
2809parser source code file.
2810The first line after the warning is required by @code{YYSTYPE} and thus also
2811needs to appear in the parser source code file.
2cbe6b7f 2812However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2813(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2814the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2815The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2816override the default @code{YYLTYPE} definition there.
2817
16dc6a9e 2818In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2819lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2820definitions.
16dc6a9e 2821Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2822
2823@smallexample
16dc6a9e 2824%code top @{
2cbe6b7f
JD
2825 #define _GNU_SOURCE
2826 #include <stdio.h>
2827@}
2828
16dc6a9e 2829%code requires @{
9bc0dd67
JD
2830 #include "ptypes.h"
2831@}
2832%union @{
2833 long int n;
2834 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2835@}
2836
16dc6a9e 2837%code requires @{
2cbe6b7f
JD
2838 #define YYLTYPE YYLTYPE
2839 typedef struct YYLTYPE
2840 @{
2841 int first_line;
2842 int first_column;
2843 int last_line;
2844 int last_column;
2845 char *filename;
2846 @} YYLTYPE;
2847@}
2848
136a0f76 2849%code @{
2cbe6b7f
JD
2850 static void print_token_value (FILE *, int, YYSTYPE);
2851 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2852 static void trace_token (enum yytokentype token, YYLTYPE loc);
2853@}
2854
2855@dots{}
2856@end smallexample
2857
2858@noindent
2859Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2860definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2861definitions in both the parser source code file and the parser header file.
16dc6a9e 2862(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2863place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2864
a501eca9 2865When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2866should prefer @code{%code requires} over @code{%code top} regardless of whether
2867you instruct Bison to generate a parser header file.
a501eca9 2868When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2869source code file and that has no special need to appear at the top of that
16dc6a9e 2870file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2871These practices will make the purpose of each block of your code explicit to
2872Bison and to other developers reading your grammar file.
8e0a5e9e 2873Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2874@code{%code requires} to be the most important of the four @var{Prologue}
2875alternatives.
a501eca9 2876
2cbe6b7f
JD
2877At some point while developing your parser, you might decide to provide
2878@code{trace_token} to modules that are external to your parser.
2879Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2880header file and the parser source code file.
2881Since this function is not a dependency required by @code{YYSTYPE} or
2882@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2883@code{%code requires}.
2cbe6b7f 2884More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2885@code{%code requires} is not sufficient.
8e0a5e9e 2886Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2887@code{%code provides}:
2cbe6b7f
JD
2888
2889@smallexample
16dc6a9e 2890%code top @{
2cbe6b7f 2891 #define _GNU_SOURCE
136a0f76 2892 #include <stdio.h>
2cbe6b7f 2893@}
136a0f76 2894
16dc6a9e 2895%code requires @{
2cbe6b7f
JD
2896 #include "ptypes.h"
2897@}
2898%union @{
2899 long int n;
2900 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2901@}
2902
16dc6a9e 2903%code requires @{
2cbe6b7f
JD
2904 #define YYLTYPE YYLTYPE
2905 typedef struct YYLTYPE
2906 @{
2907 int first_line;
2908 int first_column;
2909 int last_line;
2910 int last_column;
2911 char *filename;
2912 @} YYLTYPE;
2913@}
2914
16dc6a9e 2915%code provides @{
2cbe6b7f
JD
2916 void trace_token (enum yytokentype token, YYLTYPE loc);
2917@}
2918
2919%code @{
9bc0dd67
JD
2920 static void print_token_value (FILE *, int, YYSTYPE);
2921 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2922@}
9bc0dd67
JD
2923
2924@dots{}
2925@end smallexample
2926
2cbe6b7f
JD
2927@noindent
2928Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2929file and the parser source code file after the definitions for
2930@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2931
2932The above examples are careful to write directives in an order that reflects
8e0a5e9e 2933the layout of the generated parser source code and header files:
16dc6a9e 2934@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2935@code{%code}.
a501eca9 2936While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2937this order, Bison does not require it.
2938Instead, Bison lets you choose an organization that makes sense to you.
2939
a501eca9 2940You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2941In that case, Bison concatenates the contained code in declaration order.
2942This is the only way in which the position of one of these directives within
2943the grammar file affects its functionality.
2944
2945The result of the previous two properties is greater flexibility in how you may
2946organize your grammar file.
2947For example, you may organize semantic-type-related directives by semantic
2948type:
2949
2950@smallexample
16dc6a9e 2951%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2952%union @{ type1 field1; @}
2953%destructor @{ type1_free ($$); @} <field1>
2954%printer @{ type1_print ($$); @} <field1>
2955
16dc6a9e 2956%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2957%union @{ type2 field2; @}
2958%destructor @{ type2_free ($$); @} <field2>
2959%printer @{ type2_print ($$); @} <field2>
2960@end smallexample
2961
2962@noindent
2963You could even place each of the above directive groups in the rules section of
2964the grammar file next to the set of rules that uses the associated semantic
2965type.
61fee93e
JD
2966(In the rules section, you must terminate each of those directives with a
2967semicolon.)
2cbe6b7f
JD
2968And you don't have to worry that some directive (like a @code{%union}) in the
2969definitions section is going to adversely affect their functionality in some
2970counter-intuitive manner just because it comes first.
2971Such an organization is not possible using @var{Prologue} sections.
2972
a501eca9 2973This section has been concerned with explaining the advantages of the four
8e0a5e9e 2974@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2975However, in most cases when using these directives, you shouldn't need to
2976think about all the low-level ordering issues discussed here.
2977Instead, you should simply use these directives to label each block of your
2978code according to its purpose and let Bison handle the ordering.
2979@code{%code} is the most generic label.
16dc6a9e
JD
2980Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2981as needed.
a501eca9 2982
342b8b6e 2983@node Bison Declarations
bfa74976
RS
2984@subsection The Bison Declarations Section
2985@cindex Bison declarations (introduction)
2986@cindex declarations, Bison (introduction)
2987
2988The @var{Bison declarations} section contains declarations that define
2989terminal and nonterminal symbols, specify precedence, and so on.
2990In some simple grammars you may not need any declarations.
2991@xref{Declarations, ,Bison Declarations}.
2992
342b8b6e 2993@node Grammar Rules
bfa74976
RS
2994@subsection The Grammar Rules Section
2995@cindex grammar rules section
2996@cindex rules section for grammar
2997
2998The @dfn{grammar rules} section contains one or more Bison grammar
2999rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3000
3001There must always be at least one grammar rule, and the first
3002@samp{%%} (which precedes the grammar rules) may never be omitted even
3003if it is the first thing in the file.
3004
38a92d50 3005@node Epilogue
75f5aaea 3006@subsection The epilogue
bfa74976 3007@cindex additional C code section
75f5aaea 3008@cindex epilogue
bfa74976
RS
3009@cindex C code, section for additional
3010
08e49d20
PE
3011The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3012the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3013place to put anything that you want to have in the parser file but which need
3014not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3015definitions of @code{yylex} and @code{yyerror} often go here. Because
3016C requires functions to be declared before being used, you often need
3017to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3018even if you define them in the Epilogue.
75f5aaea 3019@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3020
3021If the last section is empty, you may omit the @samp{%%} that separates it
3022from the grammar rules.
3023
f8e1c9e5
AD
3024The Bison parser itself contains many macros and identifiers whose names
3025start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3026any such names (except those documented in this manual) in the epilogue
3027of the grammar file.
bfa74976 3028
342b8b6e 3029@node Symbols
bfa74976
RS
3030@section Symbols, Terminal and Nonterminal
3031@cindex nonterminal symbol
3032@cindex terminal symbol
3033@cindex token type
3034@cindex symbol
3035
3036@dfn{Symbols} in Bison grammars represent the grammatical classifications
3037of the language.
3038
3039A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3040class of syntactically equivalent tokens. You use the symbol in grammar
3041rules to mean that a token in that class is allowed. The symbol is
3042represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3043function returns a token type code to indicate what kind of token has
3044been read. You don't need to know what the code value is; you can use
3045the symbol to stand for it.
bfa74976 3046
f8e1c9e5
AD
3047A @dfn{nonterminal symbol} stands for a class of syntactically
3048equivalent groupings. The symbol name is used in writing grammar rules.
3049By convention, it should be all lower case.
bfa74976 3050
c046698e
AD
3051Symbol names can contain letters, underscores, periods, dashes, and (not
3052at the beginning) digits. Dashes in symbol names are a GNU
663ce7bb
AD
3053extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3054that contain periods or dashes make little sense: since they are not
3055valid symbols (in most programming languages) they are not exported as
3056token names.
bfa74976 3057
931c7513 3058There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3059
3060@itemize @bullet
3061@item
3062A @dfn{named token type} is written with an identifier, like an
c827f760 3063identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3064such name must be defined with a Bison declaration such as
3065@code{%token}. @xref{Token Decl, ,Token Type Names}.
3066
3067@item
3068@cindex character token
3069@cindex literal token
3070@cindex single-character literal
931c7513
RS
3071A @dfn{character token type} (or @dfn{literal character token}) is
3072written in the grammar using the same syntax used in C for character
3073constants; for example, @code{'+'} is a character token type. A
3074character token type doesn't need to be declared unless you need to
3075specify its semantic value data type (@pxref{Value Type, ,Data Types of
3076Semantic Values}), associativity, or precedence (@pxref{Precedence,
3077,Operator Precedence}).
bfa74976
RS
3078
3079By convention, a character token type is used only to represent a
3080token that consists of that particular character. Thus, the token
3081type @code{'+'} is used to represent the character @samp{+} as a
3082token. Nothing enforces this convention, but if you depart from it,
3083your program will confuse other readers.
3084
3085All the usual escape sequences used in character literals in C can be
3086used in Bison as well, but you must not use the null character as a
72d2299c
PE
3087character literal because its numeric code, zero, signifies
3088end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3089for @code{yylex}}). Also, unlike standard C, trigraphs have no
3090special meaning in Bison character literals, nor is backslash-newline
3091allowed.
931c7513
RS
3092
3093@item
3094@cindex string token
3095@cindex literal string token
9ecbd125 3096@cindex multicharacter literal
931c7513
RS
3097A @dfn{literal string token} is written like a C string constant; for
3098example, @code{"<="} is a literal string token. A literal string token
3099doesn't need to be declared unless you need to specify its semantic
14ded682 3100value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3101(@pxref{Precedence}).
3102
3103You can associate the literal string token with a symbolic name as an
3104alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3105Declarations}). If you don't do that, the lexical analyzer has to
3106retrieve the token number for the literal string token from the
3107@code{yytname} table (@pxref{Calling Convention}).
3108
c827f760 3109@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3110
3111By convention, a literal string token is used only to represent a token
3112that consists of that particular string. Thus, you should use the token
3113type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3114does not enforce this convention, but if you depart from it, people who
931c7513
RS
3115read your program will be confused.
3116
3117All the escape sequences used in string literals in C can be used in
92ac3705
PE
3118Bison as well, except that you must not use a null character within a
3119string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3120meaning in Bison string literals, nor is backslash-newline allowed. A
3121literal string token must contain two or more characters; for a token
3122containing just one character, use a character token (see above).
bfa74976
RS
3123@end itemize
3124
3125How you choose to write a terminal symbol has no effect on its
3126grammatical meaning. That depends only on where it appears in rules and
3127on when the parser function returns that symbol.
3128
72d2299c
PE
3129The value returned by @code{yylex} is always one of the terminal
3130symbols, except that a zero or negative value signifies end-of-input.
3131Whichever way you write the token type in the grammar rules, you write
3132it the same way in the definition of @code{yylex}. The numeric code
3133for a character token type is simply the positive numeric code of the
3134character, so @code{yylex} can use the identical value to generate the
3135requisite code, though you may need to convert it to @code{unsigned
3136char} to avoid sign-extension on hosts where @code{char} is signed.
3137Each named token type becomes a C macro in
bfa74976 3138the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3139(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3140@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3141
3142If @code{yylex} is defined in a separate file, you need to arrange for the
3143token-type macro definitions to be available there. Use the @samp{-d}
3144option when you run Bison, so that it will write these macro definitions
3145into a separate header file @file{@var{name}.tab.h} which you can include
3146in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3147
72d2299c 3148If you want to write a grammar that is portable to any Standard C
9d9b8b70 3149host, you must use only nonnull character tokens taken from the basic
c827f760 3150execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3151digits, the 52 lower- and upper-case English letters, and the
3152characters in the following C-language string:
3153
3154@example
3155"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3156@end example
3157
f8e1c9e5
AD
3158The @code{yylex} function and Bison must use a consistent character set
3159and encoding for character tokens. For example, if you run Bison in an
3160@acronym{ASCII} environment, but then compile and run the resulting
3161program in an environment that uses an incompatible character set like
3162@acronym{EBCDIC}, the resulting program may not work because the tables
3163generated by Bison will assume @acronym{ASCII} numeric values for
3164character tokens. It is standard practice for software distributions to
3165contain C source files that were generated by Bison in an
3166@acronym{ASCII} environment, so installers on platforms that are
3167incompatible with @acronym{ASCII} must rebuild those files before
3168compiling them.
e966383b 3169
bfa74976
RS
3170The symbol @code{error} is a terminal symbol reserved for error recovery
3171(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3172In particular, @code{yylex} should never return this value. The default
3173value of the error token is 256, unless you explicitly assigned 256 to
3174one of your tokens with a @code{%token} declaration.
bfa74976 3175
342b8b6e 3176@node Rules
bfa74976
RS
3177@section Syntax of Grammar Rules
3178@cindex rule syntax
3179@cindex grammar rule syntax
3180@cindex syntax of grammar rules
3181
3182A Bison grammar rule has the following general form:
3183
3184@example
e425e872 3185@group
bfa74976
RS
3186@var{result}: @var{components}@dots{}
3187 ;
e425e872 3188@end group
bfa74976
RS
3189@end example
3190
3191@noindent
9ecbd125 3192where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3193and @var{components} are various terminal and nonterminal symbols that
13863333 3194are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3195
3196For example,
3197
3198@example
3199@group
3200exp: exp '+' exp
3201 ;
3202@end group
3203@end example
3204
3205@noindent
3206says that two groupings of type @code{exp}, with a @samp{+} token in between,
3207can be combined into a larger grouping of type @code{exp}.
3208
72d2299c
PE
3209White space in rules is significant only to separate symbols. You can add
3210extra white space as you wish.
bfa74976
RS
3211
3212Scattered among the components can be @var{actions} that determine
3213the semantics of the rule. An action looks like this:
3214
3215@example
3216@{@var{C statements}@}
3217@end example
3218
3219@noindent
287c78f6
PE
3220@cindex braced code
3221This is an example of @dfn{braced code}, that is, C code surrounded by
3222braces, much like a compound statement in C@. Braced code can contain
3223any sequence of C tokens, so long as its braces are balanced. Bison
3224does not check the braced code for correctness directly; it merely
3225copies the code to the output file, where the C compiler can check it.
3226
3227Within braced code, the balanced-brace count is not affected by braces
3228within comments, string literals, or character constants, but it is
3229affected by the C digraphs @samp{<%} and @samp{%>} that represent
3230braces. At the top level braced code must be terminated by @samp{@}}
3231and not by a digraph. Bison does not look for trigraphs, so if braced
3232code uses trigraphs you should ensure that they do not affect the
3233nesting of braces or the boundaries of comments, string literals, or
3234character constants.
3235
bfa74976
RS
3236Usually there is only one action and it follows the components.
3237@xref{Actions}.
3238
3239@findex |
3240Multiple rules for the same @var{result} can be written separately or can
3241be joined with the vertical-bar character @samp{|} as follows:
3242
bfa74976
RS
3243@example
3244@group
3245@var{result}: @var{rule1-components}@dots{}
3246 | @var{rule2-components}@dots{}
3247 @dots{}
3248 ;
3249@end group
3250@end example
bfa74976
RS
3251
3252@noindent
3253They are still considered distinct rules even when joined in this way.
3254
3255If @var{components} in a rule is empty, it means that @var{result} can
3256match the empty string. For example, here is how to define a
3257comma-separated sequence of zero or more @code{exp} groupings:
3258
3259@example
3260@group
3261expseq: /* empty */
3262 | expseq1
3263 ;
3264@end group
3265
3266@group
3267expseq1: exp
3268 | expseq1 ',' exp
3269 ;
3270@end group
3271@end example
3272
3273@noindent
3274It is customary to write a comment @samp{/* empty */} in each rule
3275with no components.
3276
342b8b6e 3277@node Recursion
bfa74976
RS
3278@section Recursive Rules
3279@cindex recursive rule
3280
f8e1c9e5
AD
3281A rule is called @dfn{recursive} when its @var{result} nonterminal
3282appears also on its right hand side. Nearly all Bison grammars need to
3283use recursion, because that is the only way to define a sequence of any
3284number of a particular thing. Consider this recursive definition of a
9ecbd125 3285comma-separated sequence of one or more expressions:
bfa74976
RS
3286
3287@example
3288@group
3289expseq1: exp
3290 | expseq1 ',' exp
3291 ;
3292@end group
3293@end example
3294
3295@cindex left recursion
3296@cindex right recursion
3297@noindent
3298Since the recursive use of @code{expseq1} is the leftmost symbol in the
3299right hand side, we call this @dfn{left recursion}. By contrast, here
3300the same construct is defined using @dfn{right recursion}:
3301
3302@example
3303@group
3304expseq1: exp
3305 | exp ',' expseq1
3306 ;
3307@end group
3308@end example
3309
3310@noindent
ec3bc396
AD
3311Any kind of sequence can be defined using either left recursion or right
3312recursion, but you should always use left recursion, because it can
3313parse a sequence of any number of elements with bounded stack space.
3314Right recursion uses up space on the Bison stack in proportion to the
3315number of elements in the sequence, because all the elements must be
3316shifted onto the stack before the rule can be applied even once.
3317@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3318of this.
bfa74976
RS
3319
3320@cindex mutual recursion
3321@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3322rule does not appear directly on its right hand side, but does appear
3323in rules for other nonterminals which do appear on its right hand
13863333 3324side.
bfa74976
RS
3325
3326For example:
3327
3328@example
3329@group
3330expr: primary
3331 | primary '+' primary
3332 ;
3333@end group
3334
3335@group
3336primary: constant
3337 | '(' expr ')'
3338 ;
3339@end group
3340@end example
3341
3342@noindent
3343defines two mutually-recursive nonterminals, since each refers to the
3344other.
3345
342b8b6e 3346@node Semantics
bfa74976
RS
3347@section Defining Language Semantics
3348@cindex defining language semantics
13863333 3349@cindex language semantics, defining
bfa74976
RS
3350
3351The grammar rules for a language determine only the syntax. The semantics
3352are determined by the semantic values associated with various tokens and
3353groupings, and by the actions taken when various groupings are recognized.
3354
3355For example, the calculator calculates properly because the value
3356associated with each expression is the proper number; it adds properly
3357because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3358the numbers associated with @var{x} and @var{y}.
3359
3360@menu
3361* Value Type:: Specifying one data type for all semantic values.
3362* Multiple Types:: Specifying several alternative data types.
3363* Actions:: An action is the semantic definition of a grammar rule.
3364* Action Types:: Specifying data types for actions to operate on.
3365* Mid-Rule Actions:: Most actions go at the end of a rule.
3366 This says when, why and how to use the exceptional
3367 action in the middle of a rule.
3368@end menu
3369
342b8b6e 3370@node Value Type
bfa74976
RS
3371@subsection Data Types of Semantic Values
3372@cindex semantic value type
3373@cindex value type, semantic
3374@cindex data types of semantic values
3375@cindex default data type
3376
3377In a simple program it may be sufficient to use the same data type for
3378the semantic values of all language constructs. This was true in the
c827f760 3379@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3380Notation Calculator}).
bfa74976 3381
ddc8ede1
PE
3382Bison normally uses the type @code{int} for semantic values if your
3383program uses the same data type for all language constructs. To
bfa74976
RS
3384specify some other type, define @code{YYSTYPE} as a macro, like this:
3385
3386@example
3387#define YYSTYPE double
3388@end example
3389
3390@noindent
50cce58e
PE
3391@code{YYSTYPE}'s replacement list should be a type name
3392that does not contain parentheses or square brackets.
342b8b6e 3393This macro definition must go in the prologue of the grammar file
75f5aaea 3394(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3395
342b8b6e 3396@node Multiple Types
bfa74976
RS
3397@subsection More Than One Value Type
3398
3399In most programs, you will need different data types for different kinds
3400of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3401@code{int} or @code{long int}, while a string constant needs type
3402@code{char *}, and an identifier might need a pointer to an entry in the
3403symbol table.
bfa74976
RS
3404
3405To use more than one data type for semantic values in one parser, Bison
3406requires you to do two things:
3407
3408@itemize @bullet
3409@item
ddc8ede1 3410Specify the entire collection of possible data types, either by using the
704a47c4 3411@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3412Value Types}), or by using a @code{typedef} or a @code{#define} to
3413define @code{YYSTYPE} to be a union type whose member names are
3414the type tags.
bfa74976
RS
3415
3416@item
14ded682
AD
3417Choose one of those types for each symbol (terminal or nonterminal) for
3418which semantic values are used. This is done for tokens with the
3419@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3420and for groupings with the @code{%type} Bison declaration (@pxref{Type
3421Decl, ,Nonterminal Symbols}).
bfa74976
RS
3422@end itemize
3423
342b8b6e 3424@node Actions
bfa74976
RS
3425@subsection Actions
3426@cindex action
3427@vindex $$
3428@vindex $@var{n}
3429
3430An action accompanies a syntactic rule and contains C code to be executed
3431each time an instance of that rule is recognized. The task of most actions
3432is to compute a semantic value for the grouping built by the rule from the
3433semantic values associated with tokens or smaller groupings.
3434
287c78f6
PE
3435An action consists of braced code containing C statements, and can be
3436placed at any position in the rule;
704a47c4
AD
3437it is executed at that position. Most rules have just one action at the
3438end of the rule, following all the components. Actions in the middle of
3439a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3440Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3441
3442The C code in an action can refer to the semantic values of the components
3443matched by the rule with the construct @code{$@var{n}}, which stands for
3444the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3445being constructed is @code{$$}. Bison translates both of these
3446constructs into expressions of the appropriate type when it copies the
3447actions into the parser file. @code{$$} is translated to a modifiable
3448lvalue, so it can be assigned to.
bfa74976
RS
3449
3450Here is a typical example:
3451
3452@example
3453@group
3454exp: @dots{}
3455 | exp '+' exp
3456 @{ $$ = $1 + $3; @}
3457@end group
3458@end example
3459
3460@noindent
3461This rule constructs an @code{exp} from two smaller @code{exp} groupings
3462connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3463refer to the semantic values of the two component @code{exp} groupings,
3464which are the first and third symbols on the right hand side of the rule.
3465The sum is stored into @code{$$} so that it becomes the semantic value of
3466the addition-expression just recognized by the rule. If there were a
3467useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3468referred to as @code{$2}.
bfa74976 3469
3ded9a63
AD
3470Note that the vertical-bar character @samp{|} is really a rule
3471separator, and actions are attached to a single rule. This is a
3472difference with tools like Flex, for which @samp{|} stands for either
3473``or'', or ``the same action as that of the next rule''. In the
3474following example, the action is triggered only when @samp{b} is found:
3475
3476@example
3477@group
3478a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3479@end group
3480@end example
3481
bfa74976
RS
3482@cindex default action
3483If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3484@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3485becomes the value of the whole rule. Of course, the default action is
3486valid only if the two data types match. There is no meaningful default
3487action for an empty rule; every empty rule must have an explicit action
3488unless the rule's value does not matter.
bfa74976
RS
3489
3490@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3491to tokens and groupings on the stack @emph{before} those that match the
3492current rule. This is a very risky practice, and to use it reliably
3493you must be certain of the context in which the rule is applied. Here
3494is a case in which you can use this reliably:
3495
3496@example
3497@group
3498foo: expr bar '+' expr @{ @dots{} @}
3499 | expr bar '-' expr @{ @dots{} @}
3500 ;
3501@end group
3502
3503@group
3504bar: /* empty */
3505 @{ previous_expr = $0; @}
3506 ;
3507@end group
3508@end example
3509
3510As long as @code{bar} is used only in the fashion shown here, @code{$0}
3511always refers to the @code{expr} which precedes @code{bar} in the
3512definition of @code{foo}.
3513
32c29292 3514@vindex yylval
742e4900 3515It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3516any, from a semantic action.
3517This semantic value is stored in @code{yylval}.
3518@xref{Action Features, ,Special Features for Use in Actions}.
3519
342b8b6e 3520@node Action Types
bfa74976
RS
3521@subsection Data Types of Values in Actions
3522@cindex action data types
3523@cindex data types in actions
3524
3525If you have chosen a single data type for semantic values, the @code{$$}
3526and @code{$@var{n}} constructs always have that data type.
3527
3528If you have used @code{%union} to specify a variety of data types, then you
3529must declare a choice among these types for each terminal or nonterminal
3530symbol that can have a semantic value. Then each time you use @code{$$} or
3531@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3532in the rule. In this example,
bfa74976
RS
3533
3534@example
3535@group
3536exp: @dots{}
3537 | exp '+' exp
3538 @{ $$ = $1 + $3; @}
3539@end group
3540@end example
3541
3542@noindent
3543@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3544have the data type declared for the nonterminal symbol @code{exp}. If
3545@code{$2} were used, it would have the data type declared for the
e0c471a9 3546terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3547
3548Alternatively, you can specify the data type when you refer to the value,
3549by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3550reference. For example, if you have defined types as shown here:
3551
3552@example
3553@group
3554%union @{
3555 int itype;
3556 double dtype;
3557@}
3558@end group
3559@end example
3560
3561@noindent
3562then you can write @code{$<itype>1} to refer to the first subunit of the
3563rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3564
342b8b6e 3565@node Mid-Rule Actions
bfa74976
RS
3566@subsection Actions in Mid-Rule
3567@cindex actions in mid-rule
3568@cindex mid-rule actions
3569
3570Occasionally it is useful to put an action in the middle of a rule.
3571These actions are written just like usual end-of-rule actions, but they
3572are executed before the parser even recognizes the following components.
3573
3574A mid-rule action may refer to the components preceding it using
3575@code{$@var{n}}, but it may not refer to subsequent components because
3576it is run before they are parsed.
3577
3578The mid-rule action itself counts as one of the components of the rule.
3579This makes a difference when there is another action later in the same rule
3580(and usually there is another at the end): you have to count the actions
3581along with the symbols when working out which number @var{n} to use in
3582@code{$@var{n}}.
3583
3584The mid-rule action can also have a semantic value. The action can set
3585its value with an assignment to @code{$$}, and actions later in the rule
3586can refer to the value using @code{$@var{n}}. Since there is no symbol
3587to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3588in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3589specify a data type each time you refer to this value.
bfa74976
RS
3590
3591There is no way to set the value of the entire rule with a mid-rule
3592action, because assignments to @code{$$} do not have that effect. The
3593only way to set the value for the entire rule is with an ordinary action
3594at the end of the rule.
3595
3596Here is an example from a hypothetical compiler, handling a @code{let}
3597statement that looks like @samp{let (@var{variable}) @var{statement}} and
3598serves to create a variable named @var{variable} temporarily for the
3599duration of @var{statement}. To parse this construct, we must put
3600@var{variable} into the symbol table while @var{statement} is parsed, then
3601remove it afterward. Here is how it is done:
3602
3603@example
3604@group
3605stmt: LET '(' var ')'
3606 @{ $<context>$ = push_context ();
3607 declare_variable ($3); @}
3608 stmt @{ $$ = $6;
3609 pop_context ($<context>5); @}
3610@end group
3611@end example
3612
3613@noindent
3614As soon as @samp{let (@var{variable})} has been recognized, the first
3615action is run. It saves a copy of the current semantic context (the
3616list of accessible variables) as its semantic value, using alternative
3617@code{context} in the data-type union. Then it calls
3618@code{declare_variable} to add the new variable to that list. Once the
3619first action is finished, the embedded statement @code{stmt} can be
3620parsed. Note that the mid-rule action is component number 5, so the
3621@samp{stmt} is component number 6.
3622
3623After the embedded statement is parsed, its semantic value becomes the
3624value of the entire @code{let}-statement. Then the semantic value from the
3625earlier action is used to restore the prior list of variables. This
3626removes the temporary @code{let}-variable from the list so that it won't
3627appear to exist while the rest of the program is parsed.
3628
841a7737
JD
3629@findex %destructor
3630@cindex discarded symbols, mid-rule actions
3631@cindex error recovery, mid-rule actions
3632In the above example, if the parser initiates error recovery (@pxref{Error
3633Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3634it might discard the previous semantic context @code{$<context>5} without
3635restoring it.
3636Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3637Discarded Symbols}).
ec5479ce
JD
3638However, Bison currently provides no means to declare a destructor specific to
3639a particular mid-rule action's semantic value.
841a7737
JD
3640
3641One solution is to bury the mid-rule action inside a nonterminal symbol and to
3642declare a destructor for that symbol:
3643
3644@example
3645@group
3646%type <context> let
3647%destructor @{ pop_context ($$); @} let
3648
3649%%
3650
3651stmt: let stmt
3652 @{ $$ = $2;
3653 pop_context ($1); @}
3654 ;
3655
3656let: LET '(' var ')'
3657 @{ $$ = push_context ();
3658 declare_variable ($3); @}
3659 ;
3660
3661@end group
3662@end example
3663
3664@noindent
3665Note that the action is now at the end of its rule.
3666Any mid-rule action can be converted to an end-of-rule action in this way, and
3667this is what Bison actually does to implement mid-rule actions.
3668
bfa74976
RS
3669Taking action before a rule is completely recognized often leads to
3670conflicts since the parser must commit to a parse in order to execute the
3671action. For example, the following two rules, without mid-rule actions,
3672can coexist in a working parser because the parser can shift the open-brace
3673token and look at what follows before deciding whether there is a
3674declaration or not:
3675
3676@example
3677@group
3678compound: '@{' declarations statements '@}'
3679 | '@{' statements '@}'
3680 ;
3681@end group
3682@end example
3683
3684@noindent
3685But when we add a mid-rule action as follows, the rules become nonfunctional:
3686
3687@example
3688@group
3689compound: @{ prepare_for_local_variables (); @}
3690 '@{' declarations statements '@}'
3691@end group
3692@group
3693 | '@{' statements '@}'
3694 ;
3695@end group
3696@end example
3697
3698@noindent
3699Now the parser is forced to decide whether to run the mid-rule action
3700when it has read no farther than the open-brace. In other words, it
3701must commit to using one rule or the other, without sufficient
3702information to do it correctly. (The open-brace token is what is called
742e4900
JD
3703the @dfn{lookahead} token at this time, since the parser is still
3704deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3705
3706You might think that you could correct the problem by putting identical
3707actions into the two rules, like this:
3708
3709@example
3710@group
3711compound: @{ prepare_for_local_variables (); @}
3712 '@{' declarations statements '@}'
3713 | @{ prepare_for_local_variables (); @}
3714 '@{' statements '@}'
3715 ;
3716@end group
3717@end example
3718
3719@noindent
3720But this does not help, because Bison does not realize that the two actions
3721are identical. (Bison never tries to understand the C code in an action.)
3722
3723If the grammar is such that a declaration can be distinguished from a
3724statement by the first token (which is true in C), then one solution which
3725does work is to put the action after the open-brace, like this:
3726
3727@example
3728@group
3729compound: '@{' @{ prepare_for_local_variables (); @}
3730 declarations statements '@}'
3731 | '@{' statements '@}'
3732 ;
3733@end group
3734@end example
3735
3736@noindent
3737Now the first token of the following declaration or statement,
3738which would in any case tell Bison which rule to use, can still do so.
3739
3740Another solution is to bury the action inside a nonterminal symbol which
3741serves as a subroutine:
3742
3743@example
3744@group
3745subroutine: /* empty */
3746 @{ prepare_for_local_variables (); @}
3747 ;
3748
3749@end group
3750
3751@group
3752compound: subroutine
3753 '@{' declarations statements '@}'
3754 | subroutine
3755 '@{' statements '@}'
3756 ;
3757@end group
3758@end example
3759
3760@noindent
3761Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3762deciding which rule for @code{compound} it will eventually use.
bfa74976 3763
342b8b6e 3764@node Locations
847bf1f5
AD
3765@section Tracking Locations
3766@cindex location
95923bd6
AD
3767@cindex textual location
3768@cindex location, textual
847bf1f5
AD
3769
3770Though grammar rules and semantic actions are enough to write a fully
72d2299c 3771functional parser, it can be useful to process some additional information,
3e259915
MA
3772especially symbol locations.
3773
704a47c4
AD
3774The way locations are handled is defined by providing a data type, and
3775actions to take when rules are matched.
847bf1f5
AD
3776
3777@menu
3778* Location Type:: Specifying a data type for locations.
3779* Actions and Locations:: Using locations in actions.
3780* Location Default Action:: Defining a general way to compute locations.
3781@end menu
3782
342b8b6e 3783@node Location Type
847bf1f5
AD
3784@subsection Data Type of Locations
3785@cindex data type of locations
3786@cindex default location type
3787
3788Defining a data type for locations is much simpler than for semantic values,
3789since all tokens and groupings always use the same type.
3790
50cce58e
PE
3791You can specify the type of locations by defining a macro called
3792@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3793defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3794When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3795four members:
3796
3797@example
6273355b 3798typedef struct YYLTYPE
847bf1f5
AD
3799@{
3800 int first_line;
3801 int first_column;
3802 int last_line;
3803 int last_column;
6273355b 3804@} YYLTYPE;
847bf1f5
AD
3805@end example
3806
cd48d21d
AD
3807At the beginning of the parsing, Bison initializes all these fields to 1
3808for @code{yylloc}.
3809
342b8b6e 3810@node Actions and Locations
847bf1f5
AD
3811@subsection Actions and Locations
3812@cindex location actions
3813@cindex actions, location
3814@vindex @@$
3815@vindex @@@var{n}
3816
3817Actions are not only useful for defining language semantics, but also for
3818describing the behavior of the output parser with locations.
3819
3820The most obvious way for building locations of syntactic groupings is very
72d2299c 3821similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3822constructs can be used to access the locations of the elements being matched.
3823The location of the @var{n}th component of the right hand side is
3824@code{@@@var{n}}, while the location of the left hand side grouping is
3825@code{@@$}.
3826
3e259915 3827Here is a basic example using the default data type for locations:
847bf1f5
AD
3828
3829@example
3830@group
3831exp: @dots{}
3e259915 3832 | exp '/' exp
847bf1f5 3833 @{
3e259915
MA
3834 @@$.first_column = @@1.first_column;
3835 @@$.first_line = @@1.first_line;
847bf1f5
AD
3836 @@$.last_column = @@3.last_column;
3837 @@$.last_line = @@3.last_line;
3e259915
MA
3838 if ($3)
3839 $$ = $1 / $3;
3840 else
3841 @{
3842 $$ = 1;
4e03e201
AD
3843 fprintf (stderr,
3844 "Division by zero, l%d,c%d-l%d,c%d",
3845 @@3.first_line, @@3.first_column,
3846 @@3.last_line, @@3.last_column);
3e259915 3847 @}
847bf1f5
AD
3848 @}
3849@end group
3850@end example
3851
3e259915 3852As for semantic values, there is a default action for locations that is
72d2299c 3853run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3854beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3855last symbol.
3e259915 3856
72d2299c 3857With this default action, the location tracking can be fully automatic. The
3e259915
MA
3858example above simply rewrites this way:
3859
3860@example
3861@group
3862exp: @dots{}
3863 | exp '/' exp
3864 @{
3865 if ($3)
3866 $$ = $1 / $3;
3867 else
3868 @{
3869 $$ = 1;
4e03e201
AD
3870 fprintf (stderr,
3871 "Division by zero, l%d,c%d-l%d,c%d",
3872 @@3.first_line, @@3.first_column,
3873 @@3.last_line, @@3.last_column);
3e259915
MA
3874 @}
3875 @}
3876@end group
3877@end example
847bf1f5 3878
32c29292 3879@vindex yylloc
742e4900 3880It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3881from a semantic action.
3882This location is stored in @code{yylloc}.
3883@xref{Action Features, ,Special Features for Use in Actions}.
3884
342b8b6e 3885@node Location Default Action
847bf1f5
AD
3886@subsection Default Action for Locations
3887@vindex YYLLOC_DEFAULT
8710fc41 3888@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3889
72d2299c 3890Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3891locations are much more general than semantic values, there is room in
3892the output parser to redefine the default action to take for each
72d2299c 3893rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3894matched, before the associated action is run. It is also invoked
3895while processing a syntax error, to compute the error's location.
8710fc41
JD
3896Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3897parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3898of that ambiguity.
847bf1f5 3899
3e259915 3900Most of the time, this macro is general enough to suppress location
79282c6c 3901dedicated code from semantic actions.
847bf1f5 3902
72d2299c 3903The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3904the location of the grouping (the result of the computation). When a
766de5eb 3905rule is matched, the second parameter identifies locations of
96b93a3d 3906all right hand side elements of the rule being matched, and the third
8710fc41
JD
3907parameter is the size of the rule's right hand side.
3908When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3909right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3910When processing a syntax error, the second parameter identifies locations
3911of the symbols that were discarded during error processing, and the third
96b93a3d 3912parameter is the number of discarded symbols.
847bf1f5 3913
766de5eb 3914By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3915
766de5eb 3916@smallexample
847bf1f5 3917@group
766de5eb
PE
3918# define YYLLOC_DEFAULT(Current, Rhs, N) \
3919 do \
3920 if (N) \
3921 @{ \
3922 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3923 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3924 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3925 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3926 @} \
3927 else \
3928 @{ \
3929 (Current).first_line = (Current).last_line = \
3930 YYRHSLOC(Rhs, 0).last_line; \
3931 (Current).first_column = (Current).last_column = \
3932 YYRHSLOC(Rhs, 0).last_column; \
3933 @} \
3934 while (0)
847bf1f5 3935@end group
766de5eb 3936@end smallexample
676385e2 3937
766de5eb
PE
3938where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3939in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3940just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3941
3e259915 3942When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3943
3e259915 3944@itemize @bullet
79282c6c 3945@item
72d2299c 3946All arguments are free of side-effects. However, only the first one (the
3e259915 3947result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3948
3e259915 3949@item
766de5eb
PE
3950For consistency with semantic actions, valid indexes within the
3951right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3952valid index, and it refers to the symbol just before the reduction.
3953During error processing @var{n} is always positive.
0ae99356
PE
3954
3955@item
3956Your macro should parenthesize its arguments, if need be, since the
3957actual arguments may not be surrounded by parentheses. Also, your
3958macro should expand to something that can be used as a single
3959statement when it is followed by a semicolon.
3e259915 3960@end itemize
847bf1f5 3961
342b8b6e 3962@node Declarations
bfa74976
RS
3963@section Bison Declarations
3964@cindex declarations, Bison
3965@cindex Bison declarations
3966
3967The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3968used in formulating the grammar and the data types of semantic values.
3969@xref{Symbols}.
3970
3971All token type names (but not single-character literal tokens such as
3972@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3973declared if you need to specify which data type to use for the semantic
3974value (@pxref{Multiple Types, ,More Than One Value Type}).
3975
3976The first rule in the file also specifies the start symbol, by default.
3977If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3978it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3979Grammars}).
bfa74976
RS
3980
3981@menu
b50d2359 3982* Require Decl:: Requiring a Bison version.
bfa74976
RS
3983* Token Decl:: Declaring terminal symbols.
3984* Precedence Decl:: Declaring terminals with precedence and associativity.
3985* Union Decl:: Declaring the set of all semantic value types.
3986* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3987* Initial Action Decl:: Code run before parsing starts.
72f889cc 3988* Destructor Decl:: Declaring how symbols are freed.
d6328241 3989* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3990* Start Decl:: Specifying the start symbol.
3991* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3992* Push Decl:: Requesting a push parser.
bfa74976
RS
3993* Decl Summary:: Table of all Bison declarations.
3994@end menu
3995
b50d2359
AD
3996@node Require Decl
3997@subsection Require a Version of Bison
3998@cindex version requirement
3999@cindex requiring a version of Bison
4000@findex %require
4001
4002You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4003the requirement is not met, @command{bison} exits with an error (exit
4004status 63).
b50d2359
AD
4005
4006@example
4007%require "@var{version}"
4008@end example
4009
342b8b6e 4010@node Token Decl
bfa74976
RS
4011@subsection Token Type Names
4012@cindex declaring token type names
4013@cindex token type names, declaring
931c7513 4014@cindex declaring literal string tokens
bfa74976
RS
4015@findex %token
4016
4017The basic way to declare a token type name (terminal symbol) is as follows:
4018
4019@example
4020%token @var{name}
4021@end example
4022
4023Bison will convert this into a @code{#define} directive in
4024the parser, so that the function @code{yylex} (if it is in this file)
4025can use the name @var{name} to stand for this token type's code.
4026
14ded682
AD
4027Alternatively, you can use @code{%left}, @code{%right}, or
4028@code{%nonassoc} instead of @code{%token}, if you wish to specify
4029associativity and precedence. @xref{Precedence Decl, ,Operator
4030Precedence}.
bfa74976
RS
4031
4032You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4033a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4034following the token name:
bfa74976
RS
4035
4036@example
4037%token NUM 300
1452af69 4038%token XNUM 0x12d // a GNU extension
bfa74976
RS
4039@end example
4040
4041@noindent
4042It is generally best, however, to let Bison choose the numeric codes for
4043all token types. Bison will automatically select codes that don't conflict
e966383b 4044with each other or with normal characters.
bfa74976
RS
4045
4046In the event that the stack type is a union, you must augment the
4047@code{%token} or other token declaration to include the data type
704a47c4
AD
4048alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4049Than One Value Type}).
bfa74976
RS
4050
4051For example:
4052
4053@example
4054@group
4055%union @{ /* define stack type */
4056 double val;
4057 symrec *tptr;
4058@}
4059%token <val> NUM /* define token NUM and its type */
4060@end group
4061@end example
4062
931c7513
RS
4063You can associate a literal string token with a token type name by
4064writing the literal string at the end of a @code{%token}
4065declaration which declares the name. For example:
4066
4067@example
4068%token arrow "=>"
4069@end example
4070
4071@noindent
4072For example, a grammar for the C language might specify these names with
4073equivalent literal string tokens:
4074
4075@example
4076%token <operator> OR "||"
4077%token <operator> LE 134 "<="
4078%left OR "<="
4079@end example
4080
4081@noindent
4082Once you equate the literal string and the token name, you can use them
4083interchangeably in further declarations or the grammar rules. The
4084@code{yylex} function can use the token name or the literal string to
4085obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4086Syntax error messages passed to @code{yyerror} from the parser will reference
4087the literal string instead of the token name.
4088
4089The token numbered as 0 corresponds to end of file; the following line
4090allows for nicer error messages referring to ``end of file'' instead
4091of ``$end'':
4092
4093@example
4094%token END 0 "end of file"
4095@end example
931c7513 4096
342b8b6e 4097@node Precedence Decl
bfa74976
RS
4098@subsection Operator Precedence
4099@cindex precedence declarations
4100@cindex declaring operator precedence
4101@cindex operator precedence, declaring
4102
4103Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4104declare a token and specify its precedence and associativity, all at
4105once. These are called @dfn{precedence declarations}.
704a47c4
AD
4106@xref{Precedence, ,Operator Precedence}, for general information on
4107operator precedence.
bfa74976 4108
ab7f29f8 4109The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4110@code{%token}: either
4111
4112@example
4113%left @var{symbols}@dots{}
4114@end example
4115
4116@noindent
4117or
4118
4119@example
4120%left <@var{type}> @var{symbols}@dots{}
4121@end example
4122
4123And indeed any of these declarations serves the purposes of @code{%token}.
4124But in addition, they specify the associativity and relative precedence for
4125all the @var{symbols}:
4126
4127@itemize @bullet
4128@item
4129The associativity of an operator @var{op} determines how repeated uses
4130of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4131@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4132grouping @var{y} with @var{z} first. @code{%left} specifies
4133left-associativity (grouping @var{x} with @var{y} first) and
4134@code{%right} specifies right-associativity (grouping @var{y} with
4135@var{z} first). @code{%nonassoc} specifies no associativity, which
4136means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4137considered a syntax error.
4138
4139@item
4140The precedence of an operator determines how it nests with other operators.
4141All the tokens declared in a single precedence declaration have equal
4142precedence and nest together according to their associativity.
4143When two tokens declared in different precedence declarations associate,
4144the one declared later has the higher precedence and is grouped first.
4145@end itemize
4146
ab7f29f8
JD
4147For backward compatibility, there is a confusing difference between the
4148argument lists of @code{%token} and precedence declarations.
4149Only a @code{%token} can associate a literal string with a token type name.
4150A precedence declaration always interprets a literal string as a reference to a
4151separate token.
4152For example:
4153
4154@example
4155%left OR "<=" // Does not declare an alias.
4156%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4157@end example
4158
342b8b6e 4159@node Union Decl
bfa74976
RS
4160@subsection The Collection of Value Types
4161@cindex declaring value types
4162@cindex value types, declaring
4163@findex %union
4164
287c78f6
PE
4165The @code{%union} declaration specifies the entire collection of
4166possible data types for semantic values. The keyword @code{%union} is
4167followed by braced code containing the same thing that goes inside a
4168@code{union} in C@.
bfa74976
RS
4169
4170For example:
4171
4172@example
4173@group
4174%union @{
4175 double val;
4176 symrec *tptr;
4177@}
4178@end group
4179@end example
4180
4181@noindent
4182This says that the two alternative types are @code{double} and @code{symrec
4183*}. They are given names @code{val} and @code{tptr}; these names are used
4184in the @code{%token} and @code{%type} declarations to pick one of the types
4185for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4186
6273355b
PE
4187As an extension to @acronym{POSIX}, a tag is allowed after the
4188@code{union}. For example:
4189
4190@example
4191@group
4192%union value @{
4193 double val;
4194 symrec *tptr;
4195@}
4196@end group
4197@end example
4198
d6ca7905 4199@noindent
6273355b
PE
4200specifies the union tag @code{value}, so the corresponding C type is
4201@code{union value}. If you do not specify a tag, it defaults to
4202@code{YYSTYPE}.
4203
d6ca7905
PE
4204As another extension to @acronym{POSIX}, you may specify multiple
4205@code{%union} declarations; their contents are concatenated. However,
4206only the first @code{%union} declaration can specify a tag.
4207
6273355b 4208Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4209a semicolon after the closing brace.
4210
ddc8ede1
PE
4211Instead of @code{%union}, you can define and use your own union type
4212@code{YYSTYPE} if your grammar contains at least one
4213@samp{<@var{type}>} tag. For example, you can put the following into
4214a header file @file{parser.h}:
4215
4216@example
4217@group
4218union YYSTYPE @{
4219 double val;
4220 symrec *tptr;
4221@};
4222typedef union YYSTYPE YYSTYPE;
4223@end group
4224@end example
4225
4226@noindent
4227and then your grammar can use the following
4228instead of @code{%union}:
4229
4230@example
4231@group
4232%@{
4233#include "parser.h"
4234%@}
4235%type <val> expr
4236%token <tptr> ID
4237@end group
4238@end example
4239
342b8b6e 4240@node Type Decl
bfa74976
RS
4241@subsection Nonterminal Symbols
4242@cindex declaring value types, nonterminals
4243@cindex value types, nonterminals, declaring
4244@findex %type
4245
4246@noindent
4247When you use @code{%union} to specify multiple value types, you must
4248declare the value type of each nonterminal symbol for which values are
4249used. This is done with a @code{%type} declaration, like this:
4250
4251@example
4252%type <@var{type}> @var{nonterminal}@dots{}
4253@end example
4254
4255@noindent
704a47c4
AD
4256Here @var{nonterminal} is the name of a nonterminal symbol, and
4257@var{type} is the name given in the @code{%union} to the alternative
4258that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4259can give any number of nonterminal symbols in the same @code{%type}
4260declaration, if they have the same value type. Use spaces to separate
4261the symbol names.
bfa74976 4262
931c7513
RS
4263You can also declare the value type of a terminal symbol. To do this,
4264use the same @code{<@var{type}>} construction in a declaration for the
4265terminal symbol. All kinds of token declarations allow
4266@code{<@var{type}>}.
4267
18d192f0
AD
4268@node Initial Action Decl
4269@subsection Performing Actions before Parsing
4270@findex %initial-action
4271
4272Sometimes your parser needs to perform some initializations before
4273parsing. The @code{%initial-action} directive allows for such arbitrary
4274code.
4275
4276@deffn {Directive} %initial-action @{ @var{code} @}
4277@findex %initial-action
287c78f6 4278Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4279@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4280@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4281@code{%parse-param}.
18d192f0
AD
4282@end deffn
4283
451364ed
AD
4284For instance, if your locations use a file name, you may use
4285
4286@example
48b16bbc 4287%parse-param @{ char const *file_name @};
451364ed
AD
4288%initial-action
4289@{
4626a15d 4290 @@$.initialize (file_name);
451364ed
AD
4291@};
4292@end example
4293
18d192f0 4294
72f889cc
AD
4295@node Destructor Decl
4296@subsection Freeing Discarded Symbols
4297@cindex freeing discarded symbols
4298@findex %destructor
12e35840 4299@findex <*>
3ebecc24 4300@findex <>
a85284cf
AD
4301During error recovery (@pxref{Error Recovery}), symbols already pushed
4302on the stack and tokens coming from the rest of the file are discarded
4303until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4304or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4305symbols on the stack must be discarded. Even if the parser succeeds, it
4306must discard the start symbol.
258b75ca
PE
4307
4308When discarded symbols convey heap based information, this memory is
4309lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4310in traditional compilers, it is unacceptable for programs like shells or
4311protocol implementations that may parse and execute indefinitely.
258b75ca 4312
a85284cf
AD
4313The @code{%destructor} directive defines code that is called when a
4314symbol is automatically discarded.
72f889cc
AD
4315
4316@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4317@findex %destructor
287c78f6
PE
4318Invoke the braced @var{code} whenever the parser discards one of the
4319@var{symbols}.
4b367315 4320Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4321with the discarded symbol, and @code{@@$} designates its location.
4322The additional parser parameters are also available (@pxref{Parser Function, ,
4323The Parser Function @code{yyparse}}).
ec5479ce 4324
b2a0b7ca
JD
4325When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4326per-symbol @code{%destructor}.
4327You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4328tag among @var{symbols}.
b2a0b7ca 4329In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4330grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4331per-symbol @code{%destructor}.
4332
12e35840 4333Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4334(These default forms are experimental.
4335More user feedback will help to determine whether they should become permanent
4336features.)
3ebecc24 4337You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4338exactly one @code{%destructor} declaration in your grammar file.
4339The parser will invoke the @var{code} associated with one of these whenever it
4340discards any user-defined grammar symbol that has no per-symbol and no per-type
4341@code{%destructor}.
4342The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4343symbol for which you have formally declared a semantic type tag (@code{%type}
4344counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4345The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4346symbol that has no declared semantic type tag.
72f889cc
AD
4347@end deffn
4348
b2a0b7ca 4349@noindent
12e35840 4350For example:
72f889cc
AD
4351
4352@smallexample
ec5479ce
JD
4353%union @{ char *string; @}
4354%token <string> STRING1
4355%token <string> STRING2
4356%type <string> string1
4357%type <string> string2
b2a0b7ca
JD
4358%union @{ char character; @}
4359%token <character> CHR
4360%type <character> chr
12e35840
JD
4361%token TAGLESS
4362
b2a0b7ca 4363%destructor @{ @} <character>
12e35840
JD
4364%destructor @{ free ($$); @} <*>
4365%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4366%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4367@end smallexample
4368
4369@noindent
b2a0b7ca
JD
4370guarantees that, when the parser discards any user-defined symbol that has a
4371semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4372to @code{free} by default.
ec5479ce
JD
4373However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4374prints its line number to @code{stdout}.
4375It performs only the second @code{%destructor} in this case, so it invokes
4376@code{free} only once.
12e35840
JD
4377Finally, the parser merely prints a message whenever it discards any symbol,
4378such as @code{TAGLESS}, that has no semantic type tag.
4379
4380A Bison-generated parser invokes the default @code{%destructor}s only for
4381user-defined as opposed to Bison-defined symbols.
4382For example, the parser will not invoke either kind of default
4383@code{%destructor} for the special Bison-defined symbols @code{$accept},
4384@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4385none of which you can reference in your grammar.
4386It also will not invoke either for the @code{error} token (@pxref{Table of
4387Symbols, ,error}), which is always defined by Bison regardless of whether you
4388reference it in your grammar.
4389However, it may invoke one of them for the end token (token 0) if you
4390redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4391
4392@smallexample
4393%token END 0
4394@end smallexample
4395
12e35840
JD
4396@cindex actions in mid-rule
4397@cindex mid-rule actions
4398Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4399mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4400That is, Bison does not consider a mid-rule to have a semantic value if you do
4401not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4402@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4403rule.
4404However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4405@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4406
3508ce36
JD
4407@ignore
4408@noindent
4409In the future, it may be possible to redefine the @code{error} token as a
4410nonterminal that captures the discarded symbols.
4411In that case, the parser will invoke the default destructor for it as well.
4412@end ignore
4413
e757bb10
AD
4414@sp 1
4415
4416@cindex discarded symbols
4417@dfn{Discarded symbols} are the following:
4418
4419@itemize
4420@item
4421stacked symbols popped during the first phase of error recovery,
4422@item
4423incoming terminals during the second phase of error recovery,
4424@item
742e4900 4425the current lookahead and the entire stack (except the current
9d9b8b70 4426right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4427@item
4428the start symbol, when the parser succeeds.
e757bb10
AD
4429@end itemize
4430
9d9b8b70
PE
4431The parser can @dfn{return immediately} because of an explicit call to
4432@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4433exhaustion.
4434
29553547 4435Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4436error via @code{YYERROR} are not discarded automatically. As a rule
4437of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4438the memory.
e757bb10 4439
342b8b6e 4440@node Expect Decl
bfa74976
RS
4441@subsection Suppressing Conflict Warnings
4442@cindex suppressing conflict warnings
4443@cindex preventing warnings about conflicts
4444@cindex warnings, preventing
4445@cindex conflicts, suppressing warnings of
4446@findex %expect
d6328241 4447@findex %expect-rr
bfa74976
RS
4448
4449Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4450(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4451have harmless shift/reduce conflicts which are resolved in a predictable
4452way and would be difficult to eliminate. It is desirable to suppress
4453the warning about these conflicts unless the number of conflicts
4454changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4455
4456The declaration looks like this:
4457
4458@example
4459%expect @var{n}
4460@end example
4461
035aa4a0
PE
4462Here @var{n} is a decimal integer. The declaration says there should
4463be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4464Bison reports an error if the number of shift/reduce conflicts differs
4465from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4466
34a6c2d1 4467For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4468serious, and should be eliminated entirely. Bison will always report
4469reduce/reduce conflicts for these parsers. With @acronym{GLR}
4470parsers, however, both kinds of conflicts are routine; otherwise,
4471there would be no need to use @acronym{GLR} parsing. Therefore, it is
4472also possible to specify an expected number of reduce/reduce conflicts
4473in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4474
4475@example
4476%expect-rr @var{n}
4477@end example
4478
bfa74976
RS
4479In general, using @code{%expect} involves these steps:
4480
4481@itemize @bullet
4482@item
4483Compile your grammar without @code{%expect}. Use the @samp{-v} option
4484to get a verbose list of where the conflicts occur. Bison will also
4485print the number of conflicts.
4486
4487@item
4488Check each of the conflicts to make sure that Bison's default
4489resolution is what you really want. If not, rewrite the grammar and
4490go back to the beginning.
4491
4492@item
4493Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4494number which Bison printed. With @acronym{GLR} parsers, add an
4495@code{%expect-rr} declaration as well.
bfa74976
RS
4496@end itemize
4497
035aa4a0
PE
4498Now Bison will warn you if you introduce an unexpected conflict, but
4499will keep silent otherwise.
bfa74976 4500
342b8b6e 4501@node Start Decl
bfa74976
RS
4502@subsection The Start-Symbol
4503@cindex declaring the start symbol
4504@cindex start symbol, declaring
4505@cindex default start symbol
4506@findex %start
4507
4508Bison assumes by default that the start symbol for the grammar is the first
4509nonterminal specified in the grammar specification section. The programmer
4510may override this restriction with the @code{%start} declaration as follows:
4511
4512@example
4513%start @var{symbol}
4514@end example
4515
342b8b6e 4516@node Pure Decl
bfa74976
RS
4517@subsection A Pure (Reentrant) Parser
4518@cindex reentrant parser
4519@cindex pure parser
d9df47b6 4520@findex %define api.pure
bfa74976
RS
4521
4522A @dfn{reentrant} program is one which does not alter in the course of
4523execution; in other words, it consists entirely of @dfn{pure} (read-only)
4524code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4525for example, a nonreentrant program may not be safe to call from a signal
4526handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4527program must be called only within interlocks.
4528
70811b85 4529Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4530suitable for most uses, and it permits compatibility with Yacc. (The
4531standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4532statically allocated variables for communication with @code{yylex},
4533including @code{yylval} and @code{yylloc}.)
bfa74976 4534
70811b85 4535Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4536declaration @code{%define api.pure} says that you want the parser to be
70811b85 4537reentrant. It looks like this:
bfa74976
RS
4538
4539@example
d9df47b6 4540%define api.pure
bfa74976
RS
4541@end example
4542
70811b85
RS
4543The result is that the communication variables @code{yylval} and
4544@code{yylloc} become local variables in @code{yyparse}, and a different
4545calling convention is used for the lexical analyzer function
4546@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4547Parsers}, for the details of this. The variable @code{yynerrs}
4548becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4549of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4550Reporting Function @code{yyerror}}). The convention for calling
4551@code{yyparse} itself is unchanged.
4552
4553Whether the parser is pure has nothing to do with the grammar rules.
4554You can generate either a pure parser or a nonreentrant parser from any
4555valid grammar.
bfa74976 4556
9987d1b3
JD
4557@node Push Decl
4558@subsection A Push Parser
4559@cindex push parser
4560@cindex push parser
812775a0 4561@findex %define api.push-pull
9987d1b3 4562
59da312b
JD
4563(The current push parsing interface is experimental and may evolve.
4564More user feedback will help to stabilize it.)
4565
f4101aa6
AD
4566A pull parser is called once and it takes control until all its input
4567is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4568each time a new token is made available.
4569
f4101aa6 4570A push parser is typically useful when the parser is part of a
9987d1b3 4571main event loop in the client's application. This is typically
f4101aa6
AD
4572a requirement of a GUI, when the main event loop needs to be triggered
4573within a certain time period.
9987d1b3 4574
d782395d
JD
4575Normally, Bison generates a pull parser.
4576The following Bison declaration says that you want the parser to be a push
812775a0 4577parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4578
4579@example
812775a0 4580%define api.push-pull "push"
9987d1b3
JD
4581@end example
4582
4583In almost all cases, you want to ensure that your push parser is also
4584a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4585time you should create an impure push parser is to have backwards
9987d1b3
JD
4586compatibility with the impure Yacc pull mode interface. Unless you know
4587what you are doing, your declarations should look like this:
4588
4589@example
d9df47b6 4590%define api.pure
812775a0 4591%define api.push-pull "push"
9987d1b3
JD
4592@end example
4593
f4101aa6
AD
4594There is a major notable functional difference between the pure push parser
4595and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4596many parser instances, of the same type of parser, in memory at the same time.
4597An impure push parser should only use one parser at a time.
4598
4599When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4600the generated parser. @code{yypstate} is a structure that the generated
4601parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4602function that will create a new parser instance. @code{yypstate_delete}
4603will free the resources associated with the corresponding parser instance.
f4101aa6 4604Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4605token is available to provide the parser. A trivial example
4606of using a pure push parser would look like this:
4607
4608@example
4609int status;
4610yypstate *ps = yypstate_new ();
4611do @{
4612 status = yypush_parse (ps, yylex (), NULL);
4613@} while (status == YYPUSH_MORE);
4614yypstate_delete (ps);
4615@end example
4616
4617If the user decided to use an impure push parser, a few things about
f4101aa6 4618the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4619a global variable instead of a variable in the @code{yypush_parse} function.
4620For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4621changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4622example would thus look like this:
4623
4624@example
4625extern int yychar;
4626int status;
4627yypstate *ps = yypstate_new ();
4628do @{
4629 yychar = yylex ();
4630 status = yypush_parse (ps);
4631@} while (status == YYPUSH_MORE);
4632yypstate_delete (ps);
4633@end example
4634
f4101aa6 4635That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4636for use by the next invocation of the @code{yypush_parse} function.
4637
f4101aa6 4638Bison also supports both the push parser interface along with the pull parser
9987d1b3 4639interface in the same generated parser. In order to get this functionality,
812775a0
JD
4640you should replace the @code{%define api.push-pull "push"} declaration with the
4641@code{%define api.push-pull "both"} declaration. Doing this will create all of
c373bf8b 4642the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4643and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4644would be used. However, the user should note that it is implemented in the
d782395d
JD
4645generated parser by calling @code{yypull_parse}.
4646This makes the @code{yyparse} function that is generated with the
812775a0 4647@code{%define api.push-pull "both"} declaration slower than the normal
d782395d
JD
4648@code{yyparse} function. If the user
4649calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4650stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4651and then @code{yypull_parse} the rest of the input stream. If you would like
4652to switch back and forth between between parsing styles, you would have to
4653write your own @code{yypull_parse} function that knows when to quit looking
4654for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4655like this:
4656
4657@example
4658yypstate *ps = yypstate_new ();
4659yypull_parse (ps); /* Will call the lexer */
4660yypstate_delete (ps);
4661@end example
4662
d9df47b6 4663Adding the @code{%define api.pure} declaration does exactly the same thing to
812775a0
JD
4664the generated parser with @code{%define api.push-pull "both"} as it did for
4665@code{%define api.push-pull "push"}.
9987d1b3 4666
342b8b6e 4667@node Decl Summary
bfa74976
RS
4668@subsection Bison Declaration Summary
4669@cindex Bison declaration summary
4670@cindex declaration summary
4671@cindex summary, Bison declaration
4672
d8988b2f 4673Here is a summary of the declarations used to define a grammar:
bfa74976 4674
18b519c0 4675@deffn {Directive} %union
bfa74976
RS
4676Declare the collection of data types that semantic values may have
4677(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4678@end deffn
bfa74976 4679
18b519c0 4680@deffn {Directive} %token
bfa74976
RS
4681Declare a terminal symbol (token type name) with no precedence
4682or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4683@end deffn
bfa74976 4684
18b519c0 4685@deffn {Directive} %right
bfa74976
RS
4686Declare a terminal symbol (token type name) that is right-associative
4687(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4688@end deffn
bfa74976 4689
18b519c0 4690@deffn {Directive} %left
bfa74976
RS
4691Declare a terminal symbol (token type name) that is left-associative
4692(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4693@end deffn
bfa74976 4694
18b519c0 4695@deffn {Directive} %nonassoc
bfa74976 4696Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4697(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4698Using it in a way that would be associative is a syntax error.
4699@end deffn
4700
91d2c560 4701@ifset defaultprec
39a06c25 4702@deffn {Directive} %default-prec
22fccf95 4703Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4704(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4705@end deffn
91d2c560 4706@end ifset
bfa74976 4707
18b519c0 4708@deffn {Directive} %type
bfa74976
RS
4709Declare the type of semantic values for a nonterminal symbol
4710(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4711@end deffn
bfa74976 4712
18b519c0 4713@deffn {Directive} %start
89cab50d
AD
4714Specify the grammar's start symbol (@pxref{Start Decl, ,The
4715Start-Symbol}).
18b519c0 4716@end deffn
bfa74976 4717
18b519c0 4718@deffn {Directive} %expect
bfa74976
RS
4719Declare the expected number of shift-reduce conflicts
4720(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4721@end deffn
4722
bfa74976 4723
d8988b2f
AD
4724@sp 1
4725@noindent
4726In order to change the behavior of @command{bison}, use the following
4727directives:
4728
148d66d8
JD
4729@deffn {Directive} %code @{@var{code}@}
4730@findex %code
4731This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4732It inserts @var{code} verbatim at a language-dependent default location in the
4733output@footnote{The default location is actually skeleton-dependent;
4734 writers of non-standard skeletons however should choose the default location
4735 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4736
4737@cindex Prologue
8405b70c 4738For C/C++, the default location is the parser source code
148d66d8
JD
4739file after the usual contents of the parser header file.
4740Thus, @code{%code} replaces the traditional Yacc prologue,
4741@code{%@{@var{code}%@}}, for most purposes.
4742For a detailed discussion, see @ref{Prologue Alternatives}.
4743
8405b70c 4744For Java, the default location is inside the parser class.
148d66d8
JD
4745@end deffn
4746
4747@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4748This is the qualified form of the @code{%code} directive.
4749If you need to specify location-sensitive verbatim @var{code} that does not
4750belong at the default location selected by the unqualified @code{%code} form,
4751use this form instead.
4752
4753@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4754where Bison should generate it.
4755Not all values of @var{qualifier} are available for all target languages:
4756
4757@itemize @bullet
148d66d8 4758@item requires
793fbca5 4759@findex %code requires
148d66d8
JD
4760
4761@itemize @bullet
4762@item Language(s): C, C++
4763
4764@item Purpose: This is the best place to write dependency code required for
4765@code{YYSTYPE} and @code{YYLTYPE}.
4766In other words, it's the best place to define types referenced in @code{%union}
4767directives, and it's the best place to override Bison's default @code{YYSTYPE}
4768and @code{YYLTYPE} definitions.
4769
4770@item Location(s): The parser header file and the parser source code file
4771before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4772@end itemize
4773
4774@item provides
4775@findex %code provides
4776
4777@itemize @bullet
4778@item Language(s): C, C++
4779
4780@item Purpose: This is the best place to write additional definitions and
4781declarations that should be provided to other modules.
4782
4783@item Location(s): The parser header file and the parser source code file after
4784the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4785@end itemize
4786
4787@item top
4788@findex %code top
4789
4790@itemize @bullet
4791@item Language(s): C, C++
4792
4793@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4794usually be more appropriate than @code{%code top}.
4795However, occasionally it is necessary to insert code much nearer the top of the
4796parser source code file.
4797For example:
4798
4799@smallexample
4800%code top @{
4801 #define _GNU_SOURCE
4802 #include <stdio.h>
4803@}
4804@end smallexample
4805
4806@item Location(s): Near the top of the parser source code file.
4807@end itemize
8405b70c 4808
148d66d8
JD
4809@item imports
4810@findex %code imports
4811
4812@itemize @bullet
4813@item Language(s): Java
4814
4815@item Purpose: This is the best place to write Java import directives.
4816
4817@item Location(s): The parser Java file after any Java package directive and
4818before any class definitions.
4819@end itemize
148d66d8
JD
4820@end itemize
4821
148d66d8
JD
4822@cindex Prologue
4823For a detailed discussion of how to use @code{%code} in place of the
4824traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4825@end deffn
4826
18b519c0 4827@deffn {Directive} %debug
4947ebdb
PE
4828In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4829already defined, so that the debugging facilities are compiled.
ec3bc396 4830@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4831@end deffn
d8988b2f 4832
c1d19e10
PB
4833@deffn {Directive} %define @var{variable}
4834@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4835Define a variable to adjust Bison's behavior.
4836The possible choices for @var{variable}, as well as their meanings, depend on
4837the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4838Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2 4839
e3a33f7c
JD
4840It is an error if a @var{variable} is defined by @code{%define} multiple
4841times, but @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2
JD
4842
4843Omitting @code{"@var{value}"} is always equivalent to specifying it as
4844@code{""}.
4845
922bdd7f 4846Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4847In this case, Bison will complain if the variable definition does not meet one
4848of the following four conditions:
4849
4850@enumerate
4851@item @code{"@var{value}"} is @code{"true"}
4852
4853@item @code{"@var{value}"} is omitted (or is @code{""}).
4854This is equivalent to @code{"true"}.
4855
4856@item @code{"@var{value}"} is @code{"false"}.
4857
4858@item @var{variable} is never defined.
4859In this case, Bison selects a default value, which may depend on the selected
4860target language and/or parser skeleton.
4861@end enumerate
148d66d8 4862
793fbca5
JD
4863Some of the accepted @var{variable}s are:
4864
4865@itemize @bullet
d9df47b6
JD
4866@item api.pure
4867@findex %define api.pure
4868
4869@itemize @bullet
4870@item Language(s): C
4871
4872@item Purpose: Request a pure (reentrant) parser program.
4873@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4874
4875@item Accepted Values: Boolean
4876
4877@item Default Value: @code{"false"}
4878@end itemize
4879
812775a0
JD
4880@item api.push-pull
4881@findex %define api.push-pull
793fbca5
JD
4882
4883@itemize @bullet
34a6c2d1 4884@item Language(s): C (deterministic parsers only)
793fbca5
JD
4885
4886@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4887@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4888(The current push parsing interface is experimental and may evolve.
4889More user feedback will help to stabilize it.)
793fbca5
JD
4890
4891@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4892
4893@item Default Value: @code{"pull"}
4894@end itemize
4895
1d0f55cc 4896@item lr.default-reductions
620b5727 4897@cindex default reductions
1d0f55cc 4898@findex %define lr.default-reductions
34a6c2d1
JD
4899@cindex delayed syntax errors
4900@cindex syntax errors delayed
4901
4902@itemize @bullet
4903@item Language(s): all
4904
4905@item Purpose: Specifies the kind of states that are permitted to
620b5727
JD
4906contain default reductions.
4907That is, in such a state, Bison declares the reduction with the largest
4908lookahead set to be the default reduction and then removes that
4909lookahead set.
4910The advantages of default reductions are discussed below.
34a6c2d1
JD
4911The disadvantage is that, when the generated parser encounters a
4912syntactically unacceptable token, the parser might then perform
620b5727 4913unnecessary default reductions before it can detect the syntax error.
34a6c2d1
JD
4914
4915(This feature is experimental.
4916More user feedback will help to stabilize it.)
4917
4918@item Accepted Values:
4919@itemize
4920@item @code{"all"}.
4921For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
4922Summary,,lr.type}) by default, all states are permitted to contain
620b5727 4923default reductions.
34a6c2d1
JD
4924The advantage is that parser table sizes can be significantly reduced.
4925The reason Bison does not by default attempt to address the disadvantage
4926of delayed syntax error detection is that this disadvantage is already
4927inherent in @acronym{LALR} and @acronym{IELR} parser tables.
620b5727
JD
4928That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
4929reductions in an @acronym{LALR} or @acronym{IELR} state can contain
4930tokens that are syntactically incorrect for some left contexts.
34a6c2d1
JD
4931
4932@item @code{"consistent"}.
4933@cindex consistent states
4934A consistent state is a state that has only one possible action.
4935If that action is a reduction, then the parser does not need to request
4936a lookahead token from the scanner before performing that action.
4937However, the parser only recognizes the ability to ignore the lookahead
620b5727
JD
4938token when such a reduction is encoded as a default reduction.
4939Thus, if default reductions are permitted in and only in consistent
4940states, then a canonical @acronym{LR} parser reports a syntax error as
4941soon as it @emph{needs} the syntactically unacceptable token from the
4942scanner.
34a6c2d1
JD
4943
4944@item @code{"accepting"}.
4945@cindex accepting state
620b5727
JD
4946By default, the only default reduction permitted in a canonical
4947@acronym{LR} parser is the accept action in the accepting state, which
4948the parser reaches only after reading all tokens from the input.
34a6c2d1
JD
4949Thus, the default canonical @acronym{LR} parser reports a syntax error
4950as soon as it @emph{reaches} the syntactically unacceptable token
4951without performing any extra reductions.
4952@end itemize
4953
4954@item Default Value:
4955@itemize
4956@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
4957@item @code{"all"} otherwise.
4958@end itemize
4959@end itemize
4960
812775a0
JD
4961@item lr.keep-unreachable-states
4962@findex %define lr.keep-unreachable-states
31984206
JD
4963
4964@itemize @bullet
4965@item Language(s): all
4966
4967@item Purpose: Requests that Bison allow unreachable parser states to remain in
4968the parser tables.
4969Bison considers a state to be unreachable if there exists no sequence of
4970transitions from the start state to that state.
4971A state can become unreachable during conflict resolution if Bison disables a
4972shift action leading to it from a predecessor state.
4973Keeping unreachable states is sometimes useful for analysis purposes, but they
4974are useless in the generated parser.
4975
4976@item Accepted Values: Boolean
4977
4978@item Default Value: @code{"false"}
4979
4980@item Caveats:
4981
4982@itemize @bullet
cff03fb2
JD
4983
4984@item Unreachable states may contain conflicts and may use rules not used in
4985any other state.
31984206
JD
4986Thus, keeping unreachable states may induce warnings that are irrelevant to
4987your parser's behavior, and it may eliminate warnings that are relevant.
4988Of course, the change in warnings may actually be relevant to a parser table
4989analysis that wants to keep unreachable states, so this behavior will likely
4990remain in future Bison releases.
4991
4992@item While Bison is able to remove unreachable states, it is not guaranteed to
4993remove other kinds of useless states.
4994Specifically, when Bison disables reduce actions during conflict resolution,
4995some goto actions may become useless, and thus some additional states may
4996become useless.
4997If Bison were to compute which goto actions were useless and then disable those
4998actions, it could identify such states as unreachable and then remove those
4999states.
5000However, Bison does not compute which goto actions are useless.
5001@end itemize
5002@end itemize
5003
34a6c2d1
JD
5004@item lr.type
5005@findex %define lr.type
5006@cindex @acronym{LALR}
5007@cindex @acronym{IELR}
5008@cindex @acronym{LR}
5009
5010@itemize @bullet
5011@item Language(s): all
5012
5013@item Purpose: Specifies the type of parser tables within the
5014@acronym{LR}(1) family.
5015(This feature is experimental.
5016More user feedback will help to stabilize it.)
5017
5018@item Accepted Values:
5019@itemize
5020@item @code{"LALR"}.
5021While Bison generates @acronym{LALR} parser tables by default for
5022historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5023always preferable for deterministic parsers.
5024The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5025mysterious conflicts and thus may not accept the full set of sentences
5026that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5027@xref{Mystery Conflicts}, for details.
5028However, there are at least two scenarios where @acronym{LALR} may be
5029worthwhile:
5030@itemize
5031@cindex @acronym{GLR} with @acronym{LALR}
5032@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5033do not resolve any conflicts statically (for example, with @code{%left}
5034or @code{%prec}), then the parser explores all potential parses of any
5035given input.
620b5727
JD
5036In this case, the use of @acronym{LALR} parser tables is guaranteed not
5037to alter the language accepted by the parser.
34a6c2d1
JD
5038@acronym{LALR} parser tables are the smallest parser tables Bison can
5039currently generate, so they may be preferable.
5040
5041@item Occasionally during development, an especially malformed grammar
5042with a major recurring flaw may severely impede the @acronym{IELR} or
5043canonical @acronym{LR} parser table generation algorithm.
5044@acronym{LALR} can be a quick way to generate parser tables in order to
5045investigate such problems while ignoring the more subtle differences
5046from @acronym{IELR} and canonical @acronym{LR}.
5047@end itemize
5048
5049@item @code{"IELR"}.
5050@acronym{IELR} is a minimal @acronym{LR} algorithm.
5051That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5052@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5053set of sentences.
5054However, as for @acronym{LALR}, the number of parser states is often an
5055order of magnitude less for @acronym{IELR} than for canonical
5056@acronym{LR}.
5057More importantly, because canonical @acronym{LR}'s extra parser states
5058may contain duplicate conflicts in the case of non-@acronym{LR}
5059grammars, the number of conflicts for @acronym{IELR} is often an order
5060of magnitude less as well.
5061This can significantly reduce the complexity of developing of a grammar.
5062
5063@item @code{"canonical LR"}.
5064@cindex delayed syntax errors
5065@cindex syntax errors delayed
620b5727
JD
5066The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5067that, for every left context of every canonical @acronym{LR} state, the
5068set of tokens accepted by that state is the exact set of tokens that is
5069syntactically acceptable in that left context.
5070Thus, the only difference in parsing behavior is that the canonical
34a6c2d1
JD
5071@acronym{LR} parser can report a syntax error as soon as possible
5072without performing any unnecessary reductions.
1d0f55cc 5073@xref{Decl Summary,,lr.default-reductions}, for further details.
34a6c2d1
JD
5074Even when canonical @acronym{LR} behavior is ultimately desired,
5075@acronym{IELR}'s elimination of duplicate conflicts should still
5076facilitate the development of a grammar.
5077@end itemize
5078
5079@item Default Value: @code{"LALR"}
5080@end itemize
5081
793fbca5
JD
5082@item namespace
5083@findex %define namespace
5084
5085@itemize
5086@item Languages(s): C++
5087
5088@item Purpose: Specifies the namespace for the parser class.
5089For example, if you specify:
5090
5091@smallexample
5092%define namespace "foo::bar"
5093@end smallexample
5094
5095Bison uses @code{foo::bar} verbatim in references such as:
5096
5097@smallexample
5098foo::bar::parser::semantic_type
5099@end smallexample
5100
5101However, to open a namespace, Bison removes any leading @code{::} and then
5102splits on any remaining occurrences:
5103
5104@smallexample
5105namespace foo @{ namespace bar @{
5106 class position;
5107 class location;
5108@} @}
5109@end smallexample
5110
5111@item Accepted Values: Any absolute or relative C++ namespace reference without
5112a trailing @code{"::"}.
5113For example, @code{"foo"} or @code{"::foo::bar"}.
5114
5115@item Default Value: The value specified by @code{%name-prefix}, which defaults
5116to @code{yy}.
5117This usage of @code{%name-prefix} is for backward compatibility and can be
5118confusing since @code{%name-prefix} also specifies the textual prefix for the
5119lexical analyzer function.
5120Thus, if you specify @code{%name-prefix}, it is best to also specify
5121@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5122lexical analyzer function.
5123For example, if you specify:
5124
5125@smallexample
5126%define namespace "foo"
5127%name-prefix "bar::"
5128@end smallexample
5129
5130The parser namespace is @code{foo} and @code{yylex} is referenced as
5131@code{bar::lex}.
5132@end itemize
5133@end itemize
5134
d782395d
JD
5135@end deffn
5136
18b519c0 5137@deffn {Directive} %defines
4bfd5e4e
PE
5138Write a header file containing macro definitions for the token type
5139names defined in the grammar as well as a few other declarations.
d8988b2f 5140If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5141is named @file{@var{name}.h}.
d8988b2f 5142
b321737f 5143For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5144@code{YYSTYPE} is already defined as a macro or you have used a
5145@code{<@var{type}>} tag without using @code{%union}.
5146Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5147(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5148require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5149or type definition
f8e1c9e5
AD
5150(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5151arrange for these definitions to be propagated to all modules, e.g., by
5152putting them in a prerequisite header that is included both by your
5153parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5154
5155Unless your parser is pure, the output header declares @code{yylval}
5156as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5157Parser}.
5158
5159If you have also used locations, the output header declares
5160@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5161the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5162Locations}.
5163
f8e1c9e5
AD
5164This output file is normally essential if you wish to put the definition
5165of @code{yylex} in a separate source file, because @code{yylex}
5166typically needs to be able to refer to the above-mentioned declarations
5167and to the token type codes. @xref{Token Values, ,Semantic Values of
5168Tokens}.
9bc0dd67 5169
16dc6a9e
JD
5170@findex %code requires
5171@findex %code provides
5172If you have declared @code{%code requires} or @code{%code provides}, the output
5173header also contains their code.
148d66d8 5174@xref{Decl Summary, ,%code}.
592d0b1e
PB
5175@end deffn
5176
02975b9a
JD
5177@deffn {Directive} %defines @var{defines-file}
5178Same as above, but save in the file @var{defines-file}.
5179@end deffn
5180
18b519c0 5181@deffn {Directive} %destructor
258b75ca 5182Specify how the parser should reclaim the memory associated to
fa7e68c3 5183discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5184@end deffn
72f889cc 5185
02975b9a 5186@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5187Specify a prefix to use for all Bison output file names. The names are
5188chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5189@end deffn
d8988b2f 5190
e6e704dc 5191@deffn {Directive} %language "@var{language}"
0e021770 5192Specify the programming language for the generated parser. Currently
59da312b 5193supported languages include C, C++, and Java.
e6e704dc 5194@var{language} is case-insensitive.
ed4d67dc
JD
5195
5196This directive is experimental and its effect may be modified in future
5197releases.
0e021770
PE
5198@end deffn
5199
18b519c0 5200@deffn {Directive} %locations
89cab50d
AD
5201Generate the code processing the locations (@pxref{Action Features,
5202,Special Features for Use in Actions}). This mode is enabled as soon as
5203the grammar uses the special @samp{@@@var{n}} tokens, but if your
5204grammar does not use it, using @samp{%locations} allows for more
6e649e65 5205accurate syntax error messages.
18b519c0 5206@end deffn
89cab50d 5207
02975b9a 5208@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5209Rename the external symbols used in the parser so that they start with
5210@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5211in C parsers
d8988b2f 5212is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5213@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5214(if locations are used) @code{yylloc}. If you use a push parser,
5215@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5216@code{yypstate_new} and @code{yypstate_delete} will
5217also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5218names become @code{c_parse}, @code{c_lex}, and so on.
5219For C++ parsers, see the @code{%define namespace} documentation in this
5220section.
aa08666d 5221@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5222@end deffn
931c7513 5223
91d2c560 5224@ifset defaultprec
22fccf95
PE
5225@deffn {Directive} %no-default-prec
5226Do not assign a precedence to rules lacking an explicit @code{%prec}
5227modifier (@pxref{Contextual Precedence, ,Context-Dependent
5228Precedence}).
5229@end deffn
91d2c560 5230@end ifset
22fccf95 5231
18b519c0 5232@deffn {Directive} %no-lines
931c7513
RS
5233Don't generate any @code{#line} preprocessor commands in the parser
5234file. Ordinarily Bison writes these commands in the parser file so that
5235the C compiler and debuggers will associate errors and object code with
5236your source file (the grammar file). This directive causes them to
5237associate errors with the parser file, treating it an independent source
5238file in its own right.
18b519c0 5239@end deffn
931c7513 5240
02975b9a 5241@deffn {Directive} %output "@var{file}"
fa4d969f 5242Specify @var{file} for the parser file.
18b519c0 5243@end deffn
6deb4447 5244
18b519c0 5245@deffn {Directive} %pure-parser
d9df47b6
JD
5246Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5247for which Bison is more careful to warn about unreasonable usage.
18b519c0 5248@end deffn
6deb4447 5249
b50d2359 5250@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5251Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5252Require a Version of Bison}.
b50d2359
AD
5253@end deffn
5254
0e021770 5255@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5256Specify the skeleton to use.
5257
ed4d67dc
JD
5258@c You probably don't need this option unless you are developing Bison.
5259@c You should use @code{%language} if you want to specify the skeleton for a
5260@c different language, because it is clearer and because it will always choose the
5261@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5262
5263If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5264file in the Bison installation directory.
5265If it does, @var{file} is an absolute file name or a file name relative to the
5266directory of the grammar file.
5267This is similar to how most shells resolve commands.
0e021770
PE
5268@end deffn
5269
18b519c0 5270@deffn {Directive} %token-table
931c7513
RS
5271Generate an array of token names in the parser file. The name of the
5272array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5273token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5274three elements of @code{yytname} correspond to the predefined tokens
5275@code{"$end"},
88bce5a2
AD
5276@code{"error"}, and @code{"$undefined"}; after these come the symbols
5277defined in the grammar file.
931c7513 5278
9e0876fb
PE
5279The name in the table includes all the characters needed to represent
5280the token in Bison. For single-character literals and literal
5281strings, this includes the surrounding quoting characters and any
5282escape sequences. For example, the Bison single-character literal
5283@code{'+'} corresponds to a three-character name, represented in C as
5284@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5285corresponds to a five-character name, represented in C as
5286@code{"\"\\\\/\""}.
931c7513 5287
8c9a50be 5288When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5289definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5290@code{YYNRULES}, and @code{YYNSTATES}:
5291
5292@table @code
5293@item YYNTOKENS
5294The highest token number, plus one.
5295@item YYNNTS
9ecbd125 5296The number of nonterminal symbols.
931c7513
RS
5297@item YYNRULES
5298The number of grammar rules,
5299@item YYNSTATES
5300The number of parser states (@pxref{Parser States}).
5301@end table
18b519c0 5302@end deffn
d8988b2f 5303
18b519c0 5304@deffn {Directive} %verbose
d8988b2f 5305Write an extra output file containing verbose descriptions of the
742e4900 5306parser states and what is done for each type of lookahead token in
72d2299c 5307that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5308information.
18b519c0 5309@end deffn
d8988b2f 5310
18b519c0 5311@deffn {Directive} %yacc
d8988b2f
AD
5312Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5313including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5314@end deffn
d8988b2f
AD
5315
5316
342b8b6e 5317@node Multiple Parsers
bfa74976
RS
5318@section Multiple Parsers in the Same Program
5319
5320Most programs that use Bison parse only one language and therefore contain
5321only one Bison parser. But what if you want to parse more than one
5322language with the same program? Then you need to avoid a name conflict
5323between different definitions of @code{yyparse}, @code{yylval}, and so on.
5324
5325The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5326(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5327functions and variables of the Bison parser to start with @var{prefix}
5328instead of @samp{yy}. You can use this to give each parser distinct
5329names that do not conflict.
bfa74976
RS
5330
5331The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5332@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5333@code{yychar} and @code{yydebug}. If you use a push parser,
5334@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5335@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5336For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5337@code{clex}, and so on.
bfa74976
RS
5338
5339@strong{All the other variables and macros associated with Bison are not
5340renamed.} These others are not global; there is no conflict if the same
5341name is used in different parsers. For example, @code{YYSTYPE} is not
5342renamed, but defining this in different ways in different parsers causes
5343no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5344
5345The @samp{-p} option works by adding macro definitions to the beginning
5346of the parser source file, defining @code{yyparse} as
5347@code{@var{prefix}parse}, and so on. This effectively substitutes one
5348name for the other in the entire parser file.
5349
342b8b6e 5350@node Interface
bfa74976
RS
5351@chapter Parser C-Language Interface
5352@cindex C-language interface
5353@cindex interface
5354
5355The Bison parser is actually a C function named @code{yyparse}. Here we
5356describe the interface conventions of @code{yyparse} and the other
5357functions that it needs to use.
5358
5359Keep in mind that the parser uses many C identifiers starting with
5360@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5361identifier (aside from those in this manual) in an action or in epilogue
5362in the grammar file, you are likely to run into trouble.
bfa74976
RS
5363
5364@menu
f56274a8
DJ
5365* Parser Function:: How to call @code{yyparse} and what it returns.
5366* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5367* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5368* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5369* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5370* Lexical:: You must supply a function @code{yylex}
5371 which reads tokens.
5372* Error Reporting:: You must supply a function @code{yyerror}.
5373* Action Features:: Special features for use in actions.
5374* Internationalization:: How to let the parser speak in the user's
5375 native language.
bfa74976
RS
5376@end menu
5377
342b8b6e 5378@node Parser Function
bfa74976
RS
5379@section The Parser Function @code{yyparse}
5380@findex yyparse
5381
5382You call the function @code{yyparse} to cause parsing to occur. This
5383function reads tokens, executes actions, and ultimately returns when it
5384encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5385write an action which directs @code{yyparse} to return immediately
5386without reading further.
bfa74976 5387
2a8d363a
AD
5388
5389@deftypefun int yyparse (void)
bfa74976
RS
5390The value returned by @code{yyparse} is 0 if parsing was successful (return
5391is due to end-of-input).
5392
b47dbebe
PE
5393The value is 1 if parsing failed because of invalid input, i.e., input
5394that contains a syntax error or that causes @code{YYABORT} to be
5395invoked.
5396
5397The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5398@end deftypefun
bfa74976
RS
5399
5400In an action, you can cause immediate return from @code{yyparse} by using
5401these macros:
5402
2a8d363a 5403@defmac YYACCEPT
bfa74976
RS
5404@findex YYACCEPT
5405Return immediately with value 0 (to report success).
2a8d363a 5406@end defmac
bfa74976 5407
2a8d363a 5408@defmac YYABORT
bfa74976
RS
5409@findex YYABORT
5410Return immediately with value 1 (to report failure).
2a8d363a
AD
5411@end defmac
5412
5413If you use a reentrant parser, you can optionally pass additional
5414parameter information to it in a reentrant way. To do so, use the
5415declaration @code{%parse-param}:
5416
feeb0eda 5417@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5418@findex %parse-param
287c78f6
PE
5419Declare that an argument declared by the braced-code
5420@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5421The @var{argument-declaration} is used when declaring
feeb0eda
PE
5422functions or prototypes. The last identifier in
5423@var{argument-declaration} must be the argument name.
2a8d363a
AD
5424@end deffn
5425
5426Here's an example. Write this in the parser:
5427
5428@example
feeb0eda
PE
5429%parse-param @{int *nastiness@}
5430%parse-param @{int *randomness@}
2a8d363a
AD
5431@end example
5432
5433@noindent
5434Then call the parser like this:
5435
5436@example
5437@{
5438 int nastiness, randomness;
5439 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5440 value = yyparse (&nastiness, &randomness);
5441 @dots{}
5442@}
5443@end example
5444
5445@noindent
5446In the grammar actions, use expressions like this to refer to the data:
5447
5448@example
5449exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5450@end example
5451
9987d1b3
JD
5452@node Push Parser Function
5453@section The Push Parser Function @code{yypush_parse}
5454@findex yypush_parse
5455
59da312b
JD
5456(The current push parsing interface is experimental and may evolve.
5457More user feedback will help to stabilize it.)
5458
f4101aa6 5459You call the function @code{yypush_parse} to parse a single token. This
812775a0
JD
5460function is available if either the @code{%define api.push-pull "push"} or
5461@code{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5462@xref{Push Decl, ,A Push Parser}.
5463
5464@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5465The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5466following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5467is required to finish parsing the grammar.
5468@end deftypefun
5469
5470@node Pull Parser Function
5471@section The Pull Parser Function @code{yypull_parse}
5472@findex yypull_parse
5473
59da312b
JD
5474(The current push parsing interface is experimental and may evolve.
5475More user feedback will help to stabilize it.)
5476
f4101aa6 5477You call the function @code{yypull_parse} to parse the rest of the input
812775a0 5478stream. This function is available if the @code{%define api.push-pull "both"}
f4101aa6 5479declaration is used.
9987d1b3
JD
5480@xref{Push Decl, ,A Push Parser}.
5481
5482@deftypefun int yypull_parse (yypstate *yyps)
5483The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5484@end deftypefun
5485
5486@node Parser Create Function
5487@section The Parser Create Function @code{yystate_new}
5488@findex yypstate_new
5489
59da312b
JD
5490(The current push parsing interface is experimental and may evolve.
5491More user feedback will help to stabilize it.)
5492
f4101aa6 5493You call the function @code{yypstate_new} to create a new parser instance.
812775a0
JD
5494This function is available if either the @code{%define api.push-pull "push"} or
5495@code{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5496@xref{Push Decl, ,A Push Parser}.
5497
5498@deftypefun yypstate *yypstate_new (void)
5499The fuction will return a valid parser instance if there was memory available
333e670c
JD
5500or 0 if no memory was available.
5501In impure mode, it will also return 0 if a parser instance is currently
5502allocated.
9987d1b3
JD
5503@end deftypefun
5504
5505@node Parser Delete Function
5506@section The Parser Delete Function @code{yystate_delete}
5507@findex yypstate_delete
5508
59da312b
JD
5509(The current push parsing interface is experimental and may evolve.
5510More user feedback will help to stabilize it.)
5511
9987d1b3 5512You call the function @code{yypstate_delete} to delete a parser instance.
812775a0
JD
5513function is available if either the @code{%define api.push-pull "push"} or
5514@code{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5515@xref{Push Decl, ,A Push Parser}.
5516
5517@deftypefun void yypstate_delete (yypstate *yyps)
5518This function will reclaim the memory associated with a parser instance.
5519After this call, you should no longer attempt to use the parser instance.
5520@end deftypefun
bfa74976 5521
342b8b6e 5522@node Lexical
bfa74976
RS
5523@section The Lexical Analyzer Function @code{yylex}
5524@findex yylex
5525@cindex lexical analyzer
5526
5527The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5528the input stream and returns them to the parser. Bison does not create
5529this function automatically; you must write it so that @code{yyparse} can
5530call it. The function is sometimes referred to as a lexical scanner.
5531
5532In simple programs, @code{yylex} is often defined at the end of the Bison
5533grammar file. If @code{yylex} is defined in a separate source file, you
5534need to arrange for the token-type macro definitions to be available there.
5535To do this, use the @samp{-d} option when you run Bison, so that it will
5536write these macro definitions into a separate header file
5537@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5538that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5539
5540@menu
5541* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5542* Token Values:: How @code{yylex} must return the semantic value
5543 of the token it has read.
5544* Token Locations:: How @code{yylex} must return the text location
5545 (line number, etc.) of the token, if the
5546 actions want that.
5547* Pure Calling:: How the calling convention differs in a pure parser
5548 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5549@end menu
5550
342b8b6e 5551@node Calling Convention
bfa74976
RS
5552@subsection Calling Convention for @code{yylex}
5553
72d2299c
PE
5554The value that @code{yylex} returns must be the positive numeric code
5555for the type of token it has just found; a zero or negative value
5556signifies end-of-input.
bfa74976
RS
5557
5558When a token is referred to in the grammar rules by a name, that name
5559in the parser file becomes a C macro whose definition is the proper
5560numeric code for that token type. So @code{yylex} can use the name
5561to indicate that type. @xref{Symbols}.
5562
5563When a token is referred to in the grammar rules by a character literal,
5564the numeric code for that character is also the code for the token type.
72d2299c
PE
5565So @code{yylex} can simply return that character code, possibly converted
5566to @code{unsigned char} to avoid sign-extension. The null character
5567must not be used this way, because its code is zero and that
bfa74976
RS
5568signifies end-of-input.
5569
5570Here is an example showing these things:
5571
5572@example
13863333
AD
5573int
5574yylex (void)
bfa74976
RS
5575@{
5576 @dots{}
72d2299c 5577 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5578 return 0;
5579 @dots{}
5580 if (c == '+' || c == '-')
72d2299c 5581 return c; /* Assume token type for `+' is '+'. */
bfa74976 5582 @dots{}
72d2299c 5583 return INT; /* Return the type of the token. */
bfa74976
RS
5584 @dots{}
5585@}
5586@end example
5587
5588@noindent
5589This interface has been designed so that the output from the @code{lex}
5590utility can be used without change as the definition of @code{yylex}.
5591
931c7513
RS
5592If the grammar uses literal string tokens, there are two ways that
5593@code{yylex} can determine the token type codes for them:
5594
5595@itemize @bullet
5596@item
5597If the grammar defines symbolic token names as aliases for the
5598literal string tokens, @code{yylex} can use these symbolic names like
5599all others. In this case, the use of the literal string tokens in
5600the grammar file has no effect on @code{yylex}.
5601
5602@item
9ecbd125 5603@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5604table. The index of the token in the table is the token type's code.
9ecbd125 5605The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5606double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5607token's characters are escaped as necessary to be suitable as input
5608to Bison.
931c7513 5609
9e0876fb
PE
5610Here's code for looking up a multicharacter token in @code{yytname},
5611assuming that the characters of the token are stored in
5612@code{token_buffer}, and assuming that the token does not contain any
5613characters like @samp{"} that require escaping.
931c7513
RS
5614
5615@smallexample
5616for (i = 0; i < YYNTOKENS; i++)
5617 @{
5618 if (yytname[i] != 0
5619 && yytname[i][0] == '"'
68449b3a
PE
5620 && ! strncmp (yytname[i] + 1, token_buffer,
5621 strlen (token_buffer))
931c7513
RS
5622 && yytname[i][strlen (token_buffer) + 1] == '"'
5623 && yytname[i][strlen (token_buffer) + 2] == 0)
5624 break;
5625 @}
5626@end smallexample
5627
5628The @code{yytname} table is generated only if you use the
8c9a50be 5629@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5630@end itemize
5631
342b8b6e 5632@node Token Values
bfa74976
RS
5633@subsection Semantic Values of Tokens
5634
5635@vindex yylval
9d9b8b70 5636In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5637be stored into the global variable @code{yylval}. When you are using
5638just one data type for semantic values, @code{yylval} has that type.
5639Thus, if the type is @code{int} (the default), you might write this in
5640@code{yylex}:
5641
5642@example
5643@group
5644 @dots{}
72d2299c
PE
5645 yylval = value; /* Put value onto Bison stack. */
5646 return INT; /* Return the type of the token. */
bfa74976
RS
5647 @dots{}
5648@end group
5649@end example
5650
5651When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5652made from the @code{%union} declaration (@pxref{Union Decl, ,The
5653Collection of Value Types}). So when you store a token's value, you
5654must use the proper member of the union. If the @code{%union}
5655declaration looks like this:
bfa74976
RS
5656
5657@example
5658@group
5659%union @{
5660 int intval;
5661 double val;
5662 symrec *tptr;
5663@}
5664@end group
5665@end example
5666
5667@noindent
5668then the code in @code{yylex} might look like this:
5669
5670@example
5671@group
5672 @dots{}
72d2299c
PE
5673 yylval.intval = value; /* Put value onto Bison stack. */
5674 return INT; /* Return the type of the token. */
bfa74976
RS
5675 @dots{}
5676@end group
5677@end example
5678
95923bd6
AD
5679@node Token Locations
5680@subsection Textual Locations of Tokens
bfa74976
RS
5681
5682@vindex yylloc
847bf1f5 5683If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5684Tracking Locations}) in actions to keep track of the textual locations
5685of tokens and groupings, then you must provide this information in
5686@code{yylex}. The function @code{yyparse} expects to find the textual
5687location of a token just parsed in the global variable @code{yylloc}.
5688So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5689
5690By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5691initialize the members that are going to be used by the actions. The
5692four members are called @code{first_line}, @code{first_column},
5693@code{last_line} and @code{last_column}. Note that the use of this
5694feature makes the parser noticeably slower.
bfa74976
RS
5695
5696@tindex YYLTYPE
5697The data type of @code{yylloc} has the name @code{YYLTYPE}.
5698
342b8b6e 5699@node Pure Calling
c656404a 5700@subsection Calling Conventions for Pure Parsers
bfa74976 5701
d9df47b6 5702When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5703pure, reentrant parser, the global communication variables @code{yylval}
5704and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5705Parser}.) In such parsers the two global variables are replaced by
5706pointers passed as arguments to @code{yylex}. You must declare them as
5707shown here, and pass the information back by storing it through those
5708pointers.
bfa74976
RS
5709
5710@example
13863333
AD
5711int
5712yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5713@{
5714 @dots{}
5715 *lvalp = value; /* Put value onto Bison stack. */
5716 return INT; /* Return the type of the token. */
5717 @dots{}
5718@}
5719@end example
5720
5721If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5722textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5723this case, omit the second argument; @code{yylex} will be called with
5724only one argument.
5725
e425e872 5726
2a8d363a
AD
5727If you wish to pass the additional parameter data to @code{yylex}, use
5728@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5729Function}).
e425e872 5730
feeb0eda 5731@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5732@findex %lex-param
287c78f6
PE
5733Declare that the braced-code @var{argument-declaration} is an
5734additional @code{yylex} argument declaration.
2a8d363a 5735@end deffn
e425e872 5736
2a8d363a 5737For instance:
e425e872
RS
5738
5739@example
feeb0eda
PE
5740%parse-param @{int *nastiness@}
5741%lex-param @{int *nastiness@}
5742%parse-param @{int *randomness@}
e425e872
RS
5743@end example
5744
5745@noindent
2a8d363a 5746results in the following signature:
e425e872
RS
5747
5748@example
2a8d363a
AD
5749int yylex (int *nastiness);
5750int yyparse (int *nastiness, int *randomness);
e425e872
RS
5751@end example
5752
d9df47b6 5753If @code{%define api.pure} is added:
c656404a
RS
5754
5755@example
2a8d363a
AD
5756int yylex (YYSTYPE *lvalp, int *nastiness);
5757int yyparse (int *nastiness, int *randomness);
c656404a
RS
5758@end example
5759
2a8d363a 5760@noindent
d9df47b6 5761and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5762
2a8d363a
AD
5763@example
5764int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5765int yyparse (int *nastiness, int *randomness);
5766@end example
931c7513 5767
342b8b6e 5768@node Error Reporting
bfa74976
RS
5769@section The Error Reporting Function @code{yyerror}
5770@cindex error reporting function
5771@findex yyerror
5772@cindex parse error
5773@cindex syntax error
5774
6e649e65 5775The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5776whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5777action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5778macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5779in Actions}).
bfa74976
RS
5780
5781The Bison parser expects to report the error by calling an error
5782reporting function named @code{yyerror}, which you must supply. It is
5783called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5784receives one argument. For a syntax error, the string is normally
5785@w{@code{"syntax error"}}.
bfa74976 5786
2a8d363a
AD
5787@findex %error-verbose
5788If you invoke the directive @code{%error-verbose} in the Bison
5789declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5790Section}), then Bison provides a more verbose and specific error message
6e649e65 5791string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5792
1a059451
PE
5793The parser can detect one other kind of error: memory exhaustion. This
5794can happen when the input contains constructions that are very deeply
bfa74976 5795nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5796parser normally extends its stack automatically up to a very large limit. But
5797if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5798fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5799
5800In some cases diagnostics like @w{@code{"syntax error"}} are
5801translated automatically from English to some other language before
5802they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5803
5804The following definition suffices in simple programs:
5805
5806@example
5807@group
13863333 5808void
38a92d50 5809yyerror (char const *s)
bfa74976
RS
5810@{
5811@end group
5812@group
5813 fprintf (stderr, "%s\n", s);
5814@}
5815@end group
5816@end example
5817
5818After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5819error recovery if you have written suitable error recovery grammar rules
5820(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5821immediately return 1.
5822
93724f13 5823Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5824an access to the current location.
5825This is indeed the case for the @acronym{GLR}
2a8d363a 5826parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5827@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5828@code{yyerror} are:
5829
5830@example
38a92d50
PE
5831void yyerror (char const *msg); /* Yacc parsers. */
5832void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5833@end example
5834
feeb0eda 5835If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5836
5837@example
b317297e
PE
5838void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5839void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5840@end example
5841
fa7e68c3 5842Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5843convention for absolutely pure parsers, i.e., when the calling
5844convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5845@code{%define api.pure} are pure.
5846I.e.:
2a8d363a
AD
5847
5848@example
5849/* Location tracking. */
5850%locations
5851/* Pure yylex. */
d9df47b6 5852%define api.pure
feeb0eda 5853%lex-param @{int *nastiness@}
2a8d363a 5854/* Pure yyparse. */
feeb0eda
PE
5855%parse-param @{int *nastiness@}
5856%parse-param @{int *randomness@}
2a8d363a
AD
5857@end example
5858
5859@noindent
5860results in the following signatures for all the parser kinds:
5861
5862@example
5863int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5864int yyparse (int *nastiness, int *randomness);
93724f13
AD
5865void yyerror (YYLTYPE *locp,
5866 int *nastiness, int *randomness,
38a92d50 5867 char const *msg);
2a8d363a
AD
5868@end example
5869
1c0c3e95 5870@noindent
38a92d50
PE
5871The prototypes are only indications of how the code produced by Bison
5872uses @code{yyerror}. Bison-generated code always ignores the returned
5873value, so @code{yyerror} can return any type, including @code{void}.
5874Also, @code{yyerror} can be a variadic function; that is why the
5875message is always passed last.
5876
5877Traditionally @code{yyerror} returns an @code{int} that is always
5878ignored, but this is purely for historical reasons, and @code{void} is
5879preferable since it more accurately describes the return type for
5880@code{yyerror}.
93724f13 5881
bfa74976
RS
5882@vindex yynerrs
5883The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5884reported so far. Normally this variable is global; but if you
704a47c4
AD
5885request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5886then it is a local variable which only the actions can access.
bfa74976 5887
342b8b6e 5888@node Action Features
bfa74976
RS
5889@section Special Features for Use in Actions
5890@cindex summary, action features
5891@cindex action features summary
5892
5893Here is a table of Bison constructs, variables and macros that
5894are useful in actions.
5895
18b519c0 5896@deffn {Variable} $$
bfa74976
RS
5897Acts like a variable that contains the semantic value for the
5898grouping made by the current rule. @xref{Actions}.
18b519c0 5899@end deffn
bfa74976 5900
18b519c0 5901@deffn {Variable} $@var{n}
bfa74976
RS
5902Acts like a variable that contains the semantic value for the
5903@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5904@end deffn
bfa74976 5905
18b519c0 5906@deffn {Variable} $<@var{typealt}>$
bfa74976 5907Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5908specified by the @code{%union} declaration. @xref{Action Types, ,Data
5909Types of Values in Actions}.
18b519c0 5910@end deffn
bfa74976 5911
18b519c0 5912@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5913Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5914union specified by the @code{%union} declaration.
e0c471a9 5915@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5916@end deffn
bfa74976 5917
18b519c0 5918@deffn {Macro} YYABORT;
bfa74976
RS
5919Return immediately from @code{yyparse}, indicating failure.
5920@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5921@end deffn
bfa74976 5922
18b519c0 5923@deffn {Macro} YYACCEPT;
bfa74976
RS
5924Return immediately from @code{yyparse}, indicating success.
5925@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5926@end deffn
bfa74976 5927
18b519c0 5928@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5929@findex YYBACKUP
5930Unshift a token. This macro is allowed only for rules that reduce
742e4900 5931a single value, and only when there is no lookahead token.
c827f760 5932It is also disallowed in @acronym{GLR} parsers.
742e4900 5933It installs a lookahead token with token type @var{token} and
bfa74976
RS
5934semantic value @var{value}; then it discards the value that was
5935going to be reduced by this rule.
5936
5937If the macro is used when it is not valid, such as when there is
742e4900 5938a lookahead token already, then it reports a syntax error with
bfa74976
RS
5939a message @samp{cannot back up} and performs ordinary error
5940recovery.
5941
5942In either case, the rest of the action is not executed.
18b519c0 5943@end deffn
bfa74976 5944
18b519c0 5945@deffn {Macro} YYEMPTY
bfa74976 5946@vindex YYEMPTY
742e4900 5947Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5948@end deffn
bfa74976 5949
32c29292
JD
5950@deffn {Macro} YYEOF
5951@vindex YYEOF
742e4900 5952Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5953stream.
5954@end deffn
5955
18b519c0 5956@deffn {Macro} YYERROR;
bfa74976
RS
5957@findex YYERROR
5958Cause an immediate syntax error. This statement initiates error
5959recovery just as if the parser itself had detected an error; however, it
5960does not call @code{yyerror}, and does not print any message. If you
5961want to print an error message, call @code{yyerror} explicitly before
5962the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5963@end deffn
bfa74976 5964
18b519c0 5965@deffn {Macro} YYRECOVERING
02103984
PE
5966@findex YYRECOVERING
5967The expression @code{YYRECOVERING ()} yields 1 when the parser
5968is recovering from a syntax error, and 0 otherwise.
bfa74976 5969@xref{Error Recovery}.
18b519c0 5970@end deffn
bfa74976 5971
18b519c0 5972@deffn {Variable} yychar
742e4900
JD
5973Variable containing either the lookahead token, or @code{YYEOF} when the
5974lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5975has been performed so the next token is not yet known.
5976Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5977Actions}).
742e4900 5978@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5979@end deffn
bfa74976 5980
18b519c0 5981@deffn {Macro} yyclearin;
742e4900 5982Discard the current lookahead token. This is useful primarily in
32c29292
JD
5983error rules.
5984Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5985Semantic Actions}).
5986@xref{Error Recovery}.
18b519c0 5987@end deffn
bfa74976 5988
18b519c0 5989@deffn {Macro} yyerrok;
bfa74976 5990Resume generating error messages immediately for subsequent syntax
13863333 5991errors. This is useful primarily in error rules.
bfa74976 5992@xref{Error Recovery}.
18b519c0 5993@end deffn
bfa74976 5994
32c29292 5995@deffn {Variable} yylloc
742e4900 5996Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5997to @code{YYEMPTY} or @code{YYEOF}.
5998Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5999Actions}).
6000@xref{Actions and Locations, ,Actions and Locations}.
6001@end deffn
6002
6003@deffn {Variable} yylval
742e4900 6004Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6005not set to @code{YYEMPTY} or @code{YYEOF}.
6006Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6007Actions}).
6008@xref{Actions, ,Actions}.
6009@end deffn
6010
18b519c0 6011@deffn {Value} @@$
847bf1f5 6012@findex @@$
95923bd6 6013Acts like a structure variable containing information on the textual location
847bf1f5
AD
6014of the grouping made by the current rule. @xref{Locations, ,
6015Tracking Locations}.
bfa74976 6016
847bf1f5
AD
6017@c Check if those paragraphs are still useful or not.
6018
6019@c @example
6020@c struct @{
6021@c int first_line, last_line;
6022@c int first_column, last_column;
6023@c @};
6024@c @end example
6025
6026@c Thus, to get the starting line number of the third component, you would
6027@c use @samp{@@3.first_line}.
bfa74976 6028
847bf1f5
AD
6029@c In order for the members of this structure to contain valid information,
6030@c you must make @code{yylex} supply this information about each token.
6031@c If you need only certain members, then @code{yylex} need only fill in
6032@c those members.
bfa74976 6033
847bf1f5 6034@c The use of this feature makes the parser noticeably slower.
18b519c0 6035@end deffn
847bf1f5 6036
18b519c0 6037@deffn {Value} @@@var{n}
847bf1f5 6038@findex @@@var{n}
95923bd6 6039Acts like a structure variable containing information on the textual location
847bf1f5
AD
6040of the @var{n}th component of the current rule. @xref{Locations, ,
6041Tracking Locations}.
18b519c0 6042@end deffn
bfa74976 6043
f7ab6a50
PE
6044@node Internationalization
6045@section Parser Internationalization
6046@cindex internationalization
6047@cindex i18n
6048@cindex NLS
6049@cindex gettext
6050@cindex bison-po
6051
6052A Bison-generated parser can print diagnostics, including error and
6053tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6054also supports outputting diagnostics in the user's native language. To
6055make this work, the user should set the usual environment variables.
6056@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6057For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6058set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6059encoding. The exact set of available locales depends on the user's
6060installation.
6061
6062The maintainer of a package that uses a Bison-generated parser enables
6063the internationalization of the parser's output through the following
6064steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6065@acronym{GNU} Automake.
6066
6067@enumerate
6068@item
30757c8c 6069@cindex bison-i18n.m4
f7ab6a50
PE
6070Into the directory containing the @acronym{GNU} Autoconf macros used
6071by the package---often called @file{m4}---copy the
6072@file{bison-i18n.m4} file installed by Bison under
6073@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6074For example:
6075
6076@example
6077cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6078@end example
6079
6080@item
30757c8c
PE
6081@findex BISON_I18N
6082@vindex BISON_LOCALEDIR
6083@vindex YYENABLE_NLS
f7ab6a50
PE
6084In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6085invocation, add an invocation of @code{BISON_I18N}. This macro is
6086defined in the file @file{bison-i18n.m4} that you copied earlier. It
6087causes @samp{configure} to find the value of the
30757c8c
PE
6088@code{BISON_LOCALEDIR} variable, and it defines the source-language
6089symbol @code{YYENABLE_NLS} to enable translations in the
6090Bison-generated parser.
f7ab6a50
PE
6091
6092@item
6093In the @code{main} function of your program, designate the directory
6094containing Bison's runtime message catalog, through a call to
6095@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6096For example:
6097
6098@example
6099bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6100@end example
6101
6102Typically this appears after any other call @code{bindtextdomain
6103(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6104@samp{BISON_LOCALEDIR} to be defined as a string through the
6105@file{Makefile}.
6106
6107@item
6108In the @file{Makefile.am} that controls the compilation of the @code{main}
6109function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6110either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6111
6112@example
6113DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6114@end example
6115
6116or:
6117
6118@example
6119AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6120@end example
6121
6122@item
6123Finally, invoke the command @command{autoreconf} to generate the build
6124infrastructure.
6125@end enumerate
6126
bfa74976 6127
342b8b6e 6128@node Algorithm
13863333
AD
6129@chapter The Bison Parser Algorithm
6130@cindex Bison parser algorithm
bfa74976
RS
6131@cindex algorithm of parser
6132@cindex shifting
6133@cindex reduction
6134@cindex parser stack
6135@cindex stack, parser
6136
6137As Bison reads tokens, it pushes them onto a stack along with their
6138semantic values. The stack is called the @dfn{parser stack}. Pushing a
6139token is traditionally called @dfn{shifting}.
6140
6141For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6142@samp{3} to come. The stack will have four elements, one for each token
6143that was shifted.
6144
6145But the stack does not always have an element for each token read. When
6146the last @var{n} tokens and groupings shifted match the components of a
6147grammar rule, they can be combined according to that rule. This is called
6148@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6149single grouping whose symbol is the result (left hand side) of that rule.
6150Running the rule's action is part of the process of reduction, because this
6151is what computes the semantic value of the resulting grouping.
6152
6153For example, if the infix calculator's parser stack contains this:
6154
6155@example
61561 + 5 * 3
6157@end example
6158
6159@noindent
6160and the next input token is a newline character, then the last three
6161elements can be reduced to 15 via the rule:
6162
6163@example
6164expr: expr '*' expr;
6165@end example
6166
6167@noindent
6168Then the stack contains just these three elements:
6169
6170@example
61711 + 15
6172@end example
6173
6174@noindent
6175At this point, another reduction can be made, resulting in the single value
617616. Then the newline token can be shifted.
6177
6178The parser tries, by shifts and reductions, to reduce the entire input down
6179to a single grouping whose symbol is the grammar's start-symbol
6180(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6181
6182This kind of parser is known in the literature as a bottom-up parser.
6183
6184@menu
742e4900 6185* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6186* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6187* Precedence:: Operator precedence works by resolving conflicts.
6188* Contextual Precedence:: When an operator's precedence depends on context.
6189* Parser States:: The parser is a finite-state-machine with stack.
6190* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6191* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6192* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6193* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6194@end menu
6195
742e4900
JD
6196@node Lookahead
6197@section Lookahead Tokens
6198@cindex lookahead token
bfa74976
RS
6199
6200The Bison parser does @emph{not} always reduce immediately as soon as the
6201last @var{n} tokens and groupings match a rule. This is because such a
6202simple strategy is inadequate to handle most languages. Instead, when a
6203reduction is possible, the parser sometimes ``looks ahead'' at the next
6204token in order to decide what to do.
6205
6206When a token is read, it is not immediately shifted; first it becomes the
742e4900 6207@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6208perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6209the lookahead token remains off to the side. When no more reductions
6210should take place, the lookahead token is shifted onto the stack. This
bfa74976 6211does not mean that all possible reductions have been done; depending on the
742e4900 6212token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6213application.
6214
742e4900 6215Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6216expressions which contain binary addition operators and postfix unary
6217factorial operators (@samp{!}), and allow parentheses for grouping.
6218
6219@example
6220@group
6221expr: term '+' expr
6222 | term
6223 ;
6224@end group
6225
6226@group
6227term: '(' expr ')'
6228 | term '!'
6229 | NUMBER
6230 ;
6231@end group
6232@end example
6233
6234Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6235should be done? If the following token is @samp{)}, then the first three
6236tokens must be reduced to form an @code{expr}. This is the only valid
6237course, because shifting the @samp{)} would produce a sequence of symbols
6238@w{@code{term ')'}}, and no rule allows this.
6239
6240If the following token is @samp{!}, then it must be shifted immediately so
6241that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6242parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6243@code{expr}. It would then be impossible to shift the @samp{!} because
6244doing so would produce on the stack the sequence of symbols @code{expr
6245'!'}. No rule allows that sequence.
6246
6247@vindex yychar
32c29292
JD
6248@vindex yylval
6249@vindex yylloc
742e4900 6250The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6251Its semantic value and location, if any, are stored in the variables
6252@code{yylval} and @code{yylloc}.
bfa74976
RS
6253@xref{Action Features, ,Special Features for Use in Actions}.
6254
342b8b6e 6255@node Shift/Reduce
bfa74976
RS
6256@section Shift/Reduce Conflicts
6257@cindex conflicts
6258@cindex shift/reduce conflicts
6259@cindex dangling @code{else}
6260@cindex @code{else}, dangling
6261
6262Suppose we are parsing a language which has if-then and if-then-else
6263statements, with a pair of rules like this:
6264
6265@example
6266@group
6267if_stmt:
6268 IF expr THEN stmt
6269 | IF expr THEN stmt ELSE stmt
6270 ;
6271@end group
6272@end example
6273
6274@noindent
6275Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6276terminal symbols for specific keyword tokens.
6277
742e4900 6278When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6279contents of the stack (assuming the input is valid) are just right for
6280reduction by the first rule. But it is also legitimate to shift the
6281@code{ELSE}, because that would lead to eventual reduction by the second
6282rule.
6283
6284This situation, where either a shift or a reduction would be valid, is
6285called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6286these conflicts by choosing to shift, unless otherwise directed by
6287operator precedence declarations. To see the reason for this, let's
6288contrast it with the other alternative.
6289
6290Since the parser prefers to shift the @code{ELSE}, the result is to attach
6291the else-clause to the innermost if-statement, making these two inputs
6292equivalent:
6293
6294@example
6295if x then if y then win (); else lose;
6296
6297if x then do; if y then win (); else lose; end;
6298@end example
6299
6300But if the parser chose to reduce when possible rather than shift, the
6301result would be to attach the else-clause to the outermost if-statement,
6302making these two inputs equivalent:
6303
6304@example
6305if x then if y then win (); else lose;
6306
6307if x then do; if y then win (); end; else lose;
6308@end example
6309
6310The conflict exists because the grammar as written is ambiguous: either
6311parsing of the simple nested if-statement is legitimate. The established
6312convention is that these ambiguities are resolved by attaching the
6313else-clause to the innermost if-statement; this is what Bison accomplishes
6314by choosing to shift rather than reduce. (It would ideally be cleaner to
6315write an unambiguous grammar, but that is very hard to do in this case.)
6316This particular ambiguity was first encountered in the specifications of
6317Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6318
6319To avoid warnings from Bison about predictable, legitimate shift/reduce
6320conflicts, use the @code{%expect @var{n}} declaration. There will be no
6321warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6322@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6323
6324The definition of @code{if_stmt} above is solely to blame for the
6325conflict, but the conflict does not actually appear without additional
6326rules. Here is a complete Bison input file that actually manifests the
6327conflict:
6328
6329@example
6330@group
6331%token IF THEN ELSE variable
6332%%
6333@end group
6334@group
6335stmt: expr
6336 | if_stmt
6337 ;
6338@end group
6339
6340@group
6341if_stmt:
6342 IF expr THEN stmt
6343 | IF expr THEN stmt ELSE stmt
6344 ;
6345@end group
6346
6347expr: variable
6348 ;
6349@end example
6350
342b8b6e 6351@node Precedence
bfa74976
RS
6352@section Operator Precedence
6353@cindex operator precedence
6354@cindex precedence of operators
6355
6356Another situation where shift/reduce conflicts appear is in arithmetic
6357expressions. Here shifting is not always the preferred resolution; the
6358Bison declarations for operator precedence allow you to specify when to
6359shift and when to reduce.
6360
6361@menu
6362* Why Precedence:: An example showing why precedence is needed.
6363* Using Precedence:: How to specify precedence in Bison grammars.
6364* Precedence Examples:: How these features are used in the previous example.
6365* How Precedence:: How they work.
6366@end menu
6367
342b8b6e 6368@node Why Precedence
bfa74976
RS
6369@subsection When Precedence is Needed
6370
6371Consider the following ambiguous grammar fragment (ambiguous because the
6372input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6373
6374@example
6375@group
6376expr: expr '-' expr
6377 | expr '*' expr
6378 | expr '<' expr
6379 | '(' expr ')'
6380 @dots{}
6381 ;
6382@end group
6383@end example
6384
6385@noindent
6386Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6387should it reduce them via the rule for the subtraction operator? It
6388depends on the next token. Of course, if the next token is @samp{)}, we
6389must reduce; shifting is invalid because no single rule can reduce the
6390token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6391the next token is @samp{*} or @samp{<}, we have a choice: either
6392shifting or reduction would allow the parse to complete, but with
6393different results.
6394
6395To decide which one Bison should do, we must consider the results. If
6396the next operator token @var{op} is shifted, then it must be reduced
6397first in order to permit another opportunity to reduce the difference.
6398The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6399hand, if the subtraction is reduced before shifting @var{op}, the result
6400is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6401reduce should depend on the relative precedence of the operators
6402@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6403@samp{<}.
bfa74976
RS
6404
6405@cindex associativity
6406What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6407@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6408operators we prefer the former, which is called @dfn{left association}.
6409The latter alternative, @dfn{right association}, is desirable for
6410assignment operators. The choice of left or right association is a
6411matter of whether the parser chooses to shift or reduce when the stack
742e4900 6412contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6413makes right-associativity.
bfa74976 6414
342b8b6e 6415@node Using Precedence
bfa74976
RS
6416@subsection Specifying Operator Precedence
6417@findex %left
6418@findex %right
6419@findex %nonassoc
6420
6421Bison allows you to specify these choices with the operator precedence
6422declarations @code{%left} and @code{%right}. Each such declaration
6423contains a list of tokens, which are operators whose precedence and
6424associativity is being declared. The @code{%left} declaration makes all
6425those operators left-associative and the @code{%right} declaration makes
6426them right-associative. A third alternative is @code{%nonassoc}, which
6427declares that it is a syntax error to find the same operator twice ``in a
6428row''.
6429
6430The relative precedence of different operators is controlled by the
6431order in which they are declared. The first @code{%left} or
6432@code{%right} declaration in the file declares the operators whose
6433precedence is lowest, the next such declaration declares the operators
6434whose precedence is a little higher, and so on.
6435
342b8b6e 6436@node Precedence Examples
bfa74976
RS
6437@subsection Precedence Examples
6438
6439In our example, we would want the following declarations:
6440
6441@example
6442%left '<'
6443%left '-'
6444%left '*'
6445@end example
6446
6447In a more complete example, which supports other operators as well, we
6448would declare them in groups of equal precedence. For example, @code{'+'} is
6449declared with @code{'-'}:
6450
6451@example
6452%left '<' '>' '=' NE LE GE
6453%left '+' '-'
6454%left '*' '/'
6455@end example
6456
6457@noindent
6458(Here @code{NE} and so on stand for the operators for ``not equal''
6459and so on. We assume that these tokens are more than one character long
6460and therefore are represented by names, not character literals.)
6461
342b8b6e 6462@node How Precedence
bfa74976
RS
6463@subsection How Precedence Works
6464
6465The first effect of the precedence declarations is to assign precedence
6466levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6467precedence levels to certain rules: each rule gets its precedence from
6468the last terminal symbol mentioned in the components. (You can also
6469specify explicitly the precedence of a rule. @xref{Contextual
6470Precedence, ,Context-Dependent Precedence}.)
6471
6472Finally, the resolution of conflicts works by comparing the precedence
742e4900 6473of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6474token's precedence is higher, the choice is to shift. If the rule's
6475precedence is higher, the choice is to reduce. If they have equal
6476precedence, the choice is made based on the associativity of that
6477precedence level. The verbose output file made by @samp{-v}
6478(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6479resolved.
bfa74976
RS
6480
6481Not all rules and not all tokens have precedence. If either the rule or
742e4900 6482the lookahead token has no precedence, then the default is to shift.
bfa74976 6483
342b8b6e 6484@node Contextual Precedence
bfa74976
RS
6485@section Context-Dependent Precedence
6486@cindex context-dependent precedence
6487@cindex unary operator precedence
6488@cindex precedence, context-dependent
6489@cindex precedence, unary operator
6490@findex %prec
6491
6492Often the precedence of an operator depends on the context. This sounds
6493outlandish at first, but it is really very common. For example, a minus
6494sign typically has a very high precedence as a unary operator, and a
6495somewhat lower precedence (lower than multiplication) as a binary operator.
6496
6497The Bison precedence declarations, @code{%left}, @code{%right} and
6498@code{%nonassoc}, can only be used once for a given token; so a token has
6499only one precedence declared in this way. For context-dependent
6500precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6501modifier for rules.
bfa74976
RS
6502
6503The @code{%prec} modifier declares the precedence of a particular rule by
6504specifying a terminal symbol whose precedence should be used for that rule.
6505It's not necessary for that symbol to appear otherwise in the rule. The
6506modifier's syntax is:
6507
6508@example
6509%prec @var{terminal-symbol}
6510@end example
6511
6512@noindent
6513and it is written after the components of the rule. Its effect is to
6514assign the rule the precedence of @var{terminal-symbol}, overriding
6515the precedence that would be deduced for it in the ordinary way. The
6516altered rule precedence then affects how conflicts involving that rule
6517are resolved (@pxref{Precedence, ,Operator Precedence}).
6518
6519Here is how @code{%prec} solves the problem of unary minus. First, declare
6520a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6521are no tokens of this type, but the symbol serves to stand for its
6522precedence:
6523
6524@example
6525@dots{}
6526%left '+' '-'
6527%left '*'
6528%left UMINUS
6529@end example
6530
6531Now the precedence of @code{UMINUS} can be used in specific rules:
6532
6533@example
6534@group
6535exp: @dots{}
6536 | exp '-' exp
6537 @dots{}
6538 | '-' exp %prec UMINUS
6539@end group
6540@end example
6541
91d2c560 6542@ifset defaultprec
39a06c25
PE
6543If you forget to append @code{%prec UMINUS} to the rule for unary
6544minus, Bison silently assumes that minus has its usual precedence.
6545This kind of problem can be tricky to debug, since one typically
6546discovers the mistake only by testing the code.
6547
22fccf95 6548The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6549this kind of problem systematically. It causes rules that lack a
6550@code{%prec} modifier to have no precedence, even if the last terminal
6551symbol mentioned in their components has a declared precedence.
6552
22fccf95 6553If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6554for all rules that participate in precedence conflict resolution.
6555Then you will see any shift/reduce conflict until you tell Bison how
6556to resolve it, either by changing your grammar or by adding an
6557explicit precedence. This will probably add declarations to the
6558grammar, but it helps to protect against incorrect rule precedences.
6559
22fccf95
PE
6560The effect of @code{%no-default-prec;} can be reversed by giving
6561@code{%default-prec;}, which is the default.
91d2c560 6562@end ifset
39a06c25 6563
342b8b6e 6564@node Parser States
bfa74976
RS
6565@section Parser States
6566@cindex finite-state machine
6567@cindex parser state
6568@cindex state (of parser)
6569
6570The function @code{yyparse} is implemented using a finite-state machine.
6571The values pushed on the parser stack are not simply token type codes; they
6572represent the entire sequence of terminal and nonterminal symbols at or
6573near the top of the stack. The current state collects all the information
6574about previous input which is relevant to deciding what to do next.
6575
742e4900
JD
6576Each time a lookahead token is read, the current parser state together
6577with the type of lookahead token are looked up in a table. This table
6578entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6579specifies the new parser state, which is pushed onto the top of the
6580parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6581This means that a certain number of tokens or groupings are taken off
6582the top of the stack, and replaced by one grouping. In other words,
6583that number of states are popped from the stack, and one new state is
6584pushed.
6585
742e4900 6586There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6587is erroneous in the current state. This causes error processing to begin
6588(@pxref{Error Recovery}).
6589
342b8b6e 6590@node Reduce/Reduce
bfa74976
RS
6591@section Reduce/Reduce Conflicts
6592@cindex reduce/reduce conflict
6593@cindex conflicts, reduce/reduce
6594
6595A reduce/reduce conflict occurs if there are two or more rules that apply
6596to the same sequence of input. This usually indicates a serious error
6597in the grammar.
6598
6599For example, here is an erroneous attempt to define a sequence
6600of zero or more @code{word} groupings.
6601
6602@example
6603sequence: /* empty */
6604 @{ printf ("empty sequence\n"); @}
6605 | maybeword
6606 | sequence word
6607 @{ printf ("added word %s\n", $2); @}
6608 ;
6609
6610maybeword: /* empty */
6611 @{ printf ("empty maybeword\n"); @}
6612 | word
6613 @{ printf ("single word %s\n", $1); @}
6614 ;
6615@end example
6616
6617@noindent
6618The error is an ambiguity: there is more than one way to parse a single
6619@code{word} into a @code{sequence}. It could be reduced to a
6620@code{maybeword} and then into a @code{sequence} via the second rule.
6621Alternatively, nothing-at-all could be reduced into a @code{sequence}
6622via the first rule, and this could be combined with the @code{word}
6623using the third rule for @code{sequence}.
6624
6625There is also more than one way to reduce nothing-at-all into a
6626@code{sequence}. This can be done directly via the first rule,
6627or indirectly via @code{maybeword} and then the second rule.
6628
6629You might think that this is a distinction without a difference, because it
6630does not change whether any particular input is valid or not. But it does
6631affect which actions are run. One parsing order runs the second rule's
6632action; the other runs the first rule's action and the third rule's action.
6633In this example, the output of the program changes.
6634
6635Bison resolves a reduce/reduce conflict by choosing to use the rule that
6636appears first in the grammar, but it is very risky to rely on this. Every
6637reduce/reduce conflict must be studied and usually eliminated. Here is the
6638proper way to define @code{sequence}:
6639
6640@example
6641sequence: /* empty */
6642 @{ printf ("empty sequence\n"); @}
6643 | sequence word
6644 @{ printf ("added word %s\n", $2); @}
6645 ;
6646@end example
6647
6648Here is another common error that yields a reduce/reduce conflict:
6649
6650@example
6651sequence: /* empty */
6652 | sequence words
6653 | sequence redirects
6654 ;
6655
6656words: /* empty */
6657 | words word
6658 ;
6659
6660redirects:/* empty */
6661 | redirects redirect
6662 ;
6663@end example
6664
6665@noindent
6666The intention here is to define a sequence which can contain either
6667@code{word} or @code{redirect} groupings. The individual definitions of
6668@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6669three together make a subtle ambiguity: even an empty input can be parsed
6670in infinitely many ways!
6671
6672Consider: nothing-at-all could be a @code{words}. Or it could be two
6673@code{words} in a row, or three, or any number. It could equally well be a
6674@code{redirects}, or two, or any number. Or it could be a @code{words}
6675followed by three @code{redirects} and another @code{words}. And so on.
6676
6677Here are two ways to correct these rules. First, to make it a single level
6678of sequence:
6679
6680@example
6681sequence: /* empty */
6682 | sequence word
6683 | sequence redirect
6684 ;
6685@end example
6686
6687Second, to prevent either a @code{words} or a @code{redirects}
6688from being empty:
6689
6690@example
6691sequence: /* empty */
6692 | sequence words
6693 | sequence redirects
6694 ;
6695
6696words: word
6697 | words word
6698 ;
6699
6700redirects:redirect
6701 | redirects redirect
6702 ;
6703@end example
6704
342b8b6e 6705@node Mystery Conflicts
bfa74976
RS
6706@section Mysterious Reduce/Reduce Conflicts
6707
6708Sometimes reduce/reduce conflicts can occur that don't look warranted.
6709Here is an example:
6710
6711@example
6712@group
6713%token ID
6714
6715%%
6716def: param_spec return_spec ','
6717 ;
6718param_spec:
6719 type
6720 | name_list ':' type
6721 ;
6722@end group
6723@group
6724return_spec:
6725 type
6726 | name ':' type
6727 ;
6728@end group
6729@group
6730type: ID
6731 ;
6732@end group
6733@group
6734name: ID
6735 ;
6736name_list:
6737 name
6738 | name ',' name_list
6739 ;
6740@end group
6741@end example
6742
6743It would seem that this grammar can be parsed with only a single token
742e4900 6744of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6745a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6746@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6747
c827f760
PE
6748@cindex @acronym{LR}(1)
6749@cindex @acronym{LALR}(1)
34a6c2d1
JD
6750However, for historical reasons, Bison cannot by default handle all
6751@acronym{LR}(1) grammars.
6752In this grammar, two contexts, that after an @code{ID} at the beginning
6753of a @code{param_spec} and likewise at the beginning of a
6754@code{return_spec}, are similar enough that Bison assumes they are the
6755same.
6756They appear similar because the same set of rules would be
bfa74976
RS
6757active---the rule for reducing to a @code{name} and that for reducing to
6758a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6759that the rules would require different lookahead tokens in the two
bfa74976
RS
6760contexts, so it makes a single parser state for them both. Combining
6761the two contexts causes a conflict later. In parser terminology, this
c827f760 6762occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6763
34a6c2d1
JD
6764For many practical grammars (specifically those that fall into the
6765non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6766difficulties beyond just mysterious reduce/reduce conflicts.
6767The best way to fix all these problems is to select a different parser
6768table generation algorithm.
6769Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6770the former is more efficient and easier to debug during development.
6771@xref{Decl Summary,,lr.type}, for details.
6772(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6773are experimental.
6774More user feedback will help to stabilize them.)
6775
6776If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6777can often fix a mysterious conflict by identifying the two parser states
6778that are being confused, and adding something to make them look
6779distinct. In the above example, adding one rule to
bfa74976
RS
6780@code{return_spec} as follows makes the problem go away:
6781
6782@example
6783@group
6784%token BOGUS
6785@dots{}
6786%%
6787@dots{}
6788return_spec:
6789 type
6790 | name ':' type
6791 /* This rule is never used. */
6792 | ID BOGUS
6793 ;
6794@end group
6795@end example
6796
6797This corrects the problem because it introduces the possibility of an
6798additional active rule in the context after the @code{ID} at the beginning of
6799@code{return_spec}. This rule is not active in the corresponding context
6800in a @code{param_spec}, so the two contexts receive distinct parser states.
6801As long as the token @code{BOGUS} is never generated by @code{yylex},
6802the added rule cannot alter the way actual input is parsed.
6803
6804In this particular example, there is another way to solve the problem:
6805rewrite the rule for @code{return_spec} to use @code{ID} directly
6806instead of via @code{name}. This also causes the two confusing
6807contexts to have different sets of active rules, because the one for
6808@code{return_spec} activates the altered rule for @code{return_spec}
6809rather than the one for @code{name}.
6810
6811@example
6812param_spec:
6813 type
6814 | name_list ':' type
6815 ;
6816return_spec:
6817 type
6818 | ID ':' type
6819 ;
6820@end example
6821
e054b190
PE
6822For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6823generators, please see:
6824Frank DeRemer and Thomas Pennello, Efficient Computation of
6825@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6826Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6827pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6828
fae437e8 6829@node Generalized LR Parsing
c827f760
PE
6830@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6831@cindex @acronym{GLR} parsing
6832@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6833@cindex ambiguous grammars
9d9b8b70 6834@cindex nondeterministic parsing
676385e2 6835
fae437e8
AD
6836Bison produces @emph{deterministic} parsers that choose uniquely
6837when to reduce and which reduction to apply
742e4900 6838based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6839As a result, normal Bison handles a proper subset of the family of
6840context-free languages.
fae437e8 6841Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6842sequence of reductions cannot have deterministic parsers in this sense.
6843The same is true of languages that require more than one symbol of
742e4900 6844lookahead, since the parser lacks the information necessary to make a
676385e2 6845decision at the point it must be made in a shift-reduce parser.
fae437e8 6846Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 6847there are languages where Bison's default choice of how to
676385e2
PH
6848summarize the input seen so far loses necessary information.
6849
6850When you use the @samp{%glr-parser} declaration in your grammar file,
6851Bison generates a parser that uses a different algorithm, called
c827f760
PE
6852Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6853parser uses the same basic
676385e2
PH
6854algorithm for parsing as an ordinary Bison parser, but behaves
6855differently in cases where there is a shift-reduce conflict that has not
fae437e8 6856been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6857reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6858situation, it
fae437e8 6859effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6860shift or reduction. These parsers then proceed as usual, consuming
6861tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6862and split further, with the result that instead of a sequence of states,
c827f760 6863a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6864
6865In effect, each stack represents a guess as to what the proper parse
6866is. Additional input may indicate that a guess was wrong, in which case
6867the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6868actions generated in each stack are saved, rather than being executed
676385e2 6869immediately. When a stack disappears, its saved semantic actions never
fae437e8 6870get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6871their sets of semantic actions are both saved with the state that
6872results from the reduction. We say that two stacks are equivalent
fae437e8 6873when they both represent the same sequence of states,
676385e2
PH
6874and each pair of corresponding states represents a
6875grammar symbol that produces the same segment of the input token
6876stream.
6877
6878Whenever the parser makes a transition from having multiple
34a6c2d1 6879states to having one, it reverts to the normal deterministic parsing
676385e2
PH
6880algorithm, after resolving and executing the saved-up actions.
6881At this transition, some of the states on the stack will have semantic
6882values that are sets (actually multisets) of possible actions. The
6883parser tries to pick one of the actions by first finding one whose rule
6884has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6885declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6886precedence, but there the same merging function is declared for both
fae437e8 6887rules by the @samp{%merge} declaration,
676385e2
PH
6888Bison resolves and evaluates both and then calls the merge function on
6889the result. Otherwise, it reports an ambiguity.
6890
c827f760 6891It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 6892permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 6893size of the input), any unambiguous (not necessarily
34a6c2d1 6894@acronym{LR}(1)) grammar in
fae437e8 6895quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6896context-free grammar in cubic worst-case time. However, Bison currently
6897uses a simpler data structure that requires time proportional to the
6898length of the input times the maximum number of stacks required for any
9d9b8b70 6899prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6900grammars can require exponential time and space to process. Such badly
6901behaving examples, however, are not generally of practical interest.
9d9b8b70 6902Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6903doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
6904structure should generally be adequate. On @acronym{LR}(1) portions of a
6905grammar, in particular, it is only slightly slower than with the
6906deterministic @acronym{LR}(1) Bison parser.
676385e2 6907
fa7e68c3 6908For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6909Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6910Generalised @acronym{LR} Parsers, Royal Holloway, University of
6911London, Department of Computer Science, TR-00-12,
6912@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6913(2000-12-24).
6914
1a059451
PE
6915@node Memory Management
6916@section Memory Management, and How to Avoid Memory Exhaustion
6917@cindex memory exhaustion
6918@cindex memory management
bfa74976
RS
6919@cindex stack overflow
6920@cindex parser stack overflow
6921@cindex overflow of parser stack
6922
1a059451 6923The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6924not reduced. When this happens, the parser function @code{yyparse}
1a059451 6925calls @code{yyerror} and then returns 2.
bfa74976 6926
c827f760 6927Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6928usually results from using a right recursion instead of a left
6929recursion, @xref{Recursion, ,Recursive Rules}.
6930
bfa74976
RS
6931@vindex YYMAXDEPTH
6932By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6933parser stack can become before memory is exhausted. Define the
bfa74976
RS
6934macro with a value that is an integer. This value is the maximum number
6935of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6936
6937The stack space allowed is not necessarily allocated. If you specify a
1a059451 6938large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6939stack at first, and then makes it bigger by stages as needed. This
6940increasing allocation happens automatically and silently. Therefore,
6941you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6942space for ordinary inputs that do not need much stack.
6943
d7e14fc0
PE
6944However, do not allow @code{YYMAXDEPTH} to be a value so large that
6945arithmetic overflow could occur when calculating the size of the stack
6946space. Also, do not allow @code{YYMAXDEPTH} to be less than
6947@code{YYINITDEPTH}.
6948
bfa74976
RS
6949@cindex default stack limit
6950The default value of @code{YYMAXDEPTH}, if you do not define it, is
695110000.
6952
6953@vindex YYINITDEPTH
6954You can control how much stack is allocated initially by defining the
34a6c2d1
JD
6955macro @code{YYINITDEPTH} to a positive integer. For the deterministic
6956parser in C, this value must be a compile-time constant
d7e14fc0
PE
6957unless you are assuming C99 or some other target language or compiler
6958that allows variable-length arrays. The default is 200.
6959
1a059451 6960Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6961
d1a1114f 6962@c FIXME: C++ output.
34a6c2d1
JD
6963Because of semantical differences between C and C++, the deterministic
6964parsers in C produced by Bison cannot grow when compiled
1a059451
PE
6965by C++ compilers. In this precise case (compiling a C parser as C++) you are
6966suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6967this deficiency in a future release.
d1a1114f 6968
342b8b6e 6969@node Error Recovery
bfa74976
RS
6970@chapter Error Recovery
6971@cindex error recovery
6972@cindex recovery from errors
6973
6e649e65 6974It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6975error. For example, a compiler should recover sufficiently to parse the
6976rest of the input file and check it for errors; a calculator should accept
6977another expression.
6978
6979In a simple interactive command parser where each input is one line, it may
6980be sufficient to allow @code{yyparse} to return 1 on error and have the
6981caller ignore the rest of the input line when that happens (and then call
6982@code{yyparse} again). But this is inadequate for a compiler, because it
6983forgets all the syntactic context leading up to the error. A syntax error
6984deep within a function in the compiler input should not cause the compiler
6985to treat the following line like the beginning of a source file.
6986
6987@findex error
6988You can define how to recover from a syntax error by writing rules to
6989recognize the special token @code{error}. This is a terminal symbol that
6990is always defined (you need not declare it) and reserved for error
6991handling. The Bison parser generates an @code{error} token whenever a
6992syntax error happens; if you have provided a rule to recognize this token
13863333 6993in the current context, the parse can continue.
bfa74976
RS
6994
6995For example:
6996
6997@example
6998stmnts: /* empty string */
6999 | stmnts '\n'
7000 | stmnts exp '\n'
7001 | stmnts error '\n'
7002@end example
7003
7004The fourth rule in this example says that an error followed by a newline
7005makes a valid addition to any @code{stmnts}.
7006
7007What happens if a syntax error occurs in the middle of an @code{exp}? The
7008error recovery rule, interpreted strictly, applies to the precise sequence
7009of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7010the middle of an @code{exp}, there will probably be some additional tokens
7011and subexpressions on the stack after the last @code{stmnts}, and there
7012will be tokens to read before the next newline. So the rule is not
7013applicable in the ordinary way.
7014
7015But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7016the semantic context and part of the input. First it discards states
7017and objects from the stack until it gets back to a state in which the
bfa74976 7018@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7019already parsed are discarded, back to the last complete @code{stmnts}.)
7020At this point the @code{error} token can be shifted. Then, if the old
742e4900 7021lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7022tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7023this example, Bison reads and discards input until the next newline so
7024that the fourth rule can apply. Note that discarded symbols are
7025possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7026Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7027
7028The choice of error rules in the grammar is a choice of strategies for
7029error recovery. A simple and useful strategy is simply to skip the rest of
7030the current input line or current statement if an error is detected:
7031
7032@example
72d2299c 7033stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7034@end example
7035
7036It is also useful to recover to the matching close-delimiter of an
7037opening-delimiter that has already been parsed. Otherwise the
7038close-delimiter will probably appear to be unmatched, and generate another,
7039spurious error message:
7040
7041@example
7042primary: '(' expr ')'
7043 | '(' error ')'
7044 @dots{}
7045 ;
7046@end example
7047
7048Error recovery strategies are necessarily guesses. When they guess wrong,
7049one syntax error often leads to another. In the above example, the error
7050recovery rule guesses that an error is due to bad input within one
7051@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7052middle of a valid @code{stmnt}. After the error recovery rule recovers
7053from the first error, another syntax error will be found straightaway,
7054since the text following the spurious semicolon is also an invalid
7055@code{stmnt}.
7056
7057To prevent an outpouring of error messages, the parser will output no error
7058message for another syntax error that happens shortly after the first; only
7059after three consecutive input tokens have been successfully shifted will
7060error messages resume.
7061
7062Note that rules which accept the @code{error} token may have actions, just
7063as any other rules can.
7064
7065@findex yyerrok
7066You can make error messages resume immediately by using the macro
7067@code{yyerrok} in an action. If you do this in the error rule's action, no
7068error messages will be suppressed. This macro requires no arguments;
7069@samp{yyerrok;} is a valid C statement.
7070
7071@findex yyclearin
742e4900 7072The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7073this is unacceptable, then the macro @code{yyclearin} may be used to clear
7074this token. Write the statement @samp{yyclearin;} in the error rule's
7075action.
32c29292 7076@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7077
6e649e65 7078For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7079called that advances the input stream to some point where parsing should
7080once again commence. The next symbol returned by the lexical scanner is
742e4900 7081probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7082with @samp{yyclearin;}.
7083
7084@vindex YYRECOVERING
02103984
PE
7085The expression @code{YYRECOVERING ()} yields 1 when the parser
7086is recovering from a syntax error, and 0 otherwise.
7087Syntax error diagnostics are suppressed while recovering from a syntax
7088error.
bfa74976 7089
342b8b6e 7090@node Context Dependency
bfa74976
RS
7091@chapter Handling Context Dependencies
7092
7093The Bison paradigm is to parse tokens first, then group them into larger
7094syntactic units. In many languages, the meaning of a token is affected by
7095its context. Although this violates the Bison paradigm, certain techniques
7096(known as @dfn{kludges}) may enable you to write Bison parsers for such
7097languages.
7098
7099@menu
7100* Semantic Tokens:: Token parsing can depend on the semantic context.
7101* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7102* Tie-in Recovery:: Lexical tie-ins have implications for how
7103 error recovery rules must be written.
7104@end menu
7105
7106(Actually, ``kludge'' means any technique that gets its job done but is
7107neither clean nor robust.)
7108
342b8b6e 7109@node Semantic Tokens
bfa74976
RS
7110@section Semantic Info in Token Types
7111
7112The C language has a context dependency: the way an identifier is used
7113depends on what its current meaning is. For example, consider this:
7114
7115@example
7116foo (x);
7117@end example
7118
7119This looks like a function call statement, but if @code{foo} is a typedef
7120name, then this is actually a declaration of @code{x}. How can a Bison
7121parser for C decide how to parse this input?
7122
c827f760 7123The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7124@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7125identifier, it looks up the current declaration of the identifier in order
7126to decide which token type to return: @code{TYPENAME} if the identifier is
7127declared as a typedef, @code{IDENTIFIER} otherwise.
7128
7129The grammar rules can then express the context dependency by the choice of
7130token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7131but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7132@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7133is @emph{not} significant, such as in declarations that can shadow a
7134typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7135accepted---there is one rule for each of the two token types.
7136
7137This technique is simple to use if the decision of which kinds of
7138identifiers to allow is made at a place close to where the identifier is
7139parsed. But in C this is not always so: C allows a declaration to
7140redeclare a typedef name provided an explicit type has been specified
7141earlier:
7142
7143@example
3a4f411f
PE
7144typedef int foo, bar;
7145int baz (void)
7146@{
7147 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7148 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7149 return foo (bar);
7150@}
bfa74976
RS
7151@end example
7152
7153Unfortunately, the name being declared is separated from the declaration
7154construct itself by a complicated syntactic structure---the ``declarator''.
7155
9ecbd125 7156As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7157all the nonterminal names changed: once for parsing a declaration in
7158which a typedef name can be redefined, and once for parsing a
7159declaration in which that can't be done. Here is a part of the
7160duplication, with actions omitted for brevity:
bfa74976
RS
7161
7162@example
7163initdcl:
7164 declarator maybeasm '='
7165 init
7166 | declarator maybeasm
7167 ;
7168
7169notype_initdcl:
7170 notype_declarator maybeasm '='
7171 init
7172 | notype_declarator maybeasm
7173 ;
7174@end example
7175
7176@noindent
7177Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7178cannot. The distinction between @code{declarator} and
7179@code{notype_declarator} is the same sort of thing.
7180
7181There is some similarity between this technique and a lexical tie-in
7182(described next), in that information which alters the lexical analysis is
7183changed during parsing by other parts of the program. The difference is
7184here the information is global, and is used for other purposes in the
7185program. A true lexical tie-in has a special-purpose flag controlled by
7186the syntactic context.
7187
342b8b6e 7188@node Lexical Tie-ins
bfa74976
RS
7189@section Lexical Tie-ins
7190@cindex lexical tie-in
7191
7192One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7193which is set by Bison actions, whose purpose is to alter the way tokens are
7194parsed.
7195
7196For example, suppose we have a language vaguely like C, but with a special
7197construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7198an expression in parentheses in which all integers are hexadecimal. In
7199particular, the token @samp{a1b} must be treated as an integer rather than
7200as an identifier if it appears in that context. Here is how you can do it:
7201
7202@example
7203@group
7204%@{
38a92d50
PE
7205 int hexflag;
7206 int yylex (void);
7207 void yyerror (char const *);
bfa74976
RS
7208%@}
7209%%
7210@dots{}
7211@end group
7212@group
7213expr: IDENTIFIER
7214 | constant
7215 | HEX '('
7216 @{ hexflag = 1; @}
7217 expr ')'
7218 @{ hexflag = 0;
7219 $$ = $4; @}
7220 | expr '+' expr
7221 @{ $$ = make_sum ($1, $3); @}
7222 @dots{}
7223 ;
7224@end group
7225
7226@group
7227constant:
7228 INTEGER
7229 | STRING
7230 ;
7231@end group
7232@end example
7233
7234@noindent
7235Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7236it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7237with letters are parsed as integers if possible.
7238
342b8b6e
AD
7239The declaration of @code{hexflag} shown in the prologue of the parser file
7240is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7241You must also write the code in @code{yylex} to obey the flag.
bfa74976 7242
342b8b6e 7243@node Tie-in Recovery
bfa74976
RS
7244@section Lexical Tie-ins and Error Recovery
7245
7246Lexical tie-ins make strict demands on any error recovery rules you have.
7247@xref{Error Recovery}.
7248
7249The reason for this is that the purpose of an error recovery rule is to
7250abort the parsing of one construct and resume in some larger construct.
7251For example, in C-like languages, a typical error recovery rule is to skip
7252tokens until the next semicolon, and then start a new statement, like this:
7253
7254@example
7255stmt: expr ';'
7256 | IF '(' expr ')' stmt @{ @dots{} @}
7257 @dots{}
7258 error ';'
7259 @{ hexflag = 0; @}
7260 ;
7261@end example
7262
7263If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7264construct, this error rule will apply, and then the action for the
7265completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7266remain set for the entire rest of the input, or until the next @code{hex}
7267keyword, causing identifiers to be misinterpreted as integers.
7268
7269To avoid this problem the error recovery rule itself clears @code{hexflag}.
7270
7271There may also be an error recovery rule that works within expressions.
7272For example, there could be a rule which applies within parentheses
7273and skips to the close-parenthesis:
7274
7275@example
7276@group
7277expr: @dots{}
7278 | '(' expr ')'
7279 @{ $$ = $2; @}
7280 | '(' error ')'
7281 @dots{}
7282@end group
7283@end example
7284
7285If this rule acts within the @code{hex} construct, it is not going to abort
7286that construct (since it applies to an inner level of parentheses within
7287the construct). Therefore, it should not clear the flag: the rest of
7288the @code{hex} construct should be parsed with the flag still in effect.
7289
7290What if there is an error recovery rule which might abort out of the
7291@code{hex} construct or might not, depending on circumstances? There is no
7292way you can write the action to determine whether a @code{hex} construct is
7293being aborted or not. So if you are using a lexical tie-in, you had better
7294make sure your error recovery rules are not of this kind. Each rule must
7295be such that you can be sure that it always will, or always won't, have to
7296clear the flag.
7297
ec3bc396
AD
7298@c ================================================== Debugging Your Parser
7299
342b8b6e 7300@node Debugging
bfa74976 7301@chapter Debugging Your Parser
ec3bc396
AD
7302
7303Developing a parser can be a challenge, especially if you don't
7304understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7305Algorithm}). Even so, sometimes a detailed description of the automaton
7306can help (@pxref{Understanding, , Understanding Your Parser}), or
7307tracing the execution of the parser can give some insight on why it
7308behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7309
7310@menu
7311* Understanding:: Understanding the structure of your parser.
7312* Tracing:: Tracing the execution of your parser.
7313@end menu
7314
7315@node Understanding
7316@section Understanding Your Parser
7317
7318As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7319Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7320frequent than one would hope), looking at this automaton is required to
7321tune or simply fix a parser. Bison provides two different
35fe0834 7322representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7323
7324The textual file is generated when the options @option{--report} or
7325@option{--verbose} are specified, see @xref{Invocation, , Invoking
7326Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7327the parser output file name, and adding @samp{.output} instead.
7328Therefore, if the input file is @file{foo.y}, then the parser file is
7329called @file{foo.tab.c} by default. As a consequence, the verbose
7330output file is called @file{foo.output}.
7331
7332The following grammar file, @file{calc.y}, will be used in the sequel:
7333
7334@example
7335%token NUM STR
7336%left '+' '-'
7337%left '*'
7338%%
7339exp: exp '+' exp
7340 | exp '-' exp
7341 | exp '*' exp
7342 | exp '/' exp
7343 | NUM
7344 ;
7345useless: STR;
7346%%
7347@end example
7348
88bce5a2
AD
7349@command{bison} reports:
7350
7351@example
379261b3
JD
7352calc.y: warning: 1 nonterminal useless in grammar
7353calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7354calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7355calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7356calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7357@end example
7358
7359When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7360creates a file @file{calc.output} with contents detailed below. The
7361order of the output and the exact presentation might vary, but the
7362interpretation is the same.
ec3bc396
AD
7363
7364The first section includes details on conflicts that were solved thanks
7365to precedence and/or associativity:
7366
7367@example
7368Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7369Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7370Conflict in state 8 between rule 2 and token '*' resolved as shift.
7371@exdent @dots{}
7372@end example
7373
7374@noindent
7375The next section lists states that still have conflicts.
7376
7377@example
5a99098d
PE
7378State 8 conflicts: 1 shift/reduce
7379State 9 conflicts: 1 shift/reduce
7380State 10 conflicts: 1 shift/reduce
7381State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7382@end example
7383
7384@noindent
7385@cindex token, useless
7386@cindex useless token
7387@cindex nonterminal, useless
7388@cindex useless nonterminal
7389@cindex rule, useless
7390@cindex useless rule
7391The next section reports useless tokens, nonterminal and rules. Useless
7392nonterminals and rules are removed in order to produce a smaller parser,
7393but useless tokens are preserved, since they might be used by the
d80fb37a 7394scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7395below):
7396
7397@example
d80fb37a 7398Nonterminals useless in grammar:
ec3bc396
AD
7399 useless
7400
d80fb37a 7401Terminals unused in grammar:
ec3bc396
AD
7402 STR
7403
cff03fb2 7404Rules useless in grammar:
ec3bc396
AD
7405#6 useless: STR;
7406@end example
7407
7408@noindent
7409The next section reproduces the exact grammar that Bison used:
7410
7411@example
7412Grammar
7413
7414 Number, Line, Rule
88bce5a2 7415 0 5 $accept -> exp $end
ec3bc396
AD
7416 1 5 exp -> exp '+' exp
7417 2 6 exp -> exp '-' exp
7418 3 7 exp -> exp '*' exp
7419 4 8 exp -> exp '/' exp
7420 5 9 exp -> NUM
7421@end example
7422
7423@noindent
7424and reports the uses of the symbols:
7425
7426@example
7427Terminals, with rules where they appear
7428
88bce5a2 7429$end (0) 0
ec3bc396
AD
7430'*' (42) 3
7431'+' (43) 1
7432'-' (45) 2
7433'/' (47) 4
7434error (256)
7435NUM (258) 5
7436
7437Nonterminals, with rules where they appear
7438
88bce5a2 7439$accept (8)
ec3bc396
AD
7440 on left: 0
7441exp (9)
7442 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7443@end example
7444
7445@noindent
7446@cindex item
7447@cindex pointed rule
7448@cindex rule, pointed
7449Bison then proceeds onto the automaton itself, describing each state
7450with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7451item is a production rule together with a point (marked by @samp{.})
7452that the input cursor.
7453
7454@example
7455state 0
7456
88bce5a2 7457 $accept -> . exp $ (rule 0)
ec3bc396 7458
2a8d363a 7459 NUM shift, and go to state 1
ec3bc396 7460
2a8d363a 7461 exp go to state 2
ec3bc396
AD
7462@end example
7463
7464This reads as follows: ``state 0 corresponds to being at the very
7465beginning of the parsing, in the initial rule, right before the start
7466symbol (here, @code{exp}). When the parser returns to this state right
7467after having reduced a rule that produced an @code{exp}, the control
7468flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7469symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7470the parse stack, and the control flow jumps to state 1. Any other
742e4900 7471lookahead triggers a syntax error.''
ec3bc396
AD
7472
7473@cindex core, item set
7474@cindex item set core
7475@cindex kernel, item set
7476@cindex item set core
7477Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7478report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7479at the beginning of any rule deriving an @code{exp}. By default Bison
7480reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7481you want to see more detail you can invoke @command{bison} with
7482@option{--report=itemset} to list all the items, include those that can
7483be derived:
7484
7485@example
7486state 0
7487
88bce5a2 7488 $accept -> . exp $ (rule 0)
ec3bc396
AD
7489 exp -> . exp '+' exp (rule 1)
7490 exp -> . exp '-' exp (rule 2)
7491 exp -> . exp '*' exp (rule 3)
7492 exp -> . exp '/' exp (rule 4)
7493 exp -> . NUM (rule 5)
7494
7495 NUM shift, and go to state 1
7496
7497 exp go to state 2
7498@end example
7499
7500@noindent
7501In the state 1...
7502
7503@example
7504state 1
7505
7506 exp -> NUM . (rule 5)
7507
2a8d363a 7508 $default reduce using rule 5 (exp)
ec3bc396
AD
7509@end example
7510
7511@noindent
742e4900 7512the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7513(@samp{$default}), the parser will reduce it. If it was coming from
7514state 0, then, after this reduction it will return to state 0, and will
7515jump to state 2 (@samp{exp: go to state 2}).
7516
7517@example
7518state 2
7519
88bce5a2 7520 $accept -> exp . $ (rule 0)
ec3bc396
AD
7521 exp -> exp . '+' exp (rule 1)
7522 exp -> exp . '-' exp (rule 2)
7523 exp -> exp . '*' exp (rule 3)
7524 exp -> exp . '/' exp (rule 4)
7525
2a8d363a
AD
7526 $ shift, and go to state 3
7527 '+' shift, and go to state 4
7528 '-' shift, and go to state 5
7529 '*' shift, and go to state 6
7530 '/' shift, and go to state 7
ec3bc396
AD
7531@end example
7532
7533@noindent
7534In state 2, the automaton can only shift a symbol. For instance,
742e4900 7535because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7536@samp{+}, it will be shifted on the parse stack, and the automaton
7537control will jump to state 4, corresponding to the item @samp{exp -> exp
7538'+' . exp}. Since there is no default action, any other token than
6e649e65 7539those listed above will trigger a syntax error.
ec3bc396 7540
34a6c2d1 7541@cindex accepting state
ec3bc396
AD
7542The state 3 is named the @dfn{final state}, or the @dfn{accepting
7543state}:
7544
7545@example
7546state 3
7547
88bce5a2 7548 $accept -> exp $ . (rule 0)
ec3bc396 7549
2a8d363a 7550 $default accept
ec3bc396
AD
7551@end example
7552
7553@noindent
7554the initial rule is completed (the start symbol and the end
7555of input were read), the parsing exits successfully.
7556
7557The interpretation of states 4 to 7 is straightforward, and is left to
7558the reader.
7559
7560@example
7561state 4
7562
7563 exp -> exp '+' . exp (rule 1)
7564
2a8d363a 7565 NUM shift, and go to state 1
ec3bc396 7566
2a8d363a 7567 exp go to state 8
ec3bc396
AD
7568
7569state 5
7570
7571 exp -> exp '-' . exp (rule 2)
7572
2a8d363a 7573 NUM shift, and go to state 1
ec3bc396 7574
2a8d363a 7575 exp go to state 9
ec3bc396
AD
7576
7577state 6
7578
7579 exp -> exp '*' . exp (rule 3)
7580
2a8d363a 7581 NUM shift, and go to state 1
ec3bc396 7582
2a8d363a 7583 exp go to state 10
ec3bc396
AD
7584
7585state 7
7586
7587 exp -> exp '/' . exp (rule 4)
7588
2a8d363a 7589 NUM shift, and go to state 1
ec3bc396 7590
2a8d363a 7591 exp go to state 11
ec3bc396
AD
7592@end example
7593
5a99098d
PE
7594As was announced in beginning of the report, @samp{State 8 conflicts:
75951 shift/reduce}:
ec3bc396
AD
7596
7597@example
7598state 8
7599
7600 exp -> exp . '+' exp (rule 1)
7601 exp -> exp '+' exp . (rule 1)
7602 exp -> exp . '-' exp (rule 2)
7603 exp -> exp . '*' exp (rule 3)
7604 exp -> exp . '/' exp (rule 4)
7605
2a8d363a
AD
7606 '*' shift, and go to state 6
7607 '/' shift, and go to state 7
ec3bc396 7608
2a8d363a
AD
7609 '/' [reduce using rule 1 (exp)]
7610 $default reduce using rule 1 (exp)
ec3bc396
AD
7611@end example
7612
742e4900 7613Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7614either shifting (and going to state 7), or reducing rule 1. The
7615conflict means that either the grammar is ambiguous, or the parser lacks
7616information to make the right decision. Indeed the grammar is
7617ambiguous, as, since we did not specify the precedence of @samp{/}, the
7618sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7619NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7620NUM}, which corresponds to reducing rule 1.
7621
34a6c2d1 7622Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7623arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7624Shift/Reduce Conflicts}. Discarded actions are reported in between
7625square brackets.
7626
7627Note that all the previous states had a single possible action: either
7628shifting the next token and going to the corresponding state, or
7629reducing a single rule. In the other cases, i.e., when shifting
7630@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7631possible, the lookahead is required to select the action. State 8 is
7632one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7633is shifting, otherwise the action is reducing rule 1. In other words,
7634the first two items, corresponding to rule 1, are not eligible when the
742e4900 7635lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7636precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7637with some set of possible lookahead tokens. When run with
7638@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7639
7640@example
7641state 8
7642
88c78747 7643 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7644 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7645 exp -> exp . '-' exp (rule 2)
7646 exp -> exp . '*' exp (rule 3)
7647 exp -> exp . '/' exp (rule 4)
7648
7649 '*' shift, and go to state 6
7650 '/' shift, and go to state 7
7651
7652 '/' [reduce using rule 1 (exp)]
7653 $default reduce using rule 1 (exp)
7654@end example
7655
7656The remaining states are similar:
7657
7658@example
7659state 9
7660
7661 exp -> exp . '+' exp (rule 1)
7662 exp -> exp . '-' exp (rule 2)
7663 exp -> exp '-' exp . (rule 2)
7664 exp -> exp . '*' exp (rule 3)
7665 exp -> exp . '/' exp (rule 4)
7666
2a8d363a
AD
7667 '*' shift, and go to state 6
7668 '/' shift, and go to state 7
ec3bc396 7669
2a8d363a
AD
7670 '/' [reduce using rule 2 (exp)]
7671 $default reduce using rule 2 (exp)
ec3bc396
AD
7672
7673state 10
7674
7675 exp -> exp . '+' exp (rule 1)
7676 exp -> exp . '-' exp (rule 2)
7677 exp -> exp . '*' exp (rule 3)
7678 exp -> exp '*' exp . (rule 3)
7679 exp -> exp . '/' exp (rule 4)
7680
2a8d363a 7681 '/' shift, and go to state 7
ec3bc396 7682
2a8d363a
AD
7683 '/' [reduce using rule 3 (exp)]
7684 $default reduce using rule 3 (exp)
ec3bc396
AD
7685
7686state 11
7687
7688 exp -> exp . '+' exp (rule 1)
7689 exp -> exp . '-' exp (rule 2)
7690 exp -> exp . '*' exp (rule 3)
7691 exp -> exp . '/' exp (rule 4)
7692 exp -> exp '/' exp . (rule 4)
7693
2a8d363a
AD
7694 '+' shift, and go to state 4
7695 '-' shift, and go to state 5
7696 '*' shift, and go to state 6
7697 '/' shift, and go to state 7
ec3bc396 7698
2a8d363a
AD
7699 '+' [reduce using rule 4 (exp)]
7700 '-' [reduce using rule 4 (exp)]
7701 '*' [reduce using rule 4 (exp)]
7702 '/' [reduce using rule 4 (exp)]
7703 $default reduce using rule 4 (exp)
ec3bc396
AD
7704@end example
7705
7706@noindent
fa7e68c3
PE
7707Observe that state 11 contains conflicts not only due to the lack of
7708precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7709@samp{*}, but also because the
ec3bc396
AD
7710associativity of @samp{/} is not specified.
7711
7712
7713@node Tracing
7714@section Tracing Your Parser
bfa74976
RS
7715@findex yydebug
7716@cindex debugging
7717@cindex tracing the parser
7718
7719If a Bison grammar compiles properly but doesn't do what you want when it
7720runs, the @code{yydebug} parser-trace feature can help you figure out why.
7721
3ded9a63
AD
7722There are several means to enable compilation of trace facilities:
7723
7724@table @asis
7725@item the macro @code{YYDEBUG}
7726@findex YYDEBUG
7727Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7728parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7729@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7730YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7731Prologue}).
7732
7733@item the option @option{-t}, @option{--debug}
7734Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7735,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7736
7737@item the directive @samp{%debug}
7738@findex %debug
7739Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7740Declaration Summary}). This is a Bison extension, which will prove
7741useful when Bison will output parsers for languages that don't use a
c827f760
PE
7742preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7743you, this is
3ded9a63
AD
7744the preferred solution.
7745@end table
7746
7747We suggest that you always enable the debug option so that debugging is
7748always possible.
bfa74976 7749
02a81e05 7750The trace facility outputs messages with macro calls of the form
e2742e46 7751@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7752@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7753arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7754define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7755and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7756
7757Once you have compiled the program with trace facilities, the way to
7758request a trace is to store a nonzero value in the variable @code{yydebug}.
7759You can do this by making the C code do it (in @code{main}, perhaps), or
7760you can alter the value with a C debugger.
7761
7762Each step taken by the parser when @code{yydebug} is nonzero produces a
7763line or two of trace information, written on @code{stderr}. The trace
7764messages tell you these things:
7765
7766@itemize @bullet
7767@item
7768Each time the parser calls @code{yylex}, what kind of token was read.
7769
7770@item
7771Each time a token is shifted, the depth and complete contents of the
7772state stack (@pxref{Parser States}).
7773
7774@item
7775Each time a rule is reduced, which rule it is, and the complete contents
7776of the state stack afterward.
7777@end itemize
7778
7779To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7780produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7781Bison}). This file shows the meaning of each state in terms of
7782positions in various rules, and also what each state will do with each
7783possible input token. As you read the successive trace messages, you
7784can see that the parser is functioning according to its specification in
7785the listing file. Eventually you will arrive at the place where
7786something undesirable happens, and you will see which parts of the
7787grammar are to blame.
bfa74976
RS
7788
7789The parser file is a C program and you can use C debuggers on it, but it's
7790not easy to interpret what it is doing. The parser function is a
7791finite-state machine interpreter, and aside from the actions it executes
7792the same code over and over. Only the values of variables show where in
7793the grammar it is working.
7794
7795@findex YYPRINT
7796The debugging information normally gives the token type of each token
7797read, but not its semantic value. You can optionally define a macro
7798named @code{YYPRINT} to provide a way to print the value. If you define
7799@code{YYPRINT}, it should take three arguments. The parser will pass a
7800standard I/O stream, the numeric code for the token type, and the token
7801value (from @code{yylval}).
7802
7803Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7804calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7805
7806@smallexample
38a92d50
PE
7807%@{
7808 static void print_token_value (FILE *, int, YYSTYPE);
7809 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7810%@}
7811
7812@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7813
7814static void
831d3c99 7815print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7816@{
7817 if (type == VAR)
d3c4e709 7818 fprintf (file, "%s", value.tptr->name);
bfa74976 7819 else if (type == NUM)
d3c4e709 7820 fprintf (file, "%d", value.val);
bfa74976
RS
7821@}
7822@end smallexample
7823
ec3bc396
AD
7824@c ================================================= Invoking Bison
7825
342b8b6e 7826@node Invocation
bfa74976
RS
7827@chapter Invoking Bison
7828@cindex invoking Bison
7829@cindex Bison invocation
7830@cindex options for invoking Bison
7831
7832The usual way to invoke Bison is as follows:
7833
7834@example
7835bison @var{infile}
7836@end example
7837
7838Here @var{infile} is the grammar file name, which usually ends in
7839@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7840with @samp{.tab.c} and removing any leading directory. Thus, the
7841@samp{bison foo.y} file name yields
7842@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7843@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7844C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7845or @file{foo.y++}. Then, the output files will take an extension like
7846the given one as input (respectively @file{foo.tab.cpp} and
7847@file{foo.tab.c++}).
fa4d969f 7848This feature takes effect with all options that manipulate file names like
234a3be3
AD
7849@samp{-o} or @samp{-d}.
7850
7851For example :
7852
7853@example
7854bison -d @var{infile.yxx}
7855@end example
84163231 7856@noindent
72d2299c 7857will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7858
7859@example
b56471a6 7860bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7861@end example
84163231 7862@noindent
234a3be3
AD
7863will produce @file{output.c++} and @file{outfile.h++}.
7864
397ec073
PE
7865For compatibility with @acronym{POSIX}, the standard Bison
7866distribution also contains a shell script called @command{yacc} that
7867invokes Bison with the @option{-y} option.
7868
bfa74976 7869@menu
13863333 7870* Bison Options:: All the options described in detail,
c827f760 7871 in alphabetical order by short options.
bfa74976 7872* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7873* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7874@end menu
7875
342b8b6e 7876@node Bison Options
bfa74976
RS
7877@section Bison Options
7878
7879Bison supports both traditional single-letter options and mnemonic long
7880option names. Long option names are indicated with @samp{--} instead of
7881@samp{-}. Abbreviations for option names are allowed as long as they
7882are unique. When a long option takes an argument, like
7883@samp{--file-prefix}, connect the option name and the argument with
7884@samp{=}.
7885
7886Here is a list of options that can be used with Bison, alphabetized by
7887short option. It is followed by a cross key alphabetized by long
7888option.
7889
89cab50d
AD
7890@c Please, keep this ordered as in `bison --help'.
7891@noindent
7892Operations modes:
7893@table @option
7894@item -h
7895@itemx --help
7896Print a summary of the command-line options to Bison and exit.
bfa74976 7897
89cab50d
AD
7898@item -V
7899@itemx --version
7900Print the version number of Bison and exit.
bfa74976 7901
f7ab6a50
PE
7902@item --print-localedir
7903Print the name of the directory containing locale-dependent data.
7904
a0de5091
JD
7905@item --print-datadir
7906Print the name of the directory containing skeletons and XSLT.
7907
89cab50d
AD
7908@item -y
7909@itemx --yacc
54662697
PE
7910Act more like the traditional Yacc command. This can cause
7911different diagnostics to be generated, and may change behavior in
7912other minor ways. Most importantly, imitate Yacc's output
7913file name conventions, so that the parser output file is called
89cab50d 7914@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 7915@file{y.tab.h}.
34a6c2d1 7916Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
7917statements in addition to an @code{enum} to associate token numbers with token
7918names.
7919Thus, the following shell script can substitute for Yacc, and the Bison
7920distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7921
89cab50d 7922@example
397ec073 7923#! /bin/sh
26e06a21 7924bison -y "$@@"
89cab50d 7925@end example
54662697
PE
7926
7927The @option{-y}/@option{--yacc} option is intended for use with
7928traditional Yacc grammars. If your grammar uses a Bison extension
7929like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7930this option is specified.
7931
ecd1b61c
JD
7932@item -W [@var{category}]
7933@itemx --warnings[=@var{category}]
118d4978
AD
7934Output warnings falling in @var{category}. @var{category} can be one
7935of:
7936@table @code
7937@item midrule-values
8e55b3aa
JD
7938Warn about mid-rule values that are set but not used within any of the actions
7939of the parent rule.
7940For example, warn about unused @code{$2} in:
118d4978
AD
7941
7942@example
7943exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7944@end example
7945
8e55b3aa
JD
7946Also warn about mid-rule values that are used but not set.
7947For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7948
7949@example
7950 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7951@end example
7952
7953These warnings are not enabled by default since they sometimes prove to
7954be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7955@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7956
7957
7958@item yacc
7959Incompatibilities with @acronym{POSIX} Yacc.
7960
7961@item all
8e55b3aa 7962All the warnings.
118d4978 7963@item none
8e55b3aa 7964Turn off all the warnings.
118d4978 7965@item error
8e55b3aa 7966Treat warnings as errors.
118d4978
AD
7967@end table
7968
7969A category can be turned off by prefixing its name with @samp{no-}. For
7970instance, @option{-Wno-syntax} will hide the warnings about unused
7971variables.
89cab50d
AD
7972@end table
7973
7974@noindent
7975Tuning the parser:
7976
7977@table @option
7978@item -t
7979@itemx --debug
4947ebdb
PE
7980In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7981already defined, so that the debugging facilities are compiled.
ec3bc396 7982@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7983
e14c6831
AD
7984@item -D @var{name}[=@var{value}]
7985@itemx --define=@var{name}[=@var{value}]
34d41938
JD
7986@item -F @var{name}[=@var{value}]
7987@itemx --force-define=@var{name}[=@var{value}]
7988Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
7989(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
7990definitions for the same @var{name} as follows:
7991
7992@itemize
7993@item
e3a33f7c
JD
7994Bison quietly ignores all command-line definitions for @var{name} except
7995the last.
34d41938 7996@item
e3a33f7c
JD
7997If that command-line definition is specified by a @code{-D} or
7998@code{--define}, Bison reports an error for any @code{%define}
7999definition for @var{name}.
34d41938 8000@item
e3a33f7c
JD
8001If that command-line definition is specified by a @code{-F} or
8002@code{--force-define} instead, Bison quietly ignores all @code{%define}
8003definitions for @var{name}.
8004@item
8005Otherwise, Bison reports an error if there are multiple @code{%define}
8006definitions for @var{name}.
34d41938
JD
8007@end itemize
8008
8009You should avoid using @code{-F} and @code{--force-define} in your
8010makefiles unless you are confident that it is safe to quietly ignore any
8011conflicting @code{%define} that may be added to the grammar file.
e14c6831 8012
0e021770
PE
8013@item -L @var{language}
8014@itemx --language=@var{language}
8015Specify the programming language for the generated parser, as if
8016@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8017Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8018@var{language} is case-insensitive.
0e021770 8019
ed4d67dc
JD
8020This option is experimental and its effect may be modified in future
8021releases.
8022
89cab50d 8023@item --locations
d8988b2f 8024Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8025
8026@item -p @var{prefix}
8027@itemx --name-prefix=@var{prefix}
02975b9a 8028Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8029@xref{Decl Summary}.
bfa74976
RS
8030
8031@item -l
8032@itemx --no-lines
8033Don't put any @code{#line} preprocessor commands in the parser file.
8034Ordinarily Bison puts them in the parser file so that the C compiler
8035and debuggers will associate errors with your source file, the
8036grammar file. This option causes them to associate errors with the
95e742f7 8037parser file, treating it as an independent source file in its own right.
bfa74976 8038
e6e704dc
JD
8039@item -S @var{file}
8040@itemx --skeleton=@var{file}
a7867f53 8041Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8042(@pxref{Decl Summary, , Bison Declaration Summary}).
8043
ed4d67dc
JD
8044@c You probably don't need this option unless you are developing Bison.
8045@c You should use @option{--language} if you want to specify the skeleton for a
8046@c different language, because it is clearer and because it will always
8047@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8048
a7867f53
JD
8049If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8050file in the Bison installation directory.
8051If it does, @var{file} is an absolute file name or a file name relative to the
8052current working directory.
8053This is similar to how most shells resolve commands.
8054
89cab50d
AD
8055@item -k
8056@itemx --token-table
d8988b2f 8057Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8058@end table
bfa74976 8059
89cab50d
AD
8060@noindent
8061Adjust the output:
bfa74976 8062
89cab50d 8063@table @option
8e55b3aa 8064@item --defines[=@var{file}]
d8988b2f 8065Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8066file containing macro definitions for the token type names defined in
4bfd5e4e 8067the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8068
8e55b3aa
JD
8069@item -d
8070This is the same as @code{--defines} except @code{-d} does not accept a
8071@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8072with other short options.
342b8b6e 8073
89cab50d
AD
8074@item -b @var{file-prefix}
8075@itemx --file-prefix=@var{prefix}
9c437126 8076Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8077for all Bison output file names. @xref{Decl Summary}.
bfa74976 8078
ec3bc396
AD
8079@item -r @var{things}
8080@itemx --report=@var{things}
8081Write an extra output file containing verbose description of the comma
8082separated list of @var{things} among:
8083
8084@table @code
8085@item state
8086Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8087parser's automaton.
ec3bc396 8088
742e4900 8089@item lookahead
ec3bc396 8090Implies @code{state} and augments the description of the automaton with
742e4900 8091each rule's lookahead set.
ec3bc396
AD
8092
8093@item itemset
8094Implies @code{state} and augments the description of the automaton with
8095the full set of items for each state, instead of its core only.
8096@end table
8097
1bb2bd75
JD
8098@item --report-file=@var{file}
8099Specify the @var{file} for the verbose description.
8100
bfa74976
RS
8101@item -v
8102@itemx --verbose
9c437126 8103Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8104file containing verbose descriptions of the grammar and
72d2299c 8105parser. @xref{Decl Summary}.
bfa74976 8106
fa4d969f
PE
8107@item -o @var{file}
8108@itemx --output=@var{file}
8109Specify the @var{file} for the parser file.
bfa74976 8110
fa4d969f 8111The other output files' names are constructed from @var{file} as
d8988b2f 8112described under the @samp{-v} and @samp{-d} options.
342b8b6e 8113
72183df4 8114@item -g [@var{file}]
8e55b3aa 8115@itemx --graph[=@var{file}]
34a6c2d1 8116Output a graphical representation of the parser's
35fe0834
PE
8117automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8118@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8119@code{@var{file}} is optional.
8120If omitted and the grammar file is @file{foo.y}, the output file will be
8121@file{foo.dot}.
59da312b 8122
72183df4 8123@item -x [@var{file}]
8e55b3aa 8124@itemx --xml[=@var{file}]
34a6c2d1 8125Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8126@code{@var{file}} is optional.
59da312b
JD
8127If omitted and the grammar file is @file{foo.y}, the output file will be
8128@file{foo.xml}.
8129(The current XML schema is experimental and may evolve.
8130More user feedback will help to stabilize it.)
bfa74976
RS
8131@end table
8132
342b8b6e 8133@node Option Cross Key
bfa74976
RS
8134@section Option Cross Key
8135
8136Here is a list of options, alphabetized by long option, to help you find
34d41938 8137the corresponding short option and directive.
bfa74976 8138
34d41938 8139@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8140@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8141@include cross-options.texi
aa08666d 8142@end multitable
bfa74976 8143
93dd49ab
PE
8144@node Yacc Library
8145@section Yacc Library
8146
8147The Yacc library contains default implementations of the
8148@code{yyerror} and @code{main} functions. These default
8149implementations are normally not useful, but @acronym{POSIX} requires
8150them. To use the Yacc library, link your program with the
8151@option{-ly} option. Note that Bison's implementation of the Yacc
8152library is distributed under the terms of the @acronym{GNU} General
8153Public License (@pxref{Copying}).
8154
8155If you use the Yacc library's @code{yyerror} function, you should
8156declare @code{yyerror} as follows:
8157
8158@example
8159int yyerror (char const *);
8160@end example
8161
8162Bison ignores the @code{int} value returned by this @code{yyerror}.
8163If you use the Yacc library's @code{main} function, your
8164@code{yyparse} function should have the following type signature:
8165
8166@example
8167int yyparse (void);
8168@end example
8169
12545799
AD
8170@c ================================================= C++ Bison
8171
8405b70c
PB
8172@node Other Languages
8173@chapter Parsers Written In Other Languages
12545799
AD
8174
8175@menu
8176* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8177* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8178@end menu
8179
8180@node C++ Parsers
8181@section C++ Parsers
8182
8183@menu
8184* C++ Bison Interface:: Asking for C++ parser generation
8185* C++ Semantic Values:: %union vs. C++
8186* C++ Location Values:: The position and location classes
8187* C++ Parser Interface:: Instantiating and running the parser
8188* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8189* A Complete C++ Example:: Demonstrating their use
12545799
AD
8190@end menu
8191
8192@node C++ Bison Interface
8193@subsection C++ Bison Interface
ed4d67dc 8194@c - %skeleton "lalr1.cc"
12545799
AD
8195@c - Always pure
8196@c - initial action
8197
34a6c2d1 8198The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8199@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8200@option{--skeleton=lalr1.c}.
e6e704dc 8201@xref{Decl Summary}.
0e021770 8202
793fbca5
JD
8203When run, @command{bison} will create several entities in the @samp{yy}
8204namespace.
8205@findex %define namespace
8206Use the @samp{%define namespace} directive to change the namespace name, see
8207@ref{Decl Summary}.
8208The various classes are generated in the following files:
aa08666d 8209
12545799
AD
8210@table @file
8211@item position.hh
8212@itemx location.hh
8213The definition of the classes @code{position} and @code{location},
8214used for location tracking. @xref{C++ Location Values}.
8215
8216@item stack.hh
8217An auxiliary class @code{stack} used by the parser.
8218
fa4d969f
PE
8219@item @var{file}.hh
8220@itemx @var{file}.cc
cd8b5791
AD
8221(Assuming the extension of the input file was @samp{.yy}.) The
8222declaration and implementation of the C++ parser class. The basename
8223and extension of these two files follow the same rules as with regular C
8224parsers (@pxref{Invocation}).
12545799 8225
cd8b5791
AD
8226The header is @emph{mandatory}; you must either pass
8227@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8228@samp{%defines} directive.
8229@end table
8230
8231All these files are documented using Doxygen; run @command{doxygen}
8232for a complete and accurate documentation.
8233
8234@node C++ Semantic Values
8235@subsection C++ Semantic Values
8236@c - No objects in unions
178e123e 8237@c - YYSTYPE
12545799
AD
8238@c - Printer and destructor
8239
8240The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8241Collection of Value Types}. In particular it produces a genuine
8242@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8243within pseudo-unions (similar to Boost variants) might be implemented to
8244alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8245@itemize @minus
8246@item
fb9712a9
AD
8247The type @code{YYSTYPE} is defined but its use is discouraged: rather
8248you should refer to the parser's encapsulated type
8249@code{yy::parser::semantic_type}.
12545799
AD
8250@item
8251Non POD (Plain Old Data) types cannot be used. C++ forbids any
8252instance of classes with constructors in unions: only @emph{pointers}
8253to such objects are allowed.
8254@end itemize
8255
8256Because objects have to be stored via pointers, memory is not
8257reclaimed automatically: using the @code{%destructor} directive is the
8258only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8259Symbols}.
8260
8261
8262@node C++ Location Values
8263@subsection C++ Location Values
8264@c - %locations
8265@c - class Position
8266@c - class Location
16dc6a9e 8267@c - %define filename_type "const symbol::Symbol"
12545799
AD
8268
8269When the directive @code{%locations} is used, the C++ parser supports
8270location tracking, see @ref{Locations, , Locations Overview}. Two
8271auxiliary classes define a @code{position}, a single point in a file,
8272and a @code{location}, a range composed of a pair of
8273@code{position}s (possibly spanning several files).
8274
fa4d969f 8275@deftypemethod {position} {std::string*} file
12545799
AD
8276The name of the file. It will always be handled as a pointer, the
8277parser will never duplicate nor deallocate it. As an experimental
8278feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8279filename_type "@var{type}"}.
12545799
AD
8280@end deftypemethod
8281
8282@deftypemethod {position} {unsigned int} line
8283The line, starting at 1.
8284@end deftypemethod
8285
8286@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8287Advance by @var{height} lines, resetting the column number.
8288@end deftypemethod
8289
8290@deftypemethod {position} {unsigned int} column
8291The column, starting at 0.
8292@end deftypemethod
8293
8294@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8295Advance by @var{width} columns, without changing the line number.
8296@end deftypemethod
8297
8298@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8299@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8300@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8301@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8302Various forms of syntactic sugar for @code{columns}.
8303@end deftypemethod
8304
8305@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8306Report @var{p} on @var{o} like this:
fa4d969f
PE
8307@samp{@var{file}:@var{line}.@var{column}}, or
8308@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8309@end deftypemethod
8310
8311@deftypemethod {location} {position} begin
8312@deftypemethodx {location} {position} end
8313The first, inclusive, position of the range, and the first beyond.
8314@end deftypemethod
8315
8316@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8317@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8318Advance the @code{end} position.
8319@end deftypemethod
8320
8321@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8322@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8323@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8324Various forms of syntactic sugar.
8325@end deftypemethod
8326
8327@deftypemethod {location} {void} step ()
8328Move @code{begin} onto @code{end}.
8329@end deftypemethod
8330
8331
8332@node C++ Parser Interface
8333@subsection C++ Parser Interface
8334@c - define parser_class_name
8335@c - Ctor
8336@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8337@c debug_stream.
8338@c - Reporting errors
8339
8340The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8341declare and define the parser class in the namespace @code{yy}. The
8342class name defaults to @code{parser}, but may be changed using
16dc6a9e 8343@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8344this class is detailed below. It can be extended using the
12545799
AD
8345@code{%parse-param} feature: its semantics is slightly changed since
8346it describes an additional member of the parser class, and an
8347additional argument for its constructor.
8348
8a0adb01
AD
8349@defcv {Type} {parser} {semantic_value_type}
8350@defcvx {Type} {parser} {location_value_type}
12545799 8351The types for semantics value and locations.
8a0adb01 8352@end defcv
12545799
AD
8353
8354@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8355Build a new parser object. There are no arguments by default, unless
8356@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8357@end deftypemethod
8358
8359@deftypemethod {parser} {int} parse ()
8360Run the syntactic analysis, and return 0 on success, 1 otherwise.
8361@end deftypemethod
8362
8363@deftypemethod {parser} {std::ostream&} debug_stream ()
8364@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8365Get or set the stream used for tracing the parsing. It defaults to
8366@code{std::cerr}.
8367@end deftypemethod
8368
8369@deftypemethod {parser} {debug_level_type} debug_level ()
8370@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8371Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8372or nonzero, full tracing.
12545799
AD
8373@end deftypemethod
8374
8375@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8376The definition for this member function must be supplied by the user:
8377the parser uses it to report a parser error occurring at @var{l},
8378described by @var{m}.
8379@end deftypemethod
8380
8381
8382@node C++ Scanner Interface
8383@subsection C++ Scanner Interface
8384@c - prefix for yylex.
8385@c - Pure interface to yylex
8386@c - %lex-param
8387
8388The parser invokes the scanner by calling @code{yylex}. Contrary to C
8389parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8390@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8391
8392@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8393Return the next token. Its type is the return value, its semantic
8394value and location being @var{yylval} and @var{yylloc}. Invocations of
8395@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8396@end deftypemethod
8397
8398
8399@node A Complete C++ Example
8405b70c 8400@subsection A Complete C++ Example
12545799
AD
8401
8402This section demonstrates the use of a C++ parser with a simple but
8403complete example. This example should be available on your system,
8404ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8405focuses on the use of Bison, therefore the design of the various C++
8406classes is very naive: no accessors, no encapsulation of members etc.
8407We will use a Lex scanner, and more precisely, a Flex scanner, to
8408demonstrate the various interaction. A hand written scanner is
8409actually easier to interface with.
8410
8411@menu
8412* Calc++ --- C++ Calculator:: The specifications
8413* Calc++ Parsing Driver:: An active parsing context
8414* Calc++ Parser:: A parser class
8415* Calc++ Scanner:: A pure C++ Flex scanner
8416* Calc++ Top Level:: Conducting the band
8417@end menu
8418
8419@node Calc++ --- C++ Calculator
8405b70c 8420@subsubsection Calc++ --- C++ Calculator
12545799
AD
8421
8422Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8423expression, possibly preceded by variable assignments. An
12545799
AD
8424environment containing possibly predefined variables such as
8425@code{one} and @code{two}, is exchanged with the parser. An example
8426of valid input follows.
8427
8428@example
8429three := 3
8430seven := one + two * three
8431seven * seven
8432@end example
8433
8434@node Calc++ Parsing Driver
8405b70c 8435@subsubsection Calc++ Parsing Driver
12545799
AD
8436@c - An env
8437@c - A place to store error messages
8438@c - A place for the result
8439
8440To support a pure interface with the parser (and the scanner) the
8441technique of the ``parsing context'' is convenient: a structure
8442containing all the data to exchange. Since, in addition to simply
8443launch the parsing, there are several auxiliary tasks to execute (open
8444the file for parsing, instantiate the parser etc.), we recommend
8445transforming the simple parsing context structure into a fully blown
8446@dfn{parsing driver} class.
8447
8448The declaration of this driver class, @file{calc++-driver.hh}, is as
8449follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8450required standard library components, and the declaration of the parser
8451class.
12545799 8452
1c59e0a1 8453@comment file: calc++-driver.hh
12545799
AD
8454@example
8455#ifndef CALCXX_DRIVER_HH
8456# define CALCXX_DRIVER_HH
8457# include <string>
8458# include <map>
fb9712a9 8459# include "calc++-parser.hh"
12545799
AD
8460@end example
8461
12545799
AD
8462
8463@noindent
8464Then comes the declaration of the scanning function. Flex expects
8465the signature of @code{yylex} to be defined in the macro
8466@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8467factor both as follows.
1c59e0a1
AD
8468
8469@comment file: calc++-driver.hh
12545799 8470@example
3dc5e96b
PE
8471// Tell Flex the lexer's prototype ...
8472# define YY_DECL \
c095d689
AD
8473 yy::calcxx_parser::token_type \
8474 yylex (yy::calcxx_parser::semantic_type* yylval, \
8475 yy::calcxx_parser::location_type* yylloc, \
8476 calcxx_driver& driver)
12545799
AD
8477// ... and declare it for the parser's sake.
8478YY_DECL;
8479@end example
8480
8481@noindent
8482The @code{calcxx_driver} class is then declared with its most obvious
8483members.
8484
1c59e0a1 8485@comment file: calc++-driver.hh
12545799
AD
8486@example
8487// Conducting the whole scanning and parsing of Calc++.
8488class calcxx_driver
8489@{
8490public:
8491 calcxx_driver ();
8492 virtual ~calcxx_driver ();
8493
8494 std::map<std::string, int> variables;
8495
8496 int result;
8497@end example
8498
8499@noindent
8500To encapsulate the coordination with the Flex scanner, it is useful to
8501have two members function to open and close the scanning phase.
12545799 8502
1c59e0a1 8503@comment file: calc++-driver.hh
12545799
AD
8504@example
8505 // Handling the scanner.
8506 void scan_begin ();
8507 void scan_end ();
8508 bool trace_scanning;
8509@end example
8510
8511@noindent
8512Similarly for the parser itself.
8513
1c59e0a1 8514@comment file: calc++-driver.hh
12545799 8515@example
bb32f4f2
AD
8516 // Run the parser. Return 0 on success.
8517 int parse (const std::string& f);
12545799
AD
8518 std::string file;
8519 bool trace_parsing;
8520@end example
8521
8522@noindent
8523To demonstrate pure handling of parse errors, instead of simply
8524dumping them on the standard error output, we will pass them to the
8525compiler driver using the following two member functions. Finally, we
8526close the class declaration and CPP guard.
8527
1c59e0a1 8528@comment file: calc++-driver.hh
12545799
AD
8529@example
8530 // Error handling.
8531 void error (const yy::location& l, const std::string& m);
8532 void error (const std::string& m);
8533@};
8534#endif // ! CALCXX_DRIVER_HH
8535@end example
8536
8537The implementation of the driver is straightforward. The @code{parse}
8538member function deserves some attention. The @code{error} functions
8539are simple stubs, they should actually register the located error
8540messages and set error state.
8541
1c59e0a1 8542@comment file: calc++-driver.cc
12545799
AD
8543@example
8544#include "calc++-driver.hh"
8545#include "calc++-parser.hh"
8546
8547calcxx_driver::calcxx_driver ()
8548 : trace_scanning (false), trace_parsing (false)
8549@{
8550 variables["one"] = 1;
8551 variables["two"] = 2;
8552@}
8553
8554calcxx_driver::~calcxx_driver ()
8555@{
8556@}
8557
bb32f4f2 8558int
12545799
AD
8559calcxx_driver::parse (const std::string &f)
8560@{
8561 file = f;
8562 scan_begin ();
8563 yy::calcxx_parser parser (*this);
8564 parser.set_debug_level (trace_parsing);
bb32f4f2 8565 int res = parser.parse ();
12545799 8566 scan_end ();
bb32f4f2 8567 return res;
12545799
AD
8568@}
8569
8570void
8571calcxx_driver::error (const yy::location& l, const std::string& m)
8572@{
8573 std::cerr << l << ": " << m << std::endl;
8574@}
8575
8576void
8577calcxx_driver::error (const std::string& m)
8578@{
8579 std::cerr << m << std::endl;
8580@}
8581@end example
8582
8583@node Calc++ Parser
8405b70c 8584@subsubsection Calc++ Parser
12545799 8585
b50d2359 8586The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8587the C++ deterministic parser skeleton, the creation of the parser header
8588file, and specifies the name of the parser class.
8589Because the C++ skeleton changed several times, it is safer to require
8590the version you designed the grammar for.
1c59e0a1
AD
8591
8592@comment file: calc++-parser.yy
12545799 8593@example
ed4d67dc 8594%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8595%require "@value{VERSION}"
12545799 8596%defines
16dc6a9e 8597%define parser_class_name "calcxx_parser"
fb9712a9
AD
8598@end example
8599
8600@noindent
16dc6a9e 8601@findex %code requires
fb9712a9
AD
8602Then come the declarations/inclusions needed to define the
8603@code{%union}. Because the parser uses the parsing driver and
8604reciprocally, both cannot include the header of the other. Because the
8605driver's header needs detailed knowledge about the parser class (in
8606particular its inner types), it is the parser's header which will simply
8607use a forward declaration of the driver.
148d66d8 8608@xref{Decl Summary, ,%code}.
fb9712a9
AD
8609
8610@comment file: calc++-parser.yy
8611@example
16dc6a9e 8612%code requires @{
12545799 8613# include <string>
fb9712a9 8614class calcxx_driver;
9bc0dd67 8615@}
12545799
AD
8616@end example
8617
8618@noindent
8619The driver is passed by reference to the parser and to the scanner.
8620This provides a simple but effective pure interface, not relying on
8621global variables.
8622
1c59e0a1 8623@comment file: calc++-parser.yy
12545799
AD
8624@example
8625// The parsing context.
8626%parse-param @{ calcxx_driver& driver @}
8627%lex-param @{ calcxx_driver& driver @}
8628@end example
8629
8630@noindent
8631Then we request the location tracking feature, and initialize the
8632first location's file name. Afterwards new locations are computed
8633relatively to the previous locations: the file name will be
8634automatically propagated.
8635
1c59e0a1 8636@comment file: calc++-parser.yy
12545799
AD
8637@example
8638%locations
8639%initial-action
8640@{
8641 // Initialize the initial location.
b47dbebe 8642 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8643@};
8644@end example
8645
8646@noindent
8647Use the two following directives to enable parser tracing and verbose
8648error messages.
8649
1c59e0a1 8650@comment file: calc++-parser.yy
12545799
AD
8651@example
8652%debug
8653%error-verbose
8654@end example
8655
8656@noindent
8657Semantic values cannot use ``real'' objects, but only pointers to
8658them.
8659
1c59e0a1 8660@comment file: calc++-parser.yy
12545799
AD
8661@example
8662// Symbols.
8663%union
8664@{
8665 int ival;
8666 std::string *sval;
8667@};
8668@end example
8669
fb9712a9 8670@noindent
136a0f76
PB
8671@findex %code
8672The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8673@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8674
8675@comment file: calc++-parser.yy
8676@example
136a0f76 8677%code @{
fb9712a9 8678# include "calc++-driver.hh"
34f98f46 8679@}
fb9712a9
AD
8680@end example
8681
8682
12545799
AD
8683@noindent
8684The token numbered as 0 corresponds to end of file; the following line
8685allows for nicer error messages referring to ``end of file'' instead
8686of ``$end''. Similarly user friendly named are provided for each
8687symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8688avoid name clashes.
8689
1c59e0a1 8690@comment file: calc++-parser.yy
12545799 8691@example
fb9712a9
AD
8692%token END 0 "end of file"
8693%token ASSIGN ":="
8694%token <sval> IDENTIFIER "identifier"
8695%token <ival> NUMBER "number"
a8c2e813 8696%type <ival> exp
12545799
AD
8697@end example
8698
8699@noindent
8700To enable memory deallocation during error recovery, use
8701@code{%destructor}.
8702
287c78f6 8703@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8704@comment file: calc++-parser.yy
12545799
AD
8705@example
8706%printer @{ debug_stream () << *$$; @} "identifier"
8707%destructor @{ delete $$; @} "identifier"
8708
a8c2e813 8709%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8710@end example
8711
8712@noindent
8713The grammar itself is straightforward.
8714
1c59e0a1 8715@comment file: calc++-parser.yy
12545799
AD
8716@example
8717%%
8718%start unit;
8719unit: assignments exp @{ driver.result = $2; @};
8720
8721assignments: assignments assignment @{@}
9d9b8b70 8722 | /* Nothing. */ @{@};
12545799 8723
3dc5e96b
PE
8724assignment:
8725 "identifier" ":=" exp
8726 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8727
8728%left '+' '-';
8729%left '*' '/';
8730exp: exp '+' exp @{ $$ = $1 + $3; @}
8731 | exp '-' exp @{ $$ = $1 - $3; @}
8732 | exp '*' exp @{ $$ = $1 * $3; @}
8733 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8734 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8735 | "number" @{ $$ = $1; @};
12545799
AD
8736%%
8737@end example
8738
8739@noindent
8740Finally the @code{error} member function registers the errors to the
8741driver.
8742
1c59e0a1 8743@comment file: calc++-parser.yy
12545799
AD
8744@example
8745void
1c59e0a1
AD
8746yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8747 const std::string& m)
12545799
AD
8748@{
8749 driver.error (l, m);
8750@}
8751@end example
8752
8753@node Calc++ Scanner
8405b70c 8754@subsubsection Calc++ Scanner
12545799
AD
8755
8756The Flex scanner first includes the driver declaration, then the
8757parser's to get the set of defined tokens.
8758
1c59e0a1 8759@comment file: calc++-scanner.ll
12545799
AD
8760@example
8761%@{ /* -*- C++ -*- */
04098407 8762# include <cstdlib>
b10dd689
AD
8763# include <cerrno>
8764# include <climits>
12545799
AD
8765# include <string>
8766# include "calc++-driver.hh"
8767# include "calc++-parser.hh"
eaea13f5
PE
8768
8769/* Work around an incompatibility in flex (at least versions
8770 2.5.31 through 2.5.33): it generates code that does
8771 not conform to C89. See Debian bug 333231
8772 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8773# undef yywrap
8774# define yywrap() 1
eaea13f5 8775
c095d689
AD
8776/* By default yylex returns int, we use token_type.
8777 Unfortunately yyterminate by default returns 0, which is
8778 not of token_type. */
8c5b881d 8779#define yyterminate() return token::END
12545799
AD
8780%@}
8781@end example
8782
8783@noindent
8784Because there is no @code{#include}-like feature we don't need
8785@code{yywrap}, we don't need @code{unput} either, and we parse an
8786actual file, this is not an interactive session with the user.
8787Finally we enable the scanner tracing features.
8788
1c59e0a1 8789@comment file: calc++-scanner.ll
12545799
AD
8790@example
8791%option noyywrap nounput batch debug
8792@end example
8793
8794@noindent
8795Abbreviations allow for more readable rules.
8796
1c59e0a1 8797@comment file: calc++-scanner.ll
12545799
AD
8798@example
8799id [a-zA-Z][a-zA-Z_0-9]*
8800int [0-9]+
8801blank [ \t]
8802@end example
8803
8804@noindent
9d9b8b70 8805The following paragraph suffices to track locations accurately. Each
12545799
AD
8806time @code{yylex} is invoked, the begin position is moved onto the end
8807position. Then when a pattern is matched, the end position is
8808advanced of its width. In case it matched ends of lines, the end
8809cursor is adjusted, and each time blanks are matched, the begin cursor
8810is moved onto the end cursor to effectively ignore the blanks
8811preceding tokens. Comments would be treated equally.
8812
1c59e0a1 8813@comment file: calc++-scanner.ll
12545799 8814@example
828c373b
AD
8815%@{
8816# define YY_USER_ACTION yylloc->columns (yyleng);
8817%@}
12545799
AD
8818%%
8819%@{
8820 yylloc->step ();
12545799
AD
8821%@}
8822@{blank@}+ yylloc->step ();
8823[\n]+ yylloc->lines (yyleng); yylloc->step ();
8824@end example
8825
8826@noindent
fb9712a9
AD
8827The rules are simple, just note the use of the driver to report errors.
8828It is convenient to use a typedef to shorten
8829@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8830@code{token::identifier} for instance.
12545799 8831
1c59e0a1 8832@comment file: calc++-scanner.ll
12545799 8833@example
fb9712a9
AD
8834%@{
8835 typedef yy::calcxx_parser::token token;
8836%@}
8c5b881d 8837 /* Convert ints to the actual type of tokens. */
c095d689 8838[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8839":=" return token::ASSIGN;
04098407
PE
8840@{int@} @{
8841 errno = 0;
8842 long n = strtol (yytext, NULL, 10);
8843 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8844 driver.error (*yylloc, "integer is out of range");
8845 yylval->ival = n;
fb9712a9 8846 return token::NUMBER;
04098407 8847@}
fb9712a9 8848@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8849. driver.error (*yylloc, "invalid character");
8850%%
8851@end example
8852
8853@noindent
8854Finally, because the scanner related driver's member function depend
8855on the scanner's data, it is simpler to implement them in this file.
8856
1c59e0a1 8857@comment file: calc++-scanner.ll
12545799
AD
8858@example
8859void
8860calcxx_driver::scan_begin ()
8861@{
8862 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8863 if (file == "-")
8864 yyin = stdin;
8865 else if (!(yyin = fopen (file.c_str (), "r")))
8866 @{
8867 error (std::string ("cannot open ") + file);
8868 exit (1);
8869 @}
12545799
AD
8870@}
8871
8872void
8873calcxx_driver::scan_end ()
8874@{
8875 fclose (yyin);
8876@}
8877@end example
8878
8879@node Calc++ Top Level
8405b70c 8880@subsubsection Calc++ Top Level
12545799
AD
8881
8882The top level file, @file{calc++.cc}, poses no problem.
8883
1c59e0a1 8884@comment file: calc++.cc
12545799
AD
8885@example
8886#include <iostream>
8887#include "calc++-driver.hh"
8888
8889int
fa4d969f 8890main (int argc, char *argv[])
12545799
AD
8891@{
8892 calcxx_driver driver;
8893 for (++argv; argv[0]; ++argv)
8894 if (*argv == std::string ("-p"))
8895 driver.trace_parsing = true;
8896 else if (*argv == std::string ("-s"))
8897 driver.trace_scanning = true;
bb32f4f2
AD
8898 else if (!driver.parse (*argv))
8899 std::cout << driver.result << std::endl;
12545799
AD
8900@}
8901@end example
8902
8405b70c
PB
8903@node Java Parsers
8904@section Java Parsers
8905
8906@menu
f56274a8
DJ
8907* Java Bison Interface:: Asking for Java parser generation
8908* Java Semantic Values:: %type and %token vs. Java
8909* Java Location Values:: The position and location classes
8910* Java Parser Interface:: Instantiating and running the parser
8911* Java Scanner Interface:: Specifying the scanner for the parser
8912* Java Action Features:: Special features for use in actions
8913* Java Differences:: Differences between C/C++ and Java Grammars
8914* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8915@end menu
8916
8917@node Java Bison Interface
8918@subsection Java Bison Interface
8919@c - %language "Java"
8405b70c 8920
59da312b
JD
8921(The current Java interface is experimental and may evolve.
8922More user feedback will help to stabilize it.)
8923
e254a580
DJ
8924The Java parser skeletons are selected using the @code{%language "Java"}
8925directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8926
e254a580
DJ
8927@c FIXME: Documented bug.
8928When generating a Java parser, @code{bison @var{basename}.y} will create
8929a single Java source file named @file{@var{basename}.java}. Using an
8930input file without a @file{.y} suffix is currently broken. The basename
8931of the output file can be changed by the @code{%file-prefix} directive
8932or the @option{-p}/@option{--name-prefix} option. The entire output file
8933name can be changed by the @code{%output} directive or the
8934@option{-o}/@option{--output} option. The output file contains a single
8935class for the parser.
8405b70c 8936
e254a580 8937You can create documentation for generated parsers using Javadoc.
8405b70c 8938
e254a580
DJ
8939Contrary to C parsers, Java parsers do not use global variables; the
8940state of the parser is always local to an instance of the parser class.
8941Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8942and @code{%define api.pure} directives does not do anything when used in
8943Java.
8405b70c 8944
e254a580 8945Push parsers are currently unsupported in Java and @code{%define
812775a0 8946api.push-pull} have no effect.
01b477c6 8947
e254a580
DJ
8948@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8949@code{glr-parser} directive.
8950
8951No header file can be generated for Java parsers. Do not use the
8952@code{%defines} directive or the @option{-d}/@option{--defines} options.
8953
8954@c FIXME: Possible code change.
8955Currently, support for debugging and verbose errors are always compiled
8956in. Thus the @code{%debug} and @code{%token-table} directives and the
8957@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8958options have no effect. This may change in the future to eliminate
8959unused code in the generated parser, so use @code{%debug} and
8960@code{%verbose-error} explicitly if needed. Also, in the future the
8961@code{%token-table} directive might enable a public interface to
8962access the token names and codes.
8405b70c
PB
8963
8964@node Java Semantic Values
8965@subsection Java Semantic Values
8966@c - No %union, specify type in %type/%token.
8967@c - YYSTYPE
8968@c - Printer and destructor
8969
8970There is no @code{%union} directive in Java parsers. Instead, the
8971semantic values' types (class names) should be specified in the
8972@code{%type} or @code{%token} directive:
8973
8974@example
8975%type <Expression> expr assignment_expr term factor
8976%type <Integer> number
8977@end example
8978
8979By default, the semantic stack is declared to have @code{Object} members,
8980which means that the class types you specify can be of any class.
8981To improve the type safety of the parser, you can declare the common
e254a580
DJ
8982superclass of all the semantic values using the @code{%define stype}
8983directive. For example, after the following declaration:
8405b70c
PB
8984
8985@example
e254a580 8986%define stype "ASTNode"
8405b70c
PB
8987@end example
8988
8989@noindent
8990any @code{%type} or @code{%token} specifying a semantic type which
8991is not a subclass of ASTNode, will cause a compile-time error.
8992
e254a580 8993@c FIXME: Documented bug.
8405b70c
PB
8994Types used in the directives may be qualified with a package name.
8995Primitive data types are accepted for Java version 1.5 or later. Note
8996that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8997Generic types may not be used; this is due to a limitation in the
8998implementation of Bison, and may change in future releases.
8405b70c
PB
8999
9000Java parsers do not support @code{%destructor}, since the language
9001adopts garbage collection. The parser will try to hold references
9002to semantic values for as little time as needed.
9003
9004Java parsers do not support @code{%printer}, as @code{toString()}
9005can be used to print the semantic values. This however may change
9006(in a backwards-compatible way) in future versions of Bison.
9007
9008
9009@node Java Location Values
9010@subsection Java Location Values
9011@c - %locations
9012@c - class Position
9013@c - class Location
9014
9015When the directive @code{%locations} is used, the Java parser
9016supports location tracking, see @ref{Locations, , Locations Overview}.
9017An auxiliary user-defined class defines a @dfn{position}, a single point
9018in a file; Bison itself defines a class representing a @dfn{location},
9019a range composed of a pair of positions (possibly spanning several
9020files). The location class is an inner class of the parser; the name
e254a580
DJ
9021is @code{Location} by default, and may also be renamed using
9022@code{%define location_type "@var{class-name}}.
8405b70c
PB
9023
9024The location class treats the position as a completely opaque value.
9025By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9026with @code{%define position_type "@var{class-name}"}. This class must
9027be supplied by the user.
8405b70c
PB
9028
9029
e254a580
DJ
9030@deftypeivar {Location} {Position} begin
9031@deftypeivarx {Location} {Position} end
8405b70c 9032The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9033@end deftypeivar
9034
9035@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9036Create a @code{Location} denoting an empty range located at a given point.
e254a580 9037@end deftypeop
8405b70c 9038
e254a580
DJ
9039@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9040Create a @code{Location} from the endpoints of the range.
9041@end deftypeop
9042
9043@deftypemethod {Location} {String} toString ()
8405b70c
PB
9044Prints the range represented by the location. For this to work
9045properly, the position class should override the @code{equals} and
9046@code{toString} methods appropriately.
9047@end deftypemethod
9048
9049
9050@node Java Parser Interface
9051@subsection Java Parser Interface
9052@c - define parser_class_name
9053@c - Ctor
9054@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9055@c debug_stream.
9056@c - Reporting errors
9057
e254a580
DJ
9058The name of the generated parser class defaults to @code{YYParser}. The
9059@code{YY} prefix may be changed using the @code{%name-prefix} directive
9060or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9061@code{%define parser_class_name "@var{name}"} to give a custom name to
9062the class. The interface of this class is detailed below.
8405b70c 9063
e254a580
DJ
9064By default, the parser class has package visibility. A declaration
9065@code{%define public} will change to public visibility. Remember that,
9066according to the Java language specification, the name of the @file{.java}
9067file should match the name of the class in this case. Similarly, you can
9068use @code{abstract}, @code{final} and @code{strictfp} with the
9069@code{%define} declaration to add other modifiers to the parser class.
9070
9071The Java package name of the parser class can be specified using the
9072@code{%define package} directive. The superclass and the implemented
9073interfaces of the parser class can be specified with the @code{%define
9074extends} and @code{%define implements} directives.
9075
9076The parser class defines an inner class, @code{Location}, that is used
9077for location tracking (see @ref{Java Location Values}), and a inner
9078interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9079these inner class/interface, and the members described in the interface
9080below, all the other members and fields are preceded with a @code{yy} or
9081@code{YY} prefix to avoid clashes with user code.
9082
9083@c FIXME: The following constants and variables are still undocumented:
9084@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9085
9086The parser class can be extended using the @code{%parse-param}
9087directive. Each occurrence of the directive will add a @code{protected
9088final} field to the parser class, and an argument to its constructor,
9089which initialize them automatically.
9090
9091Token names defined by @code{%token} and the predefined @code{EOF} token
9092name are added as constant fields to the parser class.
9093
9094@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9095Build a new parser object with embedded @code{%code lexer}. There are
9096no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9097used.
9098@end deftypeop
9099
9100@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9101Build a new parser object using the specified scanner. There are no
9102additional parameters unless @code{%parse-param}s are used.
9103
9104If the scanner is defined by @code{%code lexer}, this constructor is
9105declared @code{protected} and is called automatically with a scanner
9106created with the correct @code{%lex-param}s.
9107@end deftypeop
8405b70c
PB
9108
9109@deftypemethod {YYParser} {boolean} parse ()
9110Run the syntactic analysis, and return @code{true} on success,
9111@code{false} otherwise.
9112@end deftypemethod
9113
01b477c6 9114@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9115During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9116from a syntax error.
9117@xref{Error Recovery}.
8405b70c
PB
9118@end deftypemethod
9119
9120@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9121@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9122Get or set the stream used for tracing the parsing. It defaults to
9123@code{System.err}.
9124@end deftypemethod
9125
9126@deftypemethod {YYParser} {int} getDebugLevel ()
9127@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9128Get or set the tracing level. Currently its value is either 0, no trace,
9129or nonzero, full tracing.
9130@end deftypemethod
9131
8405b70c
PB
9132
9133@node Java Scanner Interface
9134@subsection Java Scanner Interface
01b477c6 9135@c - %code lexer
8405b70c 9136@c - %lex-param
01b477c6 9137@c - Lexer interface
8405b70c 9138
e254a580
DJ
9139There are two possible ways to interface a Bison-generated Java parser
9140with a scanner: the scanner may be defined by @code{%code lexer}, or
9141defined elsewhere. In either case, the scanner has to implement the
9142@code{Lexer} inner interface of the parser class.
9143
9144In the first case, the body of the scanner class is placed in
9145@code{%code lexer} blocks. If you want to pass parameters from the
9146parser constructor to the scanner constructor, specify them with
9147@code{%lex-param}; they are passed before @code{%parse-param}s to the
9148constructor.
01b477c6 9149
59c5ac72 9150In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9151which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9152The constructor of the parser object will then accept an object
9153implementing the interface; @code{%lex-param} is not used in this
9154case.
9155
9156In both cases, the scanner has to implement the following methods.
9157
e254a580
DJ
9158@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9159This method is defined by the user to emit an error message. The first
9160parameter is omitted if location tracking is not active. Its type can be
9161changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9162@end deftypemethod
9163
e254a580 9164@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9165Return the next token. Its type is the return value, its semantic
9166value and location are saved and returned by the ther methods in the
e254a580
DJ
9167interface.
9168
9169Use @code{%define lex_throws} to specify any uncaught exceptions.
9170Default is @code{java.io.IOException}.
8405b70c
PB
9171@end deftypemethod
9172
9173@deftypemethod {Lexer} {Position} getStartPos ()
9174@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9175Return respectively the first position of the last token that
9176@code{yylex} returned, and the first position beyond it. These
9177methods are not needed unless location tracking is active.
8405b70c 9178
e254a580 9179The return type can be changed using @code{%define position_type
8405b70c
PB
9180"@var{class-name}".}
9181@end deftypemethod
9182
9183@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9184Return the semantical value of the last token that yylex returned.
8405b70c 9185
e254a580 9186The return type can be changed using @code{%define stype
8405b70c
PB
9187"@var{class-name}".}
9188@end deftypemethod
9189
9190
e254a580
DJ
9191@node Java Action Features
9192@subsection Special Features for Use in Java Actions
9193
9194The following special constructs can be uses in Java actions.
9195Other analogous C action features are currently unavailable for Java.
9196
9197Use @code{%define throws} to specify any uncaught exceptions from parser
9198actions, and initial actions specified by @code{%initial-action}.
9199
9200@defvar $@var{n}
9201The semantic value for the @var{n}th component of the current rule.
9202This may not be assigned to.
9203@xref{Java Semantic Values}.
9204@end defvar
9205
9206@defvar $<@var{typealt}>@var{n}
9207Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9208@xref{Java Semantic Values}.
9209@end defvar
9210
9211@defvar $$
9212The semantic value for the grouping made by the current rule. As a
9213value, this is in the base type (@code{Object} or as specified by
9214@code{%define stype}) as in not cast to the declared subtype because
9215casts are not allowed on the left-hand side of Java assignments.
9216Use an explicit Java cast if the correct subtype is needed.
9217@xref{Java Semantic Values}.
9218@end defvar
9219
9220@defvar $<@var{typealt}>$
9221Same as @code{$$} since Java always allow assigning to the base type.
9222Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9223for setting the value but there is currently no easy way to distinguish
9224these constructs.
9225@xref{Java Semantic Values}.
9226@end defvar
9227
9228@defvar @@@var{n}
9229The location information of the @var{n}th component of the current rule.
9230This may not be assigned to.
9231@xref{Java Location Values}.
9232@end defvar
9233
9234@defvar @@$
9235The location information of the grouping made by the current rule.
9236@xref{Java Location Values}.
9237@end defvar
9238
9239@deffn {Statement} {return YYABORT;}
9240Return immediately from the parser, indicating failure.
9241@xref{Java Parser Interface}.
9242@end deffn
8405b70c 9243
e254a580
DJ
9244@deffn {Statement} {return YYACCEPT;}
9245Return immediately from the parser, indicating success.
9246@xref{Java Parser Interface}.
9247@end deffn
8405b70c 9248
e254a580 9249@deffn {Statement} {return YYERROR;}
c046698e 9250Start error recovery without printing an error message.
e254a580
DJ
9251@xref{Error Recovery}.
9252@end deffn
8405b70c 9253
e254a580 9254@deffn {Statement} {return YYFAIL;}
c046698e 9255Print an error message and start error recovery.
e254a580
DJ
9256@xref{Error Recovery}.
9257@end deffn
8405b70c 9258
e254a580
DJ
9259@deftypefn {Function} {boolean} recovering ()
9260Return whether error recovery is being done. In this state, the parser
9261reads token until it reaches a known state, and then restarts normal
9262operation.
9263@xref{Error Recovery}.
9264@end deftypefn
8405b70c 9265
e254a580
DJ
9266@deftypefn {Function} {protected void} yyerror (String msg)
9267@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9268@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9269Print an error message using the @code{yyerror} method of the scanner
9270instance in use.
9271@end deftypefn
8405b70c 9272
8405b70c 9273
8405b70c
PB
9274@node Java Differences
9275@subsection Differences between C/C++ and Java Grammars
9276
9277The different structure of the Java language forces several differences
9278between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9279section summarizes these differences.
8405b70c
PB
9280
9281@itemize
9282@item
01b477c6 9283Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9284@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9285macros. Instead, they should be preceded by @code{return} when they
9286appear in an action. The actual definition of these symbols is
8405b70c
PB
9287opaque to the Bison grammar, and it might change in the future. The
9288only meaningful operation that you can do, is to return them.
e254a580 9289See @pxref{Java Action Features}.
8405b70c
PB
9290
9291Note that of these three symbols, only @code{YYACCEPT} and
9292@code{YYABORT} will cause a return from the @code{yyparse}
9293method@footnote{Java parsers include the actions in a separate
9294method than @code{yyparse} in order to have an intuitive syntax that
9295corresponds to these C macros.}.
9296
e254a580
DJ
9297@item
9298Java lacks unions, so @code{%union} has no effect. Instead, semantic
9299values have a common base type: @code{Object} or as specified by
9300@code{%define stype}. Angle backets on @code{%token}, @code{type},
9301@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9302an union. The type of @code{$$}, even with angle brackets, is the base
9303type since Java casts are not allow on the left-hand side of assignments.
9304Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9305left-hand side of assignments. See @pxref{Java Semantic Values} and
9306@pxref{Java Action Features}.
9307
8405b70c
PB
9308@item
9309The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9310@table @asis
9311@item @code{%code imports}
9312blocks are placed at the beginning of the Java source code. They may
9313include copyright notices. For a @code{package} declarations, it is
9314suggested to use @code{%define package} instead.
8405b70c 9315
01b477c6
PB
9316@item unqualified @code{%code}
9317blocks are placed inside the parser class.
9318
9319@item @code{%code lexer}
9320blocks, if specified, should include the implementation of the
9321scanner. If there is no such block, the scanner can be any class
9322that implements the appropriate interface (see @pxref{Java Scanner
9323Interface}).
29553547 9324@end table
8405b70c
PB
9325
9326Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9327In particular, @code{%@{ @dots{} %@}} blocks should not be used
9328and may give an error in future versions of Bison.
9329
01b477c6 9330The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9331be used to define other classes used by the parser @emph{outside}
9332the parser class.
8405b70c
PB
9333@end itemize
9334
e254a580
DJ
9335
9336@node Java Declarations Summary
9337@subsection Java Declarations Summary
9338
9339This summary only include declarations specific to Java or have special
9340meaning when used in a Java parser.
9341
9342@deffn {Directive} {%language "Java"}
9343Generate a Java class for the parser.
9344@end deffn
9345
9346@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9347A parameter for the lexer class defined by @code{%code lexer}
9348@emph{only}, added as parameters to the lexer constructor and the parser
9349constructor that @emph{creates} a lexer. Default is none.
9350@xref{Java Scanner Interface}.
9351@end deffn
9352
9353@deffn {Directive} %name-prefix "@var{prefix}"
9354The prefix of the parser class name @code{@var{prefix}Parser} if
9355@code{%define parser_class_name} is not used. Default is @code{YY}.
9356@xref{Java Bison Interface}.
9357@end deffn
9358
9359@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9360A parameter for the parser class added as parameters to constructor(s)
9361and as fields initialized by the constructor(s). Default is none.
9362@xref{Java Parser Interface}.
9363@end deffn
9364
9365@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9366Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9367@xref{Java Semantic Values}.
9368@end deffn
9369
9370@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9371Declare the type of nonterminals. Note that the angle brackets enclose
9372a Java @emph{type}.
9373@xref{Java Semantic Values}.
9374@end deffn
9375
9376@deffn {Directive} %code @{ @var{code} @dots{} @}
9377Code appended to the inside of the parser class.
9378@xref{Java Differences}.
9379@end deffn
9380
9381@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9382Code inserted just after the @code{package} declaration.
9383@xref{Java Differences}.
9384@end deffn
9385
9386@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9387Code added to the body of a inner lexer class within the parser class.
9388@xref{Java Scanner Interface}.
9389@end deffn
9390
9391@deffn {Directive} %% @var{code} @dots{}
9392Code (after the second @code{%%}) appended to the end of the file,
9393@emph{outside} the parser class.
9394@xref{Java Differences}.
9395@end deffn
9396
9397@deffn {Directive} %@{ @var{code} @dots{} %@}
9398Not supported. Use @code{%code import} instead.
9399@xref{Java Differences}.
9400@end deffn
9401
9402@deffn {Directive} {%define abstract}
9403Whether the parser class is declared @code{abstract}. Default is false.
9404@xref{Java Bison Interface}.
9405@end deffn
9406
9407@deffn {Directive} {%define extends} "@var{superclass}"
9408The superclass of the parser class. Default is none.
9409@xref{Java Bison Interface}.
9410@end deffn
9411
9412@deffn {Directive} {%define final}
9413Whether the parser class is declared @code{final}. Default is false.
9414@xref{Java Bison Interface}.
9415@end deffn
9416
9417@deffn {Directive} {%define implements} "@var{interfaces}"
9418The implemented interfaces of the parser class, a comma-separated list.
9419Default is none.
9420@xref{Java Bison Interface}.
9421@end deffn
9422
9423@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9424The exceptions thrown by the @code{yylex} method of the lexer, a
9425comma-separated list. Default is @code{java.io.IOException}.
9426@xref{Java Scanner Interface}.
9427@end deffn
9428
9429@deffn {Directive} {%define location_type} "@var{class}"
9430The name of the class used for locations (a range between two
9431positions). This class is generated as an inner class of the parser
9432class by @command{bison}. Default is @code{Location}.
9433@xref{Java Location Values}.
9434@end deffn
9435
9436@deffn {Directive} {%define package} "@var{package}"
9437The package to put the parser class in. Default is none.
9438@xref{Java Bison Interface}.
9439@end deffn
9440
9441@deffn {Directive} {%define parser_class_name} "@var{name}"
9442The name of the parser class. Default is @code{YYParser} or
9443@code{@var{name-prefix}Parser}.
9444@xref{Java Bison Interface}.
9445@end deffn
9446
9447@deffn {Directive} {%define position_type} "@var{class}"
9448The name of the class used for positions. This class must be supplied by
9449the user. Default is @code{Position}.
9450@xref{Java Location Values}.
9451@end deffn
9452
9453@deffn {Directive} {%define public}
9454Whether the parser class is declared @code{public}. Default is false.
9455@xref{Java Bison Interface}.
9456@end deffn
9457
9458@deffn {Directive} {%define stype} "@var{class}"
9459The base type of semantic values. Default is @code{Object}.
9460@xref{Java Semantic Values}.
9461@end deffn
9462
9463@deffn {Directive} {%define strictfp}
9464Whether the parser class is declared @code{strictfp}. Default is false.
9465@xref{Java Bison Interface}.
9466@end deffn
9467
9468@deffn {Directive} {%define throws} "@var{exceptions}"
9469The exceptions thrown by user-supplied parser actions and
9470@code{%initial-action}, a comma-separated list. Default is none.
9471@xref{Java Parser Interface}.
9472@end deffn
9473
9474
12545799 9475@c ================================================= FAQ
d1a1114f
AD
9476
9477@node FAQ
9478@chapter Frequently Asked Questions
9479@cindex frequently asked questions
9480@cindex questions
9481
9482Several questions about Bison come up occasionally. Here some of them
9483are addressed.
9484
9485@menu
55ba27be
AD
9486* Memory Exhausted:: Breaking the Stack Limits
9487* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9488* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9489* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9490* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9491* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9492* I can't build Bison:: Troubleshooting
9493* Where can I find help?:: Troubleshouting
9494* Bug Reports:: Troublereporting
8405b70c 9495* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9496* Beta Testing:: Experimenting development versions
9497* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9498@end menu
9499
1a059451
PE
9500@node Memory Exhausted
9501@section Memory Exhausted
d1a1114f
AD
9502
9503@display
1a059451 9504My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9505message. What can I do?
9506@end display
9507
9508This question is already addressed elsewhere, @xref{Recursion,
9509,Recursive Rules}.
9510
e64fec0a
PE
9511@node How Can I Reset the Parser
9512@section How Can I Reset the Parser
5b066063 9513
0e14ad77
PE
9514The following phenomenon has several symptoms, resulting in the
9515following typical questions:
5b066063
AD
9516
9517@display
9518I invoke @code{yyparse} several times, and on correct input it works
9519properly; but when a parse error is found, all the other calls fail
0e14ad77 9520too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9521@end display
9522
9523@noindent
9524or
9525
9526@display
0e14ad77 9527My parser includes support for an @samp{#include}-like feature, in
5b066063 9528which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9529although I did specify @code{%define api.pure}.
5b066063
AD
9530@end display
9531
0e14ad77
PE
9532These problems typically come not from Bison itself, but from
9533Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9534speed, they might not notice a change of input file. As a
9535demonstration, consider the following source file,
9536@file{first-line.l}:
9537
9538@verbatim
9539%{
9540#include <stdio.h>
9541#include <stdlib.h>
9542%}
9543%%
9544.*\n ECHO; return 1;
9545%%
9546int
0e14ad77 9547yyparse (char const *file)
5b066063
AD
9548{
9549 yyin = fopen (file, "r");
9550 if (!yyin)
9551 exit (2);
fa7e68c3 9552 /* One token only. */
5b066063 9553 yylex ();
0e14ad77 9554 if (fclose (yyin) != 0)
5b066063
AD
9555 exit (3);
9556 return 0;
9557}
9558
9559int
0e14ad77 9560main (void)
5b066063
AD
9561{
9562 yyparse ("input");
9563 yyparse ("input");
9564 return 0;
9565}
9566@end verbatim
9567
9568@noindent
9569If the file @file{input} contains
9570
9571@verbatim
9572input:1: Hello,
9573input:2: World!
9574@end verbatim
9575
9576@noindent
0e14ad77 9577then instead of getting the first line twice, you get:
5b066063
AD
9578
9579@example
9580$ @kbd{flex -ofirst-line.c first-line.l}
9581$ @kbd{gcc -ofirst-line first-line.c -ll}
9582$ @kbd{./first-line}
9583input:1: Hello,
9584input:2: World!
9585@end example
9586
0e14ad77
PE
9587Therefore, whenever you change @code{yyin}, you must tell the
9588Lex-generated scanner to discard its current buffer and switch to the
9589new one. This depends upon your implementation of Lex; see its
9590documentation for more. For Flex, it suffices to call
9591@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9592Flex-generated scanner needs to read from several input streams to
9593handle features like include files, you might consider using Flex
9594functions like @samp{yy_switch_to_buffer} that manipulate multiple
9595input buffers.
5b066063 9596
b165c324
AD
9597If your Flex-generated scanner uses start conditions (@pxref{Start
9598conditions, , Start conditions, flex, The Flex Manual}), you might
9599also want to reset the scanner's state, i.e., go back to the initial
9600start condition, through a call to @samp{BEGIN (0)}.
9601
fef4cb51
AD
9602@node Strings are Destroyed
9603@section Strings are Destroyed
9604
9605@display
c7e441b4 9606My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9607them. Instead of reporting @samp{"foo", "bar"}, it reports
9608@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9609@end display
9610
9611This error is probably the single most frequent ``bug report'' sent to
9612Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9613of the scanner. Consider the following Lex code:
fef4cb51
AD
9614
9615@verbatim
9616%{
9617#include <stdio.h>
9618char *yylval = NULL;
9619%}
9620%%
9621.* yylval = yytext; return 1;
9622\n /* IGNORE */
9623%%
9624int
9625main ()
9626{
fa7e68c3 9627 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9628 char *fst = (yylex (), yylval);
9629 char *snd = (yylex (), yylval);
9630 printf ("\"%s\", \"%s\"\n", fst, snd);
9631 return 0;
9632}
9633@end verbatim
9634
9635If you compile and run this code, you get:
9636
9637@example
9638$ @kbd{flex -osplit-lines.c split-lines.l}
9639$ @kbd{gcc -osplit-lines split-lines.c -ll}
9640$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9641"one
9642two", "two"
9643@end example
9644
9645@noindent
9646this is because @code{yytext} is a buffer provided for @emph{reading}
9647in the action, but if you want to keep it, you have to duplicate it
9648(e.g., using @code{strdup}). Note that the output may depend on how
9649your implementation of Lex handles @code{yytext}. For instance, when
9650given the Lex compatibility option @option{-l} (which triggers the
9651option @samp{%array}) Flex generates a different behavior:
9652
9653@example
9654$ @kbd{flex -l -osplit-lines.c split-lines.l}
9655$ @kbd{gcc -osplit-lines split-lines.c -ll}
9656$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9657"two", "two"
9658@end example
9659
9660
2fa09258
AD
9661@node Implementing Gotos/Loops
9662@section Implementing Gotos/Loops
a06ea4aa
AD
9663
9664@display
9665My simple calculator supports variables, assignments, and functions,
2fa09258 9666but how can I implement gotos, or loops?
a06ea4aa
AD
9667@end display
9668
9669Although very pedagogical, the examples included in the document blur
a1c84f45 9670the distinction to make between the parser---whose job is to recover
a06ea4aa 9671the structure of a text and to transmit it to subsequent modules of
a1c84f45 9672the program---and the processing (such as the execution) of this
a06ea4aa
AD
9673structure. This works well with so called straight line programs,
9674i.e., precisely those that have a straightforward execution model:
9675execute simple instructions one after the others.
9676
9677@cindex abstract syntax tree
9678@cindex @acronym{AST}
9679If you want a richer model, you will probably need to use the parser
9680to construct a tree that does represent the structure it has
9681recovered; this tree is usually called the @dfn{abstract syntax tree},
9682or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9683traversing it in various ways, will enable treatments such as its
9684execution or its translation, which will result in an interpreter or a
9685compiler.
9686
9687This topic is way beyond the scope of this manual, and the reader is
9688invited to consult the dedicated literature.
9689
9690
ed2e6384
AD
9691@node Multiple start-symbols
9692@section Multiple start-symbols
9693
9694@display
9695I have several closely related grammars, and I would like to share their
9696implementations. In fact, I could use a single grammar but with
9697multiple entry points.
9698@end display
9699
9700Bison does not support multiple start-symbols, but there is a very
9701simple means to simulate them. If @code{foo} and @code{bar} are the two
9702pseudo start-symbols, then introduce two new tokens, say
9703@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9704real start-symbol:
9705
9706@example
9707%token START_FOO START_BAR;
9708%start start;
9709start: START_FOO foo
9710 | START_BAR bar;
9711@end example
9712
9713These tokens prevents the introduction of new conflicts. As far as the
9714parser goes, that is all that is needed.
9715
9716Now the difficult part is ensuring that the scanner will send these
9717tokens first. If your scanner is hand-written, that should be
9718straightforward. If your scanner is generated by Lex, them there is
9719simple means to do it: recall that anything between @samp{%@{ ... %@}}
9720after the first @code{%%} is copied verbatim in the top of the generated
9721@code{yylex} function. Make sure a variable @code{start_token} is
9722available in the scanner (e.g., a global variable or using
9723@code{%lex-param} etc.), and use the following:
9724
9725@example
9726 /* @r{Prologue.} */
9727%%
9728%@{
9729 if (start_token)
9730 @{
9731 int t = start_token;
9732 start_token = 0;
9733 return t;
9734 @}
9735%@}
9736 /* @r{The rules.} */
9737@end example
9738
9739
55ba27be
AD
9740@node Secure? Conform?
9741@section Secure? Conform?
9742
9743@display
9744Is Bison secure? Does it conform to POSIX?
9745@end display
9746
9747If you're looking for a guarantee or certification, we don't provide it.
9748However, Bison is intended to be a reliable program that conforms to the
9749@acronym{POSIX} specification for Yacc. If you run into problems,
9750please send us a bug report.
9751
9752@node I can't build Bison
9753@section I can't build Bison
9754
9755@display
8c5b881d
PE
9756I can't build Bison because @command{make} complains that
9757@code{msgfmt} is not found.
55ba27be
AD
9758What should I do?
9759@end display
9760
9761Like most GNU packages with internationalization support, that feature
9762is turned on by default. If you have problems building in the @file{po}
9763subdirectory, it indicates that your system's internationalization
9764support is lacking. You can re-configure Bison with
9765@option{--disable-nls} to turn off this support, or you can install GNU
9766gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9767Bison. See the file @file{ABOUT-NLS} for more information.
9768
9769
9770@node Where can I find help?
9771@section Where can I find help?
9772
9773@display
9774I'm having trouble using Bison. Where can I find help?
9775@end display
9776
9777First, read this fine manual. Beyond that, you can send mail to
9778@email{help-bison@@gnu.org}. This mailing list is intended to be
9779populated with people who are willing to answer questions about using
9780and installing Bison. Please keep in mind that (most of) the people on
9781the list have aspects of their lives which are not related to Bison (!),
9782so you may not receive an answer to your question right away. This can
9783be frustrating, but please try not to honk them off; remember that any
9784help they provide is purely voluntary and out of the kindness of their
9785hearts.
9786
9787@node Bug Reports
9788@section Bug Reports
9789
9790@display
9791I found a bug. What should I include in the bug report?
9792@end display
9793
9794Before you send a bug report, make sure you are using the latest
9795version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9796mirrors. Be sure to include the version number in your bug report. If
9797the bug is present in the latest version but not in a previous version,
9798try to determine the most recent version which did not contain the bug.
9799
9800If the bug is parser-related, you should include the smallest grammar
9801you can which demonstrates the bug. The grammar file should also be
9802complete (i.e., I should be able to run it through Bison without having
9803to edit or add anything). The smaller and simpler the grammar, the
9804easier it will be to fix the bug.
9805
9806Include information about your compilation environment, including your
9807operating system's name and version and your compiler's name and
9808version. If you have trouble compiling, you should also include a
9809transcript of the build session, starting with the invocation of
9810`configure'. Depending on the nature of the bug, you may be asked to
9811send additional files as well (such as `config.h' or `config.cache').
9812
9813Patches are most welcome, but not required. That is, do not hesitate to
9814send a bug report just because you can not provide a fix.
9815
9816Send bug reports to @email{bug-bison@@gnu.org}.
9817
8405b70c
PB
9818@node More Languages
9819@section More Languages
55ba27be
AD
9820
9821@display
8405b70c 9822Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9823favorite language here}?
9824@end display
9825
8405b70c 9826C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9827languages; contributions are welcome.
9828
9829@node Beta Testing
9830@section Beta Testing
9831
9832@display
9833What is involved in being a beta tester?
9834@end display
9835
9836It's not terribly involved. Basically, you would download a test
9837release, compile it, and use it to build and run a parser or two. After
9838that, you would submit either a bug report or a message saying that
9839everything is okay. It is important to report successes as well as
9840failures because test releases eventually become mainstream releases,
9841but only if they are adequately tested. If no one tests, development is
9842essentially halted.
9843
9844Beta testers are particularly needed for operating systems to which the
9845developers do not have easy access. They currently have easy access to
9846recent GNU/Linux and Solaris versions. Reports about other operating
9847systems are especially welcome.
9848
9849@node Mailing Lists
9850@section Mailing Lists
9851
9852@display
9853How do I join the help-bison and bug-bison mailing lists?
9854@end display
9855
9856See @url{http://lists.gnu.org/}.
a06ea4aa 9857
d1a1114f
AD
9858@c ================================================= Table of Symbols
9859
342b8b6e 9860@node Table of Symbols
bfa74976
RS
9861@appendix Bison Symbols
9862@cindex Bison symbols, table of
9863@cindex symbols in Bison, table of
9864
18b519c0 9865@deffn {Variable} @@$
3ded9a63 9866In an action, the location of the left-hand side of the rule.
88bce5a2 9867@xref{Locations, , Locations Overview}.
18b519c0 9868@end deffn
3ded9a63 9869
18b519c0 9870@deffn {Variable} @@@var{n}
3ded9a63
AD
9871In an action, the location of the @var{n}-th symbol of the right-hand
9872side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9873@end deffn
3ded9a63 9874
18b519c0 9875@deffn {Variable} $$
3ded9a63
AD
9876In an action, the semantic value of the left-hand side of the rule.
9877@xref{Actions}.
18b519c0 9878@end deffn
3ded9a63 9879
18b519c0 9880@deffn {Variable} $@var{n}
3ded9a63
AD
9881In an action, the semantic value of the @var{n}-th symbol of the
9882right-hand side of the rule. @xref{Actions}.
18b519c0 9883@end deffn
3ded9a63 9884
dd8d9022
AD
9885@deffn {Delimiter} %%
9886Delimiter used to separate the grammar rule section from the
9887Bison declarations section or the epilogue.
9888@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9889@end deffn
bfa74976 9890
dd8d9022
AD
9891@c Don't insert spaces, or check the DVI output.
9892@deffn {Delimiter} %@{@var{code}%@}
9893All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9894the output file uninterpreted. Such code forms the prologue of the input
9895file. @xref{Grammar Outline, ,Outline of a Bison
9896Grammar}.
18b519c0 9897@end deffn
bfa74976 9898
dd8d9022
AD
9899@deffn {Construct} /*@dots{}*/
9900Comment delimiters, as in C.
18b519c0 9901@end deffn
bfa74976 9902
dd8d9022
AD
9903@deffn {Delimiter} :
9904Separates a rule's result from its components. @xref{Rules, ,Syntax of
9905Grammar Rules}.
18b519c0 9906@end deffn
bfa74976 9907
dd8d9022
AD
9908@deffn {Delimiter} ;
9909Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9910@end deffn
bfa74976 9911
dd8d9022
AD
9912@deffn {Delimiter} |
9913Separates alternate rules for the same result nonterminal.
9914@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9915@end deffn
bfa74976 9916
12e35840
JD
9917@deffn {Directive} <*>
9918Used to define a default tagged @code{%destructor} or default tagged
9919@code{%printer}.
85894313
JD
9920
9921This feature is experimental.
9922More user feedback will help to determine whether it should become a permanent
9923feature.
9924
12e35840
JD
9925@xref{Destructor Decl, , Freeing Discarded Symbols}.
9926@end deffn
9927
3ebecc24 9928@deffn {Directive} <>
12e35840
JD
9929Used to define a default tagless @code{%destructor} or default tagless
9930@code{%printer}.
85894313
JD
9931
9932This feature is experimental.
9933More user feedback will help to determine whether it should become a permanent
9934feature.
9935
12e35840
JD
9936@xref{Destructor Decl, , Freeing Discarded Symbols}.
9937@end deffn
9938
dd8d9022
AD
9939@deffn {Symbol} $accept
9940The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9941$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9942Start-Symbol}. It cannot be used in the grammar.
18b519c0 9943@end deffn
bfa74976 9944
136a0f76 9945@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9946@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9947Insert @var{code} verbatim into output parser source.
9948@xref{Decl Summary,,%code}.
9bc0dd67 9949@end deffn
9bc0dd67 9950
18b519c0 9951@deffn {Directive} %debug
6deb4447 9952Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9953@end deffn
6deb4447 9954
91d2c560 9955@ifset defaultprec
22fccf95
PE
9956@deffn {Directive} %default-prec
9957Assign a precedence to rules that lack an explicit @samp{%prec}
9958modifier. @xref{Contextual Precedence, ,Context-Dependent
9959Precedence}.
39a06c25 9960@end deffn
91d2c560 9961@end ifset
39a06c25 9962
148d66d8
JD
9963@deffn {Directive} %define @var{define-variable}
9964@deffnx {Directive} %define @var{define-variable} @var{value}
9965Define a variable to adjust Bison's behavior.
9966@xref{Decl Summary,,%define}.
9967@end deffn
9968
18b519c0 9969@deffn {Directive} %defines
6deb4447
AD
9970Bison declaration to create a header file meant for the scanner.
9971@xref{Decl Summary}.
18b519c0 9972@end deffn
6deb4447 9973
02975b9a
JD
9974@deffn {Directive} %defines @var{defines-file}
9975Same as above, but save in the file @var{defines-file}.
9976@xref{Decl Summary}.
9977@end deffn
9978
18b519c0 9979@deffn {Directive} %destructor
258b75ca 9980Specify how the parser should reclaim the memory associated to
fa7e68c3 9981discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9982@end deffn
72f889cc 9983
18b519c0 9984@deffn {Directive} %dprec
676385e2 9985Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9986time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9987@acronym{GLR} Parsers}.
18b519c0 9988@end deffn
676385e2 9989
dd8d9022
AD
9990@deffn {Symbol} $end
9991The predefined token marking the end of the token stream. It cannot be
9992used in the grammar.
9993@end deffn
9994
9995@deffn {Symbol} error
9996A token name reserved for error recovery. This token may be used in
9997grammar rules so as to allow the Bison parser to recognize an error in
9998the grammar without halting the process. In effect, a sentence
9999containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10000token @code{error} becomes the current lookahead token. Actions
10001corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10002token is reset to the token that originally caused the violation.
10003@xref{Error Recovery}.
18d192f0
AD
10004@end deffn
10005
18b519c0 10006@deffn {Directive} %error-verbose
2a8d363a
AD
10007Bison declaration to request verbose, specific error message strings
10008when @code{yyerror} is called.
18b519c0 10009@end deffn
2a8d363a 10010
02975b9a 10011@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10012Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10013Summary}.
18b519c0 10014@end deffn
d8988b2f 10015
18b519c0 10016@deffn {Directive} %glr-parser
c827f760
PE
10017Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10018Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10019@end deffn
676385e2 10020
dd8d9022
AD
10021@deffn {Directive} %initial-action
10022Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10023@end deffn
10024
e6e704dc
JD
10025@deffn {Directive} %language
10026Specify the programming language for the generated parser.
10027@xref{Decl Summary}.
10028@end deffn
10029
18b519c0 10030@deffn {Directive} %left
bfa74976
RS
10031Bison declaration to assign left associativity to token(s).
10032@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10033@end deffn
bfa74976 10034
feeb0eda 10035@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10036Bison declaration to specifying an additional parameter that
10037@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10038for Pure Parsers}.
18b519c0 10039@end deffn
2a8d363a 10040
18b519c0 10041@deffn {Directive} %merge
676385e2 10042Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10043reduce/reduce conflict with a rule having the same merging function, the
676385e2 10044function is applied to the two semantic values to get a single result.
c827f760 10045@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10046@end deffn
676385e2 10047
02975b9a 10048@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10049Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10050@end deffn
d8988b2f 10051
91d2c560 10052@ifset defaultprec
22fccf95
PE
10053@deffn {Directive} %no-default-prec
10054Do not assign a precedence to rules that lack an explicit @samp{%prec}
10055modifier. @xref{Contextual Precedence, ,Context-Dependent
10056Precedence}.
10057@end deffn
91d2c560 10058@end ifset
22fccf95 10059
18b519c0 10060@deffn {Directive} %no-lines
931c7513
RS
10061Bison declaration to avoid generating @code{#line} directives in the
10062parser file. @xref{Decl Summary}.
18b519c0 10063@end deffn
931c7513 10064
18b519c0 10065@deffn {Directive} %nonassoc
9d9b8b70 10066Bison declaration to assign nonassociativity to token(s).
bfa74976 10067@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10068@end deffn
bfa74976 10069
02975b9a 10070@deffn {Directive} %output "@var{file}"
72d2299c 10071Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10072Summary}.
18b519c0 10073@end deffn
d8988b2f 10074
feeb0eda 10075@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10076Bison declaration to specifying an additional parameter that
10077@code{yyparse} should accept. @xref{Parser Function,, The Parser
10078Function @code{yyparse}}.
18b519c0 10079@end deffn
2a8d363a 10080
18b519c0 10081@deffn {Directive} %prec
bfa74976
RS
10082Bison declaration to assign a precedence to a specific rule.
10083@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10084@end deffn
bfa74976 10085
18b519c0 10086@deffn {Directive} %pure-parser
d9df47b6
JD
10087Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10088for which Bison is more careful to warn about unreasonable usage.
18b519c0 10089@end deffn
bfa74976 10090
b50d2359 10091@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10092Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10093Require a Version of Bison}.
b50d2359
AD
10094@end deffn
10095
18b519c0 10096@deffn {Directive} %right
bfa74976
RS
10097Bison declaration to assign right associativity to token(s).
10098@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10099@end deffn
bfa74976 10100
e6e704dc
JD
10101@deffn {Directive} %skeleton
10102Specify the skeleton to use; usually for development.
10103@xref{Decl Summary}.
10104@end deffn
10105
18b519c0 10106@deffn {Directive} %start
704a47c4
AD
10107Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10108Start-Symbol}.
18b519c0 10109@end deffn
bfa74976 10110
18b519c0 10111@deffn {Directive} %token
bfa74976
RS
10112Bison declaration to declare token(s) without specifying precedence.
10113@xref{Token Decl, ,Token Type Names}.
18b519c0 10114@end deffn
bfa74976 10115
18b519c0 10116@deffn {Directive} %token-table
931c7513
RS
10117Bison declaration to include a token name table in the parser file.
10118@xref{Decl Summary}.
18b519c0 10119@end deffn
931c7513 10120
18b519c0 10121@deffn {Directive} %type
704a47c4
AD
10122Bison declaration to declare nonterminals. @xref{Type Decl,
10123,Nonterminal Symbols}.
18b519c0 10124@end deffn
bfa74976 10125
dd8d9022
AD
10126@deffn {Symbol} $undefined
10127The predefined token onto which all undefined values returned by
10128@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10129@code{error}.
10130@end deffn
10131
18b519c0 10132@deffn {Directive} %union
bfa74976
RS
10133Bison declaration to specify several possible data types for semantic
10134values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10135@end deffn
bfa74976 10136
dd8d9022
AD
10137@deffn {Macro} YYABORT
10138Macro to pretend that an unrecoverable syntax error has occurred, by
10139making @code{yyparse} return 1 immediately. The error reporting
10140function @code{yyerror} is not called. @xref{Parser Function, ,The
10141Parser Function @code{yyparse}}.
8405b70c
PB
10142
10143For Java parsers, this functionality is invoked using @code{return YYABORT;}
10144instead.
dd8d9022 10145@end deffn
3ded9a63 10146
dd8d9022
AD
10147@deffn {Macro} YYACCEPT
10148Macro to pretend that a complete utterance of the language has been
10149read, by making @code{yyparse} return 0 immediately.
10150@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10151
10152For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10153instead.
dd8d9022 10154@end deffn
bfa74976 10155
dd8d9022 10156@deffn {Macro} YYBACKUP
742e4900 10157Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10158token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10159@end deffn
bfa74976 10160
dd8d9022 10161@deffn {Variable} yychar
32c29292 10162External integer variable that contains the integer value of the
742e4900 10163lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10164@code{yyparse}.) Error-recovery rule actions may examine this variable.
10165@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10166@end deffn
bfa74976 10167
dd8d9022
AD
10168@deffn {Variable} yyclearin
10169Macro used in error-recovery rule actions. It clears the previous
742e4900 10170lookahead token. @xref{Error Recovery}.
18b519c0 10171@end deffn
bfa74976 10172
dd8d9022
AD
10173@deffn {Macro} YYDEBUG
10174Macro to define to equip the parser with tracing code. @xref{Tracing,
10175,Tracing Your Parser}.
18b519c0 10176@end deffn
bfa74976 10177
dd8d9022
AD
10178@deffn {Variable} yydebug
10179External integer variable set to zero by default. If @code{yydebug}
10180is given a nonzero value, the parser will output information on input
10181symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10182@end deffn
bfa74976 10183
dd8d9022
AD
10184@deffn {Macro} yyerrok
10185Macro to cause parser to recover immediately to its normal mode
10186after a syntax error. @xref{Error Recovery}.
10187@end deffn
10188
10189@deffn {Macro} YYERROR
10190Macro to pretend that a syntax error has just been detected: call
10191@code{yyerror} and then perform normal error recovery if possible
10192(@pxref{Error Recovery}), or (if recovery is impossible) make
10193@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10194
10195For Java parsers, this functionality is invoked using @code{return YYERROR;}
10196instead.
dd8d9022
AD
10197@end deffn
10198
10199@deffn {Function} yyerror
10200User-supplied function to be called by @code{yyparse} on error.
10201@xref{Error Reporting, ,The Error
10202Reporting Function @code{yyerror}}.
10203@end deffn
10204
10205@deffn {Macro} YYERROR_VERBOSE
10206An obsolete macro that you define with @code{#define} in the prologue
10207to request verbose, specific error message strings
10208when @code{yyerror} is called. It doesn't matter what definition you
10209use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10210@code{%error-verbose} is preferred.
10211@end deffn
10212
10213@deffn {Macro} YYINITDEPTH
10214Macro for specifying the initial size of the parser stack.
1a059451 10215@xref{Memory Management}.
dd8d9022
AD
10216@end deffn
10217
10218@deffn {Function} yylex
10219User-supplied lexical analyzer function, called with no arguments to get
10220the next token. @xref{Lexical, ,The Lexical Analyzer Function
10221@code{yylex}}.
10222@end deffn
10223
10224@deffn {Macro} YYLEX_PARAM
10225An obsolete macro for specifying an extra argument (or list of extra
32c29292 10226arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10227macro is deprecated, and is supported only for Yacc like parsers.
10228@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10229@end deffn
10230
10231@deffn {Variable} yylloc
10232External variable in which @code{yylex} should place the line and column
10233numbers associated with a token. (In a pure parser, it is a local
10234variable within @code{yyparse}, and its address is passed to
32c29292
JD
10235@code{yylex}.)
10236You can ignore this variable if you don't use the @samp{@@} feature in the
10237grammar actions.
10238@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10239In semantic actions, it stores the location of the lookahead token.
32c29292 10240@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10241@end deffn
10242
10243@deffn {Type} YYLTYPE
10244Data type of @code{yylloc}; by default, a structure with four
10245members. @xref{Location Type, , Data Types of Locations}.
10246@end deffn
10247
10248@deffn {Variable} yylval
10249External variable in which @code{yylex} should place the semantic
10250value associated with a token. (In a pure parser, it is a local
10251variable within @code{yyparse}, and its address is passed to
32c29292
JD
10252@code{yylex}.)
10253@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10254In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10255@xref{Actions, ,Actions}.
dd8d9022
AD
10256@end deffn
10257
10258@deffn {Macro} YYMAXDEPTH
1a059451
PE
10259Macro for specifying the maximum size of the parser stack. @xref{Memory
10260Management}.
dd8d9022
AD
10261@end deffn
10262
10263@deffn {Variable} yynerrs
8a2800e7 10264Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10265(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10266pure push parser, it is a member of yypstate.)
dd8d9022
AD
10267@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10268@end deffn
10269
10270@deffn {Function} yyparse
10271The parser function produced by Bison; call this function to start
10272parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10273@end deffn
10274
9987d1b3 10275@deffn {Function} yypstate_delete
f4101aa6 10276The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10277call this function to delete the memory associated with a parser.
f4101aa6 10278@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10279@code{yypstate_delete}}.
59da312b
JD
10280(The current push parsing interface is experimental and may evolve.
10281More user feedback will help to stabilize it.)
9987d1b3
JD
10282@end deffn
10283
10284@deffn {Function} yypstate_new
f4101aa6 10285The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10286call this function to create a new parser.
f4101aa6 10287@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10288@code{yypstate_new}}.
59da312b
JD
10289(The current push parsing interface is experimental and may evolve.
10290More user feedback will help to stabilize it.)
9987d1b3
JD
10291@end deffn
10292
10293@deffn {Function} yypull_parse
f4101aa6
AD
10294The parser function produced by Bison in push mode; call this function to
10295parse the rest of the input stream.
10296@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10297@code{yypull_parse}}.
59da312b
JD
10298(The current push parsing interface is experimental and may evolve.
10299More user feedback will help to stabilize it.)
9987d1b3
JD
10300@end deffn
10301
10302@deffn {Function} yypush_parse
f4101aa6
AD
10303The parser function produced by Bison in push mode; call this function to
10304parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10305@code{yypush_parse}}.
59da312b
JD
10306(The current push parsing interface is experimental and may evolve.
10307More user feedback will help to stabilize it.)
9987d1b3
JD
10308@end deffn
10309
dd8d9022
AD
10310@deffn {Macro} YYPARSE_PARAM
10311An obsolete macro for specifying the name of a parameter that
10312@code{yyparse} should accept. The use of this macro is deprecated, and
10313is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10314Conventions for Pure Parsers}.
10315@end deffn
10316
10317@deffn {Macro} YYRECOVERING
02103984
PE
10318The expression @code{YYRECOVERING ()} yields 1 when the parser
10319is recovering from a syntax error, and 0 otherwise.
10320@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10321@end deffn
10322
10323@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10324Macro used to control the use of @code{alloca} when the
10325deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10326the parser will use @code{malloc} to extend its stacks. If defined to
103271, the parser will use @code{alloca}. Values other than 0 and 1 are
10328reserved for future Bison extensions. If not defined,
10329@code{YYSTACK_USE_ALLOCA} defaults to 0.
10330
55289366 10331In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10332limited stack and with unreliable stack-overflow checking, you should
10333set @code{YYMAXDEPTH} to a value that cannot possibly result in
10334unchecked stack overflow on any of your target hosts when
10335@code{alloca} is called. You can inspect the code that Bison
10336generates in order to determine the proper numeric values. This will
10337require some expertise in low-level implementation details.
dd8d9022
AD
10338@end deffn
10339
10340@deffn {Type} YYSTYPE
10341Data type of semantic values; @code{int} by default.
10342@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10343@end deffn
bfa74976 10344
342b8b6e 10345@node Glossary
bfa74976
RS
10346@appendix Glossary
10347@cindex glossary
10348
10349@table @asis
34a6c2d1
JD
10350@item Accepting State
10351A state whose only action is the accept action.
10352The accepting state is thus a consistent state.
10353@xref{Understanding,,}.
10354
c827f760
PE
10355@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10356Formal method of specifying context-free grammars originally proposed
10357by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10358committee document contributing to what became the Algol 60 report.
10359@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10360
34a6c2d1
JD
10361@item Consistent State
10362A state containing only one possible action.
1d0f55cc 10363@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10364
bfa74976
RS
10365@item Context-free grammars
10366Grammars specified as rules that can be applied regardless of context.
10367Thus, if there is a rule which says that an integer can be used as an
10368expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10369permitted. @xref{Language and Grammar, ,Languages and Context-Free
10370Grammars}.
bfa74976 10371
620b5727
JD
10372@item Default Reduction
10373The reduction that a parser should perform if the current parser state
34a6c2d1 10374contains no other action for the lookahead token.
620b5727
JD
10375In permitted parser states, Bison declares the reduction with the
10376largest lookahead set to be the default reduction and removes that
10377lookahead set.
1d0f55cc 10378@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10379
bfa74976
RS
10380@item Dynamic allocation
10381Allocation of memory that occurs during execution, rather than at
10382compile time or on entry to a function.
10383
10384@item Empty string
10385Analogous to the empty set in set theory, the empty string is a
10386character string of length zero.
10387
10388@item Finite-state stack machine
10389A ``machine'' that has discrete states in which it is said to exist at
10390each instant in time. As input to the machine is processed, the
10391machine moves from state to state as specified by the logic of the
10392machine. In the case of the parser, the input is the language being
10393parsed, and the states correspond to various stages in the grammar
c827f760 10394rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10395
c827f760 10396@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10397A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10398that are not @acronym{LR}(1). It resolves situations that Bison's
10399deterministic parsing
676385e2
PH
10400algorithm cannot by effectively splitting off multiple parsers, trying all
10401possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10402right context. @xref{Generalized LR Parsing, ,Generalized
10403@acronym{LR} Parsing}.
676385e2 10404
bfa74976
RS
10405@item Grouping
10406A language construct that is (in general) grammatically divisible;
c827f760 10407for example, `expression' or `declaration' in C@.
bfa74976
RS
10408@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10409
34a6c2d1
JD
10410@item @acronym{IELR}(1)
10411A minimal @acronym{LR}(1) parser table generation algorithm.
10412That is, given any context-free grammar, @acronym{IELR}(1) generates
10413parser tables with the full language recognition power of canonical
10414@acronym{LR}(1) but with nearly the same number of parser states as
10415@acronym{LALR}(1).
10416This reduction in parser states is often an order of magnitude.
10417More importantly, because canonical @acronym{LR}(1)'s extra parser
10418states may contain duplicate conflicts in the case of
10419non-@acronym{LR}(1) grammars, the number of conflicts for
10420@acronym{IELR}(1) is often an order of magnitude less as well.
10421This can significantly reduce the complexity of developing of a grammar.
10422@xref{Decl Summary,,lr.type}.
10423
bfa74976
RS
10424@item Infix operator
10425An arithmetic operator that is placed between the operands on which it
10426performs some operation.
10427
10428@item Input stream
10429A continuous flow of data between devices or programs.
10430
10431@item Language construct
10432One of the typical usage schemas of the language. For example, one of
10433the constructs of the C language is the @code{if} statement.
10434@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10435
10436@item Left associativity
10437Operators having left associativity are analyzed from left to right:
10438@samp{a+b+c} first computes @samp{a+b} and then combines with
10439@samp{c}. @xref{Precedence, ,Operator Precedence}.
10440
10441@item Left recursion
89cab50d
AD
10442A rule whose result symbol is also its first component symbol; for
10443example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10444Rules}.
bfa74976
RS
10445
10446@item Left-to-right parsing
10447Parsing a sentence of a language by analyzing it token by token from
c827f760 10448left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10449
10450@item Lexical analyzer (scanner)
10451A function that reads an input stream and returns tokens one by one.
10452@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10453
10454@item Lexical tie-in
10455A flag, set by actions in the grammar rules, which alters the way
10456tokens are parsed. @xref{Lexical Tie-ins}.
10457
931c7513 10458@item Literal string token
14ded682 10459A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10460
742e4900
JD
10461@item Lookahead token
10462A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10463Tokens}.
bfa74976 10464
c827f760 10465@item @acronym{LALR}(1)
bfa74976 10466The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10467generators) can handle by default; a subset of @acronym{LR}(1).
10468@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10469
c827f760 10470@item @acronym{LR}(1)
bfa74976 10471The class of context-free grammars in which at most one token of
742e4900 10472lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10473
10474@item Nonterminal symbol
10475A grammar symbol standing for a grammatical construct that can
10476be expressed through rules in terms of smaller constructs; in other
10477words, a construct that is not a token. @xref{Symbols}.
10478
bfa74976
RS
10479@item Parser
10480A function that recognizes valid sentences of a language by analyzing
10481the syntax structure of a set of tokens passed to it from a lexical
10482analyzer.
10483
10484@item Postfix operator
10485An arithmetic operator that is placed after the operands upon which it
10486performs some operation.
10487
10488@item Reduction
10489Replacing a string of nonterminals and/or terminals with a single
89cab50d 10490nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10491Parser Algorithm}.
bfa74976
RS
10492
10493@item Reentrant
10494A reentrant subprogram is a subprogram which can be in invoked any
10495number of times in parallel, without interference between the various
10496invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10497
10498@item Reverse polish notation
10499A language in which all operators are postfix operators.
10500
10501@item Right recursion
89cab50d
AD
10502A rule whose result symbol is also its last component symbol; for
10503example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10504Rules}.
bfa74976
RS
10505
10506@item Semantics
10507In computer languages, the semantics are specified by the actions
10508taken for each instance of the language, i.e., the meaning of
10509each statement. @xref{Semantics, ,Defining Language Semantics}.
10510
10511@item Shift
10512A parser is said to shift when it makes the choice of analyzing
10513further input from the stream rather than reducing immediately some
c827f760 10514already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10515
10516@item Single-character literal
10517A single character that is recognized and interpreted as is.
10518@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10519
10520@item Start symbol
10521The nonterminal symbol that stands for a complete valid utterance in
10522the language being parsed. The start symbol is usually listed as the
13863333 10523first nonterminal symbol in a language specification.
bfa74976
RS
10524@xref{Start Decl, ,The Start-Symbol}.
10525
10526@item Symbol table
10527A data structure where symbol names and associated data are stored
10528during parsing to allow for recognition and use of existing
10529information in repeated uses of a symbol. @xref{Multi-function Calc}.
10530
6e649e65
PE
10531@item Syntax error
10532An error encountered during parsing of an input stream due to invalid
10533syntax. @xref{Error Recovery}.
10534
bfa74976
RS
10535@item Token
10536A basic, grammatically indivisible unit of a language. The symbol
10537that describes a token in the grammar is a terminal symbol.
10538The input of the Bison parser is a stream of tokens which comes from
10539the lexical analyzer. @xref{Symbols}.
10540
10541@item Terminal symbol
89cab50d
AD
10542A grammar symbol that has no rules in the grammar and therefore is
10543grammatically indivisible. The piece of text it represents is a token.
10544@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10545@end table
10546
342b8b6e 10547@node Copying This Manual
f2b5126e 10548@appendix Copying This Manual
f2b5126e
PB
10549@include fdl.texi
10550
342b8b6e 10551@node Index
bfa74976
RS
10552@unnumbered Index
10553
10554@printindex cp
10555
bfa74976 10556@bye
a06ea4aa
AD
10557
10558@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10559@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10560@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10561@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10562@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10563@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10564@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10565@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10566@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10567@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10568@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10569@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10570@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10571@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10572@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10573@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10574@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10575@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10576@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10577@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10578@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10579@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10580@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10581@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10582@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10583@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10584@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10585@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
34a6c2d1 10586@c LocalWords: YYSTACK DVI fdl printindex IELR