]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
yysyntax_error: fix for consistent error with lookahead.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
7d424de1
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
804e83b2 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 140* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f5f419de 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
d013372c 210* Named References:: Using named references in actions.
bfa74976 211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976
RS
231* Decl Summary:: Table of all Bison declarations.
232
233Parser C-Language Interface
234
f5f419de
DJ
235* Parser Function:: How to call @code{yyparse} and what it returns.
236* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
237* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
238* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
239* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
240* Lexical:: You must supply a function @code{yylex}
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244* Internationalization:: How to let the parser speak in the user's
245 native language.
bfa74976
RS
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
252* Token Locations:: How @code{yylex} must return the text location
253 (line number, etc.) of the token, if the
254 actions want that.
255* Pure Calling:: How the calling convention differs in a pure parser
256 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 257
13863333 258The Bison Parser Algorithm
bfa74976 259
742e4900 260* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
273* Using Precedence:: How to specify precedence and associativity.
274* Precedence Only:: How to specify precedence only.
bfa74976
RS
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f5f419de
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f5f419de
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
337* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f5f419de 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
9dc3ee6d
JD
357annotated context-free grammar into a deterministic @acronym{LR} or
358generalized @acronym{LR} (@acronym{GLR}) parser employing
359@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
360parser tables.
eb45ef3b
JD
361Once you are proficient with Bison, you can use it to develop a wide
362range of language parsers, from those used in simple desk calculators to
363complex programming languages.
bfa74976
RS
364
365Bison is upward compatible with Yacc: all properly-written Yacc grammars
366ought to work with Bison with no change. Anyone familiar with Yacc
367should be able to use Bison with little trouble. You need to be fluent in
1e137b71 368C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
369
370We begin with tutorial chapters that explain the basic concepts of using
371Bison and show three explained examples, each building on the last. If you
372don't know Bison or Yacc, start by reading these chapters. Reference
373chapters follow which describe specific aspects of Bison in detail.
374
931c7513
RS
375Bison was written primarily by Robert Corbett; Richard Stallman made it
376Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 377multi-character string literals and other features.
931c7513 378
df1af54c 379This edition corresponds to version @value{VERSION} of Bison.
bfa74976 380
342b8b6e 381@node Conditions
bfa74976
RS
382@unnumbered Conditions for Using Bison
383
193d7c70
PE
384The distribution terms for Bison-generated parsers permit using the
385parsers in nonfree programs. Before Bison version 2.2, these extra
386permissions applied only when Bison was generating @acronym{LALR}(1)
387parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 388parsers could be used only in programs that were free software.
a31239f1 389
c827f760
PE
390The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
391compiler, have never
9ecbd125 392had such a requirement. They could always be used for nonfree
a31239f1
RS
393software. The reason Bison was different was not due to a special
394policy decision; it resulted from applying the usual General Public
395License to all of the Bison source code.
396
397The output of the Bison utility---the Bison parser file---contains a
398verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
399parser's implementation. (The actions from your grammar are inserted
400into this implementation at one point, but most of the rest of the
401implementation is not changed.) When we applied the @acronym{GPL}
402terms to the skeleton code for the parser's implementation,
a31239f1
RS
403the effect was to restrict the use of Bison output to free software.
404
405We didn't change the terms because of sympathy for people who want to
406make software proprietary. @strong{Software should be free.} But we
407concluded that limiting Bison's use to free software was doing little to
408encourage people to make other software free. So we decided to make the
409practical conditions for using Bison match the practical conditions for
c827f760 410using the other @acronym{GNU} tools.
bfa74976 411
193d7c70
PE
412This exception applies when Bison is generating code for a parser.
413You can tell whether the exception applies to a Bison output file by
414inspecting the file for text beginning with ``As a special
415exception@dots{}''. The text spells out the exact terms of the
416exception.
262aa8dd 417
f16b0819
PE
418@node Copying
419@unnumbered GNU GENERAL PUBLIC LICENSE
420@include gpl-3.0.texi
bfa74976 421
342b8b6e 422@node Concepts
bfa74976
RS
423@chapter The Concepts of Bison
424
425This chapter introduces many of the basic concepts without which the
426details of Bison will not make sense. If you do not already know how to
427use Bison or Yacc, we suggest you start by reading this chapter carefully.
428
429@menu
f5f419de
DJ
430* Language and Grammar:: Languages and context-free grammars,
431 as mathematical ideas.
432* Grammar in Bison:: How we represent grammars for Bison's sake.
433* Semantic Values:: Each token or syntactic grouping can have
434 a semantic value (the value of an integer,
435 the name of an identifier, etc.).
436* Semantic Actions:: Each rule can have an action containing C code.
437* GLR Parsers:: Writing parsers for general context-free languages.
438* Locations Overview:: Tracking Locations.
439* Bison Parser:: What are Bison's input and output,
440 how is the output used?
441* Stages:: Stages in writing and running Bison grammars.
442* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
443@end menu
444
342b8b6e 445@node Language and Grammar
bfa74976
RS
446@section Languages and Context-Free Grammars
447
bfa74976
RS
448@cindex context-free grammar
449@cindex grammar, context-free
450In order for Bison to parse a language, it must be described by a
451@dfn{context-free grammar}. This means that you specify one or more
452@dfn{syntactic groupings} and give rules for constructing them from their
453parts. For example, in the C language, one kind of grouping is called an
454`expression'. One rule for making an expression might be, ``An expression
455can be made of a minus sign and another expression''. Another would be,
456``An expression can be an integer''. As you can see, rules are often
457recursive, but there must be at least one rule which leads out of the
458recursion.
459
c827f760 460@cindex @acronym{BNF}
bfa74976
RS
461@cindex Backus-Naur form
462The most common formal system for presenting such rules for humans to read
c827f760
PE
463is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
464order to specify the language Algol 60. Any grammar expressed in
465@acronym{BNF} is a context-free grammar. The input to Bison is
466essentially machine-readable @acronym{BNF}.
bfa74976 467
c827f760 468@cindex @acronym{LALR}(1) grammars
eb45ef3b 469@cindex @acronym{IELR}(1) grammars
c827f760 470@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
471There are various important subclasses of context-free grammars.
472Although it can handle almost all context-free grammars, Bison is
473optimized for what are called @acronym{LR}(1) grammars.
474In brief, in these grammars, it must be possible to tell how to parse
475any portion of an input string with just a single token of lookahead.
476For historical reasons, Bison by default is limited by the additional
477restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
478@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
479more information on this.
eb45ef3b
JD
480To escape these additional restrictions, you can request
481@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
482@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 483
c827f760
PE
484@cindex @acronym{GLR} parsing
485@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 486@cindex ambiguous grammars
9d9b8b70 487@cindex nondeterministic parsing
9501dc6e 488
eb45ef3b 489Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
490roughly that the next grammar rule to apply at any point in the input is
491uniquely determined by the preceding input and a fixed, finite portion
742e4900 492(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 493grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 494apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 495grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 496lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
497With the proper declarations, Bison is also able to parse these more
498general context-free grammars, using a technique known as @acronym{GLR}
499parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
500are able to handle any context-free grammar for which the number of
501possible parses of any given string is finite.
676385e2 502
bfa74976
RS
503@cindex symbols (abstract)
504@cindex token
505@cindex syntactic grouping
506@cindex grouping, syntactic
9501dc6e
AD
507In the formal grammatical rules for a language, each kind of syntactic
508unit or grouping is named by a @dfn{symbol}. Those which are built by
509grouping smaller constructs according to grammatical rules are called
bfa74976
RS
510@dfn{nonterminal symbols}; those which can't be subdivided are called
511@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
512corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 513corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
514
515We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
516nonterminal, mean. The tokens of C are identifiers, constants (numeric
517and string), and the various keywords, arithmetic operators and
518punctuation marks. So the terminal symbols of a grammar for C include
519`identifier', `number', `string', plus one symbol for each keyword,
520operator or punctuation mark: `if', `return', `const', `static', `int',
521`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
522(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
523lexicography, not grammar.)
524
525Here is a simple C function subdivided into tokens:
526
9edcd895
AD
527@ifinfo
528@example
529int /* @r{keyword `int'} */
14d4662b 530square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
531 @r{identifier, close-paren} */
532@{ /* @r{open-brace} */
aa08666d
AD
533 return x * x; /* @r{keyword `return', identifier, asterisk,}
534 @r{identifier, semicolon} */
9edcd895
AD
535@} /* @r{close-brace} */
536@end example
537@end ifinfo
538@ifnotinfo
bfa74976
RS
539@example
540int /* @r{keyword `int'} */
14d4662b 541square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 542@{ /* @r{open-brace} */
9edcd895 543 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
544@} /* @r{close-brace} */
545@end example
9edcd895 546@end ifnotinfo
bfa74976
RS
547
548The syntactic groupings of C include the expression, the statement, the
549declaration, and the function definition. These are represented in the
550grammar of C by nonterminal symbols `expression', `statement',
551`declaration' and `function definition'. The full grammar uses dozens of
552additional language constructs, each with its own nonterminal symbol, in
553order to express the meanings of these four. The example above is a
554function definition; it contains one declaration, and one statement. In
555the statement, each @samp{x} is an expression and so is @samp{x * x}.
556
557Each nonterminal symbol must have grammatical rules showing how it is made
558out of simpler constructs. For example, one kind of C statement is the
559@code{return} statement; this would be described with a grammar rule which
560reads informally as follows:
561
562@quotation
563A `statement' can be made of a `return' keyword, an `expression' and a
564`semicolon'.
565@end quotation
566
567@noindent
568There would be many other rules for `statement', one for each kind of
569statement in C.
570
571@cindex start symbol
572One nonterminal symbol must be distinguished as the special one which
573defines a complete utterance in the language. It is called the @dfn{start
574symbol}. In a compiler, this means a complete input program. In the C
575language, the nonterminal symbol `sequence of definitions and declarations'
576plays this role.
577
578For example, @samp{1 + 2} is a valid C expression---a valid part of a C
579program---but it is not valid as an @emph{entire} C program. In the
580context-free grammar of C, this follows from the fact that `expression' is
581not the start symbol.
582
583The Bison parser reads a sequence of tokens as its input, and groups the
584tokens using the grammar rules. If the input is valid, the end result is
585that the entire token sequence reduces to a single grouping whose symbol is
586the grammar's start symbol. If we use a grammar for C, the entire input
587must be a `sequence of definitions and declarations'. If not, the parser
588reports a syntax error.
589
342b8b6e 590@node Grammar in Bison
bfa74976
RS
591@section From Formal Rules to Bison Input
592@cindex Bison grammar
593@cindex grammar, Bison
594@cindex formal grammar
595
596A formal grammar is a mathematical construct. To define the language
597for Bison, you must write a file expressing the grammar in Bison syntax:
598a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
599
600A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 601as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
602in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
603
604The Bison representation for a terminal symbol is also called a @dfn{token
605type}. Token types as well can be represented as C-like identifiers. By
606convention, these identifiers should be upper case to distinguish them from
607nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
608@code{RETURN}. A terminal symbol that stands for a particular keyword in
609the language should be named after that keyword converted to upper case.
610The terminal symbol @code{error} is reserved for error recovery.
931c7513 611@xref{Symbols}.
bfa74976
RS
612
613A terminal symbol can also be represented as a character literal, just like
614a C character constant. You should do this whenever a token is just a
615single character (parenthesis, plus-sign, etc.): use that same character in
616a literal as the terminal symbol for that token.
617
931c7513
RS
618A third way to represent a terminal symbol is with a C string constant
619containing several characters. @xref{Symbols}, for more information.
620
bfa74976
RS
621The grammar rules also have an expression in Bison syntax. For example,
622here is the Bison rule for a C @code{return} statement. The semicolon in
623quotes is a literal character token, representing part of the C syntax for
624the statement; the naked semicolon, and the colon, are Bison punctuation
625used in every rule.
626
627@example
628stmt: RETURN expr ';'
629 ;
630@end example
631
632@noindent
633@xref{Rules, ,Syntax of Grammar Rules}.
634
342b8b6e 635@node Semantic Values
bfa74976
RS
636@section Semantic Values
637@cindex semantic value
638@cindex value, semantic
639
640A formal grammar selects tokens only by their classifications: for example,
641if a rule mentions the terminal symbol `integer constant', it means that
642@emph{any} integer constant is grammatically valid in that position. The
643precise value of the constant is irrelevant to how to parse the input: if
644@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 645grammatical.
bfa74976
RS
646
647But the precise value is very important for what the input means once it is
648parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6493989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
650has both a token type and a @dfn{semantic value}. @xref{Semantics,
651,Defining Language Semantics},
bfa74976
RS
652for details.
653
654The token type is a terminal symbol defined in the grammar, such as
655@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
656you need to know to decide where the token may validly appear and how to
657group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 658except their types.
bfa74976
RS
659
660The semantic value has all the rest of the information about the
661meaning of the token, such as the value of an integer, or the name of an
662identifier. (A token such as @code{','} which is just punctuation doesn't
663need to have any semantic value.)
664
665For example, an input token might be classified as token type
666@code{INTEGER} and have the semantic value 4. Another input token might
667have the same token type @code{INTEGER} but value 3989. When a grammar
668rule says that @code{INTEGER} is allowed, either of these tokens is
669acceptable because each is an @code{INTEGER}. When the parser accepts the
670token, it keeps track of the token's semantic value.
671
672Each grouping can also have a semantic value as well as its nonterminal
673symbol. For example, in a calculator, an expression typically has a
674semantic value that is a number. In a compiler for a programming
675language, an expression typically has a semantic value that is a tree
676structure describing the meaning of the expression.
677
342b8b6e 678@node Semantic Actions
bfa74976
RS
679@section Semantic Actions
680@cindex semantic actions
681@cindex actions, semantic
682
683In order to be useful, a program must do more than parse input; it must
684also produce some output based on the input. In a Bison grammar, a grammar
685rule can have an @dfn{action} made up of C statements. Each time the
686parser recognizes a match for that rule, the action is executed.
687@xref{Actions}.
13863333 688
bfa74976
RS
689Most of the time, the purpose of an action is to compute the semantic value
690of the whole construct from the semantic values of its parts. For example,
691suppose we have a rule which says an expression can be the sum of two
692expressions. When the parser recognizes such a sum, each of the
693subexpressions has a semantic value which describes how it was built up.
694The action for this rule should create a similar sort of value for the
695newly recognized larger expression.
696
697For example, here is a rule that says an expression can be the sum of
698two subexpressions:
699
700@example
701expr: expr '+' expr @{ $$ = $1 + $3; @}
702 ;
703@end example
704
705@noindent
706The action says how to produce the semantic value of the sum expression
707from the values of the two subexpressions.
708
676385e2 709@node GLR Parsers
c827f760
PE
710@section Writing @acronym{GLR} Parsers
711@cindex @acronym{GLR} parsing
712@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
713@findex %glr-parser
714@cindex conflicts
715@cindex shift/reduce conflicts
fa7e68c3 716@cindex reduce/reduce conflicts
676385e2 717
eb45ef3b
JD
718In some grammars, Bison's deterministic
719@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
720certain grammar rule at a given point. That is, it may not be able to
721decide (on the basis of the input read so far) which of two possible
722reductions (applications of a grammar rule) applies, or whether to apply
723a reduction or read more of the input and apply a reduction later in the
724input. These are known respectively as @dfn{reduce/reduce} conflicts
725(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
726(@pxref{Shift/Reduce}).
727
eb45ef3b 728To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 729more general parsing algorithm is sometimes necessary. If you include
676385e2 730@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 731(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
732(@acronym{GLR}) parser. These parsers handle Bison grammars that
733contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 734declarations) identically to deterministic parsers. However, when
9501dc6e
AD
735faced with unresolved shift/reduce and reduce/reduce conflicts,
736@acronym{GLR} parsers use the simple expedient of doing both,
737effectively cloning the parser to follow both possibilities. Each of
738the resulting parsers can again split, so that at any given time, there
739can be any number of possible parses being explored. The parsers
676385e2
PH
740proceed in lockstep; that is, all of them consume (shift) a given input
741symbol before any of them proceed to the next. Each of the cloned
742parsers eventually meets one of two possible fates: either it runs into
743a parsing error, in which case it simply vanishes, or it merges with
744another parser, because the two of them have reduced the input to an
745identical set of symbols.
746
747During the time that there are multiple parsers, semantic actions are
748recorded, but not performed. When a parser disappears, its recorded
749semantic actions disappear as well, and are never performed. When a
750reduction makes two parsers identical, causing them to merge, Bison
751records both sets of semantic actions. Whenever the last two parsers
752merge, reverting to the single-parser case, Bison resolves all the
753outstanding actions either by precedences given to the grammar rules
754involved, or by performing both actions, and then calling a designated
755user-defined function on the resulting values to produce an arbitrary
756merged result.
757
fa7e68c3 758@menu
f5f419de
DJ
759* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
760* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 761* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 762* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 763* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
764@end menu
765
766@node Simple GLR Parsers
767@subsection Using @acronym{GLR} on Unambiguous Grammars
768@cindex @acronym{GLR} parsing, unambiguous grammars
769@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
770@findex %glr-parser
771@findex %expect-rr
772@cindex conflicts
773@cindex reduce/reduce conflicts
774@cindex shift/reduce conflicts
775
776In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
777to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
778Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
779
780Consider a problem that
781arises in the declaration of enumerated and subrange types in the
782programming language Pascal. Here are some examples:
783
784@example
785type subrange = lo .. hi;
786type enum = (a, b, c);
787@end example
788
789@noindent
790The original language standard allows only numeric
791literals and constant identifiers for the subrange bounds (@samp{lo}
792and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79310206) and many other
794Pascal implementations allow arbitrary expressions there. This gives
795rise to the following situation, containing a superfluous pair of
796parentheses:
797
798@example
799type subrange = (a) .. b;
800@end example
801
802@noindent
803Compare this to the following declaration of an enumerated
804type with only one value:
805
806@example
807type enum = (a);
808@end example
809
810@noindent
811(These declarations are contrived, but they are syntactically
812valid, and more-complicated cases can come up in practical programs.)
813
814These two declarations look identical until the @samp{..} token.
eb45ef3b 815With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
816possible to decide between the two forms when the identifier
817@samp{a} is parsed. It is, however, desirable
818for a parser to decide this, since in the latter case
819@samp{a} must become a new identifier to represent the enumeration
820value, while in the former case @samp{a} must be evaluated with its
821current meaning, which may be a constant or even a function call.
822
823You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
824to be resolved later, but this typically requires substantial
825contortions in both semantic actions and large parts of the
826grammar, where the parentheses are nested in the recursive rules for
827expressions.
828
829You might think of using the lexer to distinguish between the two
830forms by returning different tokens for currently defined and
831undefined identifiers. But if these declarations occur in a local
832scope, and @samp{a} is defined in an outer scope, then both forms
833are possible---either locally redefining @samp{a}, or using the
834value of @samp{a} from the outer scope. So this approach cannot
835work.
836
e757bb10 837A simple solution to this problem is to declare the parser to
fa7e68c3
PE
838use the @acronym{GLR} algorithm.
839When the @acronym{GLR} parser reaches the critical state, it
840merely splits into two branches and pursues both syntax rules
841simultaneously. Sooner or later, one of them runs into a parsing
842error. If there is a @samp{..} token before the next
843@samp{;}, the rule for enumerated types fails since it cannot
844accept @samp{..} anywhere; otherwise, the subrange type rule
845fails since it requires a @samp{..} token. So one of the branches
846fails silently, and the other one continues normally, performing
847all the intermediate actions that were postponed during the split.
848
849If the input is syntactically incorrect, both branches fail and the parser
850reports a syntax error as usual.
851
852The effect of all this is that the parser seems to ``guess'' the
853correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
854lookahead than the underlying @acronym{LR}(1) algorithm actually allows
855for. In this example, @acronym{LR}(2) would suffice, but also some cases
856that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
857
858In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
859and the current Bison parser even takes exponential time and space
860for some grammars. In practice, this rarely happens, and for many
861grammars it is possible to prove that it cannot happen.
862The present example contains only one conflict between two
863rules, and the type-declaration context containing the conflict
864cannot be nested. So the number of
865branches that can exist at any time is limited by the constant 2,
866and the parsing time is still linear.
867
868Here is a Bison grammar corresponding to the example above. It
869parses a vastly simplified form of Pascal type declarations.
870
871@example
872%token TYPE DOTDOT ID
873
874@group
875%left '+' '-'
876%left '*' '/'
877@end group
878
879%%
880
881@group
882type_decl : TYPE ID '=' type ';'
883 ;
884@end group
885
886@group
887type : '(' id_list ')'
888 | expr DOTDOT expr
889 ;
890@end group
891
892@group
893id_list : ID
894 | id_list ',' ID
895 ;
896@end group
897
898@group
899expr : '(' expr ')'
900 | expr '+' expr
901 | expr '-' expr
902 | expr '*' expr
903 | expr '/' expr
904 | ID
905 ;
906@end group
907@end example
908
eb45ef3b 909When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
910about one reduce/reduce conflict. In the conflicting situation the
911parser chooses one of the alternatives, arbitrarily the one
912declared first. Therefore the following correct input is not
913recognized:
914
915@example
916type t = (a) .. b;
917@end example
918
919The parser can be turned into a @acronym{GLR} parser, while also telling Bison
920to be silent about the one known reduce/reduce conflict, by
e757bb10 921adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
922@samp{%%}):
923
924@example
925%glr-parser
926%expect-rr 1
927@end example
928
929@noindent
930No change in the grammar itself is required. Now the
931parser recognizes all valid declarations, according to the
932limited syntax above, transparently. In fact, the user does not even
933notice when the parser splits.
934
f8e1c9e5
AD
935So here we have a case where we can use the benefits of @acronym{GLR},
936almost without disadvantages. Even in simple cases like this, however,
937there are at least two potential problems to beware. First, always
938analyze the conflicts reported by Bison to make sure that @acronym{GLR}
939splitting is only done where it is intended. A @acronym{GLR} parser
940splitting inadvertently may cause problems less obvious than an
eb45ef3b 941@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
942conflict. Second, consider interactions with the lexer (@pxref{Semantic
943Tokens}) with great care. Since a split parser consumes tokens without
944performing any actions during the split, the lexer cannot obtain
945information via parser actions. Some cases of lexer interactions can be
946eliminated by using @acronym{GLR} to shift the complications from the
947lexer to the parser. You must check the remaining cases for
948correctness.
949
950In our example, it would be safe for the lexer to return tokens based on
951their current meanings in some symbol table, because no new symbols are
952defined in the middle of a type declaration. Though it is possible for
953a parser to define the enumeration constants as they are parsed, before
954the type declaration is completed, it actually makes no difference since
955they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
956
957@node Merging GLR Parses
958@subsection Using @acronym{GLR} to Resolve Ambiguities
959@cindex @acronym{GLR} parsing, ambiguous grammars
960@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
961@findex %dprec
962@findex %merge
963@cindex conflicts
964@cindex reduce/reduce conflicts
965
2a8d363a 966Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
967
968@example
969%@{
38a92d50
PE
970 #include <stdio.h>
971 #define YYSTYPE char const *
972 int yylex (void);
973 void yyerror (char const *);
676385e2
PH
974%@}
975
976%token TYPENAME ID
977
978%right '='
979%left '+'
980
981%glr-parser
982
983%%
984
fae437e8 985prog :
676385e2
PH
986 | prog stmt @{ printf ("\n"); @}
987 ;
988
989stmt : expr ';' %dprec 1
990 | decl %dprec 2
991 ;
992
2a8d363a 993expr : ID @{ printf ("%s ", $$); @}
fae437e8 994 | TYPENAME '(' expr ')'
2a8d363a
AD
995 @{ printf ("%s <cast> ", $1); @}
996 | expr '+' expr @{ printf ("+ "); @}
997 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
998 ;
999
fae437e8 1000decl : TYPENAME declarator ';'
2a8d363a 1001 @{ printf ("%s <declare> ", $1); @}
676385e2 1002 | TYPENAME declarator '=' expr ';'
2a8d363a 1003 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1004 ;
1005
2a8d363a 1006declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1007 | '(' declarator ')'
1008 ;
1009@end example
1010
1011@noindent
1012This models a problematic part of the C++ grammar---the ambiguity between
1013certain declarations and statements. For example,
1014
1015@example
1016T (x) = y+z;
1017@end example
1018
1019@noindent
1020parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1021(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1022@samp{x} as an @code{ID}).
676385e2 1023Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1024@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1025time it encounters @code{x} in the example above. Since this is a
1026@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1027each choice of resolving the reduce/reduce conflict.
1028Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1029however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1030ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1031the other reduces @code{stmt : decl}, after which both parsers are in an
1032identical state: they've seen @samp{prog stmt} and have the same unprocessed
1033input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1034
1035At this point, the @acronym{GLR} parser requires a specification in the
1036grammar of how to choose between the competing parses.
1037In the example above, the two @code{%dprec}
e757bb10 1038declarations specify that Bison is to give precedence
fa7e68c3 1039to the parse that interprets the example as a
676385e2
PH
1040@code{decl}, which implies that @code{x} is a declarator.
1041The parser therefore prints
1042
1043@example
fae437e8 1044"x" y z + T <init-declare>
676385e2
PH
1045@end example
1046
fa7e68c3
PE
1047The @code{%dprec} declarations only come into play when more than one
1048parse survives. Consider a different input string for this parser:
676385e2
PH
1049
1050@example
1051T (x) + y;
1052@end example
1053
1054@noindent
e757bb10 1055This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1056construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1057Here, there is no ambiguity (this cannot be parsed as a declaration).
1058However, at the time the Bison parser encounters @code{x}, it does not
1059have enough information to resolve the reduce/reduce conflict (again,
1060between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1061case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1062into two, one assuming that @code{x} is an @code{expr}, and the other
1063assuming @code{x} is a @code{declarator}. The second of these parsers
1064then vanishes when it sees @code{+}, and the parser prints
1065
1066@example
fae437e8 1067x T <cast> y +
676385e2
PH
1068@end example
1069
1070Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1071the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1072actions of the two possible parsers, rather than choosing one over the
1073other. To do so, you could change the declaration of @code{stmt} as
1074follows:
1075
1076@example
1077stmt : expr ';' %merge <stmtMerge>
1078 | decl %merge <stmtMerge>
1079 ;
1080@end example
1081
1082@noindent
676385e2
PH
1083and define the @code{stmtMerge} function as:
1084
1085@example
38a92d50
PE
1086static YYSTYPE
1087stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1088@{
1089 printf ("<OR> ");
1090 return "";
1091@}
1092@end example
1093
1094@noindent
1095with an accompanying forward declaration
1096in the C declarations at the beginning of the file:
1097
1098@example
1099%@{
38a92d50 1100 #define YYSTYPE char const *
676385e2
PH
1101 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1102%@}
1103@end example
1104
1105@noindent
fa7e68c3
PE
1106With these declarations, the resulting parser parses the first example
1107as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1108
1109@example
fae437e8 1110"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1111@end example
1112
fa7e68c3 1113Bison requires that all of the
e757bb10 1114productions that participate in any particular merge have identical
fa7e68c3
PE
1115@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1116and the parser will report an error during any parse that results in
1117the offending merge.
9501dc6e 1118
32c29292
JD
1119@node GLR Semantic Actions
1120@subsection GLR Semantic Actions
1121
20be2f92
PH
1122The nature of @acronym{GLR} parsing and the structure of the generated
1123parsers give rise to certain restrictions on semantic values and actions.
1124
1125@subsubsection Deferred semantic actions
32c29292
JD
1126@cindex deferred semantic actions
1127By definition, a deferred semantic action is not performed at the same time as
1128the associated reduction.
1129This raises caveats for several Bison features you might use in a semantic
1130action in a @acronym{GLR} parser.
1131
1132@vindex yychar
1133@cindex @acronym{GLR} parsers and @code{yychar}
1134@vindex yylval
1135@cindex @acronym{GLR} parsers and @code{yylval}
1136@vindex yylloc
1137@cindex @acronym{GLR} parsers and @code{yylloc}
1138In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1139the lookahead token present at the time of the associated reduction.
32c29292
JD
1140After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1141you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1142lookahead token's semantic value and location, if any.
32c29292
JD
1143In a nondeferred semantic action, you can also modify any of these variables to
1144influence syntax analysis.
742e4900 1145@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1146
1147@findex yyclearin
1148@cindex @acronym{GLR} parsers and @code{yyclearin}
1149In a deferred semantic action, it's too late to influence syntax analysis.
1150In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1151shallow copies of the values they had at the time of the associated reduction.
1152For this reason alone, modifying them is dangerous.
1153Moreover, the result of modifying them is undefined and subject to change with
1154future versions of Bison.
1155For example, if a semantic action might be deferred, you should never write it
1156to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1157memory referenced by @code{yylval}.
1158
20be2f92 1159@subsubsection YYERROR
32c29292
JD
1160@findex YYERROR
1161@cindex @acronym{GLR} parsers and @code{YYERROR}
1162Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1163(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1164initiate error recovery.
1165During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1166the same as its effect in a deterministic parser.
20be2f92
PH
1167The effect in a deferred action is similar, but the precise point of the
1168error is undefined; instead, the parser reverts to deterministic operation,
1169selecting an unspecified stack on which to continue with a syntax error.
1170In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1171parsing, @code{YYERROR} silently prunes
1172the parse that invoked the test.
1173
1174@subsubsection Restrictions on semantic values and locations
1175@acronym{GLR} parsers require that you use POD (Plain Old Data) types for
1176semantic values and location types when using the generated parsers as
1177C++ code.
8710fc41 1178
ca2a6d15
PH
1179@node Semantic Predicates
1180@subsection Controlling a Parse with Arbitrary Predicates
1181@findex %?
1182@cindex Semantic predicates in @acronym{GLR} parsers
1183
1184In addition to the @code{%dprec} and @code{%merge} directives,
1185@acronym{GLR} parsers
1186allow you to reject parses on the basis of arbitrary computations executed
1187in user code, without having Bison treat this rejection as an error
1188if there are alternative parses. (This feature is experimental and may
1189evolve. We welcome user feedback.) For example,
1190
1191@smallexample
1192widget :
1193 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1194 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1195 ;
1196@end smallexample
1197
1198@noindent
1199is one way to allow the same parser to handle two different syntaxes for
1200widgets. The clause preceded by @code{%?} is treated like an ordinary
1201action, except that its text is treated as an expression and is always
1202evaluated immediately (even when in nondeterministic mode). If the
1203expression yields 0 (false), the clause is treated as a syntax error,
1204which, in a nondeterministic parser, causes the stack in which it is reduced
1205to die. In a deterministic parser, it acts like YYERROR.
1206
1207As the example shows, predicates otherwise look like semantic actions, and
1208therefore you must be take them into account when determining the numbers
1209to use for denoting the semantic values of right-hand side symbols.
1210Predicate actions, however, have no defined value, and may not be given
1211labels.
1212
1213There is a subtle difference between semantic predicates and ordinary
1214actions in nondeterministic mode, since the latter are deferred.
1215For example, we could try to rewrite the previous example as
1216
1217@smallexample
1218widget :
1219 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1220 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1221 ;
1222@end smallexample
1223
1224@noindent
1225(reversing the sense of the predicate tests to cause an error when they are
1226false). However, this
1227does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1228have overlapping syntax.
1229Since the mid-rule actions testing @code{new_syntax} are deferred,
1230a @acronym{GLR} parser first encounters the unresolved ambiguous reduction
1231for cases where @code{new_args} and @code{old_args} recognize the same string
1232@emph{before} performing the tests of @code{new_syntax}. It therefore
1233reports an error.
1234
1235Finally, be careful in writing predicates: deferred actions have not been
1236evaluated, so that using them in a predicate will have undefined effects.
1237
fa7e68c3
PE
1238@node Compiler Requirements
1239@subsection Considerations when Compiling @acronym{GLR} Parsers
1240@cindex @code{inline}
9501dc6e 1241@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1242
38a92d50
PE
1243The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1244later. In addition, they use the @code{inline} keyword, which is not
1245C89, but is C99 and is a common extension in pre-C99 compilers. It is
1246up to the user of these parsers to handle
9501dc6e
AD
1247portability issues. For instance, if using Autoconf and the Autoconf
1248macro @code{AC_C_INLINE}, a mere
1249
1250@example
1251%@{
38a92d50 1252 #include <config.h>
9501dc6e
AD
1253%@}
1254@end example
1255
1256@noindent
1257will suffice. Otherwise, we suggest
1258
1259@example
1260%@{
38a92d50
PE
1261 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1262 #define inline
1263 #endif
9501dc6e
AD
1264%@}
1265@end example
676385e2 1266
342b8b6e 1267@node Locations Overview
847bf1f5
AD
1268@section Locations
1269@cindex location
95923bd6
AD
1270@cindex textual location
1271@cindex location, textual
847bf1f5
AD
1272
1273Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1274and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1275the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1276Bison provides a mechanism for handling these locations.
1277
72d2299c 1278Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1279associated location, but the type of locations is the same for all tokens and
72d2299c 1280groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1281structure for storing locations (@pxref{Locations}, for more details).
1282
1283Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1284set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1285is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1286@code{@@3}.
1287
1288When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1289of its left hand side (@pxref{Actions}). In the same way, another default
1290action is used for locations. However, the action for locations is general
847bf1f5 1291enough for most cases, meaning there is usually no need to describe for each
72d2299c 1292rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1293grouping, the default behavior of the output parser is to take the beginning
1294of the first symbol, and the end of the last symbol.
1295
342b8b6e 1296@node Bison Parser
bfa74976
RS
1297@section Bison Output: the Parser File
1298@cindex Bison parser
1299@cindex Bison utility
1300@cindex lexical analyzer, purpose
1301@cindex parser
1302
1303When you run Bison, you give it a Bison grammar file as input. The output
1304is a C source file that parses the language described by the grammar.
1305This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1306utility and the Bison parser are two distinct programs: the Bison utility
1307is a program whose output is the Bison parser that becomes part of your
1308program.
1309
1310The job of the Bison parser is to group tokens into groupings according to
1311the grammar rules---for example, to build identifiers and operators into
1312expressions. As it does this, it runs the actions for the grammar rules it
1313uses.
1314
704a47c4
AD
1315The tokens come from a function called the @dfn{lexical analyzer} that
1316you must supply in some fashion (such as by writing it in C). The Bison
1317parser calls the lexical analyzer each time it wants a new token. It
1318doesn't know what is ``inside'' the tokens (though their semantic values
1319may reflect this). Typically the lexical analyzer makes the tokens by
1320parsing characters of text, but Bison does not depend on this.
1321@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1322
1323The Bison parser file is C code which defines a function named
1324@code{yyparse} which implements that grammar. This function does not make
1325a complete C program: you must supply some additional functions. One is
1326the lexical analyzer. Another is an error-reporting function which the
1327parser calls to report an error. In addition, a complete C program must
1328start with a function called @code{main}; you have to provide this, and
1329arrange for it to call @code{yyparse} or the parser will never run.
1330@xref{Interface, ,Parser C-Language Interface}.
1331
f7ab6a50 1332Aside from the token type names and the symbols in the actions you
7093d0f5 1333write, all symbols defined in the Bison parser file itself
bfa74976
RS
1334begin with @samp{yy} or @samp{YY}. This includes interface functions
1335such as the lexical analyzer function @code{yylex}, the error reporting
1336function @code{yyerror} and the parser function @code{yyparse} itself.
1337This also includes numerous identifiers used for internal purposes.
1338Therefore, you should avoid using C identifiers starting with @samp{yy}
1339or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1340this manual. Also, you should avoid using the C identifiers
1341@samp{malloc} and @samp{free} for anything other than their usual
1342meanings.
bfa74976 1343
7093d0f5
AD
1344In some cases the Bison parser file includes system headers, and in
1345those cases your code should respect the identifiers reserved by those
55289366 1346headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1347@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1348declare memory allocators and related types. @code{<libintl.h>} is
1349included if message translation is in use
1350(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1351be included if you define @code{YYDEBUG} to a nonzero value
1352(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1353
342b8b6e 1354@node Stages
bfa74976
RS
1355@section Stages in Using Bison
1356@cindex stages in using Bison
1357@cindex using Bison
1358
1359The actual language-design process using Bison, from grammar specification
1360to a working compiler or interpreter, has these parts:
1361
1362@enumerate
1363@item
1364Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1365(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1366in the language, describe the action that is to be taken when an
1367instance of that rule is recognized. The action is described by a
1368sequence of C statements.
bfa74976
RS
1369
1370@item
704a47c4
AD
1371Write a lexical analyzer to process input and pass tokens to the parser.
1372The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1373Lexical Analyzer Function @code{yylex}}). It could also be produced
1374using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1375
1376@item
1377Write a controlling function that calls the Bison-produced parser.
1378
1379@item
1380Write error-reporting routines.
1381@end enumerate
1382
1383To turn this source code as written into a runnable program, you
1384must follow these steps:
1385
1386@enumerate
1387@item
1388Run Bison on the grammar to produce the parser.
1389
1390@item
1391Compile the code output by Bison, as well as any other source files.
1392
1393@item
1394Link the object files to produce the finished product.
1395@end enumerate
1396
342b8b6e 1397@node Grammar Layout
bfa74976
RS
1398@section The Overall Layout of a Bison Grammar
1399@cindex grammar file
1400@cindex file format
1401@cindex format of grammar file
1402@cindex layout of Bison grammar
1403
1404The input file for the Bison utility is a @dfn{Bison grammar file}. The
1405general form of a Bison grammar file is as follows:
1406
1407@example
1408%@{
08e49d20 1409@var{Prologue}
bfa74976
RS
1410%@}
1411
1412@var{Bison declarations}
1413
1414%%
1415@var{Grammar rules}
1416%%
08e49d20 1417@var{Epilogue}
bfa74976
RS
1418@end example
1419
1420@noindent
1421The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1422in every Bison grammar file to separate the sections.
1423
72d2299c 1424The prologue may define types and variables used in the actions. You can
342b8b6e 1425also use preprocessor commands to define macros used there, and use
bfa74976 1426@code{#include} to include header files that do any of these things.
38a92d50
PE
1427You need to declare the lexical analyzer @code{yylex} and the error
1428printer @code{yyerror} here, along with any other global identifiers
1429used by the actions in the grammar rules.
bfa74976
RS
1430
1431The Bison declarations declare the names of the terminal and nonterminal
1432symbols, and may also describe operator precedence and the data types of
1433semantic values of various symbols.
1434
1435The grammar rules define how to construct each nonterminal symbol from its
1436parts.
1437
38a92d50
PE
1438The epilogue can contain any code you want to use. Often the
1439definitions of functions declared in the prologue go here. In a
1440simple program, all the rest of the program can go here.
bfa74976 1441
342b8b6e 1442@node Examples
bfa74976
RS
1443@chapter Examples
1444@cindex simple examples
1445@cindex examples, simple
1446
1447Now we show and explain three sample programs written using Bison: a
1448reverse polish notation calculator, an algebraic (infix) notation
1449calculator, and a multi-function calculator. All three have been tested
1450under BSD Unix 4.3; each produces a usable, though limited, interactive
1451desk-top calculator.
1452
1453These examples are simple, but Bison grammars for real programming
aa08666d
AD
1454languages are written the same way. You can copy these examples into a
1455source file to try them.
bfa74976
RS
1456
1457@menu
f5f419de
DJ
1458* RPN Calc:: Reverse polish notation calculator;
1459 a first example with no operator precedence.
1460* Infix Calc:: Infix (algebraic) notation calculator.
1461 Operator precedence is introduced.
bfa74976 1462* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1463* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1464* Multi-function Calc:: Calculator with memory and trig functions.
1465 It uses multiple data-types for semantic values.
1466* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1467@end menu
1468
342b8b6e 1469@node RPN Calc
bfa74976
RS
1470@section Reverse Polish Notation Calculator
1471@cindex reverse polish notation
1472@cindex polish notation calculator
1473@cindex @code{rpcalc}
1474@cindex calculator, simple
1475
1476The first example is that of a simple double-precision @dfn{reverse polish
1477notation} calculator (a calculator using postfix operators). This example
1478provides a good starting point, since operator precedence is not an issue.
1479The second example will illustrate how operator precedence is handled.
1480
1481The source code for this calculator is named @file{rpcalc.y}. The
1482@samp{.y} extension is a convention used for Bison input files.
1483
1484@menu
f5f419de
DJ
1485* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1486* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1487* Rpcalc Lexer:: The lexical analyzer.
1488* Rpcalc Main:: The controlling function.
1489* Rpcalc Error:: The error reporting function.
1490* Rpcalc Generate:: Running Bison on the grammar file.
1491* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1492@end menu
1493
f5f419de 1494@node Rpcalc Declarations
bfa74976
RS
1495@subsection Declarations for @code{rpcalc}
1496
1497Here are the C and Bison declarations for the reverse polish notation
1498calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1499
1500@example
72d2299c 1501/* Reverse polish notation calculator. */
bfa74976
RS
1502
1503%@{
38a92d50
PE
1504 #define YYSTYPE double
1505 #include <math.h>
1506 int yylex (void);
1507 void yyerror (char const *);
bfa74976
RS
1508%@}
1509
1510%token NUM
1511
72d2299c 1512%% /* Grammar rules and actions follow. */
bfa74976
RS
1513@end example
1514
75f5aaea 1515The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1516preprocessor directives and two forward declarations.
bfa74976
RS
1517
1518The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1519specifying the C data type for semantic values of both tokens and
1520groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1521Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1522don't define it, @code{int} is the default. Because we specify
1523@code{double}, each token and each expression has an associated value,
1524which is a floating point number.
bfa74976
RS
1525
1526The @code{#include} directive is used to declare the exponentiation
1527function @code{pow}.
1528
38a92d50
PE
1529The forward declarations for @code{yylex} and @code{yyerror} are
1530needed because the C language requires that functions be declared
1531before they are used. These functions will be defined in the
1532epilogue, but the parser calls them so they must be declared in the
1533prologue.
1534
704a47c4
AD
1535The second section, Bison declarations, provides information to Bison
1536about the token types (@pxref{Bison Declarations, ,The Bison
1537Declarations Section}). Each terminal symbol that is not a
1538single-character literal must be declared here. (Single-character
bfa74976
RS
1539literals normally don't need to be declared.) In this example, all the
1540arithmetic operators are designated by single-character literals, so the
1541only terminal symbol that needs to be declared is @code{NUM}, the token
1542type for numeric constants.
1543
342b8b6e 1544@node Rpcalc Rules
bfa74976
RS
1545@subsection Grammar Rules for @code{rpcalc}
1546
1547Here are the grammar rules for the reverse polish notation calculator.
1548
1549@example
1550input: /* empty */
1551 | input line
1552;
1553
1554line: '\n'
18b519c0 1555 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1556;
1557
18b519c0
AD
1558exp: NUM @{ $$ = $1; @}
1559 | exp exp '+' @{ $$ = $1 + $2; @}
1560 | exp exp '-' @{ $$ = $1 - $2; @}
1561 | exp exp '*' @{ $$ = $1 * $2; @}
1562 | exp exp '/' @{ $$ = $1 / $2; @}
1563 /* Exponentiation */
1564 | exp exp '^' @{ $$ = pow ($1, $2); @}
1565 /* Unary minus */
1566 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1567;
1568%%
1569@end example
1570
1571The groupings of the rpcalc ``language'' defined here are the expression
1572(given the name @code{exp}), the line of input (@code{line}), and the
1573complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1574symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1575which is read as ``or''. The following sections explain what these rules
1576mean.
1577
1578The semantics of the language is determined by the actions taken when a
1579grouping is recognized. The actions are the C code that appears inside
1580braces. @xref{Actions}.
1581
1582You must specify these actions in C, but Bison provides the means for
1583passing semantic values between the rules. In each action, the
1584pseudo-variable @code{$$} stands for the semantic value for the grouping
1585that the rule is going to construct. Assigning a value to @code{$$} is the
1586main job of most actions. The semantic values of the components of the
1587rule are referred to as @code{$1}, @code{$2}, and so on.
1588
1589@menu
13863333
AD
1590* Rpcalc Input::
1591* Rpcalc Line::
1592* Rpcalc Expr::
bfa74976
RS
1593@end menu
1594
342b8b6e 1595@node Rpcalc Input
bfa74976
RS
1596@subsubsection Explanation of @code{input}
1597
1598Consider the definition of @code{input}:
1599
1600@example
1601input: /* empty */
1602 | input line
1603;
1604@end example
1605
1606This definition reads as follows: ``A complete input is either an empty
1607string, or a complete input followed by an input line''. Notice that
1608``complete input'' is defined in terms of itself. This definition is said
1609to be @dfn{left recursive} since @code{input} appears always as the
1610leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1611
1612The first alternative is empty because there are no symbols between the
1613colon and the first @samp{|}; this means that @code{input} can match an
1614empty string of input (no tokens). We write the rules this way because it
1615is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1616It's conventional to put an empty alternative first and write the comment
1617@samp{/* empty */} in it.
1618
1619The second alternate rule (@code{input line}) handles all nontrivial input.
1620It means, ``After reading any number of lines, read one more line if
1621possible.'' The left recursion makes this rule into a loop. Since the
1622first alternative matches empty input, the loop can be executed zero or
1623more times.
1624
1625The parser function @code{yyparse} continues to process input until a
1626grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1627input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1628
342b8b6e 1629@node Rpcalc Line
bfa74976
RS
1630@subsubsection Explanation of @code{line}
1631
1632Now consider the definition of @code{line}:
1633
1634@example
1635line: '\n'
1636 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1637;
1638@end example
1639
1640The first alternative is a token which is a newline character; this means
1641that rpcalc accepts a blank line (and ignores it, since there is no
1642action). The second alternative is an expression followed by a newline.
1643This is the alternative that makes rpcalc useful. The semantic value of
1644the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1645question is the first symbol in the alternative. The action prints this
1646value, which is the result of the computation the user asked for.
1647
1648This action is unusual because it does not assign a value to @code{$$}. As
1649a consequence, the semantic value associated with the @code{line} is
1650uninitialized (its value will be unpredictable). This would be a bug if
1651that value were ever used, but we don't use it: once rpcalc has printed the
1652value of the user's input line, that value is no longer needed.
1653
342b8b6e 1654@node Rpcalc Expr
bfa74976
RS
1655@subsubsection Explanation of @code{expr}
1656
1657The @code{exp} grouping has several rules, one for each kind of expression.
1658The first rule handles the simplest expressions: those that are just numbers.
1659The second handles an addition-expression, which looks like two expressions
1660followed by a plus-sign. The third handles subtraction, and so on.
1661
1662@example
1663exp: NUM
1664 | exp exp '+' @{ $$ = $1 + $2; @}
1665 | exp exp '-' @{ $$ = $1 - $2; @}
1666 @dots{}
1667 ;
1668@end example
1669
1670We have used @samp{|} to join all the rules for @code{exp}, but we could
1671equally well have written them separately:
1672
1673@example
1674exp: NUM ;
1675exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1676exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1677 @dots{}
1678@end example
1679
1680Most of the rules have actions that compute the value of the expression in
1681terms of the value of its parts. For example, in the rule for addition,
1682@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1683the second one. The third component, @code{'+'}, has no meaningful
1684associated semantic value, but if it had one you could refer to it as
1685@code{$3}. When @code{yyparse} recognizes a sum expression using this
1686rule, the sum of the two subexpressions' values is produced as the value of
1687the entire expression. @xref{Actions}.
1688
1689You don't have to give an action for every rule. When a rule has no
1690action, Bison by default copies the value of @code{$1} into @code{$$}.
1691This is what happens in the first rule (the one that uses @code{NUM}).
1692
1693The formatting shown here is the recommended convention, but Bison does
72d2299c 1694not require it. You can add or change white space as much as you wish.
bfa74976
RS
1695For example, this:
1696
1697@example
99a9344e 1698exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1699@end example
1700
1701@noindent
1702means the same thing as this:
1703
1704@example
1705exp: NUM
1706 | exp exp '+' @{ $$ = $1 + $2; @}
1707 | @dots{}
99a9344e 1708;
bfa74976
RS
1709@end example
1710
1711@noindent
1712The latter, however, is much more readable.
1713
342b8b6e 1714@node Rpcalc Lexer
bfa74976
RS
1715@subsection The @code{rpcalc} Lexical Analyzer
1716@cindex writing a lexical analyzer
1717@cindex lexical analyzer, writing
1718
704a47c4
AD
1719The lexical analyzer's job is low-level parsing: converting characters
1720or sequences of characters into tokens. The Bison parser gets its
1721tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1722Analyzer Function @code{yylex}}.
bfa74976 1723
c827f760
PE
1724Only a simple lexical analyzer is needed for the @acronym{RPN}
1725calculator. This
bfa74976
RS
1726lexical analyzer skips blanks and tabs, then reads in numbers as
1727@code{double} and returns them as @code{NUM} tokens. Any other character
1728that isn't part of a number is a separate token. Note that the token-code
1729for such a single-character token is the character itself.
1730
1731The return value of the lexical analyzer function is a numeric code which
1732represents a token type. The same text used in Bison rules to stand for
1733this token type is also a C expression for the numeric code for the type.
1734This works in two ways. If the token type is a character literal, then its
e966383b 1735numeric code is that of the character; you can use the same
bfa74976
RS
1736character literal in the lexical analyzer to express the number. If the
1737token type is an identifier, that identifier is defined by Bison as a C
1738macro whose definition is the appropriate number. In this example,
1739therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1740
1964ad8c
AD
1741The semantic value of the token (if it has one) is stored into the
1742global variable @code{yylval}, which is where the Bison parser will look
1743for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1744defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1745,Declarations for @code{rpcalc}}.)
bfa74976 1746
72d2299c
PE
1747A token type code of zero is returned if the end-of-input is encountered.
1748(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1749
1750Here is the code for the lexical analyzer:
1751
1752@example
1753@group
72d2299c 1754/* The lexical analyzer returns a double floating point
e966383b 1755 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1756 of the character read if not a number. It skips all blanks
1757 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1758
1759#include <ctype.h>
1760@end group
1761
1762@group
13863333
AD
1763int
1764yylex (void)
bfa74976
RS
1765@{
1766 int c;
1767
72d2299c 1768 /* Skip white space. */
13863333 1769 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1770 ;
1771@end group
1772@group
72d2299c 1773 /* Process numbers. */
13863333 1774 if (c == '.' || isdigit (c))
bfa74976
RS
1775 @{
1776 ungetc (c, stdin);
1777 scanf ("%lf", &yylval);
1778 return NUM;
1779 @}
1780@end group
1781@group
72d2299c 1782 /* Return end-of-input. */
13863333 1783 if (c == EOF)
bfa74976 1784 return 0;
72d2299c 1785 /* Return a single char. */
13863333 1786 return c;
bfa74976
RS
1787@}
1788@end group
1789@end example
1790
342b8b6e 1791@node Rpcalc Main
bfa74976
RS
1792@subsection The Controlling Function
1793@cindex controlling function
1794@cindex main function in simple example
1795
1796In keeping with the spirit of this example, the controlling function is
1797kept to the bare minimum. The only requirement is that it call
1798@code{yyparse} to start the process of parsing.
1799
1800@example
1801@group
13863333
AD
1802int
1803main (void)
bfa74976 1804@{
13863333 1805 return yyparse ();
bfa74976
RS
1806@}
1807@end group
1808@end example
1809
342b8b6e 1810@node Rpcalc Error
bfa74976
RS
1811@subsection The Error Reporting Routine
1812@cindex error reporting routine
1813
1814When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1815function @code{yyerror} to print an error message (usually but not
6e649e65 1816always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1817@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1818here is the definition we will use:
bfa74976
RS
1819
1820@example
1821@group
1822#include <stdio.h>
1823
38a92d50 1824/* Called by yyparse on error. */
13863333 1825void
38a92d50 1826yyerror (char const *s)
bfa74976 1827@{
4e03e201 1828 fprintf (stderr, "%s\n", s);
bfa74976
RS
1829@}
1830@end group
1831@end example
1832
1833After @code{yyerror} returns, the Bison parser may recover from the error
1834and continue parsing if the grammar contains a suitable error rule
1835(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1836have not written any error rules in this example, so any invalid input will
1837cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1838real calculator, but it is adequate for the first example.
bfa74976 1839
f5f419de 1840@node Rpcalc Generate
bfa74976
RS
1841@subsection Running Bison to Make the Parser
1842@cindex running Bison (introduction)
1843
ceed8467
AD
1844Before running Bison to produce a parser, we need to decide how to
1845arrange all the source code in one or more source files. For such a
1846simple example, the easiest thing is to put everything in one file. The
1847definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1848end, in the epilogue of the file
75f5aaea 1849(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1850
1851For a large project, you would probably have several source files, and use
1852@code{make} to arrange to recompile them.
1853
1854With all the source in a single file, you use the following command to
1855convert it into a parser file:
1856
1857@example
fa4d969f 1858bison @var{file}.y
bfa74976
RS
1859@end example
1860
1861@noindent
1862In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1863@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1864removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1865Bison contains the source code for @code{yyparse}. The additional
1866functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1867are copied verbatim to the output.
1868
342b8b6e 1869@node Rpcalc Compile
bfa74976
RS
1870@subsection Compiling the Parser File
1871@cindex compiling the parser
1872
1873Here is how to compile and run the parser file:
1874
1875@example
1876@group
1877# @r{List files in current directory.}
9edcd895 1878$ @kbd{ls}
bfa74976
RS
1879rpcalc.tab.c rpcalc.y
1880@end group
1881
1882@group
1883# @r{Compile the Bison parser.}
1884# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1885$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1886@end group
1887
1888@group
1889# @r{List files again.}
9edcd895 1890$ @kbd{ls}
bfa74976
RS
1891rpcalc rpcalc.tab.c rpcalc.y
1892@end group
1893@end example
1894
1895The file @file{rpcalc} now contains the executable code. Here is an
1896example session using @code{rpcalc}.
1897
1898@example
9edcd895
AD
1899$ @kbd{rpcalc}
1900@kbd{4 9 +}
bfa74976 190113
9edcd895 1902@kbd{3 7 + 3 4 5 *+-}
bfa74976 1903-13
9edcd895 1904@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 190513
9edcd895 1906@kbd{5 6 / 4 n +}
bfa74976 1907-3.166666667
9edcd895 1908@kbd{3 4 ^} @r{Exponentiation}
bfa74976 190981
9edcd895
AD
1910@kbd{^D} @r{End-of-file indicator}
1911$
bfa74976
RS
1912@end example
1913
342b8b6e 1914@node Infix Calc
bfa74976
RS
1915@section Infix Notation Calculator: @code{calc}
1916@cindex infix notation calculator
1917@cindex @code{calc}
1918@cindex calculator, infix notation
1919
1920We now modify rpcalc to handle infix operators instead of postfix. Infix
1921notation involves the concept of operator precedence and the need for
1922parentheses nested to arbitrary depth. Here is the Bison code for
1923@file{calc.y}, an infix desk-top calculator.
1924
1925@example
38a92d50 1926/* Infix notation calculator. */
bfa74976
RS
1927
1928%@{
38a92d50
PE
1929 #define YYSTYPE double
1930 #include <math.h>
1931 #include <stdio.h>
1932 int yylex (void);
1933 void yyerror (char const *);
bfa74976
RS
1934%@}
1935
38a92d50 1936/* Bison declarations. */
bfa74976
RS
1937%token NUM
1938%left '-' '+'
1939%left '*' '/'
d78f0ac9
AD
1940%precedence NEG /* negation--unary minus */
1941%right '^' /* exponentiation */
bfa74976 1942
38a92d50
PE
1943%% /* The grammar follows. */
1944input: /* empty */
bfa74976
RS
1945 | input line
1946;
1947
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950;
1951
1952exp: NUM @{ $$ = $1; @}
1953 | exp '+' exp @{ $$ = $1 + $3; @}
1954 | exp '-' exp @{ $$ = $1 - $3; @}
1955 | exp '*' exp @{ $$ = $1 * $3; @}
1956 | exp '/' exp @{ $$ = $1 / $3; @}
1957 | '-' exp %prec NEG @{ $$ = -$2; @}
1958 | exp '^' exp @{ $$ = pow ($1, $3); @}
1959 | '(' exp ')' @{ $$ = $2; @}
1960;
1961%%
1962@end example
1963
1964@noindent
ceed8467
AD
1965The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1966same as before.
bfa74976
RS
1967
1968There are two important new features shown in this code.
1969
1970In the second section (Bison declarations), @code{%left} declares token
1971types and says they are left-associative operators. The declarations
1972@code{%left} and @code{%right} (right associativity) take the place of
1973@code{%token} which is used to declare a token type name without
d78f0ac9 1974associativity/precedence. (These tokens are single-character literals, which
bfa74976 1975ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1976the associativity/precedence.)
bfa74976
RS
1977
1978Operator precedence is determined by the line ordering of the
1979declarations; the higher the line number of the declaration (lower on
1980the page or screen), the higher the precedence. Hence, exponentiation
1981has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1982by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1983only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1984Precedence}.
bfa74976 1985
704a47c4
AD
1986The other important new feature is the @code{%prec} in the grammar
1987section for the unary minus operator. The @code{%prec} simply instructs
1988Bison that the rule @samp{| '-' exp} has the same precedence as
1989@code{NEG}---in this case the next-to-highest. @xref{Contextual
1990Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1991
1992Here is a sample run of @file{calc.y}:
1993
1994@need 500
1995@example
9edcd895
AD
1996$ @kbd{calc}
1997@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19986.880952381
9edcd895 1999@kbd{-56 + 2}
bfa74976 2000-54
9edcd895 2001@kbd{3 ^ 2}
bfa74976
RS
20029
2003@end example
2004
342b8b6e 2005@node Simple Error Recovery
bfa74976
RS
2006@section Simple Error Recovery
2007@cindex error recovery, simple
2008
2009Up to this point, this manual has not addressed the issue of @dfn{error
2010recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2011error. All we have handled is error reporting with @code{yyerror}.
2012Recall that by default @code{yyparse} returns after calling
2013@code{yyerror}. This means that an erroneous input line causes the
2014calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2015
2016The Bison language itself includes the reserved word @code{error}, which
2017may be included in the grammar rules. In the example below it has
2018been added to one of the alternatives for @code{line}:
2019
2020@example
2021@group
2022line: '\n'
2023 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2024 | error '\n' @{ yyerrok; @}
2025;
2026@end group
2027@end example
2028
ceed8467 2029This addition to the grammar allows for simple error recovery in the
6e649e65 2030event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2031read, the error will be recognized by the third rule for @code{line},
2032and parsing will continue. (The @code{yyerror} function is still called
2033upon to print its message as well.) The action executes the statement
2034@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2035that error recovery is complete (@pxref{Error Recovery}). Note the
2036difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2037misprint.
bfa74976
RS
2038
2039This form of error recovery deals with syntax errors. There are other
2040kinds of errors; for example, division by zero, which raises an exception
2041signal that is normally fatal. A real calculator program must handle this
2042signal and use @code{longjmp} to return to @code{main} and resume parsing
2043input lines; it would also have to discard the rest of the current line of
2044input. We won't discuss this issue further because it is not specific to
2045Bison programs.
2046
342b8b6e
AD
2047@node Location Tracking Calc
2048@section Location Tracking Calculator: @code{ltcalc}
2049@cindex location tracking calculator
2050@cindex @code{ltcalc}
2051@cindex calculator, location tracking
2052
9edcd895
AD
2053This example extends the infix notation calculator with location
2054tracking. This feature will be used to improve the error messages. For
2055the sake of clarity, this example is a simple integer calculator, since
2056most of the work needed to use locations will be done in the lexical
72d2299c 2057analyzer.
342b8b6e
AD
2058
2059@menu
f5f419de
DJ
2060* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2061* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2062* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2063@end menu
2064
f5f419de 2065@node Ltcalc Declarations
342b8b6e
AD
2066@subsection Declarations for @code{ltcalc}
2067
9edcd895
AD
2068The C and Bison declarations for the location tracking calculator are
2069the same as the declarations for the infix notation calculator.
342b8b6e
AD
2070
2071@example
2072/* Location tracking calculator. */
2073
2074%@{
38a92d50
PE
2075 #define YYSTYPE int
2076 #include <math.h>
2077 int yylex (void);
2078 void yyerror (char const *);
342b8b6e
AD
2079%@}
2080
2081/* Bison declarations. */
2082%token NUM
2083
2084%left '-' '+'
2085%left '*' '/'
d78f0ac9 2086%precedence NEG
342b8b6e
AD
2087%right '^'
2088
38a92d50 2089%% /* The grammar follows. */
342b8b6e
AD
2090@end example
2091
9edcd895
AD
2092@noindent
2093Note there are no declarations specific to locations. Defining a data
2094type for storing locations is not needed: we will use the type provided
2095by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2096four member structure with the following integer fields:
2097@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2098@code{last_column}. By conventions, and in accordance with the GNU
2099Coding Standards and common practice, the line and column count both
2100start at 1.
342b8b6e
AD
2101
2102@node Ltcalc Rules
2103@subsection Grammar Rules for @code{ltcalc}
2104
9edcd895
AD
2105Whether handling locations or not has no effect on the syntax of your
2106language. Therefore, grammar rules for this example will be very close
2107to those of the previous example: we will only modify them to benefit
2108from the new information.
342b8b6e 2109
9edcd895
AD
2110Here, we will use locations to report divisions by zero, and locate the
2111wrong expressions or subexpressions.
342b8b6e
AD
2112
2113@example
2114@group
2115input : /* empty */
2116 | input line
2117;
2118@end group
2119
2120@group
2121line : '\n'
2122 | exp '\n' @{ printf ("%d\n", $1); @}
2123;
2124@end group
2125
2126@group
2127exp : NUM @{ $$ = $1; @}
2128 | exp '+' exp @{ $$ = $1 + $3; @}
2129 | exp '-' exp @{ $$ = $1 - $3; @}
2130 | exp '*' exp @{ $$ = $1 * $3; @}
2131@end group
342b8b6e 2132@group
9edcd895 2133 | exp '/' exp
342b8b6e
AD
2134 @{
2135 if ($3)
2136 $$ = $1 / $3;
2137 else
2138 @{
2139 $$ = 1;
9edcd895
AD
2140 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2141 @@3.first_line, @@3.first_column,
2142 @@3.last_line, @@3.last_column);
342b8b6e
AD
2143 @}
2144 @}
2145@end group
2146@group
178e123e 2147 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2148 | exp '^' exp @{ $$ = pow ($1, $3); @}
2149 | '(' exp ')' @{ $$ = $2; @}
2150@end group
2151@end example
2152
2153This code shows how to reach locations inside of semantic actions, by
2154using the pseudo-variables @code{@@@var{n}} for rule components, and the
2155pseudo-variable @code{@@$} for groupings.
2156
9edcd895
AD
2157We don't need to assign a value to @code{@@$}: the output parser does it
2158automatically. By default, before executing the C code of each action,
2159@code{@@$} is set to range from the beginning of @code{@@1} to the end
2160of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2161can be redefined (@pxref{Location Default Action, , Default Action for
2162Locations}), and for very specific rules, @code{@@$} can be computed by
2163hand.
342b8b6e
AD
2164
2165@node Ltcalc Lexer
2166@subsection The @code{ltcalc} Lexical Analyzer.
2167
9edcd895 2168Until now, we relied on Bison's defaults to enable location
72d2299c 2169tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2170able to feed the parser with the token locations, as it already does for
2171semantic values.
342b8b6e 2172
9edcd895
AD
2173To this end, we must take into account every single character of the
2174input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2175
2176@example
2177@group
2178int
2179yylex (void)
2180@{
2181 int c;
18b519c0 2182@end group
342b8b6e 2183
18b519c0 2184@group
72d2299c 2185 /* Skip white space. */
342b8b6e
AD
2186 while ((c = getchar ()) == ' ' || c == '\t')
2187 ++yylloc.last_column;
18b519c0 2188@end group
342b8b6e 2189
18b519c0 2190@group
72d2299c 2191 /* Step. */
342b8b6e
AD
2192 yylloc.first_line = yylloc.last_line;
2193 yylloc.first_column = yylloc.last_column;
2194@end group
2195
2196@group
72d2299c 2197 /* Process numbers. */
342b8b6e
AD
2198 if (isdigit (c))
2199 @{
2200 yylval = c - '0';
2201 ++yylloc.last_column;
2202 while (isdigit (c = getchar ()))
2203 @{
2204 ++yylloc.last_column;
2205 yylval = yylval * 10 + c - '0';
2206 @}
2207 ungetc (c, stdin);
2208 return NUM;
2209 @}
2210@end group
2211
72d2299c 2212 /* Return end-of-input. */
342b8b6e
AD
2213 if (c == EOF)
2214 return 0;
2215
72d2299c 2216 /* Return a single char, and update location. */
342b8b6e
AD
2217 if (c == '\n')
2218 @{
2219 ++yylloc.last_line;
2220 yylloc.last_column = 0;
2221 @}
2222 else
2223 ++yylloc.last_column;
2224 return c;
2225@}
2226@end example
2227
9edcd895
AD
2228Basically, the lexical analyzer performs the same processing as before:
2229it skips blanks and tabs, and reads numbers or single-character tokens.
2230In addition, it updates @code{yylloc}, the global variable (of type
2231@code{YYLTYPE}) containing the token's location.
342b8b6e 2232
9edcd895 2233Now, each time this function returns a token, the parser has its number
72d2299c 2234as well as its semantic value, and its location in the text. The last
9edcd895
AD
2235needed change is to initialize @code{yylloc}, for example in the
2236controlling function:
342b8b6e
AD
2237
2238@example
9edcd895 2239@group
342b8b6e
AD
2240int
2241main (void)
2242@{
2243 yylloc.first_line = yylloc.last_line = 1;
2244 yylloc.first_column = yylloc.last_column = 0;
2245 return yyparse ();
2246@}
9edcd895 2247@end group
342b8b6e
AD
2248@end example
2249
9edcd895
AD
2250Remember that computing locations is not a matter of syntax. Every
2251character must be associated to a location update, whether it is in
2252valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2253
2254@node Multi-function Calc
bfa74976
RS
2255@section Multi-Function Calculator: @code{mfcalc}
2256@cindex multi-function calculator
2257@cindex @code{mfcalc}
2258@cindex calculator, multi-function
2259
2260Now that the basics of Bison have been discussed, it is time to move on to
2261a more advanced problem. The above calculators provided only five
2262functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2263be nice to have a calculator that provides other mathematical functions such
2264as @code{sin}, @code{cos}, etc.
2265
2266It is easy to add new operators to the infix calculator as long as they are
2267only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2268back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2269adding a new operator. But we want something more flexible: built-in
2270functions whose syntax has this form:
2271
2272@example
2273@var{function_name} (@var{argument})
2274@end example
2275
2276@noindent
2277At the same time, we will add memory to the calculator, by allowing you
2278to create named variables, store values in them, and use them later.
2279Here is a sample session with the multi-function calculator:
2280
2281@example
9edcd895
AD
2282$ @kbd{mfcalc}
2283@kbd{pi = 3.141592653589}
bfa74976 22843.1415926536
9edcd895 2285@kbd{sin(pi)}
bfa74976 22860.0000000000
9edcd895 2287@kbd{alpha = beta1 = 2.3}
bfa74976 22882.3000000000
9edcd895 2289@kbd{alpha}
bfa74976 22902.3000000000
9edcd895 2291@kbd{ln(alpha)}
bfa74976 22920.8329091229
9edcd895 2293@kbd{exp(ln(beta1))}
bfa74976 22942.3000000000
9edcd895 2295$
bfa74976
RS
2296@end example
2297
2298Note that multiple assignment and nested function calls are permitted.
2299
2300@menu
f5f419de
DJ
2301* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2302* Mfcalc Rules:: Grammar rules for the calculator.
2303* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2304@end menu
2305
f5f419de 2306@node Mfcalc Declarations
bfa74976
RS
2307@subsection Declarations for @code{mfcalc}
2308
2309Here are the C and Bison declarations for the multi-function calculator.
2310
2311@smallexample
18b519c0 2312@group
bfa74976 2313%@{
38a92d50
PE
2314 #include <math.h> /* For math functions, cos(), sin(), etc. */
2315 #include "calc.h" /* Contains definition of `symrec'. */
2316 int yylex (void);
2317 void yyerror (char const *);
bfa74976 2318%@}
18b519c0
AD
2319@end group
2320@group
bfa74976 2321%union @{
38a92d50
PE
2322 double val; /* For returning numbers. */
2323 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2324@}
18b519c0 2325@end group
38a92d50
PE
2326%token <val> NUM /* Simple double precision number. */
2327%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2328%type <val> exp
2329
18b519c0 2330@group
bfa74976
RS
2331%right '='
2332%left '-' '+'
2333%left '*' '/'
d78f0ac9
AD
2334%precedence NEG /* negation--unary minus */
2335%right '^' /* exponentiation */
18b519c0 2336@end group
38a92d50 2337%% /* The grammar follows. */
bfa74976
RS
2338@end smallexample
2339
2340The above grammar introduces only two new features of the Bison language.
2341These features allow semantic values to have various data types
2342(@pxref{Multiple Types, ,More Than One Value Type}).
2343
2344The @code{%union} declaration specifies the entire list of possible types;
2345this is instead of defining @code{YYSTYPE}. The allowable types are now
2346double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2347the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2348
2349Since values can now have various types, it is necessary to associate a
2350type with each grammar symbol whose semantic value is used. These symbols
2351are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2352declarations are augmented with information about their data type (placed
2353between angle brackets).
2354
704a47c4
AD
2355The Bison construct @code{%type} is used for declaring nonterminal
2356symbols, just as @code{%token} is used for declaring token types. We
2357have not used @code{%type} before because nonterminal symbols are
2358normally declared implicitly by the rules that define them. But
2359@code{exp} must be declared explicitly so we can specify its value type.
2360@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2361
342b8b6e 2362@node Mfcalc Rules
bfa74976
RS
2363@subsection Grammar Rules for @code{mfcalc}
2364
2365Here are the grammar rules for the multi-function calculator.
2366Most of them are copied directly from @code{calc}; three rules,
2367those which mention @code{VAR} or @code{FNCT}, are new.
2368
2369@smallexample
18b519c0 2370@group
bfa74976
RS
2371input: /* empty */
2372 | input line
2373;
18b519c0 2374@end group
bfa74976 2375
18b519c0 2376@group
bfa74976
RS
2377line:
2378 '\n'
2379 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2380 | error '\n' @{ yyerrok; @}
2381;
18b519c0 2382@end group
bfa74976 2383
18b519c0 2384@group
bfa74976
RS
2385exp: NUM @{ $$ = $1; @}
2386 | VAR @{ $$ = $1->value.var; @}
2387 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2388 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2389 | exp '+' exp @{ $$ = $1 + $3; @}
2390 | exp '-' exp @{ $$ = $1 - $3; @}
2391 | exp '*' exp @{ $$ = $1 * $3; @}
2392 | exp '/' exp @{ $$ = $1 / $3; @}
2393 | '-' exp %prec NEG @{ $$ = -$2; @}
2394 | exp '^' exp @{ $$ = pow ($1, $3); @}
2395 | '(' exp ')' @{ $$ = $2; @}
2396;
18b519c0 2397@end group
38a92d50 2398/* End of grammar. */
bfa74976
RS
2399%%
2400@end smallexample
2401
f5f419de 2402@node Mfcalc Symbol Table
bfa74976
RS
2403@subsection The @code{mfcalc} Symbol Table
2404@cindex symbol table example
2405
2406The multi-function calculator requires a symbol table to keep track of the
2407names and meanings of variables and functions. This doesn't affect the
2408grammar rules (except for the actions) or the Bison declarations, but it
2409requires some additional C functions for support.
2410
2411The symbol table itself consists of a linked list of records. Its
2412definition, which is kept in the header @file{calc.h}, is as follows. It
2413provides for either functions or variables to be placed in the table.
2414
2415@smallexample
2416@group
38a92d50 2417/* Function type. */
32dfccf8 2418typedef double (*func_t) (double);
72f889cc 2419@end group
32dfccf8 2420
72f889cc 2421@group
38a92d50 2422/* Data type for links in the chain of symbols. */
bfa74976
RS
2423struct symrec
2424@{
38a92d50 2425 char *name; /* name of symbol */
bfa74976 2426 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2427 union
2428 @{
38a92d50
PE
2429 double var; /* value of a VAR */
2430 func_t fnctptr; /* value of a FNCT */
bfa74976 2431 @} value;
38a92d50 2432 struct symrec *next; /* link field */
bfa74976
RS
2433@};
2434@end group
2435
2436@group
2437typedef struct symrec symrec;
2438
38a92d50 2439/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2440extern symrec *sym_table;
2441
a730d142 2442symrec *putsym (char const *, int);
38a92d50 2443symrec *getsym (char const *);
bfa74976
RS
2444@end group
2445@end smallexample
2446
2447The new version of @code{main} includes a call to @code{init_table}, a
2448function that initializes the symbol table. Here it is, and
2449@code{init_table} as well:
2450
2451@smallexample
bfa74976
RS
2452#include <stdio.h>
2453
18b519c0 2454@group
38a92d50 2455/* Called by yyparse on error. */
13863333 2456void
38a92d50 2457yyerror (char const *s)
bfa74976
RS
2458@{
2459 printf ("%s\n", s);
2460@}
18b519c0 2461@end group
bfa74976 2462
18b519c0 2463@group
bfa74976
RS
2464struct init
2465@{
38a92d50
PE
2466 char const *fname;
2467 double (*fnct) (double);
bfa74976
RS
2468@};
2469@end group
2470
2471@group
38a92d50 2472struct init const arith_fncts[] =
13863333 2473@{
32dfccf8
AD
2474 "sin", sin,
2475 "cos", cos,
13863333 2476 "atan", atan,
32dfccf8
AD
2477 "ln", log,
2478 "exp", exp,
13863333
AD
2479 "sqrt", sqrt,
2480 0, 0
2481@};
18b519c0 2482@end group
bfa74976 2483
18b519c0 2484@group
bfa74976 2485/* The symbol table: a chain of `struct symrec'. */
38a92d50 2486symrec *sym_table;
bfa74976
RS
2487@end group
2488
2489@group
72d2299c 2490/* Put arithmetic functions in table. */
13863333
AD
2491void
2492init_table (void)
bfa74976
RS
2493@{
2494 int i;
2495 symrec *ptr;
2496 for (i = 0; arith_fncts[i].fname != 0; i++)
2497 @{
2498 ptr = putsym (arith_fncts[i].fname, FNCT);
2499 ptr->value.fnctptr = arith_fncts[i].fnct;
2500 @}
2501@}
2502@end group
38a92d50
PE
2503
2504@group
2505int
2506main (void)
2507@{
2508 init_table ();
2509 return yyparse ();
2510@}
2511@end group
bfa74976
RS
2512@end smallexample
2513
2514By simply editing the initialization list and adding the necessary include
2515files, you can add additional functions to the calculator.
2516
2517Two important functions allow look-up and installation of symbols in the
2518symbol table. The function @code{putsym} is passed a name and the type
2519(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2520linked to the front of the list, and a pointer to the object is returned.
2521The function @code{getsym} is passed the name of the symbol to look up. If
2522found, a pointer to that symbol is returned; otherwise zero is returned.
2523
2524@smallexample
2525symrec *
38a92d50 2526putsym (char const *sym_name, int sym_type)
bfa74976
RS
2527@{
2528 symrec *ptr;
2529 ptr = (symrec *) malloc (sizeof (symrec));
2530 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2531 strcpy (ptr->name,sym_name);
2532 ptr->type = sym_type;
72d2299c 2533 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2534 ptr->next = (struct symrec *)sym_table;
2535 sym_table = ptr;
2536 return ptr;
2537@}
2538
2539symrec *
38a92d50 2540getsym (char const *sym_name)
bfa74976
RS
2541@{
2542 symrec *ptr;
2543 for (ptr = sym_table; ptr != (symrec *) 0;
2544 ptr = (symrec *)ptr->next)
2545 if (strcmp (ptr->name,sym_name) == 0)
2546 return ptr;
2547 return 0;
2548@}
2549@end smallexample
2550
2551The function @code{yylex} must now recognize variables, numeric values, and
2552the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2553characters with a leading letter are recognized as either variables or
bfa74976
RS
2554functions depending on what the symbol table says about them.
2555
2556The string is passed to @code{getsym} for look up in the symbol table. If
2557the name appears in the table, a pointer to its location and its type
2558(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2559already in the table, then it is installed as a @code{VAR} using
2560@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2561returned to @code{yyparse}.
bfa74976
RS
2562
2563No change is needed in the handling of numeric values and arithmetic
2564operators in @code{yylex}.
2565
2566@smallexample
2567@group
2568#include <ctype.h>
18b519c0 2569@end group
13863333 2570
18b519c0 2571@group
13863333
AD
2572int
2573yylex (void)
bfa74976
RS
2574@{
2575 int c;
2576
72d2299c 2577 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2578 while ((c = getchar ()) == ' ' || c == '\t');
2579
2580 if (c == EOF)
2581 return 0;
2582@end group
2583
2584@group
2585 /* Char starts a number => parse the number. */
2586 if (c == '.' || isdigit (c))
2587 @{
2588 ungetc (c, stdin);
2589 scanf ("%lf", &yylval.val);
2590 return NUM;
2591 @}
2592@end group
2593
2594@group
2595 /* Char starts an identifier => read the name. */
2596 if (isalpha (c))
2597 @{
2598 symrec *s;
2599 static char *symbuf = 0;
2600 static int length = 0;
2601 int i;
2602@end group
2603
2604@group
2605 /* Initially make the buffer long enough
2606 for a 40-character symbol name. */
2607 if (length == 0)
2608 length = 40, symbuf = (char *)malloc (length + 1);
2609
2610 i = 0;
2611 do
2612@end group
2613@group
2614 @{
2615 /* If buffer is full, make it bigger. */
2616 if (i == length)
2617 @{
2618 length *= 2;
18b519c0 2619 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2620 @}
2621 /* Add this character to the buffer. */
2622 symbuf[i++] = c;
2623 /* Get another character. */
2624 c = getchar ();
2625 @}
2626@end group
2627@group
72d2299c 2628 while (isalnum (c));
bfa74976
RS
2629
2630 ungetc (c, stdin);
2631 symbuf[i] = '\0';
2632@end group
2633
2634@group
2635 s = getsym (symbuf);
2636 if (s == 0)
2637 s = putsym (symbuf, VAR);
2638 yylval.tptr = s;
2639 return s->type;
2640 @}
2641
2642 /* Any other character is a token by itself. */
2643 return c;
2644@}
2645@end group
2646@end smallexample
2647
72d2299c 2648This program is both powerful and flexible. You may easily add new
704a47c4
AD
2649functions, and it is a simple job to modify this code to install
2650predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2651
342b8b6e 2652@node Exercises
bfa74976
RS
2653@section Exercises
2654@cindex exercises
2655
2656@enumerate
2657@item
2658Add some new functions from @file{math.h} to the initialization list.
2659
2660@item
2661Add another array that contains constants and their values. Then
2662modify @code{init_table} to add these constants to the symbol table.
2663It will be easiest to give the constants type @code{VAR}.
2664
2665@item
2666Make the program report an error if the user refers to an
2667uninitialized variable in any way except to store a value in it.
2668@end enumerate
2669
342b8b6e 2670@node Grammar File
bfa74976
RS
2671@chapter Bison Grammar Files
2672
2673Bison takes as input a context-free grammar specification and produces a
2674C-language function that recognizes correct instances of the grammar.
2675
2676The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2677@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2678
2679@menu
2680* Grammar Outline:: Overall layout of the grammar file.
2681* Symbols:: Terminal and nonterminal symbols.
2682* Rules:: How to write grammar rules.
2683* Recursion:: Writing recursive rules.
2684* Semantics:: Semantic values and actions.
847bf1f5 2685* Locations:: Locations and actions.
bfa74976
RS
2686* Declarations:: All kinds of Bison declarations are described here.
2687* Multiple Parsers:: Putting more than one Bison parser in one program.
2688@end menu
2689
342b8b6e 2690@node Grammar Outline
bfa74976
RS
2691@section Outline of a Bison Grammar
2692
2693A Bison grammar file has four main sections, shown here with the
2694appropriate delimiters:
2695
2696@example
2697%@{
38a92d50 2698 @var{Prologue}
bfa74976
RS
2699%@}
2700
2701@var{Bison declarations}
2702
2703%%
2704@var{Grammar rules}
2705%%
2706
75f5aaea 2707@var{Epilogue}
bfa74976
RS
2708@end example
2709
2710Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2711As a @acronym{GNU} extension, @samp{//} introduces a comment that
2712continues until end of line.
bfa74976
RS
2713
2714@menu
f5f419de 2715* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2716* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2717* Bison Declarations:: Syntax and usage of the Bison declarations section.
2718* Grammar Rules:: Syntax and usage of the grammar rules section.
2719* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2720@end menu
2721
38a92d50 2722@node Prologue
75f5aaea
MA
2723@subsection The prologue
2724@cindex declarations section
2725@cindex Prologue
2726@cindex declarations
bfa74976 2727
f8e1c9e5
AD
2728The @var{Prologue} section contains macro definitions and declarations
2729of functions and variables that are used in the actions in the grammar
2730rules. These are copied to the beginning of the parser file so that
2731they precede the definition of @code{yyparse}. You can use
2732@samp{#include} to get the declarations from a header file. If you
2733don't need any C declarations, you may omit the @samp{%@{} and
2734@samp{%@}} delimiters that bracket this section.
bfa74976 2735
9c437126 2736The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2737of @samp{%@}} that is outside a comment, a string literal, or a
2738character constant.
2739
c732d2c6
AD
2740You may have more than one @var{Prologue} section, intermixed with the
2741@var{Bison declarations}. This allows you to have C and Bison
2742declarations that refer to each other. For example, the @code{%union}
2743declaration may use types defined in a header file, and you may wish to
2744prototype functions that take arguments of type @code{YYSTYPE}. This
2745can be done with two @var{Prologue} blocks, one before and one after the
2746@code{%union} declaration.
2747
2748@smallexample
2749%@{
aef3da86 2750 #define _GNU_SOURCE
38a92d50
PE
2751 #include <stdio.h>
2752 #include "ptypes.h"
c732d2c6
AD
2753%@}
2754
2755%union @{
779e7ceb 2756 long int n;
c732d2c6
AD
2757 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2758@}
2759
2760%@{
38a92d50
PE
2761 static void print_token_value (FILE *, int, YYSTYPE);
2762 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2763%@}
2764
2765@dots{}
2766@end smallexample
2767
aef3da86
PE
2768When in doubt, it is usually safer to put prologue code before all
2769Bison declarations, rather than after. For example, any definitions
2770of feature test macros like @code{_GNU_SOURCE} or
2771@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2772feature test macros can affect the behavior of Bison-generated
2773@code{#include} directives.
2774
2cbe6b7f
JD
2775@node Prologue Alternatives
2776@subsection Prologue Alternatives
2777@cindex Prologue Alternatives
2778
136a0f76 2779@findex %code
16dc6a9e
JD
2780@findex %code requires
2781@findex %code provides
2782@findex %code top
85894313 2783
2cbe6b7f
JD
2784The functionality of @var{Prologue} sections can often be subtle and
2785inflexible.
8e0a5e9e
JD
2786As an alternative, Bison provides a %code directive with an explicit qualifier
2787field, which identifies the purpose of the code and thus the location(s) where
2788Bison should generate it.
2789For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2790one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2791@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2792
2793Look again at the example of the previous section:
2794
2795@smallexample
2796%@{
2797 #define _GNU_SOURCE
2798 #include <stdio.h>
2799 #include "ptypes.h"
2800%@}
2801
2802%union @{
2803 long int n;
2804 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2805@}
2806
2807%@{
2808 static void print_token_value (FILE *, int, YYSTYPE);
2809 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2810%@}
2811
2812@dots{}
2813@end smallexample
2814
2815@noindent
2816Notice that there are two @var{Prologue} sections here, but there's a subtle
2817distinction between their functionality.
2818For example, if you decide to override Bison's default definition for
2819@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2820definition?
2821You should write it in the first since Bison will insert that code into the
8e0a5e9e 2822parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2823In which @var{Prologue} section should you prototype an internal function,
2824@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2825arguments?
2826You should prototype it in the second since Bison will insert that code
2827@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2828
2829This distinction in functionality between the two @var{Prologue} sections is
2830established by the appearance of the @code{%union} between them.
a501eca9 2831This behavior raises a few questions.
2cbe6b7f
JD
2832First, why should the position of a @code{%union} affect definitions related to
2833@code{YYLTYPE} and @code{yytokentype}?
2834Second, what if there is no @code{%union}?
2835In that case, the second kind of @var{Prologue} section is not available.
2836This behavior is not intuitive.
2837
8e0a5e9e 2838To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2839@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2840Let's go ahead and add the new @code{YYLTYPE} definition and the
2841@code{trace_token} prototype at the same time:
2842
2843@smallexample
16dc6a9e 2844%code top @{
2cbe6b7f
JD
2845 #define _GNU_SOURCE
2846 #include <stdio.h>
8e0a5e9e
JD
2847
2848 /* WARNING: The following code really belongs
16dc6a9e 2849 * in a `%code requires'; see below. */
8e0a5e9e 2850
2cbe6b7f
JD
2851 #include "ptypes.h"
2852 #define YYLTYPE YYLTYPE
2853 typedef struct YYLTYPE
2854 @{
2855 int first_line;
2856 int first_column;
2857 int last_line;
2858 int last_column;
2859 char *filename;
2860 @} YYLTYPE;
2861@}
2862
2863%union @{
2864 long int n;
2865 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2866@}
2867
2868%code @{
2869 static void print_token_value (FILE *, int, YYSTYPE);
2870 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2871 static void trace_token (enum yytokentype token, YYLTYPE loc);
2872@}
2873
2874@dots{}
2875@end smallexample
2876
2877@noindent
16dc6a9e
JD
2878In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2879functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2880explicit which kind you intend.
2cbe6b7f
JD
2881Moreover, both kinds are always available even in the absence of @code{%union}.
2882
16dc6a9e 2883The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2884The first two lines before the warning need to appear near the top of the
2885parser source code file.
2886The first line after the warning is required by @code{YYSTYPE} and thus also
2887needs to appear in the parser source code file.
2cbe6b7f 2888However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2889(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2890the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2891The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2892override the default @code{YYLTYPE} definition there.
2893
16dc6a9e 2894In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2895lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2896definitions.
16dc6a9e 2897Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2898
2899@smallexample
16dc6a9e 2900%code top @{
2cbe6b7f
JD
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903@}
2904
16dc6a9e 2905%code requires @{
9bc0dd67
JD
2906 #include "ptypes.h"
2907@}
2908%union @{
2909 long int n;
2910 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2911@}
2912
16dc6a9e 2913%code requires @{
2cbe6b7f
JD
2914 #define YYLTYPE YYLTYPE
2915 typedef struct YYLTYPE
2916 @{
2917 int first_line;
2918 int first_column;
2919 int last_line;
2920 int last_column;
2921 char *filename;
2922 @} YYLTYPE;
2923@}
2924
136a0f76 2925%code @{
2cbe6b7f
JD
2926 static void print_token_value (FILE *, int, YYSTYPE);
2927 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2928 static void trace_token (enum yytokentype token, YYLTYPE loc);
2929@}
2930
2931@dots{}
2932@end smallexample
2933
2934@noindent
2935Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2936definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2937definitions in both the parser source code file and the parser header file.
16dc6a9e 2938(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2939place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2940
a501eca9 2941When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2942should prefer @code{%code requires} over @code{%code top} regardless of whether
2943you instruct Bison to generate a parser header file.
a501eca9 2944When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2945source code file and that has no special need to appear at the top of that
16dc6a9e 2946file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2947These practices will make the purpose of each block of your code explicit to
2948Bison and to other developers reading your grammar file.
8e0a5e9e 2949Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2950@code{%code requires} to be the most important of the four @var{Prologue}
2951alternatives.
a501eca9 2952
2cbe6b7f
JD
2953At some point while developing your parser, you might decide to provide
2954@code{trace_token} to modules that are external to your parser.
2955Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2956header file and the parser source code file.
2957Since this function is not a dependency required by @code{YYSTYPE} or
2958@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2959@code{%code requires}.
2cbe6b7f 2960More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2961@code{%code requires} is not sufficient.
8e0a5e9e 2962Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2963@code{%code provides}:
2cbe6b7f
JD
2964
2965@smallexample
16dc6a9e 2966%code top @{
2cbe6b7f 2967 #define _GNU_SOURCE
136a0f76 2968 #include <stdio.h>
2cbe6b7f 2969@}
136a0f76 2970
16dc6a9e 2971%code requires @{
2cbe6b7f
JD
2972 #include "ptypes.h"
2973@}
2974%union @{
2975 long int n;
2976 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2977@}
2978
16dc6a9e 2979%code requires @{
2cbe6b7f
JD
2980 #define YYLTYPE YYLTYPE
2981 typedef struct YYLTYPE
2982 @{
2983 int first_line;
2984 int first_column;
2985 int last_line;
2986 int last_column;
2987 char *filename;
2988 @} YYLTYPE;
2989@}
2990
16dc6a9e 2991%code provides @{
2cbe6b7f
JD
2992 void trace_token (enum yytokentype token, YYLTYPE loc);
2993@}
2994
2995%code @{
9bc0dd67
JD
2996 static void print_token_value (FILE *, int, YYSTYPE);
2997 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2998@}
9bc0dd67
JD
2999
3000@dots{}
3001@end smallexample
3002
2cbe6b7f
JD
3003@noindent
3004Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
3005file and the parser source code file after the definitions for
3006@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
3007
3008The above examples are careful to write directives in an order that reflects
8e0a5e9e 3009the layout of the generated parser source code and header files:
16dc6a9e 3010@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3011@code{%code}.
a501eca9 3012While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3013this order, Bison does not require it.
3014Instead, Bison lets you choose an organization that makes sense to you.
3015
a501eca9 3016You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3017In that case, Bison concatenates the contained code in declaration order.
3018This is the only way in which the position of one of these directives within
3019the grammar file affects its functionality.
3020
3021The result of the previous two properties is greater flexibility in how you may
3022organize your grammar file.
3023For example, you may organize semantic-type-related directives by semantic
3024type:
3025
3026@smallexample
16dc6a9e 3027%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3028%union @{ type1 field1; @}
3029%destructor @{ type1_free ($$); @} <field1>
3030%printer @{ type1_print ($$); @} <field1>
3031
16dc6a9e 3032%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3033%union @{ type2 field2; @}
3034%destructor @{ type2_free ($$); @} <field2>
3035%printer @{ type2_print ($$); @} <field2>
3036@end smallexample
3037
3038@noindent
3039You could even place each of the above directive groups in the rules section of
3040the grammar file next to the set of rules that uses the associated semantic
3041type.
61fee93e
JD
3042(In the rules section, you must terminate each of those directives with a
3043semicolon.)
2cbe6b7f
JD
3044And you don't have to worry that some directive (like a @code{%union}) in the
3045definitions section is going to adversely affect their functionality in some
3046counter-intuitive manner just because it comes first.
3047Such an organization is not possible using @var{Prologue} sections.
3048
a501eca9 3049This section has been concerned with explaining the advantages of the four
8e0a5e9e 3050@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3051However, in most cases when using these directives, you shouldn't need to
3052think about all the low-level ordering issues discussed here.
3053Instead, you should simply use these directives to label each block of your
3054code according to its purpose and let Bison handle the ordering.
3055@code{%code} is the most generic label.
16dc6a9e
JD
3056Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3057as needed.
a501eca9 3058
342b8b6e 3059@node Bison Declarations
bfa74976
RS
3060@subsection The Bison Declarations Section
3061@cindex Bison declarations (introduction)
3062@cindex declarations, Bison (introduction)
3063
3064The @var{Bison declarations} section contains declarations that define
3065terminal and nonterminal symbols, specify precedence, and so on.
3066In some simple grammars you may not need any declarations.
3067@xref{Declarations, ,Bison Declarations}.
3068
342b8b6e 3069@node Grammar Rules
bfa74976
RS
3070@subsection The Grammar Rules Section
3071@cindex grammar rules section
3072@cindex rules section for grammar
3073
3074The @dfn{grammar rules} section contains one or more Bison grammar
3075rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3076
3077There must always be at least one grammar rule, and the first
3078@samp{%%} (which precedes the grammar rules) may never be omitted even
3079if it is the first thing in the file.
3080
38a92d50 3081@node Epilogue
75f5aaea 3082@subsection The epilogue
bfa74976 3083@cindex additional C code section
75f5aaea 3084@cindex epilogue
bfa74976
RS
3085@cindex C code, section for additional
3086
08e49d20
PE
3087The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3088the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3089place to put anything that you want to have in the parser file but which need
3090not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3091definitions of @code{yylex} and @code{yyerror} often go here. Because
3092C requires functions to be declared before being used, you often need
3093to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3094even if you define them in the Epilogue.
75f5aaea 3095@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3096
3097If the last section is empty, you may omit the @samp{%%} that separates it
3098from the grammar rules.
3099
f8e1c9e5
AD
3100The Bison parser itself contains many macros and identifiers whose names
3101start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3102any such names (except those documented in this manual) in the epilogue
3103of the grammar file.
bfa74976 3104
342b8b6e 3105@node Symbols
bfa74976
RS
3106@section Symbols, Terminal and Nonterminal
3107@cindex nonterminal symbol
3108@cindex terminal symbol
3109@cindex token type
3110@cindex symbol
3111
3112@dfn{Symbols} in Bison grammars represent the grammatical classifications
3113of the language.
3114
3115A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3116class of syntactically equivalent tokens. You use the symbol in grammar
3117rules to mean that a token in that class is allowed. The symbol is
3118represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3119function returns a token type code to indicate what kind of token has
3120been read. You don't need to know what the code value is; you can use
3121the symbol to stand for it.
bfa74976 3122
f8e1c9e5
AD
3123A @dfn{nonterminal symbol} stands for a class of syntactically
3124equivalent groupings. The symbol name is used in writing grammar rules.
3125By convention, it should be all lower case.
bfa74976 3126
cdf3f113
AD
3127Symbol names can contain letters, underscores, periods, dashes, and (not
3128at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3129extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3130that contain periods or dashes make little sense: since they are not
3131valid symbols (in most programming languages) they are not exported as
3132token names.
bfa74976 3133
931c7513 3134There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3135
3136@itemize @bullet
3137@item
3138A @dfn{named token type} is written with an identifier, like an
c827f760 3139identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3140such name must be defined with a Bison declaration such as
3141@code{%token}. @xref{Token Decl, ,Token Type Names}.
3142
3143@item
3144@cindex character token
3145@cindex literal token
3146@cindex single-character literal
931c7513
RS
3147A @dfn{character token type} (or @dfn{literal character token}) is
3148written in the grammar using the same syntax used in C for character
3149constants; for example, @code{'+'} is a character token type. A
3150character token type doesn't need to be declared unless you need to
3151specify its semantic value data type (@pxref{Value Type, ,Data Types of
3152Semantic Values}), associativity, or precedence (@pxref{Precedence,
3153,Operator Precedence}).
bfa74976
RS
3154
3155By convention, a character token type is used only to represent a
3156token that consists of that particular character. Thus, the token
3157type @code{'+'} is used to represent the character @samp{+} as a
3158token. Nothing enforces this convention, but if you depart from it,
3159your program will confuse other readers.
3160
3161All the usual escape sequences used in character literals in C can be
3162used in Bison as well, but you must not use the null character as a
72d2299c
PE
3163character literal because its numeric code, zero, signifies
3164end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3165for @code{yylex}}). Also, unlike standard C, trigraphs have no
3166special meaning in Bison character literals, nor is backslash-newline
3167allowed.
931c7513
RS
3168
3169@item
3170@cindex string token
3171@cindex literal string token
9ecbd125 3172@cindex multicharacter literal
931c7513
RS
3173A @dfn{literal string token} is written like a C string constant; for
3174example, @code{"<="} is a literal string token. A literal string token
3175doesn't need to be declared unless you need to specify its semantic
14ded682 3176value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3177(@pxref{Precedence}).
3178
3179You can associate the literal string token with a symbolic name as an
3180alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3181Declarations}). If you don't do that, the lexical analyzer has to
3182retrieve the token number for the literal string token from the
3183@code{yytname} table (@pxref{Calling Convention}).
3184
c827f760 3185@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3186
3187By convention, a literal string token is used only to represent a token
3188that consists of that particular string. Thus, you should use the token
3189type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3190does not enforce this convention, but if you depart from it, people who
931c7513
RS
3191read your program will be confused.
3192
3193All the escape sequences used in string literals in C can be used in
92ac3705
PE
3194Bison as well, except that you must not use a null character within a
3195string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3196meaning in Bison string literals, nor is backslash-newline allowed. A
3197literal string token must contain two or more characters; for a token
3198containing just one character, use a character token (see above).
bfa74976
RS
3199@end itemize
3200
3201How you choose to write a terminal symbol has no effect on its
3202grammatical meaning. That depends only on where it appears in rules and
3203on when the parser function returns that symbol.
3204
72d2299c
PE
3205The value returned by @code{yylex} is always one of the terminal
3206symbols, except that a zero or negative value signifies end-of-input.
3207Whichever way you write the token type in the grammar rules, you write
3208it the same way in the definition of @code{yylex}. The numeric code
3209for a character token type is simply the positive numeric code of the
3210character, so @code{yylex} can use the identical value to generate the
3211requisite code, though you may need to convert it to @code{unsigned
3212char} to avoid sign-extension on hosts where @code{char} is signed.
3213Each named token type becomes a C macro in
bfa74976 3214the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3215(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3216@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3217
3218If @code{yylex} is defined in a separate file, you need to arrange for the
3219token-type macro definitions to be available there. Use the @samp{-d}
3220option when you run Bison, so that it will write these macro definitions
3221into a separate header file @file{@var{name}.tab.h} which you can include
3222in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3223
72d2299c 3224If you want to write a grammar that is portable to any Standard C
9d9b8b70 3225host, you must use only nonnull character tokens taken from the basic
c827f760 3226execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3227digits, the 52 lower- and upper-case English letters, and the
3228characters in the following C-language string:
3229
3230@example
3231"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3232@end example
3233
f8e1c9e5
AD
3234The @code{yylex} function and Bison must use a consistent character set
3235and encoding for character tokens. For example, if you run Bison in an
3236@acronym{ASCII} environment, but then compile and run the resulting
3237program in an environment that uses an incompatible character set like
3238@acronym{EBCDIC}, the resulting program may not work because the tables
3239generated by Bison will assume @acronym{ASCII} numeric values for
3240character tokens. It is standard practice for software distributions to
3241contain C source files that were generated by Bison in an
3242@acronym{ASCII} environment, so installers on platforms that are
3243incompatible with @acronym{ASCII} must rebuild those files before
3244compiling them.
e966383b 3245
bfa74976
RS
3246The symbol @code{error} is a terminal symbol reserved for error recovery
3247(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3248In particular, @code{yylex} should never return this value. The default
3249value of the error token is 256, unless you explicitly assigned 256 to
3250one of your tokens with a @code{%token} declaration.
bfa74976 3251
342b8b6e 3252@node Rules
bfa74976
RS
3253@section Syntax of Grammar Rules
3254@cindex rule syntax
3255@cindex grammar rule syntax
3256@cindex syntax of grammar rules
3257
3258A Bison grammar rule has the following general form:
3259
3260@example
e425e872 3261@group
bfa74976
RS
3262@var{result}: @var{components}@dots{}
3263 ;
e425e872 3264@end group
bfa74976
RS
3265@end example
3266
3267@noindent
9ecbd125 3268where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3269and @var{components} are various terminal and nonterminal symbols that
13863333 3270are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3271
3272For example,
3273
3274@example
3275@group
3276exp: exp '+' exp
3277 ;
3278@end group
3279@end example
3280
3281@noindent
3282says that two groupings of type @code{exp}, with a @samp{+} token in between,
3283can be combined into a larger grouping of type @code{exp}.
3284
72d2299c
PE
3285White space in rules is significant only to separate symbols. You can add
3286extra white space as you wish.
bfa74976
RS
3287
3288Scattered among the components can be @var{actions} that determine
3289the semantics of the rule. An action looks like this:
3290
3291@example
3292@{@var{C statements}@}
3293@end example
3294
3295@noindent
287c78f6
PE
3296@cindex braced code
3297This is an example of @dfn{braced code}, that is, C code surrounded by
3298braces, much like a compound statement in C@. Braced code can contain
3299any sequence of C tokens, so long as its braces are balanced. Bison
3300does not check the braced code for correctness directly; it merely
3301copies the code to the output file, where the C compiler can check it.
3302
3303Within braced code, the balanced-brace count is not affected by braces
3304within comments, string literals, or character constants, but it is
3305affected by the C digraphs @samp{<%} and @samp{%>} that represent
3306braces. At the top level braced code must be terminated by @samp{@}}
3307and not by a digraph. Bison does not look for trigraphs, so if braced
3308code uses trigraphs you should ensure that they do not affect the
3309nesting of braces or the boundaries of comments, string literals, or
3310character constants.
3311
bfa74976
RS
3312Usually there is only one action and it follows the components.
3313@xref{Actions}.
3314
3315@findex |
3316Multiple rules for the same @var{result} can be written separately or can
3317be joined with the vertical-bar character @samp{|} as follows:
3318
bfa74976
RS
3319@example
3320@group
3321@var{result}: @var{rule1-components}@dots{}
3322 | @var{rule2-components}@dots{}
3323 @dots{}
3324 ;
3325@end group
3326@end example
bfa74976
RS
3327
3328@noindent
3329They are still considered distinct rules even when joined in this way.
3330
3331If @var{components} in a rule is empty, it means that @var{result} can
3332match the empty string. For example, here is how to define a
3333comma-separated sequence of zero or more @code{exp} groupings:
3334
3335@example
3336@group
3337expseq: /* empty */
3338 | expseq1
3339 ;
3340@end group
3341
3342@group
3343expseq1: exp
3344 | expseq1 ',' exp
3345 ;
3346@end group
3347@end example
3348
3349@noindent
3350It is customary to write a comment @samp{/* empty */} in each rule
3351with no components.
3352
342b8b6e 3353@node Recursion
bfa74976
RS
3354@section Recursive Rules
3355@cindex recursive rule
3356
f8e1c9e5
AD
3357A rule is called @dfn{recursive} when its @var{result} nonterminal
3358appears also on its right hand side. Nearly all Bison grammars need to
3359use recursion, because that is the only way to define a sequence of any
3360number of a particular thing. Consider this recursive definition of a
9ecbd125 3361comma-separated sequence of one or more expressions:
bfa74976
RS
3362
3363@example
3364@group
3365expseq1: exp
3366 | expseq1 ',' exp
3367 ;
3368@end group
3369@end example
3370
3371@cindex left recursion
3372@cindex right recursion
3373@noindent
3374Since the recursive use of @code{expseq1} is the leftmost symbol in the
3375right hand side, we call this @dfn{left recursion}. By contrast, here
3376the same construct is defined using @dfn{right recursion}:
3377
3378@example
3379@group
3380expseq1: exp
3381 | exp ',' expseq1
3382 ;
3383@end group
3384@end example
3385
3386@noindent
ec3bc396
AD
3387Any kind of sequence can be defined using either left recursion or right
3388recursion, but you should always use left recursion, because it can
3389parse a sequence of any number of elements with bounded stack space.
3390Right recursion uses up space on the Bison stack in proportion to the
3391number of elements in the sequence, because all the elements must be
3392shifted onto the stack before the rule can be applied even once.
3393@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3394of this.
bfa74976
RS
3395
3396@cindex mutual recursion
3397@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3398rule does not appear directly on its right hand side, but does appear
3399in rules for other nonterminals which do appear on its right hand
13863333 3400side.
bfa74976
RS
3401
3402For example:
3403
3404@example
3405@group
3406expr: primary
3407 | primary '+' primary
3408 ;
3409@end group
3410
3411@group
3412primary: constant
3413 | '(' expr ')'
3414 ;
3415@end group
3416@end example
3417
3418@noindent
3419defines two mutually-recursive nonterminals, since each refers to the
3420other.
3421
342b8b6e 3422@node Semantics
bfa74976
RS
3423@section Defining Language Semantics
3424@cindex defining language semantics
13863333 3425@cindex language semantics, defining
bfa74976
RS
3426
3427The grammar rules for a language determine only the syntax. The semantics
3428are determined by the semantic values associated with various tokens and
3429groupings, and by the actions taken when various groupings are recognized.
3430
3431For example, the calculator calculates properly because the value
3432associated with each expression is the proper number; it adds properly
3433because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3434the numbers associated with @var{x} and @var{y}.
3435
3436@menu
3437* Value Type:: Specifying one data type for all semantic values.
3438* Multiple Types:: Specifying several alternative data types.
3439* Actions:: An action is the semantic definition of a grammar rule.
3440* Action Types:: Specifying data types for actions to operate on.
3441* Mid-Rule Actions:: Most actions go at the end of a rule.
3442 This says when, why and how to use the exceptional
3443 action in the middle of a rule.
d013372c 3444* Named References:: Using named references in actions.
bfa74976
RS
3445@end menu
3446
342b8b6e 3447@node Value Type
bfa74976
RS
3448@subsection Data Types of Semantic Values
3449@cindex semantic value type
3450@cindex value type, semantic
3451@cindex data types of semantic values
3452@cindex default data type
3453
3454In a simple program it may be sufficient to use the same data type for
3455the semantic values of all language constructs. This was true in the
c827f760 3456@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3457Notation Calculator}).
bfa74976 3458
ddc8ede1
PE
3459Bison normally uses the type @code{int} for semantic values if your
3460program uses the same data type for all language constructs. To
bfa74976
RS
3461specify some other type, define @code{YYSTYPE} as a macro, like this:
3462
3463@example
3464#define YYSTYPE double
3465@end example
3466
3467@noindent
50cce58e
PE
3468@code{YYSTYPE}'s replacement list should be a type name
3469that does not contain parentheses or square brackets.
342b8b6e 3470This macro definition must go in the prologue of the grammar file
75f5aaea 3471(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3472
342b8b6e 3473@node Multiple Types
bfa74976
RS
3474@subsection More Than One Value Type
3475
3476In most programs, you will need different data types for different kinds
3477of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3478@code{int} or @code{long int}, while a string constant needs type
3479@code{char *}, and an identifier might need a pointer to an entry in the
3480symbol table.
bfa74976
RS
3481
3482To use more than one data type for semantic values in one parser, Bison
3483requires you to do two things:
3484
3485@itemize @bullet
3486@item
ddc8ede1 3487Specify the entire collection of possible data types, either by using the
704a47c4 3488@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3489Value Types}), or by using a @code{typedef} or a @code{#define} to
3490define @code{YYSTYPE} to be a union type whose member names are
3491the type tags.
bfa74976
RS
3492
3493@item
14ded682
AD
3494Choose one of those types for each symbol (terminal or nonterminal) for
3495which semantic values are used. This is done for tokens with the
3496@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3497and for groupings with the @code{%type} Bison declaration (@pxref{Type
3498Decl, ,Nonterminal Symbols}).
bfa74976
RS
3499@end itemize
3500
342b8b6e 3501@node Actions
bfa74976
RS
3502@subsection Actions
3503@cindex action
3504@vindex $$
3505@vindex $@var{n}
d013372c
AR
3506@vindex $@var{name}
3507@vindex $[@var{name}]
bfa74976
RS
3508
3509An action accompanies a syntactic rule and contains C code to be executed
3510each time an instance of that rule is recognized. The task of most actions
3511is to compute a semantic value for the grouping built by the rule from the
3512semantic values associated with tokens or smaller groupings.
3513
287c78f6
PE
3514An action consists of braced code containing C statements, and can be
3515placed at any position in the rule;
704a47c4
AD
3516it is executed at that position. Most rules have just one action at the
3517end of the rule, following all the components. Actions in the middle of
3518a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3519Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3520
3521The C code in an action can refer to the semantic values of the components
3522matched by the rule with the construct @code{$@var{n}}, which stands for
3523the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3524being constructed is @code{$$}. In addition, the semantic values of
3525symbols can be accessed with the named references construct
3526@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3527constructs into expressions of the appropriate type when it copies the
d013372c
AR
3528actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3529stands for the current grouping) is translated to a modifiable
0cc3da3a 3530lvalue, so it can be assigned to.
bfa74976
RS
3531
3532Here is a typical example:
3533
3534@example
3535@group
3536exp: @dots{}
3537 | exp '+' exp
3538 @{ $$ = $1 + $3; @}
3539@end group
3540@end example
3541
d013372c
AR
3542Or, in terms of named references:
3543
3544@example
3545@group
3546exp[result]: @dots{}
3547 | exp[left] '+' exp[right]
3548 @{ $result = $left + $right; @}
3549@end group
3550@end example
3551
bfa74976
RS
3552@noindent
3553This rule constructs an @code{exp} from two smaller @code{exp} groupings
3554connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3555(@code{$left} and @code{$right})
bfa74976
RS
3556refer to the semantic values of the two component @code{exp} groupings,
3557which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3558The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3559semantic value of
bfa74976
RS
3560the addition-expression just recognized by the rule. If there were a
3561useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3562referred to as @code{$2}.
bfa74976 3563
d013372c
AR
3564@xref{Named References,,Using Named References}, for more information
3565about using the named references construct.
3566
3ded9a63
AD
3567Note that the vertical-bar character @samp{|} is really a rule
3568separator, and actions are attached to a single rule. This is a
3569difference with tools like Flex, for which @samp{|} stands for either
3570``or'', or ``the same action as that of the next rule''. In the
3571following example, the action is triggered only when @samp{b} is found:
3572
3573@example
3574@group
3575a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3576@end group
3577@end example
3578
bfa74976
RS
3579@cindex default action
3580If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3581@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3582becomes the value of the whole rule. Of course, the default action is
3583valid only if the two data types match. There is no meaningful default
3584action for an empty rule; every empty rule must have an explicit action
3585unless the rule's value does not matter.
bfa74976
RS
3586
3587@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3588to tokens and groupings on the stack @emph{before} those that match the
3589current rule. This is a very risky practice, and to use it reliably
3590you must be certain of the context in which the rule is applied. Here
3591is a case in which you can use this reliably:
3592
3593@example
3594@group
3595foo: expr bar '+' expr @{ @dots{} @}
3596 | expr bar '-' expr @{ @dots{} @}
3597 ;
3598@end group
3599
3600@group
3601bar: /* empty */
3602 @{ previous_expr = $0; @}
3603 ;
3604@end group
3605@end example
3606
3607As long as @code{bar} is used only in the fashion shown here, @code{$0}
3608always refers to the @code{expr} which precedes @code{bar} in the
3609definition of @code{foo}.
3610
32c29292 3611@vindex yylval
742e4900 3612It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3613any, from a semantic action.
3614This semantic value is stored in @code{yylval}.
3615@xref{Action Features, ,Special Features for Use in Actions}.
3616
342b8b6e 3617@node Action Types
bfa74976
RS
3618@subsection Data Types of Values in Actions
3619@cindex action data types
3620@cindex data types in actions
3621
3622If you have chosen a single data type for semantic values, the @code{$$}
3623and @code{$@var{n}} constructs always have that data type.
3624
3625If you have used @code{%union} to specify a variety of data types, then you
3626must declare a choice among these types for each terminal or nonterminal
3627symbol that can have a semantic value. Then each time you use @code{$$} or
3628@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3629in the rule. In this example,
bfa74976
RS
3630
3631@example
3632@group
3633exp: @dots{}
3634 | exp '+' exp
3635 @{ $$ = $1 + $3; @}
3636@end group
3637@end example
3638
3639@noindent
3640@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3641have the data type declared for the nonterminal symbol @code{exp}. If
3642@code{$2} were used, it would have the data type declared for the
e0c471a9 3643terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3644
3645Alternatively, you can specify the data type when you refer to the value,
3646by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3647reference. For example, if you have defined types as shown here:
3648
3649@example
3650@group
3651%union @{
3652 int itype;
3653 double dtype;
3654@}
3655@end group
3656@end example
3657
3658@noindent
3659then you can write @code{$<itype>1} to refer to the first subunit of the
3660rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3661
342b8b6e 3662@node Mid-Rule Actions
bfa74976
RS
3663@subsection Actions in Mid-Rule
3664@cindex actions in mid-rule
3665@cindex mid-rule actions
3666
3667Occasionally it is useful to put an action in the middle of a rule.
3668These actions are written just like usual end-of-rule actions, but they
3669are executed before the parser even recognizes the following components.
3670
3671A mid-rule action may refer to the components preceding it using
3672@code{$@var{n}}, but it may not refer to subsequent components because
3673it is run before they are parsed.
3674
3675The mid-rule action itself counts as one of the components of the rule.
3676This makes a difference when there is another action later in the same rule
3677(and usually there is another at the end): you have to count the actions
3678along with the symbols when working out which number @var{n} to use in
3679@code{$@var{n}}.
3680
3681The mid-rule action can also have a semantic value. The action can set
3682its value with an assignment to @code{$$}, and actions later in the rule
3683can refer to the value using @code{$@var{n}}. Since there is no symbol
3684to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3685in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3686specify a data type each time you refer to this value.
bfa74976
RS
3687
3688There is no way to set the value of the entire rule with a mid-rule
3689action, because assignments to @code{$$} do not have that effect. The
3690only way to set the value for the entire rule is with an ordinary action
3691at the end of the rule.
3692
3693Here is an example from a hypothetical compiler, handling a @code{let}
3694statement that looks like @samp{let (@var{variable}) @var{statement}} and
3695serves to create a variable named @var{variable} temporarily for the
3696duration of @var{statement}. To parse this construct, we must put
3697@var{variable} into the symbol table while @var{statement} is parsed, then
3698remove it afterward. Here is how it is done:
3699
3700@example
3701@group
3702stmt: LET '(' var ')'
3703 @{ $<context>$ = push_context ();
3704 declare_variable ($3); @}
3705 stmt @{ $$ = $6;
3706 pop_context ($<context>5); @}
3707@end group
3708@end example
3709
3710@noindent
3711As soon as @samp{let (@var{variable})} has been recognized, the first
3712action is run. It saves a copy of the current semantic context (the
3713list of accessible variables) as its semantic value, using alternative
3714@code{context} in the data-type union. Then it calls
3715@code{declare_variable} to add the new variable to that list. Once the
3716first action is finished, the embedded statement @code{stmt} can be
3717parsed. Note that the mid-rule action is component number 5, so the
3718@samp{stmt} is component number 6.
3719
3720After the embedded statement is parsed, its semantic value becomes the
3721value of the entire @code{let}-statement. Then the semantic value from the
3722earlier action is used to restore the prior list of variables. This
3723removes the temporary @code{let}-variable from the list so that it won't
3724appear to exist while the rest of the program is parsed.
3725
841a7737
JD
3726@findex %destructor
3727@cindex discarded symbols, mid-rule actions
3728@cindex error recovery, mid-rule actions
3729In the above example, if the parser initiates error recovery (@pxref{Error
3730Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3731it might discard the previous semantic context @code{$<context>5} without
3732restoring it.
3733Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3734Discarded Symbols}).
ec5479ce
JD
3735However, Bison currently provides no means to declare a destructor specific to
3736a particular mid-rule action's semantic value.
841a7737
JD
3737
3738One solution is to bury the mid-rule action inside a nonterminal symbol and to
3739declare a destructor for that symbol:
3740
3741@example
3742@group
3743%type <context> let
3744%destructor @{ pop_context ($$); @} let
3745
3746%%
3747
3748stmt: let stmt
3749 @{ $$ = $2;
3750 pop_context ($1); @}
3751 ;
3752
3753let: LET '(' var ')'
3754 @{ $$ = push_context ();
3755 declare_variable ($3); @}
3756 ;
3757
3758@end group
3759@end example
3760
3761@noindent
3762Note that the action is now at the end of its rule.
3763Any mid-rule action can be converted to an end-of-rule action in this way, and
3764this is what Bison actually does to implement mid-rule actions.
3765
bfa74976
RS
3766Taking action before a rule is completely recognized often leads to
3767conflicts since the parser must commit to a parse in order to execute the
3768action. For example, the following two rules, without mid-rule actions,
3769can coexist in a working parser because the parser can shift the open-brace
3770token and look at what follows before deciding whether there is a
3771declaration or not:
3772
3773@example
3774@group
3775compound: '@{' declarations statements '@}'
3776 | '@{' statements '@}'
3777 ;
3778@end group
3779@end example
3780
3781@noindent
3782But when we add a mid-rule action as follows, the rules become nonfunctional:
3783
3784@example
3785@group
3786compound: @{ prepare_for_local_variables (); @}
3787 '@{' declarations statements '@}'
3788@end group
3789@group
3790 | '@{' statements '@}'
3791 ;
3792@end group
3793@end example
3794
3795@noindent
3796Now the parser is forced to decide whether to run the mid-rule action
3797when it has read no farther than the open-brace. In other words, it
3798must commit to using one rule or the other, without sufficient
3799information to do it correctly. (The open-brace token is what is called
742e4900
JD
3800the @dfn{lookahead} token at this time, since the parser is still
3801deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3802
3803You might think that you could correct the problem by putting identical
3804actions into the two rules, like this:
3805
3806@example
3807@group
3808compound: @{ prepare_for_local_variables (); @}
3809 '@{' declarations statements '@}'
3810 | @{ prepare_for_local_variables (); @}
3811 '@{' statements '@}'
3812 ;
3813@end group
3814@end example
3815
3816@noindent
3817But this does not help, because Bison does not realize that the two actions
3818are identical. (Bison never tries to understand the C code in an action.)
3819
3820If the grammar is such that a declaration can be distinguished from a
3821statement by the first token (which is true in C), then one solution which
3822does work is to put the action after the open-brace, like this:
3823
3824@example
3825@group
3826compound: '@{' @{ prepare_for_local_variables (); @}
3827 declarations statements '@}'
3828 | '@{' statements '@}'
3829 ;
3830@end group
3831@end example
3832
3833@noindent
3834Now the first token of the following declaration or statement,
3835which would in any case tell Bison which rule to use, can still do so.
3836
3837Another solution is to bury the action inside a nonterminal symbol which
3838serves as a subroutine:
3839
3840@example
3841@group
3842subroutine: /* empty */
3843 @{ prepare_for_local_variables (); @}
3844 ;
3845
3846@end group
3847
3848@group
3849compound: subroutine
3850 '@{' declarations statements '@}'
3851 | subroutine
3852 '@{' statements '@}'
3853 ;
3854@end group
3855@end example
3856
3857@noindent
3858Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3859deciding which rule for @code{compound} it will eventually use.
bfa74976 3860
d013372c
AR
3861@node Named References
3862@subsection Using Named References
3863@cindex named references
3864
3865While every semantic value can be accessed with positional references
3866@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3867them by name. First of all, original symbol names may be used as named
3868references. For example:
3869
3870@example
3871@group
3872invocation: op '(' args ')'
3873 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3874@end group
3875@end example
3876
3877@noindent
3878The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3879mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3880
3881@example
3882@group
3883invocation: op '(' args ')'
3884 @{ $$ = new_invocation ($op, $args, @@$); @}
3885@end group
3886@end example
3887
3888@noindent
3889However, sometimes regular symbol names are not sufficient due to
3890ambiguities:
3891
3892@example
3893@group
3894exp: exp '/' exp
3895 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3896
3897exp: exp '/' exp
3898 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3899
3900exp: exp '/' exp
3901 @{ $$ = $1 / $3; @} // No error.
3902@end group
3903@end example
3904
3905@noindent
3906When ambiguity occurs, explicitly declared names may be used for values and
3907locations. Explicit names are declared as a bracketed name after a symbol
3908appearance in rule definitions. For example:
3909@example
3910@group
3911exp[result]: exp[left] '/' exp[right]
3912 @{ $result = $left / $right; @}
3913@end group
3914@end example
3915
3916@noindent
3917Explicit names may be declared for RHS and for LHS symbols as well. In order
3918to access a semantic value generated by a mid-rule action, an explicit name
3919may also be declared by putting a bracketed name after the closing brace of
3920the mid-rule action code:
3921@example
3922@group
3923exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3924 @{ $res = $left + $right; @}
3925@end group
3926@end example
3927
3928@noindent
3929
3930In references, in order to specify names containing dots and dashes, an explicit
3931bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3932@example
3933@group
3934if-stmt: IF '(' expr ')' THEN then.stmt ';'
3935 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3936@end group
3937@end example
3938
3939It often happens that named references are followed by a dot, dash or other
3940C punctuation marks and operators. By default, Bison will read
3941@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3942@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3943value. In order to force Bison to recognize @code{name.suffix} in its entirety
3944as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3945must be used.
3946
3947
342b8b6e 3948@node Locations
847bf1f5
AD
3949@section Tracking Locations
3950@cindex location
95923bd6
AD
3951@cindex textual location
3952@cindex location, textual
847bf1f5
AD
3953
3954Though grammar rules and semantic actions are enough to write a fully
72d2299c 3955functional parser, it can be useful to process some additional information,
3e259915
MA
3956especially symbol locations.
3957
704a47c4
AD
3958The way locations are handled is defined by providing a data type, and
3959actions to take when rules are matched.
847bf1f5
AD
3960
3961@menu
3962* Location Type:: Specifying a data type for locations.
3963* Actions and Locations:: Using locations in actions.
3964* Location Default Action:: Defining a general way to compute locations.
3965@end menu
3966
342b8b6e 3967@node Location Type
847bf1f5
AD
3968@subsection Data Type of Locations
3969@cindex data type of locations
3970@cindex default location type
3971
3972Defining a data type for locations is much simpler than for semantic values,
3973since all tokens and groupings always use the same type.
3974
50cce58e
PE
3975You can specify the type of locations by defining a macro called
3976@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3977defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3978When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3979four members:
3980
3981@example
6273355b 3982typedef struct YYLTYPE
847bf1f5
AD
3983@{
3984 int first_line;
3985 int first_column;
3986 int last_line;
3987 int last_column;
6273355b 3988@} YYLTYPE;
847bf1f5
AD
3989@end example
3990
d59e456d
AD
3991When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3992initializes all these fields to 1 for @code{yylloc}. To initialize
3993@code{yylloc} with a custom location type (or to chose a different
3994initialization), use the @code{%initial-action} directive. @xref{Initial
3995Action Decl, , Performing Actions before Parsing}.
cd48d21d 3996
342b8b6e 3997@node Actions and Locations
847bf1f5
AD
3998@subsection Actions and Locations
3999@cindex location actions
4000@cindex actions, location
4001@vindex @@$
4002@vindex @@@var{n}
d013372c
AR
4003@vindex @@@var{name}
4004@vindex @@[@var{name}]
847bf1f5
AD
4005
4006Actions are not only useful for defining language semantics, but also for
4007describing the behavior of the output parser with locations.
4008
4009The most obvious way for building locations of syntactic groupings is very
72d2299c 4010similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4011constructs can be used to access the locations of the elements being matched.
4012The location of the @var{n}th component of the right hand side is
4013@code{@@@var{n}}, while the location of the left hand side grouping is
4014@code{@@$}.
4015
d013372c
AR
4016In addition, the named references construct @code{@@@var{name}} and
4017@code{@@[@var{name}]} may also be used to address the symbol locations.
4018@xref{Named References,,Using Named References}, for more information
4019about using the named references construct.
4020
3e259915 4021Here is a basic example using the default data type for locations:
847bf1f5
AD
4022
4023@example
4024@group
4025exp: @dots{}
3e259915 4026 | exp '/' exp
847bf1f5 4027 @{
3e259915
MA
4028 @@$.first_column = @@1.first_column;
4029 @@$.first_line = @@1.first_line;
847bf1f5
AD
4030 @@$.last_column = @@3.last_column;
4031 @@$.last_line = @@3.last_line;
3e259915
MA
4032 if ($3)
4033 $$ = $1 / $3;
4034 else
4035 @{
4036 $$ = 1;
4e03e201
AD
4037 fprintf (stderr,
4038 "Division by zero, l%d,c%d-l%d,c%d",
4039 @@3.first_line, @@3.first_column,
4040 @@3.last_line, @@3.last_column);
3e259915 4041 @}
847bf1f5
AD
4042 @}
4043@end group
4044@end example
4045
3e259915 4046As for semantic values, there is a default action for locations that is
72d2299c 4047run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4048beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4049last symbol.
3e259915 4050
72d2299c 4051With this default action, the location tracking can be fully automatic. The
3e259915
MA
4052example above simply rewrites this way:
4053
4054@example
4055@group
4056exp: @dots{}
4057 | exp '/' exp
4058 @{
4059 if ($3)
4060 $$ = $1 / $3;
4061 else
4062 @{
4063 $$ = 1;
4e03e201
AD
4064 fprintf (stderr,
4065 "Division by zero, l%d,c%d-l%d,c%d",
4066 @@3.first_line, @@3.first_column,
4067 @@3.last_line, @@3.last_column);
3e259915
MA
4068 @}
4069 @}
4070@end group
4071@end example
847bf1f5 4072
32c29292 4073@vindex yylloc
742e4900 4074It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4075from a semantic action.
4076This location is stored in @code{yylloc}.
4077@xref{Action Features, ,Special Features for Use in Actions}.
4078
342b8b6e 4079@node Location Default Action
847bf1f5
AD
4080@subsection Default Action for Locations
4081@vindex YYLLOC_DEFAULT
8710fc41 4082@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4083
72d2299c 4084Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4085locations are much more general than semantic values, there is room in
4086the output parser to redefine the default action to take for each
72d2299c 4087rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4088matched, before the associated action is run. It is also invoked
4089while processing a syntax error, to compute the error's location.
8710fc41
JD
4090Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4091parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4092of that ambiguity.
847bf1f5 4093
3e259915 4094Most of the time, this macro is general enough to suppress location
79282c6c 4095dedicated code from semantic actions.
847bf1f5 4096
72d2299c 4097The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4098the location of the grouping (the result of the computation). When a
766de5eb 4099rule is matched, the second parameter identifies locations of
96b93a3d 4100all right hand side elements of the rule being matched, and the third
8710fc41
JD
4101parameter is the size of the rule's right hand side.
4102When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4103right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4104When processing a syntax error, the second parameter identifies locations
4105of the symbols that were discarded during error processing, and the third
96b93a3d 4106parameter is the number of discarded symbols.
847bf1f5 4107
766de5eb 4108By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4109
766de5eb 4110@smallexample
847bf1f5 4111@group
766de5eb
PE
4112# define YYLLOC_DEFAULT(Current, Rhs, N) \
4113 do \
4114 if (N) \
4115 @{ \
4116 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4117 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4118 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4119 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4120 @} \
4121 else \
4122 @{ \
4123 (Current).first_line = (Current).last_line = \
4124 YYRHSLOC(Rhs, 0).last_line; \
4125 (Current).first_column = (Current).last_column = \
4126 YYRHSLOC(Rhs, 0).last_column; \
4127 @} \
4128 while (0)
847bf1f5 4129@end group
766de5eb 4130@end smallexample
676385e2 4131
766de5eb
PE
4132where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4133in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4134just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4135
3e259915 4136When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4137
3e259915 4138@itemize @bullet
79282c6c 4139@item
72d2299c 4140All arguments are free of side-effects. However, only the first one (the
3e259915 4141result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4142
3e259915 4143@item
766de5eb
PE
4144For consistency with semantic actions, valid indexes within the
4145right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4146valid index, and it refers to the symbol just before the reduction.
4147During error processing @var{n} is always positive.
0ae99356
PE
4148
4149@item
4150Your macro should parenthesize its arguments, if need be, since the
4151actual arguments may not be surrounded by parentheses. Also, your
4152macro should expand to something that can be used as a single
4153statement when it is followed by a semicolon.
3e259915 4154@end itemize
847bf1f5 4155
342b8b6e 4156@node Declarations
bfa74976
RS
4157@section Bison Declarations
4158@cindex declarations, Bison
4159@cindex Bison declarations
4160
4161The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4162used in formulating the grammar and the data types of semantic values.
4163@xref{Symbols}.
4164
4165All token type names (but not single-character literal tokens such as
4166@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4167declared if you need to specify which data type to use for the semantic
4168value (@pxref{Multiple Types, ,More Than One Value Type}).
4169
4170The first rule in the file also specifies the start symbol, by default.
4171If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4172it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4173Grammars}).
bfa74976
RS
4174
4175@menu
b50d2359 4176* Require Decl:: Requiring a Bison version.
bfa74976
RS
4177* Token Decl:: Declaring terminal symbols.
4178* Precedence Decl:: Declaring terminals with precedence and associativity.
4179* Union Decl:: Declaring the set of all semantic value types.
4180* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4181* Initial Action Decl:: Code run before parsing starts.
72f889cc 4182* Destructor Decl:: Declaring how symbols are freed.
d6328241 4183* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4184* Start Decl:: Specifying the start symbol.
4185* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4186* Push Decl:: Requesting a push parser.
bfa74976
RS
4187* Decl Summary:: Table of all Bison declarations.
4188@end menu
4189
b50d2359
AD
4190@node Require Decl
4191@subsection Require a Version of Bison
4192@cindex version requirement
4193@cindex requiring a version of Bison
4194@findex %require
4195
4196You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4197the requirement is not met, @command{bison} exits with an error (exit
4198status 63).
b50d2359
AD
4199
4200@example
4201%require "@var{version}"
4202@end example
4203
342b8b6e 4204@node Token Decl
bfa74976
RS
4205@subsection Token Type Names
4206@cindex declaring token type names
4207@cindex token type names, declaring
931c7513 4208@cindex declaring literal string tokens
bfa74976
RS
4209@findex %token
4210
4211The basic way to declare a token type name (terminal symbol) is as follows:
4212
4213@example
4214%token @var{name}
4215@end example
4216
4217Bison will convert this into a @code{#define} directive in
4218the parser, so that the function @code{yylex} (if it is in this file)
4219can use the name @var{name} to stand for this token type's code.
4220
d78f0ac9
AD
4221Alternatively, you can use @code{%left}, @code{%right},
4222@code{%precedence}, or
14ded682
AD
4223@code{%nonassoc} instead of @code{%token}, if you wish to specify
4224associativity and precedence. @xref{Precedence Decl, ,Operator
4225Precedence}.
bfa74976
RS
4226
4227You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4228a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4229following the token name:
bfa74976
RS
4230
4231@example
4232%token NUM 300
1452af69 4233%token XNUM 0x12d // a GNU extension
bfa74976
RS
4234@end example
4235
4236@noindent
4237It is generally best, however, to let Bison choose the numeric codes for
4238all token types. Bison will automatically select codes that don't conflict
e966383b 4239with each other or with normal characters.
bfa74976
RS
4240
4241In the event that the stack type is a union, you must augment the
4242@code{%token} or other token declaration to include the data type
704a47c4
AD
4243alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4244Than One Value Type}).
bfa74976
RS
4245
4246For example:
4247
4248@example
4249@group
4250%union @{ /* define stack type */
4251 double val;
4252 symrec *tptr;
4253@}
4254%token <val> NUM /* define token NUM and its type */
4255@end group
4256@end example
4257
931c7513
RS
4258You can associate a literal string token with a token type name by
4259writing the literal string at the end of a @code{%token}
4260declaration which declares the name. For example:
4261
4262@example
4263%token arrow "=>"
4264@end example
4265
4266@noindent
4267For example, a grammar for the C language might specify these names with
4268equivalent literal string tokens:
4269
4270@example
4271%token <operator> OR "||"
4272%token <operator> LE 134 "<="
4273%left OR "<="
4274@end example
4275
4276@noindent
4277Once you equate the literal string and the token name, you can use them
4278interchangeably in further declarations or the grammar rules. The
4279@code{yylex} function can use the token name or the literal string to
4280obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4281Syntax error messages passed to @code{yyerror} from the parser will reference
4282the literal string instead of the token name.
4283
4284The token numbered as 0 corresponds to end of file; the following line
4285allows for nicer error messages referring to ``end of file'' instead
4286of ``$end'':
4287
4288@example
4289%token END 0 "end of file"
4290@end example
931c7513 4291
342b8b6e 4292@node Precedence Decl
bfa74976
RS
4293@subsection Operator Precedence
4294@cindex precedence declarations
4295@cindex declaring operator precedence
4296@cindex operator precedence, declaring
4297
d78f0ac9
AD
4298Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4299@code{%precedence} declaration to
bfa74976
RS
4300declare a token and specify its precedence and associativity, all at
4301once. These are called @dfn{precedence declarations}.
704a47c4
AD
4302@xref{Precedence, ,Operator Precedence}, for general information on
4303operator precedence.
bfa74976 4304
ab7f29f8 4305The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4306@code{%token}: either
4307
4308@example
4309%left @var{symbols}@dots{}
4310@end example
4311
4312@noindent
4313or
4314
4315@example
4316%left <@var{type}> @var{symbols}@dots{}
4317@end example
4318
4319And indeed any of these declarations serves the purposes of @code{%token}.
4320But in addition, they specify the associativity and relative precedence for
4321all the @var{symbols}:
4322
4323@itemize @bullet
4324@item
4325The associativity of an operator @var{op} determines how repeated uses
4326of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4327@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4328grouping @var{y} with @var{z} first. @code{%left} specifies
4329left-associativity (grouping @var{x} with @var{y} first) and
4330@code{%right} specifies right-associativity (grouping @var{y} with
4331@var{z} first). @code{%nonassoc} specifies no associativity, which
4332means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4333considered a syntax error.
4334
d78f0ac9
AD
4335@code{%precedence} gives only precedence to the @var{symbols}, and
4336defines no associativity at all. Use this to define precedence only,
4337and leave any potential conflict due to associativity enabled.
4338
bfa74976
RS
4339@item
4340The precedence of an operator determines how it nests with other operators.
4341All the tokens declared in a single precedence declaration have equal
4342precedence and nest together according to their associativity.
4343When two tokens declared in different precedence declarations associate,
4344the one declared later has the higher precedence and is grouped first.
4345@end itemize
4346
ab7f29f8
JD
4347For backward compatibility, there is a confusing difference between the
4348argument lists of @code{%token} and precedence declarations.
4349Only a @code{%token} can associate a literal string with a token type name.
4350A precedence declaration always interprets a literal string as a reference to a
4351separate token.
4352For example:
4353
4354@example
4355%left OR "<=" // Does not declare an alias.
4356%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4357@end example
4358
342b8b6e 4359@node Union Decl
bfa74976
RS
4360@subsection The Collection of Value Types
4361@cindex declaring value types
4362@cindex value types, declaring
4363@findex %union
4364
287c78f6
PE
4365The @code{%union} declaration specifies the entire collection of
4366possible data types for semantic values. The keyword @code{%union} is
4367followed by braced code containing the same thing that goes inside a
4368@code{union} in C@.
bfa74976
RS
4369
4370For example:
4371
4372@example
4373@group
4374%union @{
4375 double val;
4376 symrec *tptr;
4377@}
4378@end group
4379@end example
4380
4381@noindent
4382This says that the two alternative types are @code{double} and @code{symrec
4383*}. They are given names @code{val} and @code{tptr}; these names are used
4384in the @code{%token} and @code{%type} declarations to pick one of the types
4385for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4386
6273355b
PE
4387As an extension to @acronym{POSIX}, a tag is allowed after the
4388@code{union}. For example:
4389
4390@example
4391@group
4392%union value @{
4393 double val;
4394 symrec *tptr;
4395@}
4396@end group
4397@end example
4398
d6ca7905 4399@noindent
6273355b
PE
4400specifies the union tag @code{value}, so the corresponding C type is
4401@code{union value}. If you do not specify a tag, it defaults to
4402@code{YYSTYPE}.
4403
d6ca7905
PE
4404As another extension to @acronym{POSIX}, you may specify multiple
4405@code{%union} declarations; their contents are concatenated. However,
4406only the first @code{%union} declaration can specify a tag.
4407
6273355b 4408Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4409a semicolon after the closing brace.
4410
ddc8ede1
PE
4411Instead of @code{%union}, you can define and use your own union type
4412@code{YYSTYPE} if your grammar contains at least one
4413@samp{<@var{type}>} tag. For example, you can put the following into
4414a header file @file{parser.h}:
4415
4416@example
4417@group
4418union YYSTYPE @{
4419 double val;
4420 symrec *tptr;
4421@};
4422typedef union YYSTYPE YYSTYPE;
4423@end group
4424@end example
4425
4426@noindent
4427and then your grammar can use the following
4428instead of @code{%union}:
4429
4430@example
4431@group
4432%@{
4433#include "parser.h"
4434%@}
4435%type <val> expr
4436%token <tptr> ID
4437@end group
4438@end example
4439
342b8b6e 4440@node Type Decl
bfa74976
RS
4441@subsection Nonterminal Symbols
4442@cindex declaring value types, nonterminals
4443@cindex value types, nonterminals, declaring
4444@findex %type
4445
4446@noindent
4447When you use @code{%union} to specify multiple value types, you must
4448declare the value type of each nonterminal symbol for which values are
4449used. This is done with a @code{%type} declaration, like this:
4450
4451@example
4452%type <@var{type}> @var{nonterminal}@dots{}
4453@end example
4454
4455@noindent
704a47c4
AD
4456Here @var{nonterminal} is the name of a nonterminal symbol, and
4457@var{type} is the name given in the @code{%union} to the alternative
4458that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4459can give any number of nonterminal symbols in the same @code{%type}
4460declaration, if they have the same value type. Use spaces to separate
4461the symbol names.
bfa74976 4462
931c7513
RS
4463You can also declare the value type of a terminal symbol. To do this,
4464use the same @code{<@var{type}>} construction in a declaration for the
4465terminal symbol. All kinds of token declarations allow
4466@code{<@var{type}>}.
4467
18d192f0
AD
4468@node Initial Action Decl
4469@subsection Performing Actions before Parsing
4470@findex %initial-action
4471
4472Sometimes your parser needs to perform some initializations before
4473parsing. The @code{%initial-action} directive allows for such arbitrary
4474code.
4475
4476@deffn {Directive} %initial-action @{ @var{code} @}
4477@findex %initial-action
287c78f6 4478Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4479@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4480@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4481@code{%parse-param}.
18d192f0
AD
4482@end deffn
4483
451364ed
AD
4484For instance, if your locations use a file name, you may use
4485
4486@example
48b16bbc 4487%parse-param @{ char const *file_name @};
451364ed
AD
4488%initial-action
4489@{
4626a15d 4490 @@$.initialize (file_name);
451364ed
AD
4491@};
4492@end example
4493
18d192f0 4494
72f889cc
AD
4495@node Destructor Decl
4496@subsection Freeing Discarded Symbols
4497@cindex freeing discarded symbols
4498@findex %destructor
12e35840 4499@findex <*>
3ebecc24 4500@findex <>
a85284cf
AD
4501During error recovery (@pxref{Error Recovery}), symbols already pushed
4502on the stack and tokens coming from the rest of the file are discarded
4503until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4504or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4505symbols on the stack must be discarded. Even if the parser succeeds, it
4506must discard the start symbol.
258b75ca
PE
4507
4508When discarded symbols convey heap based information, this memory is
4509lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4510in traditional compilers, it is unacceptable for programs like shells or
4511protocol implementations that may parse and execute indefinitely.
258b75ca 4512
a85284cf
AD
4513The @code{%destructor} directive defines code that is called when a
4514symbol is automatically discarded.
72f889cc
AD
4515
4516@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4517@findex %destructor
287c78f6
PE
4518Invoke the braced @var{code} whenever the parser discards one of the
4519@var{symbols}.
4b367315 4520Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4521with the discarded symbol, and @code{@@$} designates its location.
4522The additional parser parameters are also available (@pxref{Parser Function, ,
4523The Parser Function @code{yyparse}}).
ec5479ce 4524
b2a0b7ca
JD
4525When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4526per-symbol @code{%destructor}.
4527You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4528tag among @var{symbols}.
b2a0b7ca 4529In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4530grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4531per-symbol @code{%destructor}.
4532
12e35840 4533Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4534(These default forms are experimental.
4535More user feedback will help to determine whether they should become permanent
4536features.)
3ebecc24 4537You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4538exactly one @code{%destructor} declaration in your grammar file.
4539The parser will invoke the @var{code} associated with one of these whenever it
4540discards any user-defined grammar symbol that has no per-symbol and no per-type
4541@code{%destructor}.
4542The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4543symbol for which you have formally declared a semantic type tag (@code{%type}
4544counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4545The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4546symbol that has no declared semantic type tag.
72f889cc
AD
4547@end deffn
4548
b2a0b7ca 4549@noindent
12e35840 4550For example:
72f889cc
AD
4551
4552@smallexample
ec5479ce
JD
4553%union @{ char *string; @}
4554%token <string> STRING1
4555%token <string> STRING2
4556%type <string> string1
4557%type <string> string2
b2a0b7ca
JD
4558%union @{ char character; @}
4559%token <character> CHR
4560%type <character> chr
12e35840
JD
4561%token TAGLESS
4562
b2a0b7ca 4563%destructor @{ @} <character>
12e35840
JD
4564%destructor @{ free ($$); @} <*>
4565%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4566%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4567@end smallexample
4568
4569@noindent
b2a0b7ca
JD
4570guarantees that, when the parser discards any user-defined symbol that has a
4571semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4572to @code{free} by default.
ec5479ce
JD
4573However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4574prints its line number to @code{stdout}.
4575It performs only the second @code{%destructor} in this case, so it invokes
4576@code{free} only once.
12e35840
JD
4577Finally, the parser merely prints a message whenever it discards any symbol,
4578such as @code{TAGLESS}, that has no semantic type tag.
4579
4580A Bison-generated parser invokes the default @code{%destructor}s only for
4581user-defined as opposed to Bison-defined symbols.
4582For example, the parser will not invoke either kind of default
4583@code{%destructor} for the special Bison-defined symbols @code{$accept},
4584@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4585none of which you can reference in your grammar.
4586It also will not invoke either for the @code{error} token (@pxref{Table of
4587Symbols, ,error}), which is always defined by Bison regardless of whether you
4588reference it in your grammar.
4589However, it may invoke one of them for the end token (token 0) if you
4590redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4591
4592@smallexample
4593%token END 0
4594@end smallexample
4595
12e35840
JD
4596@cindex actions in mid-rule
4597@cindex mid-rule actions
4598Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4599mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4600That is, Bison does not consider a mid-rule to have a semantic value if you do
4601not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4602@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4603rule.
4604However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4605@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4606
3508ce36
JD
4607@ignore
4608@noindent
4609In the future, it may be possible to redefine the @code{error} token as a
4610nonterminal that captures the discarded symbols.
4611In that case, the parser will invoke the default destructor for it as well.
4612@end ignore
4613
e757bb10
AD
4614@sp 1
4615
4616@cindex discarded symbols
4617@dfn{Discarded symbols} are the following:
4618
4619@itemize
4620@item
4621stacked symbols popped during the first phase of error recovery,
4622@item
4623incoming terminals during the second phase of error recovery,
4624@item
742e4900 4625the current lookahead and the entire stack (except the current
9d9b8b70 4626right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4627@item
4628the start symbol, when the parser succeeds.
e757bb10
AD
4629@end itemize
4630
9d9b8b70
PE
4631The parser can @dfn{return immediately} because of an explicit call to
4632@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4633exhaustion.
4634
29553547 4635Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4636error via @code{YYERROR} are not discarded automatically. As a rule
4637of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4638the memory.
e757bb10 4639
342b8b6e 4640@node Expect Decl
bfa74976
RS
4641@subsection Suppressing Conflict Warnings
4642@cindex suppressing conflict warnings
4643@cindex preventing warnings about conflicts
4644@cindex warnings, preventing
4645@cindex conflicts, suppressing warnings of
4646@findex %expect
d6328241 4647@findex %expect-rr
bfa74976
RS
4648
4649Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4650(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4651have harmless shift/reduce conflicts which are resolved in a predictable
4652way and would be difficult to eliminate. It is desirable to suppress
4653the warning about these conflicts unless the number of conflicts
4654changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4655
4656The declaration looks like this:
4657
4658@example
4659%expect @var{n}
4660@end example
4661
035aa4a0
PE
4662Here @var{n} is a decimal integer. The declaration says there should
4663be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4664Bison reports an error if the number of shift/reduce conflicts differs
4665from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4666
eb45ef3b 4667For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4668serious, and should be eliminated entirely. Bison will always report
4669reduce/reduce conflicts for these parsers. With @acronym{GLR}
4670parsers, however, both kinds of conflicts are routine; otherwise,
4671there would be no need to use @acronym{GLR} parsing. Therefore, it is
4672also possible to specify an expected number of reduce/reduce conflicts
4673in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4674
4675@example
4676%expect-rr @var{n}
4677@end example
4678
bfa74976
RS
4679In general, using @code{%expect} involves these steps:
4680
4681@itemize @bullet
4682@item
4683Compile your grammar without @code{%expect}. Use the @samp{-v} option
4684to get a verbose list of where the conflicts occur. Bison will also
4685print the number of conflicts.
4686
4687@item
4688Check each of the conflicts to make sure that Bison's default
4689resolution is what you really want. If not, rewrite the grammar and
4690go back to the beginning.
4691
4692@item
4693Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4694number which Bison printed. With @acronym{GLR} parsers, add an
4695@code{%expect-rr} declaration as well.
bfa74976
RS
4696@end itemize
4697
93d7dde9
JD
4698Now Bison will report an error if you introduce an unexpected conflict,
4699but will keep silent otherwise.
bfa74976 4700
342b8b6e 4701@node Start Decl
bfa74976
RS
4702@subsection The Start-Symbol
4703@cindex declaring the start symbol
4704@cindex start symbol, declaring
4705@cindex default start symbol
4706@findex %start
4707
4708Bison assumes by default that the start symbol for the grammar is the first
4709nonterminal specified in the grammar specification section. The programmer
4710may override this restriction with the @code{%start} declaration as follows:
4711
4712@example
4713%start @var{symbol}
4714@end example
4715
342b8b6e 4716@node Pure Decl
bfa74976
RS
4717@subsection A Pure (Reentrant) Parser
4718@cindex reentrant parser
4719@cindex pure parser
d9df47b6 4720@findex %define api.pure
bfa74976
RS
4721
4722A @dfn{reentrant} program is one which does not alter in the course of
4723execution; in other words, it consists entirely of @dfn{pure} (read-only)
4724code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4725for example, a nonreentrant program may not be safe to call from a signal
4726handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4727program must be called only within interlocks.
4728
70811b85 4729Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4730suitable for most uses, and it permits compatibility with Yacc. (The
4731standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4732statically allocated variables for communication with @code{yylex},
4733including @code{yylval} and @code{yylloc}.)
bfa74976 4734
70811b85 4735Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4736declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4737reentrant. It looks like this:
bfa74976
RS
4738
4739@example
d9df47b6 4740%define api.pure
bfa74976
RS
4741@end example
4742
70811b85
RS
4743The result is that the communication variables @code{yylval} and
4744@code{yylloc} become local variables in @code{yyparse}, and a different
4745calling convention is used for the lexical analyzer function
4746@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4747Parsers}, for the details of this. The variable @code{yynerrs}
4748becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4749of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4750Reporting Function @code{yyerror}}). The convention for calling
4751@code{yyparse} itself is unchanged.
4752
4753Whether the parser is pure has nothing to do with the grammar rules.
4754You can generate either a pure parser or a nonreentrant parser from any
4755valid grammar.
bfa74976 4756
9987d1b3
JD
4757@node Push Decl
4758@subsection A Push Parser
4759@cindex push parser
4760@cindex push parser
67212941 4761@findex %define api.push-pull
9987d1b3 4762
59da312b
JD
4763(The current push parsing interface is experimental and may evolve.
4764More user feedback will help to stabilize it.)
4765
f4101aa6
AD
4766A pull parser is called once and it takes control until all its input
4767is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4768each time a new token is made available.
4769
f4101aa6 4770A push parser is typically useful when the parser is part of a
9987d1b3 4771main event loop in the client's application. This is typically
f4101aa6
AD
4772a requirement of a GUI, when the main event loop needs to be triggered
4773within a certain time period.
9987d1b3 4774
d782395d
JD
4775Normally, Bison generates a pull parser.
4776The following Bison declaration says that you want the parser to be a push
67212941 4777parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4778
4779@example
cf499cff 4780%define api.push-pull push
9987d1b3
JD
4781@end example
4782
4783In almost all cases, you want to ensure that your push parser is also
4784a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4785time you should create an impure push parser is to have backwards
9987d1b3
JD
4786compatibility with the impure Yacc pull mode interface. Unless you know
4787what you are doing, your declarations should look like this:
4788
4789@example
d9df47b6 4790%define api.pure
cf499cff 4791%define api.push-pull push
9987d1b3
JD
4792@end example
4793
f4101aa6
AD
4794There is a major notable functional difference between the pure push parser
4795and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4796many parser instances, of the same type of parser, in memory at the same time.
4797An impure push parser should only use one parser at a time.
4798
4799When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4800the generated parser. @code{yypstate} is a structure that the generated
4801parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4802function that will create a new parser instance. @code{yypstate_delete}
4803will free the resources associated with the corresponding parser instance.
f4101aa6 4804Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4805token is available to provide the parser. A trivial example
4806of using a pure push parser would look like this:
4807
4808@example
4809int status;
4810yypstate *ps = yypstate_new ();
4811do @{
4812 status = yypush_parse (ps, yylex (), NULL);
4813@} while (status == YYPUSH_MORE);
4814yypstate_delete (ps);
4815@end example
4816
4817If the user decided to use an impure push parser, a few things about
f4101aa6 4818the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4819a global variable instead of a variable in the @code{yypush_parse} function.
4820For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4821changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4822example would thus look like this:
4823
4824@example
4825extern int yychar;
4826int status;
4827yypstate *ps = yypstate_new ();
4828do @{
4829 yychar = yylex ();
4830 status = yypush_parse (ps);
4831@} while (status == YYPUSH_MORE);
4832yypstate_delete (ps);
4833@end example
4834
f4101aa6 4835That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4836for use by the next invocation of the @code{yypush_parse} function.
4837
f4101aa6 4838Bison also supports both the push parser interface along with the pull parser
9987d1b3 4839interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4840you should replace the @samp{%define api.push-pull push} declaration with the
4841@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4842the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4843and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4844would be used. However, the user should note that it is implemented in the
d782395d
JD
4845generated parser by calling @code{yypull_parse}.
4846This makes the @code{yyparse} function that is generated with the
cf499cff 4847@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4848@code{yyparse} function. If the user
4849calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4850stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4851and then @code{yypull_parse} the rest of the input stream. If you would like
4852to switch back and forth between between parsing styles, you would have to
4853write your own @code{yypull_parse} function that knows when to quit looking
4854for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4855like this:
4856
4857@example
4858yypstate *ps = yypstate_new ();
4859yypull_parse (ps); /* Will call the lexer */
4860yypstate_delete (ps);
4861@end example
4862
67501061 4863Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4864the generated parser with @samp{%define api.push-pull both} as it did for
4865@samp{%define api.push-pull push}.
9987d1b3 4866
342b8b6e 4867@node Decl Summary
bfa74976
RS
4868@subsection Bison Declaration Summary
4869@cindex Bison declaration summary
4870@cindex declaration summary
4871@cindex summary, Bison declaration
4872
d8988b2f 4873Here is a summary of the declarations used to define a grammar:
bfa74976 4874
18b519c0 4875@deffn {Directive} %union
bfa74976
RS
4876Declare the collection of data types that semantic values may have
4877(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4878@end deffn
bfa74976 4879
18b519c0 4880@deffn {Directive} %token
bfa74976
RS
4881Declare a terminal symbol (token type name) with no precedence
4882or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4883@end deffn
bfa74976 4884
18b519c0 4885@deffn {Directive} %right
bfa74976
RS
4886Declare a terminal symbol (token type name) that is right-associative
4887(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4888@end deffn
bfa74976 4889
18b519c0 4890@deffn {Directive} %left
bfa74976
RS
4891Declare a terminal symbol (token type name) that is left-associative
4892(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4893@end deffn
bfa74976 4894
18b519c0 4895@deffn {Directive} %nonassoc
bfa74976 4896Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4897(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4898Using it in a way that would be associative is a syntax error.
4899@end deffn
4900
91d2c560 4901@ifset defaultprec
39a06c25 4902@deffn {Directive} %default-prec
22fccf95 4903Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4904(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4905@end deffn
91d2c560 4906@end ifset
bfa74976 4907
18b519c0 4908@deffn {Directive} %type
bfa74976
RS
4909Declare the type of semantic values for a nonterminal symbol
4910(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Directive} %start
89cab50d
AD
4914Specify the grammar's start symbol (@pxref{Start Decl, ,The
4915Start-Symbol}).
18b519c0 4916@end deffn
bfa74976 4917
18b519c0 4918@deffn {Directive} %expect
bfa74976
RS
4919Declare the expected number of shift-reduce conflicts
4920(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4921@end deffn
4922
bfa74976 4923
d8988b2f
AD
4924@sp 1
4925@noindent
4926In order to change the behavior of @command{bison}, use the following
4927directives:
4928
148d66d8
JD
4929@deffn {Directive} %code @{@var{code}@}
4930@findex %code
4931This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4932It inserts @var{code} verbatim at a language-dependent default location in the
4933output@footnote{The default location is actually skeleton-dependent;
4934 writers of non-standard skeletons however should choose the default location
4935 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4936
4937@cindex Prologue
8405b70c 4938For C/C++, the default location is the parser source code
148d66d8
JD
4939file after the usual contents of the parser header file.
4940Thus, @code{%code} replaces the traditional Yacc prologue,
4941@code{%@{@var{code}%@}}, for most purposes.
4942For a detailed discussion, see @ref{Prologue Alternatives}.
4943
8405b70c 4944For Java, the default location is inside the parser class.
148d66d8
JD
4945@end deffn
4946
4947@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4948This is the qualified form of the @code{%code} directive.
4949If you need to specify location-sensitive verbatim @var{code} that does not
4950belong at the default location selected by the unqualified @code{%code} form,
4951use this form instead.
4952
4953@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4954where Bison should generate it.
c6abeab1
JD
4955Not all @var{qualifier}s are accepted for all target languages.
4956Unaccepted @var{qualifier}s produce an error.
4957Some of the accepted @var{qualifier}s are:
148d66d8
JD
4958
4959@itemize @bullet
148d66d8 4960@item requires
793fbca5 4961@findex %code requires
148d66d8
JD
4962
4963@itemize @bullet
4964@item Language(s): C, C++
4965
4966@item Purpose: This is the best place to write dependency code required for
4967@code{YYSTYPE} and @code{YYLTYPE}.
4968In other words, it's the best place to define types referenced in @code{%union}
4969directives, and it's the best place to override Bison's default @code{YYSTYPE}
4970and @code{YYLTYPE} definitions.
4971
4972@item Location(s): The parser header file and the parser source code file
4973before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4974@end itemize
4975
4976@item provides
4977@findex %code provides
4978
4979@itemize @bullet
4980@item Language(s): C, C++
4981
4982@item Purpose: This is the best place to write additional definitions and
4983declarations that should be provided to other modules.
4984
4985@item Location(s): The parser header file and the parser source code file after
4986the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4987@end itemize
4988
4989@item top
4990@findex %code top
4991
4992@itemize @bullet
4993@item Language(s): C, C++
4994
4995@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4996usually be more appropriate than @code{%code top}.
4997However, occasionally it is necessary to insert code much nearer the top of the
4998parser source code file.
4999For example:
5000
5001@smallexample
5002%code top @{
5003 #define _GNU_SOURCE
5004 #include <stdio.h>
5005@}
5006@end smallexample
5007
5008@item Location(s): Near the top of the parser source code file.
5009@end itemize
8405b70c 5010
148d66d8
JD
5011@item imports
5012@findex %code imports
5013
5014@itemize @bullet
5015@item Language(s): Java
5016
5017@item Purpose: This is the best place to write Java import directives.
5018
5019@item Location(s): The parser Java file after any Java package directive and
5020before any class definitions.
5021@end itemize
148d66d8
JD
5022@end itemize
5023
148d66d8
JD
5024@cindex Prologue
5025For a detailed discussion of how to use @code{%code} in place of the
5026traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5027@end deffn
5028
18b519c0 5029@deffn {Directive} %debug
fa819509
AD
5030Instrument the output parser for traces. Obsoleted by @samp{%define
5031parse.trace}.
ec3bc396 5032@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5033@end deffn
d8988b2f 5034
c1d19e10 5035@deffn {Directive} %define @var{variable}
cf499cff 5036@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5037@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5038Define a variable to adjust Bison's behavior.
9611cfa2 5039
0b6d43c5 5040It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5041times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5042
cf499cff
JD
5043@var{value} must be placed in quotation marks if it contains any
5044character other than a letter, underscore, period, dash, or non-initial
5045digit.
5046
5047Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5048@code{""}.
5049
c6abeab1 5050Some @var{variable}s take Boolean values.
9611cfa2
JD
5051In this case, Bison will complain if the variable definition does not meet one
5052of the following four conditions:
5053
5054@enumerate
cf499cff 5055@item @code{@var{value}} is @code{true}
9611cfa2 5056
cf499cff
JD
5057@item @code{@var{value}} is omitted (or @code{""} is specified).
5058This is equivalent to @code{true}.
9611cfa2 5059
cf499cff 5060@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5061
5062@item @var{variable} is never defined.
c6abeab1 5063In this case, Bison selects a default value.
9611cfa2 5064@end enumerate
148d66d8 5065
c6abeab1
JD
5066What @var{variable}s are accepted, as well as their meanings and default
5067values, depend on the selected target language and/or the parser
5068skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5069Summary,,%skeleton}).
5070Unaccepted @var{variable}s produce an error.
793fbca5
JD
5071Some of the accepted @var{variable}s are:
5072
fa819509 5073@table @code
6b5a0de9 5074@c ================================================== api.namespace
67501061
AD
5075@item api.namespace
5076@findex %define api.namespace
5077@itemize
5078@item Languages(s): C++
5079
5080@item Purpose: Specifies the namespace for the parser class.
5081For example, if you specify:
5082
5083@smallexample
5084%define api.namespace "foo::bar"
5085@end smallexample
5086
5087Bison uses @code{foo::bar} verbatim in references such as:
5088
5089@smallexample
5090foo::bar::parser::semantic_type
5091@end smallexample
5092
5093However, to open a namespace, Bison removes any leading @code{::} and then
5094splits on any remaining occurrences:
5095
5096@smallexample
5097namespace foo @{ namespace bar @{
5098 class position;
5099 class location;
5100@} @}
5101@end smallexample
5102
5103@item Accepted Values:
5104Any absolute or relative C++ namespace reference without a trailing
5105@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5106
5107@item Default Value:
5108The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5109This usage of @code{%name-prefix} is for backward compatibility and can
5110be confusing since @code{%name-prefix} also specifies the textual prefix
5111for the lexical analyzer function. Thus, if you specify
5112@code{%name-prefix}, it is best to also specify @samp{%define
5113api.namespace} so that @code{%name-prefix} @emph{only} affects the
5114lexical analyzer function. For example, if you specify:
5115
5116@smallexample
5117%define api.namespace "foo"
5118%name-prefix "bar::"
5119@end smallexample
5120
5121The parser namespace is @code{foo} and @code{yylex} is referenced as
5122@code{bar::lex}.
5123@end itemize
5124@c namespace
5125
5126
5127
5128@c ================================================== api.pure
d9df47b6
JD
5129@item api.pure
5130@findex %define api.pure
5131
5132@itemize @bullet
5133@item Language(s): C
5134
5135@item Purpose: Request a pure (reentrant) parser program.
5136@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5137
5138@item Accepted Values: Boolean
5139
cf499cff 5140@item Default Value: @code{false}
d9df47b6 5141@end itemize
71b00ed8 5142@c api.pure
d9df47b6 5143
67501061
AD
5144
5145
5146@c ================================================== api.push-pull
67212941
JD
5147@item api.push-pull
5148@findex %define api.push-pull
793fbca5
JD
5149
5150@itemize @bullet
eb45ef3b 5151@item Language(s): C (deterministic parsers only)
793fbca5
JD
5152
5153@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 5154@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5155(The current push parsing interface is experimental and may evolve.
5156More user feedback will help to stabilize it.)
793fbca5 5157
cf499cff 5158@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5159
cf499cff 5160@item Default Value: @code{pull}
793fbca5 5161@end itemize
67212941 5162@c api.push-pull
71b00ed8 5163
6b5a0de9
AD
5164
5165
5166@c ================================================== api.tokens.prefix
4c6622c2
AD
5167@item api.tokens.prefix
5168@findex %define api.tokens.prefix
5169
5170@itemize
5171@item Languages(s): all
5172
5173@item Purpose:
5174Add a prefix to the token names when generating their definition in the
5175target language. For instance
5176
5177@example
5178%token FILE for ERROR
5179%define api.tokens.prefix "TOK_"
5180%%
5181start: FILE for ERROR;
5182@end example
5183
5184@noindent
5185generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5186and @code{TOK_ERROR} in the generated source files. In particular, the
5187scanner must use these prefixed token names, while the grammar itself
5188may still use the short names (as in the sample rule given above). The
5189generated informational files (@file{*.output}, @file{*.xml},
5190@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5191and @ref{Calc++ Scanner}, for a complete example.
5192
5193@item Accepted Values:
5194Any string. Should be a valid identifier prefix in the target language,
5195in other words, it should typically be an identifier itself (sequence of
5196letters, underscores, and ---not at the beginning--- digits).
5197
5198@item Default Value:
5199empty
5200@end itemize
5201@c api.tokens.prefix
5202
5203
3cdc21cf
AD
5204@c ================================================== lex_symbol
5205@item variant
5206@findex %define lex_symbol
5207
5208@itemize @bullet
5209@item Language(s):
5210C++
5211
5212@item Purpose:
5213When variant-based semantic values are enabled (@pxref{C++ Variants}),
5214request that symbols be handled as a whole (type, value, and possibly
5215location) in the scanner. @xref{Complete Symbols}, for details.
5216
5217@item Accepted Values:
5218Boolean.
5219
5220@item Default Value:
5221@code{false}
5222@end itemize
5223@c lex_symbol
5224
5225
6b5a0de9
AD
5226@c ================================================== lr.default-reductions
5227
5bab9d08 5228@item lr.default-reductions
110ef36a 5229@cindex default reductions
5bab9d08 5230@findex %define lr.default-reductions
eb45ef3b
JD
5231@cindex delayed syntax errors
5232@cindex syntax errors delayed
5233
5234@itemize @bullet
5235@item Language(s): all
5236
5237@item Purpose: Specifies the kind of states that are permitted to
110ef36a
JD
5238contain default reductions.
5239That is, in such a state, Bison declares the reduction with the largest
5240lookahead set to be the default reduction and then removes that
5241lookahead set.
5242The advantages of default reductions are discussed below.
eb45ef3b
JD
5243The disadvantage is that, when the generated parser encounters a
5244syntactically unacceptable token, the parser might then perform
110ef36a 5245unnecessary default reductions before it can detect the syntax error.
eb45ef3b
JD
5246
5247(This feature is experimental.
5248More user feedback will help to stabilize it.)
5249
5250@item Accepted Values:
5251@itemize
cf499cff 5252@item @code{all}.
eb45ef3b
JD
5253For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
5254Summary,,lr.type}) by default, all states are permitted to contain
110ef36a 5255default reductions.
eb45ef3b
JD
5256The advantage is that parser table sizes can be significantly reduced.
5257The reason Bison does not by default attempt to address the disadvantage
5258of delayed syntax error detection is that this disadvantage is already
5259inherent in @acronym{LALR} and @acronym{IELR} parser tables.
110ef36a
JD
5260That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
5261reductions in an @acronym{LALR} or @acronym{IELR} state can contain
5262tokens that are syntactically incorrect for some left contexts.
eb45ef3b 5263
cf499cff 5264@item @code{consistent}.
eb45ef3b
JD
5265@cindex consistent states
5266A consistent state is a state that has only one possible action.
5267If that action is a reduction, then the parser does not need to request
5268a lookahead token from the scanner before performing that action.
5269However, the parser only recognizes the ability to ignore the lookahead
110ef36a
JD
5270token when such a reduction is encoded as a default reduction.
5271Thus, if default reductions are permitted in and only in consistent
5272states, then a canonical @acronym{LR} parser reports a syntax error as
5273soon as it @emph{needs} the syntactically unacceptable token from the
5274scanner.
eb45ef3b 5275
cf499cff 5276@item @code{accepting}.
eb45ef3b 5277@cindex accepting state
110ef36a
JD
5278By default, the only default reduction permitted in a canonical
5279@acronym{LR} parser is the accept action in the accepting state, which
5280the parser reaches only after reading all tokens from the input.
eb45ef3b
JD
5281Thus, the default canonical @acronym{LR} parser reports a syntax error
5282as soon as it @emph{reaches} the syntactically unacceptable token
5283without performing any extra reductions.
5284@end itemize
5285
5286@item Default Value:
5287@itemize
cf499cff
JD
5288@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5289@item @code{all} otherwise.
eb45ef3b
JD
5290@end itemize
5291@end itemize
5292
6b5a0de9
AD
5293@c ============================================ lr.keep-unreachable-states
5294
67212941
JD
5295@item lr.keep-unreachable-states
5296@findex %define lr.keep-unreachable-states
31984206
JD
5297
5298@itemize @bullet
5299@item Language(s): all
5300
5301@item Purpose: Requests that Bison allow unreachable parser states to remain in
5302the parser tables.
5303Bison considers a state to be unreachable if there exists no sequence of
5304transitions from the start state to that state.
5305A state can become unreachable during conflict resolution if Bison disables a
5306shift action leading to it from a predecessor state.
5307Keeping unreachable states is sometimes useful for analysis purposes, but they
5308are useless in the generated parser.
5309
5310@item Accepted Values: Boolean
5311
cf499cff 5312@item Default Value: @code{false}
31984206
JD
5313
5314@item Caveats:
5315
5316@itemize @bullet
cff03fb2
JD
5317
5318@item Unreachable states may contain conflicts and may use rules not used in
5319any other state.
31984206
JD
5320Thus, keeping unreachable states may induce warnings that are irrelevant to
5321your parser's behavior, and it may eliminate warnings that are relevant.
5322Of course, the change in warnings may actually be relevant to a parser table
5323analysis that wants to keep unreachable states, so this behavior will likely
5324remain in future Bison releases.
5325
5326@item While Bison is able to remove unreachable states, it is not guaranteed to
5327remove other kinds of useless states.
5328Specifically, when Bison disables reduce actions during conflict resolution,
5329some goto actions may become useless, and thus some additional states may
5330become useless.
5331If Bison were to compute which goto actions were useless and then disable those
5332actions, it could identify such states as unreachable and then remove those
5333states.
5334However, Bison does not compute which goto actions are useless.
5335@end itemize
5336@end itemize
67212941 5337@c lr.keep-unreachable-states
31984206 5338
6b5a0de9
AD
5339@c ================================================== lr.type
5340
eb45ef3b
JD
5341@item lr.type
5342@findex %define lr.type
5343@cindex @acronym{LALR}
5344@cindex @acronym{IELR}
5345@cindex @acronym{LR}
5346
5347@itemize @bullet
5348@item Language(s): all
5349
5350@item Purpose: Specifies the type of parser tables within the
5351@acronym{LR}(1) family.
5352(This feature is experimental.
5353More user feedback will help to stabilize it.)
5354
5355@item Accepted Values:
5356@itemize
cf499cff 5357@item @code{lalr}.
eb45ef3b
JD
5358While Bison generates @acronym{LALR} parser tables by default for
5359historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5360always preferable for deterministic parsers.
5361The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5362mysterious conflicts and thus may not accept the full set of sentences
5363that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5364@xref{Mystery Conflicts}, for details.
5365However, there are at least two scenarios where @acronym{LALR} may be
5366worthwhile:
5367@itemize
5368@cindex @acronym{GLR} with @acronym{LALR}
5369@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5370do not resolve any conflicts statically (for example, with @code{%left}
5371or @code{%prec}), then the parser explores all potential parses of any
5372given input.
110ef36a
JD
5373In this case, the use of @acronym{LALR} parser tables is guaranteed not
5374to alter the language accepted by the parser.
eb45ef3b
JD
5375@acronym{LALR} parser tables are the smallest parser tables Bison can
5376currently generate, so they may be preferable.
5377
5378@item Occasionally during development, an especially malformed grammar
5379with a major recurring flaw may severely impede the @acronym{IELR} or
5380canonical @acronym{LR} parser table generation algorithm.
5381@acronym{LALR} can be a quick way to generate parser tables in order to
5382investigate such problems while ignoring the more subtle differences
5383from @acronym{IELR} and canonical @acronym{LR}.
5384@end itemize
5385
cf499cff 5386@item @code{ielr}.
eb45ef3b
JD
5387@acronym{IELR} is a minimal @acronym{LR} algorithm.
5388That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5389@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5390set of sentences.
5391However, as for @acronym{LALR}, the number of parser states is often an
5392order of magnitude less for @acronym{IELR} than for canonical
5393@acronym{LR}.
5394More importantly, because canonical @acronym{LR}'s extra parser states
5395may contain duplicate conflicts in the case of non-@acronym{LR}
5396grammars, the number of conflicts for @acronym{IELR} is often an order
5397of magnitude less as well.
5398This can significantly reduce the complexity of developing of a grammar.
5399
cf499cff 5400@item @code{canonical-lr}.
eb45ef3b
JD
5401@cindex delayed syntax errors
5402@cindex syntax errors delayed
110ef36a
JD
5403The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5404that, for every left context of every canonical @acronym{LR} state, the
5405set of tokens accepted by that state is the exact set of tokens that is
5406syntactically acceptable in that left context.
5407Thus, the only difference in parsing behavior is that the canonical
eb45ef3b
JD
5408@acronym{LR} parser can report a syntax error as soon as possible
5409without performing any unnecessary reductions.
5bab9d08 5410@xref{Decl Summary,,lr.default-reductions}, for further details.
eb45ef3b
JD
5411Even when canonical @acronym{LR} behavior is ultimately desired,
5412@acronym{IELR}'s elimination of duplicate conflicts should still
5413facilitate the development of a grammar.
5414@end itemize
5415
cf499cff 5416@item Default Value: @code{lalr}
eb45ef3b
JD
5417@end itemize
5418
67501061
AD
5419
5420@c ================================================== namespace
793fbca5
JD
5421@item namespace
5422@findex %define namespace
67501061 5423Obsoleted by @code{api.namespace}
fa819509
AD
5424@c namespace
5425
31b850d2
AD
5426
5427@c ================================================== parse.assert
0c90a1f5
AD
5428@item parse.assert
5429@findex %define parse.assert
5430
5431@itemize
5432@item Languages(s): C++
5433
5434@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5435In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5436constructed and
0c90a1f5
AD
5437destroyed properly. This option checks these constraints.
5438
5439@item Accepted Values: Boolean
5440
5441@item Default Value: @code{false}
5442@end itemize
5443@c parse.assert
5444
31b850d2
AD
5445
5446@c ================================================== parse.error
5447@item parse.error
5448@findex %define parse.error
5449@itemize
5450@item Languages(s):
5451all.
5452@item Purpose:
5453Control the kind of error messages passed to the error reporting
5454function. @xref{Error Reporting, ,The Error Reporting Function
5455@code{yyerror}}.
5456@item Accepted Values:
5457@itemize
cf499cff 5458@item @code{simple}
31b850d2
AD
5459Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5460error"}}.
cf499cff 5461@item @code{verbose}
31b850d2
AD
5462Error messages report the unexpected token, and possibly the expected
5463ones.
5464@end itemize
5465
5466@item Default Value:
5467@code{simple}
5468@end itemize
5469@c parse.error
5470
5471
5472@c ================================================== parse.trace
fa819509
AD
5473@item parse.trace
5474@findex %define parse.trace
5475
5476@itemize
5477@item Languages(s): C, C++
5478
5479@item Purpose: Require parser instrumentation for tracing.
5480In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5481is not already defined, so that the debugging facilities are compiled.
5482@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5483
fa819509
AD
5484@item Accepted Values: Boolean
5485
5486@item Default Value: @code{false}
5487@end itemize
fa819509 5488@c parse.trace
99c08fb6 5489
3cdc21cf
AD
5490@c ================================================== variant
5491@item variant
5492@findex %define variant
5493
5494@itemize @bullet
5495@item Language(s):
5496C++
5497
5498@item Purpose:
5499Requests variant-based semantic values.
5500@xref{C++ Variants}.
5501
5502@item Accepted Values:
5503Boolean.
5504
5505@item Default Value:
5506@code{false}
5507@end itemize
5508@c variant
5509
5510
99c08fb6 5511@end table
d782395d 5512@end deffn
99c08fb6 5513@c ---------------------------------------------------------- %define
d782395d 5514
18b519c0 5515@deffn {Directive} %defines
4bfd5e4e
PE
5516Write a header file containing macro definitions for the token type
5517names defined in the grammar as well as a few other declarations.
d8988b2f 5518If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5519is named @file{@var{name}.h}.
d8988b2f 5520
b321737f 5521For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5522@code{YYSTYPE} is already defined as a macro or you have used a
5523@code{<@var{type}>} tag without using @code{%union}.
5524Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5525(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5526require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5527or type definition
f8e1c9e5
AD
5528(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5529arrange for these definitions to be propagated to all modules, e.g., by
5530putting them in a prerequisite header that is included both by your
5531parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5532
5533Unless your parser is pure, the output header declares @code{yylval}
5534as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5535Parser}.
5536
5537If you have also used locations, the output header declares
5538@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5539the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5540Locations}.
5541
f8e1c9e5
AD
5542This output file is normally essential if you wish to put the definition
5543of @code{yylex} in a separate source file, because @code{yylex}
5544typically needs to be able to refer to the above-mentioned declarations
5545and to the token type codes. @xref{Token Values, ,Semantic Values of
5546Tokens}.
9bc0dd67 5547
16dc6a9e
JD
5548@findex %code requires
5549@findex %code provides
5550If you have declared @code{%code requires} or @code{%code provides}, the output
5551header also contains their code.
148d66d8 5552@xref{Decl Summary, ,%code}.
592d0b1e
PB
5553@end deffn
5554
02975b9a
JD
5555@deffn {Directive} %defines @var{defines-file}
5556Same as above, but save in the file @var{defines-file}.
5557@end deffn
5558
18b519c0 5559@deffn {Directive} %destructor
258b75ca 5560Specify how the parser should reclaim the memory associated to
fa7e68c3 5561discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5562@end deffn
72f889cc 5563
02975b9a 5564@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5565Specify a prefix to use for all Bison output file names. The names are
5566chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5567@end deffn
d8988b2f 5568
e6e704dc 5569@deffn {Directive} %language "@var{language}"
0e021770 5570Specify the programming language for the generated parser. Currently
59da312b 5571supported languages include C, C++, and Java.
e6e704dc 5572@var{language} is case-insensitive.
ed4d67dc
JD
5573
5574This directive is experimental and its effect may be modified in future
5575releases.
0e021770
PE
5576@end deffn
5577
18b519c0 5578@deffn {Directive} %locations
89cab50d
AD
5579Generate the code processing the locations (@pxref{Action Features,
5580,Special Features for Use in Actions}). This mode is enabled as soon as
5581the grammar uses the special @samp{@@@var{n}} tokens, but if your
5582grammar does not use it, using @samp{%locations} allows for more
6e649e65 5583accurate syntax error messages.
18b519c0 5584@end deffn
89cab50d 5585
02975b9a 5586@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5587Rename the external symbols used in the parser so that they start with
5588@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5589in C parsers
d8988b2f 5590is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5591@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5592(if locations are used) @code{yylloc}. If you use a push parser,
5593@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5594@code{yypstate_new} and @code{yypstate_delete} will
5595also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5596names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5597For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5598section.
aa08666d 5599@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5600@end deffn
931c7513 5601
91d2c560 5602@ifset defaultprec
22fccf95
PE
5603@deffn {Directive} %no-default-prec
5604Do not assign a precedence to rules lacking an explicit @code{%prec}
5605modifier (@pxref{Contextual Precedence, ,Context-Dependent
5606Precedence}).
5607@end deffn
91d2c560 5608@end ifset
22fccf95 5609
18b519c0 5610@deffn {Directive} %no-lines
931c7513
RS
5611Don't generate any @code{#line} preprocessor commands in the parser
5612file. Ordinarily Bison writes these commands in the parser file so that
5613the C compiler and debuggers will associate errors and object code with
5614your source file (the grammar file). This directive causes them to
5615associate errors with the parser file, treating it an independent source
5616file in its own right.
18b519c0 5617@end deffn
931c7513 5618
02975b9a 5619@deffn {Directive} %output "@var{file}"
fa4d969f 5620Specify @var{file} for the parser file.
18b519c0 5621@end deffn
6deb4447 5622
18b519c0 5623@deffn {Directive} %pure-parser
67501061 5624Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5625for which Bison is more careful to warn about unreasonable usage.
18b519c0 5626@end deffn
6deb4447 5627
b50d2359 5628@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5629Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5630Require a Version of Bison}.
b50d2359
AD
5631@end deffn
5632
0e021770 5633@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5634Specify the skeleton to use.
5635
ed4d67dc
JD
5636@c You probably don't need this option unless you are developing Bison.
5637@c You should use @code{%language} if you want to specify the skeleton for a
5638@c different language, because it is clearer and because it will always choose the
5639@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5640
5641If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5642file in the Bison installation directory.
5643If it does, @var{file} is an absolute file name or a file name relative to the
5644directory of the grammar file.
5645This is similar to how most shells resolve commands.
0e021770
PE
5646@end deffn
5647
18b519c0 5648@deffn {Directive} %token-table
931c7513
RS
5649Generate an array of token names in the parser file. The name of the
5650array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5651token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5652three elements of @code{yytname} correspond to the predefined tokens
5653@code{"$end"},
88bce5a2
AD
5654@code{"error"}, and @code{"$undefined"}; after these come the symbols
5655defined in the grammar file.
931c7513 5656
9e0876fb
PE
5657The name in the table includes all the characters needed to represent
5658the token in Bison. For single-character literals and literal
5659strings, this includes the surrounding quoting characters and any
5660escape sequences. For example, the Bison single-character literal
5661@code{'+'} corresponds to a three-character name, represented in C as
5662@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5663corresponds to a five-character name, represented in C as
5664@code{"\"\\\\/\""}.
931c7513 5665
8c9a50be 5666When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5667definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5668@code{YYNRULES}, and @code{YYNSTATES}:
5669
5670@table @code
5671@item YYNTOKENS
5672The highest token number, plus one.
5673@item YYNNTS
9ecbd125 5674The number of nonterminal symbols.
931c7513
RS
5675@item YYNRULES
5676The number of grammar rules,
5677@item YYNSTATES
5678The number of parser states (@pxref{Parser States}).
5679@end table
18b519c0 5680@end deffn
d8988b2f 5681
18b519c0 5682@deffn {Directive} %verbose
d8988b2f 5683Write an extra output file containing verbose descriptions of the
742e4900 5684parser states and what is done for each type of lookahead token in
72d2299c 5685that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5686information.
18b519c0 5687@end deffn
d8988b2f 5688
18b519c0 5689@deffn {Directive} %yacc
d8988b2f
AD
5690Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5691including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5692@end deffn
d8988b2f
AD
5693
5694
342b8b6e 5695@node Multiple Parsers
bfa74976
RS
5696@section Multiple Parsers in the Same Program
5697
5698Most programs that use Bison parse only one language and therefore contain
5699only one Bison parser. But what if you want to parse more than one
5700language with the same program? Then you need to avoid a name conflict
5701between different definitions of @code{yyparse}, @code{yylval}, and so on.
5702
5703The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5704(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5705functions and variables of the Bison parser to start with @var{prefix}
5706instead of @samp{yy}. You can use this to give each parser distinct
5707names that do not conflict.
bfa74976
RS
5708
5709The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5710@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5711@code{yychar} and @code{yydebug}. If you use a push parser,
5712@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5713@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5714For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5715@code{clex}, and so on.
bfa74976
RS
5716
5717@strong{All the other variables and macros associated with Bison are not
5718renamed.} These others are not global; there is no conflict if the same
5719name is used in different parsers. For example, @code{YYSTYPE} is not
5720renamed, but defining this in different ways in different parsers causes
5721no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5722
5723The @samp{-p} option works by adding macro definitions to the beginning
5724of the parser source file, defining @code{yyparse} as
5725@code{@var{prefix}parse}, and so on. This effectively substitutes one
5726name for the other in the entire parser file.
5727
342b8b6e 5728@node Interface
bfa74976
RS
5729@chapter Parser C-Language Interface
5730@cindex C-language interface
5731@cindex interface
5732
5733The Bison parser is actually a C function named @code{yyparse}. Here we
5734describe the interface conventions of @code{yyparse} and the other
5735functions that it needs to use.
5736
5737Keep in mind that the parser uses many C identifiers starting with
5738@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5739identifier (aside from those in this manual) in an action or in epilogue
5740in the grammar file, you are likely to run into trouble.
bfa74976
RS
5741
5742@menu
f5f419de
DJ
5743* Parser Function:: How to call @code{yyparse} and what it returns.
5744* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5745* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5746* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5747* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5748* Lexical:: You must supply a function @code{yylex}
5749 which reads tokens.
5750* Error Reporting:: You must supply a function @code{yyerror}.
5751* Action Features:: Special features for use in actions.
5752* Internationalization:: How to let the parser speak in the user's
5753 native language.
bfa74976
RS
5754@end menu
5755
342b8b6e 5756@node Parser Function
bfa74976
RS
5757@section The Parser Function @code{yyparse}
5758@findex yyparse
5759
5760You call the function @code{yyparse} to cause parsing to occur. This
5761function reads tokens, executes actions, and ultimately returns when it
5762encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5763write an action which directs @code{yyparse} to return immediately
5764without reading further.
bfa74976 5765
2a8d363a
AD
5766
5767@deftypefun int yyparse (void)
bfa74976
RS
5768The value returned by @code{yyparse} is 0 if parsing was successful (return
5769is due to end-of-input).
5770
b47dbebe
PE
5771The value is 1 if parsing failed because of invalid input, i.e., input
5772that contains a syntax error or that causes @code{YYABORT} to be
5773invoked.
5774
5775The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5776@end deftypefun
bfa74976
RS
5777
5778In an action, you can cause immediate return from @code{yyparse} by using
5779these macros:
5780
2a8d363a 5781@defmac YYACCEPT
bfa74976
RS
5782@findex YYACCEPT
5783Return immediately with value 0 (to report success).
2a8d363a 5784@end defmac
bfa74976 5785
2a8d363a 5786@defmac YYABORT
bfa74976
RS
5787@findex YYABORT
5788Return immediately with value 1 (to report failure).
2a8d363a
AD
5789@end defmac
5790
5791If you use a reentrant parser, you can optionally pass additional
5792parameter information to it in a reentrant way. To do so, use the
5793declaration @code{%parse-param}:
5794
2055a44e 5795@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5796@findex %parse-param
2055a44e
AD
5797Declare that one or more
5798@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5799The @var{argument-declaration} is used when declaring
feeb0eda
PE
5800functions or prototypes. The last identifier in
5801@var{argument-declaration} must be the argument name.
2a8d363a
AD
5802@end deffn
5803
5804Here's an example. Write this in the parser:
5805
5806@example
2055a44e 5807%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5808@end example
5809
5810@noindent
5811Then call the parser like this:
5812
5813@example
5814@{
5815 int nastiness, randomness;
5816 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5817 value = yyparse (&nastiness, &randomness);
5818 @dots{}
5819@}
5820@end example
5821
5822@noindent
5823In the grammar actions, use expressions like this to refer to the data:
5824
5825@example
5826exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5827@end example
5828
9987d1b3
JD
5829@node Push Parser Function
5830@section The Push Parser Function @code{yypush_parse}
5831@findex yypush_parse
5832
59da312b
JD
5833(The current push parsing interface is experimental and may evolve.
5834More user feedback will help to stabilize it.)
5835
f4101aa6 5836You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5837function is available if either the @samp{%define api.push-pull push} or
5838@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5839@xref{Push Decl, ,A Push Parser}.
5840
5841@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5842The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5843following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5844is required to finish parsing the grammar.
5845@end deftypefun
5846
5847@node Pull Parser Function
5848@section The Pull Parser Function @code{yypull_parse}
5849@findex yypull_parse
5850
59da312b
JD
5851(The current push parsing interface is experimental and may evolve.
5852More user feedback will help to stabilize it.)
5853
f4101aa6 5854You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5855stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5856declaration is used.
9987d1b3
JD
5857@xref{Push Decl, ,A Push Parser}.
5858
5859@deftypefun int yypull_parse (yypstate *yyps)
5860The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5861@end deftypefun
5862
5863@node Parser Create Function
5864@section The Parser Create Function @code{yystate_new}
5865@findex yypstate_new
5866
59da312b
JD
5867(The current push parsing interface is experimental and may evolve.
5868More user feedback will help to stabilize it.)
5869
f4101aa6 5870You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5871This function is available if either the @samp{%define api.push-pull push} or
5872@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5873@xref{Push Decl, ,A Push Parser}.
5874
5875@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5876The function will return a valid parser instance if there was memory available
333e670c
JD
5877or 0 if no memory was available.
5878In impure mode, it will also return 0 if a parser instance is currently
5879allocated.
9987d1b3
JD
5880@end deftypefun
5881
5882@node Parser Delete Function
5883@section The Parser Delete Function @code{yystate_delete}
5884@findex yypstate_delete
5885
59da312b
JD
5886(The current push parsing interface is experimental and may evolve.
5887More user feedback will help to stabilize it.)
5888
9987d1b3 5889You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5890function is available if either the @samp{%define api.push-pull push} or
5891@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5892@xref{Push Decl, ,A Push Parser}.
5893
5894@deftypefun void yypstate_delete (yypstate *yyps)
5895This function will reclaim the memory associated with a parser instance.
5896After this call, you should no longer attempt to use the parser instance.
5897@end deftypefun
bfa74976 5898
342b8b6e 5899@node Lexical
bfa74976
RS
5900@section The Lexical Analyzer Function @code{yylex}
5901@findex yylex
5902@cindex lexical analyzer
5903
5904The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5905the input stream and returns them to the parser. Bison does not create
5906this function automatically; you must write it so that @code{yyparse} can
5907call it. The function is sometimes referred to as a lexical scanner.
5908
5909In simple programs, @code{yylex} is often defined at the end of the Bison
5910grammar file. If @code{yylex} is defined in a separate source file, you
5911need to arrange for the token-type macro definitions to be available there.
5912To do this, use the @samp{-d} option when you run Bison, so that it will
5913write these macro definitions into a separate header file
5914@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5915that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5916
5917@menu
5918* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5919* Token Values:: How @code{yylex} must return the semantic value
5920 of the token it has read.
5921* Token Locations:: How @code{yylex} must return the text location
5922 (line number, etc.) of the token, if the
5923 actions want that.
5924* Pure Calling:: How the calling convention differs in a pure parser
5925 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5926@end menu
5927
342b8b6e 5928@node Calling Convention
bfa74976
RS
5929@subsection Calling Convention for @code{yylex}
5930
72d2299c
PE
5931The value that @code{yylex} returns must be the positive numeric code
5932for the type of token it has just found; a zero or negative value
5933signifies end-of-input.
bfa74976
RS
5934
5935When a token is referred to in the grammar rules by a name, that name
5936in the parser file becomes a C macro whose definition is the proper
5937numeric code for that token type. So @code{yylex} can use the name
5938to indicate that type. @xref{Symbols}.
5939
5940When a token is referred to in the grammar rules by a character literal,
5941the numeric code for that character is also the code for the token type.
72d2299c
PE
5942So @code{yylex} can simply return that character code, possibly converted
5943to @code{unsigned char} to avoid sign-extension. The null character
5944must not be used this way, because its code is zero and that
bfa74976
RS
5945signifies end-of-input.
5946
5947Here is an example showing these things:
5948
5949@example
13863333
AD
5950int
5951yylex (void)
bfa74976
RS
5952@{
5953 @dots{}
72d2299c 5954 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5955 return 0;
5956 @dots{}
5957 if (c == '+' || c == '-')
72d2299c 5958 return c; /* Assume token type for `+' is '+'. */
bfa74976 5959 @dots{}
72d2299c 5960 return INT; /* Return the type of the token. */
bfa74976
RS
5961 @dots{}
5962@}
5963@end example
5964
5965@noindent
5966This interface has been designed so that the output from the @code{lex}
5967utility can be used without change as the definition of @code{yylex}.
5968
931c7513
RS
5969If the grammar uses literal string tokens, there are two ways that
5970@code{yylex} can determine the token type codes for them:
5971
5972@itemize @bullet
5973@item
5974If the grammar defines symbolic token names as aliases for the
5975literal string tokens, @code{yylex} can use these symbolic names like
5976all others. In this case, the use of the literal string tokens in
5977the grammar file has no effect on @code{yylex}.
5978
5979@item
9ecbd125 5980@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5981table. The index of the token in the table is the token type's code.
9ecbd125 5982The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5983double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5984token's characters are escaped as necessary to be suitable as input
5985to Bison.
931c7513 5986
9e0876fb
PE
5987Here's code for looking up a multicharacter token in @code{yytname},
5988assuming that the characters of the token are stored in
5989@code{token_buffer}, and assuming that the token does not contain any
5990characters like @samp{"} that require escaping.
931c7513
RS
5991
5992@smallexample
5993for (i = 0; i < YYNTOKENS; i++)
5994 @{
5995 if (yytname[i] != 0
5996 && yytname[i][0] == '"'
68449b3a
PE
5997 && ! strncmp (yytname[i] + 1, token_buffer,
5998 strlen (token_buffer))
931c7513
RS
5999 && yytname[i][strlen (token_buffer) + 1] == '"'
6000 && yytname[i][strlen (token_buffer) + 2] == 0)
6001 break;
6002 @}
6003@end smallexample
6004
6005The @code{yytname} table is generated only if you use the
8c9a50be 6006@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6007@end itemize
6008
342b8b6e 6009@node Token Values
bfa74976
RS
6010@subsection Semantic Values of Tokens
6011
6012@vindex yylval
9d9b8b70 6013In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6014be stored into the global variable @code{yylval}. When you are using
6015just one data type for semantic values, @code{yylval} has that type.
6016Thus, if the type is @code{int} (the default), you might write this in
6017@code{yylex}:
6018
6019@example
6020@group
6021 @dots{}
72d2299c
PE
6022 yylval = value; /* Put value onto Bison stack. */
6023 return INT; /* Return the type of the token. */
bfa74976
RS
6024 @dots{}
6025@end group
6026@end example
6027
6028When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6029made from the @code{%union} declaration (@pxref{Union Decl, ,The
6030Collection of Value Types}). So when you store a token's value, you
6031must use the proper member of the union. If the @code{%union}
6032declaration looks like this:
bfa74976
RS
6033
6034@example
6035@group
6036%union @{
6037 int intval;
6038 double val;
6039 symrec *tptr;
6040@}
6041@end group
6042@end example
6043
6044@noindent
6045then the code in @code{yylex} might look like this:
6046
6047@example
6048@group
6049 @dots{}
72d2299c
PE
6050 yylval.intval = value; /* Put value onto Bison stack. */
6051 return INT; /* Return the type of the token. */
bfa74976
RS
6052 @dots{}
6053@end group
6054@end example
6055
95923bd6
AD
6056@node Token Locations
6057@subsection Textual Locations of Tokens
bfa74976
RS
6058
6059@vindex yylloc
847bf1f5 6060If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6061Tracking Locations}) in actions to keep track of the textual locations
6062of tokens and groupings, then you must provide this information in
6063@code{yylex}. The function @code{yyparse} expects to find the textual
6064location of a token just parsed in the global variable @code{yylloc}.
6065So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6066
6067By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6068initialize the members that are going to be used by the actions. The
6069four members are called @code{first_line}, @code{first_column},
6070@code{last_line} and @code{last_column}. Note that the use of this
6071feature makes the parser noticeably slower.
bfa74976
RS
6072
6073@tindex YYLTYPE
6074The data type of @code{yylloc} has the name @code{YYLTYPE}.
6075
342b8b6e 6076@node Pure Calling
c656404a 6077@subsection Calling Conventions for Pure Parsers
bfa74976 6078
67501061 6079When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6080pure, reentrant parser, the global communication variables @code{yylval}
6081and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6082Parser}.) In such parsers the two global variables are replaced by
6083pointers passed as arguments to @code{yylex}. You must declare them as
6084shown here, and pass the information back by storing it through those
6085pointers.
bfa74976
RS
6086
6087@example
13863333
AD
6088int
6089yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6090@{
6091 @dots{}
6092 *lvalp = value; /* Put value onto Bison stack. */
6093 return INT; /* Return the type of the token. */
6094 @dots{}
6095@}
6096@end example
6097
6098If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6099textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6100this case, omit the second argument; @code{yylex} will be called with
6101only one argument.
6102
2055a44e 6103If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6104@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6105Function}). To pass additional arguments to both @code{yylex} and
6106@code{yyparse}, use @code{%param}.
e425e872 6107
2055a44e 6108@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6109@findex %lex-param
2055a44e
AD
6110Specify that @var{argument-declaration} are additional @code{yylex} argument
6111declarations. You may pass one or more such declarations, which is
6112equivalent to repeating @code{%lex-param}.
6113@end deffn
6114
6115@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6116@findex %param
6117Specify that @var{argument-declaration} are additional
6118@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6119@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6120@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6121declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6122@end deffn
e425e872 6123
2a8d363a 6124For instance:
e425e872
RS
6125
6126@example
2055a44e
AD
6127%lex-param @{scanner_mode *mode@}
6128%parse-param @{parser_mode *mode@}
6129%param @{environment_type *env@}
e425e872
RS
6130@end example
6131
6132@noindent
2a8d363a 6133results in the following signature:
e425e872
RS
6134
6135@example
2055a44e
AD
6136int yylex (scanner_mode *mode, environment_type *env);
6137int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6138@end example
6139
67501061 6140If @samp{%define api.pure} is added:
c656404a
RS
6141
6142@example
2055a44e
AD
6143int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6144int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6145@end example
6146
2a8d363a 6147@noindent
67501061 6148and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6149
2a8d363a 6150@example
2055a44e
AD
6151int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6152 scanner_mode *mode, environment_type *env);
6153int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6154@end example
931c7513 6155
342b8b6e 6156@node Error Reporting
bfa74976
RS
6157@section The Error Reporting Function @code{yyerror}
6158@cindex error reporting function
6159@findex yyerror
6160@cindex parse error
6161@cindex syntax error
6162
31b850d2 6163The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6164whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6165action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6166macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6167in Actions}).
bfa74976
RS
6168
6169The Bison parser expects to report the error by calling an error
6170reporting function named @code{yyerror}, which you must supply. It is
6171called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6172receives one argument. For a syntax error, the string is normally
6173@w{@code{"syntax error"}}.
bfa74976 6174
31b850d2 6175@findex %define parse.error
cf499cff 6176If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6177declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6178Section}), then Bison provides a more verbose and specific error message
6e649e65 6179string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6180
1a059451
PE
6181The parser can detect one other kind of error: memory exhaustion. This
6182can happen when the input contains constructions that are very deeply
bfa74976 6183nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6184parser normally extends its stack automatically up to a very large limit. But
6185if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6186fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6187
6188In some cases diagnostics like @w{@code{"syntax error"}} are
6189translated automatically from English to some other language before
6190they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6191
6192The following definition suffices in simple programs:
6193
6194@example
6195@group
13863333 6196void
38a92d50 6197yyerror (char const *s)
bfa74976
RS
6198@{
6199@end group
6200@group
6201 fprintf (stderr, "%s\n", s);
6202@}
6203@end group
6204@end example
6205
6206After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6207error recovery if you have written suitable error recovery grammar rules
6208(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6209immediately return 1.
6210
93724f13 6211Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6212an access to the current location.
6213This is indeed the case for the @acronym{GLR}
2a8d363a 6214parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6215@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6216@code{yyerror} are:
6217
6218@example
38a92d50
PE
6219void yyerror (char const *msg); /* Yacc parsers. */
6220void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6221@end example
6222
feeb0eda 6223If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6224
6225@example
b317297e
PE
6226void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6227void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6228@end example
6229
fa7e68c3 6230Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6231convention for absolutely pure parsers, i.e., when the calling
6232convention of @code{yylex} @emph{and} the calling convention of
67501061 6233@samp{%define api.pure} are pure.
d9df47b6 6234I.e.:
2a8d363a
AD
6235
6236@example
6237/* Location tracking. */
6238%locations
6239/* Pure yylex. */
d9df47b6 6240%define api.pure
feeb0eda 6241%lex-param @{int *nastiness@}
2a8d363a 6242/* Pure yyparse. */
feeb0eda
PE
6243%parse-param @{int *nastiness@}
6244%parse-param @{int *randomness@}
2a8d363a
AD
6245@end example
6246
6247@noindent
6248results in the following signatures for all the parser kinds:
6249
6250@example
6251int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6252int yyparse (int *nastiness, int *randomness);
93724f13
AD
6253void yyerror (YYLTYPE *locp,
6254 int *nastiness, int *randomness,
38a92d50 6255 char const *msg);
2a8d363a
AD
6256@end example
6257
1c0c3e95 6258@noindent
38a92d50
PE
6259The prototypes are only indications of how the code produced by Bison
6260uses @code{yyerror}. Bison-generated code always ignores the returned
6261value, so @code{yyerror} can return any type, including @code{void}.
6262Also, @code{yyerror} can be a variadic function; that is why the
6263message is always passed last.
6264
6265Traditionally @code{yyerror} returns an @code{int} that is always
6266ignored, but this is purely for historical reasons, and @code{void} is
6267preferable since it more accurately describes the return type for
6268@code{yyerror}.
93724f13 6269
bfa74976
RS
6270@vindex yynerrs
6271The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6272reported so far. Normally this variable is global; but if you
704a47c4
AD
6273request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6274then it is a local variable which only the actions can access.
bfa74976 6275
342b8b6e 6276@node Action Features
bfa74976
RS
6277@section Special Features for Use in Actions
6278@cindex summary, action features
6279@cindex action features summary
6280
6281Here is a table of Bison constructs, variables and macros that
6282are useful in actions.
6283
18b519c0 6284@deffn {Variable} $$
bfa74976
RS
6285Acts like a variable that contains the semantic value for the
6286grouping made by the current rule. @xref{Actions}.
18b519c0 6287@end deffn
bfa74976 6288
18b519c0 6289@deffn {Variable} $@var{n}
bfa74976
RS
6290Acts like a variable that contains the semantic value for the
6291@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6292@end deffn
bfa74976 6293
18b519c0 6294@deffn {Variable} $<@var{typealt}>$
bfa74976 6295Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6296specified by the @code{%union} declaration. @xref{Action Types, ,Data
6297Types of Values in Actions}.
18b519c0 6298@end deffn
bfa74976 6299
18b519c0 6300@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6301Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6302union specified by the @code{%union} declaration.
e0c471a9 6303@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6304@end deffn
bfa74976 6305
18b519c0 6306@deffn {Macro} YYABORT;
bfa74976
RS
6307Return immediately from @code{yyparse}, indicating failure.
6308@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6309@end deffn
bfa74976 6310
18b519c0 6311@deffn {Macro} YYACCEPT;
bfa74976
RS
6312Return immediately from @code{yyparse}, indicating success.
6313@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6314@end deffn
bfa74976 6315
18b519c0 6316@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6317@findex YYBACKUP
6318Unshift a token. This macro is allowed only for rules that reduce
742e4900 6319a single value, and only when there is no lookahead token.
c827f760 6320It is also disallowed in @acronym{GLR} parsers.
742e4900 6321It installs a lookahead token with token type @var{token} and
bfa74976
RS
6322semantic value @var{value}; then it discards the value that was
6323going to be reduced by this rule.
6324
6325If the macro is used when it is not valid, such as when there is
742e4900 6326a lookahead token already, then it reports a syntax error with
bfa74976
RS
6327a message @samp{cannot back up} and performs ordinary error
6328recovery.
6329
6330In either case, the rest of the action is not executed.
18b519c0 6331@end deffn
bfa74976 6332
18b519c0 6333@deffn {Macro} YYEMPTY
bfa74976 6334@vindex YYEMPTY
742e4900 6335Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6336@end deffn
bfa74976 6337
32c29292
JD
6338@deffn {Macro} YYEOF
6339@vindex YYEOF
742e4900 6340Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6341stream.
6342@end deffn
6343
18b519c0 6344@deffn {Macro} YYERROR;
bfa74976
RS
6345@findex YYERROR
6346Cause an immediate syntax error. This statement initiates error
6347recovery just as if the parser itself had detected an error; however, it
6348does not call @code{yyerror}, and does not print any message. If you
6349want to print an error message, call @code{yyerror} explicitly before
6350the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6351@end deffn
bfa74976 6352
18b519c0 6353@deffn {Macro} YYRECOVERING
02103984
PE
6354@findex YYRECOVERING
6355The expression @code{YYRECOVERING ()} yields 1 when the parser
6356is recovering from a syntax error, and 0 otherwise.
bfa74976 6357@xref{Error Recovery}.
18b519c0 6358@end deffn
bfa74976 6359
18b519c0 6360@deffn {Variable} yychar
742e4900
JD
6361Variable containing either the lookahead token, or @code{YYEOF} when the
6362lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6363has been performed so the next token is not yet known.
6364Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6365Actions}).
742e4900 6366@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6367@end deffn
bfa74976 6368
18b519c0 6369@deffn {Macro} yyclearin;
742e4900 6370Discard the current lookahead token. This is useful primarily in
32c29292
JD
6371error rules.
6372Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6373Semantic Actions}).
6374@xref{Error Recovery}.
18b519c0 6375@end deffn
bfa74976 6376
18b519c0 6377@deffn {Macro} yyerrok;
bfa74976 6378Resume generating error messages immediately for subsequent syntax
13863333 6379errors. This is useful primarily in error rules.
bfa74976 6380@xref{Error Recovery}.
18b519c0 6381@end deffn
bfa74976 6382
32c29292 6383@deffn {Variable} yylloc
742e4900 6384Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6385to @code{YYEMPTY} or @code{YYEOF}.
6386Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6387Actions}).
6388@xref{Actions and Locations, ,Actions and Locations}.
6389@end deffn
6390
6391@deffn {Variable} yylval
742e4900 6392Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6393not set to @code{YYEMPTY} or @code{YYEOF}.
6394Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6395Actions}).
6396@xref{Actions, ,Actions}.
6397@end deffn
6398
18b519c0 6399@deffn {Value} @@$
847bf1f5 6400@findex @@$
95923bd6 6401Acts like a structure variable containing information on the textual location
847bf1f5
AD
6402of the grouping made by the current rule. @xref{Locations, ,
6403Tracking Locations}.
bfa74976 6404
847bf1f5
AD
6405@c Check if those paragraphs are still useful or not.
6406
6407@c @example
6408@c struct @{
6409@c int first_line, last_line;
6410@c int first_column, last_column;
6411@c @};
6412@c @end example
6413
6414@c Thus, to get the starting line number of the third component, you would
6415@c use @samp{@@3.first_line}.
bfa74976 6416
847bf1f5
AD
6417@c In order for the members of this structure to contain valid information,
6418@c you must make @code{yylex} supply this information about each token.
6419@c If you need only certain members, then @code{yylex} need only fill in
6420@c those members.
bfa74976 6421
847bf1f5 6422@c The use of this feature makes the parser noticeably slower.
18b519c0 6423@end deffn
847bf1f5 6424
18b519c0 6425@deffn {Value} @@@var{n}
847bf1f5 6426@findex @@@var{n}
95923bd6 6427Acts like a structure variable containing information on the textual location
847bf1f5
AD
6428of the @var{n}th component of the current rule. @xref{Locations, ,
6429Tracking Locations}.
18b519c0 6430@end deffn
bfa74976 6431
f7ab6a50
PE
6432@node Internationalization
6433@section Parser Internationalization
6434@cindex internationalization
6435@cindex i18n
6436@cindex NLS
6437@cindex gettext
6438@cindex bison-po
6439
6440A Bison-generated parser can print diagnostics, including error and
6441tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6442also supports outputting diagnostics in the user's native language. To
6443make this work, the user should set the usual environment variables.
6444@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6445For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6446set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6447encoding. The exact set of available locales depends on the user's
6448installation.
6449
6450The maintainer of a package that uses a Bison-generated parser enables
6451the internationalization of the parser's output through the following
6452steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6453@acronym{GNU} Automake.
6454
6455@enumerate
6456@item
30757c8c 6457@cindex bison-i18n.m4
f7ab6a50
PE
6458Into the directory containing the @acronym{GNU} Autoconf macros used
6459by the package---often called @file{m4}---copy the
6460@file{bison-i18n.m4} file installed by Bison under
6461@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6462For example:
6463
6464@example
6465cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6466@end example
6467
6468@item
30757c8c
PE
6469@findex BISON_I18N
6470@vindex BISON_LOCALEDIR
6471@vindex YYENABLE_NLS
f7ab6a50
PE
6472In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6473invocation, add an invocation of @code{BISON_I18N}. This macro is
6474defined in the file @file{bison-i18n.m4} that you copied earlier. It
6475causes @samp{configure} to find the value of the
30757c8c
PE
6476@code{BISON_LOCALEDIR} variable, and it defines the source-language
6477symbol @code{YYENABLE_NLS} to enable translations in the
6478Bison-generated parser.
f7ab6a50
PE
6479
6480@item
6481In the @code{main} function of your program, designate the directory
6482containing Bison's runtime message catalog, through a call to
6483@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6484For example:
6485
6486@example
6487bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6488@end example
6489
6490Typically this appears after any other call @code{bindtextdomain
6491(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6492@samp{BISON_LOCALEDIR} to be defined as a string through the
6493@file{Makefile}.
6494
6495@item
6496In the @file{Makefile.am} that controls the compilation of the @code{main}
6497function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6498either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6499
6500@example
6501DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6502@end example
6503
6504or:
6505
6506@example
6507AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6508@end example
6509
6510@item
6511Finally, invoke the command @command{autoreconf} to generate the build
6512infrastructure.
6513@end enumerate
6514
bfa74976 6515
342b8b6e 6516@node Algorithm
13863333
AD
6517@chapter The Bison Parser Algorithm
6518@cindex Bison parser algorithm
bfa74976
RS
6519@cindex algorithm of parser
6520@cindex shifting
6521@cindex reduction
6522@cindex parser stack
6523@cindex stack, parser
6524
6525As Bison reads tokens, it pushes them onto a stack along with their
6526semantic values. The stack is called the @dfn{parser stack}. Pushing a
6527token is traditionally called @dfn{shifting}.
6528
6529For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6530@samp{3} to come. The stack will have four elements, one for each token
6531that was shifted.
6532
6533But the stack does not always have an element for each token read. When
6534the last @var{n} tokens and groupings shifted match the components of a
6535grammar rule, they can be combined according to that rule. This is called
6536@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6537single grouping whose symbol is the result (left hand side) of that rule.
6538Running the rule's action is part of the process of reduction, because this
6539is what computes the semantic value of the resulting grouping.
6540
6541For example, if the infix calculator's parser stack contains this:
6542
6543@example
65441 + 5 * 3
6545@end example
6546
6547@noindent
6548and the next input token is a newline character, then the last three
6549elements can be reduced to 15 via the rule:
6550
6551@example
6552expr: expr '*' expr;
6553@end example
6554
6555@noindent
6556Then the stack contains just these three elements:
6557
6558@example
65591 + 15
6560@end example
6561
6562@noindent
6563At this point, another reduction can be made, resulting in the single value
656416. Then the newline token can be shifted.
6565
6566The parser tries, by shifts and reductions, to reduce the entire input down
6567to a single grouping whose symbol is the grammar's start-symbol
6568(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6569
6570This kind of parser is known in the literature as a bottom-up parser.
6571
6572@menu
742e4900 6573* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6574* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6575* Precedence:: Operator precedence works by resolving conflicts.
6576* Contextual Precedence:: When an operator's precedence depends on context.
6577* Parser States:: The parser is a finite-state-machine with stack.
6578* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6579* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6580* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6581* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6582@end menu
6583
742e4900
JD
6584@node Lookahead
6585@section Lookahead Tokens
6586@cindex lookahead token
bfa74976
RS
6587
6588The Bison parser does @emph{not} always reduce immediately as soon as the
6589last @var{n} tokens and groupings match a rule. This is because such a
6590simple strategy is inadequate to handle most languages. Instead, when a
6591reduction is possible, the parser sometimes ``looks ahead'' at the next
6592token in order to decide what to do.
6593
6594When a token is read, it is not immediately shifted; first it becomes the
742e4900 6595@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6596perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6597the lookahead token remains off to the side. When no more reductions
6598should take place, the lookahead token is shifted onto the stack. This
bfa74976 6599does not mean that all possible reductions have been done; depending on the
742e4900 6600token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6601application.
6602
742e4900 6603Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6604expressions which contain binary addition operators and postfix unary
6605factorial operators (@samp{!}), and allow parentheses for grouping.
6606
6607@example
6608@group
6609expr: term '+' expr
6610 | term
6611 ;
6612@end group
6613
6614@group
6615term: '(' expr ')'
6616 | term '!'
6617 | NUMBER
6618 ;
6619@end group
6620@end example
6621
6622Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6623should be done? If the following token is @samp{)}, then the first three
6624tokens must be reduced to form an @code{expr}. This is the only valid
6625course, because shifting the @samp{)} would produce a sequence of symbols
6626@w{@code{term ')'}}, and no rule allows this.
6627
6628If the following token is @samp{!}, then it must be shifted immediately so
6629that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6630parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6631@code{expr}. It would then be impossible to shift the @samp{!} because
6632doing so would produce on the stack the sequence of symbols @code{expr
6633'!'}. No rule allows that sequence.
6634
6635@vindex yychar
32c29292
JD
6636@vindex yylval
6637@vindex yylloc
742e4900 6638The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6639Its semantic value and location, if any, are stored in the variables
6640@code{yylval} and @code{yylloc}.
bfa74976
RS
6641@xref{Action Features, ,Special Features for Use in Actions}.
6642
342b8b6e 6643@node Shift/Reduce
bfa74976
RS
6644@section Shift/Reduce Conflicts
6645@cindex conflicts
6646@cindex shift/reduce conflicts
6647@cindex dangling @code{else}
6648@cindex @code{else}, dangling
6649
6650Suppose we are parsing a language which has if-then and if-then-else
6651statements, with a pair of rules like this:
6652
6653@example
6654@group
6655if_stmt:
6656 IF expr THEN stmt
6657 | IF expr THEN stmt ELSE stmt
6658 ;
6659@end group
6660@end example
6661
6662@noindent
6663Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6664terminal symbols for specific keyword tokens.
6665
742e4900 6666When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6667contents of the stack (assuming the input is valid) are just right for
6668reduction by the first rule. But it is also legitimate to shift the
6669@code{ELSE}, because that would lead to eventual reduction by the second
6670rule.
6671
6672This situation, where either a shift or a reduction would be valid, is
6673called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6674these conflicts by choosing to shift, unless otherwise directed by
6675operator precedence declarations. To see the reason for this, let's
6676contrast it with the other alternative.
6677
6678Since the parser prefers to shift the @code{ELSE}, the result is to attach
6679the else-clause to the innermost if-statement, making these two inputs
6680equivalent:
6681
6682@example
6683if x then if y then win (); else lose;
6684
6685if x then do; if y then win (); else lose; end;
6686@end example
6687
6688But if the parser chose to reduce when possible rather than shift, the
6689result would be to attach the else-clause to the outermost if-statement,
6690making these two inputs equivalent:
6691
6692@example
6693if x then if y then win (); else lose;
6694
6695if x then do; if y then win (); end; else lose;
6696@end example
6697
6698The conflict exists because the grammar as written is ambiguous: either
6699parsing of the simple nested if-statement is legitimate. The established
6700convention is that these ambiguities are resolved by attaching the
6701else-clause to the innermost if-statement; this is what Bison accomplishes
6702by choosing to shift rather than reduce. (It would ideally be cleaner to
6703write an unambiguous grammar, but that is very hard to do in this case.)
6704This particular ambiguity was first encountered in the specifications of
6705Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6706
6707To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6708conflicts, use the @code{%expect @var{n}} declaration.
6709There will be no warning as long as the number of shift/reduce conflicts
6710is exactly @var{n}, and Bison will report an error if there is a
6711different number.
bfa74976
RS
6712@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6713
6714The definition of @code{if_stmt} above is solely to blame for the
6715conflict, but the conflict does not actually appear without additional
6716rules. Here is a complete Bison input file that actually manifests the
6717conflict:
6718
6719@example
6720@group
6721%token IF THEN ELSE variable
6722%%
6723@end group
6724@group
6725stmt: expr
6726 | if_stmt
6727 ;
6728@end group
6729
6730@group
6731if_stmt:
6732 IF expr THEN stmt
6733 | IF expr THEN stmt ELSE stmt
6734 ;
6735@end group
6736
6737expr: variable
6738 ;
6739@end example
6740
342b8b6e 6741@node Precedence
bfa74976
RS
6742@section Operator Precedence
6743@cindex operator precedence
6744@cindex precedence of operators
6745
6746Another situation where shift/reduce conflicts appear is in arithmetic
6747expressions. Here shifting is not always the preferred resolution; the
6748Bison declarations for operator precedence allow you to specify when to
6749shift and when to reduce.
6750
6751@menu
6752* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6753* Using Precedence:: How to specify precedence and associativity.
6754* Precedence Only:: How to specify precedence only.
bfa74976
RS
6755* Precedence Examples:: How these features are used in the previous example.
6756* How Precedence:: How they work.
6757@end menu
6758
342b8b6e 6759@node Why Precedence
bfa74976
RS
6760@subsection When Precedence is Needed
6761
6762Consider the following ambiguous grammar fragment (ambiguous because the
6763input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6764
6765@example
6766@group
6767expr: expr '-' expr
6768 | expr '*' expr
6769 | expr '<' expr
6770 | '(' expr ')'
6771 @dots{}
6772 ;
6773@end group
6774@end example
6775
6776@noindent
6777Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6778should it reduce them via the rule for the subtraction operator? It
6779depends on the next token. Of course, if the next token is @samp{)}, we
6780must reduce; shifting is invalid because no single rule can reduce the
6781token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6782the next token is @samp{*} or @samp{<}, we have a choice: either
6783shifting or reduction would allow the parse to complete, but with
6784different results.
6785
6786To decide which one Bison should do, we must consider the results. If
6787the next operator token @var{op} is shifted, then it must be reduced
6788first in order to permit another opportunity to reduce the difference.
6789The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6790hand, if the subtraction is reduced before shifting @var{op}, the result
6791is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6792reduce should depend on the relative precedence of the operators
6793@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6794@samp{<}.
bfa74976
RS
6795
6796@cindex associativity
6797What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6798@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6799operators we prefer the former, which is called @dfn{left association}.
6800The latter alternative, @dfn{right association}, is desirable for
6801assignment operators. The choice of left or right association is a
6802matter of whether the parser chooses to shift or reduce when the stack
742e4900 6803contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6804makes right-associativity.
bfa74976 6805
342b8b6e 6806@node Using Precedence
bfa74976
RS
6807@subsection Specifying Operator Precedence
6808@findex %left
bfa74976 6809@findex %nonassoc
d78f0ac9
AD
6810@findex %precedence
6811@findex %right
bfa74976
RS
6812
6813Bison allows you to specify these choices with the operator precedence
6814declarations @code{%left} and @code{%right}. Each such declaration
6815contains a list of tokens, which are operators whose precedence and
6816associativity is being declared. The @code{%left} declaration makes all
6817those operators left-associative and the @code{%right} declaration makes
6818them right-associative. A third alternative is @code{%nonassoc}, which
6819declares that it is a syntax error to find the same operator twice ``in a
6820row''.
d78f0ac9
AD
6821The last alternative, @code{%precedence}, allows to define only
6822precedence and no associativity at all. As a result, any
6823associativity-related conflict that remains will be reported as an
6824compile-time error. The directive @code{%nonassoc} creates run-time
6825error: using the operator in a associative way is a syntax error. The
6826directive @code{%precedence} creates compile-time errors: an operator
6827@emph{can} be involved in an associativity-related conflict, contrary to
6828what expected the grammar author.
bfa74976
RS
6829
6830The relative precedence of different operators is controlled by the
d78f0ac9
AD
6831order in which they are declared. The first precedence/associativity
6832declaration in the file declares the operators whose
bfa74976
RS
6833precedence is lowest, the next such declaration declares the operators
6834whose precedence is a little higher, and so on.
6835
d78f0ac9
AD
6836@node Precedence Only
6837@subsection Specifying Precedence Only
6838@findex %precedence
6839
6840Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6841@code{%nonassoc}, which all defines precedence and associativity, little
6842attention is paid to the fact that precedence cannot be defined without
6843defining associativity. Yet, sometimes, when trying to solve a
6844conflict, precedence suffices. In such a case, using @code{%left},
6845@code{%right}, or @code{%nonassoc} might hide future (associativity
6846related) conflicts that would remain hidden.
6847
6848The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6849Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6850in the following situation, where the period denotes the current parsing
6851state:
6852
6853@example
6854if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6855@end example
6856
6857The conflict involves the reduction of the rule @samp{IF expr THEN
6858stmt}, which precedence is by default that of its last token
6859(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6860disambiguation (attach the @code{else} to the closest @code{if}),
6861shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6862higher than that of @code{THEN}. But neither is expected to be involved
6863in an associativity related conflict, which can be specified as follows.
6864
6865@example
6866%precedence THEN
6867%precedence ELSE
6868@end example
6869
6870The unary-minus is another typical example where associativity is
6871usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6872Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6873used to declare the precedence of @code{NEG}, which is more than needed
6874since it also defines its associativity. While this is harmless in the
6875traditional example, who knows how @code{NEG} might be used in future
6876evolutions of the grammar@dots{}
6877
342b8b6e 6878@node Precedence Examples
bfa74976
RS
6879@subsection Precedence Examples
6880
6881In our example, we would want the following declarations:
6882
6883@example
6884%left '<'
6885%left '-'
6886%left '*'
6887@end example
6888
6889In a more complete example, which supports other operators as well, we
6890would declare them in groups of equal precedence. For example, @code{'+'} is
6891declared with @code{'-'}:
6892
6893@example
6894%left '<' '>' '=' NE LE GE
6895%left '+' '-'
6896%left '*' '/'
6897@end example
6898
6899@noindent
6900(Here @code{NE} and so on stand for the operators for ``not equal''
6901and so on. We assume that these tokens are more than one character long
6902and therefore are represented by names, not character literals.)
6903
342b8b6e 6904@node How Precedence
bfa74976
RS
6905@subsection How Precedence Works
6906
6907The first effect of the precedence declarations is to assign precedence
6908levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6909precedence levels to certain rules: each rule gets its precedence from
6910the last terminal symbol mentioned in the components. (You can also
6911specify explicitly the precedence of a rule. @xref{Contextual
6912Precedence, ,Context-Dependent Precedence}.)
6913
6914Finally, the resolution of conflicts works by comparing the precedence
742e4900 6915of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6916token's precedence is higher, the choice is to shift. If the rule's
6917precedence is higher, the choice is to reduce. If they have equal
6918precedence, the choice is made based on the associativity of that
6919precedence level. The verbose output file made by @samp{-v}
6920(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6921resolved.
bfa74976
RS
6922
6923Not all rules and not all tokens have precedence. If either the rule or
742e4900 6924the lookahead token has no precedence, then the default is to shift.
bfa74976 6925
342b8b6e 6926@node Contextual Precedence
bfa74976
RS
6927@section Context-Dependent Precedence
6928@cindex context-dependent precedence
6929@cindex unary operator precedence
6930@cindex precedence, context-dependent
6931@cindex precedence, unary operator
6932@findex %prec
6933
6934Often the precedence of an operator depends on the context. This sounds
6935outlandish at first, but it is really very common. For example, a minus
6936sign typically has a very high precedence as a unary operator, and a
6937somewhat lower precedence (lower than multiplication) as a binary operator.
6938
d78f0ac9
AD
6939The Bison precedence declarations
6940can only be used once for a given token; so a token has
bfa74976
RS
6941only one precedence declared in this way. For context-dependent
6942precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6943modifier for rules.
bfa74976
RS
6944
6945The @code{%prec} modifier declares the precedence of a particular rule by
6946specifying a terminal symbol whose precedence should be used for that rule.
6947It's not necessary for that symbol to appear otherwise in the rule. The
6948modifier's syntax is:
6949
6950@example
6951%prec @var{terminal-symbol}
6952@end example
6953
6954@noindent
6955and it is written after the components of the rule. Its effect is to
6956assign the rule the precedence of @var{terminal-symbol}, overriding
6957the precedence that would be deduced for it in the ordinary way. The
6958altered rule precedence then affects how conflicts involving that rule
6959are resolved (@pxref{Precedence, ,Operator Precedence}).
6960
6961Here is how @code{%prec} solves the problem of unary minus. First, declare
6962a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6963are no tokens of this type, but the symbol serves to stand for its
6964precedence:
6965
6966@example
6967@dots{}
6968%left '+' '-'
6969%left '*'
6970%left UMINUS
6971@end example
6972
6973Now the precedence of @code{UMINUS} can be used in specific rules:
6974
6975@example
6976@group
6977exp: @dots{}
6978 | exp '-' exp
6979 @dots{}
6980 | '-' exp %prec UMINUS
6981@end group
6982@end example
6983
91d2c560 6984@ifset defaultprec
39a06c25
PE
6985If you forget to append @code{%prec UMINUS} to the rule for unary
6986minus, Bison silently assumes that minus has its usual precedence.
6987This kind of problem can be tricky to debug, since one typically
6988discovers the mistake only by testing the code.
6989
22fccf95 6990The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6991this kind of problem systematically. It causes rules that lack a
6992@code{%prec} modifier to have no precedence, even if the last terminal
6993symbol mentioned in their components has a declared precedence.
6994
22fccf95 6995If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6996for all rules that participate in precedence conflict resolution.
6997Then you will see any shift/reduce conflict until you tell Bison how
6998to resolve it, either by changing your grammar or by adding an
6999explicit precedence. This will probably add declarations to the
7000grammar, but it helps to protect against incorrect rule precedences.
7001
22fccf95
PE
7002The effect of @code{%no-default-prec;} can be reversed by giving
7003@code{%default-prec;}, which is the default.
91d2c560 7004@end ifset
39a06c25 7005
342b8b6e 7006@node Parser States
bfa74976
RS
7007@section Parser States
7008@cindex finite-state machine
7009@cindex parser state
7010@cindex state (of parser)
7011
7012The function @code{yyparse} is implemented using a finite-state machine.
7013The values pushed on the parser stack are not simply token type codes; they
7014represent the entire sequence of terminal and nonterminal symbols at or
7015near the top of the stack. The current state collects all the information
7016about previous input which is relevant to deciding what to do next.
7017
742e4900
JD
7018Each time a lookahead token is read, the current parser state together
7019with the type of lookahead token are looked up in a table. This table
7020entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7021specifies the new parser state, which is pushed onto the top of the
7022parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7023This means that a certain number of tokens or groupings are taken off
7024the top of the stack, and replaced by one grouping. In other words,
7025that number of states are popped from the stack, and one new state is
7026pushed.
7027
742e4900 7028There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7029is erroneous in the current state. This causes error processing to begin
7030(@pxref{Error Recovery}).
7031
342b8b6e 7032@node Reduce/Reduce
bfa74976
RS
7033@section Reduce/Reduce Conflicts
7034@cindex reduce/reduce conflict
7035@cindex conflicts, reduce/reduce
7036
7037A reduce/reduce conflict occurs if there are two or more rules that apply
7038to the same sequence of input. This usually indicates a serious error
7039in the grammar.
7040
7041For example, here is an erroneous attempt to define a sequence
7042of zero or more @code{word} groupings.
7043
7044@example
7045sequence: /* empty */
7046 @{ printf ("empty sequence\n"); @}
7047 | maybeword
7048 | sequence word
7049 @{ printf ("added word %s\n", $2); @}
7050 ;
7051
7052maybeword: /* empty */
7053 @{ printf ("empty maybeword\n"); @}
7054 | word
7055 @{ printf ("single word %s\n", $1); @}
7056 ;
7057@end example
7058
7059@noindent
7060The error is an ambiguity: there is more than one way to parse a single
7061@code{word} into a @code{sequence}. It could be reduced to a
7062@code{maybeword} and then into a @code{sequence} via the second rule.
7063Alternatively, nothing-at-all could be reduced into a @code{sequence}
7064via the first rule, and this could be combined with the @code{word}
7065using the third rule for @code{sequence}.
7066
7067There is also more than one way to reduce nothing-at-all into a
7068@code{sequence}. This can be done directly via the first rule,
7069or indirectly via @code{maybeword} and then the second rule.
7070
7071You might think that this is a distinction without a difference, because it
7072does not change whether any particular input is valid or not. But it does
7073affect which actions are run. One parsing order runs the second rule's
7074action; the other runs the first rule's action and the third rule's action.
7075In this example, the output of the program changes.
7076
7077Bison resolves a reduce/reduce conflict by choosing to use the rule that
7078appears first in the grammar, but it is very risky to rely on this. Every
7079reduce/reduce conflict must be studied and usually eliminated. Here is the
7080proper way to define @code{sequence}:
7081
7082@example
7083sequence: /* empty */
7084 @{ printf ("empty sequence\n"); @}
7085 | sequence word
7086 @{ printf ("added word %s\n", $2); @}
7087 ;
7088@end example
7089
7090Here is another common error that yields a reduce/reduce conflict:
7091
7092@example
7093sequence: /* empty */
7094 | sequence words
7095 | sequence redirects
7096 ;
7097
7098words: /* empty */
7099 | words word
7100 ;
7101
7102redirects:/* empty */
7103 | redirects redirect
7104 ;
7105@end example
7106
7107@noindent
7108The intention here is to define a sequence which can contain either
7109@code{word} or @code{redirect} groupings. The individual definitions of
7110@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7111three together make a subtle ambiguity: even an empty input can be parsed
7112in infinitely many ways!
7113
7114Consider: nothing-at-all could be a @code{words}. Or it could be two
7115@code{words} in a row, or three, or any number. It could equally well be a
7116@code{redirects}, or two, or any number. Or it could be a @code{words}
7117followed by three @code{redirects} and another @code{words}. And so on.
7118
7119Here are two ways to correct these rules. First, to make it a single level
7120of sequence:
7121
7122@example
7123sequence: /* empty */
7124 | sequence word
7125 | sequence redirect
7126 ;
7127@end example
7128
7129Second, to prevent either a @code{words} or a @code{redirects}
7130from being empty:
7131
7132@example
7133sequence: /* empty */
7134 | sequence words
7135 | sequence redirects
7136 ;
7137
7138words: word
7139 | words word
7140 ;
7141
7142redirects:redirect
7143 | redirects redirect
7144 ;
7145@end example
7146
342b8b6e 7147@node Mystery Conflicts
bfa74976
RS
7148@section Mysterious Reduce/Reduce Conflicts
7149
7150Sometimes reduce/reduce conflicts can occur that don't look warranted.
7151Here is an example:
7152
7153@example
7154@group
7155%token ID
7156
7157%%
7158def: param_spec return_spec ','
7159 ;
7160param_spec:
7161 type
7162 | name_list ':' type
7163 ;
7164@end group
7165@group
7166return_spec:
7167 type
7168 | name ':' type
7169 ;
7170@end group
7171@group
7172type: ID
7173 ;
7174@end group
7175@group
7176name: ID
7177 ;
7178name_list:
7179 name
7180 | name ',' name_list
7181 ;
7182@end group
7183@end example
7184
7185It would seem that this grammar can be parsed with only a single token
742e4900 7186of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7187a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 7188@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 7189
c827f760
PE
7190@cindex @acronym{LR}(1)
7191@cindex @acronym{LALR}(1)
eb45ef3b
JD
7192However, for historical reasons, Bison cannot by default handle all
7193@acronym{LR}(1) grammars.
7194In this grammar, two contexts, that after an @code{ID} at the beginning
7195of a @code{param_spec} and likewise at the beginning of a
7196@code{return_spec}, are similar enough that Bison assumes they are the
7197same.
7198They appear similar because the same set of rules would be
bfa74976
RS
7199active---the rule for reducing to a @code{name} and that for reducing to
7200a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7201that the rules would require different lookahead tokens in the two
bfa74976
RS
7202contexts, so it makes a single parser state for them both. Combining
7203the two contexts causes a conflict later. In parser terminology, this
c827f760 7204occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 7205
eb45ef3b
JD
7206For many practical grammars (specifically those that fall into the
7207non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
7208difficulties beyond just mysterious reduce/reduce conflicts.
7209The best way to fix all these problems is to select a different parser
7210table generation algorithm.
7211Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
7212the former is more efficient and easier to debug during development.
7213@xref{Decl Summary,,lr.type}, for details.
7214(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7215are experimental.
7216More user feedback will help to stabilize them.)
7217
7218If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7219can often fix a mysterious conflict by identifying the two parser states
7220that are being confused, and adding something to make them look
7221distinct. In the above example, adding one rule to
bfa74976
RS
7222@code{return_spec} as follows makes the problem go away:
7223
7224@example
7225@group
7226%token BOGUS
7227@dots{}
7228%%
7229@dots{}
7230return_spec:
7231 type
7232 | name ':' type
7233 /* This rule is never used. */
7234 | ID BOGUS
7235 ;
7236@end group
7237@end example
7238
7239This corrects the problem because it introduces the possibility of an
7240additional active rule in the context after the @code{ID} at the beginning of
7241@code{return_spec}. This rule is not active in the corresponding context
7242in a @code{param_spec}, so the two contexts receive distinct parser states.
7243As long as the token @code{BOGUS} is never generated by @code{yylex},
7244the added rule cannot alter the way actual input is parsed.
7245
7246In this particular example, there is another way to solve the problem:
7247rewrite the rule for @code{return_spec} to use @code{ID} directly
7248instead of via @code{name}. This also causes the two confusing
7249contexts to have different sets of active rules, because the one for
7250@code{return_spec} activates the altered rule for @code{return_spec}
7251rather than the one for @code{name}.
7252
7253@example
7254param_spec:
7255 type
7256 | name_list ':' type
7257 ;
7258return_spec:
7259 type
7260 | ID ':' type
7261 ;
7262@end example
7263
e054b190
PE
7264For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7265generators, please see:
7266Frank DeRemer and Thomas Pennello, Efficient Computation of
7267@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7268Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7269pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7270
fae437e8 7271@node Generalized LR Parsing
c827f760
PE
7272@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7273@cindex @acronym{GLR} parsing
7274@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7275@cindex ambiguous grammars
9d9b8b70 7276@cindex nondeterministic parsing
676385e2 7277
fae437e8
AD
7278Bison produces @emph{deterministic} parsers that choose uniquely
7279when to reduce and which reduction to apply
742e4900 7280based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7281As a result, normal Bison handles a proper subset of the family of
7282context-free languages.
fae437e8 7283Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7284sequence of reductions cannot have deterministic parsers in this sense.
7285The same is true of languages that require more than one symbol of
742e4900 7286lookahead, since the parser lacks the information necessary to make a
676385e2 7287decision at the point it must be made in a shift-reduce parser.
fae437e8 7288Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7289there are languages where Bison's default choice of how to
676385e2
PH
7290summarize the input seen so far loses necessary information.
7291
7292When you use the @samp{%glr-parser} declaration in your grammar file,
7293Bison generates a parser that uses a different algorithm, called
c827f760
PE
7294Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7295parser uses the same basic
676385e2
PH
7296algorithm for parsing as an ordinary Bison parser, but behaves
7297differently in cases where there is a shift-reduce conflict that has not
fae437e8 7298been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7299reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7300situation, it
fae437e8 7301effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7302shift or reduction. These parsers then proceed as usual, consuming
7303tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7304and split further, with the result that instead of a sequence of states,
c827f760 7305a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7306
7307In effect, each stack represents a guess as to what the proper parse
7308is. Additional input may indicate that a guess was wrong, in which case
7309the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7310actions generated in each stack are saved, rather than being executed
676385e2 7311immediately. When a stack disappears, its saved semantic actions never
fae437e8 7312get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7313their sets of semantic actions are both saved with the state that
7314results from the reduction. We say that two stacks are equivalent
fae437e8 7315when they both represent the same sequence of states,
676385e2
PH
7316and each pair of corresponding states represents a
7317grammar symbol that produces the same segment of the input token
7318stream.
7319
7320Whenever the parser makes a transition from having multiple
eb45ef3b 7321states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7322algorithm, after resolving and executing the saved-up actions.
7323At this transition, some of the states on the stack will have semantic
7324values that are sets (actually multisets) of possible actions. The
7325parser tries to pick one of the actions by first finding one whose rule
7326has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7327declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7328precedence, but there the same merging function is declared for both
fae437e8 7329rules by the @samp{%merge} declaration,
676385e2
PH
7330Bison resolves and evaluates both and then calls the merge function on
7331the result. Otherwise, it reports an ambiguity.
7332
c827f760 7333It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7334permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7335size of the input), any unambiguous (not necessarily
eb45ef3b 7336@acronym{LR}(1)) grammar in
fae437e8 7337quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7338context-free grammar in cubic worst-case time. However, Bison currently
7339uses a simpler data structure that requires time proportional to the
7340length of the input times the maximum number of stacks required for any
9d9b8b70 7341prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7342grammars can require exponential time and space to process. Such badly
7343behaving examples, however, are not generally of practical interest.
9d9b8b70 7344Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7345doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7346structure should generally be adequate. On @acronym{LR}(1) portions of a
7347grammar, in particular, it is only slightly slower than with the
7348deterministic @acronym{LR}(1) Bison parser.
676385e2 7349
fa7e68c3 7350For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7351Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7352Generalised @acronym{LR} Parsers, Royal Holloway, University of
7353London, Department of Computer Science, TR-00-12,
7354@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7355(2000-12-24).
7356
1a059451
PE
7357@node Memory Management
7358@section Memory Management, and How to Avoid Memory Exhaustion
7359@cindex memory exhaustion
7360@cindex memory management
bfa74976
RS
7361@cindex stack overflow
7362@cindex parser stack overflow
7363@cindex overflow of parser stack
7364
1a059451 7365The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7366not reduced. When this happens, the parser function @code{yyparse}
1a059451 7367calls @code{yyerror} and then returns 2.
bfa74976 7368
c827f760 7369Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7370usually results from using a right recursion instead of a left
7371recursion, @xref{Recursion, ,Recursive Rules}.
7372
bfa74976
RS
7373@vindex YYMAXDEPTH
7374By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7375parser stack can become before memory is exhausted. Define the
bfa74976
RS
7376macro with a value that is an integer. This value is the maximum number
7377of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7378
7379The stack space allowed is not necessarily allocated. If you specify a
1a059451 7380large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7381stack at first, and then makes it bigger by stages as needed. This
7382increasing allocation happens automatically and silently. Therefore,
7383you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7384space for ordinary inputs that do not need much stack.
7385
d7e14fc0
PE
7386However, do not allow @code{YYMAXDEPTH} to be a value so large that
7387arithmetic overflow could occur when calculating the size of the stack
7388space. Also, do not allow @code{YYMAXDEPTH} to be less than
7389@code{YYINITDEPTH}.
7390
bfa74976
RS
7391@cindex default stack limit
7392The default value of @code{YYMAXDEPTH}, if you do not define it, is
739310000.
7394
7395@vindex YYINITDEPTH
7396You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7397macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7398parser in C, this value must be a compile-time constant
d7e14fc0
PE
7399unless you are assuming C99 or some other target language or compiler
7400that allows variable-length arrays. The default is 200.
7401
1a059451 7402Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7403
20be2f92
PH
7404You can generate a deterministic parser containing C++ user code from
7405the default (C) skeleton, as well as from the C++ skeleton
7406(@pxref{C++ Parsers}). However, if you do use the default skeleton
7407and want to allow the parsing stack to grow,
7408be careful not to use semantic types or location types that require
7409non-trivial copy constructors.
7410The C skeleton bypasses these constructors when copying data to
7411new, larger stacks.
d1a1114f 7412
342b8b6e 7413@node Error Recovery
bfa74976
RS
7414@chapter Error Recovery
7415@cindex error recovery
7416@cindex recovery from errors
7417
6e649e65 7418It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7419error. For example, a compiler should recover sufficiently to parse the
7420rest of the input file and check it for errors; a calculator should accept
7421another expression.
7422
7423In a simple interactive command parser where each input is one line, it may
7424be sufficient to allow @code{yyparse} to return 1 on error and have the
7425caller ignore the rest of the input line when that happens (and then call
7426@code{yyparse} again). But this is inadequate for a compiler, because it
7427forgets all the syntactic context leading up to the error. A syntax error
7428deep within a function in the compiler input should not cause the compiler
7429to treat the following line like the beginning of a source file.
7430
7431@findex error
7432You can define how to recover from a syntax error by writing rules to
7433recognize the special token @code{error}. This is a terminal symbol that
7434is always defined (you need not declare it) and reserved for error
7435handling. The Bison parser generates an @code{error} token whenever a
7436syntax error happens; if you have provided a rule to recognize this token
13863333 7437in the current context, the parse can continue.
bfa74976
RS
7438
7439For example:
7440
7441@example
7442stmnts: /* empty string */
7443 | stmnts '\n'
7444 | stmnts exp '\n'
7445 | stmnts error '\n'
7446@end example
7447
7448The fourth rule in this example says that an error followed by a newline
7449makes a valid addition to any @code{stmnts}.
7450
7451What happens if a syntax error occurs in the middle of an @code{exp}? The
7452error recovery rule, interpreted strictly, applies to the precise sequence
7453of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7454the middle of an @code{exp}, there will probably be some additional tokens
7455and subexpressions on the stack after the last @code{stmnts}, and there
7456will be tokens to read before the next newline. So the rule is not
7457applicable in the ordinary way.
7458
7459But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7460the semantic context and part of the input. First it discards states
7461and objects from the stack until it gets back to a state in which the
bfa74976 7462@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7463already parsed are discarded, back to the last complete @code{stmnts}.)
7464At this point the @code{error} token can be shifted. Then, if the old
742e4900 7465lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7466tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7467this example, Bison reads and discards input until the next newline so
7468that the fourth rule can apply. Note that discarded symbols are
7469possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7470Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7471
7472The choice of error rules in the grammar is a choice of strategies for
7473error recovery. A simple and useful strategy is simply to skip the rest of
7474the current input line or current statement if an error is detected:
7475
7476@example
72d2299c 7477stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7478@end example
7479
7480It is also useful to recover to the matching close-delimiter of an
7481opening-delimiter that has already been parsed. Otherwise the
7482close-delimiter will probably appear to be unmatched, and generate another,
7483spurious error message:
7484
7485@example
7486primary: '(' expr ')'
7487 | '(' error ')'
7488 @dots{}
7489 ;
7490@end example
7491
7492Error recovery strategies are necessarily guesses. When they guess wrong,
7493one syntax error often leads to another. In the above example, the error
7494recovery rule guesses that an error is due to bad input within one
7495@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7496middle of a valid @code{stmnt}. After the error recovery rule recovers
7497from the first error, another syntax error will be found straightaway,
7498since the text following the spurious semicolon is also an invalid
7499@code{stmnt}.
7500
7501To prevent an outpouring of error messages, the parser will output no error
7502message for another syntax error that happens shortly after the first; only
7503after three consecutive input tokens have been successfully shifted will
7504error messages resume.
7505
7506Note that rules which accept the @code{error} token may have actions, just
7507as any other rules can.
7508
7509@findex yyerrok
7510You can make error messages resume immediately by using the macro
7511@code{yyerrok} in an action. If you do this in the error rule's action, no
7512error messages will be suppressed. This macro requires no arguments;
7513@samp{yyerrok;} is a valid C statement.
7514
7515@findex yyclearin
742e4900 7516The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7517this is unacceptable, then the macro @code{yyclearin} may be used to clear
7518this token. Write the statement @samp{yyclearin;} in the error rule's
7519action.
32c29292 7520@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7521
6e649e65 7522For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7523called that advances the input stream to some point where parsing should
7524once again commence. The next symbol returned by the lexical scanner is
742e4900 7525probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7526with @samp{yyclearin;}.
7527
7528@vindex YYRECOVERING
02103984
PE
7529The expression @code{YYRECOVERING ()} yields 1 when the parser
7530is recovering from a syntax error, and 0 otherwise.
7531Syntax error diagnostics are suppressed while recovering from a syntax
7532error.
bfa74976 7533
342b8b6e 7534@node Context Dependency
bfa74976
RS
7535@chapter Handling Context Dependencies
7536
7537The Bison paradigm is to parse tokens first, then group them into larger
7538syntactic units. In many languages, the meaning of a token is affected by
7539its context. Although this violates the Bison paradigm, certain techniques
7540(known as @dfn{kludges}) may enable you to write Bison parsers for such
7541languages.
7542
7543@menu
7544* Semantic Tokens:: Token parsing can depend on the semantic context.
7545* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7546* Tie-in Recovery:: Lexical tie-ins have implications for how
7547 error recovery rules must be written.
7548@end menu
7549
7550(Actually, ``kludge'' means any technique that gets its job done but is
7551neither clean nor robust.)
7552
342b8b6e 7553@node Semantic Tokens
bfa74976
RS
7554@section Semantic Info in Token Types
7555
7556The C language has a context dependency: the way an identifier is used
7557depends on what its current meaning is. For example, consider this:
7558
7559@example
7560foo (x);
7561@end example
7562
7563This looks like a function call statement, but if @code{foo} is a typedef
7564name, then this is actually a declaration of @code{x}. How can a Bison
7565parser for C decide how to parse this input?
7566
c827f760 7567The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7568@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7569identifier, it looks up the current declaration of the identifier in order
7570to decide which token type to return: @code{TYPENAME} if the identifier is
7571declared as a typedef, @code{IDENTIFIER} otherwise.
7572
7573The grammar rules can then express the context dependency by the choice of
7574token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7575but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7576@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7577is @emph{not} significant, such as in declarations that can shadow a
7578typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7579accepted---there is one rule for each of the two token types.
7580
7581This technique is simple to use if the decision of which kinds of
7582identifiers to allow is made at a place close to where the identifier is
7583parsed. But in C this is not always so: C allows a declaration to
7584redeclare a typedef name provided an explicit type has been specified
7585earlier:
7586
7587@example
3a4f411f
PE
7588typedef int foo, bar;
7589int baz (void)
7590@{
7591 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7592 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7593 return foo (bar);
7594@}
bfa74976
RS
7595@end example
7596
7597Unfortunately, the name being declared is separated from the declaration
7598construct itself by a complicated syntactic structure---the ``declarator''.
7599
9ecbd125 7600As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7601all the nonterminal names changed: once for parsing a declaration in
7602which a typedef name can be redefined, and once for parsing a
7603declaration in which that can't be done. Here is a part of the
7604duplication, with actions omitted for brevity:
bfa74976
RS
7605
7606@example
7607initdcl:
7608 declarator maybeasm '='
7609 init
7610 | declarator maybeasm
7611 ;
7612
7613notype_initdcl:
7614 notype_declarator maybeasm '='
7615 init
7616 | notype_declarator maybeasm
7617 ;
7618@end example
7619
7620@noindent
7621Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7622cannot. The distinction between @code{declarator} and
7623@code{notype_declarator} is the same sort of thing.
7624
7625There is some similarity between this technique and a lexical tie-in
7626(described next), in that information which alters the lexical analysis is
7627changed during parsing by other parts of the program. The difference is
7628here the information is global, and is used for other purposes in the
7629program. A true lexical tie-in has a special-purpose flag controlled by
7630the syntactic context.
7631
342b8b6e 7632@node Lexical Tie-ins
bfa74976
RS
7633@section Lexical Tie-ins
7634@cindex lexical tie-in
7635
7636One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7637which is set by Bison actions, whose purpose is to alter the way tokens are
7638parsed.
7639
7640For example, suppose we have a language vaguely like C, but with a special
7641construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7642an expression in parentheses in which all integers are hexadecimal. In
7643particular, the token @samp{a1b} must be treated as an integer rather than
7644as an identifier if it appears in that context. Here is how you can do it:
7645
7646@example
7647@group
7648%@{
38a92d50
PE
7649 int hexflag;
7650 int yylex (void);
7651 void yyerror (char const *);
bfa74976
RS
7652%@}
7653%%
7654@dots{}
7655@end group
7656@group
7657expr: IDENTIFIER
7658 | constant
7659 | HEX '('
7660 @{ hexflag = 1; @}
7661 expr ')'
7662 @{ hexflag = 0;
7663 $$ = $4; @}
7664 | expr '+' expr
7665 @{ $$ = make_sum ($1, $3); @}
7666 @dots{}
7667 ;
7668@end group
7669
7670@group
7671constant:
7672 INTEGER
7673 | STRING
7674 ;
7675@end group
7676@end example
7677
7678@noindent
7679Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7680it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7681with letters are parsed as integers if possible.
7682
342b8b6e
AD
7683The declaration of @code{hexflag} shown in the prologue of the parser file
7684is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7685You must also write the code in @code{yylex} to obey the flag.
bfa74976 7686
342b8b6e 7687@node Tie-in Recovery
bfa74976
RS
7688@section Lexical Tie-ins and Error Recovery
7689
7690Lexical tie-ins make strict demands on any error recovery rules you have.
7691@xref{Error Recovery}.
7692
7693The reason for this is that the purpose of an error recovery rule is to
7694abort the parsing of one construct and resume in some larger construct.
7695For example, in C-like languages, a typical error recovery rule is to skip
7696tokens until the next semicolon, and then start a new statement, like this:
7697
7698@example
7699stmt: expr ';'
7700 | IF '(' expr ')' stmt @{ @dots{} @}
7701 @dots{}
7702 error ';'
7703 @{ hexflag = 0; @}
7704 ;
7705@end example
7706
7707If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7708construct, this error rule will apply, and then the action for the
7709completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7710remain set for the entire rest of the input, or until the next @code{hex}
7711keyword, causing identifiers to be misinterpreted as integers.
7712
7713To avoid this problem the error recovery rule itself clears @code{hexflag}.
7714
7715There may also be an error recovery rule that works within expressions.
7716For example, there could be a rule which applies within parentheses
7717and skips to the close-parenthesis:
7718
7719@example
7720@group
7721expr: @dots{}
7722 | '(' expr ')'
7723 @{ $$ = $2; @}
7724 | '(' error ')'
7725 @dots{}
7726@end group
7727@end example
7728
7729If this rule acts within the @code{hex} construct, it is not going to abort
7730that construct (since it applies to an inner level of parentheses within
7731the construct). Therefore, it should not clear the flag: the rest of
7732the @code{hex} construct should be parsed with the flag still in effect.
7733
7734What if there is an error recovery rule which might abort out of the
7735@code{hex} construct or might not, depending on circumstances? There is no
7736way you can write the action to determine whether a @code{hex} construct is
7737being aborted or not. So if you are using a lexical tie-in, you had better
7738make sure your error recovery rules are not of this kind. Each rule must
7739be such that you can be sure that it always will, or always won't, have to
7740clear the flag.
7741
ec3bc396
AD
7742@c ================================================== Debugging Your Parser
7743
342b8b6e 7744@node Debugging
bfa74976 7745@chapter Debugging Your Parser
ec3bc396
AD
7746
7747Developing a parser can be a challenge, especially if you don't
7748understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7749Algorithm}). Even so, sometimes a detailed description of the automaton
7750can help (@pxref{Understanding, , Understanding Your Parser}), or
7751tracing the execution of the parser can give some insight on why it
7752behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7753
7754@menu
7755* Understanding:: Understanding the structure of your parser.
7756* Tracing:: Tracing the execution of your parser.
7757@end menu
7758
7759@node Understanding
7760@section Understanding Your Parser
7761
7762As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7763Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7764frequent than one would hope), looking at this automaton is required to
7765tune or simply fix a parser. Bison provides two different
35fe0834 7766representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7767
7768The textual file is generated when the options @option{--report} or
7769@option{--verbose} are specified, see @xref{Invocation, , Invoking
7770Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7771the parser output file name, and adding @samp{.output} instead.
7772Therefore, if the input file is @file{foo.y}, then the parser file is
7773called @file{foo.tab.c} by default. As a consequence, the verbose
7774output file is called @file{foo.output}.
7775
7776The following grammar file, @file{calc.y}, will be used in the sequel:
7777
7778@example
7779%token NUM STR
7780%left '+' '-'
7781%left '*'
7782%%
7783exp: exp '+' exp
7784 | exp '-' exp
7785 | exp '*' exp
7786 | exp '/' exp
7787 | NUM
7788 ;
7789useless: STR;
7790%%
7791@end example
7792
88bce5a2
AD
7793@command{bison} reports:
7794
7795@example
8f0d265e
JD
7796calc.y: warning: 1 nonterminal useless in grammar
7797calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7798calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7799calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7800calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7801@end example
7802
7803When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7804creates a file @file{calc.output} with contents detailed below. The
7805order of the output and the exact presentation might vary, but the
7806interpretation is the same.
ec3bc396
AD
7807
7808The first section includes details on conflicts that were solved thanks
7809to precedence and/or associativity:
7810
7811@example
7812Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7813Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7814Conflict in state 8 between rule 2 and token '*' resolved as shift.
7815@exdent @dots{}
7816@end example
7817
7818@noindent
7819The next section lists states that still have conflicts.
7820
7821@example
5a99098d
PE
7822State 8 conflicts: 1 shift/reduce
7823State 9 conflicts: 1 shift/reduce
7824State 10 conflicts: 1 shift/reduce
7825State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7826@end example
7827
7828@noindent
7829@cindex token, useless
7830@cindex useless token
7831@cindex nonterminal, useless
7832@cindex useless nonterminal
7833@cindex rule, useless
7834@cindex useless rule
7835The next section reports useless tokens, nonterminal and rules. Useless
7836nonterminals and rules are removed in order to produce a smaller parser,
7837but useless tokens are preserved, since they might be used by the
d80fb37a 7838scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7839below):
7840
7841@example
d80fb37a 7842Nonterminals useless in grammar:
ec3bc396
AD
7843 useless
7844
d80fb37a 7845Terminals unused in grammar:
ec3bc396
AD
7846 STR
7847
cff03fb2 7848Rules useless in grammar:
ec3bc396
AD
7849#6 useless: STR;
7850@end example
7851
7852@noindent
7853The next section reproduces the exact grammar that Bison used:
7854
7855@example
7856Grammar
7857
7858 Number, Line, Rule
88bce5a2 7859 0 5 $accept -> exp $end
ec3bc396
AD
7860 1 5 exp -> exp '+' exp
7861 2 6 exp -> exp '-' exp
7862 3 7 exp -> exp '*' exp
7863 4 8 exp -> exp '/' exp
7864 5 9 exp -> NUM
7865@end example
7866
7867@noindent
7868and reports the uses of the symbols:
7869
7870@example
7871Terminals, with rules where they appear
7872
88bce5a2 7873$end (0) 0
ec3bc396
AD
7874'*' (42) 3
7875'+' (43) 1
7876'-' (45) 2
7877'/' (47) 4
7878error (256)
7879NUM (258) 5
7880
7881Nonterminals, with rules where they appear
7882
88bce5a2 7883$accept (8)
ec3bc396
AD
7884 on left: 0
7885exp (9)
7886 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7887@end example
7888
7889@noindent
7890@cindex item
7891@cindex pointed rule
7892@cindex rule, pointed
7893Bison then proceeds onto the automaton itself, describing each state
7894with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7895item is a production rule together with a point (marked by @samp{.})
7896that the input cursor.
7897
7898@example
7899state 0
7900
88bce5a2 7901 $accept -> . exp $ (rule 0)
ec3bc396 7902
2a8d363a 7903 NUM shift, and go to state 1
ec3bc396 7904
2a8d363a 7905 exp go to state 2
ec3bc396
AD
7906@end example
7907
7908This reads as follows: ``state 0 corresponds to being at the very
7909beginning of the parsing, in the initial rule, right before the start
7910symbol (here, @code{exp}). When the parser returns to this state right
7911after having reduced a rule that produced an @code{exp}, the control
7912flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7913symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7914the parse stack, and the control flow jumps to state 1. Any other
742e4900 7915lookahead triggers a syntax error.''
ec3bc396
AD
7916
7917@cindex core, item set
7918@cindex item set core
7919@cindex kernel, item set
7920@cindex item set core
7921Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7922report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7923at the beginning of any rule deriving an @code{exp}. By default Bison
7924reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7925you want to see more detail you can invoke @command{bison} with
7926@option{--report=itemset} to list all the items, include those that can
7927be derived:
7928
7929@example
7930state 0
7931
88bce5a2 7932 $accept -> . exp $ (rule 0)
ec3bc396
AD
7933 exp -> . exp '+' exp (rule 1)
7934 exp -> . exp '-' exp (rule 2)
7935 exp -> . exp '*' exp (rule 3)
7936 exp -> . exp '/' exp (rule 4)
7937 exp -> . NUM (rule 5)
7938
7939 NUM shift, and go to state 1
7940
7941 exp go to state 2
7942@end example
7943
7944@noindent
7945In the state 1...
7946
7947@example
7948state 1
7949
7950 exp -> NUM . (rule 5)
7951
2a8d363a 7952 $default reduce using rule 5 (exp)
ec3bc396
AD
7953@end example
7954
7955@noindent
742e4900 7956the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7957(@samp{$default}), the parser will reduce it. If it was coming from
7958state 0, then, after this reduction it will return to state 0, and will
7959jump to state 2 (@samp{exp: go to state 2}).
7960
7961@example
7962state 2
7963
88bce5a2 7964 $accept -> exp . $ (rule 0)
ec3bc396
AD
7965 exp -> exp . '+' exp (rule 1)
7966 exp -> exp . '-' exp (rule 2)
7967 exp -> exp . '*' exp (rule 3)
7968 exp -> exp . '/' exp (rule 4)
7969
2a8d363a
AD
7970 $ shift, and go to state 3
7971 '+' shift, and go to state 4
7972 '-' shift, and go to state 5
7973 '*' shift, and go to state 6
7974 '/' shift, and go to state 7
ec3bc396
AD
7975@end example
7976
7977@noindent
7978In state 2, the automaton can only shift a symbol. For instance,
742e4900 7979because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7980@samp{+}, it will be shifted on the parse stack, and the automaton
7981control will jump to state 4, corresponding to the item @samp{exp -> exp
7982'+' . exp}. Since there is no default action, any other token than
6e649e65 7983those listed above will trigger a syntax error.
ec3bc396 7984
eb45ef3b 7985@cindex accepting state
ec3bc396
AD
7986The state 3 is named the @dfn{final state}, or the @dfn{accepting
7987state}:
7988
7989@example
7990state 3
7991
88bce5a2 7992 $accept -> exp $ . (rule 0)
ec3bc396 7993
2a8d363a 7994 $default accept
ec3bc396
AD
7995@end example
7996
7997@noindent
7998the initial rule is completed (the start symbol and the end
7999of input were read), the parsing exits successfully.
8000
8001The interpretation of states 4 to 7 is straightforward, and is left to
8002the reader.
8003
8004@example
8005state 4
8006
8007 exp -> exp '+' . exp (rule 1)
8008
2a8d363a 8009 NUM shift, and go to state 1
ec3bc396 8010
2a8d363a 8011 exp go to state 8
ec3bc396
AD
8012
8013state 5
8014
8015 exp -> exp '-' . exp (rule 2)
8016
2a8d363a 8017 NUM shift, and go to state 1
ec3bc396 8018
2a8d363a 8019 exp go to state 9
ec3bc396
AD
8020
8021state 6
8022
8023 exp -> exp '*' . exp (rule 3)
8024
2a8d363a 8025 NUM shift, and go to state 1
ec3bc396 8026
2a8d363a 8027 exp go to state 10
ec3bc396
AD
8028
8029state 7
8030
8031 exp -> exp '/' . exp (rule 4)
8032
2a8d363a 8033 NUM shift, and go to state 1
ec3bc396 8034
2a8d363a 8035 exp go to state 11
ec3bc396
AD
8036@end example
8037
5a99098d
PE
8038As was announced in beginning of the report, @samp{State 8 conflicts:
80391 shift/reduce}:
ec3bc396
AD
8040
8041@example
8042state 8
8043
8044 exp -> exp . '+' exp (rule 1)
8045 exp -> exp '+' exp . (rule 1)
8046 exp -> exp . '-' exp (rule 2)
8047 exp -> exp . '*' exp (rule 3)
8048 exp -> exp . '/' exp (rule 4)
8049
2a8d363a
AD
8050 '*' shift, and go to state 6
8051 '/' shift, and go to state 7
ec3bc396 8052
2a8d363a
AD
8053 '/' [reduce using rule 1 (exp)]
8054 $default reduce using rule 1 (exp)
ec3bc396
AD
8055@end example
8056
742e4900 8057Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8058either shifting (and going to state 7), or reducing rule 1. The
8059conflict means that either the grammar is ambiguous, or the parser lacks
8060information to make the right decision. Indeed the grammar is
8061ambiguous, as, since we did not specify the precedence of @samp{/}, the
8062sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8063NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8064NUM}, which corresponds to reducing rule 1.
8065
eb45ef3b 8066Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8067arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8068Shift/Reduce Conflicts}. Discarded actions are reported in between
8069square brackets.
8070
8071Note that all the previous states had a single possible action: either
8072shifting the next token and going to the corresponding state, or
8073reducing a single rule. In the other cases, i.e., when shifting
8074@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8075possible, the lookahead is required to select the action. State 8 is
8076one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8077is shifting, otherwise the action is reducing rule 1. In other words,
8078the first two items, corresponding to rule 1, are not eligible when the
742e4900 8079lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8080precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8081with some set of possible lookahead tokens. When run with
8082@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8083
8084@example
8085state 8
8086
88c78747 8087 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8088 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8089 exp -> exp . '-' exp (rule 2)
8090 exp -> exp . '*' exp (rule 3)
8091 exp -> exp . '/' exp (rule 4)
8092
8093 '*' shift, and go to state 6
8094 '/' shift, and go to state 7
8095
8096 '/' [reduce using rule 1 (exp)]
8097 $default reduce using rule 1 (exp)
8098@end example
8099
8100The remaining states are similar:
8101
8102@example
8103state 9
8104
8105 exp -> exp . '+' exp (rule 1)
8106 exp -> exp . '-' exp (rule 2)
8107 exp -> exp '-' exp . (rule 2)
8108 exp -> exp . '*' exp (rule 3)
8109 exp -> exp . '/' exp (rule 4)
8110
2a8d363a
AD
8111 '*' shift, and go to state 6
8112 '/' shift, and go to state 7
ec3bc396 8113
2a8d363a
AD
8114 '/' [reduce using rule 2 (exp)]
8115 $default reduce using rule 2 (exp)
ec3bc396
AD
8116
8117state 10
8118
8119 exp -> exp . '+' exp (rule 1)
8120 exp -> exp . '-' exp (rule 2)
8121 exp -> exp . '*' exp (rule 3)
8122 exp -> exp '*' exp . (rule 3)
8123 exp -> exp . '/' exp (rule 4)
8124
2a8d363a 8125 '/' shift, and go to state 7
ec3bc396 8126
2a8d363a
AD
8127 '/' [reduce using rule 3 (exp)]
8128 $default reduce using rule 3 (exp)
ec3bc396
AD
8129
8130state 11
8131
8132 exp -> exp . '+' exp (rule 1)
8133 exp -> exp . '-' exp (rule 2)
8134 exp -> exp . '*' exp (rule 3)
8135 exp -> exp . '/' exp (rule 4)
8136 exp -> exp '/' exp . (rule 4)
8137
2a8d363a
AD
8138 '+' shift, and go to state 4
8139 '-' shift, and go to state 5
8140 '*' shift, and go to state 6
8141 '/' shift, and go to state 7
ec3bc396 8142
2a8d363a
AD
8143 '+' [reduce using rule 4 (exp)]
8144 '-' [reduce using rule 4 (exp)]
8145 '*' [reduce using rule 4 (exp)]
8146 '/' [reduce using rule 4 (exp)]
8147 $default reduce using rule 4 (exp)
ec3bc396
AD
8148@end example
8149
8150@noindent
fa7e68c3
PE
8151Observe that state 11 contains conflicts not only due to the lack of
8152precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8153@samp{*}, but also because the
ec3bc396
AD
8154associativity of @samp{/} is not specified.
8155
8156
8157@node Tracing
8158@section Tracing Your Parser
bfa74976
RS
8159@findex yydebug
8160@cindex debugging
8161@cindex tracing the parser
8162
8163If a Bison grammar compiles properly but doesn't do what you want when it
8164runs, the @code{yydebug} parser-trace feature can help you figure out why.
8165
3ded9a63
AD
8166There are several means to enable compilation of trace facilities:
8167
8168@table @asis
8169@item the macro @code{YYDEBUG}
8170@findex YYDEBUG
8171Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 8172parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
8173@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8174YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8175Prologue}).
8176
8177@item the option @option{-t}, @option{--debug}
8178Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 8179,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
8180
8181@item the directive @samp{%debug}
8182@findex %debug
fa819509
AD
8183Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8184Summary}). This Bison extension is maintained for backward
8185compatibility with previous versions of Bison.
8186
8187@item the variable @samp{parse.trace}
8188@findex %define parse.trace
8189Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8190,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8191(@pxref{Bison Options}). This is a Bison extension, which is especially
8192useful for languages that don't use a preprocessor. Unless
8193@acronym{POSIX} and Yacc portability matter to you, this is the
8194preferred solution.
3ded9a63
AD
8195@end table
8196
fa819509 8197We suggest that you always enable the trace option so that debugging is
3ded9a63 8198always possible.
bfa74976 8199
02a81e05 8200The trace facility outputs messages with macro calls of the form
e2742e46 8201@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8202@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8203arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8204define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8205and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8206
8207Once you have compiled the program with trace facilities, the way to
8208request a trace is to store a nonzero value in the variable @code{yydebug}.
8209You can do this by making the C code do it (in @code{main}, perhaps), or
8210you can alter the value with a C debugger.
8211
8212Each step taken by the parser when @code{yydebug} is nonzero produces a
8213line or two of trace information, written on @code{stderr}. The trace
8214messages tell you these things:
8215
8216@itemize @bullet
8217@item
8218Each time the parser calls @code{yylex}, what kind of token was read.
8219
8220@item
8221Each time a token is shifted, the depth and complete contents of the
8222state stack (@pxref{Parser States}).
8223
8224@item
8225Each time a rule is reduced, which rule it is, and the complete contents
8226of the state stack afterward.
8227@end itemize
8228
8229To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8230produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8231Bison}). This file shows the meaning of each state in terms of
8232positions in various rules, and also what each state will do with each
8233possible input token. As you read the successive trace messages, you
8234can see that the parser is functioning according to its specification in
8235the listing file. Eventually you will arrive at the place where
8236something undesirable happens, and you will see which parts of the
8237grammar are to blame.
bfa74976
RS
8238
8239The parser file is a C program and you can use C debuggers on it, but it's
8240not easy to interpret what it is doing. The parser function is a
8241finite-state machine interpreter, and aside from the actions it executes
8242the same code over and over. Only the values of variables show where in
8243the grammar it is working.
8244
8245@findex YYPRINT
8246The debugging information normally gives the token type of each token
8247read, but not its semantic value. You can optionally define a macro
8248named @code{YYPRINT} to provide a way to print the value. If you define
8249@code{YYPRINT}, it should take three arguments. The parser will pass a
8250standard I/O stream, the numeric code for the token type, and the token
8251value (from @code{yylval}).
8252
8253Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8254calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8255
8256@smallexample
38a92d50
PE
8257%@{
8258 static void print_token_value (FILE *, int, YYSTYPE);
8259 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8260%@}
8261
8262@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8263
8264static void
831d3c99 8265print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8266@{
8267 if (type == VAR)
d3c4e709 8268 fprintf (file, "%s", value.tptr->name);
bfa74976 8269 else if (type == NUM)
d3c4e709 8270 fprintf (file, "%d", value.val);
bfa74976
RS
8271@}
8272@end smallexample
8273
ec3bc396
AD
8274@c ================================================= Invoking Bison
8275
342b8b6e 8276@node Invocation
bfa74976
RS
8277@chapter Invoking Bison
8278@cindex invoking Bison
8279@cindex Bison invocation
8280@cindex options for invoking Bison
8281
8282The usual way to invoke Bison is as follows:
8283
8284@example
8285bison @var{infile}
8286@end example
8287
8288Here @var{infile} is the grammar file name, which usually ends in
8289@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8290with @samp{.tab.c} and removing any leading directory. Thus, the
8291@samp{bison foo.y} file name yields
8292@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8293@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8294C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8295or @file{foo.y++}. Then, the output files will take an extension like
8296the given one as input (respectively @file{foo.tab.cpp} and
8297@file{foo.tab.c++}).
fa4d969f 8298This feature takes effect with all options that manipulate file names like
234a3be3
AD
8299@samp{-o} or @samp{-d}.
8300
8301For example :
8302
8303@example
8304bison -d @var{infile.yxx}
8305@end example
84163231 8306@noindent
72d2299c 8307will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8308
8309@example
b56471a6 8310bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8311@end example
84163231 8312@noindent
234a3be3
AD
8313will produce @file{output.c++} and @file{outfile.h++}.
8314
397ec073
PE
8315For compatibility with @acronym{POSIX}, the standard Bison
8316distribution also contains a shell script called @command{yacc} that
8317invokes Bison with the @option{-y} option.
8318
bfa74976 8319@menu
13863333 8320* Bison Options:: All the options described in detail,
c827f760 8321 in alphabetical order by short options.
bfa74976 8322* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8323* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8324@end menu
8325
342b8b6e 8326@node Bison Options
bfa74976
RS
8327@section Bison Options
8328
8329Bison supports both traditional single-letter options and mnemonic long
8330option names. Long option names are indicated with @samp{--} instead of
8331@samp{-}. Abbreviations for option names are allowed as long as they
8332are unique. When a long option takes an argument, like
8333@samp{--file-prefix}, connect the option name and the argument with
8334@samp{=}.
8335
8336Here is a list of options that can be used with Bison, alphabetized by
8337short option. It is followed by a cross key alphabetized by long
8338option.
8339
89cab50d
AD
8340@c Please, keep this ordered as in `bison --help'.
8341@noindent
8342Operations modes:
8343@table @option
8344@item -h
8345@itemx --help
8346Print a summary of the command-line options to Bison and exit.
bfa74976 8347
89cab50d
AD
8348@item -V
8349@itemx --version
8350Print the version number of Bison and exit.
bfa74976 8351
f7ab6a50
PE
8352@item --print-localedir
8353Print the name of the directory containing locale-dependent data.
8354
a0de5091
JD
8355@item --print-datadir
8356Print the name of the directory containing skeletons and XSLT.
8357
89cab50d
AD
8358@item -y
8359@itemx --yacc
54662697
PE
8360Act more like the traditional Yacc command. This can cause
8361different diagnostics to be generated, and may change behavior in
8362other minor ways. Most importantly, imitate Yacc's output
8363file name conventions, so that the parser output file is called
89cab50d 8364@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8365@file{y.tab.h}.
eb45ef3b 8366Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8367statements in addition to an @code{enum} to associate token numbers with token
8368names.
8369Thus, the following shell script can substitute for Yacc, and the Bison
8370distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8371
89cab50d 8372@example
397ec073 8373#! /bin/sh
26e06a21 8374bison -y "$@@"
89cab50d 8375@end example
54662697
PE
8376
8377The @option{-y}/@option{--yacc} option is intended for use with
8378traditional Yacc grammars. If your grammar uses a Bison extension
8379like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8380this option is specified.
8381
1d5b3c08
JD
8382@item -W [@var{category}]
8383@itemx --warnings[=@var{category}]
118d4978
AD
8384Output warnings falling in @var{category}. @var{category} can be one
8385of:
8386@table @code
8387@item midrule-values
8e55b3aa
JD
8388Warn about mid-rule values that are set but not used within any of the actions
8389of the parent rule.
8390For example, warn about unused @code{$2} in:
118d4978
AD
8391
8392@example
8393exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8394@end example
8395
8e55b3aa
JD
8396Also warn about mid-rule values that are used but not set.
8397For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8398
8399@example
8400 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8401@end example
8402
8403These warnings are not enabled by default since they sometimes prove to
8404be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8405@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8406
8407
8408@item yacc
8409Incompatibilities with @acronym{POSIX} Yacc.
8410
8411@item all
8e55b3aa 8412All the warnings.
118d4978 8413@item none
8e55b3aa 8414Turn off all the warnings.
118d4978 8415@item error
8e55b3aa 8416Treat warnings as errors.
118d4978
AD
8417@end table
8418
8419A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9
JD
8420instance, @option{-Wno-yacc} will hide the warnings about
8421@acronym{POSIX} Yacc incompatibilities.
89cab50d
AD
8422@end table
8423
8424@noindent
8425Tuning the parser:
8426
8427@table @option
8428@item -t
8429@itemx --debug
4947ebdb
PE
8430In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8431already defined, so that the debugging facilities are compiled.
ec3bc396 8432@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8433
58697c6d
AD
8434@item -D @var{name}[=@var{value}]
8435@itemx --define=@var{name}[=@var{value}]
17aed602 8436@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8437@itemx --force-define=@var{name}[=@var{value}]
8438Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8439(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8440definitions for the same @var{name} as follows:
8441
8442@itemize
8443@item
0b6d43c5
JD
8444Bison quietly ignores all command-line definitions for @var{name} except
8445the last.
de5ab940 8446@item
0b6d43c5
JD
8447If that command-line definition is specified by a @code{-D} or
8448@code{--define}, Bison reports an error for any @code{%define}
8449definition for @var{name}.
de5ab940 8450@item
0b6d43c5
JD
8451If that command-line definition is specified by a @code{-F} or
8452@code{--force-define} instead, Bison quietly ignores all @code{%define}
8453definitions for @var{name}.
8454@item
8455Otherwise, Bison reports an error if there are multiple @code{%define}
8456definitions for @var{name}.
de5ab940
JD
8457@end itemize
8458
8459You should avoid using @code{-F} and @code{--force-define} in your
8460makefiles unless you are confident that it is safe to quietly ignore any
8461conflicting @code{%define} that may be added to the grammar file.
58697c6d 8462
0e021770
PE
8463@item -L @var{language}
8464@itemx --language=@var{language}
8465Specify the programming language for the generated parser, as if
8466@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8467Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8468@var{language} is case-insensitive.
0e021770 8469
ed4d67dc
JD
8470This option is experimental and its effect may be modified in future
8471releases.
8472
89cab50d 8473@item --locations
d8988b2f 8474Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8475
8476@item -p @var{prefix}
8477@itemx --name-prefix=@var{prefix}
02975b9a 8478Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8479@xref{Decl Summary}.
bfa74976
RS
8480
8481@item -l
8482@itemx --no-lines
8483Don't put any @code{#line} preprocessor commands in the parser file.
8484Ordinarily Bison puts them in the parser file so that the C compiler
8485and debuggers will associate errors with your source file, the
8486grammar file. This option causes them to associate errors with the
95e742f7 8487parser file, treating it as an independent source file in its own right.
bfa74976 8488
e6e704dc
JD
8489@item -S @var{file}
8490@itemx --skeleton=@var{file}
a7867f53 8491Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8492(@pxref{Decl Summary, , Bison Declaration Summary}).
8493
ed4d67dc
JD
8494@c You probably don't need this option unless you are developing Bison.
8495@c You should use @option{--language} if you want to specify the skeleton for a
8496@c different language, because it is clearer and because it will always
8497@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8498
a7867f53
JD
8499If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8500file in the Bison installation directory.
8501If it does, @var{file} is an absolute file name or a file name relative to the
8502current working directory.
8503This is similar to how most shells resolve commands.
8504
89cab50d
AD
8505@item -k
8506@itemx --token-table
d8988b2f 8507Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8508@end table
bfa74976 8509
89cab50d
AD
8510@noindent
8511Adjust the output:
bfa74976 8512
89cab50d 8513@table @option
8e55b3aa 8514@item --defines[=@var{file}]
d8988b2f 8515Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8516file containing macro definitions for the token type names defined in
4bfd5e4e 8517the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8518
8e55b3aa
JD
8519@item -d
8520This is the same as @code{--defines} except @code{-d} does not accept a
8521@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8522with other short options.
342b8b6e 8523
89cab50d
AD
8524@item -b @var{file-prefix}
8525@itemx --file-prefix=@var{prefix}
9c437126 8526Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8527for all Bison output file names. @xref{Decl Summary}.
bfa74976 8528
ec3bc396
AD
8529@item -r @var{things}
8530@itemx --report=@var{things}
8531Write an extra output file containing verbose description of the comma
8532separated list of @var{things} among:
8533
8534@table @code
8535@item state
8536Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8537parser's automaton.
ec3bc396 8538
742e4900 8539@item lookahead
ec3bc396 8540Implies @code{state} and augments the description of the automaton with
742e4900 8541each rule's lookahead set.
ec3bc396
AD
8542
8543@item itemset
8544Implies @code{state} and augments the description of the automaton with
8545the full set of items for each state, instead of its core only.
8546@end table
8547
1bb2bd75
JD
8548@item --report-file=@var{file}
8549Specify the @var{file} for the verbose description.
8550
bfa74976
RS
8551@item -v
8552@itemx --verbose
9c437126 8553Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8554file containing verbose descriptions of the grammar and
72d2299c 8555parser. @xref{Decl Summary}.
bfa74976 8556
fa4d969f
PE
8557@item -o @var{file}
8558@itemx --output=@var{file}
8559Specify the @var{file} for the parser file.
bfa74976 8560
fa4d969f 8561The other output files' names are constructed from @var{file} as
d8988b2f 8562described under the @samp{-v} and @samp{-d} options.
342b8b6e 8563
a7c09cba 8564@item -g [@var{file}]
8e55b3aa 8565@itemx --graph[=@var{file}]
eb45ef3b 8566Output a graphical representation of the parser's
35fe0834
PE
8567automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8568@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8569@code{@var{file}} is optional.
8570If omitted and the grammar file is @file{foo.y}, the output file will be
8571@file{foo.dot}.
59da312b 8572
a7c09cba 8573@item -x [@var{file}]
8e55b3aa 8574@itemx --xml[=@var{file}]
eb45ef3b 8575Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8576@code{@var{file}} is optional.
59da312b
JD
8577If omitted and the grammar file is @file{foo.y}, the output file will be
8578@file{foo.xml}.
8579(The current XML schema is experimental and may evolve.
8580More user feedback will help to stabilize it.)
bfa74976
RS
8581@end table
8582
342b8b6e 8583@node Option Cross Key
bfa74976
RS
8584@section Option Cross Key
8585
8586Here is a list of options, alphabetized by long option, to help you find
de5ab940 8587the corresponding short option and directive.
bfa74976 8588
de5ab940 8589@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8590@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8591@include cross-options.texi
aa08666d 8592@end multitable
bfa74976 8593
93dd49ab
PE
8594@node Yacc Library
8595@section Yacc Library
8596
8597The Yacc library contains default implementations of the
8598@code{yyerror} and @code{main} functions. These default
8599implementations are normally not useful, but @acronym{POSIX} requires
8600them. To use the Yacc library, link your program with the
8601@option{-ly} option. Note that Bison's implementation of the Yacc
8602library is distributed under the terms of the @acronym{GNU} General
8603Public License (@pxref{Copying}).
8604
8605If you use the Yacc library's @code{yyerror} function, you should
8606declare @code{yyerror} as follows:
8607
8608@example
8609int yyerror (char const *);
8610@end example
8611
8612Bison ignores the @code{int} value returned by this @code{yyerror}.
8613If you use the Yacc library's @code{main} function, your
8614@code{yyparse} function should have the following type signature:
8615
8616@example
8617int yyparse (void);
8618@end example
8619
12545799
AD
8620@c ================================================= C++ Bison
8621
8405b70c
PB
8622@node Other Languages
8623@chapter Parsers Written In Other Languages
12545799
AD
8624
8625@menu
8626* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8627* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8628@end menu
8629
8630@node C++ Parsers
8631@section C++ Parsers
8632
8633@menu
8634* C++ Bison Interface:: Asking for C++ parser generation
8635* C++ Semantic Values:: %union vs. C++
8636* C++ Location Values:: The position and location classes
8637* C++ Parser Interface:: Instantiating and running the parser
8638* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8639* A Complete C++ Example:: Demonstrating their use
12545799
AD
8640@end menu
8641
8642@node C++ Bison Interface
8643@subsection C++ Bison Interface
ed4d67dc 8644@c - %skeleton "lalr1.cc"
12545799
AD
8645@c - Always pure
8646@c - initial action
8647
eb45ef3b 8648The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8649@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8650@option{--skeleton=lalr1.cc}.
e6e704dc 8651@xref{Decl Summary}.
0e021770 8652
793fbca5
JD
8653When run, @command{bison} will create several entities in the @samp{yy}
8654namespace.
67501061
AD
8655@findex %define api.namespace
8656Use the @samp{%define api.namespace} directive to change the namespace
8657name, see
793fbca5
JD
8658@ref{Decl Summary}.
8659The various classes are generated in the following files:
aa08666d 8660
12545799
AD
8661@table @file
8662@item position.hh
8663@itemx location.hh
8664The definition of the classes @code{position} and @code{location},
3cdc21cf 8665used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8666
8667@item stack.hh
8668An auxiliary class @code{stack} used by the parser.
8669
fa4d969f
PE
8670@item @var{file}.hh
8671@itemx @var{file}.cc
cd8b5791
AD
8672(Assuming the extension of the input file was @samp{.yy}.) The
8673declaration and implementation of the C++ parser class. The basename
8674and extension of these two files follow the same rules as with regular C
8675parsers (@pxref{Invocation}).
12545799 8676
cd8b5791
AD
8677The header is @emph{mandatory}; you must either pass
8678@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8679@samp{%defines} directive.
8680@end table
8681
8682All these files are documented using Doxygen; run @command{doxygen}
8683for a complete and accurate documentation.
8684
8685@node C++ Semantic Values
8686@subsection C++ Semantic Values
8687@c - No objects in unions
178e123e 8688@c - YYSTYPE
12545799
AD
8689@c - Printer and destructor
8690
3cdc21cf
AD
8691Bison supports two different means to handle semantic values in C++. One is
8692alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8693practitioners know, unions are inconvenient in C++, therefore another
8694approach is provided, based on variants (@pxref{C++ Variants}).
8695
8696@menu
8697* C++ Unions:: Semantic values cannot be objects
8698* C++ Variants:: Using objects as semantic values
8699@end menu
8700
8701@node C++ Unions
8702@subsubsection C++ Unions
8703
12545799
AD
8704The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8705Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8706@code{union}, which have a few specific features in C++.
12545799
AD
8707@itemize @minus
8708@item
fb9712a9
AD
8709The type @code{YYSTYPE} is defined but its use is discouraged: rather
8710you should refer to the parser's encapsulated type
8711@code{yy::parser::semantic_type}.
12545799
AD
8712@item
8713Non POD (Plain Old Data) types cannot be used. C++ forbids any
8714instance of classes with constructors in unions: only @emph{pointers}
8715to such objects are allowed.
8716@end itemize
8717
8718Because objects have to be stored via pointers, memory is not
8719reclaimed automatically: using the @code{%destructor} directive is the
8720only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8721Symbols}.
8722
3cdc21cf
AD
8723@node C++ Variants
8724@subsubsection C++ Variants
8725
8726Starting with version 2.6, Bison provides a @emph{variant} based
8727implementation of semantic values for C++. This alleviates all the
8728limitations reported in the previous section, and in particular, object
8729types can be used without pointers.
8730
8731To enable variant-based semantic values, set @code{%define} variable
8732@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8733@code{%union} is ignored, and instead of using the name of the fields of the
8734@code{%union} to ``type'' the symbols, use genuine types.
8735
8736For instance, instead of
8737
8738@example
8739%union
8740@{
8741 int ival;
8742 std::string* sval;
8743@}
8744%token <ival> NUMBER;
8745%token <sval> STRING;
8746@end example
8747
8748@noindent
8749write
8750
8751@example
8752%token <int> NUMBER;
8753%token <std::string> STRING;
8754@end example
8755
8756@code{STRING} is no longer a pointer, which should fairly simplify the user
8757actions in the grammar and in the scanner (in particular the memory
8758management).
8759
8760Since C++ features destructors, and since it is customary to specialize
8761@code{operator<<} to support uniform printing of values, variants also
8762typically simplify Bison printers and destructors.
8763
8764Variants are stricter than unions. When based on unions, you may play any
8765dirty game with @code{yylval}, say storing an @code{int}, reading a
8766@code{char*}, and then storing a @code{double} in it. This is no longer
8767possible with variants: they must be initialized, then assigned to, and
8768eventually, destroyed.
8769
8770@deftypemethod {semantic_type} {T&} build<T> ()
8771Initialize, but leave empty. Returns the address where the actual value may
8772be stored. Requires that the variant was not initialized yet.
8773@end deftypemethod
8774
8775@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8776Initialize, and copy-construct from @var{t}.
8777@end deftypemethod
8778
8779
8780@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8781appeared unacceptable to require Boost on the user's machine (i.e., the
8782machine on which the generated parser will be compiled, not the machine on
8783which @command{bison} was run). Second, for each possible semantic value,
8784Boost.Variant not only stores the value, but also a tag specifying its
8785type. But the parser already ``knows'' the type of the semantic value, so
8786that would be duplicating the information.
8787
8788Therefore we developed light-weight variants whose type tag is external (so
8789they are really like @code{unions} for C++ actually). But our code is much
8790less mature that Boost.Variant. So there is a number of limitations in
8791(the current implementation of) variants:
8792@itemize
8793@item
8794Alignment must be enforced: values should be aligned in memory according to
8795the most demanding type. Computing the smallest alignment possible requires
8796meta-programming techniques that are not currently implemented in Bison, and
8797therefore, since, as far as we know, @code{double} is the most demanding
8798type on all platforms, alignments are enforced for @code{double} whatever
8799types are actually used. This may waste space in some cases.
8800
8801@item
8802Our implementation is not conforming with strict aliasing rules. Alias
8803analysis is a technique used in optimizing compilers to detect when two
8804pointers are disjoint (they cannot ``meet''). Our implementation breaks
8805some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8806alias analysis must be disabled}. Use the option
8807@option{-fno-strict-aliasing} to compile the generated parser.
8808
8809@item
8810There might be portability issues we are not aware of.
8811@end itemize
8812
a6ca4ce2 8813As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8814is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8815
8816@node C++ Location Values
8817@subsection C++ Location Values
8818@c - %locations
8819@c - class Position
8820@c - class Location
16dc6a9e 8821@c - %define filename_type "const symbol::Symbol"
12545799
AD
8822
8823When the directive @code{%locations} is used, the C++ parser supports
8824location tracking, see @ref{Locations, , Locations Overview}. Two
8825auxiliary classes define a @code{position}, a single point in a file,
8826and a @code{location}, a range composed of a pair of
8827@code{position}s (possibly spanning several files).
8828
fa4d969f 8829@deftypemethod {position} {std::string*} file
12545799
AD
8830The name of the file. It will always be handled as a pointer, the
8831parser will never duplicate nor deallocate it. As an experimental
8832feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8833filename_type "@var{type}"}.
12545799
AD
8834@end deftypemethod
8835
8836@deftypemethod {position} {unsigned int} line
8837The line, starting at 1.
8838@end deftypemethod
8839
8840@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8841Advance by @var{height} lines, resetting the column number.
8842@end deftypemethod
8843
8844@deftypemethod {position} {unsigned int} column
8845The column, starting at 0.
8846@end deftypemethod
8847
8848@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8849Advance by @var{width} columns, without changing the line number.
8850@end deftypemethod
8851
8852@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8853@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8854@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8855@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8856Various forms of syntactic sugar for @code{columns}.
8857@end deftypemethod
8858
8859@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8860Report @var{p} on @var{o} like this:
fa4d969f
PE
8861@samp{@var{file}:@var{line}.@var{column}}, or
8862@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8863@end deftypemethod
8864
8865@deftypemethod {location} {position} begin
8866@deftypemethodx {location} {position} end
8867The first, inclusive, position of the range, and the first beyond.
8868@end deftypemethod
8869
8870@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8871@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8872Advance the @code{end} position.
8873@end deftypemethod
8874
8875@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8876@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8877@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8878Various forms of syntactic sugar.
8879@end deftypemethod
8880
8881@deftypemethod {location} {void} step ()
8882Move @code{begin} onto @code{end}.
8883@end deftypemethod
8884
8885
8886@node C++ Parser Interface
8887@subsection C++ Parser Interface
8888@c - define parser_class_name
8889@c - Ctor
8890@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8891@c debug_stream.
8892@c - Reporting errors
8893
8894The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8895declare and define the parser class in the namespace @code{yy}. The
8896class name defaults to @code{parser}, but may be changed using
16dc6a9e 8897@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8898this class is detailed below. It can be extended using the
12545799
AD
8899@code{%parse-param} feature: its semantics is slightly changed since
8900it describes an additional member of the parser class, and an
8901additional argument for its constructor.
8902
3cdc21cf
AD
8903@defcv {Type} {parser} {semantic_type}
8904@defcvx {Type} {parser} {location_type}
8905The types for semantic values and locations (if enabled).
8906@end defcv
8907
86e5b440
AD
8908@defcv {Type} {parser} {token}
8909A structure that contains (only) the definition of the tokens as the
8910@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8911scanner should use @code{yy::parser::token::FOO}. The scanner can use
8912@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8913(@pxref{Calc++ Scanner}).
8914@end defcv
8915
3cdc21cf
AD
8916@defcv {Type} {parser} {syntax_error}
8917This class derives from @code{std::runtime_error}. Throw instances of it
8918from user actions to raise parse errors. This is equivalent with first
8919invoking @code{error} to report the location and message of the syntax
8920error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
8921But contrary to @code{YYERROR} which can only be invoked from user actions
8922(i.e., written in the action itself), the exception can be thrown from
8923function invoked from the user action.
8a0adb01 8924@end defcv
12545799
AD
8925
8926@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8927Build a new parser object. There are no arguments by default, unless
8928@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8929@end deftypemethod
8930
3cdc21cf
AD
8931@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
8932@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
8933Instantiate a syntax-error exception.
8934@end deftypemethod
8935
12545799
AD
8936@deftypemethod {parser} {int} parse ()
8937Run the syntactic analysis, and return 0 on success, 1 otherwise.
8938@end deftypemethod
8939
8940@deftypemethod {parser} {std::ostream&} debug_stream ()
8941@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8942Get or set the stream used for tracing the parsing. It defaults to
8943@code{std::cerr}.
8944@end deftypemethod
8945
8946@deftypemethod {parser} {debug_level_type} debug_level ()
8947@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8948Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8949or nonzero, full tracing.
12545799
AD
8950@end deftypemethod
8951
8952@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 8953@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
8954The definition for this member function must be supplied by the user:
8955the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
8956described by @var{m}. If location tracking is not enabled, the second
8957signature is used.
12545799
AD
8958@end deftypemethod
8959
8960
8961@node C++ Scanner Interface
8962@subsection C++ Scanner Interface
8963@c - prefix for yylex.
8964@c - Pure interface to yylex
8965@c - %lex-param
8966
8967The parser invokes the scanner by calling @code{yylex}. Contrary to C
8968parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
8969@samp{%define api.pure} directive. The actual interface with @code{yylex}
8970depends whether you use unions, or variants.
12545799 8971
3cdc21cf
AD
8972@menu
8973* Split Symbols:: Passing symbols as two/three components
8974* Complete Symbols:: Making symbols a whole
8975@end menu
8976
8977@node Split Symbols
8978@subsubsection Split Symbols
8979
8980Therefore the interface is as follows.
8981
86e5b440
AD
8982@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
8983@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
8984Return the next token. Its type is the return value, its semantic value and
8985location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
8986@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8987@end deftypemethod
8988
3cdc21cf
AD
8989Note that when using variants, the interface for @code{yylex} is the same,
8990but @code{yylval} is handled differently.
8991
8992Regular union-based code in Lex scanner typically look like:
8993
8994@example
8995[0-9]+ @{
8996 yylval.ival = text_to_int (yytext);
8997 return yy::parser::INTEGER;
8998 @}
8999[a-z]+ @{
9000 yylval.sval = new std::string (yytext);
9001 return yy::parser::IDENTIFIER;
9002 @}
9003@end example
9004
9005Using variants, @code{yylval} is already constructed, but it is not
9006initialized. So the code would look like:
9007
9008@example
9009[0-9]+ @{
9010 yylval.build<int>() = text_to_int (yytext);
9011 return yy::parser::INTEGER;
9012 @}
9013[a-z]+ @{
9014 yylval.build<std::string> = yytext;
9015 return yy::parser::IDENTIFIER;
9016 @}
9017@end example
9018
9019@noindent
9020or
9021
9022@example
9023[0-9]+ @{
9024 yylval.build(text_to_int (yytext));
9025 return yy::parser::INTEGER;
9026 @}
9027[a-z]+ @{
9028 yylval.build(yytext);
9029 return yy::parser::IDENTIFIER;
9030 @}
9031@end example
9032
9033
9034@node Complete Symbols
9035@subsubsection Complete Symbols
9036
9037If you specified both @code{%define variant} and @code{%define lex_symbol},
9038the @code{parser} class also defines the class @code{parser::symbol_type}
9039which defines a @emph{complete} symbol, aggregating its type (i.e., the
9040traditional value returned by @code{yylex}), its semantic value (i.e., the
9041value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9042
9043@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9044Build a complete terminal symbol which token type is @var{type}, and which
9045semantic value is @var{value}. If location tracking is enabled, also pass
9046the @var{location}.
9047@end deftypemethod
9048
9049This interface is low-level and should not be used for two reasons. First,
9050it is inconvenient, as you still have to build the semantic value, which is
9051a variant, and second, because consistency is not enforced: as with unions,
9052it is still possible to give an integer as semantic value for a string.
9053
9054So for each token type, Bison generates named constructors as follows.
9055
9056@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9057@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9058Build a complete terminal symbol for the token type @var{token} (not
9059including the @code{api.tokens.prefix}) whose possible semantic value is
9060@var{value} of adequate @var{value_type}. If location tracking is enabled,
9061also pass the @var{location}.
9062@end deftypemethod
9063
9064For instance, given the following declarations:
9065
9066@example
9067%define api.tokens.prefix "TOK_"
9068%token <std::string> IDENTIFIER;
9069%token <int> INTEGER;
9070%token COLON;
9071@end example
9072
9073@noindent
9074Bison generates the following functions:
9075
9076@example
9077symbol_type make_IDENTIFIER(const std::string& v,
9078 const location_type& l);
9079symbol_type make_INTEGER(const int& v,
9080 const location_type& loc);
9081symbol_type make_COLON(const location_type& loc);
9082@end example
9083
9084@noindent
9085which should be used in a Lex-scanner as follows.
9086
9087@example
9088[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9089[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9090":" return yy::parser::make_COLON(loc);
9091@end example
9092
9093Tokens that do not have an identifier are not accessible: you cannot simply
9094use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9095
9096@node A Complete C++ Example
8405b70c 9097@subsection A Complete C++ Example
12545799
AD
9098
9099This section demonstrates the use of a C++ parser with a simple but
9100complete example. This example should be available on your system,
3cdc21cf 9101ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9102focuses on the use of Bison, therefore the design of the various C++
9103classes is very naive: no accessors, no encapsulation of members etc.
9104We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9105demonstrate the various interactions. A hand-written scanner is
12545799
AD
9106actually easier to interface with.
9107
9108@menu
9109* Calc++ --- C++ Calculator:: The specifications
9110* Calc++ Parsing Driver:: An active parsing context
9111* Calc++ Parser:: A parser class
9112* Calc++ Scanner:: A pure C++ Flex scanner
9113* Calc++ Top Level:: Conducting the band
9114@end menu
9115
9116@node Calc++ --- C++ Calculator
8405b70c 9117@subsubsection Calc++ --- C++ Calculator
12545799
AD
9118
9119Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9120expression, possibly preceded by variable assignments. An
12545799
AD
9121environment containing possibly predefined variables such as
9122@code{one} and @code{two}, is exchanged with the parser. An example
9123of valid input follows.
9124
9125@example
9126three := 3
9127seven := one + two * three
9128seven * seven
9129@end example
9130
9131@node Calc++ Parsing Driver
8405b70c 9132@subsubsection Calc++ Parsing Driver
12545799
AD
9133@c - An env
9134@c - A place to store error messages
9135@c - A place for the result
9136
9137To support a pure interface with the parser (and the scanner) the
9138technique of the ``parsing context'' is convenient: a structure
9139containing all the data to exchange. Since, in addition to simply
9140launch the parsing, there are several auxiliary tasks to execute (open
9141the file for parsing, instantiate the parser etc.), we recommend
9142transforming the simple parsing context structure into a fully blown
9143@dfn{parsing driver} class.
9144
9145The declaration of this driver class, @file{calc++-driver.hh}, is as
9146follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9147required standard library components, and the declaration of the parser
9148class.
12545799 9149
1c59e0a1 9150@comment file: calc++-driver.hh
12545799
AD
9151@example
9152#ifndef CALCXX_DRIVER_HH
9153# define CALCXX_DRIVER_HH
9154# include <string>
9155# include <map>
fb9712a9 9156# include "calc++-parser.hh"
12545799
AD
9157@end example
9158
12545799
AD
9159
9160@noindent
9161Then comes the declaration of the scanning function. Flex expects
9162the signature of @code{yylex} to be defined in the macro
9163@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9164factor both as follows.
1c59e0a1
AD
9165
9166@comment file: calc++-driver.hh
12545799 9167@example
3dc5e96b 9168// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9169# define YY_DECL \
9170 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9171// ... and declare it for the parser's sake.
9172YY_DECL;
9173@end example
9174
9175@noindent
9176The @code{calcxx_driver} class is then declared with its most obvious
9177members.
9178
1c59e0a1 9179@comment file: calc++-driver.hh
12545799
AD
9180@example
9181// Conducting the whole scanning and parsing of Calc++.
9182class calcxx_driver
9183@{
9184public:
9185 calcxx_driver ();
9186 virtual ~calcxx_driver ();
9187
9188 std::map<std::string, int> variables;
9189
9190 int result;
9191@end example
9192
9193@noindent
3cdc21cf
AD
9194To encapsulate the coordination with the Flex scanner, it is useful to have
9195member functions to open and close the scanning phase.
12545799 9196
1c59e0a1 9197@comment file: calc++-driver.hh
12545799
AD
9198@example
9199 // Handling the scanner.
9200 void scan_begin ();
9201 void scan_end ();
9202 bool trace_scanning;
9203@end example
9204
9205@noindent
9206Similarly for the parser itself.
9207
1c59e0a1 9208@comment file: calc++-driver.hh
12545799 9209@example
3cdc21cf
AD
9210 // Run the parser on file F.
9211 // Return 0 on success.
bb32f4f2 9212 int parse (const std::string& f);
3cdc21cf
AD
9213 // The name of the file being parsed.
9214 // Used later to pass the file name to the location tracker.
12545799 9215 std::string file;
3cdc21cf 9216 // Whether parser traces should be generated.
12545799
AD
9217 bool trace_parsing;
9218@end example
9219
9220@noindent
9221To demonstrate pure handling of parse errors, instead of simply
9222dumping them on the standard error output, we will pass them to the
9223compiler driver using the following two member functions. Finally, we
9224close the class declaration and CPP guard.
9225
1c59e0a1 9226@comment file: calc++-driver.hh
12545799
AD
9227@example
9228 // Error handling.
9229 void error (const yy::location& l, const std::string& m);
9230 void error (const std::string& m);
9231@};
9232#endif // ! CALCXX_DRIVER_HH
9233@end example
9234
9235The implementation of the driver is straightforward. The @code{parse}
9236member function deserves some attention. The @code{error} functions
9237are simple stubs, they should actually register the located error
9238messages and set error state.
9239
1c59e0a1 9240@comment file: calc++-driver.cc
12545799
AD
9241@example
9242#include "calc++-driver.hh"
9243#include "calc++-parser.hh"
9244
9245calcxx_driver::calcxx_driver ()
9246 : trace_scanning (false), trace_parsing (false)
9247@{
9248 variables["one"] = 1;
9249 variables["two"] = 2;
9250@}
9251
9252calcxx_driver::~calcxx_driver ()
9253@{
9254@}
9255
bb32f4f2 9256int
12545799
AD
9257calcxx_driver::parse (const std::string &f)
9258@{
9259 file = f;
9260 scan_begin ();
9261 yy::calcxx_parser parser (*this);
9262 parser.set_debug_level (trace_parsing);
bb32f4f2 9263 int res = parser.parse ();
12545799 9264 scan_end ();
bb32f4f2 9265 return res;
12545799
AD
9266@}
9267
9268void
9269calcxx_driver::error (const yy::location& l, const std::string& m)
9270@{
9271 std::cerr << l << ": " << m << std::endl;
9272@}
9273
9274void
9275calcxx_driver::error (const std::string& m)
9276@{
9277 std::cerr << m << std::endl;
9278@}
9279@end example
9280
9281@node Calc++ Parser
8405b70c 9282@subsubsection Calc++ Parser
12545799 9283
b50d2359 9284The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9285the C++ deterministic parser skeleton, the creation of the parser header
9286file, and specifies the name of the parser class.
9287Because the C++ skeleton changed several times, it is safer to require
9288the version you designed the grammar for.
1c59e0a1
AD
9289
9290@comment file: calc++-parser.yy
12545799 9291@example
ed4d67dc 9292%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9293%require "@value{VERSION}"
12545799 9294%defines
16dc6a9e 9295%define parser_class_name "calcxx_parser"
fb9712a9
AD
9296@end example
9297
3cdc21cf
AD
9298@noindent
9299@findex %define variant
9300@findex %define lex_symbol
9301This example will use genuine C++ objects as semantic values, therefore, we
9302require the variant-based interface. To make sure we properly use it, we
9303enable assertions. To fully benefit from type-safety and more natural
9304definition of ``symbol'', we enable @code{lex_symbol}.
9305
9306@comment file: calc++-parser.yy
9307@example
9308%define variant
9309%define parse.assert
9310%define lex_symbol
9311@end example
9312
fb9712a9 9313@noindent
16dc6a9e 9314@findex %code requires
3cdc21cf
AD
9315Then come the declarations/inclusions needed by the semantic values.
9316Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9317to include the header of the other, which is, of course, insane. This
3cdc21cf 9318mutual dependency will be broken using forward declarations. Because the
fb9712a9 9319driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9320particular its inner types), it is the parser's header which will use a
9321forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9322
9323@comment file: calc++-parser.yy
9324@example
3cdc21cf
AD
9325%code requires
9326@{
12545799 9327# include <string>
fb9712a9 9328class calcxx_driver;
9bc0dd67 9329@}
12545799
AD
9330@end example
9331
9332@noindent
9333The driver is passed by reference to the parser and to the scanner.
9334This provides a simple but effective pure interface, not relying on
9335global variables.
9336
1c59e0a1 9337@comment file: calc++-parser.yy
12545799
AD
9338@example
9339// The parsing context.
2055a44e 9340%param @{ calcxx_driver& driver @}
12545799
AD
9341@end example
9342
9343@noindent
2055a44e 9344Then we request location tracking, and initialize the
f50bfcd6 9345first location's file name. Afterward new locations are computed
12545799 9346relatively to the previous locations: the file name will be
2055a44e 9347propagated.
12545799 9348
1c59e0a1 9349@comment file: calc++-parser.yy
12545799
AD
9350@example
9351%locations
9352%initial-action
9353@{
9354 // Initialize the initial location.
b47dbebe 9355 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9356@};
9357@end example
9358
9359@noindent
2055a44e 9360Use the following two directives to enable parser tracing and verbose
12545799
AD
9361error messages.
9362
1c59e0a1 9363@comment file: calc++-parser.yy
12545799 9364@example
fa819509 9365%define parse.trace
cf499cff 9366%define parse.error verbose
12545799
AD
9367@end example
9368
fb9712a9 9369@noindent
136a0f76
PB
9370@findex %code
9371The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9372@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9373
9374@comment file: calc++-parser.yy
9375@example
3cdc21cf
AD
9376%code
9377@{
fb9712a9 9378# include "calc++-driver.hh"
34f98f46 9379@}
fb9712a9
AD
9380@end example
9381
9382
12545799
AD
9383@noindent
9384The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9385allows for nicer error messages referring to ``end of file'' instead of
9386``$end''. Similarly user friendly names are provided for each symbol.
9387To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9388prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9389
1c59e0a1 9390@comment file: calc++-parser.yy
12545799 9391@example
4c6622c2 9392%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9393%token
9394 END 0 "end of file"
9395 ASSIGN ":="
9396 MINUS "-"
9397 PLUS "+"
9398 STAR "*"
9399 SLASH "/"
9400 LPAREN "("
9401 RPAREN ")"
9402;
12545799
AD
9403@end example
9404
9405@noindent
3cdc21cf
AD
9406Since we use variant-based semantic values, @code{%union} is not used, and
9407both @code{%type} and @code{%token} expect genuine types, as opposed to type
9408tags.
12545799 9409
1c59e0a1 9410@comment file: calc++-parser.yy
12545799 9411@example
3cdc21cf
AD
9412%token <std::string> IDENTIFIER "identifier"
9413%token <int> NUMBER "number"
9414%type <int> exp
9415@end example
9416
9417@noindent
9418No @code{%destructor} is needed to enable memory deallocation during error
9419recovery; the memory, for strings for instance, will be reclaimed by the
9420regular destructors. All the values are printed using their
9421@code{operator<<}.
12545799 9422
3cdc21cf
AD
9423@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9424@comment file: calc++-parser.yy
9425@example
9426%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9427@end example
9428
9429@noindent
3cdc21cf
AD
9430The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9431Location Tracking Calculator: @code{ltcalc}}).
12545799 9432
1c59e0a1 9433@comment file: calc++-parser.yy
12545799
AD
9434@example
9435%%
9436%start unit;
9437unit: assignments exp @{ driver.result = $2; @};
9438
99c08fb6
AD
9439assignments:
9440 assignments assignment @{@}
9441| /* Nothing. */ @{@};
12545799 9442
3dc5e96b 9443assignment:
3cdc21cf 9444 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9445
3cdc21cf
AD
9446%left "+" "-";
9447%left "*" "/";
99c08fb6 9448exp:
3cdc21cf
AD
9449 exp "+" exp @{ $$ = $1 + $3; @}
9450| exp "-" exp @{ $$ = $1 - $3; @}
9451| exp "*" exp @{ $$ = $1 * $3; @}
9452| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9453| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9454| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9455| "number" @{ std::swap ($$, $1); @};
12545799
AD
9456%%
9457@end example
9458
9459@noindent
9460Finally the @code{error} member function registers the errors to the
9461driver.
9462
1c59e0a1 9463@comment file: calc++-parser.yy
12545799
AD
9464@example
9465void
3cdc21cf 9466yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9467 const std::string& m)
12545799
AD
9468@{
9469 driver.error (l, m);
9470@}
9471@end example
9472
9473@node Calc++ Scanner
8405b70c 9474@subsubsection Calc++ Scanner
12545799
AD
9475
9476The Flex scanner first includes the driver declaration, then the
9477parser's to get the set of defined tokens.
9478
1c59e0a1 9479@comment file: calc++-scanner.ll
12545799
AD
9480@example
9481%@{ /* -*- C++ -*- */
3c248d70
AD
9482# include <cerrno>
9483# include <climits>
3cdc21cf 9484# include <cstdlib>
12545799
AD
9485# include <string>
9486# include "calc++-driver.hh"
9487# include "calc++-parser.hh"
eaea13f5 9488
3cdc21cf
AD
9489// Work around an incompatibility in flex (at least versions
9490// 2.5.31 through 2.5.33): it generates code that does
9491// not conform to C89. See Debian bug 333231
9492// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9493# undef yywrap
9494# define yywrap() 1
eaea13f5 9495
3cdc21cf
AD
9496// The location of the current token.
9497static yy::location loc;
12545799
AD
9498%@}
9499@end example
9500
9501@noindent
9502Because there is no @code{#include}-like feature we don't need
9503@code{yywrap}, we don't need @code{unput} either, and we parse an
9504actual file, this is not an interactive session with the user.
3cdc21cf 9505Finally, we enable scanner tracing.
12545799 9506
1c59e0a1 9507@comment file: calc++-scanner.ll
12545799
AD
9508@example
9509%option noyywrap nounput batch debug
9510@end example
9511
9512@noindent
9513Abbreviations allow for more readable rules.
9514
1c59e0a1 9515@comment file: calc++-scanner.ll
12545799
AD
9516@example
9517id [a-zA-Z][a-zA-Z_0-9]*
9518int [0-9]+
9519blank [ \t]
9520@end example
9521
9522@noindent
9d9b8b70 9523The following paragraph suffices to track locations accurately. Each
12545799 9524time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9525position. Then when a pattern is matched, its width is added to the end
9526column. When matching ends of lines, the end
12545799
AD
9527cursor is adjusted, and each time blanks are matched, the begin cursor
9528is moved onto the end cursor to effectively ignore the blanks
9529preceding tokens. Comments would be treated equally.
9530
1c59e0a1 9531@comment file: calc++-scanner.ll
12545799 9532@example
828c373b 9533%@{
3cdc21cf
AD
9534 // Code run each time a pattern is matched.
9535 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9536%@}
12545799
AD
9537%%
9538%@{
3cdc21cf
AD
9539 // Code run each time yylex is called.
9540 loc.step ();
12545799 9541%@}
3cdc21cf
AD
9542@{blank@}+ loc.step ();
9543[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9544@end example
9545
9546@noindent
3cdc21cf 9547The rules are simple. The driver is used to report errors.
12545799 9548
1c59e0a1 9549@comment file: calc++-scanner.ll
12545799 9550@example
3cdc21cf
AD
9551"-" return yy::calcxx_parser::make_MINUS(loc);
9552"+" return yy::calcxx_parser::make_PLUS(loc);
9553"*" return yy::calcxx_parser::make_STAR(loc);
9554"/" return yy::calcxx_parser::make_SLASH(loc);
9555"(" return yy::calcxx_parser::make_LPAREN(loc);
9556")" return yy::calcxx_parser::make_RPAREN(loc);
9557":=" return yy::calcxx_parser::make_ASSIGN(loc);
9558
04098407
PE
9559@{int@} @{
9560 errno = 0;
9561 long n = strtol (yytext, NULL, 10);
9562 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9563 driver.error (loc, "integer is out of range");
9564 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9565@}
3cdc21cf
AD
9566@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9567. driver.error (loc, "invalid character");
9568<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9569%%
9570@end example
9571
9572@noindent
3cdc21cf 9573Finally, because the scanner-related driver's member-functions depend
12545799
AD
9574on the scanner's data, it is simpler to implement them in this file.
9575
1c59e0a1 9576@comment file: calc++-scanner.ll
12545799
AD
9577@example
9578void
9579calcxx_driver::scan_begin ()
9580@{
9581 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9582 if (file == "-")
9583 yyin = stdin;
9584 else if (!(yyin = fopen (file.c_str (), "r")))
9585 @{
3cdc21cf 9586 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9587 exit (1);
9588 @}
12545799
AD
9589@}
9590
9591void
9592calcxx_driver::scan_end ()
9593@{
9594 fclose (yyin);
9595@}
9596@end example
9597
9598@node Calc++ Top Level
8405b70c 9599@subsubsection Calc++ Top Level
12545799
AD
9600
9601The top level file, @file{calc++.cc}, poses no problem.
9602
1c59e0a1 9603@comment file: calc++.cc
12545799
AD
9604@example
9605#include <iostream>
9606#include "calc++-driver.hh"
9607
9608int
fa4d969f 9609main (int argc, char *argv[])
12545799 9610@{
414c76a4 9611 int res = 0;
12545799
AD
9612 calcxx_driver driver;
9613 for (++argv; argv[0]; ++argv)
9614 if (*argv == std::string ("-p"))
9615 driver.trace_parsing = true;
9616 else if (*argv == std::string ("-s"))
9617 driver.trace_scanning = true;
bb32f4f2
AD
9618 else if (!driver.parse (*argv))
9619 std::cout << driver.result << std::endl;
414c76a4
AD
9620 else
9621 res = 1;
9622 return res;
12545799
AD
9623@}
9624@end example
9625
8405b70c
PB
9626@node Java Parsers
9627@section Java Parsers
9628
9629@menu
f5f419de
DJ
9630* Java Bison Interface:: Asking for Java parser generation
9631* Java Semantic Values:: %type and %token vs. Java
9632* Java Location Values:: The position and location classes
9633* Java Parser Interface:: Instantiating and running the parser
9634* Java Scanner Interface:: Specifying the scanner for the parser
9635* Java Action Features:: Special features for use in actions
9636* Java Differences:: Differences between C/C++ and Java Grammars
9637* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9638@end menu
9639
9640@node Java Bison Interface
9641@subsection Java Bison Interface
9642@c - %language "Java"
8405b70c 9643
59da312b
JD
9644(The current Java interface is experimental and may evolve.
9645More user feedback will help to stabilize it.)
9646
e254a580
DJ
9647The Java parser skeletons are selected using the @code{%language "Java"}
9648directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9649
e254a580
DJ
9650@c FIXME: Documented bug.
9651When generating a Java parser, @code{bison @var{basename}.y} will create
9652a single Java source file named @file{@var{basename}.java}. Using an
9653input file without a @file{.y} suffix is currently broken. The basename
9654of the output file can be changed by the @code{%file-prefix} directive
9655or the @option{-p}/@option{--name-prefix} option. The entire output file
9656name can be changed by the @code{%output} directive or the
9657@option{-o}/@option{--output} option. The output file contains a single
9658class for the parser.
8405b70c 9659
e254a580 9660You can create documentation for generated parsers using Javadoc.
8405b70c 9661
e254a580
DJ
9662Contrary to C parsers, Java parsers do not use global variables; the
9663state of the parser is always local to an instance of the parser class.
9664Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9665and @samp{%define api.pure} directives does not do anything when used in
e254a580 9666Java.
8405b70c 9667
e254a580 9668Push parsers are currently unsupported in Java and @code{%define
67212941 9669api.push-pull} have no effect.
01b477c6 9670
e254a580
DJ
9671@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9672@code{glr-parser} directive.
9673
9674No header file can be generated for Java parsers. Do not use the
9675@code{%defines} directive or the @option{-d}/@option{--defines} options.
9676
9677@c FIXME: Possible code change.
fa819509
AD
9678Currently, support for tracing is always compiled
9679in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9680directives and the
e254a580
DJ
9681@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9682options have no effect. This may change in the future to eliminate
fa819509
AD
9683unused code in the generated parser, so use @samp{%define parse.trace}
9684explicitly
1979121c 9685if needed. Also, in the future the
e254a580
DJ
9686@code{%token-table} directive might enable a public interface to
9687access the token names and codes.
8405b70c 9688
09ccae9b 9689Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9690hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9691Try reducing the amount of code in actions and static initializers;
9692otherwise, report a bug so that the parser skeleton will be improved.
9693
9694
8405b70c
PB
9695@node Java Semantic Values
9696@subsection Java Semantic Values
9697@c - No %union, specify type in %type/%token.
9698@c - YYSTYPE
9699@c - Printer and destructor
9700
9701There is no @code{%union} directive in Java parsers. Instead, the
9702semantic values' types (class names) should be specified in the
9703@code{%type} or @code{%token} directive:
9704
9705@example
9706%type <Expression> expr assignment_expr term factor
9707%type <Integer> number
9708@end example
9709
9710By default, the semantic stack is declared to have @code{Object} members,
9711which means that the class types you specify can be of any class.
9712To improve the type safety of the parser, you can declare the common
67501061 9713superclass of all the semantic values using the @samp{%define stype}
e254a580 9714directive. For example, after the following declaration:
8405b70c
PB
9715
9716@example
e254a580 9717%define stype "ASTNode"
8405b70c
PB
9718@end example
9719
9720@noindent
9721any @code{%type} or @code{%token} specifying a semantic type which
9722is not a subclass of ASTNode, will cause a compile-time error.
9723
e254a580 9724@c FIXME: Documented bug.
8405b70c
PB
9725Types used in the directives may be qualified with a package name.
9726Primitive data types are accepted for Java version 1.5 or later. Note
9727that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9728Generic types may not be used; this is due to a limitation in the
9729implementation of Bison, and may change in future releases.
8405b70c
PB
9730
9731Java parsers do not support @code{%destructor}, since the language
9732adopts garbage collection. The parser will try to hold references
9733to semantic values for as little time as needed.
9734
9735Java parsers do not support @code{%printer}, as @code{toString()}
9736can be used to print the semantic values. This however may change
9737(in a backwards-compatible way) in future versions of Bison.
9738
9739
9740@node Java Location Values
9741@subsection Java Location Values
9742@c - %locations
9743@c - class Position
9744@c - class Location
9745
9746When the directive @code{%locations} is used, the Java parser
9747supports location tracking, see @ref{Locations, , Locations Overview}.
9748An auxiliary user-defined class defines a @dfn{position}, a single point
9749in a file; Bison itself defines a class representing a @dfn{location},
9750a range composed of a pair of positions (possibly spanning several
9751files). The location class is an inner class of the parser; the name
e254a580 9752is @code{Location} by default, and may also be renamed using
cf499cff 9753@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9754
9755The location class treats the position as a completely opaque value.
9756By default, the class name is @code{Position}, but this can be changed
67501061 9757with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9758be supplied by the user.
8405b70c
PB
9759
9760
e254a580
DJ
9761@deftypeivar {Location} {Position} begin
9762@deftypeivarx {Location} {Position} end
8405b70c 9763The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9764@end deftypeivar
9765
9766@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9767Create a @code{Location} denoting an empty range located at a given point.
e254a580 9768@end deftypeop
8405b70c 9769
e254a580
DJ
9770@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9771Create a @code{Location} from the endpoints of the range.
9772@end deftypeop
9773
9774@deftypemethod {Location} {String} toString ()
8405b70c
PB
9775Prints the range represented by the location. For this to work
9776properly, the position class should override the @code{equals} and
9777@code{toString} methods appropriately.
9778@end deftypemethod
9779
9780
9781@node Java Parser Interface
9782@subsection Java Parser Interface
9783@c - define parser_class_name
9784@c - Ctor
9785@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9786@c debug_stream.
9787@c - Reporting errors
9788
e254a580
DJ
9789The name of the generated parser class defaults to @code{YYParser}. The
9790@code{YY} prefix may be changed using the @code{%name-prefix} directive
9791or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9792@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9793the class. The interface of this class is detailed below.
8405b70c 9794
e254a580 9795By default, the parser class has package visibility. A declaration
67501061 9796@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9797according to the Java language specification, the name of the @file{.java}
9798file should match the name of the class in this case. Similarly, you can
9799use @code{abstract}, @code{final} and @code{strictfp} with the
9800@code{%define} declaration to add other modifiers to the parser class.
67501061 9801A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9802be used to add any number of annotations to the parser class.
e254a580
DJ
9803
9804The Java package name of the parser class can be specified using the
67501061 9805@samp{%define package} directive. The superclass and the implemented
e254a580 9806interfaces of the parser class can be specified with the @code{%define
67501061 9807extends} and @samp{%define implements} directives.
e254a580
DJ
9808
9809The parser class defines an inner class, @code{Location}, that is used
9810for location tracking (see @ref{Java Location Values}), and a inner
9811interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9812these inner class/interface, and the members described in the interface
9813below, all the other members and fields are preceded with a @code{yy} or
9814@code{YY} prefix to avoid clashes with user code.
9815
e254a580
DJ
9816The parser class can be extended using the @code{%parse-param}
9817directive. Each occurrence of the directive will add a @code{protected
9818final} field to the parser class, and an argument to its constructor,
9819which initialize them automatically.
9820
e254a580
DJ
9821@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9822Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9823no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9824@code{%lex-param}s are used.
1979121c
DJ
9825
9826Use @code{%code init} for code added to the start of the constructor
9827body. This is especially useful to initialize superclasses. Use
f50bfcd6 9828@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9829@end deftypeop
9830
9831@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9832Build a new parser object using the specified scanner. There are no
2055a44e
AD
9833additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9834used.
e254a580
DJ
9835
9836If the scanner is defined by @code{%code lexer}, this constructor is
9837declared @code{protected} and is called automatically with a scanner
2055a44e 9838created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9839
9840Use @code{%code init} for code added to the start of the constructor
9841body. This is especially useful to initialize superclasses. Use
67501061 9842@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9843@end deftypeop
8405b70c
PB
9844
9845@deftypemethod {YYParser} {boolean} parse ()
9846Run the syntactic analysis, and return @code{true} on success,
9847@code{false} otherwise.
9848@end deftypemethod
9849
1979121c
DJ
9850@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9851@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9852Get or set the option to produce verbose error messages. These are only
cf499cff 9853available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9854verbose error messages.
9855@end deftypemethod
9856
9857@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9858@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9859@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9860Print an error message using the @code{yyerror} method of the scanner
9861instance in use. The @code{Location} and @code{Position} parameters are
9862available only if location tracking is active.
9863@end deftypemethod
9864
01b477c6 9865@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9866During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9867from a syntax error.
9868@xref{Error Recovery}.
8405b70c
PB
9869@end deftypemethod
9870
9871@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9872@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9873Get or set the stream used for tracing the parsing. It defaults to
9874@code{System.err}.
9875@end deftypemethod
9876
9877@deftypemethod {YYParser} {int} getDebugLevel ()
9878@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9879Get or set the tracing level. Currently its value is either 0, no trace,
9880or nonzero, full tracing.
9881@end deftypemethod
9882
1979121c
DJ
9883@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9884@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9885Identify the Bison version and skeleton used to generate this parser.
9886@end deftypecv
9887
8405b70c
PB
9888
9889@node Java Scanner Interface
9890@subsection Java Scanner Interface
01b477c6 9891@c - %code lexer
8405b70c 9892@c - %lex-param
01b477c6 9893@c - Lexer interface
8405b70c 9894
e254a580
DJ
9895There are two possible ways to interface a Bison-generated Java parser
9896with a scanner: the scanner may be defined by @code{%code lexer}, or
9897defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9898@code{Lexer} inner interface of the parser class. This interface also
9899contain constants for all user-defined token names and the predefined
9900@code{EOF} token.
e254a580
DJ
9901
9902In the first case, the body of the scanner class is placed in
9903@code{%code lexer} blocks. If you want to pass parameters from the
9904parser constructor to the scanner constructor, specify them with
9905@code{%lex-param}; they are passed before @code{%parse-param}s to the
9906constructor.
01b477c6 9907
59c5ac72 9908In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9909which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9910The constructor of the parser object will then accept an object
9911implementing the interface; @code{%lex-param} is not used in this
9912case.
9913
9914In both cases, the scanner has to implement the following methods.
9915
e254a580
DJ
9916@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9917This method is defined by the user to emit an error message. The first
9918parameter is omitted if location tracking is not active. Its type can be
67501061 9919changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
9920@end deftypemethod
9921
e254a580 9922@deftypemethod {Lexer} {int} yylex ()
8405b70c 9923Return the next token. Its type is the return value, its semantic
f50bfcd6 9924value and location are saved and returned by the their methods in the
e254a580
DJ
9925interface.
9926
67501061 9927Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 9928Default is @code{java.io.IOException}.
8405b70c
PB
9929@end deftypemethod
9930
9931@deftypemethod {Lexer} {Position} getStartPos ()
9932@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9933Return respectively the first position of the last token that
9934@code{yylex} returned, and the first position beyond it. These
9935methods are not needed unless location tracking is active.
8405b70c 9936
67501061 9937The return type can be changed using @samp{%define position_type
8405b70c
PB
9938"@var{class-name}".}
9939@end deftypemethod
9940
9941@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 9942Return the semantic value of the last token that yylex returned.
8405b70c 9943
67501061 9944The return type can be changed using @samp{%define stype
8405b70c
PB
9945"@var{class-name}".}
9946@end deftypemethod
9947
9948
e254a580
DJ
9949@node Java Action Features
9950@subsection Special Features for Use in Java Actions
9951
9952The following special constructs can be uses in Java actions.
9953Other analogous C action features are currently unavailable for Java.
9954
67501061 9955Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
9956actions, and initial actions specified by @code{%initial-action}.
9957
9958@defvar $@var{n}
9959The semantic value for the @var{n}th component of the current rule.
9960This may not be assigned to.
9961@xref{Java Semantic Values}.
9962@end defvar
9963
9964@defvar $<@var{typealt}>@var{n}
9965Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9966@xref{Java Semantic Values}.
9967@end defvar
9968
9969@defvar $$
9970The semantic value for the grouping made by the current rule. As a
9971value, this is in the base type (@code{Object} or as specified by
67501061 9972@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
9973casts are not allowed on the left-hand side of Java assignments.
9974Use an explicit Java cast if the correct subtype is needed.
9975@xref{Java Semantic Values}.
9976@end defvar
9977
9978@defvar $<@var{typealt}>$
9979Same as @code{$$} since Java always allow assigning to the base type.
9980Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9981for setting the value but there is currently no easy way to distinguish
9982these constructs.
9983@xref{Java Semantic Values}.
9984@end defvar
9985
9986@defvar @@@var{n}
9987The location information of the @var{n}th component of the current rule.
9988This may not be assigned to.
9989@xref{Java Location Values}.
9990@end defvar
9991
9992@defvar @@$
9993The location information of the grouping made by the current rule.
9994@xref{Java Location Values}.
9995@end defvar
9996
9997@deffn {Statement} {return YYABORT;}
9998Return immediately from the parser, indicating failure.
9999@xref{Java Parser Interface}.
10000@end deffn
8405b70c 10001
e254a580
DJ
10002@deffn {Statement} {return YYACCEPT;}
10003Return immediately from the parser, indicating success.
10004@xref{Java Parser Interface}.
10005@end deffn
8405b70c 10006
e254a580 10007@deffn {Statement} {return YYERROR;}
c265fd6b 10008Start error recovery without printing an error message.
e254a580
DJ
10009@xref{Error Recovery}.
10010@end deffn
8405b70c 10011
e254a580
DJ
10012@deftypefn {Function} {boolean} recovering ()
10013Return whether error recovery is being done. In this state, the parser
10014reads token until it reaches a known state, and then restarts normal
10015operation.
10016@xref{Error Recovery}.
10017@end deftypefn
8405b70c 10018
1979121c
DJ
10019@deftypefn {Function} {void} yyerror (String @var{msg})
10020@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10021@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10022Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10023instance in use. The @code{Location} and @code{Position} parameters are
10024available only if location tracking is active.
e254a580 10025@end deftypefn
8405b70c 10026
8405b70c 10027
8405b70c
PB
10028@node Java Differences
10029@subsection Differences between C/C++ and Java Grammars
10030
10031The different structure of the Java language forces several differences
10032between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10033section summarizes these differences.
8405b70c
PB
10034
10035@itemize
10036@item
01b477c6 10037Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10038@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10039macros. Instead, they should be preceded by @code{return} when they
10040appear in an action. The actual definition of these symbols is
8405b70c
PB
10041opaque to the Bison grammar, and it might change in the future. The
10042only meaningful operation that you can do, is to return them.
e254a580 10043See @pxref{Java Action Features}.
8405b70c
PB
10044
10045Note that of these three symbols, only @code{YYACCEPT} and
10046@code{YYABORT} will cause a return from the @code{yyparse}
10047method@footnote{Java parsers include the actions in a separate
10048method than @code{yyparse} in order to have an intuitive syntax that
10049corresponds to these C macros.}.
10050
e254a580
DJ
10051@item
10052Java lacks unions, so @code{%union} has no effect. Instead, semantic
10053values have a common base type: @code{Object} or as specified by
f50bfcd6 10054@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10055@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10056an union. The type of @code{$$}, even with angle brackets, is the base
10057type since Java casts are not allow on the left-hand side of assignments.
10058Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10059left-hand side of assignments. See @pxref{Java Semantic Values} and
10060@pxref{Java Action Features}.
10061
8405b70c 10062@item
f50bfcd6 10063The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10064@table @asis
10065@item @code{%code imports}
10066blocks are placed at the beginning of the Java source code. They may
10067include copyright notices. For a @code{package} declarations, it is
67501061 10068suggested to use @samp{%define package} instead.
8405b70c 10069
01b477c6
PB
10070@item unqualified @code{%code}
10071blocks are placed inside the parser class.
10072
10073@item @code{%code lexer}
10074blocks, if specified, should include the implementation of the
10075scanner. If there is no such block, the scanner can be any class
10076that implements the appropriate interface (see @pxref{Java Scanner
10077Interface}).
29553547 10078@end table
8405b70c
PB
10079
10080Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10081In particular, @code{%@{ @dots{} %@}} blocks should not be used
10082and may give an error in future versions of Bison.
10083
01b477c6 10084The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10085be used to define other classes used by the parser @emph{outside}
10086the parser class.
8405b70c
PB
10087@end itemize
10088
e254a580
DJ
10089
10090@node Java Declarations Summary
10091@subsection Java Declarations Summary
10092
10093This summary only include declarations specific to Java or have special
10094meaning when used in a Java parser.
10095
10096@deffn {Directive} {%language "Java"}
10097Generate a Java class for the parser.
10098@end deffn
10099
10100@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10101A parameter for the lexer class defined by @code{%code lexer}
10102@emph{only}, added as parameters to the lexer constructor and the parser
10103constructor that @emph{creates} a lexer. Default is none.
10104@xref{Java Scanner Interface}.
10105@end deffn
10106
10107@deffn {Directive} %name-prefix "@var{prefix}"
10108The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10109@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10110@xref{Java Bison Interface}.
10111@end deffn
10112
10113@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10114A parameter for the parser class added as parameters to constructor(s)
10115and as fields initialized by the constructor(s). Default is none.
10116@xref{Java Parser Interface}.
10117@end deffn
10118
10119@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10120Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10121@xref{Java Semantic Values}.
10122@end deffn
10123
10124@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10125Declare the type of nonterminals. Note that the angle brackets enclose
10126a Java @emph{type}.
10127@xref{Java Semantic Values}.
10128@end deffn
10129
10130@deffn {Directive} %code @{ @var{code} @dots{} @}
10131Code appended to the inside of the parser class.
10132@xref{Java Differences}.
10133@end deffn
10134
10135@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10136Code inserted just after the @code{package} declaration.
10137@xref{Java Differences}.
10138@end deffn
10139
1979121c
DJ
10140@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10141Code inserted at the beginning of the parser constructor body.
10142@xref{Java Parser Interface}.
10143@end deffn
10144
e254a580
DJ
10145@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10146Code added to the body of a inner lexer class within the parser class.
10147@xref{Java Scanner Interface}.
10148@end deffn
10149
10150@deffn {Directive} %% @var{code} @dots{}
10151Code (after the second @code{%%}) appended to the end of the file,
10152@emph{outside} the parser class.
10153@xref{Java Differences}.
10154@end deffn
10155
10156@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10157Not supported. Use @code{%code imports} instead.
e254a580
DJ
10158@xref{Java Differences}.
10159@end deffn
10160
10161@deffn {Directive} {%define abstract}
10162Whether the parser class is declared @code{abstract}. Default is false.
10163@xref{Java Bison Interface}.
10164@end deffn
10165
1979121c
DJ
10166@deffn {Directive} {%define annotations} "@var{annotations}"
10167The Java annotations for the parser class. Default is none.
10168@xref{Java Bison Interface}.
10169@end deffn
10170
e254a580
DJ
10171@deffn {Directive} {%define extends} "@var{superclass}"
10172The superclass of the parser class. Default is none.
10173@xref{Java Bison Interface}.
10174@end deffn
10175
10176@deffn {Directive} {%define final}
10177Whether the parser class is declared @code{final}. Default is false.
10178@xref{Java Bison Interface}.
10179@end deffn
10180
10181@deffn {Directive} {%define implements} "@var{interfaces}"
10182The implemented interfaces of the parser class, a comma-separated list.
10183Default is none.
10184@xref{Java Bison Interface}.
10185@end deffn
10186
1979121c
DJ
10187@deffn {Directive} {%define init_throws} "@var{exceptions}"
10188The exceptions thrown by @code{%code init} from the parser class
10189constructor. Default is none.
10190@xref{Java Parser Interface}.
10191@end deffn
10192
e254a580
DJ
10193@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10194The exceptions thrown by the @code{yylex} method of the lexer, a
10195comma-separated list. Default is @code{java.io.IOException}.
10196@xref{Java Scanner Interface}.
10197@end deffn
10198
10199@deffn {Directive} {%define location_type} "@var{class}"
10200The name of the class used for locations (a range between two
10201positions). This class is generated as an inner class of the parser
10202class by @command{bison}. Default is @code{Location}.
10203@xref{Java Location Values}.
10204@end deffn
10205
10206@deffn {Directive} {%define package} "@var{package}"
10207The package to put the parser class in. Default is none.
10208@xref{Java Bison Interface}.
10209@end deffn
10210
10211@deffn {Directive} {%define parser_class_name} "@var{name}"
10212The name of the parser class. Default is @code{YYParser} or
10213@code{@var{name-prefix}Parser}.
10214@xref{Java Bison Interface}.
10215@end deffn
10216
10217@deffn {Directive} {%define position_type} "@var{class}"
10218The name of the class used for positions. This class must be supplied by
10219the user. Default is @code{Position}.
10220@xref{Java Location Values}.
10221@end deffn
10222
10223@deffn {Directive} {%define public}
10224Whether the parser class is declared @code{public}. Default is false.
10225@xref{Java Bison Interface}.
10226@end deffn
10227
10228@deffn {Directive} {%define stype} "@var{class}"
10229The base type of semantic values. Default is @code{Object}.
10230@xref{Java Semantic Values}.
10231@end deffn
10232
10233@deffn {Directive} {%define strictfp}
10234Whether the parser class is declared @code{strictfp}. Default is false.
10235@xref{Java Bison Interface}.
10236@end deffn
10237
10238@deffn {Directive} {%define throws} "@var{exceptions}"
10239The exceptions thrown by user-supplied parser actions and
10240@code{%initial-action}, a comma-separated list. Default is none.
10241@xref{Java Parser Interface}.
10242@end deffn
10243
10244
12545799 10245@c ================================================= FAQ
d1a1114f
AD
10246
10247@node FAQ
10248@chapter Frequently Asked Questions
10249@cindex frequently asked questions
10250@cindex questions
10251
10252Several questions about Bison come up occasionally. Here some of them
10253are addressed.
10254
10255@menu
55ba27be
AD
10256* Memory Exhausted:: Breaking the Stack Limits
10257* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10258* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10259* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10260* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
10261* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
10262* I can't build Bison:: Troubleshooting
10263* Where can I find help?:: Troubleshouting
10264* Bug Reports:: Troublereporting
8405b70c 10265* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10266* Beta Testing:: Experimenting development versions
10267* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10268@end menu
10269
1a059451
PE
10270@node Memory Exhausted
10271@section Memory Exhausted
d1a1114f
AD
10272
10273@display
1a059451 10274My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10275message. What can I do?
10276@end display
10277
10278This question is already addressed elsewhere, @xref{Recursion,
10279,Recursive Rules}.
10280
e64fec0a
PE
10281@node How Can I Reset the Parser
10282@section How Can I Reset the Parser
5b066063 10283
0e14ad77
PE
10284The following phenomenon has several symptoms, resulting in the
10285following typical questions:
5b066063
AD
10286
10287@display
10288I invoke @code{yyparse} several times, and on correct input it works
10289properly; but when a parse error is found, all the other calls fail
0e14ad77 10290too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10291@end display
10292
10293@noindent
10294or
10295
10296@display
0e14ad77 10297My parser includes support for an @samp{#include}-like feature, in
5b066063 10298which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10299although I did specify @samp{%define api.pure}.
5b066063
AD
10300@end display
10301
0e14ad77
PE
10302These problems typically come not from Bison itself, but from
10303Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10304speed, they might not notice a change of input file. As a
10305demonstration, consider the following source file,
10306@file{first-line.l}:
10307
10308@verbatim
10309%{
10310#include <stdio.h>
10311#include <stdlib.h>
10312%}
10313%%
10314.*\n ECHO; return 1;
10315%%
10316int
0e14ad77 10317yyparse (char const *file)
5b066063
AD
10318{
10319 yyin = fopen (file, "r");
10320 if (!yyin)
10321 exit (2);
fa7e68c3 10322 /* One token only. */
5b066063 10323 yylex ();
0e14ad77 10324 if (fclose (yyin) != 0)
5b066063
AD
10325 exit (3);
10326 return 0;
10327}
10328
10329int
0e14ad77 10330main (void)
5b066063
AD
10331{
10332 yyparse ("input");
10333 yyparse ("input");
10334 return 0;
10335}
10336@end verbatim
10337
10338@noindent
10339If the file @file{input} contains
10340
10341@verbatim
10342input:1: Hello,
10343input:2: World!
10344@end verbatim
10345
10346@noindent
0e14ad77 10347then instead of getting the first line twice, you get:
5b066063
AD
10348
10349@example
10350$ @kbd{flex -ofirst-line.c first-line.l}
10351$ @kbd{gcc -ofirst-line first-line.c -ll}
10352$ @kbd{./first-line}
10353input:1: Hello,
10354input:2: World!
10355@end example
10356
0e14ad77
PE
10357Therefore, whenever you change @code{yyin}, you must tell the
10358Lex-generated scanner to discard its current buffer and switch to the
10359new one. This depends upon your implementation of Lex; see its
10360documentation for more. For Flex, it suffices to call
10361@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10362Flex-generated scanner needs to read from several input streams to
10363handle features like include files, you might consider using Flex
10364functions like @samp{yy_switch_to_buffer} that manipulate multiple
10365input buffers.
5b066063 10366
b165c324
AD
10367If your Flex-generated scanner uses start conditions (@pxref{Start
10368conditions, , Start conditions, flex, The Flex Manual}), you might
10369also want to reset the scanner's state, i.e., go back to the initial
10370start condition, through a call to @samp{BEGIN (0)}.
10371
fef4cb51
AD
10372@node Strings are Destroyed
10373@section Strings are Destroyed
10374
10375@display
c7e441b4 10376My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10377them. Instead of reporting @samp{"foo", "bar"}, it reports
10378@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10379@end display
10380
10381This error is probably the single most frequent ``bug report'' sent to
10382Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10383of the scanner. Consider the following Lex code:
fef4cb51
AD
10384
10385@verbatim
10386%{
10387#include <stdio.h>
10388char *yylval = NULL;
10389%}
10390%%
10391.* yylval = yytext; return 1;
10392\n /* IGNORE */
10393%%
10394int
10395main ()
10396{
fa7e68c3 10397 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10398 char *fst = (yylex (), yylval);
10399 char *snd = (yylex (), yylval);
10400 printf ("\"%s\", \"%s\"\n", fst, snd);
10401 return 0;
10402}
10403@end verbatim
10404
10405If you compile and run this code, you get:
10406
10407@example
10408$ @kbd{flex -osplit-lines.c split-lines.l}
10409$ @kbd{gcc -osplit-lines split-lines.c -ll}
10410$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10411"one
10412two", "two"
10413@end example
10414
10415@noindent
10416this is because @code{yytext} is a buffer provided for @emph{reading}
10417in the action, but if you want to keep it, you have to duplicate it
10418(e.g., using @code{strdup}). Note that the output may depend on how
10419your implementation of Lex handles @code{yytext}. For instance, when
10420given the Lex compatibility option @option{-l} (which triggers the
10421option @samp{%array}) Flex generates a different behavior:
10422
10423@example
10424$ @kbd{flex -l -osplit-lines.c split-lines.l}
10425$ @kbd{gcc -osplit-lines split-lines.c -ll}
10426$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10427"two", "two"
10428@end example
10429
10430
2fa09258
AD
10431@node Implementing Gotos/Loops
10432@section Implementing Gotos/Loops
a06ea4aa
AD
10433
10434@display
10435My simple calculator supports variables, assignments, and functions,
2fa09258 10436but how can I implement gotos, or loops?
a06ea4aa
AD
10437@end display
10438
10439Although very pedagogical, the examples included in the document blur
a1c84f45 10440the distinction to make between the parser---whose job is to recover
a06ea4aa 10441the structure of a text and to transmit it to subsequent modules of
a1c84f45 10442the program---and the processing (such as the execution) of this
a06ea4aa
AD
10443structure. This works well with so called straight line programs,
10444i.e., precisely those that have a straightforward execution model:
10445execute simple instructions one after the others.
10446
10447@cindex abstract syntax tree
10448@cindex @acronym{AST}
10449If you want a richer model, you will probably need to use the parser
10450to construct a tree that does represent the structure it has
10451recovered; this tree is usually called the @dfn{abstract syntax tree},
10452or @dfn{@acronym{AST}} for short. Then, walking through this tree,
10453traversing it in various ways, will enable treatments such as its
10454execution or its translation, which will result in an interpreter or a
10455compiler.
10456
10457This topic is way beyond the scope of this manual, and the reader is
10458invited to consult the dedicated literature.
10459
10460
ed2e6384
AD
10461@node Multiple start-symbols
10462@section Multiple start-symbols
10463
10464@display
10465I have several closely related grammars, and I would like to share their
10466implementations. In fact, I could use a single grammar but with
10467multiple entry points.
10468@end display
10469
10470Bison does not support multiple start-symbols, but there is a very
10471simple means to simulate them. If @code{foo} and @code{bar} are the two
10472pseudo start-symbols, then introduce two new tokens, say
10473@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10474real start-symbol:
10475
10476@example
10477%token START_FOO START_BAR;
10478%start start;
10479start: START_FOO foo
10480 | START_BAR bar;
10481@end example
10482
10483These tokens prevents the introduction of new conflicts. As far as the
10484parser goes, that is all that is needed.
10485
10486Now the difficult part is ensuring that the scanner will send these
10487tokens first. If your scanner is hand-written, that should be
10488straightforward. If your scanner is generated by Lex, them there is
10489simple means to do it: recall that anything between @samp{%@{ ... %@}}
10490after the first @code{%%} is copied verbatim in the top of the generated
10491@code{yylex} function. Make sure a variable @code{start_token} is
10492available in the scanner (e.g., a global variable or using
10493@code{%lex-param} etc.), and use the following:
10494
10495@example
10496 /* @r{Prologue.} */
10497%%
10498%@{
10499 if (start_token)
10500 @{
10501 int t = start_token;
10502 start_token = 0;
10503 return t;
10504 @}
10505%@}
10506 /* @r{The rules.} */
10507@end example
10508
10509
55ba27be
AD
10510@node Secure? Conform?
10511@section Secure? Conform?
10512
10513@display
10514Is Bison secure? Does it conform to POSIX?
10515@end display
10516
10517If you're looking for a guarantee or certification, we don't provide it.
10518However, Bison is intended to be a reliable program that conforms to the
10519@acronym{POSIX} specification for Yacc. If you run into problems,
10520please send us a bug report.
10521
10522@node I can't build Bison
10523@section I can't build Bison
10524
10525@display
8c5b881d
PE
10526I can't build Bison because @command{make} complains that
10527@code{msgfmt} is not found.
55ba27be
AD
10528What should I do?
10529@end display
10530
10531Like most GNU packages with internationalization support, that feature
10532is turned on by default. If you have problems building in the @file{po}
10533subdirectory, it indicates that your system's internationalization
10534support is lacking. You can re-configure Bison with
10535@option{--disable-nls} to turn off this support, or you can install GNU
10536gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10537Bison. See the file @file{ABOUT-NLS} for more information.
10538
10539
10540@node Where can I find help?
10541@section Where can I find help?
10542
10543@display
10544I'm having trouble using Bison. Where can I find help?
10545@end display
10546
10547First, read this fine manual. Beyond that, you can send mail to
10548@email{help-bison@@gnu.org}. This mailing list is intended to be
10549populated with people who are willing to answer questions about using
10550and installing Bison. Please keep in mind that (most of) the people on
10551the list have aspects of their lives which are not related to Bison (!),
10552so you may not receive an answer to your question right away. This can
10553be frustrating, but please try not to honk them off; remember that any
10554help they provide is purely voluntary and out of the kindness of their
10555hearts.
10556
10557@node Bug Reports
10558@section Bug Reports
10559
10560@display
10561I found a bug. What should I include in the bug report?
10562@end display
10563
10564Before you send a bug report, make sure you are using the latest
10565version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10566mirrors. Be sure to include the version number in your bug report. If
10567the bug is present in the latest version but not in a previous version,
10568try to determine the most recent version which did not contain the bug.
10569
10570If the bug is parser-related, you should include the smallest grammar
10571you can which demonstrates the bug. The grammar file should also be
10572complete (i.e., I should be able to run it through Bison without having
10573to edit or add anything). The smaller and simpler the grammar, the
10574easier it will be to fix the bug.
10575
10576Include information about your compilation environment, including your
10577operating system's name and version and your compiler's name and
10578version. If you have trouble compiling, you should also include a
10579transcript of the build session, starting with the invocation of
10580`configure'. Depending on the nature of the bug, you may be asked to
10581send additional files as well (such as `config.h' or `config.cache').
10582
10583Patches are most welcome, but not required. That is, do not hesitate to
10584send a bug report just because you can not provide a fix.
10585
10586Send bug reports to @email{bug-bison@@gnu.org}.
10587
8405b70c
PB
10588@node More Languages
10589@section More Languages
55ba27be
AD
10590
10591@display
8405b70c 10592Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10593favorite language here}?
10594@end display
10595
8405b70c 10596C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10597languages; contributions are welcome.
10598
10599@node Beta Testing
10600@section Beta Testing
10601
10602@display
10603What is involved in being a beta tester?
10604@end display
10605
10606It's not terribly involved. Basically, you would download a test
10607release, compile it, and use it to build and run a parser or two. After
10608that, you would submit either a bug report or a message saying that
10609everything is okay. It is important to report successes as well as
10610failures because test releases eventually become mainstream releases,
10611but only if they are adequately tested. If no one tests, development is
10612essentially halted.
10613
10614Beta testers are particularly needed for operating systems to which the
10615developers do not have easy access. They currently have easy access to
10616recent GNU/Linux and Solaris versions. Reports about other operating
10617systems are especially welcome.
10618
10619@node Mailing Lists
10620@section Mailing Lists
10621
10622@display
10623How do I join the help-bison and bug-bison mailing lists?
10624@end display
10625
10626See @url{http://lists.gnu.org/}.
a06ea4aa 10627
d1a1114f
AD
10628@c ================================================= Table of Symbols
10629
342b8b6e 10630@node Table of Symbols
bfa74976
RS
10631@appendix Bison Symbols
10632@cindex Bison symbols, table of
10633@cindex symbols in Bison, table of
10634
18b519c0 10635@deffn {Variable} @@$
3ded9a63 10636In an action, the location of the left-hand side of the rule.
88bce5a2 10637@xref{Locations, , Locations Overview}.
18b519c0 10638@end deffn
3ded9a63 10639
18b519c0 10640@deffn {Variable} @@@var{n}
3ded9a63
AD
10641In an action, the location of the @var{n}-th symbol of the right-hand
10642side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10643@end deffn
3ded9a63 10644
d013372c
AR
10645@deffn {Variable} @@@var{name}
10646In an action, the location of a symbol addressed by name.
10647@xref{Locations, , Locations Overview}.
10648@end deffn
10649
10650@deffn {Variable} @@[@var{name}]
10651In an action, the location of a symbol addressed by name.
10652@xref{Locations, , Locations Overview}.
10653@end deffn
10654
18b519c0 10655@deffn {Variable} $$
3ded9a63
AD
10656In an action, the semantic value of the left-hand side of the rule.
10657@xref{Actions}.
18b519c0 10658@end deffn
3ded9a63 10659
18b519c0 10660@deffn {Variable} $@var{n}
3ded9a63
AD
10661In an action, the semantic value of the @var{n}-th symbol of the
10662right-hand side of the rule. @xref{Actions}.
18b519c0 10663@end deffn
3ded9a63 10664
d013372c
AR
10665@deffn {Variable} $@var{name}
10666In an action, the semantic value of a symbol addressed by name.
10667@xref{Actions}.
10668@end deffn
10669
10670@deffn {Variable} $[@var{name}]
10671In an action, the semantic value of a symbol addressed by name.
10672@xref{Actions}.
10673@end deffn
10674
dd8d9022
AD
10675@deffn {Delimiter} %%
10676Delimiter used to separate the grammar rule section from the
10677Bison declarations section or the epilogue.
10678@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10679@end deffn
bfa74976 10680
dd8d9022
AD
10681@c Don't insert spaces, or check the DVI output.
10682@deffn {Delimiter} %@{@var{code}%@}
10683All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10684the output file uninterpreted. Such code forms the prologue of the input
10685file. @xref{Grammar Outline, ,Outline of a Bison
10686Grammar}.
18b519c0 10687@end deffn
bfa74976 10688
ca2a6d15
PH
10689@deffn {Directive} %?@{@var{expression}@}
10690Predicate actions. This is a type of action clause that may appear in
10691rules. The expression is evaluated, and if false, causes a syntax error. In
10692@acronym{GLR} parsers during nondeterministic operation,
10693this silently causes an alternative parse to die. During deterministic
10694operation, it is the same as the effect of YYERROR.
10695@xref{Semantic Predicates}.
10696
10697This feature is experimental.
10698More user feedback will help to determine whether it should become a permanent
10699feature.
10700@end deffn
10701
dd8d9022
AD
10702@deffn {Construct} /*@dots{}*/
10703Comment delimiters, as in C.
18b519c0 10704@end deffn
bfa74976 10705
dd8d9022
AD
10706@deffn {Delimiter} :
10707Separates a rule's result from its components. @xref{Rules, ,Syntax of
10708Grammar Rules}.
18b519c0 10709@end deffn
bfa74976 10710
dd8d9022
AD
10711@deffn {Delimiter} ;
10712Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10713@end deffn
bfa74976 10714
dd8d9022
AD
10715@deffn {Delimiter} |
10716Separates alternate rules for the same result nonterminal.
10717@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10718@end deffn
bfa74976 10719
12e35840
JD
10720@deffn {Directive} <*>
10721Used to define a default tagged @code{%destructor} or default tagged
10722@code{%printer}.
85894313
JD
10723
10724This feature is experimental.
10725More user feedback will help to determine whether it should become a permanent
10726feature.
10727
12e35840
JD
10728@xref{Destructor Decl, , Freeing Discarded Symbols}.
10729@end deffn
10730
3ebecc24 10731@deffn {Directive} <>
12e35840
JD
10732Used to define a default tagless @code{%destructor} or default tagless
10733@code{%printer}.
85894313
JD
10734
10735This feature is experimental.
10736More user feedback will help to determine whether it should become a permanent
10737feature.
10738
12e35840
JD
10739@xref{Destructor Decl, , Freeing Discarded Symbols}.
10740@end deffn
10741
dd8d9022
AD
10742@deffn {Symbol} $accept
10743The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10744$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10745Start-Symbol}. It cannot be used in the grammar.
18b519c0 10746@end deffn
bfa74976 10747
136a0f76 10748@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10749@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10750Insert @var{code} verbatim into output parser source.
10751@xref{Decl Summary,,%code}.
9bc0dd67
JD
10752@end deffn
10753
10754@deffn {Directive} %debug
10755Equip the parser for debugging. @xref{Decl Summary}.
10756@end deffn
10757
91d2c560 10758@ifset defaultprec
22fccf95
PE
10759@deffn {Directive} %default-prec
10760Assign a precedence to rules that lack an explicit @samp{%prec}
10761modifier. @xref{Contextual Precedence, ,Context-Dependent
10762Precedence}.
39a06c25 10763@end deffn
91d2c560 10764@end ifset
39a06c25 10765
148d66d8
JD
10766@deffn {Directive} %define @var{define-variable}
10767@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10768@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10769Define a variable to adjust Bison's behavior.
10770@xref{Decl Summary,,%define}.
10771@end deffn
10772
18b519c0 10773@deffn {Directive} %defines
6deb4447
AD
10774Bison declaration to create a header file meant for the scanner.
10775@xref{Decl Summary}.
18b519c0 10776@end deffn
6deb4447 10777
02975b9a
JD
10778@deffn {Directive} %defines @var{defines-file}
10779Same as above, but save in the file @var{defines-file}.
10780@xref{Decl Summary}.
10781@end deffn
10782
18b519c0 10783@deffn {Directive} %destructor
258b75ca 10784Specify how the parser should reclaim the memory associated to
fa7e68c3 10785discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10786@end deffn
72f889cc 10787
18b519c0 10788@deffn {Directive} %dprec
676385e2 10789Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10790time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10791@acronym{GLR} Parsers}.
18b519c0 10792@end deffn
676385e2 10793
dd8d9022
AD
10794@deffn {Symbol} $end
10795The predefined token marking the end of the token stream. It cannot be
10796used in the grammar.
10797@end deffn
10798
10799@deffn {Symbol} error
10800A token name reserved for error recovery. This token may be used in
10801grammar rules so as to allow the Bison parser to recognize an error in
10802the grammar without halting the process. In effect, a sentence
10803containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10804token @code{error} becomes the current lookahead token. Actions
10805corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10806token is reset to the token that originally caused the violation.
10807@xref{Error Recovery}.
18d192f0
AD
10808@end deffn
10809
18b519c0 10810@deffn {Directive} %error-verbose
cf499cff 10811An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10812@end deffn
2a8d363a 10813
02975b9a 10814@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10815Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10816Summary}.
18b519c0 10817@end deffn
d8988b2f 10818
18b519c0 10819@deffn {Directive} %glr-parser
c827f760
PE
10820Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10821Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10822@end deffn
676385e2 10823
dd8d9022
AD
10824@deffn {Directive} %initial-action
10825Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10826@end deffn
10827
e6e704dc
JD
10828@deffn {Directive} %language
10829Specify the programming language for the generated parser.
10830@xref{Decl Summary}.
10831@end deffn
10832
18b519c0 10833@deffn {Directive} %left
d78f0ac9 10834Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10835@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10836@end deffn
bfa74976 10837
2055a44e
AD
10838@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10839Bison declaration to specifying additional arguments that
2a8d363a
AD
10840@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10841for Pure Parsers}.
18b519c0 10842@end deffn
2a8d363a 10843
18b519c0 10844@deffn {Directive} %merge
676385e2 10845Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10846reduce/reduce conflict with a rule having the same merging function, the
676385e2 10847function is applied to the two semantic values to get a single result.
c827f760 10848@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10849@end deffn
676385e2 10850
02975b9a 10851@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10852Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10853@end deffn
d8988b2f 10854
91d2c560 10855@ifset defaultprec
22fccf95
PE
10856@deffn {Directive} %no-default-prec
10857Do not assign a precedence to rules that lack an explicit @samp{%prec}
10858modifier. @xref{Contextual Precedence, ,Context-Dependent
10859Precedence}.
10860@end deffn
91d2c560 10861@end ifset
22fccf95 10862
18b519c0 10863@deffn {Directive} %no-lines
931c7513
RS
10864Bison declaration to avoid generating @code{#line} directives in the
10865parser file. @xref{Decl Summary}.
18b519c0 10866@end deffn
931c7513 10867
18b519c0 10868@deffn {Directive} %nonassoc
d78f0ac9 10869Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10870@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10871@end deffn
bfa74976 10872
02975b9a 10873@deffn {Directive} %output "@var{file}"
72d2299c 10874Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10875Summary}.
18b519c0 10876@end deffn
d8988b2f 10877
2055a44e
AD
10878@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10879Bison declaration to specify additional arguments that both
10880@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10881Parser Function @code{yyparse}}.
10882@end deffn
10883
10884@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10885Bison declaration to specify additional arguments that @code{yyparse}
10886should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10887@end deffn
2a8d363a 10888
18b519c0 10889@deffn {Directive} %prec
bfa74976
RS
10890Bison declaration to assign a precedence to a specific rule.
10891@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10892@end deffn
bfa74976 10893
d78f0ac9
AD
10894@deffn {Directive} %precedence
10895Bison declaration to assign precedence to token(s), but no associativity
10896@xref{Precedence Decl, ,Operator Precedence}.
10897@end deffn
10898
18b519c0 10899@deffn {Directive} %pure-parser
67501061 10900Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10901for which Bison is more careful to warn about unreasonable usage.
18b519c0 10902@end deffn
bfa74976 10903
b50d2359 10904@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10905Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10906Require a Version of Bison}.
b50d2359
AD
10907@end deffn
10908
18b519c0 10909@deffn {Directive} %right
d78f0ac9 10910Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10911@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10912@end deffn
bfa74976 10913
e6e704dc
JD
10914@deffn {Directive} %skeleton
10915Specify the skeleton to use; usually for development.
10916@xref{Decl Summary}.
10917@end deffn
10918
18b519c0 10919@deffn {Directive} %start
704a47c4
AD
10920Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10921Start-Symbol}.
18b519c0 10922@end deffn
bfa74976 10923
18b519c0 10924@deffn {Directive} %token
bfa74976
RS
10925Bison declaration to declare token(s) without specifying precedence.
10926@xref{Token Decl, ,Token Type Names}.
18b519c0 10927@end deffn
bfa74976 10928
18b519c0 10929@deffn {Directive} %token-table
931c7513
RS
10930Bison declaration to include a token name table in the parser file.
10931@xref{Decl Summary}.
18b519c0 10932@end deffn
931c7513 10933
18b519c0 10934@deffn {Directive} %type
704a47c4
AD
10935Bison declaration to declare nonterminals. @xref{Type Decl,
10936,Nonterminal Symbols}.
18b519c0 10937@end deffn
bfa74976 10938
dd8d9022
AD
10939@deffn {Symbol} $undefined
10940The predefined token onto which all undefined values returned by
10941@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10942@code{error}.
10943@end deffn
10944
18b519c0 10945@deffn {Directive} %union
bfa74976
RS
10946Bison declaration to specify several possible data types for semantic
10947values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10948@end deffn
bfa74976 10949
dd8d9022
AD
10950@deffn {Macro} YYABORT
10951Macro to pretend that an unrecoverable syntax error has occurred, by
10952making @code{yyparse} return 1 immediately. The error reporting
10953function @code{yyerror} is not called. @xref{Parser Function, ,The
10954Parser Function @code{yyparse}}.
8405b70c
PB
10955
10956For Java parsers, this functionality is invoked using @code{return YYABORT;}
10957instead.
dd8d9022 10958@end deffn
3ded9a63 10959
dd8d9022
AD
10960@deffn {Macro} YYACCEPT
10961Macro to pretend that a complete utterance of the language has been
10962read, by making @code{yyparse} return 0 immediately.
10963@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10964
10965For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10966instead.
dd8d9022 10967@end deffn
bfa74976 10968
dd8d9022 10969@deffn {Macro} YYBACKUP
742e4900 10970Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10971token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10972@end deffn
bfa74976 10973
dd8d9022 10974@deffn {Variable} yychar
32c29292 10975External integer variable that contains the integer value of the
742e4900 10976lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10977@code{yyparse}.) Error-recovery rule actions may examine this variable.
10978@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10979@end deffn
bfa74976 10980
dd8d9022
AD
10981@deffn {Variable} yyclearin
10982Macro used in error-recovery rule actions. It clears the previous
742e4900 10983lookahead token. @xref{Error Recovery}.
18b519c0 10984@end deffn
bfa74976 10985
dd8d9022
AD
10986@deffn {Macro} YYDEBUG
10987Macro to define to equip the parser with tracing code. @xref{Tracing,
10988,Tracing Your Parser}.
18b519c0 10989@end deffn
bfa74976 10990
dd8d9022
AD
10991@deffn {Variable} yydebug
10992External integer variable set to zero by default. If @code{yydebug}
10993is given a nonzero value, the parser will output information on input
10994symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10995@end deffn
bfa74976 10996
dd8d9022
AD
10997@deffn {Macro} yyerrok
10998Macro to cause parser to recover immediately to its normal mode
10999after a syntax error. @xref{Error Recovery}.
11000@end deffn
11001
11002@deffn {Macro} YYERROR
11003Macro to pretend that a syntax error has just been detected: call
11004@code{yyerror} and then perform normal error recovery if possible
11005(@pxref{Error Recovery}), or (if recovery is impossible) make
11006@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11007
11008For Java parsers, this functionality is invoked using @code{return YYERROR;}
11009instead.
dd8d9022
AD
11010@end deffn
11011
11012@deffn {Function} yyerror
11013User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11014@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11015@end deffn
11016
11017@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11018An obsolete macro used in the @file{yacc.c} skeleton, that you define
11019with @code{#define} in the prologue to request verbose, specific error
11020message strings when @code{yyerror} is called. It doesn't matter what
11021definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11022it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11023(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11024@end deffn
11025
11026@deffn {Macro} YYINITDEPTH
11027Macro for specifying the initial size of the parser stack.
1a059451 11028@xref{Memory Management}.
dd8d9022
AD
11029@end deffn
11030
11031@deffn {Function} yylex
11032User-supplied lexical analyzer function, called with no arguments to get
11033the next token. @xref{Lexical, ,The Lexical Analyzer Function
11034@code{yylex}}.
11035@end deffn
11036
11037@deffn {Macro} YYLEX_PARAM
11038An obsolete macro for specifying an extra argument (or list of extra
32c29292 11039arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11040macro is deprecated, and is supported only for Yacc like parsers.
11041@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11042@end deffn
11043
11044@deffn {Variable} yylloc
11045External variable in which @code{yylex} should place the line and column
11046numbers associated with a token. (In a pure parser, it is a local
11047variable within @code{yyparse}, and its address is passed to
32c29292
JD
11048@code{yylex}.)
11049You can ignore this variable if you don't use the @samp{@@} feature in the
11050grammar actions.
11051@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11052In semantic actions, it stores the location of the lookahead token.
32c29292 11053@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11054@end deffn
11055
11056@deffn {Type} YYLTYPE
11057Data type of @code{yylloc}; by default, a structure with four
11058members. @xref{Location Type, , Data Types of Locations}.
11059@end deffn
11060
11061@deffn {Variable} yylval
11062External variable in which @code{yylex} should place the semantic
11063value associated with a token. (In a pure parser, it is a local
11064variable within @code{yyparse}, and its address is passed to
32c29292
JD
11065@code{yylex}.)
11066@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11067In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11068@xref{Actions, ,Actions}.
dd8d9022
AD
11069@end deffn
11070
11071@deffn {Macro} YYMAXDEPTH
1a059451
PE
11072Macro for specifying the maximum size of the parser stack. @xref{Memory
11073Management}.
dd8d9022
AD
11074@end deffn
11075
11076@deffn {Variable} yynerrs
8a2800e7 11077Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11078(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11079pure push parser, it is a member of yypstate.)
dd8d9022
AD
11080@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11081@end deffn
11082
11083@deffn {Function} yyparse
11084The parser function produced by Bison; call this function to start
11085parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11086@end deffn
11087
9987d1b3 11088@deffn {Function} yypstate_delete
f4101aa6 11089The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11090call this function to delete the memory associated with a parser.
f4101aa6 11091@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11092@code{yypstate_delete}}.
59da312b
JD
11093(The current push parsing interface is experimental and may evolve.
11094More user feedback will help to stabilize it.)
9987d1b3
JD
11095@end deffn
11096
11097@deffn {Function} yypstate_new
f4101aa6 11098The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11099call this function to create a new parser.
f4101aa6 11100@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11101@code{yypstate_new}}.
59da312b
JD
11102(The current push parsing interface is experimental and may evolve.
11103More user feedback will help to stabilize it.)
9987d1b3
JD
11104@end deffn
11105
11106@deffn {Function} yypull_parse
f4101aa6
AD
11107The parser function produced by Bison in push mode; call this function to
11108parse the rest of the input stream.
11109@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11110@code{yypull_parse}}.
59da312b
JD
11111(The current push parsing interface is experimental and may evolve.
11112More user feedback will help to stabilize it.)
9987d1b3
JD
11113@end deffn
11114
11115@deffn {Function} yypush_parse
f4101aa6
AD
11116The parser function produced by Bison in push mode; call this function to
11117parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11118@code{yypush_parse}}.
59da312b
JD
11119(The current push parsing interface is experimental and may evolve.
11120More user feedback will help to stabilize it.)
9987d1b3
JD
11121@end deffn
11122
dd8d9022
AD
11123@deffn {Macro} YYPARSE_PARAM
11124An obsolete macro for specifying the name of a parameter that
11125@code{yyparse} should accept. The use of this macro is deprecated, and
11126is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11127Conventions for Pure Parsers}.
11128@end deffn
11129
11130@deffn {Macro} YYRECOVERING
02103984
PE
11131The expression @code{YYRECOVERING ()} yields 1 when the parser
11132is recovering from a syntax error, and 0 otherwise.
11133@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11134@end deffn
11135
11136@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11137Macro used to control the use of @code{alloca} when the
11138deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11139the parser will use @code{malloc} to extend its stacks. If defined to
111401, the parser will use @code{alloca}. Values other than 0 and 1 are
11141reserved for future Bison extensions. If not defined,
11142@code{YYSTACK_USE_ALLOCA} defaults to 0.
11143
55289366 11144In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11145limited stack and with unreliable stack-overflow checking, you should
11146set @code{YYMAXDEPTH} to a value that cannot possibly result in
11147unchecked stack overflow on any of your target hosts when
11148@code{alloca} is called. You can inspect the code that Bison
11149generates in order to determine the proper numeric values. This will
11150require some expertise in low-level implementation details.
dd8d9022
AD
11151@end deffn
11152
11153@deffn {Type} YYSTYPE
11154Data type of semantic values; @code{int} by default.
11155@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11156@end deffn
bfa74976 11157
342b8b6e 11158@node Glossary
bfa74976
RS
11159@appendix Glossary
11160@cindex glossary
11161
11162@table @asis
eb45ef3b
JD
11163@item Accepting State
11164A state whose only action is the accept action.
11165The accepting state is thus a consistent state.
11166@xref{Understanding,,}.
11167
c827f760
PE
11168@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
11169Formal method of specifying context-free grammars originally proposed
11170by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11171committee document contributing to what became the Algol 60 report.
11172@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11173
eb45ef3b
JD
11174@item Consistent State
11175A state containing only one possible action.
5bab9d08 11176@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11177
bfa74976
RS
11178@item Context-free grammars
11179Grammars specified as rules that can be applied regardless of context.
11180Thus, if there is a rule which says that an integer can be used as an
11181expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11182permitted. @xref{Language and Grammar, ,Languages and Context-Free
11183Grammars}.
bfa74976 11184
110ef36a
JD
11185@item Default Reduction
11186The reduction that a parser should perform if the current parser state
eb45ef3b 11187contains no other action for the lookahead token.
110ef36a
JD
11188In permitted parser states, Bison declares the reduction with the
11189largest lookahead set to be the default reduction and removes that
11190lookahead set.
5bab9d08 11191@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11192
bfa74976
RS
11193@item Dynamic allocation
11194Allocation of memory that occurs during execution, rather than at
11195compile time or on entry to a function.
11196
11197@item Empty string
11198Analogous to the empty set in set theory, the empty string is a
11199character string of length zero.
11200
11201@item Finite-state stack machine
11202A ``machine'' that has discrete states in which it is said to exist at
11203each instant in time. As input to the machine is processed, the
11204machine moves from state to state as specified by the logic of the
11205machine. In the case of the parser, the input is the language being
11206parsed, and the states correspond to various stages in the grammar
c827f760 11207rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11208
c827f760 11209@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 11210A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
11211that are not @acronym{LR}(1). It resolves situations that Bison's
11212deterministic parsing
676385e2
PH
11213algorithm cannot by effectively splitting off multiple parsers, trying all
11214possible parsers, and discarding those that fail in the light of additional
c827f760
PE
11215right context. @xref{Generalized LR Parsing, ,Generalized
11216@acronym{LR} Parsing}.
676385e2 11217
bfa74976
RS
11218@item Grouping
11219A language construct that is (in general) grammatically divisible;
c827f760 11220for example, `expression' or `declaration' in C@.
bfa74976
RS
11221@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11222
eb45ef3b
JD
11223@item @acronym{IELR}(1)
11224A minimal @acronym{LR}(1) parser table generation algorithm.
11225That is, given any context-free grammar, @acronym{IELR}(1) generates
11226parser tables with the full language recognition power of canonical
11227@acronym{LR}(1) but with nearly the same number of parser states as
11228@acronym{LALR}(1).
11229This reduction in parser states is often an order of magnitude.
11230More importantly, because canonical @acronym{LR}(1)'s extra parser
11231states may contain duplicate conflicts in the case of
11232non-@acronym{LR}(1) grammars, the number of conflicts for
11233@acronym{IELR}(1) is often an order of magnitude less as well.
11234This can significantly reduce the complexity of developing of a grammar.
11235@xref{Decl Summary,,lr.type}.
11236
bfa74976
RS
11237@item Infix operator
11238An arithmetic operator that is placed between the operands on which it
11239performs some operation.
11240
11241@item Input stream
11242A continuous flow of data between devices or programs.
11243
11244@item Language construct
11245One of the typical usage schemas of the language. For example, one of
11246the constructs of the C language is the @code{if} statement.
11247@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11248
11249@item Left associativity
11250Operators having left associativity are analyzed from left to right:
11251@samp{a+b+c} first computes @samp{a+b} and then combines with
11252@samp{c}. @xref{Precedence, ,Operator Precedence}.
11253
11254@item Left recursion
89cab50d
AD
11255A rule whose result symbol is also its first component symbol; for
11256example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11257Rules}.
bfa74976
RS
11258
11259@item Left-to-right parsing
11260Parsing a sentence of a language by analyzing it token by token from
c827f760 11261left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11262
11263@item Lexical analyzer (scanner)
11264A function that reads an input stream and returns tokens one by one.
11265@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11266
11267@item Lexical tie-in
11268A flag, set by actions in the grammar rules, which alters the way
11269tokens are parsed. @xref{Lexical Tie-ins}.
11270
931c7513 11271@item Literal string token
14ded682 11272A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11273
742e4900
JD
11274@item Lookahead token
11275A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11276Tokens}.
bfa74976 11277
c827f760 11278@item @acronym{LALR}(1)
bfa74976 11279The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
11280generators) can handle by default; a subset of @acronym{LR}(1).
11281@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11282
c827f760 11283@item @acronym{LR}(1)
bfa74976 11284The class of context-free grammars in which at most one token of
742e4900 11285lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11286
11287@item Nonterminal symbol
11288A grammar symbol standing for a grammatical construct that can
11289be expressed through rules in terms of smaller constructs; in other
11290words, a construct that is not a token. @xref{Symbols}.
11291
bfa74976
RS
11292@item Parser
11293A function that recognizes valid sentences of a language by analyzing
11294the syntax structure of a set of tokens passed to it from a lexical
11295analyzer.
11296
11297@item Postfix operator
11298An arithmetic operator that is placed after the operands upon which it
11299performs some operation.
11300
11301@item Reduction
11302Replacing a string of nonterminals and/or terminals with a single
89cab50d 11303nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11304Parser Algorithm}.
bfa74976
RS
11305
11306@item Reentrant
11307A reentrant subprogram is a subprogram which can be in invoked any
11308number of times in parallel, without interference between the various
11309invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11310
11311@item Reverse polish notation
11312A language in which all operators are postfix operators.
11313
11314@item Right recursion
89cab50d
AD
11315A rule whose result symbol is also its last component symbol; for
11316example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11317Rules}.
bfa74976
RS
11318
11319@item Semantics
11320In computer languages, the semantics are specified by the actions
11321taken for each instance of the language, i.e., the meaning of
11322each statement. @xref{Semantics, ,Defining Language Semantics}.
11323
11324@item Shift
11325A parser is said to shift when it makes the choice of analyzing
11326further input from the stream rather than reducing immediately some
c827f760 11327already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11328
11329@item Single-character literal
11330A single character that is recognized and interpreted as is.
11331@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11332
11333@item Start symbol
11334The nonterminal symbol that stands for a complete valid utterance in
11335the language being parsed. The start symbol is usually listed as the
13863333 11336first nonterminal symbol in a language specification.
bfa74976
RS
11337@xref{Start Decl, ,The Start-Symbol}.
11338
11339@item Symbol table
11340A data structure where symbol names and associated data are stored
11341during parsing to allow for recognition and use of existing
11342information in repeated uses of a symbol. @xref{Multi-function Calc}.
11343
6e649e65
PE
11344@item Syntax error
11345An error encountered during parsing of an input stream due to invalid
11346syntax. @xref{Error Recovery}.
11347
bfa74976
RS
11348@item Token
11349A basic, grammatically indivisible unit of a language. The symbol
11350that describes a token in the grammar is a terminal symbol.
11351The input of the Bison parser is a stream of tokens which comes from
11352the lexical analyzer. @xref{Symbols}.
11353
11354@item Terminal symbol
89cab50d
AD
11355A grammar symbol that has no rules in the grammar and therefore is
11356grammatically indivisible. The piece of text it represents is a token.
11357@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11358@end table
11359
342b8b6e 11360@node Copying This Manual
f2b5126e 11361@appendix Copying This Manual
f2b5126e
PB
11362@include fdl.texi
11363
342b8b6e 11364@node Index
bfa74976
RS
11365@unnumbered Index
11366
11367@printindex cp
11368
bfa74976 11369@bye
a06ea4aa 11370
6b5a0de9
AD
11371@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11372@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11373@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11374@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11375@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11376@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11377@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11378@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11379@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11380@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11381@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11382@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11383@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11384@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11385@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11386@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11387@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11388@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11389@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11390@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11391@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11392@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11393@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11394@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11395@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11396@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11397@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11398@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11399@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
11400@c LocalWords: subexpressions declarator nondeferred config libintl postfix
11401@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11402@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11403@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11404@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11405@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11406@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11407@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11408@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11409@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11410@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11411@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11412@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11413@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11414@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11415@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11416@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11417@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11418@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11419@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11420@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
1625df5b 11421@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
6b5a0de9 11422@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11423
11424@c Local Variables:
11425@c ispell-dictionary: "american"
11426@c fill-column: 76
11427@c End: