]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Allow specification of semantic predicates.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
7d424de1
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
804e83b2 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 140* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f5f419de 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
d013372c 210* Named References:: Using named references in actions.
bfa74976 211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976
RS
231* Decl Summary:: Table of all Bison declarations.
232
233Parser C-Language Interface
234
f5f419de
DJ
235* Parser Function:: How to call @code{yyparse} and what it returns.
236* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
237* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
238* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
239* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
240* Lexical:: You must supply a function @code{yylex}
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244* Internationalization:: How to let the parser speak in the user's
245 native language.
bfa74976
RS
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
252* Token Locations:: How @code{yylex} must return the text location
253 (line number, etc.) of the token, if the
254 actions want that.
255* Pure Calling:: How the calling convention differs in a pure parser
256 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 257
13863333 258The Bison Parser Algorithm
bfa74976 259
742e4900 260* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
273* Using Precedence:: How to specify precedence and associativity.
274* Precedence Only:: How to specify precedence only.
bfa74976
RS
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f5f419de
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f5f419de
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
337* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f5f419de 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
9dc3ee6d
JD
357annotated context-free grammar into a deterministic @acronym{LR} or
358generalized @acronym{LR} (@acronym{GLR}) parser employing
359@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
360parser tables.
eb45ef3b
JD
361Once you are proficient with Bison, you can use it to develop a wide
362range of language parsers, from those used in simple desk calculators to
363complex programming languages.
bfa74976
RS
364
365Bison is upward compatible with Yacc: all properly-written Yacc grammars
366ought to work with Bison with no change. Anyone familiar with Yacc
367should be able to use Bison with little trouble. You need to be fluent in
1e137b71 368C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
369
370We begin with tutorial chapters that explain the basic concepts of using
371Bison and show three explained examples, each building on the last. If you
372don't know Bison or Yacc, start by reading these chapters. Reference
373chapters follow which describe specific aspects of Bison in detail.
374
931c7513
RS
375Bison was written primarily by Robert Corbett; Richard Stallman made it
376Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 377multi-character string literals and other features.
931c7513 378
df1af54c 379This edition corresponds to version @value{VERSION} of Bison.
bfa74976 380
342b8b6e 381@node Conditions
bfa74976
RS
382@unnumbered Conditions for Using Bison
383
193d7c70
PE
384The distribution terms for Bison-generated parsers permit using the
385parsers in nonfree programs. Before Bison version 2.2, these extra
386permissions applied only when Bison was generating @acronym{LALR}(1)
387parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 388parsers could be used only in programs that were free software.
a31239f1 389
c827f760
PE
390The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
391compiler, have never
9ecbd125 392had such a requirement. They could always be used for nonfree
a31239f1
RS
393software. The reason Bison was different was not due to a special
394policy decision; it resulted from applying the usual General Public
395License to all of the Bison source code.
396
397The output of the Bison utility---the Bison parser file---contains a
398verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
399parser's implementation. (The actions from your grammar are inserted
400into this implementation at one point, but most of the rest of the
401implementation is not changed.) When we applied the @acronym{GPL}
402terms to the skeleton code for the parser's implementation,
a31239f1
RS
403the effect was to restrict the use of Bison output to free software.
404
405We didn't change the terms because of sympathy for people who want to
406make software proprietary. @strong{Software should be free.} But we
407concluded that limiting Bison's use to free software was doing little to
408encourage people to make other software free. So we decided to make the
409practical conditions for using Bison match the practical conditions for
c827f760 410using the other @acronym{GNU} tools.
bfa74976 411
193d7c70
PE
412This exception applies when Bison is generating code for a parser.
413You can tell whether the exception applies to a Bison output file by
414inspecting the file for text beginning with ``As a special
415exception@dots{}''. The text spells out the exact terms of the
416exception.
262aa8dd 417
f16b0819
PE
418@node Copying
419@unnumbered GNU GENERAL PUBLIC LICENSE
420@include gpl-3.0.texi
bfa74976 421
342b8b6e 422@node Concepts
bfa74976
RS
423@chapter The Concepts of Bison
424
425This chapter introduces many of the basic concepts without which the
426details of Bison will not make sense. If you do not already know how to
427use Bison or Yacc, we suggest you start by reading this chapter carefully.
428
429@menu
f5f419de
DJ
430* Language and Grammar:: Languages and context-free grammars,
431 as mathematical ideas.
432* Grammar in Bison:: How we represent grammars for Bison's sake.
433* Semantic Values:: Each token or syntactic grouping can have
434 a semantic value (the value of an integer,
435 the name of an identifier, etc.).
436* Semantic Actions:: Each rule can have an action containing C code.
437* GLR Parsers:: Writing parsers for general context-free languages.
438* Locations Overview:: Tracking Locations.
439* Bison Parser:: What are Bison's input and output,
440 how is the output used?
441* Stages:: Stages in writing and running Bison grammars.
442* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
443@end menu
444
342b8b6e 445@node Language and Grammar
bfa74976
RS
446@section Languages and Context-Free Grammars
447
bfa74976
RS
448@cindex context-free grammar
449@cindex grammar, context-free
450In order for Bison to parse a language, it must be described by a
451@dfn{context-free grammar}. This means that you specify one or more
452@dfn{syntactic groupings} and give rules for constructing them from their
453parts. For example, in the C language, one kind of grouping is called an
454`expression'. One rule for making an expression might be, ``An expression
455can be made of a minus sign and another expression''. Another would be,
456``An expression can be an integer''. As you can see, rules are often
457recursive, but there must be at least one rule which leads out of the
458recursion.
459
c827f760 460@cindex @acronym{BNF}
bfa74976
RS
461@cindex Backus-Naur form
462The most common formal system for presenting such rules for humans to read
c827f760
PE
463is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
464order to specify the language Algol 60. Any grammar expressed in
465@acronym{BNF} is a context-free grammar. The input to Bison is
466essentially machine-readable @acronym{BNF}.
bfa74976 467
c827f760 468@cindex @acronym{LALR}(1) grammars
eb45ef3b 469@cindex @acronym{IELR}(1) grammars
c827f760 470@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
471There are various important subclasses of context-free grammars.
472Although it can handle almost all context-free grammars, Bison is
473optimized for what are called @acronym{LR}(1) grammars.
474In brief, in these grammars, it must be possible to tell how to parse
475any portion of an input string with just a single token of lookahead.
476For historical reasons, Bison by default is limited by the additional
477restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
478@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
479more information on this.
eb45ef3b
JD
480To escape these additional restrictions, you can request
481@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
482@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 483
c827f760
PE
484@cindex @acronym{GLR} parsing
485@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 486@cindex ambiguous grammars
9d9b8b70 487@cindex nondeterministic parsing
9501dc6e 488
eb45ef3b 489Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
490roughly that the next grammar rule to apply at any point in the input is
491uniquely determined by the preceding input and a fixed, finite portion
742e4900 492(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 493grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 494apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 495grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 496lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
497With the proper declarations, Bison is also able to parse these more
498general context-free grammars, using a technique known as @acronym{GLR}
499parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
500are able to handle any context-free grammar for which the number of
501possible parses of any given string is finite.
676385e2 502
bfa74976
RS
503@cindex symbols (abstract)
504@cindex token
505@cindex syntactic grouping
506@cindex grouping, syntactic
9501dc6e
AD
507In the formal grammatical rules for a language, each kind of syntactic
508unit or grouping is named by a @dfn{symbol}. Those which are built by
509grouping smaller constructs according to grammatical rules are called
bfa74976
RS
510@dfn{nonterminal symbols}; those which can't be subdivided are called
511@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
512corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 513corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
514
515We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
516nonterminal, mean. The tokens of C are identifiers, constants (numeric
517and string), and the various keywords, arithmetic operators and
518punctuation marks. So the terminal symbols of a grammar for C include
519`identifier', `number', `string', plus one symbol for each keyword,
520operator or punctuation mark: `if', `return', `const', `static', `int',
521`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
522(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
523lexicography, not grammar.)
524
525Here is a simple C function subdivided into tokens:
526
9edcd895
AD
527@ifinfo
528@example
529int /* @r{keyword `int'} */
14d4662b 530square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
531 @r{identifier, close-paren} */
532@{ /* @r{open-brace} */
aa08666d
AD
533 return x * x; /* @r{keyword `return', identifier, asterisk,}
534 @r{identifier, semicolon} */
9edcd895
AD
535@} /* @r{close-brace} */
536@end example
537@end ifinfo
538@ifnotinfo
bfa74976
RS
539@example
540int /* @r{keyword `int'} */
14d4662b 541square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 542@{ /* @r{open-brace} */
9edcd895 543 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
544@} /* @r{close-brace} */
545@end example
9edcd895 546@end ifnotinfo
bfa74976
RS
547
548The syntactic groupings of C include the expression, the statement, the
549declaration, and the function definition. These are represented in the
550grammar of C by nonterminal symbols `expression', `statement',
551`declaration' and `function definition'. The full grammar uses dozens of
552additional language constructs, each with its own nonterminal symbol, in
553order to express the meanings of these four. The example above is a
554function definition; it contains one declaration, and one statement. In
555the statement, each @samp{x} is an expression and so is @samp{x * x}.
556
557Each nonterminal symbol must have grammatical rules showing how it is made
558out of simpler constructs. For example, one kind of C statement is the
559@code{return} statement; this would be described with a grammar rule which
560reads informally as follows:
561
562@quotation
563A `statement' can be made of a `return' keyword, an `expression' and a
564`semicolon'.
565@end quotation
566
567@noindent
568There would be many other rules for `statement', one for each kind of
569statement in C.
570
571@cindex start symbol
572One nonterminal symbol must be distinguished as the special one which
573defines a complete utterance in the language. It is called the @dfn{start
574symbol}. In a compiler, this means a complete input program. In the C
575language, the nonterminal symbol `sequence of definitions and declarations'
576plays this role.
577
578For example, @samp{1 + 2} is a valid C expression---a valid part of a C
579program---but it is not valid as an @emph{entire} C program. In the
580context-free grammar of C, this follows from the fact that `expression' is
581not the start symbol.
582
583The Bison parser reads a sequence of tokens as its input, and groups the
584tokens using the grammar rules. If the input is valid, the end result is
585that the entire token sequence reduces to a single grouping whose symbol is
586the grammar's start symbol. If we use a grammar for C, the entire input
587must be a `sequence of definitions and declarations'. If not, the parser
588reports a syntax error.
589
342b8b6e 590@node Grammar in Bison
bfa74976
RS
591@section From Formal Rules to Bison Input
592@cindex Bison grammar
593@cindex grammar, Bison
594@cindex formal grammar
595
596A formal grammar is a mathematical construct. To define the language
597for Bison, you must write a file expressing the grammar in Bison syntax:
598a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
599
600A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 601as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
602in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
603
604The Bison representation for a terminal symbol is also called a @dfn{token
605type}. Token types as well can be represented as C-like identifiers. By
606convention, these identifiers should be upper case to distinguish them from
607nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
608@code{RETURN}. A terminal symbol that stands for a particular keyword in
609the language should be named after that keyword converted to upper case.
610The terminal symbol @code{error} is reserved for error recovery.
931c7513 611@xref{Symbols}.
bfa74976
RS
612
613A terminal symbol can also be represented as a character literal, just like
614a C character constant. You should do this whenever a token is just a
615single character (parenthesis, plus-sign, etc.): use that same character in
616a literal as the terminal symbol for that token.
617
931c7513
RS
618A third way to represent a terminal symbol is with a C string constant
619containing several characters. @xref{Symbols}, for more information.
620
bfa74976
RS
621The grammar rules also have an expression in Bison syntax. For example,
622here is the Bison rule for a C @code{return} statement. The semicolon in
623quotes is a literal character token, representing part of the C syntax for
624the statement; the naked semicolon, and the colon, are Bison punctuation
625used in every rule.
626
627@example
628stmt: RETURN expr ';'
629 ;
630@end example
631
632@noindent
633@xref{Rules, ,Syntax of Grammar Rules}.
634
342b8b6e 635@node Semantic Values
bfa74976
RS
636@section Semantic Values
637@cindex semantic value
638@cindex value, semantic
639
640A formal grammar selects tokens only by their classifications: for example,
641if a rule mentions the terminal symbol `integer constant', it means that
642@emph{any} integer constant is grammatically valid in that position. The
643precise value of the constant is irrelevant to how to parse the input: if
644@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 645grammatical.
bfa74976
RS
646
647But the precise value is very important for what the input means once it is
648parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6493989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
650has both a token type and a @dfn{semantic value}. @xref{Semantics,
651,Defining Language Semantics},
bfa74976
RS
652for details.
653
654The token type is a terminal symbol defined in the grammar, such as
655@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
656you need to know to decide where the token may validly appear and how to
657group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 658except their types.
bfa74976
RS
659
660The semantic value has all the rest of the information about the
661meaning of the token, such as the value of an integer, or the name of an
662identifier. (A token such as @code{','} which is just punctuation doesn't
663need to have any semantic value.)
664
665For example, an input token might be classified as token type
666@code{INTEGER} and have the semantic value 4. Another input token might
667have the same token type @code{INTEGER} but value 3989. When a grammar
668rule says that @code{INTEGER} is allowed, either of these tokens is
669acceptable because each is an @code{INTEGER}. When the parser accepts the
670token, it keeps track of the token's semantic value.
671
672Each grouping can also have a semantic value as well as its nonterminal
673symbol. For example, in a calculator, an expression typically has a
674semantic value that is a number. In a compiler for a programming
675language, an expression typically has a semantic value that is a tree
676structure describing the meaning of the expression.
677
342b8b6e 678@node Semantic Actions
bfa74976
RS
679@section Semantic Actions
680@cindex semantic actions
681@cindex actions, semantic
682
683In order to be useful, a program must do more than parse input; it must
684also produce some output based on the input. In a Bison grammar, a grammar
685rule can have an @dfn{action} made up of C statements. Each time the
686parser recognizes a match for that rule, the action is executed.
687@xref{Actions}.
13863333 688
bfa74976
RS
689Most of the time, the purpose of an action is to compute the semantic value
690of the whole construct from the semantic values of its parts. For example,
691suppose we have a rule which says an expression can be the sum of two
692expressions. When the parser recognizes such a sum, each of the
693subexpressions has a semantic value which describes how it was built up.
694The action for this rule should create a similar sort of value for the
695newly recognized larger expression.
696
697For example, here is a rule that says an expression can be the sum of
698two subexpressions:
699
700@example
701expr: expr '+' expr @{ $$ = $1 + $3; @}
702 ;
703@end example
704
705@noindent
706The action says how to produce the semantic value of the sum expression
707from the values of the two subexpressions.
708
676385e2 709@node GLR Parsers
c827f760
PE
710@section Writing @acronym{GLR} Parsers
711@cindex @acronym{GLR} parsing
712@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
713@findex %glr-parser
714@cindex conflicts
715@cindex shift/reduce conflicts
fa7e68c3 716@cindex reduce/reduce conflicts
676385e2 717
eb45ef3b
JD
718In some grammars, Bison's deterministic
719@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
720certain grammar rule at a given point. That is, it may not be able to
721decide (on the basis of the input read so far) which of two possible
722reductions (applications of a grammar rule) applies, or whether to apply
723a reduction or read more of the input and apply a reduction later in the
724input. These are known respectively as @dfn{reduce/reduce} conflicts
725(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
726(@pxref{Shift/Reduce}).
727
eb45ef3b 728To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 729more general parsing algorithm is sometimes necessary. If you include
676385e2 730@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 731(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
732(@acronym{GLR}) parser. These parsers handle Bison grammars that
733contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 734declarations) identically to deterministic parsers. However, when
9501dc6e
AD
735faced with unresolved shift/reduce and reduce/reduce conflicts,
736@acronym{GLR} parsers use the simple expedient of doing both,
737effectively cloning the parser to follow both possibilities. Each of
738the resulting parsers can again split, so that at any given time, there
739can be any number of possible parses being explored. The parsers
676385e2
PH
740proceed in lockstep; that is, all of them consume (shift) a given input
741symbol before any of them proceed to the next. Each of the cloned
742parsers eventually meets one of two possible fates: either it runs into
743a parsing error, in which case it simply vanishes, or it merges with
744another parser, because the two of them have reduced the input to an
745identical set of symbols.
746
747During the time that there are multiple parsers, semantic actions are
748recorded, but not performed. When a parser disappears, its recorded
749semantic actions disappear as well, and are never performed. When a
750reduction makes two parsers identical, causing them to merge, Bison
751records both sets of semantic actions. Whenever the last two parsers
752merge, reverting to the single-parser case, Bison resolves all the
753outstanding actions either by precedences given to the grammar rules
754involved, or by performing both actions, and then calling a designated
755user-defined function on the resulting values to produce an arbitrary
756merged result.
757
fa7e68c3 758@menu
f5f419de
DJ
759* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
760* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
761* GLR Semantic Actions:: Deferred semantic actions have special concerns.
ca2a6d15 762* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 763* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
764@end menu
765
766@node Simple GLR Parsers
767@subsection Using @acronym{GLR} on Unambiguous Grammars
768@cindex @acronym{GLR} parsing, unambiguous grammars
769@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
770@findex %glr-parser
771@findex %expect-rr
772@cindex conflicts
773@cindex reduce/reduce conflicts
774@cindex shift/reduce conflicts
775
776In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
777to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
778Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
779
780Consider a problem that
781arises in the declaration of enumerated and subrange types in the
782programming language Pascal. Here are some examples:
783
784@example
785type subrange = lo .. hi;
786type enum = (a, b, c);
787@end example
788
789@noindent
790The original language standard allows only numeric
791literals and constant identifiers for the subrange bounds (@samp{lo}
792and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79310206) and many other
794Pascal implementations allow arbitrary expressions there. This gives
795rise to the following situation, containing a superfluous pair of
796parentheses:
797
798@example
799type subrange = (a) .. b;
800@end example
801
802@noindent
803Compare this to the following declaration of an enumerated
804type with only one value:
805
806@example
807type enum = (a);
808@end example
809
810@noindent
811(These declarations are contrived, but they are syntactically
812valid, and more-complicated cases can come up in practical programs.)
813
814These two declarations look identical until the @samp{..} token.
eb45ef3b 815With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
816possible to decide between the two forms when the identifier
817@samp{a} is parsed. It is, however, desirable
818for a parser to decide this, since in the latter case
819@samp{a} must become a new identifier to represent the enumeration
820value, while in the former case @samp{a} must be evaluated with its
821current meaning, which may be a constant or even a function call.
822
823You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
824to be resolved later, but this typically requires substantial
825contortions in both semantic actions and large parts of the
826grammar, where the parentheses are nested in the recursive rules for
827expressions.
828
829You might think of using the lexer to distinguish between the two
830forms by returning different tokens for currently defined and
831undefined identifiers. But if these declarations occur in a local
832scope, and @samp{a} is defined in an outer scope, then both forms
833are possible---either locally redefining @samp{a}, or using the
834value of @samp{a} from the outer scope. So this approach cannot
835work.
836
e757bb10 837A simple solution to this problem is to declare the parser to
fa7e68c3
PE
838use the @acronym{GLR} algorithm.
839When the @acronym{GLR} parser reaches the critical state, it
840merely splits into two branches and pursues both syntax rules
841simultaneously. Sooner or later, one of them runs into a parsing
842error. If there is a @samp{..} token before the next
843@samp{;}, the rule for enumerated types fails since it cannot
844accept @samp{..} anywhere; otherwise, the subrange type rule
845fails since it requires a @samp{..} token. So one of the branches
846fails silently, and the other one continues normally, performing
847all the intermediate actions that were postponed during the split.
848
849If the input is syntactically incorrect, both branches fail and the parser
850reports a syntax error as usual.
851
852The effect of all this is that the parser seems to ``guess'' the
853correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
854lookahead than the underlying @acronym{LR}(1) algorithm actually allows
855for. In this example, @acronym{LR}(2) would suffice, but also some cases
856that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
857
858In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
859and the current Bison parser even takes exponential time and space
860for some grammars. In practice, this rarely happens, and for many
861grammars it is possible to prove that it cannot happen.
862The present example contains only one conflict between two
863rules, and the type-declaration context containing the conflict
864cannot be nested. So the number of
865branches that can exist at any time is limited by the constant 2,
866and the parsing time is still linear.
867
868Here is a Bison grammar corresponding to the example above. It
869parses a vastly simplified form of Pascal type declarations.
870
871@example
872%token TYPE DOTDOT ID
873
874@group
875%left '+' '-'
876%left '*' '/'
877@end group
878
879%%
880
881@group
882type_decl : TYPE ID '=' type ';'
883 ;
884@end group
885
886@group
887type : '(' id_list ')'
888 | expr DOTDOT expr
889 ;
890@end group
891
892@group
893id_list : ID
894 | id_list ',' ID
895 ;
896@end group
897
898@group
899expr : '(' expr ')'
900 | expr '+' expr
901 | expr '-' expr
902 | expr '*' expr
903 | expr '/' expr
904 | ID
905 ;
906@end group
907@end example
908
eb45ef3b 909When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
910about one reduce/reduce conflict. In the conflicting situation the
911parser chooses one of the alternatives, arbitrarily the one
912declared first. Therefore the following correct input is not
913recognized:
914
915@example
916type t = (a) .. b;
917@end example
918
919The parser can be turned into a @acronym{GLR} parser, while also telling Bison
920to be silent about the one known reduce/reduce conflict, by
e757bb10 921adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
922@samp{%%}):
923
924@example
925%glr-parser
926%expect-rr 1
927@end example
928
929@noindent
930No change in the grammar itself is required. Now the
931parser recognizes all valid declarations, according to the
932limited syntax above, transparently. In fact, the user does not even
933notice when the parser splits.
934
f8e1c9e5
AD
935So here we have a case where we can use the benefits of @acronym{GLR},
936almost without disadvantages. Even in simple cases like this, however,
937there are at least two potential problems to beware. First, always
938analyze the conflicts reported by Bison to make sure that @acronym{GLR}
939splitting is only done where it is intended. A @acronym{GLR} parser
940splitting inadvertently may cause problems less obvious than an
eb45ef3b 941@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
942conflict. Second, consider interactions with the lexer (@pxref{Semantic
943Tokens}) with great care. Since a split parser consumes tokens without
944performing any actions during the split, the lexer cannot obtain
945information via parser actions. Some cases of lexer interactions can be
946eliminated by using @acronym{GLR} to shift the complications from the
947lexer to the parser. You must check the remaining cases for
948correctness.
949
950In our example, it would be safe for the lexer to return tokens based on
951their current meanings in some symbol table, because no new symbols are
952defined in the middle of a type declaration. Though it is possible for
953a parser to define the enumeration constants as they are parsed, before
954the type declaration is completed, it actually makes no difference since
955they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
956
957@node Merging GLR Parses
958@subsection Using @acronym{GLR} to Resolve Ambiguities
959@cindex @acronym{GLR} parsing, ambiguous grammars
960@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
961@findex %dprec
962@findex %merge
963@cindex conflicts
964@cindex reduce/reduce conflicts
965
2a8d363a 966Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
967
968@example
969%@{
38a92d50
PE
970 #include <stdio.h>
971 #define YYSTYPE char const *
972 int yylex (void);
973 void yyerror (char const *);
676385e2
PH
974%@}
975
976%token TYPENAME ID
977
978%right '='
979%left '+'
980
981%glr-parser
982
983%%
984
fae437e8 985prog :
676385e2
PH
986 | prog stmt @{ printf ("\n"); @}
987 ;
988
989stmt : expr ';' %dprec 1
990 | decl %dprec 2
991 ;
992
2a8d363a 993expr : ID @{ printf ("%s ", $$); @}
fae437e8 994 | TYPENAME '(' expr ')'
2a8d363a
AD
995 @{ printf ("%s <cast> ", $1); @}
996 | expr '+' expr @{ printf ("+ "); @}
997 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
998 ;
999
fae437e8 1000decl : TYPENAME declarator ';'
2a8d363a 1001 @{ printf ("%s <declare> ", $1); @}
676385e2 1002 | TYPENAME declarator '=' expr ';'
2a8d363a 1003 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1004 ;
1005
2a8d363a 1006declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1007 | '(' declarator ')'
1008 ;
1009@end example
1010
1011@noindent
1012This models a problematic part of the C++ grammar---the ambiguity between
1013certain declarations and statements. For example,
1014
1015@example
1016T (x) = y+z;
1017@end example
1018
1019@noindent
1020parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1021(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1022@samp{x} as an @code{ID}).
676385e2 1023Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1024@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1025time it encounters @code{x} in the example above. Since this is a
1026@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1027each choice of resolving the reduce/reduce conflict.
1028Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1029however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1030ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1031the other reduces @code{stmt : decl}, after which both parsers are in an
1032identical state: they've seen @samp{prog stmt} and have the same unprocessed
1033input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1034
1035At this point, the @acronym{GLR} parser requires a specification in the
1036grammar of how to choose between the competing parses.
1037In the example above, the two @code{%dprec}
e757bb10 1038declarations specify that Bison is to give precedence
fa7e68c3 1039to the parse that interprets the example as a
676385e2
PH
1040@code{decl}, which implies that @code{x} is a declarator.
1041The parser therefore prints
1042
1043@example
fae437e8 1044"x" y z + T <init-declare>
676385e2
PH
1045@end example
1046
fa7e68c3
PE
1047The @code{%dprec} declarations only come into play when more than one
1048parse survives. Consider a different input string for this parser:
676385e2
PH
1049
1050@example
1051T (x) + y;
1052@end example
1053
1054@noindent
e757bb10 1055This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1056construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1057Here, there is no ambiguity (this cannot be parsed as a declaration).
1058However, at the time the Bison parser encounters @code{x}, it does not
1059have enough information to resolve the reduce/reduce conflict (again,
1060between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1061case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1062into two, one assuming that @code{x} is an @code{expr}, and the other
1063assuming @code{x} is a @code{declarator}. The second of these parsers
1064then vanishes when it sees @code{+}, and the parser prints
1065
1066@example
fae437e8 1067x T <cast> y +
676385e2
PH
1068@end example
1069
1070Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1071the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1072actions of the two possible parsers, rather than choosing one over the
1073other. To do so, you could change the declaration of @code{stmt} as
1074follows:
1075
1076@example
1077stmt : expr ';' %merge <stmtMerge>
1078 | decl %merge <stmtMerge>
1079 ;
1080@end example
1081
1082@noindent
676385e2
PH
1083and define the @code{stmtMerge} function as:
1084
1085@example
38a92d50
PE
1086static YYSTYPE
1087stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1088@{
1089 printf ("<OR> ");
1090 return "";
1091@}
1092@end example
1093
1094@noindent
1095with an accompanying forward declaration
1096in the C declarations at the beginning of the file:
1097
1098@example
1099%@{
38a92d50 1100 #define YYSTYPE char const *
676385e2
PH
1101 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1102%@}
1103@end example
1104
1105@noindent
fa7e68c3
PE
1106With these declarations, the resulting parser parses the first example
1107as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1108
1109@example
fae437e8 1110"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1111@end example
1112
fa7e68c3 1113Bison requires that all of the
e757bb10 1114productions that participate in any particular merge have identical
fa7e68c3
PE
1115@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1116and the parser will report an error during any parse that results in
1117the offending merge.
9501dc6e 1118
32c29292
JD
1119@node GLR Semantic Actions
1120@subsection GLR Semantic Actions
1121
1122@cindex deferred semantic actions
1123By definition, a deferred semantic action is not performed at the same time as
1124the associated reduction.
1125This raises caveats for several Bison features you might use in a semantic
1126action in a @acronym{GLR} parser.
1127
1128@vindex yychar
1129@cindex @acronym{GLR} parsers and @code{yychar}
1130@vindex yylval
1131@cindex @acronym{GLR} parsers and @code{yylval}
1132@vindex yylloc
1133@cindex @acronym{GLR} parsers and @code{yylloc}
1134In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1135the lookahead token present at the time of the associated reduction.
32c29292
JD
1136After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1137you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1138lookahead token's semantic value and location, if any.
32c29292
JD
1139In a nondeferred semantic action, you can also modify any of these variables to
1140influence syntax analysis.
742e4900 1141@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1142
1143@findex yyclearin
1144@cindex @acronym{GLR} parsers and @code{yyclearin}
1145In a deferred semantic action, it's too late to influence syntax analysis.
1146In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1147shallow copies of the values they had at the time of the associated reduction.
1148For this reason alone, modifying them is dangerous.
1149Moreover, the result of modifying them is undefined and subject to change with
1150future versions of Bison.
1151For example, if a semantic action might be deferred, you should never write it
1152to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1153memory referenced by @code{yylval}.
1154
1155@findex YYERROR
1156@cindex @acronym{GLR} parsers and @code{YYERROR}
1157Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1158(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1159initiate error recovery.
1160During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1161the same as its effect in a deterministic parser.
32c29292
JD
1162In a deferred semantic action, its effect is undefined.
1163@c The effect is probably a syntax error at the split point.
1164
8710fc41
JD
1165Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1166describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1167
ca2a6d15
PH
1168@node Semantic Predicates
1169@subsection Controlling a Parse with Arbitrary Predicates
1170@findex %?
1171@cindex Semantic predicates in @acronym{GLR} parsers
1172
1173In addition to the @code{%dprec} and @code{%merge} directives,
1174@acronym{GLR} parsers
1175allow you to reject parses on the basis of arbitrary computations executed
1176in user code, without having Bison treat this rejection as an error
1177if there are alternative parses. (This feature is experimental and may
1178evolve. We welcome user feedback.) For example,
1179
1180@smallexample
1181widget :
1182 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1183 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1184 ;
1185@end smallexample
1186
1187@noindent
1188is one way to allow the same parser to handle two different syntaxes for
1189widgets. The clause preceded by @code{%?} is treated like an ordinary
1190action, except that its text is treated as an expression and is always
1191evaluated immediately (even when in nondeterministic mode). If the
1192expression yields 0 (false), the clause is treated as a syntax error,
1193which, in a nondeterministic parser, causes the stack in which it is reduced
1194to die. In a deterministic parser, it acts like YYERROR.
1195
1196As the example shows, predicates otherwise look like semantic actions, and
1197therefore you must be take them into account when determining the numbers
1198to use for denoting the semantic values of right-hand side symbols.
1199Predicate actions, however, have no defined value, and may not be given
1200labels.
1201
1202There is a subtle difference between semantic predicates and ordinary
1203actions in nondeterministic mode, since the latter are deferred.
1204For example, we could try to rewrite the previous example as
1205
1206@smallexample
1207widget :
1208 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1209 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1210 ;
1211@end smallexample
1212
1213@noindent
1214(reversing the sense of the predicate tests to cause an error when they are
1215false). However, this
1216does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1217have overlapping syntax.
1218Since the mid-rule actions testing @code{new_syntax} are deferred,
1219a @acronym{GLR} parser first encounters the unresolved ambiguous reduction
1220for cases where @code{new_args} and @code{old_args} recognize the same string
1221@emph{before} performing the tests of @code{new_syntax}. It therefore
1222reports an error.
1223
1224Finally, be careful in writing predicates: deferred actions have not been
1225evaluated, so that using them in a predicate will have undefined effects.
1226
fa7e68c3
PE
1227@node Compiler Requirements
1228@subsection Considerations when Compiling @acronym{GLR} Parsers
1229@cindex @code{inline}
9501dc6e 1230@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1231
38a92d50
PE
1232The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1233later. In addition, they use the @code{inline} keyword, which is not
1234C89, but is C99 and is a common extension in pre-C99 compilers. It is
1235up to the user of these parsers to handle
9501dc6e
AD
1236portability issues. For instance, if using Autoconf and the Autoconf
1237macro @code{AC_C_INLINE}, a mere
1238
1239@example
1240%@{
38a92d50 1241 #include <config.h>
9501dc6e
AD
1242%@}
1243@end example
1244
1245@noindent
1246will suffice. Otherwise, we suggest
1247
1248@example
1249%@{
38a92d50
PE
1250 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1251 #define inline
1252 #endif
9501dc6e
AD
1253%@}
1254@end example
676385e2 1255
342b8b6e 1256@node Locations Overview
847bf1f5
AD
1257@section Locations
1258@cindex location
95923bd6
AD
1259@cindex textual location
1260@cindex location, textual
847bf1f5
AD
1261
1262Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1263and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1264the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1265Bison provides a mechanism for handling these locations.
1266
72d2299c 1267Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1268associated location, but the type of locations is the same for all tokens and
72d2299c 1269groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1270structure for storing locations (@pxref{Locations}, for more details).
1271
1272Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1273set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1274is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1275@code{@@3}.
1276
1277When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1278of its left hand side (@pxref{Actions}). In the same way, another default
1279action is used for locations. However, the action for locations is general
847bf1f5 1280enough for most cases, meaning there is usually no need to describe for each
72d2299c 1281rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1282grouping, the default behavior of the output parser is to take the beginning
1283of the first symbol, and the end of the last symbol.
1284
342b8b6e 1285@node Bison Parser
bfa74976
RS
1286@section Bison Output: the Parser File
1287@cindex Bison parser
1288@cindex Bison utility
1289@cindex lexical analyzer, purpose
1290@cindex parser
1291
1292When you run Bison, you give it a Bison grammar file as input. The output
1293is a C source file that parses the language described by the grammar.
1294This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1295utility and the Bison parser are two distinct programs: the Bison utility
1296is a program whose output is the Bison parser that becomes part of your
1297program.
1298
1299The job of the Bison parser is to group tokens into groupings according to
1300the grammar rules---for example, to build identifiers and operators into
1301expressions. As it does this, it runs the actions for the grammar rules it
1302uses.
1303
704a47c4
AD
1304The tokens come from a function called the @dfn{lexical analyzer} that
1305you must supply in some fashion (such as by writing it in C). The Bison
1306parser calls the lexical analyzer each time it wants a new token. It
1307doesn't know what is ``inside'' the tokens (though their semantic values
1308may reflect this). Typically the lexical analyzer makes the tokens by
1309parsing characters of text, but Bison does not depend on this.
1310@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1311
1312The Bison parser file is C code which defines a function named
1313@code{yyparse} which implements that grammar. This function does not make
1314a complete C program: you must supply some additional functions. One is
1315the lexical analyzer. Another is an error-reporting function which the
1316parser calls to report an error. In addition, a complete C program must
1317start with a function called @code{main}; you have to provide this, and
1318arrange for it to call @code{yyparse} or the parser will never run.
1319@xref{Interface, ,Parser C-Language Interface}.
1320
f7ab6a50 1321Aside from the token type names and the symbols in the actions you
7093d0f5 1322write, all symbols defined in the Bison parser file itself
bfa74976
RS
1323begin with @samp{yy} or @samp{YY}. This includes interface functions
1324such as the lexical analyzer function @code{yylex}, the error reporting
1325function @code{yyerror} and the parser function @code{yyparse} itself.
1326This also includes numerous identifiers used for internal purposes.
1327Therefore, you should avoid using C identifiers starting with @samp{yy}
1328or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1329this manual. Also, you should avoid using the C identifiers
1330@samp{malloc} and @samp{free} for anything other than their usual
1331meanings.
bfa74976 1332
7093d0f5
AD
1333In some cases the Bison parser file includes system headers, and in
1334those cases your code should respect the identifiers reserved by those
55289366 1335headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1336@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1337declare memory allocators and related types. @code{<libintl.h>} is
1338included if message translation is in use
1339(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1340be included if you define @code{YYDEBUG} to a nonzero value
1341(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1342
342b8b6e 1343@node Stages
bfa74976
RS
1344@section Stages in Using Bison
1345@cindex stages in using Bison
1346@cindex using Bison
1347
1348The actual language-design process using Bison, from grammar specification
1349to a working compiler or interpreter, has these parts:
1350
1351@enumerate
1352@item
1353Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1354(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1355in the language, describe the action that is to be taken when an
1356instance of that rule is recognized. The action is described by a
1357sequence of C statements.
bfa74976
RS
1358
1359@item
704a47c4
AD
1360Write a lexical analyzer to process input and pass tokens to the parser.
1361The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1362Lexical Analyzer Function @code{yylex}}). It could also be produced
1363using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1364
1365@item
1366Write a controlling function that calls the Bison-produced parser.
1367
1368@item
1369Write error-reporting routines.
1370@end enumerate
1371
1372To turn this source code as written into a runnable program, you
1373must follow these steps:
1374
1375@enumerate
1376@item
1377Run Bison on the grammar to produce the parser.
1378
1379@item
1380Compile the code output by Bison, as well as any other source files.
1381
1382@item
1383Link the object files to produce the finished product.
1384@end enumerate
1385
342b8b6e 1386@node Grammar Layout
bfa74976
RS
1387@section The Overall Layout of a Bison Grammar
1388@cindex grammar file
1389@cindex file format
1390@cindex format of grammar file
1391@cindex layout of Bison grammar
1392
1393The input file for the Bison utility is a @dfn{Bison grammar file}. The
1394general form of a Bison grammar file is as follows:
1395
1396@example
1397%@{
08e49d20 1398@var{Prologue}
bfa74976
RS
1399%@}
1400
1401@var{Bison declarations}
1402
1403%%
1404@var{Grammar rules}
1405%%
08e49d20 1406@var{Epilogue}
bfa74976
RS
1407@end example
1408
1409@noindent
1410The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1411in every Bison grammar file to separate the sections.
1412
72d2299c 1413The prologue may define types and variables used in the actions. You can
342b8b6e 1414also use preprocessor commands to define macros used there, and use
bfa74976 1415@code{#include} to include header files that do any of these things.
38a92d50
PE
1416You need to declare the lexical analyzer @code{yylex} and the error
1417printer @code{yyerror} here, along with any other global identifiers
1418used by the actions in the grammar rules.
bfa74976
RS
1419
1420The Bison declarations declare the names of the terminal and nonterminal
1421symbols, and may also describe operator precedence and the data types of
1422semantic values of various symbols.
1423
1424The grammar rules define how to construct each nonterminal symbol from its
1425parts.
1426
38a92d50
PE
1427The epilogue can contain any code you want to use. Often the
1428definitions of functions declared in the prologue go here. In a
1429simple program, all the rest of the program can go here.
bfa74976 1430
342b8b6e 1431@node Examples
bfa74976
RS
1432@chapter Examples
1433@cindex simple examples
1434@cindex examples, simple
1435
1436Now we show and explain three sample programs written using Bison: a
1437reverse polish notation calculator, an algebraic (infix) notation
1438calculator, and a multi-function calculator. All three have been tested
1439under BSD Unix 4.3; each produces a usable, though limited, interactive
1440desk-top calculator.
1441
1442These examples are simple, but Bison grammars for real programming
aa08666d
AD
1443languages are written the same way. You can copy these examples into a
1444source file to try them.
bfa74976
RS
1445
1446@menu
f5f419de
DJ
1447* RPN Calc:: Reverse polish notation calculator;
1448 a first example with no operator precedence.
1449* Infix Calc:: Infix (algebraic) notation calculator.
1450 Operator precedence is introduced.
bfa74976 1451* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1452* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1453* Multi-function Calc:: Calculator with memory and trig functions.
1454 It uses multiple data-types for semantic values.
1455* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1456@end menu
1457
342b8b6e 1458@node RPN Calc
bfa74976
RS
1459@section Reverse Polish Notation Calculator
1460@cindex reverse polish notation
1461@cindex polish notation calculator
1462@cindex @code{rpcalc}
1463@cindex calculator, simple
1464
1465The first example is that of a simple double-precision @dfn{reverse polish
1466notation} calculator (a calculator using postfix operators). This example
1467provides a good starting point, since operator precedence is not an issue.
1468The second example will illustrate how operator precedence is handled.
1469
1470The source code for this calculator is named @file{rpcalc.y}. The
1471@samp{.y} extension is a convention used for Bison input files.
1472
1473@menu
f5f419de
DJ
1474* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1475* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1476* Rpcalc Lexer:: The lexical analyzer.
1477* Rpcalc Main:: The controlling function.
1478* Rpcalc Error:: The error reporting function.
1479* Rpcalc Generate:: Running Bison on the grammar file.
1480* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1481@end menu
1482
f5f419de 1483@node Rpcalc Declarations
bfa74976
RS
1484@subsection Declarations for @code{rpcalc}
1485
1486Here are the C and Bison declarations for the reverse polish notation
1487calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1488
1489@example
72d2299c 1490/* Reverse polish notation calculator. */
bfa74976
RS
1491
1492%@{
38a92d50
PE
1493 #define YYSTYPE double
1494 #include <math.h>
1495 int yylex (void);
1496 void yyerror (char const *);
bfa74976
RS
1497%@}
1498
1499%token NUM
1500
72d2299c 1501%% /* Grammar rules and actions follow. */
bfa74976
RS
1502@end example
1503
75f5aaea 1504The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1505preprocessor directives and two forward declarations.
bfa74976
RS
1506
1507The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1508specifying the C data type for semantic values of both tokens and
1509groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1510Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1511don't define it, @code{int} is the default. Because we specify
1512@code{double}, each token and each expression has an associated value,
1513which is a floating point number.
bfa74976
RS
1514
1515The @code{#include} directive is used to declare the exponentiation
1516function @code{pow}.
1517
38a92d50
PE
1518The forward declarations for @code{yylex} and @code{yyerror} are
1519needed because the C language requires that functions be declared
1520before they are used. These functions will be defined in the
1521epilogue, but the parser calls them so they must be declared in the
1522prologue.
1523
704a47c4
AD
1524The second section, Bison declarations, provides information to Bison
1525about the token types (@pxref{Bison Declarations, ,The Bison
1526Declarations Section}). Each terminal symbol that is not a
1527single-character literal must be declared here. (Single-character
bfa74976
RS
1528literals normally don't need to be declared.) In this example, all the
1529arithmetic operators are designated by single-character literals, so the
1530only terminal symbol that needs to be declared is @code{NUM}, the token
1531type for numeric constants.
1532
342b8b6e 1533@node Rpcalc Rules
bfa74976
RS
1534@subsection Grammar Rules for @code{rpcalc}
1535
1536Here are the grammar rules for the reverse polish notation calculator.
1537
1538@example
1539input: /* empty */
1540 | input line
1541;
1542
1543line: '\n'
18b519c0 1544 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1545;
1546
18b519c0
AD
1547exp: NUM @{ $$ = $1; @}
1548 | exp exp '+' @{ $$ = $1 + $2; @}
1549 | exp exp '-' @{ $$ = $1 - $2; @}
1550 | exp exp '*' @{ $$ = $1 * $2; @}
1551 | exp exp '/' @{ $$ = $1 / $2; @}
1552 /* Exponentiation */
1553 | exp exp '^' @{ $$ = pow ($1, $2); @}
1554 /* Unary minus */
1555 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1556;
1557%%
1558@end example
1559
1560The groupings of the rpcalc ``language'' defined here are the expression
1561(given the name @code{exp}), the line of input (@code{line}), and the
1562complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1563symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1564which is read as ``or''. The following sections explain what these rules
1565mean.
1566
1567The semantics of the language is determined by the actions taken when a
1568grouping is recognized. The actions are the C code that appears inside
1569braces. @xref{Actions}.
1570
1571You must specify these actions in C, but Bison provides the means for
1572passing semantic values between the rules. In each action, the
1573pseudo-variable @code{$$} stands for the semantic value for the grouping
1574that the rule is going to construct. Assigning a value to @code{$$} is the
1575main job of most actions. The semantic values of the components of the
1576rule are referred to as @code{$1}, @code{$2}, and so on.
1577
1578@menu
13863333
AD
1579* Rpcalc Input::
1580* Rpcalc Line::
1581* Rpcalc Expr::
bfa74976
RS
1582@end menu
1583
342b8b6e 1584@node Rpcalc Input
bfa74976
RS
1585@subsubsection Explanation of @code{input}
1586
1587Consider the definition of @code{input}:
1588
1589@example
1590input: /* empty */
1591 | input line
1592;
1593@end example
1594
1595This definition reads as follows: ``A complete input is either an empty
1596string, or a complete input followed by an input line''. Notice that
1597``complete input'' is defined in terms of itself. This definition is said
1598to be @dfn{left recursive} since @code{input} appears always as the
1599leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1600
1601The first alternative is empty because there are no symbols between the
1602colon and the first @samp{|}; this means that @code{input} can match an
1603empty string of input (no tokens). We write the rules this way because it
1604is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1605It's conventional to put an empty alternative first and write the comment
1606@samp{/* empty */} in it.
1607
1608The second alternate rule (@code{input line}) handles all nontrivial input.
1609It means, ``After reading any number of lines, read one more line if
1610possible.'' The left recursion makes this rule into a loop. Since the
1611first alternative matches empty input, the loop can be executed zero or
1612more times.
1613
1614The parser function @code{yyparse} continues to process input until a
1615grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1616input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1617
342b8b6e 1618@node Rpcalc Line
bfa74976
RS
1619@subsubsection Explanation of @code{line}
1620
1621Now consider the definition of @code{line}:
1622
1623@example
1624line: '\n'
1625 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1626;
1627@end example
1628
1629The first alternative is a token which is a newline character; this means
1630that rpcalc accepts a blank line (and ignores it, since there is no
1631action). The second alternative is an expression followed by a newline.
1632This is the alternative that makes rpcalc useful. The semantic value of
1633the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1634question is the first symbol in the alternative. The action prints this
1635value, which is the result of the computation the user asked for.
1636
1637This action is unusual because it does not assign a value to @code{$$}. As
1638a consequence, the semantic value associated with the @code{line} is
1639uninitialized (its value will be unpredictable). This would be a bug if
1640that value were ever used, but we don't use it: once rpcalc has printed the
1641value of the user's input line, that value is no longer needed.
1642
342b8b6e 1643@node Rpcalc Expr
bfa74976
RS
1644@subsubsection Explanation of @code{expr}
1645
1646The @code{exp} grouping has several rules, one for each kind of expression.
1647The first rule handles the simplest expressions: those that are just numbers.
1648The second handles an addition-expression, which looks like two expressions
1649followed by a plus-sign. The third handles subtraction, and so on.
1650
1651@example
1652exp: NUM
1653 | exp exp '+' @{ $$ = $1 + $2; @}
1654 | exp exp '-' @{ $$ = $1 - $2; @}
1655 @dots{}
1656 ;
1657@end example
1658
1659We have used @samp{|} to join all the rules for @code{exp}, but we could
1660equally well have written them separately:
1661
1662@example
1663exp: NUM ;
1664exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1665exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1666 @dots{}
1667@end example
1668
1669Most of the rules have actions that compute the value of the expression in
1670terms of the value of its parts. For example, in the rule for addition,
1671@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1672the second one. The third component, @code{'+'}, has no meaningful
1673associated semantic value, but if it had one you could refer to it as
1674@code{$3}. When @code{yyparse} recognizes a sum expression using this
1675rule, the sum of the two subexpressions' values is produced as the value of
1676the entire expression. @xref{Actions}.
1677
1678You don't have to give an action for every rule. When a rule has no
1679action, Bison by default copies the value of @code{$1} into @code{$$}.
1680This is what happens in the first rule (the one that uses @code{NUM}).
1681
1682The formatting shown here is the recommended convention, but Bison does
72d2299c 1683not require it. You can add or change white space as much as you wish.
bfa74976
RS
1684For example, this:
1685
1686@example
99a9344e 1687exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1688@end example
1689
1690@noindent
1691means the same thing as this:
1692
1693@example
1694exp: NUM
1695 | exp exp '+' @{ $$ = $1 + $2; @}
1696 | @dots{}
99a9344e 1697;
bfa74976
RS
1698@end example
1699
1700@noindent
1701The latter, however, is much more readable.
1702
342b8b6e 1703@node Rpcalc Lexer
bfa74976
RS
1704@subsection The @code{rpcalc} Lexical Analyzer
1705@cindex writing a lexical analyzer
1706@cindex lexical analyzer, writing
1707
704a47c4
AD
1708The lexical analyzer's job is low-level parsing: converting characters
1709or sequences of characters into tokens. The Bison parser gets its
1710tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1711Analyzer Function @code{yylex}}.
bfa74976 1712
c827f760
PE
1713Only a simple lexical analyzer is needed for the @acronym{RPN}
1714calculator. This
bfa74976
RS
1715lexical analyzer skips blanks and tabs, then reads in numbers as
1716@code{double} and returns them as @code{NUM} tokens. Any other character
1717that isn't part of a number is a separate token. Note that the token-code
1718for such a single-character token is the character itself.
1719
1720The return value of the lexical analyzer function is a numeric code which
1721represents a token type. The same text used in Bison rules to stand for
1722this token type is also a C expression for the numeric code for the type.
1723This works in two ways. If the token type is a character literal, then its
e966383b 1724numeric code is that of the character; you can use the same
bfa74976
RS
1725character literal in the lexical analyzer to express the number. If the
1726token type is an identifier, that identifier is defined by Bison as a C
1727macro whose definition is the appropriate number. In this example,
1728therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1729
1964ad8c
AD
1730The semantic value of the token (if it has one) is stored into the
1731global variable @code{yylval}, which is where the Bison parser will look
1732for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1733defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1734,Declarations for @code{rpcalc}}.)
bfa74976 1735
72d2299c
PE
1736A token type code of zero is returned if the end-of-input is encountered.
1737(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1738
1739Here is the code for the lexical analyzer:
1740
1741@example
1742@group
72d2299c 1743/* The lexical analyzer returns a double floating point
e966383b 1744 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1745 of the character read if not a number. It skips all blanks
1746 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1747
1748#include <ctype.h>
1749@end group
1750
1751@group
13863333
AD
1752int
1753yylex (void)
bfa74976
RS
1754@{
1755 int c;
1756
72d2299c 1757 /* Skip white space. */
13863333 1758 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1759 ;
1760@end group
1761@group
72d2299c 1762 /* Process numbers. */
13863333 1763 if (c == '.' || isdigit (c))
bfa74976
RS
1764 @{
1765 ungetc (c, stdin);
1766 scanf ("%lf", &yylval);
1767 return NUM;
1768 @}
1769@end group
1770@group
72d2299c 1771 /* Return end-of-input. */
13863333 1772 if (c == EOF)
bfa74976 1773 return 0;
72d2299c 1774 /* Return a single char. */
13863333 1775 return c;
bfa74976
RS
1776@}
1777@end group
1778@end example
1779
342b8b6e 1780@node Rpcalc Main
bfa74976
RS
1781@subsection The Controlling Function
1782@cindex controlling function
1783@cindex main function in simple example
1784
1785In keeping with the spirit of this example, the controlling function is
1786kept to the bare minimum. The only requirement is that it call
1787@code{yyparse} to start the process of parsing.
1788
1789@example
1790@group
13863333
AD
1791int
1792main (void)
bfa74976 1793@{
13863333 1794 return yyparse ();
bfa74976
RS
1795@}
1796@end group
1797@end example
1798
342b8b6e 1799@node Rpcalc Error
bfa74976
RS
1800@subsection The Error Reporting Routine
1801@cindex error reporting routine
1802
1803When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1804function @code{yyerror} to print an error message (usually but not
6e649e65 1805always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1806@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1807here is the definition we will use:
bfa74976
RS
1808
1809@example
1810@group
1811#include <stdio.h>
1812
38a92d50 1813/* Called by yyparse on error. */
13863333 1814void
38a92d50 1815yyerror (char const *s)
bfa74976 1816@{
4e03e201 1817 fprintf (stderr, "%s\n", s);
bfa74976
RS
1818@}
1819@end group
1820@end example
1821
1822After @code{yyerror} returns, the Bison parser may recover from the error
1823and continue parsing if the grammar contains a suitable error rule
1824(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1825have not written any error rules in this example, so any invalid input will
1826cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1827real calculator, but it is adequate for the first example.
bfa74976 1828
f5f419de 1829@node Rpcalc Generate
bfa74976
RS
1830@subsection Running Bison to Make the Parser
1831@cindex running Bison (introduction)
1832
ceed8467
AD
1833Before running Bison to produce a parser, we need to decide how to
1834arrange all the source code in one or more source files. For such a
1835simple example, the easiest thing is to put everything in one file. The
1836definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1837end, in the epilogue of the file
75f5aaea 1838(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1839
1840For a large project, you would probably have several source files, and use
1841@code{make} to arrange to recompile them.
1842
1843With all the source in a single file, you use the following command to
1844convert it into a parser file:
1845
1846@example
fa4d969f 1847bison @var{file}.y
bfa74976
RS
1848@end example
1849
1850@noindent
1851In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1852@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1853removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1854Bison contains the source code for @code{yyparse}. The additional
1855functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1856are copied verbatim to the output.
1857
342b8b6e 1858@node Rpcalc Compile
bfa74976
RS
1859@subsection Compiling the Parser File
1860@cindex compiling the parser
1861
1862Here is how to compile and run the parser file:
1863
1864@example
1865@group
1866# @r{List files in current directory.}
9edcd895 1867$ @kbd{ls}
bfa74976
RS
1868rpcalc.tab.c rpcalc.y
1869@end group
1870
1871@group
1872# @r{Compile the Bison parser.}
1873# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1874$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1875@end group
1876
1877@group
1878# @r{List files again.}
9edcd895 1879$ @kbd{ls}
bfa74976
RS
1880rpcalc rpcalc.tab.c rpcalc.y
1881@end group
1882@end example
1883
1884The file @file{rpcalc} now contains the executable code. Here is an
1885example session using @code{rpcalc}.
1886
1887@example
9edcd895
AD
1888$ @kbd{rpcalc}
1889@kbd{4 9 +}
bfa74976 189013
9edcd895 1891@kbd{3 7 + 3 4 5 *+-}
bfa74976 1892-13
9edcd895 1893@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 189413
9edcd895 1895@kbd{5 6 / 4 n +}
bfa74976 1896-3.166666667
9edcd895 1897@kbd{3 4 ^} @r{Exponentiation}
bfa74976 189881
9edcd895
AD
1899@kbd{^D} @r{End-of-file indicator}
1900$
bfa74976
RS
1901@end example
1902
342b8b6e 1903@node Infix Calc
bfa74976
RS
1904@section Infix Notation Calculator: @code{calc}
1905@cindex infix notation calculator
1906@cindex @code{calc}
1907@cindex calculator, infix notation
1908
1909We now modify rpcalc to handle infix operators instead of postfix. Infix
1910notation involves the concept of operator precedence and the need for
1911parentheses nested to arbitrary depth. Here is the Bison code for
1912@file{calc.y}, an infix desk-top calculator.
1913
1914@example
38a92d50 1915/* Infix notation calculator. */
bfa74976
RS
1916
1917%@{
38a92d50
PE
1918 #define YYSTYPE double
1919 #include <math.h>
1920 #include <stdio.h>
1921 int yylex (void);
1922 void yyerror (char const *);
bfa74976
RS
1923%@}
1924
38a92d50 1925/* Bison declarations. */
bfa74976
RS
1926%token NUM
1927%left '-' '+'
1928%left '*' '/'
d78f0ac9
AD
1929%precedence NEG /* negation--unary minus */
1930%right '^' /* exponentiation */
bfa74976 1931
38a92d50
PE
1932%% /* The grammar follows. */
1933input: /* empty */
bfa74976
RS
1934 | input line
1935;
1936
1937line: '\n'
1938 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1939;
1940
1941exp: NUM @{ $$ = $1; @}
1942 | exp '+' exp @{ $$ = $1 + $3; @}
1943 | exp '-' exp @{ $$ = $1 - $3; @}
1944 | exp '*' exp @{ $$ = $1 * $3; @}
1945 | exp '/' exp @{ $$ = $1 / $3; @}
1946 | '-' exp %prec NEG @{ $$ = -$2; @}
1947 | exp '^' exp @{ $$ = pow ($1, $3); @}
1948 | '(' exp ')' @{ $$ = $2; @}
1949;
1950%%
1951@end example
1952
1953@noindent
ceed8467
AD
1954The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1955same as before.
bfa74976
RS
1956
1957There are two important new features shown in this code.
1958
1959In the second section (Bison declarations), @code{%left} declares token
1960types and says they are left-associative operators. The declarations
1961@code{%left} and @code{%right} (right associativity) take the place of
1962@code{%token} which is used to declare a token type name without
d78f0ac9 1963associativity/precedence. (These tokens are single-character literals, which
bfa74976 1964ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1965the associativity/precedence.)
bfa74976
RS
1966
1967Operator precedence is determined by the line ordering of the
1968declarations; the higher the line number of the declaration (lower on
1969the page or screen), the higher the precedence. Hence, exponentiation
1970has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1971by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1972only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1973Precedence}.
bfa74976 1974
704a47c4
AD
1975The other important new feature is the @code{%prec} in the grammar
1976section for the unary minus operator. The @code{%prec} simply instructs
1977Bison that the rule @samp{| '-' exp} has the same precedence as
1978@code{NEG}---in this case the next-to-highest. @xref{Contextual
1979Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1980
1981Here is a sample run of @file{calc.y}:
1982
1983@need 500
1984@example
9edcd895
AD
1985$ @kbd{calc}
1986@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19876.880952381
9edcd895 1988@kbd{-56 + 2}
bfa74976 1989-54
9edcd895 1990@kbd{3 ^ 2}
bfa74976
RS
19919
1992@end example
1993
342b8b6e 1994@node Simple Error Recovery
bfa74976
RS
1995@section Simple Error Recovery
1996@cindex error recovery, simple
1997
1998Up to this point, this manual has not addressed the issue of @dfn{error
1999recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2000error. All we have handled is error reporting with @code{yyerror}.
2001Recall that by default @code{yyparse} returns after calling
2002@code{yyerror}. This means that an erroneous input line causes the
2003calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2004
2005The Bison language itself includes the reserved word @code{error}, which
2006may be included in the grammar rules. In the example below it has
2007been added to one of the alternatives for @code{line}:
2008
2009@example
2010@group
2011line: '\n'
2012 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2013 | error '\n' @{ yyerrok; @}
2014;
2015@end group
2016@end example
2017
ceed8467 2018This addition to the grammar allows for simple error recovery in the
6e649e65 2019event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2020read, the error will be recognized by the third rule for @code{line},
2021and parsing will continue. (The @code{yyerror} function is still called
2022upon to print its message as well.) The action executes the statement
2023@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2024that error recovery is complete (@pxref{Error Recovery}). Note the
2025difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2026misprint.
bfa74976
RS
2027
2028This form of error recovery deals with syntax errors. There are other
2029kinds of errors; for example, division by zero, which raises an exception
2030signal that is normally fatal. A real calculator program must handle this
2031signal and use @code{longjmp} to return to @code{main} and resume parsing
2032input lines; it would also have to discard the rest of the current line of
2033input. We won't discuss this issue further because it is not specific to
2034Bison programs.
2035
342b8b6e
AD
2036@node Location Tracking Calc
2037@section Location Tracking Calculator: @code{ltcalc}
2038@cindex location tracking calculator
2039@cindex @code{ltcalc}
2040@cindex calculator, location tracking
2041
9edcd895
AD
2042This example extends the infix notation calculator with location
2043tracking. This feature will be used to improve the error messages. For
2044the sake of clarity, this example is a simple integer calculator, since
2045most of the work needed to use locations will be done in the lexical
72d2299c 2046analyzer.
342b8b6e
AD
2047
2048@menu
f5f419de
DJ
2049* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2050* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2051* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2052@end menu
2053
f5f419de 2054@node Ltcalc Declarations
342b8b6e
AD
2055@subsection Declarations for @code{ltcalc}
2056
9edcd895
AD
2057The C and Bison declarations for the location tracking calculator are
2058the same as the declarations for the infix notation calculator.
342b8b6e
AD
2059
2060@example
2061/* Location tracking calculator. */
2062
2063%@{
38a92d50
PE
2064 #define YYSTYPE int
2065 #include <math.h>
2066 int yylex (void);
2067 void yyerror (char const *);
342b8b6e
AD
2068%@}
2069
2070/* Bison declarations. */
2071%token NUM
2072
2073%left '-' '+'
2074%left '*' '/'
d78f0ac9 2075%precedence NEG
342b8b6e
AD
2076%right '^'
2077
38a92d50 2078%% /* The grammar follows. */
342b8b6e
AD
2079@end example
2080
9edcd895
AD
2081@noindent
2082Note there are no declarations specific to locations. Defining a data
2083type for storing locations is not needed: we will use the type provided
2084by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2085four member structure with the following integer fields:
2086@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2087@code{last_column}. By conventions, and in accordance with the GNU
2088Coding Standards and common practice, the line and column count both
2089start at 1.
342b8b6e
AD
2090
2091@node Ltcalc Rules
2092@subsection Grammar Rules for @code{ltcalc}
2093
9edcd895
AD
2094Whether handling locations or not has no effect on the syntax of your
2095language. Therefore, grammar rules for this example will be very close
2096to those of the previous example: we will only modify them to benefit
2097from the new information.
342b8b6e 2098
9edcd895
AD
2099Here, we will use locations to report divisions by zero, and locate the
2100wrong expressions or subexpressions.
342b8b6e
AD
2101
2102@example
2103@group
2104input : /* empty */
2105 | input line
2106;
2107@end group
2108
2109@group
2110line : '\n'
2111 | exp '\n' @{ printf ("%d\n", $1); @}
2112;
2113@end group
2114
2115@group
2116exp : NUM @{ $$ = $1; @}
2117 | exp '+' exp @{ $$ = $1 + $3; @}
2118 | exp '-' exp @{ $$ = $1 - $3; @}
2119 | exp '*' exp @{ $$ = $1 * $3; @}
2120@end group
342b8b6e 2121@group
9edcd895 2122 | exp '/' exp
342b8b6e
AD
2123 @{
2124 if ($3)
2125 $$ = $1 / $3;
2126 else
2127 @{
2128 $$ = 1;
9edcd895
AD
2129 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2130 @@3.first_line, @@3.first_column,
2131 @@3.last_line, @@3.last_column);
342b8b6e
AD
2132 @}
2133 @}
2134@end group
2135@group
178e123e 2136 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2137 | exp '^' exp @{ $$ = pow ($1, $3); @}
2138 | '(' exp ')' @{ $$ = $2; @}
2139@end group
2140@end example
2141
2142This code shows how to reach locations inside of semantic actions, by
2143using the pseudo-variables @code{@@@var{n}} for rule components, and the
2144pseudo-variable @code{@@$} for groupings.
2145
9edcd895
AD
2146We don't need to assign a value to @code{@@$}: the output parser does it
2147automatically. By default, before executing the C code of each action,
2148@code{@@$} is set to range from the beginning of @code{@@1} to the end
2149of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2150can be redefined (@pxref{Location Default Action, , Default Action for
2151Locations}), and for very specific rules, @code{@@$} can be computed by
2152hand.
342b8b6e
AD
2153
2154@node Ltcalc Lexer
2155@subsection The @code{ltcalc} Lexical Analyzer.
2156
9edcd895 2157Until now, we relied on Bison's defaults to enable location
72d2299c 2158tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2159able to feed the parser with the token locations, as it already does for
2160semantic values.
342b8b6e 2161
9edcd895
AD
2162To this end, we must take into account every single character of the
2163input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2164
2165@example
2166@group
2167int
2168yylex (void)
2169@{
2170 int c;
18b519c0 2171@end group
342b8b6e 2172
18b519c0 2173@group
72d2299c 2174 /* Skip white space. */
342b8b6e
AD
2175 while ((c = getchar ()) == ' ' || c == '\t')
2176 ++yylloc.last_column;
18b519c0 2177@end group
342b8b6e 2178
18b519c0 2179@group
72d2299c 2180 /* Step. */
342b8b6e
AD
2181 yylloc.first_line = yylloc.last_line;
2182 yylloc.first_column = yylloc.last_column;
2183@end group
2184
2185@group
72d2299c 2186 /* Process numbers. */
342b8b6e
AD
2187 if (isdigit (c))
2188 @{
2189 yylval = c - '0';
2190 ++yylloc.last_column;
2191 while (isdigit (c = getchar ()))
2192 @{
2193 ++yylloc.last_column;
2194 yylval = yylval * 10 + c - '0';
2195 @}
2196 ungetc (c, stdin);
2197 return NUM;
2198 @}
2199@end group
2200
72d2299c 2201 /* Return end-of-input. */
342b8b6e
AD
2202 if (c == EOF)
2203 return 0;
2204
72d2299c 2205 /* Return a single char, and update location. */
342b8b6e
AD
2206 if (c == '\n')
2207 @{
2208 ++yylloc.last_line;
2209 yylloc.last_column = 0;
2210 @}
2211 else
2212 ++yylloc.last_column;
2213 return c;
2214@}
2215@end example
2216
9edcd895
AD
2217Basically, the lexical analyzer performs the same processing as before:
2218it skips blanks and tabs, and reads numbers or single-character tokens.
2219In addition, it updates @code{yylloc}, the global variable (of type
2220@code{YYLTYPE}) containing the token's location.
342b8b6e 2221
9edcd895 2222Now, each time this function returns a token, the parser has its number
72d2299c 2223as well as its semantic value, and its location in the text. The last
9edcd895
AD
2224needed change is to initialize @code{yylloc}, for example in the
2225controlling function:
342b8b6e
AD
2226
2227@example
9edcd895 2228@group
342b8b6e
AD
2229int
2230main (void)
2231@{
2232 yylloc.first_line = yylloc.last_line = 1;
2233 yylloc.first_column = yylloc.last_column = 0;
2234 return yyparse ();
2235@}
9edcd895 2236@end group
342b8b6e
AD
2237@end example
2238
9edcd895
AD
2239Remember that computing locations is not a matter of syntax. Every
2240character must be associated to a location update, whether it is in
2241valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2242
2243@node Multi-function Calc
bfa74976
RS
2244@section Multi-Function Calculator: @code{mfcalc}
2245@cindex multi-function calculator
2246@cindex @code{mfcalc}
2247@cindex calculator, multi-function
2248
2249Now that the basics of Bison have been discussed, it is time to move on to
2250a more advanced problem. The above calculators provided only five
2251functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2252be nice to have a calculator that provides other mathematical functions such
2253as @code{sin}, @code{cos}, etc.
2254
2255It is easy to add new operators to the infix calculator as long as they are
2256only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2257back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2258adding a new operator. But we want something more flexible: built-in
2259functions whose syntax has this form:
2260
2261@example
2262@var{function_name} (@var{argument})
2263@end example
2264
2265@noindent
2266At the same time, we will add memory to the calculator, by allowing you
2267to create named variables, store values in them, and use them later.
2268Here is a sample session with the multi-function calculator:
2269
2270@example
9edcd895
AD
2271$ @kbd{mfcalc}
2272@kbd{pi = 3.141592653589}
bfa74976 22733.1415926536
9edcd895 2274@kbd{sin(pi)}
bfa74976 22750.0000000000
9edcd895 2276@kbd{alpha = beta1 = 2.3}
bfa74976 22772.3000000000
9edcd895 2278@kbd{alpha}
bfa74976 22792.3000000000
9edcd895 2280@kbd{ln(alpha)}
bfa74976 22810.8329091229
9edcd895 2282@kbd{exp(ln(beta1))}
bfa74976 22832.3000000000
9edcd895 2284$
bfa74976
RS
2285@end example
2286
2287Note that multiple assignment and nested function calls are permitted.
2288
2289@menu
f5f419de
DJ
2290* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2291* Mfcalc Rules:: Grammar rules for the calculator.
2292* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2293@end menu
2294
f5f419de 2295@node Mfcalc Declarations
bfa74976
RS
2296@subsection Declarations for @code{mfcalc}
2297
2298Here are the C and Bison declarations for the multi-function calculator.
2299
2300@smallexample
18b519c0 2301@group
bfa74976 2302%@{
38a92d50
PE
2303 #include <math.h> /* For math functions, cos(), sin(), etc. */
2304 #include "calc.h" /* Contains definition of `symrec'. */
2305 int yylex (void);
2306 void yyerror (char const *);
bfa74976 2307%@}
18b519c0
AD
2308@end group
2309@group
bfa74976 2310%union @{
38a92d50
PE
2311 double val; /* For returning numbers. */
2312 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2313@}
18b519c0 2314@end group
38a92d50
PE
2315%token <val> NUM /* Simple double precision number. */
2316%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2317%type <val> exp
2318
18b519c0 2319@group
bfa74976
RS
2320%right '='
2321%left '-' '+'
2322%left '*' '/'
d78f0ac9
AD
2323%precedence NEG /* negation--unary minus */
2324%right '^' /* exponentiation */
18b519c0 2325@end group
38a92d50 2326%% /* The grammar follows. */
bfa74976
RS
2327@end smallexample
2328
2329The above grammar introduces only two new features of the Bison language.
2330These features allow semantic values to have various data types
2331(@pxref{Multiple Types, ,More Than One Value Type}).
2332
2333The @code{%union} declaration specifies the entire list of possible types;
2334this is instead of defining @code{YYSTYPE}. The allowable types are now
2335double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2336the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2337
2338Since values can now have various types, it is necessary to associate a
2339type with each grammar symbol whose semantic value is used. These symbols
2340are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2341declarations are augmented with information about their data type (placed
2342between angle brackets).
2343
704a47c4
AD
2344The Bison construct @code{%type} is used for declaring nonterminal
2345symbols, just as @code{%token} is used for declaring token types. We
2346have not used @code{%type} before because nonterminal symbols are
2347normally declared implicitly by the rules that define them. But
2348@code{exp} must be declared explicitly so we can specify its value type.
2349@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2350
342b8b6e 2351@node Mfcalc Rules
bfa74976
RS
2352@subsection Grammar Rules for @code{mfcalc}
2353
2354Here are the grammar rules for the multi-function calculator.
2355Most of them are copied directly from @code{calc}; three rules,
2356those which mention @code{VAR} or @code{FNCT}, are new.
2357
2358@smallexample
18b519c0 2359@group
bfa74976
RS
2360input: /* empty */
2361 | input line
2362;
18b519c0 2363@end group
bfa74976 2364
18b519c0 2365@group
bfa74976
RS
2366line:
2367 '\n'
2368 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2369 | error '\n' @{ yyerrok; @}
2370;
18b519c0 2371@end group
bfa74976 2372
18b519c0 2373@group
bfa74976
RS
2374exp: NUM @{ $$ = $1; @}
2375 | VAR @{ $$ = $1->value.var; @}
2376 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2377 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2378 | exp '+' exp @{ $$ = $1 + $3; @}
2379 | exp '-' exp @{ $$ = $1 - $3; @}
2380 | exp '*' exp @{ $$ = $1 * $3; @}
2381 | exp '/' exp @{ $$ = $1 / $3; @}
2382 | '-' exp %prec NEG @{ $$ = -$2; @}
2383 | exp '^' exp @{ $$ = pow ($1, $3); @}
2384 | '(' exp ')' @{ $$ = $2; @}
2385;
18b519c0 2386@end group
38a92d50 2387/* End of grammar. */
bfa74976
RS
2388%%
2389@end smallexample
2390
f5f419de 2391@node Mfcalc Symbol Table
bfa74976
RS
2392@subsection The @code{mfcalc} Symbol Table
2393@cindex symbol table example
2394
2395The multi-function calculator requires a symbol table to keep track of the
2396names and meanings of variables and functions. This doesn't affect the
2397grammar rules (except for the actions) or the Bison declarations, but it
2398requires some additional C functions for support.
2399
2400The symbol table itself consists of a linked list of records. Its
2401definition, which is kept in the header @file{calc.h}, is as follows. It
2402provides for either functions or variables to be placed in the table.
2403
2404@smallexample
2405@group
38a92d50 2406/* Function type. */
32dfccf8 2407typedef double (*func_t) (double);
72f889cc 2408@end group
32dfccf8 2409
72f889cc 2410@group
38a92d50 2411/* Data type for links in the chain of symbols. */
bfa74976
RS
2412struct symrec
2413@{
38a92d50 2414 char *name; /* name of symbol */
bfa74976 2415 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2416 union
2417 @{
38a92d50
PE
2418 double var; /* value of a VAR */
2419 func_t fnctptr; /* value of a FNCT */
bfa74976 2420 @} value;
38a92d50 2421 struct symrec *next; /* link field */
bfa74976
RS
2422@};
2423@end group
2424
2425@group
2426typedef struct symrec symrec;
2427
38a92d50 2428/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2429extern symrec *sym_table;
2430
a730d142 2431symrec *putsym (char const *, int);
38a92d50 2432symrec *getsym (char const *);
bfa74976
RS
2433@end group
2434@end smallexample
2435
2436The new version of @code{main} includes a call to @code{init_table}, a
2437function that initializes the symbol table. Here it is, and
2438@code{init_table} as well:
2439
2440@smallexample
bfa74976
RS
2441#include <stdio.h>
2442
18b519c0 2443@group
38a92d50 2444/* Called by yyparse on error. */
13863333 2445void
38a92d50 2446yyerror (char const *s)
bfa74976
RS
2447@{
2448 printf ("%s\n", s);
2449@}
18b519c0 2450@end group
bfa74976 2451
18b519c0 2452@group
bfa74976
RS
2453struct init
2454@{
38a92d50
PE
2455 char const *fname;
2456 double (*fnct) (double);
bfa74976
RS
2457@};
2458@end group
2459
2460@group
38a92d50 2461struct init const arith_fncts[] =
13863333 2462@{
32dfccf8
AD
2463 "sin", sin,
2464 "cos", cos,
13863333 2465 "atan", atan,
32dfccf8
AD
2466 "ln", log,
2467 "exp", exp,
13863333
AD
2468 "sqrt", sqrt,
2469 0, 0
2470@};
18b519c0 2471@end group
bfa74976 2472
18b519c0 2473@group
bfa74976 2474/* The symbol table: a chain of `struct symrec'. */
38a92d50 2475symrec *sym_table;
bfa74976
RS
2476@end group
2477
2478@group
72d2299c 2479/* Put arithmetic functions in table. */
13863333
AD
2480void
2481init_table (void)
bfa74976
RS
2482@{
2483 int i;
2484 symrec *ptr;
2485 for (i = 0; arith_fncts[i].fname != 0; i++)
2486 @{
2487 ptr = putsym (arith_fncts[i].fname, FNCT);
2488 ptr->value.fnctptr = arith_fncts[i].fnct;
2489 @}
2490@}
2491@end group
38a92d50
PE
2492
2493@group
2494int
2495main (void)
2496@{
2497 init_table ();
2498 return yyparse ();
2499@}
2500@end group
bfa74976
RS
2501@end smallexample
2502
2503By simply editing the initialization list and adding the necessary include
2504files, you can add additional functions to the calculator.
2505
2506Two important functions allow look-up and installation of symbols in the
2507symbol table. The function @code{putsym} is passed a name and the type
2508(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2509linked to the front of the list, and a pointer to the object is returned.
2510The function @code{getsym} is passed the name of the symbol to look up. If
2511found, a pointer to that symbol is returned; otherwise zero is returned.
2512
2513@smallexample
2514symrec *
38a92d50 2515putsym (char const *sym_name, int sym_type)
bfa74976
RS
2516@{
2517 symrec *ptr;
2518 ptr = (symrec *) malloc (sizeof (symrec));
2519 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2520 strcpy (ptr->name,sym_name);
2521 ptr->type = sym_type;
72d2299c 2522 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2523 ptr->next = (struct symrec *)sym_table;
2524 sym_table = ptr;
2525 return ptr;
2526@}
2527
2528symrec *
38a92d50 2529getsym (char const *sym_name)
bfa74976
RS
2530@{
2531 symrec *ptr;
2532 for (ptr = sym_table; ptr != (symrec *) 0;
2533 ptr = (symrec *)ptr->next)
2534 if (strcmp (ptr->name,sym_name) == 0)
2535 return ptr;
2536 return 0;
2537@}
2538@end smallexample
2539
2540The function @code{yylex} must now recognize variables, numeric values, and
2541the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2542characters with a leading letter are recognized as either variables or
bfa74976
RS
2543functions depending on what the symbol table says about them.
2544
2545The string is passed to @code{getsym} for look up in the symbol table. If
2546the name appears in the table, a pointer to its location and its type
2547(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2548already in the table, then it is installed as a @code{VAR} using
2549@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2550returned to @code{yyparse}.
bfa74976
RS
2551
2552No change is needed in the handling of numeric values and arithmetic
2553operators in @code{yylex}.
2554
2555@smallexample
2556@group
2557#include <ctype.h>
18b519c0 2558@end group
13863333 2559
18b519c0 2560@group
13863333
AD
2561int
2562yylex (void)
bfa74976
RS
2563@{
2564 int c;
2565
72d2299c 2566 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2567 while ((c = getchar ()) == ' ' || c == '\t');
2568
2569 if (c == EOF)
2570 return 0;
2571@end group
2572
2573@group
2574 /* Char starts a number => parse the number. */
2575 if (c == '.' || isdigit (c))
2576 @{
2577 ungetc (c, stdin);
2578 scanf ("%lf", &yylval.val);
2579 return NUM;
2580 @}
2581@end group
2582
2583@group
2584 /* Char starts an identifier => read the name. */
2585 if (isalpha (c))
2586 @{
2587 symrec *s;
2588 static char *symbuf = 0;
2589 static int length = 0;
2590 int i;
2591@end group
2592
2593@group
2594 /* Initially make the buffer long enough
2595 for a 40-character symbol name. */
2596 if (length == 0)
2597 length = 40, symbuf = (char *)malloc (length + 1);
2598
2599 i = 0;
2600 do
2601@end group
2602@group
2603 @{
2604 /* If buffer is full, make it bigger. */
2605 if (i == length)
2606 @{
2607 length *= 2;
18b519c0 2608 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2609 @}
2610 /* Add this character to the buffer. */
2611 symbuf[i++] = c;
2612 /* Get another character. */
2613 c = getchar ();
2614 @}
2615@end group
2616@group
72d2299c 2617 while (isalnum (c));
bfa74976
RS
2618
2619 ungetc (c, stdin);
2620 symbuf[i] = '\0';
2621@end group
2622
2623@group
2624 s = getsym (symbuf);
2625 if (s == 0)
2626 s = putsym (symbuf, VAR);
2627 yylval.tptr = s;
2628 return s->type;
2629 @}
2630
2631 /* Any other character is a token by itself. */
2632 return c;
2633@}
2634@end group
2635@end smallexample
2636
72d2299c 2637This program is both powerful and flexible. You may easily add new
704a47c4
AD
2638functions, and it is a simple job to modify this code to install
2639predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2640
342b8b6e 2641@node Exercises
bfa74976
RS
2642@section Exercises
2643@cindex exercises
2644
2645@enumerate
2646@item
2647Add some new functions from @file{math.h} to the initialization list.
2648
2649@item
2650Add another array that contains constants and their values. Then
2651modify @code{init_table} to add these constants to the symbol table.
2652It will be easiest to give the constants type @code{VAR}.
2653
2654@item
2655Make the program report an error if the user refers to an
2656uninitialized variable in any way except to store a value in it.
2657@end enumerate
2658
342b8b6e 2659@node Grammar File
bfa74976
RS
2660@chapter Bison Grammar Files
2661
2662Bison takes as input a context-free grammar specification and produces a
2663C-language function that recognizes correct instances of the grammar.
2664
2665The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2666@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2667
2668@menu
2669* Grammar Outline:: Overall layout of the grammar file.
2670* Symbols:: Terminal and nonterminal symbols.
2671* Rules:: How to write grammar rules.
2672* Recursion:: Writing recursive rules.
2673* Semantics:: Semantic values and actions.
847bf1f5 2674* Locations:: Locations and actions.
bfa74976
RS
2675* Declarations:: All kinds of Bison declarations are described here.
2676* Multiple Parsers:: Putting more than one Bison parser in one program.
2677@end menu
2678
342b8b6e 2679@node Grammar Outline
bfa74976
RS
2680@section Outline of a Bison Grammar
2681
2682A Bison grammar file has four main sections, shown here with the
2683appropriate delimiters:
2684
2685@example
2686%@{
38a92d50 2687 @var{Prologue}
bfa74976
RS
2688%@}
2689
2690@var{Bison declarations}
2691
2692%%
2693@var{Grammar rules}
2694%%
2695
75f5aaea 2696@var{Epilogue}
bfa74976
RS
2697@end example
2698
2699Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2700As a @acronym{GNU} extension, @samp{//} introduces a comment that
2701continues until end of line.
bfa74976
RS
2702
2703@menu
f5f419de 2704* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2705* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2706* Bison Declarations:: Syntax and usage of the Bison declarations section.
2707* Grammar Rules:: Syntax and usage of the grammar rules section.
2708* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2709@end menu
2710
38a92d50 2711@node Prologue
75f5aaea
MA
2712@subsection The prologue
2713@cindex declarations section
2714@cindex Prologue
2715@cindex declarations
bfa74976 2716
f8e1c9e5
AD
2717The @var{Prologue} section contains macro definitions and declarations
2718of functions and variables that are used in the actions in the grammar
2719rules. These are copied to the beginning of the parser file so that
2720they precede the definition of @code{yyparse}. You can use
2721@samp{#include} to get the declarations from a header file. If you
2722don't need any C declarations, you may omit the @samp{%@{} and
2723@samp{%@}} delimiters that bracket this section.
bfa74976 2724
9c437126 2725The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2726of @samp{%@}} that is outside a comment, a string literal, or a
2727character constant.
2728
c732d2c6
AD
2729You may have more than one @var{Prologue} section, intermixed with the
2730@var{Bison declarations}. This allows you to have C and Bison
2731declarations that refer to each other. For example, the @code{%union}
2732declaration may use types defined in a header file, and you may wish to
2733prototype functions that take arguments of type @code{YYSTYPE}. This
2734can be done with two @var{Prologue} blocks, one before and one after the
2735@code{%union} declaration.
2736
2737@smallexample
2738%@{
aef3da86 2739 #define _GNU_SOURCE
38a92d50
PE
2740 #include <stdio.h>
2741 #include "ptypes.h"
c732d2c6
AD
2742%@}
2743
2744%union @{
779e7ceb 2745 long int n;
c732d2c6
AD
2746 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2747@}
2748
2749%@{
38a92d50
PE
2750 static void print_token_value (FILE *, int, YYSTYPE);
2751 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2752%@}
2753
2754@dots{}
2755@end smallexample
2756
aef3da86
PE
2757When in doubt, it is usually safer to put prologue code before all
2758Bison declarations, rather than after. For example, any definitions
2759of feature test macros like @code{_GNU_SOURCE} or
2760@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2761feature test macros can affect the behavior of Bison-generated
2762@code{#include} directives.
2763
2cbe6b7f
JD
2764@node Prologue Alternatives
2765@subsection Prologue Alternatives
2766@cindex Prologue Alternatives
2767
136a0f76 2768@findex %code
16dc6a9e
JD
2769@findex %code requires
2770@findex %code provides
2771@findex %code top
85894313 2772
2cbe6b7f
JD
2773The functionality of @var{Prologue} sections can often be subtle and
2774inflexible.
8e0a5e9e
JD
2775As an alternative, Bison provides a %code directive with an explicit qualifier
2776field, which identifies the purpose of the code and thus the location(s) where
2777Bison should generate it.
2778For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2779one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2780@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2781
2782Look again at the example of the previous section:
2783
2784@smallexample
2785%@{
2786 #define _GNU_SOURCE
2787 #include <stdio.h>
2788 #include "ptypes.h"
2789%@}
2790
2791%union @{
2792 long int n;
2793 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2794@}
2795
2796%@{
2797 static void print_token_value (FILE *, int, YYSTYPE);
2798 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2799%@}
2800
2801@dots{}
2802@end smallexample
2803
2804@noindent
2805Notice that there are two @var{Prologue} sections here, but there's a subtle
2806distinction between their functionality.
2807For example, if you decide to override Bison's default definition for
2808@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2809definition?
2810You should write it in the first since Bison will insert that code into the
8e0a5e9e 2811parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2812In which @var{Prologue} section should you prototype an internal function,
2813@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2814arguments?
2815You should prototype it in the second since Bison will insert that code
2816@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2817
2818This distinction in functionality between the two @var{Prologue} sections is
2819established by the appearance of the @code{%union} between them.
a501eca9 2820This behavior raises a few questions.
2cbe6b7f
JD
2821First, why should the position of a @code{%union} affect definitions related to
2822@code{YYLTYPE} and @code{yytokentype}?
2823Second, what if there is no @code{%union}?
2824In that case, the second kind of @var{Prologue} section is not available.
2825This behavior is not intuitive.
2826
8e0a5e9e 2827To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2828@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2829Let's go ahead and add the new @code{YYLTYPE} definition and the
2830@code{trace_token} prototype at the same time:
2831
2832@smallexample
16dc6a9e 2833%code top @{
2cbe6b7f
JD
2834 #define _GNU_SOURCE
2835 #include <stdio.h>
8e0a5e9e
JD
2836
2837 /* WARNING: The following code really belongs
16dc6a9e 2838 * in a `%code requires'; see below. */
8e0a5e9e 2839
2cbe6b7f
JD
2840 #include "ptypes.h"
2841 #define YYLTYPE YYLTYPE
2842 typedef struct YYLTYPE
2843 @{
2844 int first_line;
2845 int first_column;
2846 int last_line;
2847 int last_column;
2848 char *filename;
2849 @} YYLTYPE;
2850@}
2851
2852%union @{
2853 long int n;
2854 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2855@}
2856
2857%code @{
2858 static void print_token_value (FILE *, int, YYSTYPE);
2859 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2860 static void trace_token (enum yytokentype token, YYLTYPE loc);
2861@}
2862
2863@dots{}
2864@end smallexample
2865
2866@noindent
16dc6a9e
JD
2867In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2868functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2869explicit which kind you intend.
2cbe6b7f
JD
2870Moreover, both kinds are always available even in the absence of @code{%union}.
2871
16dc6a9e 2872The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2873The first two lines before the warning need to appear near the top of the
2874parser source code file.
2875The first line after the warning is required by @code{YYSTYPE} and thus also
2876needs to appear in the parser source code file.
2cbe6b7f 2877However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2878(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2879the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2880The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2881override the default @code{YYLTYPE} definition there.
2882
16dc6a9e 2883In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2884lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2885definitions.
16dc6a9e 2886Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2887
2888@smallexample
16dc6a9e 2889%code top @{
2cbe6b7f
JD
2890 #define _GNU_SOURCE
2891 #include <stdio.h>
2892@}
2893
16dc6a9e 2894%code requires @{
9bc0dd67
JD
2895 #include "ptypes.h"
2896@}
2897%union @{
2898 long int n;
2899 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2900@}
2901
16dc6a9e 2902%code requires @{
2cbe6b7f
JD
2903 #define YYLTYPE YYLTYPE
2904 typedef struct YYLTYPE
2905 @{
2906 int first_line;
2907 int first_column;
2908 int last_line;
2909 int last_column;
2910 char *filename;
2911 @} YYLTYPE;
2912@}
2913
136a0f76 2914%code @{
2cbe6b7f
JD
2915 static void print_token_value (FILE *, int, YYSTYPE);
2916 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2917 static void trace_token (enum yytokentype token, YYLTYPE loc);
2918@}
2919
2920@dots{}
2921@end smallexample
2922
2923@noindent
2924Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2925definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2926definitions in both the parser source code file and the parser header file.
16dc6a9e 2927(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2928place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2929
a501eca9 2930When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2931should prefer @code{%code requires} over @code{%code top} regardless of whether
2932you instruct Bison to generate a parser header file.
a501eca9 2933When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2934source code file and that has no special need to appear at the top of that
16dc6a9e 2935file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2936These practices will make the purpose of each block of your code explicit to
2937Bison and to other developers reading your grammar file.
8e0a5e9e 2938Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2939@code{%code requires} to be the most important of the four @var{Prologue}
2940alternatives.
a501eca9 2941
2cbe6b7f
JD
2942At some point while developing your parser, you might decide to provide
2943@code{trace_token} to modules that are external to your parser.
2944Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2945header file and the parser source code file.
2946Since this function is not a dependency required by @code{YYSTYPE} or
2947@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2948@code{%code requires}.
2cbe6b7f 2949More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2950@code{%code requires} is not sufficient.
8e0a5e9e 2951Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2952@code{%code provides}:
2cbe6b7f
JD
2953
2954@smallexample
16dc6a9e 2955%code top @{
2cbe6b7f 2956 #define _GNU_SOURCE
136a0f76 2957 #include <stdio.h>
2cbe6b7f 2958@}
136a0f76 2959
16dc6a9e 2960%code requires @{
2cbe6b7f
JD
2961 #include "ptypes.h"
2962@}
2963%union @{
2964 long int n;
2965 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2966@}
2967
16dc6a9e 2968%code requires @{
2cbe6b7f
JD
2969 #define YYLTYPE YYLTYPE
2970 typedef struct YYLTYPE
2971 @{
2972 int first_line;
2973 int first_column;
2974 int last_line;
2975 int last_column;
2976 char *filename;
2977 @} YYLTYPE;
2978@}
2979
16dc6a9e 2980%code provides @{
2cbe6b7f
JD
2981 void trace_token (enum yytokentype token, YYLTYPE loc);
2982@}
2983
2984%code @{
9bc0dd67
JD
2985 static void print_token_value (FILE *, int, YYSTYPE);
2986 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2987@}
9bc0dd67
JD
2988
2989@dots{}
2990@end smallexample
2991
2cbe6b7f
JD
2992@noindent
2993Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2994file and the parser source code file after the definitions for
2995@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2996
2997The above examples are careful to write directives in an order that reflects
8e0a5e9e 2998the layout of the generated parser source code and header files:
16dc6a9e 2999@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3000@code{%code}.
a501eca9 3001While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3002this order, Bison does not require it.
3003Instead, Bison lets you choose an organization that makes sense to you.
3004
a501eca9 3005You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3006In that case, Bison concatenates the contained code in declaration order.
3007This is the only way in which the position of one of these directives within
3008the grammar file affects its functionality.
3009
3010The result of the previous two properties is greater flexibility in how you may
3011organize your grammar file.
3012For example, you may organize semantic-type-related directives by semantic
3013type:
3014
3015@smallexample
16dc6a9e 3016%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3017%union @{ type1 field1; @}
3018%destructor @{ type1_free ($$); @} <field1>
3019%printer @{ type1_print ($$); @} <field1>
3020
16dc6a9e 3021%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3022%union @{ type2 field2; @}
3023%destructor @{ type2_free ($$); @} <field2>
3024%printer @{ type2_print ($$); @} <field2>
3025@end smallexample
3026
3027@noindent
3028You could even place each of the above directive groups in the rules section of
3029the grammar file next to the set of rules that uses the associated semantic
3030type.
61fee93e
JD
3031(In the rules section, you must terminate each of those directives with a
3032semicolon.)
2cbe6b7f
JD
3033And you don't have to worry that some directive (like a @code{%union}) in the
3034definitions section is going to adversely affect their functionality in some
3035counter-intuitive manner just because it comes first.
3036Such an organization is not possible using @var{Prologue} sections.
3037
a501eca9 3038This section has been concerned with explaining the advantages of the four
8e0a5e9e 3039@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3040However, in most cases when using these directives, you shouldn't need to
3041think about all the low-level ordering issues discussed here.
3042Instead, you should simply use these directives to label each block of your
3043code according to its purpose and let Bison handle the ordering.
3044@code{%code} is the most generic label.
16dc6a9e
JD
3045Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3046as needed.
a501eca9 3047
342b8b6e 3048@node Bison Declarations
bfa74976
RS
3049@subsection The Bison Declarations Section
3050@cindex Bison declarations (introduction)
3051@cindex declarations, Bison (introduction)
3052
3053The @var{Bison declarations} section contains declarations that define
3054terminal and nonterminal symbols, specify precedence, and so on.
3055In some simple grammars you may not need any declarations.
3056@xref{Declarations, ,Bison Declarations}.
3057
342b8b6e 3058@node Grammar Rules
bfa74976
RS
3059@subsection The Grammar Rules Section
3060@cindex grammar rules section
3061@cindex rules section for grammar
3062
3063The @dfn{grammar rules} section contains one or more Bison grammar
3064rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3065
3066There must always be at least one grammar rule, and the first
3067@samp{%%} (which precedes the grammar rules) may never be omitted even
3068if it is the first thing in the file.
3069
38a92d50 3070@node Epilogue
75f5aaea 3071@subsection The epilogue
bfa74976 3072@cindex additional C code section
75f5aaea 3073@cindex epilogue
bfa74976
RS
3074@cindex C code, section for additional
3075
08e49d20
PE
3076The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3077the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3078place to put anything that you want to have in the parser file but which need
3079not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3080definitions of @code{yylex} and @code{yyerror} often go here. Because
3081C requires functions to be declared before being used, you often need
3082to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3083even if you define them in the Epilogue.
75f5aaea 3084@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3085
3086If the last section is empty, you may omit the @samp{%%} that separates it
3087from the grammar rules.
3088
f8e1c9e5
AD
3089The Bison parser itself contains many macros and identifiers whose names
3090start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3091any such names (except those documented in this manual) in the epilogue
3092of the grammar file.
bfa74976 3093
342b8b6e 3094@node Symbols
bfa74976
RS
3095@section Symbols, Terminal and Nonterminal
3096@cindex nonterminal symbol
3097@cindex terminal symbol
3098@cindex token type
3099@cindex symbol
3100
3101@dfn{Symbols} in Bison grammars represent the grammatical classifications
3102of the language.
3103
3104A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3105class of syntactically equivalent tokens. You use the symbol in grammar
3106rules to mean that a token in that class is allowed. The symbol is
3107represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3108function returns a token type code to indicate what kind of token has
3109been read. You don't need to know what the code value is; you can use
3110the symbol to stand for it.
bfa74976 3111
f8e1c9e5
AD
3112A @dfn{nonterminal symbol} stands for a class of syntactically
3113equivalent groupings. The symbol name is used in writing grammar rules.
3114By convention, it should be all lower case.
bfa74976 3115
cdf3f113
AD
3116Symbol names can contain letters, underscores, periods, dashes, and (not
3117at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3118extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3119that contain periods or dashes make little sense: since they are not
3120valid symbols (in most programming languages) they are not exported as
3121token names.
bfa74976 3122
931c7513 3123There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3124
3125@itemize @bullet
3126@item
3127A @dfn{named token type} is written with an identifier, like an
c827f760 3128identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3129such name must be defined with a Bison declaration such as
3130@code{%token}. @xref{Token Decl, ,Token Type Names}.
3131
3132@item
3133@cindex character token
3134@cindex literal token
3135@cindex single-character literal
931c7513
RS
3136A @dfn{character token type} (or @dfn{literal character token}) is
3137written in the grammar using the same syntax used in C for character
3138constants; for example, @code{'+'} is a character token type. A
3139character token type doesn't need to be declared unless you need to
3140specify its semantic value data type (@pxref{Value Type, ,Data Types of
3141Semantic Values}), associativity, or precedence (@pxref{Precedence,
3142,Operator Precedence}).
bfa74976
RS
3143
3144By convention, a character token type is used only to represent a
3145token that consists of that particular character. Thus, the token
3146type @code{'+'} is used to represent the character @samp{+} as a
3147token. Nothing enforces this convention, but if you depart from it,
3148your program will confuse other readers.
3149
3150All the usual escape sequences used in character literals in C can be
3151used in Bison as well, but you must not use the null character as a
72d2299c
PE
3152character literal because its numeric code, zero, signifies
3153end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3154for @code{yylex}}). Also, unlike standard C, trigraphs have no
3155special meaning in Bison character literals, nor is backslash-newline
3156allowed.
931c7513
RS
3157
3158@item
3159@cindex string token
3160@cindex literal string token
9ecbd125 3161@cindex multicharacter literal
931c7513
RS
3162A @dfn{literal string token} is written like a C string constant; for
3163example, @code{"<="} is a literal string token. A literal string token
3164doesn't need to be declared unless you need to specify its semantic
14ded682 3165value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3166(@pxref{Precedence}).
3167
3168You can associate the literal string token with a symbolic name as an
3169alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3170Declarations}). If you don't do that, the lexical analyzer has to
3171retrieve the token number for the literal string token from the
3172@code{yytname} table (@pxref{Calling Convention}).
3173
c827f760 3174@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3175
3176By convention, a literal string token is used only to represent a token
3177that consists of that particular string. Thus, you should use the token
3178type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3179does not enforce this convention, but if you depart from it, people who
931c7513
RS
3180read your program will be confused.
3181
3182All the escape sequences used in string literals in C can be used in
92ac3705
PE
3183Bison as well, except that you must not use a null character within a
3184string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3185meaning in Bison string literals, nor is backslash-newline allowed. A
3186literal string token must contain two or more characters; for a token
3187containing just one character, use a character token (see above).
bfa74976
RS
3188@end itemize
3189
3190How you choose to write a terminal symbol has no effect on its
3191grammatical meaning. That depends only on where it appears in rules and
3192on when the parser function returns that symbol.
3193
72d2299c
PE
3194The value returned by @code{yylex} is always one of the terminal
3195symbols, except that a zero or negative value signifies end-of-input.
3196Whichever way you write the token type in the grammar rules, you write
3197it the same way in the definition of @code{yylex}. The numeric code
3198for a character token type is simply the positive numeric code of the
3199character, so @code{yylex} can use the identical value to generate the
3200requisite code, though you may need to convert it to @code{unsigned
3201char} to avoid sign-extension on hosts where @code{char} is signed.
3202Each named token type becomes a C macro in
bfa74976 3203the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3204(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3205@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3206
3207If @code{yylex} is defined in a separate file, you need to arrange for the
3208token-type macro definitions to be available there. Use the @samp{-d}
3209option when you run Bison, so that it will write these macro definitions
3210into a separate header file @file{@var{name}.tab.h} which you can include
3211in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3212
72d2299c 3213If you want to write a grammar that is portable to any Standard C
9d9b8b70 3214host, you must use only nonnull character tokens taken from the basic
c827f760 3215execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3216digits, the 52 lower- and upper-case English letters, and the
3217characters in the following C-language string:
3218
3219@example
3220"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3221@end example
3222
f8e1c9e5
AD
3223The @code{yylex} function and Bison must use a consistent character set
3224and encoding for character tokens. For example, if you run Bison in an
3225@acronym{ASCII} environment, but then compile and run the resulting
3226program in an environment that uses an incompatible character set like
3227@acronym{EBCDIC}, the resulting program may not work because the tables
3228generated by Bison will assume @acronym{ASCII} numeric values for
3229character tokens. It is standard practice for software distributions to
3230contain C source files that were generated by Bison in an
3231@acronym{ASCII} environment, so installers on platforms that are
3232incompatible with @acronym{ASCII} must rebuild those files before
3233compiling them.
e966383b 3234
bfa74976
RS
3235The symbol @code{error} is a terminal symbol reserved for error recovery
3236(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3237In particular, @code{yylex} should never return this value. The default
3238value of the error token is 256, unless you explicitly assigned 256 to
3239one of your tokens with a @code{%token} declaration.
bfa74976 3240
342b8b6e 3241@node Rules
bfa74976
RS
3242@section Syntax of Grammar Rules
3243@cindex rule syntax
3244@cindex grammar rule syntax
3245@cindex syntax of grammar rules
3246
3247A Bison grammar rule has the following general form:
3248
3249@example
e425e872 3250@group
bfa74976
RS
3251@var{result}: @var{components}@dots{}
3252 ;
e425e872 3253@end group
bfa74976
RS
3254@end example
3255
3256@noindent
9ecbd125 3257where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3258and @var{components} are various terminal and nonterminal symbols that
13863333 3259are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3260
3261For example,
3262
3263@example
3264@group
3265exp: exp '+' exp
3266 ;
3267@end group
3268@end example
3269
3270@noindent
3271says that two groupings of type @code{exp}, with a @samp{+} token in between,
3272can be combined into a larger grouping of type @code{exp}.
3273
72d2299c
PE
3274White space in rules is significant only to separate symbols. You can add
3275extra white space as you wish.
bfa74976
RS
3276
3277Scattered among the components can be @var{actions} that determine
3278the semantics of the rule. An action looks like this:
3279
3280@example
3281@{@var{C statements}@}
3282@end example
3283
3284@noindent
287c78f6
PE
3285@cindex braced code
3286This is an example of @dfn{braced code}, that is, C code surrounded by
3287braces, much like a compound statement in C@. Braced code can contain
3288any sequence of C tokens, so long as its braces are balanced. Bison
3289does not check the braced code for correctness directly; it merely
3290copies the code to the output file, where the C compiler can check it.
3291
3292Within braced code, the balanced-brace count is not affected by braces
3293within comments, string literals, or character constants, but it is
3294affected by the C digraphs @samp{<%} and @samp{%>} that represent
3295braces. At the top level braced code must be terminated by @samp{@}}
3296and not by a digraph. Bison does not look for trigraphs, so if braced
3297code uses trigraphs you should ensure that they do not affect the
3298nesting of braces or the boundaries of comments, string literals, or
3299character constants.
3300
bfa74976
RS
3301Usually there is only one action and it follows the components.
3302@xref{Actions}.
3303
3304@findex |
3305Multiple rules for the same @var{result} can be written separately or can
3306be joined with the vertical-bar character @samp{|} as follows:
3307
bfa74976
RS
3308@example
3309@group
3310@var{result}: @var{rule1-components}@dots{}
3311 | @var{rule2-components}@dots{}
3312 @dots{}
3313 ;
3314@end group
3315@end example
bfa74976
RS
3316
3317@noindent
3318They are still considered distinct rules even when joined in this way.
3319
3320If @var{components} in a rule is empty, it means that @var{result} can
3321match the empty string. For example, here is how to define a
3322comma-separated sequence of zero or more @code{exp} groupings:
3323
3324@example
3325@group
3326expseq: /* empty */
3327 | expseq1
3328 ;
3329@end group
3330
3331@group
3332expseq1: exp
3333 | expseq1 ',' exp
3334 ;
3335@end group
3336@end example
3337
3338@noindent
3339It is customary to write a comment @samp{/* empty */} in each rule
3340with no components.
3341
342b8b6e 3342@node Recursion
bfa74976
RS
3343@section Recursive Rules
3344@cindex recursive rule
3345
f8e1c9e5
AD
3346A rule is called @dfn{recursive} when its @var{result} nonterminal
3347appears also on its right hand side. Nearly all Bison grammars need to
3348use recursion, because that is the only way to define a sequence of any
3349number of a particular thing. Consider this recursive definition of a
9ecbd125 3350comma-separated sequence of one or more expressions:
bfa74976
RS
3351
3352@example
3353@group
3354expseq1: exp
3355 | expseq1 ',' exp
3356 ;
3357@end group
3358@end example
3359
3360@cindex left recursion
3361@cindex right recursion
3362@noindent
3363Since the recursive use of @code{expseq1} is the leftmost symbol in the
3364right hand side, we call this @dfn{left recursion}. By contrast, here
3365the same construct is defined using @dfn{right recursion}:
3366
3367@example
3368@group
3369expseq1: exp
3370 | exp ',' expseq1
3371 ;
3372@end group
3373@end example
3374
3375@noindent
ec3bc396
AD
3376Any kind of sequence can be defined using either left recursion or right
3377recursion, but you should always use left recursion, because it can
3378parse a sequence of any number of elements with bounded stack space.
3379Right recursion uses up space on the Bison stack in proportion to the
3380number of elements in the sequence, because all the elements must be
3381shifted onto the stack before the rule can be applied even once.
3382@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3383of this.
bfa74976
RS
3384
3385@cindex mutual recursion
3386@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3387rule does not appear directly on its right hand side, but does appear
3388in rules for other nonterminals which do appear on its right hand
13863333 3389side.
bfa74976
RS
3390
3391For example:
3392
3393@example
3394@group
3395expr: primary
3396 | primary '+' primary
3397 ;
3398@end group
3399
3400@group
3401primary: constant
3402 | '(' expr ')'
3403 ;
3404@end group
3405@end example
3406
3407@noindent
3408defines two mutually-recursive nonterminals, since each refers to the
3409other.
3410
342b8b6e 3411@node Semantics
bfa74976
RS
3412@section Defining Language Semantics
3413@cindex defining language semantics
13863333 3414@cindex language semantics, defining
bfa74976
RS
3415
3416The grammar rules for a language determine only the syntax. The semantics
3417are determined by the semantic values associated with various tokens and
3418groupings, and by the actions taken when various groupings are recognized.
3419
3420For example, the calculator calculates properly because the value
3421associated with each expression is the proper number; it adds properly
3422because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3423the numbers associated with @var{x} and @var{y}.
3424
3425@menu
3426* Value Type:: Specifying one data type for all semantic values.
3427* Multiple Types:: Specifying several alternative data types.
3428* Actions:: An action is the semantic definition of a grammar rule.
3429* Action Types:: Specifying data types for actions to operate on.
3430* Mid-Rule Actions:: Most actions go at the end of a rule.
3431 This says when, why and how to use the exceptional
3432 action in the middle of a rule.
d013372c 3433* Named References:: Using named references in actions.
bfa74976
RS
3434@end menu
3435
342b8b6e 3436@node Value Type
bfa74976
RS
3437@subsection Data Types of Semantic Values
3438@cindex semantic value type
3439@cindex value type, semantic
3440@cindex data types of semantic values
3441@cindex default data type
3442
3443In a simple program it may be sufficient to use the same data type for
3444the semantic values of all language constructs. This was true in the
c827f760 3445@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3446Notation Calculator}).
bfa74976 3447
ddc8ede1
PE
3448Bison normally uses the type @code{int} for semantic values if your
3449program uses the same data type for all language constructs. To
bfa74976
RS
3450specify some other type, define @code{YYSTYPE} as a macro, like this:
3451
3452@example
3453#define YYSTYPE double
3454@end example
3455
3456@noindent
50cce58e
PE
3457@code{YYSTYPE}'s replacement list should be a type name
3458that does not contain parentheses or square brackets.
342b8b6e 3459This macro definition must go in the prologue of the grammar file
75f5aaea 3460(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3461
342b8b6e 3462@node Multiple Types
bfa74976
RS
3463@subsection More Than One Value Type
3464
3465In most programs, you will need different data types for different kinds
3466of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3467@code{int} or @code{long int}, while a string constant needs type
3468@code{char *}, and an identifier might need a pointer to an entry in the
3469symbol table.
bfa74976
RS
3470
3471To use more than one data type for semantic values in one parser, Bison
3472requires you to do two things:
3473
3474@itemize @bullet
3475@item
ddc8ede1 3476Specify the entire collection of possible data types, either by using the
704a47c4 3477@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3478Value Types}), or by using a @code{typedef} or a @code{#define} to
3479define @code{YYSTYPE} to be a union type whose member names are
3480the type tags.
bfa74976
RS
3481
3482@item
14ded682
AD
3483Choose one of those types for each symbol (terminal or nonterminal) for
3484which semantic values are used. This is done for tokens with the
3485@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3486and for groupings with the @code{%type} Bison declaration (@pxref{Type
3487Decl, ,Nonterminal Symbols}).
bfa74976
RS
3488@end itemize
3489
342b8b6e 3490@node Actions
bfa74976
RS
3491@subsection Actions
3492@cindex action
3493@vindex $$
3494@vindex $@var{n}
d013372c
AR
3495@vindex $@var{name}
3496@vindex $[@var{name}]
bfa74976
RS
3497
3498An action accompanies a syntactic rule and contains C code to be executed
3499each time an instance of that rule is recognized. The task of most actions
3500is to compute a semantic value for the grouping built by the rule from the
3501semantic values associated with tokens or smaller groupings.
3502
287c78f6
PE
3503An action consists of braced code containing C statements, and can be
3504placed at any position in the rule;
704a47c4
AD
3505it is executed at that position. Most rules have just one action at the
3506end of the rule, following all the components. Actions in the middle of
3507a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3508Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3509
3510The C code in an action can refer to the semantic values of the components
3511matched by the rule with the construct @code{$@var{n}}, which stands for
3512the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3513being constructed is @code{$$}. In addition, the semantic values of
3514symbols can be accessed with the named references construct
3515@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3516constructs into expressions of the appropriate type when it copies the
d013372c
AR
3517actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3518stands for the current grouping) is translated to a modifiable
0cc3da3a 3519lvalue, so it can be assigned to.
bfa74976
RS
3520
3521Here is a typical example:
3522
3523@example
3524@group
3525exp: @dots{}
3526 | exp '+' exp
3527 @{ $$ = $1 + $3; @}
3528@end group
3529@end example
3530
d013372c
AR
3531Or, in terms of named references:
3532
3533@example
3534@group
3535exp[result]: @dots{}
3536 | exp[left] '+' exp[right]
3537 @{ $result = $left + $right; @}
3538@end group
3539@end example
3540
bfa74976
RS
3541@noindent
3542This rule constructs an @code{exp} from two smaller @code{exp} groupings
3543connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3544(@code{$left} and @code{$right})
bfa74976
RS
3545refer to the semantic values of the two component @code{exp} groupings,
3546which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3547The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3548semantic value of
bfa74976
RS
3549the addition-expression just recognized by the rule. If there were a
3550useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3551referred to as @code{$2}.
bfa74976 3552
d013372c
AR
3553@xref{Named References,,Using Named References}, for more information
3554about using the named references construct.
3555
3ded9a63
AD
3556Note that the vertical-bar character @samp{|} is really a rule
3557separator, and actions are attached to a single rule. This is a
3558difference with tools like Flex, for which @samp{|} stands for either
3559``or'', or ``the same action as that of the next rule''. In the
3560following example, the action is triggered only when @samp{b} is found:
3561
3562@example
3563@group
3564a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3565@end group
3566@end example
3567
bfa74976
RS
3568@cindex default action
3569If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3570@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3571becomes the value of the whole rule. Of course, the default action is
3572valid only if the two data types match. There is no meaningful default
3573action for an empty rule; every empty rule must have an explicit action
3574unless the rule's value does not matter.
bfa74976
RS
3575
3576@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3577to tokens and groupings on the stack @emph{before} those that match the
3578current rule. This is a very risky practice, and to use it reliably
3579you must be certain of the context in which the rule is applied. Here
3580is a case in which you can use this reliably:
3581
3582@example
3583@group
3584foo: expr bar '+' expr @{ @dots{} @}
3585 | expr bar '-' expr @{ @dots{} @}
3586 ;
3587@end group
3588
3589@group
3590bar: /* empty */
3591 @{ previous_expr = $0; @}
3592 ;
3593@end group
3594@end example
3595
3596As long as @code{bar} is used only in the fashion shown here, @code{$0}
3597always refers to the @code{expr} which precedes @code{bar} in the
3598definition of @code{foo}.
3599
32c29292 3600@vindex yylval
742e4900 3601It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3602any, from a semantic action.
3603This semantic value is stored in @code{yylval}.
3604@xref{Action Features, ,Special Features for Use in Actions}.
3605
342b8b6e 3606@node Action Types
bfa74976
RS
3607@subsection Data Types of Values in Actions
3608@cindex action data types
3609@cindex data types in actions
3610
3611If you have chosen a single data type for semantic values, the @code{$$}
3612and @code{$@var{n}} constructs always have that data type.
3613
3614If you have used @code{%union} to specify a variety of data types, then you
3615must declare a choice among these types for each terminal or nonterminal
3616symbol that can have a semantic value. Then each time you use @code{$$} or
3617@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3618in the rule. In this example,
bfa74976
RS
3619
3620@example
3621@group
3622exp: @dots{}
3623 | exp '+' exp
3624 @{ $$ = $1 + $3; @}
3625@end group
3626@end example
3627
3628@noindent
3629@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3630have the data type declared for the nonterminal symbol @code{exp}. If
3631@code{$2} were used, it would have the data type declared for the
e0c471a9 3632terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3633
3634Alternatively, you can specify the data type when you refer to the value,
3635by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3636reference. For example, if you have defined types as shown here:
3637
3638@example
3639@group
3640%union @{
3641 int itype;
3642 double dtype;
3643@}
3644@end group
3645@end example
3646
3647@noindent
3648then you can write @code{$<itype>1} to refer to the first subunit of the
3649rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3650
342b8b6e 3651@node Mid-Rule Actions
bfa74976
RS
3652@subsection Actions in Mid-Rule
3653@cindex actions in mid-rule
3654@cindex mid-rule actions
3655
3656Occasionally it is useful to put an action in the middle of a rule.
3657These actions are written just like usual end-of-rule actions, but they
3658are executed before the parser even recognizes the following components.
3659
3660A mid-rule action may refer to the components preceding it using
3661@code{$@var{n}}, but it may not refer to subsequent components because
3662it is run before they are parsed.
3663
3664The mid-rule action itself counts as one of the components of the rule.
3665This makes a difference when there is another action later in the same rule
3666(and usually there is another at the end): you have to count the actions
3667along with the symbols when working out which number @var{n} to use in
3668@code{$@var{n}}.
3669
3670The mid-rule action can also have a semantic value. The action can set
3671its value with an assignment to @code{$$}, and actions later in the rule
3672can refer to the value using @code{$@var{n}}. Since there is no symbol
3673to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3674in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3675specify a data type each time you refer to this value.
bfa74976
RS
3676
3677There is no way to set the value of the entire rule with a mid-rule
3678action, because assignments to @code{$$} do not have that effect. The
3679only way to set the value for the entire rule is with an ordinary action
3680at the end of the rule.
3681
3682Here is an example from a hypothetical compiler, handling a @code{let}
3683statement that looks like @samp{let (@var{variable}) @var{statement}} and
3684serves to create a variable named @var{variable} temporarily for the
3685duration of @var{statement}. To parse this construct, we must put
3686@var{variable} into the symbol table while @var{statement} is parsed, then
3687remove it afterward. Here is how it is done:
3688
3689@example
3690@group
3691stmt: LET '(' var ')'
3692 @{ $<context>$ = push_context ();
3693 declare_variable ($3); @}
3694 stmt @{ $$ = $6;
3695 pop_context ($<context>5); @}
3696@end group
3697@end example
3698
3699@noindent
3700As soon as @samp{let (@var{variable})} has been recognized, the first
3701action is run. It saves a copy of the current semantic context (the
3702list of accessible variables) as its semantic value, using alternative
3703@code{context} in the data-type union. Then it calls
3704@code{declare_variable} to add the new variable to that list. Once the
3705first action is finished, the embedded statement @code{stmt} can be
3706parsed. Note that the mid-rule action is component number 5, so the
3707@samp{stmt} is component number 6.
3708
3709After the embedded statement is parsed, its semantic value becomes the
3710value of the entire @code{let}-statement. Then the semantic value from the
3711earlier action is used to restore the prior list of variables. This
3712removes the temporary @code{let}-variable from the list so that it won't
3713appear to exist while the rest of the program is parsed.
3714
841a7737
JD
3715@findex %destructor
3716@cindex discarded symbols, mid-rule actions
3717@cindex error recovery, mid-rule actions
3718In the above example, if the parser initiates error recovery (@pxref{Error
3719Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3720it might discard the previous semantic context @code{$<context>5} without
3721restoring it.
3722Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3723Discarded Symbols}).
ec5479ce
JD
3724However, Bison currently provides no means to declare a destructor specific to
3725a particular mid-rule action's semantic value.
841a7737
JD
3726
3727One solution is to bury the mid-rule action inside a nonterminal symbol and to
3728declare a destructor for that symbol:
3729
3730@example
3731@group
3732%type <context> let
3733%destructor @{ pop_context ($$); @} let
3734
3735%%
3736
3737stmt: let stmt
3738 @{ $$ = $2;
3739 pop_context ($1); @}
3740 ;
3741
3742let: LET '(' var ')'
3743 @{ $$ = push_context ();
3744 declare_variable ($3); @}
3745 ;
3746
3747@end group
3748@end example
3749
3750@noindent
3751Note that the action is now at the end of its rule.
3752Any mid-rule action can be converted to an end-of-rule action in this way, and
3753this is what Bison actually does to implement mid-rule actions.
3754
bfa74976
RS
3755Taking action before a rule is completely recognized often leads to
3756conflicts since the parser must commit to a parse in order to execute the
3757action. For example, the following two rules, without mid-rule actions,
3758can coexist in a working parser because the parser can shift the open-brace
3759token and look at what follows before deciding whether there is a
3760declaration or not:
3761
3762@example
3763@group
3764compound: '@{' declarations statements '@}'
3765 | '@{' statements '@}'
3766 ;
3767@end group
3768@end example
3769
3770@noindent
3771But when we add a mid-rule action as follows, the rules become nonfunctional:
3772
3773@example
3774@group
3775compound: @{ prepare_for_local_variables (); @}
3776 '@{' declarations statements '@}'
3777@end group
3778@group
3779 | '@{' statements '@}'
3780 ;
3781@end group
3782@end example
3783
3784@noindent
3785Now the parser is forced to decide whether to run the mid-rule action
3786when it has read no farther than the open-brace. In other words, it
3787must commit to using one rule or the other, without sufficient
3788information to do it correctly. (The open-brace token is what is called
742e4900
JD
3789the @dfn{lookahead} token at this time, since the parser is still
3790deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3791
3792You might think that you could correct the problem by putting identical
3793actions into the two rules, like this:
3794
3795@example
3796@group
3797compound: @{ prepare_for_local_variables (); @}
3798 '@{' declarations statements '@}'
3799 | @{ prepare_for_local_variables (); @}
3800 '@{' statements '@}'
3801 ;
3802@end group
3803@end example
3804
3805@noindent
3806But this does not help, because Bison does not realize that the two actions
3807are identical. (Bison never tries to understand the C code in an action.)
3808
3809If the grammar is such that a declaration can be distinguished from a
3810statement by the first token (which is true in C), then one solution which
3811does work is to put the action after the open-brace, like this:
3812
3813@example
3814@group
3815compound: '@{' @{ prepare_for_local_variables (); @}
3816 declarations statements '@}'
3817 | '@{' statements '@}'
3818 ;
3819@end group
3820@end example
3821
3822@noindent
3823Now the first token of the following declaration or statement,
3824which would in any case tell Bison which rule to use, can still do so.
3825
3826Another solution is to bury the action inside a nonterminal symbol which
3827serves as a subroutine:
3828
3829@example
3830@group
3831subroutine: /* empty */
3832 @{ prepare_for_local_variables (); @}
3833 ;
3834
3835@end group
3836
3837@group
3838compound: subroutine
3839 '@{' declarations statements '@}'
3840 | subroutine
3841 '@{' statements '@}'
3842 ;
3843@end group
3844@end example
3845
3846@noindent
3847Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3848deciding which rule for @code{compound} it will eventually use.
bfa74976 3849
d013372c
AR
3850@node Named References
3851@subsection Using Named References
3852@cindex named references
3853
3854While every semantic value can be accessed with positional references
3855@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3856them by name. First of all, original symbol names may be used as named
3857references. For example:
3858
3859@example
3860@group
3861invocation: op '(' args ')'
3862 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3863@end group
3864@end example
3865
3866@noindent
3867The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3868mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3869
3870@example
3871@group
3872invocation: op '(' args ')'
3873 @{ $$ = new_invocation ($op, $args, @@$); @}
3874@end group
3875@end example
3876
3877@noindent
3878However, sometimes regular symbol names are not sufficient due to
3879ambiguities:
3880
3881@example
3882@group
3883exp: exp '/' exp
3884 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3885
3886exp: exp '/' exp
3887 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3888
3889exp: exp '/' exp
3890 @{ $$ = $1 / $3; @} // No error.
3891@end group
3892@end example
3893
3894@noindent
3895When ambiguity occurs, explicitly declared names may be used for values and
3896locations. Explicit names are declared as a bracketed name after a symbol
3897appearance in rule definitions. For example:
3898@example
3899@group
3900exp[result]: exp[left] '/' exp[right]
3901 @{ $result = $left / $right; @}
3902@end group
3903@end example
3904
3905@noindent
3906Explicit names may be declared for RHS and for LHS symbols as well. In order
3907to access a semantic value generated by a mid-rule action, an explicit name
3908may also be declared by putting a bracketed name after the closing brace of
3909the mid-rule action code:
3910@example
3911@group
3912exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3913 @{ $res = $left + $right; @}
3914@end group
3915@end example
3916
3917@noindent
3918
3919In references, in order to specify names containing dots and dashes, an explicit
3920bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3921@example
3922@group
3923if-stmt: IF '(' expr ')' THEN then.stmt ';'
3924 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3925@end group
3926@end example
3927
3928It often happens that named references are followed by a dot, dash or other
3929C punctuation marks and operators. By default, Bison will read
3930@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3931@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3932value. In order to force Bison to recognize @code{name.suffix} in its entirety
3933as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3934must be used.
3935
3936
342b8b6e 3937@node Locations
847bf1f5
AD
3938@section Tracking Locations
3939@cindex location
95923bd6
AD
3940@cindex textual location
3941@cindex location, textual
847bf1f5
AD
3942
3943Though grammar rules and semantic actions are enough to write a fully
72d2299c 3944functional parser, it can be useful to process some additional information,
3e259915
MA
3945especially symbol locations.
3946
704a47c4
AD
3947The way locations are handled is defined by providing a data type, and
3948actions to take when rules are matched.
847bf1f5
AD
3949
3950@menu
3951* Location Type:: Specifying a data type for locations.
3952* Actions and Locations:: Using locations in actions.
3953* Location Default Action:: Defining a general way to compute locations.
3954@end menu
3955
342b8b6e 3956@node Location Type
847bf1f5
AD
3957@subsection Data Type of Locations
3958@cindex data type of locations
3959@cindex default location type
3960
3961Defining a data type for locations is much simpler than for semantic values,
3962since all tokens and groupings always use the same type.
3963
50cce58e
PE
3964You can specify the type of locations by defining a macro called
3965@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3966defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3967When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3968four members:
3969
3970@example
6273355b 3971typedef struct YYLTYPE
847bf1f5
AD
3972@{
3973 int first_line;
3974 int first_column;
3975 int last_line;
3976 int last_column;
6273355b 3977@} YYLTYPE;
847bf1f5
AD
3978@end example
3979
d59e456d
AD
3980When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3981initializes all these fields to 1 for @code{yylloc}. To initialize
3982@code{yylloc} with a custom location type (or to chose a different
3983initialization), use the @code{%initial-action} directive. @xref{Initial
3984Action Decl, , Performing Actions before Parsing}.
cd48d21d 3985
342b8b6e 3986@node Actions and Locations
847bf1f5
AD
3987@subsection Actions and Locations
3988@cindex location actions
3989@cindex actions, location
3990@vindex @@$
3991@vindex @@@var{n}
d013372c
AR
3992@vindex @@@var{name}
3993@vindex @@[@var{name}]
847bf1f5
AD
3994
3995Actions are not only useful for defining language semantics, but also for
3996describing the behavior of the output parser with locations.
3997
3998The most obvious way for building locations of syntactic groupings is very
72d2299c 3999similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4000constructs can be used to access the locations of the elements being matched.
4001The location of the @var{n}th component of the right hand side is
4002@code{@@@var{n}}, while the location of the left hand side grouping is
4003@code{@@$}.
4004
d013372c
AR
4005In addition, the named references construct @code{@@@var{name}} and
4006@code{@@[@var{name}]} may also be used to address the symbol locations.
4007@xref{Named References,,Using Named References}, for more information
4008about using the named references construct.
4009
3e259915 4010Here is a basic example using the default data type for locations:
847bf1f5
AD
4011
4012@example
4013@group
4014exp: @dots{}
3e259915 4015 | exp '/' exp
847bf1f5 4016 @{
3e259915
MA
4017 @@$.first_column = @@1.first_column;
4018 @@$.first_line = @@1.first_line;
847bf1f5
AD
4019 @@$.last_column = @@3.last_column;
4020 @@$.last_line = @@3.last_line;
3e259915
MA
4021 if ($3)
4022 $$ = $1 / $3;
4023 else
4024 @{
4025 $$ = 1;
4e03e201
AD
4026 fprintf (stderr,
4027 "Division by zero, l%d,c%d-l%d,c%d",
4028 @@3.first_line, @@3.first_column,
4029 @@3.last_line, @@3.last_column);
3e259915 4030 @}
847bf1f5
AD
4031 @}
4032@end group
4033@end example
4034
3e259915 4035As for semantic values, there is a default action for locations that is
72d2299c 4036run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4037beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4038last symbol.
3e259915 4039
72d2299c 4040With this default action, the location tracking can be fully automatic. The
3e259915
MA
4041example above simply rewrites this way:
4042
4043@example
4044@group
4045exp: @dots{}
4046 | exp '/' exp
4047 @{
4048 if ($3)
4049 $$ = $1 / $3;
4050 else
4051 @{
4052 $$ = 1;
4e03e201
AD
4053 fprintf (stderr,
4054 "Division by zero, l%d,c%d-l%d,c%d",
4055 @@3.first_line, @@3.first_column,
4056 @@3.last_line, @@3.last_column);
3e259915
MA
4057 @}
4058 @}
4059@end group
4060@end example
847bf1f5 4061
32c29292 4062@vindex yylloc
742e4900 4063It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4064from a semantic action.
4065This location is stored in @code{yylloc}.
4066@xref{Action Features, ,Special Features for Use in Actions}.
4067
342b8b6e 4068@node Location Default Action
847bf1f5
AD
4069@subsection Default Action for Locations
4070@vindex YYLLOC_DEFAULT
8710fc41 4071@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4072
72d2299c 4073Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4074locations are much more general than semantic values, there is room in
4075the output parser to redefine the default action to take for each
72d2299c 4076rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4077matched, before the associated action is run. It is also invoked
4078while processing a syntax error, to compute the error's location.
8710fc41
JD
4079Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4080parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4081of that ambiguity.
847bf1f5 4082
3e259915 4083Most of the time, this macro is general enough to suppress location
79282c6c 4084dedicated code from semantic actions.
847bf1f5 4085
72d2299c 4086The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4087the location of the grouping (the result of the computation). When a
766de5eb 4088rule is matched, the second parameter identifies locations of
96b93a3d 4089all right hand side elements of the rule being matched, and the third
8710fc41
JD
4090parameter is the size of the rule's right hand side.
4091When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4092right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4093When processing a syntax error, the second parameter identifies locations
4094of the symbols that were discarded during error processing, and the third
96b93a3d 4095parameter is the number of discarded symbols.
847bf1f5 4096
766de5eb 4097By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4098
766de5eb 4099@smallexample
847bf1f5 4100@group
766de5eb
PE
4101# define YYLLOC_DEFAULT(Current, Rhs, N) \
4102 do \
4103 if (N) \
4104 @{ \
4105 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4106 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4107 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4108 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4109 @} \
4110 else \
4111 @{ \
4112 (Current).first_line = (Current).last_line = \
4113 YYRHSLOC(Rhs, 0).last_line; \
4114 (Current).first_column = (Current).last_column = \
4115 YYRHSLOC(Rhs, 0).last_column; \
4116 @} \
4117 while (0)
847bf1f5 4118@end group
766de5eb 4119@end smallexample
676385e2 4120
766de5eb
PE
4121where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4122in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4123just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4124
3e259915 4125When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4126
3e259915 4127@itemize @bullet
79282c6c 4128@item
72d2299c 4129All arguments are free of side-effects. However, only the first one (the
3e259915 4130result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4131
3e259915 4132@item
766de5eb
PE
4133For consistency with semantic actions, valid indexes within the
4134right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4135valid index, and it refers to the symbol just before the reduction.
4136During error processing @var{n} is always positive.
0ae99356
PE
4137
4138@item
4139Your macro should parenthesize its arguments, if need be, since the
4140actual arguments may not be surrounded by parentheses. Also, your
4141macro should expand to something that can be used as a single
4142statement when it is followed by a semicolon.
3e259915 4143@end itemize
847bf1f5 4144
342b8b6e 4145@node Declarations
bfa74976
RS
4146@section Bison Declarations
4147@cindex declarations, Bison
4148@cindex Bison declarations
4149
4150The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4151used in formulating the grammar and the data types of semantic values.
4152@xref{Symbols}.
4153
4154All token type names (but not single-character literal tokens such as
4155@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4156declared if you need to specify which data type to use for the semantic
4157value (@pxref{Multiple Types, ,More Than One Value Type}).
4158
4159The first rule in the file also specifies the start symbol, by default.
4160If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4161it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4162Grammars}).
bfa74976
RS
4163
4164@menu
b50d2359 4165* Require Decl:: Requiring a Bison version.
bfa74976
RS
4166* Token Decl:: Declaring terminal symbols.
4167* Precedence Decl:: Declaring terminals with precedence and associativity.
4168* Union Decl:: Declaring the set of all semantic value types.
4169* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4170* Initial Action Decl:: Code run before parsing starts.
72f889cc 4171* Destructor Decl:: Declaring how symbols are freed.
d6328241 4172* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4173* Start Decl:: Specifying the start symbol.
4174* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4175* Push Decl:: Requesting a push parser.
bfa74976
RS
4176* Decl Summary:: Table of all Bison declarations.
4177@end menu
4178
b50d2359
AD
4179@node Require Decl
4180@subsection Require a Version of Bison
4181@cindex version requirement
4182@cindex requiring a version of Bison
4183@findex %require
4184
4185You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4186the requirement is not met, @command{bison} exits with an error (exit
4187status 63).
b50d2359
AD
4188
4189@example
4190%require "@var{version}"
4191@end example
4192
342b8b6e 4193@node Token Decl
bfa74976
RS
4194@subsection Token Type Names
4195@cindex declaring token type names
4196@cindex token type names, declaring
931c7513 4197@cindex declaring literal string tokens
bfa74976
RS
4198@findex %token
4199
4200The basic way to declare a token type name (terminal symbol) is as follows:
4201
4202@example
4203%token @var{name}
4204@end example
4205
4206Bison will convert this into a @code{#define} directive in
4207the parser, so that the function @code{yylex} (if it is in this file)
4208can use the name @var{name} to stand for this token type's code.
4209
d78f0ac9
AD
4210Alternatively, you can use @code{%left}, @code{%right},
4211@code{%precedence}, or
14ded682
AD
4212@code{%nonassoc} instead of @code{%token}, if you wish to specify
4213associativity and precedence. @xref{Precedence Decl, ,Operator
4214Precedence}.
bfa74976
RS
4215
4216You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4217a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4218following the token name:
bfa74976
RS
4219
4220@example
4221%token NUM 300
1452af69 4222%token XNUM 0x12d // a GNU extension
bfa74976
RS
4223@end example
4224
4225@noindent
4226It is generally best, however, to let Bison choose the numeric codes for
4227all token types. Bison will automatically select codes that don't conflict
e966383b 4228with each other or with normal characters.
bfa74976
RS
4229
4230In the event that the stack type is a union, you must augment the
4231@code{%token} or other token declaration to include the data type
704a47c4
AD
4232alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4233Than One Value Type}).
bfa74976
RS
4234
4235For example:
4236
4237@example
4238@group
4239%union @{ /* define stack type */
4240 double val;
4241 symrec *tptr;
4242@}
4243%token <val> NUM /* define token NUM and its type */
4244@end group
4245@end example
4246
931c7513
RS
4247You can associate a literal string token with a token type name by
4248writing the literal string at the end of a @code{%token}
4249declaration which declares the name. For example:
4250
4251@example
4252%token arrow "=>"
4253@end example
4254
4255@noindent
4256For example, a grammar for the C language might specify these names with
4257equivalent literal string tokens:
4258
4259@example
4260%token <operator> OR "||"
4261%token <operator> LE 134 "<="
4262%left OR "<="
4263@end example
4264
4265@noindent
4266Once you equate the literal string and the token name, you can use them
4267interchangeably in further declarations or the grammar rules. The
4268@code{yylex} function can use the token name or the literal string to
4269obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4270Syntax error messages passed to @code{yyerror} from the parser will reference
4271the literal string instead of the token name.
4272
4273The token numbered as 0 corresponds to end of file; the following line
4274allows for nicer error messages referring to ``end of file'' instead
4275of ``$end'':
4276
4277@example
4278%token END 0 "end of file"
4279@end example
931c7513 4280
342b8b6e 4281@node Precedence Decl
bfa74976
RS
4282@subsection Operator Precedence
4283@cindex precedence declarations
4284@cindex declaring operator precedence
4285@cindex operator precedence, declaring
4286
d78f0ac9
AD
4287Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4288@code{%precedence} declaration to
bfa74976
RS
4289declare a token and specify its precedence and associativity, all at
4290once. These are called @dfn{precedence declarations}.
704a47c4
AD
4291@xref{Precedence, ,Operator Precedence}, for general information on
4292operator precedence.
bfa74976 4293
ab7f29f8 4294The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4295@code{%token}: either
4296
4297@example
4298%left @var{symbols}@dots{}
4299@end example
4300
4301@noindent
4302or
4303
4304@example
4305%left <@var{type}> @var{symbols}@dots{}
4306@end example
4307
4308And indeed any of these declarations serves the purposes of @code{%token}.
4309But in addition, they specify the associativity and relative precedence for
4310all the @var{symbols}:
4311
4312@itemize @bullet
4313@item
4314The associativity of an operator @var{op} determines how repeated uses
4315of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4316@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4317grouping @var{y} with @var{z} first. @code{%left} specifies
4318left-associativity (grouping @var{x} with @var{y} first) and
4319@code{%right} specifies right-associativity (grouping @var{y} with
4320@var{z} first). @code{%nonassoc} specifies no associativity, which
4321means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4322considered a syntax error.
4323
d78f0ac9
AD
4324@code{%precedence} gives only precedence to the @var{symbols}, and
4325defines no associativity at all. Use this to define precedence only,
4326and leave any potential conflict due to associativity enabled.
4327
bfa74976
RS
4328@item
4329The precedence of an operator determines how it nests with other operators.
4330All the tokens declared in a single precedence declaration have equal
4331precedence and nest together according to their associativity.
4332When two tokens declared in different precedence declarations associate,
4333the one declared later has the higher precedence and is grouped first.
4334@end itemize
4335
ab7f29f8
JD
4336For backward compatibility, there is a confusing difference between the
4337argument lists of @code{%token} and precedence declarations.
4338Only a @code{%token} can associate a literal string with a token type name.
4339A precedence declaration always interprets a literal string as a reference to a
4340separate token.
4341For example:
4342
4343@example
4344%left OR "<=" // Does not declare an alias.
4345%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4346@end example
4347
342b8b6e 4348@node Union Decl
bfa74976
RS
4349@subsection The Collection of Value Types
4350@cindex declaring value types
4351@cindex value types, declaring
4352@findex %union
4353
287c78f6
PE
4354The @code{%union} declaration specifies the entire collection of
4355possible data types for semantic values. The keyword @code{%union} is
4356followed by braced code containing the same thing that goes inside a
4357@code{union} in C@.
bfa74976
RS
4358
4359For example:
4360
4361@example
4362@group
4363%union @{
4364 double val;
4365 symrec *tptr;
4366@}
4367@end group
4368@end example
4369
4370@noindent
4371This says that the two alternative types are @code{double} and @code{symrec
4372*}. They are given names @code{val} and @code{tptr}; these names are used
4373in the @code{%token} and @code{%type} declarations to pick one of the types
4374for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4375
6273355b
PE
4376As an extension to @acronym{POSIX}, a tag is allowed after the
4377@code{union}. For example:
4378
4379@example
4380@group
4381%union value @{
4382 double val;
4383 symrec *tptr;
4384@}
4385@end group
4386@end example
4387
d6ca7905 4388@noindent
6273355b
PE
4389specifies the union tag @code{value}, so the corresponding C type is
4390@code{union value}. If you do not specify a tag, it defaults to
4391@code{YYSTYPE}.
4392
d6ca7905
PE
4393As another extension to @acronym{POSIX}, you may specify multiple
4394@code{%union} declarations; their contents are concatenated. However,
4395only the first @code{%union} declaration can specify a tag.
4396
6273355b 4397Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4398a semicolon after the closing brace.
4399
ddc8ede1
PE
4400Instead of @code{%union}, you can define and use your own union type
4401@code{YYSTYPE} if your grammar contains at least one
4402@samp{<@var{type}>} tag. For example, you can put the following into
4403a header file @file{parser.h}:
4404
4405@example
4406@group
4407union YYSTYPE @{
4408 double val;
4409 symrec *tptr;
4410@};
4411typedef union YYSTYPE YYSTYPE;
4412@end group
4413@end example
4414
4415@noindent
4416and then your grammar can use the following
4417instead of @code{%union}:
4418
4419@example
4420@group
4421%@{
4422#include "parser.h"
4423%@}
4424%type <val> expr
4425%token <tptr> ID
4426@end group
4427@end example
4428
342b8b6e 4429@node Type Decl
bfa74976
RS
4430@subsection Nonterminal Symbols
4431@cindex declaring value types, nonterminals
4432@cindex value types, nonterminals, declaring
4433@findex %type
4434
4435@noindent
4436When you use @code{%union} to specify multiple value types, you must
4437declare the value type of each nonterminal symbol for which values are
4438used. This is done with a @code{%type} declaration, like this:
4439
4440@example
4441%type <@var{type}> @var{nonterminal}@dots{}
4442@end example
4443
4444@noindent
704a47c4
AD
4445Here @var{nonterminal} is the name of a nonterminal symbol, and
4446@var{type} is the name given in the @code{%union} to the alternative
4447that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4448can give any number of nonterminal symbols in the same @code{%type}
4449declaration, if they have the same value type. Use spaces to separate
4450the symbol names.
bfa74976 4451
931c7513
RS
4452You can also declare the value type of a terminal symbol. To do this,
4453use the same @code{<@var{type}>} construction in a declaration for the
4454terminal symbol. All kinds of token declarations allow
4455@code{<@var{type}>}.
4456
18d192f0
AD
4457@node Initial Action Decl
4458@subsection Performing Actions before Parsing
4459@findex %initial-action
4460
4461Sometimes your parser needs to perform some initializations before
4462parsing. The @code{%initial-action} directive allows for such arbitrary
4463code.
4464
4465@deffn {Directive} %initial-action @{ @var{code} @}
4466@findex %initial-action
287c78f6 4467Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4468@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4469@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4470@code{%parse-param}.
18d192f0
AD
4471@end deffn
4472
451364ed
AD
4473For instance, if your locations use a file name, you may use
4474
4475@example
48b16bbc 4476%parse-param @{ char const *file_name @};
451364ed
AD
4477%initial-action
4478@{
4626a15d 4479 @@$.initialize (file_name);
451364ed
AD
4480@};
4481@end example
4482
18d192f0 4483
72f889cc
AD
4484@node Destructor Decl
4485@subsection Freeing Discarded Symbols
4486@cindex freeing discarded symbols
4487@findex %destructor
12e35840 4488@findex <*>
3ebecc24 4489@findex <>
a85284cf
AD
4490During error recovery (@pxref{Error Recovery}), symbols already pushed
4491on the stack and tokens coming from the rest of the file are discarded
4492until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4493or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4494symbols on the stack must be discarded. Even if the parser succeeds, it
4495must discard the start symbol.
258b75ca
PE
4496
4497When discarded symbols convey heap based information, this memory is
4498lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4499in traditional compilers, it is unacceptable for programs like shells or
4500protocol implementations that may parse and execute indefinitely.
258b75ca 4501
a85284cf
AD
4502The @code{%destructor} directive defines code that is called when a
4503symbol is automatically discarded.
72f889cc
AD
4504
4505@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4506@findex %destructor
287c78f6
PE
4507Invoke the braced @var{code} whenever the parser discards one of the
4508@var{symbols}.
4b367315 4509Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4510with the discarded symbol, and @code{@@$} designates its location.
4511The additional parser parameters are also available (@pxref{Parser Function, ,
4512The Parser Function @code{yyparse}}).
ec5479ce 4513
b2a0b7ca
JD
4514When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4515per-symbol @code{%destructor}.
4516You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4517tag among @var{symbols}.
b2a0b7ca 4518In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4519grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4520per-symbol @code{%destructor}.
4521
12e35840 4522Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4523(These default forms are experimental.
4524More user feedback will help to determine whether they should become permanent
4525features.)
3ebecc24 4526You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4527exactly one @code{%destructor} declaration in your grammar file.
4528The parser will invoke the @var{code} associated with one of these whenever it
4529discards any user-defined grammar symbol that has no per-symbol and no per-type
4530@code{%destructor}.
4531The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4532symbol for which you have formally declared a semantic type tag (@code{%type}
4533counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4534The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4535symbol that has no declared semantic type tag.
72f889cc
AD
4536@end deffn
4537
b2a0b7ca 4538@noindent
12e35840 4539For example:
72f889cc
AD
4540
4541@smallexample
ec5479ce
JD
4542%union @{ char *string; @}
4543%token <string> STRING1
4544%token <string> STRING2
4545%type <string> string1
4546%type <string> string2
b2a0b7ca
JD
4547%union @{ char character; @}
4548%token <character> CHR
4549%type <character> chr
12e35840
JD
4550%token TAGLESS
4551
b2a0b7ca 4552%destructor @{ @} <character>
12e35840
JD
4553%destructor @{ free ($$); @} <*>
4554%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4555%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4556@end smallexample
4557
4558@noindent
b2a0b7ca
JD
4559guarantees that, when the parser discards any user-defined symbol that has a
4560semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4561to @code{free} by default.
ec5479ce
JD
4562However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4563prints its line number to @code{stdout}.
4564It performs only the second @code{%destructor} in this case, so it invokes
4565@code{free} only once.
12e35840
JD
4566Finally, the parser merely prints a message whenever it discards any symbol,
4567such as @code{TAGLESS}, that has no semantic type tag.
4568
4569A Bison-generated parser invokes the default @code{%destructor}s only for
4570user-defined as opposed to Bison-defined symbols.
4571For example, the parser will not invoke either kind of default
4572@code{%destructor} for the special Bison-defined symbols @code{$accept},
4573@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4574none of which you can reference in your grammar.
4575It also will not invoke either for the @code{error} token (@pxref{Table of
4576Symbols, ,error}), which is always defined by Bison regardless of whether you
4577reference it in your grammar.
4578However, it may invoke one of them for the end token (token 0) if you
4579redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4580
4581@smallexample
4582%token END 0
4583@end smallexample
4584
12e35840
JD
4585@cindex actions in mid-rule
4586@cindex mid-rule actions
4587Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4588mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4589That is, Bison does not consider a mid-rule to have a semantic value if you do
4590not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4591@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4592rule.
4593However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4594@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4595
3508ce36
JD
4596@ignore
4597@noindent
4598In the future, it may be possible to redefine the @code{error} token as a
4599nonterminal that captures the discarded symbols.
4600In that case, the parser will invoke the default destructor for it as well.
4601@end ignore
4602
e757bb10
AD
4603@sp 1
4604
4605@cindex discarded symbols
4606@dfn{Discarded symbols} are the following:
4607
4608@itemize
4609@item
4610stacked symbols popped during the first phase of error recovery,
4611@item
4612incoming terminals during the second phase of error recovery,
4613@item
742e4900 4614the current lookahead and the entire stack (except the current
9d9b8b70 4615right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4616@item
4617the start symbol, when the parser succeeds.
e757bb10
AD
4618@end itemize
4619
9d9b8b70
PE
4620The parser can @dfn{return immediately} because of an explicit call to
4621@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4622exhaustion.
4623
29553547 4624Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4625error via @code{YYERROR} are not discarded automatically. As a rule
4626of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4627the memory.
e757bb10 4628
342b8b6e 4629@node Expect Decl
bfa74976
RS
4630@subsection Suppressing Conflict Warnings
4631@cindex suppressing conflict warnings
4632@cindex preventing warnings about conflicts
4633@cindex warnings, preventing
4634@cindex conflicts, suppressing warnings of
4635@findex %expect
d6328241 4636@findex %expect-rr
bfa74976
RS
4637
4638Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4639(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4640have harmless shift/reduce conflicts which are resolved in a predictable
4641way and would be difficult to eliminate. It is desirable to suppress
4642the warning about these conflicts unless the number of conflicts
4643changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4644
4645The declaration looks like this:
4646
4647@example
4648%expect @var{n}
4649@end example
4650
035aa4a0
PE
4651Here @var{n} is a decimal integer. The declaration says there should
4652be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4653Bison reports an error if the number of shift/reduce conflicts differs
4654from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4655
eb45ef3b 4656For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4657serious, and should be eliminated entirely. Bison will always report
4658reduce/reduce conflicts for these parsers. With @acronym{GLR}
4659parsers, however, both kinds of conflicts are routine; otherwise,
4660there would be no need to use @acronym{GLR} parsing. Therefore, it is
4661also possible to specify an expected number of reduce/reduce conflicts
4662in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4663
4664@example
4665%expect-rr @var{n}
4666@end example
4667
bfa74976
RS
4668In general, using @code{%expect} involves these steps:
4669
4670@itemize @bullet
4671@item
4672Compile your grammar without @code{%expect}. Use the @samp{-v} option
4673to get a verbose list of where the conflicts occur. Bison will also
4674print the number of conflicts.
4675
4676@item
4677Check each of the conflicts to make sure that Bison's default
4678resolution is what you really want. If not, rewrite the grammar and
4679go back to the beginning.
4680
4681@item
4682Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4683number which Bison printed. With @acronym{GLR} parsers, add an
4684@code{%expect-rr} declaration as well.
bfa74976
RS
4685@end itemize
4686
035aa4a0
PE
4687Now Bison will warn you if you introduce an unexpected conflict, but
4688will keep silent otherwise.
bfa74976 4689
342b8b6e 4690@node Start Decl
bfa74976
RS
4691@subsection The Start-Symbol
4692@cindex declaring the start symbol
4693@cindex start symbol, declaring
4694@cindex default start symbol
4695@findex %start
4696
4697Bison assumes by default that the start symbol for the grammar is the first
4698nonterminal specified in the grammar specification section. The programmer
4699may override this restriction with the @code{%start} declaration as follows:
4700
4701@example
4702%start @var{symbol}
4703@end example
4704
342b8b6e 4705@node Pure Decl
bfa74976
RS
4706@subsection A Pure (Reentrant) Parser
4707@cindex reentrant parser
4708@cindex pure parser
d9df47b6 4709@findex %define api.pure
bfa74976
RS
4710
4711A @dfn{reentrant} program is one which does not alter in the course of
4712execution; in other words, it consists entirely of @dfn{pure} (read-only)
4713code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4714for example, a nonreentrant program may not be safe to call from a signal
4715handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4716program must be called only within interlocks.
4717
70811b85 4718Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4719suitable for most uses, and it permits compatibility with Yacc. (The
4720standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4721statically allocated variables for communication with @code{yylex},
4722including @code{yylval} and @code{yylloc}.)
bfa74976 4723
70811b85 4724Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4725declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4726reentrant. It looks like this:
bfa74976
RS
4727
4728@example
d9df47b6 4729%define api.pure
bfa74976
RS
4730@end example
4731
70811b85
RS
4732The result is that the communication variables @code{yylval} and
4733@code{yylloc} become local variables in @code{yyparse}, and a different
4734calling convention is used for the lexical analyzer function
4735@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4736Parsers}, for the details of this. The variable @code{yynerrs}
4737becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4738of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4739Reporting Function @code{yyerror}}). The convention for calling
4740@code{yyparse} itself is unchanged.
4741
4742Whether the parser is pure has nothing to do with the grammar rules.
4743You can generate either a pure parser or a nonreentrant parser from any
4744valid grammar.
bfa74976 4745
9987d1b3
JD
4746@node Push Decl
4747@subsection A Push Parser
4748@cindex push parser
4749@cindex push parser
67212941 4750@findex %define api.push-pull
9987d1b3 4751
59da312b
JD
4752(The current push parsing interface is experimental and may evolve.
4753More user feedback will help to stabilize it.)
4754
f4101aa6
AD
4755A pull parser is called once and it takes control until all its input
4756is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4757each time a new token is made available.
4758
f4101aa6 4759A push parser is typically useful when the parser is part of a
9987d1b3 4760main event loop in the client's application. This is typically
f4101aa6
AD
4761a requirement of a GUI, when the main event loop needs to be triggered
4762within a certain time period.
9987d1b3 4763
d782395d
JD
4764Normally, Bison generates a pull parser.
4765The following Bison declaration says that you want the parser to be a push
67212941 4766parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4767
4768@example
cf499cff 4769%define api.push-pull push
9987d1b3
JD
4770@end example
4771
4772In almost all cases, you want to ensure that your push parser is also
4773a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4774time you should create an impure push parser is to have backwards
9987d1b3
JD
4775compatibility with the impure Yacc pull mode interface. Unless you know
4776what you are doing, your declarations should look like this:
4777
4778@example
d9df47b6 4779%define api.pure
cf499cff 4780%define api.push-pull push
9987d1b3
JD
4781@end example
4782
f4101aa6
AD
4783There is a major notable functional difference between the pure push parser
4784and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4785many parser instances, of the same type of parser, in memory at the same time.
4786An impure push parser should only use one parser at a time.
4787
4788When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4789the generated parser. @code{yypstate} is a structure that the generated
4790parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4791function that will create a new parser instance. @code{yypstate_delete}
4792will free the resources associated with the corresponding parser instance.
f4101aa6 4793Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4794token is available to provide the parser. A trivial example
4795of using a pure push parser would look like this:
4796
4797@example
4798int status;
4799yypstate *ps = yypstate_new ();
4800do @{
4801 status = yypush_parse (ps, yylex (), NULL);
4802@} while (status == YYPUSH_MORE);
4803yypstate_delete (ps);
4804@end example
4805
4806If the user decided to use an impure push parser, a few things about
f4101aa6 4807the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4808a global variable instead of a variable in the @code{yypush_parse} function.
4809For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4810changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4811example would thus look like this:
4812
4813@example
4814extern int yychar;
4815int status;
4816yypstate *ps = yypstate_new ();
4817do @{
4818 yychar = yylex ();
4819 status = yypush_parse (ps);
4820@} while (status == YYPUSH_MORE);
4821yypstate_delete (ps);
4822@end example
4823
f4101aa6 4824That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4825for use by the next invocation of the @code{yypush_parse} function.
4826
f4101aa6 4827Bison also supports both the push parser interface along with the pull parser
9987d1b3 4828interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4829you should replace the @samp{%define api.push-pull push} declaration with the
4830@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4831the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4832and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4833would be used. However, the user should note that it is implemented in the
d782395d
JD
4834generated parser by calling @code{yypull_parse}.
4835This makes the @code{yyparse} function that is generated with the
cf499cff 4836@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4837@code{yyparse} function. If the user
4838calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4839stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4840and then @code{yypull_parse} the rest of the input stream. If you would like
4841to switch back and forth between between parsing styles, you would have to
4842write your own @code{yypull_parse} function that knows when to quit looking
4843for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4844like this:
4845
4846@example
4847yypstate *ps = yypstate_new ();
4848yypull_parse (ps); /* Will call the lexer */
4849yypstate_delete (ps);
4850@end example
4851
67501061 4852Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4853the generated parser with @samp{%define api.push-pull both} as it did for
4854@samp{%define api.push-pull push}.
9987d1b3 4855
342b8b6e 4856@node Decl Summary
bfa74976
RS
4857@subsection Bison Declaration Summary
4858@cindex Bison declaration summary
4859@cindex declaration summary
4860@cindex summary, Bison declaration
4861
d8988b2f 4862Here is a summary of the declarations used to define a grammar:
bfa74976 4863
18b519c0 4864@deffn {Directive} %union
bfa74976
RS
4865Declare the collection of data types that semantic values may have
4866(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4867@end deffn
bfa74976 4868
18b519c0 4869@deffn {Directive} %token
bfa74976
RS
4870Declare a terminal symbol (token type name) with no precedence
4871or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4872@end deffn
bfa74976 4873
18b519c0 4874@deffn {Directive} %right
bfa74976
RS
4875Declare a terminal symbol (token type name) that is right-associative
4876(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4877@end deffn
bfa74976 4878
18b519c0 4879@deffn {Directive} %left
bfa74976
RS
4880Declare a terminal symbol (token type name) that is left-associative
4881(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4882@end deffn
bfa74976 4883
18b519c0 4884@deffn {Directive} %nonassoc
bfa74976 4885Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4886(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4887Using it in a way that would be associative is a syntax error.
4888@end deffn
4889
91d2c560 4890@ifset defaultprec
39a06c25 4891@deffn {Directive} %default-prec
22fccf95 4892Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4893(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4894@end deffn
91d2c560 4895@end ifset
bfa74976 4896
18b519c0 4897@deffn {Directive} %type
bfa74976
RS
4898Declare the type of semantic values for a nonterminal symbol
4899(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4900@end deffn
bfa74976 4901
18b519c0 4902@deffn {Directive} %start
89cab50d
AD
4903Specify the grammar's start symbol (@pxref{Start Decl, ,The
4904Start-Symbol}).
18b519c0 4905@end deffn
bfa74976 4906
18b519c0 4907@deffn {Directive} %expect
bfa74976
RS
4908Declare the expected number of shift-reduce conflicts
4909(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4910@end deffn
4911
bfa74976 4912
d8988b2f
AD
4913@sp 1
4914@noindent
4915In order to change the behavior of @command{bison}, use the following
4916directives:
4917
148d66d8
JD
4918@deffn {Directive} %code @{@var{code}@}
4919@findex %code
4920This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4921It inserts @var{code} verbatim at a language-dependent default location in the
4922output@footnote{The default location is actually skeleton-dependent;
4923 writers of non-standard skeletons however should choose the default location
4924 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4925
4926@cindex Prologue
8405b70c 4927For C/C++, the default location is the parser source code
148d66d8
JD
4928file after the usual contents of the parser header file.
4929Thus, @code{%code} replaces the traditional Yacc prologue,
4930@code{%@{@var{code}%@}}, for most purposes.
4931For a detailed discussion, see @ref{Prologue Alternatives}.
4932
8405b70c 4933For Java, the default location is inside the parser class.
148d66d8
JD
4934@end deffn
4935
4936@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4937This is the qualified form of the @code{%code} directive.
4938If you need to specify location-sensitive verbatim @var{code} that does not
4939belong at the default location selected by the unqualified @code{%code} form,
4940use this form instead.
4941
4942@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4943where Bison should generate it.
c6abeab1
JD
4944Not all @var{qualifier}s are accepted for all target languages.
4945Unaccepted @var{qualifier}s produce an error.
4946Some of the accepted @var{qualifier}s are:
148d66d8
JD
4947
4948@itemize @bullet
148d66d8 4949@item requires
793fbca5 4950@findex %code requires
148d66d8
JD
4951
4952@itemize @bullet
4953@item Language(s): C, C++
4954
4955@item Purpose: This is the best place to write dependency code required for
4956@code{YYSTYPE} and @code{YYLTYPE}.
4957In other words, it's the best place to define types referenced in @code{%union}
4958directives, and it's the best place to override Bison's default @code{YYSTYPE}
4959and @code{YYLTYPE} definitions.
4960
4961@item Location(s): The parser header file and the parser source code file
4962before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4963@end itemize
4964
4965@item provides
4966@findex %code provides
4967
4968@itemize @bullet
4969@item Language(s): C, C++
4970
4971@item Purpose: This is the best place to write additional definitions and
4972declarations that should be provided to other modules.
4973
4974@item Location(s): The parser header file and the parser source code file after
4975the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4976@end itemize
4977
4978@item top
4979@findex %code top
4980
4981@itemize @bullet
4982@item Language(s): C, C++
4983
4984@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4985usually be more appropriate than @code{%code top}.
4986However, occasionally it is necessary to insert code much nearer the top of the
4987parser source code file.
4988For example:
4989
4990@smallexample
4991%code top @{
4992 #define _GNU_SOURCE
4993 #include <stdio.h>
4994@}
4995@end smallexample
4996
4997@item Location(s): Near the top of the parser source code file.
4998@end itemize
8405b70c 4999
148d66d8
JD
5000@item imports
5001@findex %code imports
5002
5003@itemize @bullet
5004@item Language(s): Java
5005
5006@item Purpose: This is the best place to write Java import directives.
5007
5008@item Location(s): The parser Java file after any Java package directive and
5009before any class definitions.
5010@end itemize
148d66d8
JD
5011@end itemize
5012
148d66d8
JD
5013@cindex Prologue
5014For a detailed discussion of how to use @code{%code} in place of the
5015traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5016@end deffn
5017
18b519c0 5018@deffn {Directive} %debug
fa819509
AD
5019Instrument the output parser for traces. Obsoleted by @samp{%define
5020parse.trace}.
ec3bc396 5021@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5022@end deffn
d8988b2f 5023
c1d19e10 5024@deffn {Directive} %define @var{variable}
cf499cff 5025@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5026@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5027Define a variable to adjust Bison's behavior.
9611cfa2 5028
0b6d43c5 5029It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5030times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5031
cf499cff
JD
5032@var{value} must be placed in quotation marks if it contains any
5033character other than a letter, underscore, period, dash, or non-initial
5034digit.
5035
5036Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5037@code{""}.
5038
c6abeab1 5039Some @var{variable}s take Boolean values.
9611cfa2
JD
5040In this case, Bison will complain if the variable definition does not meet one
5041of the following four conditions:
5042
5043@enumerate
cf499cff 5044@item @code{@var{value}} is @code{true}
9611cfa2 5045
cf499cff
JD
5046@item @code{@var{value}} is omitted (or @code{""} is specified).
5047This is equivalent to @code{true}.
9611cfa2 5048
cf499cff 5049@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5050
5051@item @var{variable} is never defined.
c6abeab1 5052In this case, Bison selects a default value.
9611cfa2 5053@end enumerate
148d66d8 5054
c6abeab1
JD
5055What @var{variable}s are accepted, as well as their meanings and default
5056values, depend on the selected target language and/or the parser
5057skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5058Summary,,%skeleton}).
5059Unaccepted @var{variable}s produce an error.
793fbca5
JD
5060Some of the accepted @var{variable}s are:
5061
fa819509 5062@table @code
6b5a0de9 5063@c ================================================== api.namespace
67501061
AD
5064@item api.namespace
5065@findex %define api.namespace
5066@itemize
5067@item Languages(s): C++
5068
5069@item Purpose: Specifies the namespace for the parser class.
5070For example, if you specify:
5071
5072@smallexample
5073%define api.namespace "foo::bar"
5074@end smallexample
5075
5076Bison uses @code{foo::bar} verbatim in references such as:
5077
5078@smallexample
5079foo::bar::parser::semantic_type
5080@end smallexample
5081
5082However, to open a namespace, Bison removes any leading @code{::} and then
5083splits on any remaining occurrences:
5084
5085@smallexample
5086namespace foo @{ namespace bar @{
5087 class position;
5088 class location;
5089@} @}
5090@end smallexample
5091
5092@item Accepted Values:
5093Any absolute or relative C++ namespace reference without a trailing
5094@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5095
5096@item Default Value:
5097The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5098This usage of @code{%name-prefix} is for backward compatibility and can
5099be confusing since @code{%name-prefix} also specifies the textual prefix
5100for the lexical analyzer function. Thus, if you specify
5101@code{%name-prefix}, it is best to also specify @samp{%define
5102api.namespace} so that @code{%name-prefix} @emph{only} affects the
5103lexical analyzer function. For example, if you specify:
5104
5105@smallexample
5106%define api.namespace "foo"
5107%name-prefix "bar::"
5108@end smallexample
5109
5110The parser namespace is @code{foo} and @code{yylex} is referenced as
5111@code{bar::lex}.
5112@end itemize
5113@c namespace
5114
5115
5116
5117@c ================================================== api.pure
d9df47b6
JD
5118@item api.pure
5119@findex %define api.pure
5120
5121@itemize @bullet
5122@item Language(s): C
5123
5124@item Purpose: Request a pure (reentrant) parser program.
5125@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5126
5127@item Accepted Values: Boolean
5128
cf499cff 5129@item Default Value: @code{false}
d9df47b6 5130@end itemize
71b00ed8 5131@c api.pure
d9df47b6 5132
67501061
AD
5133
5134
5135@c ================================================== api.push-pull
67212941
JD
5136@item api.push-pull
5137@findex %define api.push-pull
793fbca5
JD
5138
5139@itemize @bullet
eb45ef3b 5140@item Language(s): C (deterministic parsers only)
793fbca5
JD
5141
5142@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 5143@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5144(The current push parsing interface is experimental and may evolve.
5145More user feedback will help to stabilize it.)
793fbca5 5146
cf499cff 5147@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5148
cf499cff 5149@item Default Value: @code{pull}
793fbca5 5150@end itemize
67212941 5151@c api.push-pull
71b00ed8 5152
6b5a0de9
AD
5153
5154
5155@c ================================================== api.tokens.prefix
4c6622c2
AD
5156@item api.tokens.prefix
5157@findex %define api.tokens.prefix
5158
5159@itemize
5160@item Languages(s): all
5161
5162@item Purpose:
5163Add a prefix to the token names when generating their definition in the
5164target language. For instance
5165
5166@example
5167%token FILE for ERROR
5168%define api.tokens.prefix "TOK_"
5169%%
5170start: FILE for ERROR;
5171@end example
5172
5173@noindent
5174generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5175and @code{TOK_ERROR} in the generated source files. In particular, the
5176scanner must use these prefixed token names, while the grammar itself
5177may still use the short names (as in the sample rule given above). The
5178generated informational files (@file{*.output}, @file{*.xml},
5179@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5180and @ref{Calc++ Scanner}, for a complete example.
5181
5182@item Accepted Values:
5183Any string. Should be a valid identifier prefix in the target language,
5184in other words, it should typically be an identifier itself (sequence of
5185letters, underscores, and ---not at the beginning--- digits).
5186
5187@item Default Value:
5188empty
5189@end itemize
5190@c api.tokens.prefix
5191
5192
3cdc21cf
AD
5193@c ================================================== lex_symbol
5194@item variant
5195@findex %define lex_symbol
5196
5197@itemize @bullet
5198@item Language(s):
5199C++
5200
5201@item Purpose:
5202When variant-based semantic values are enabled (@pxref{C++ Variants}),
5203request that symbols be handled as a whole (type, value, and possibly
5204location) in the scanner. @xref{Complete Symbols}, for details.
5205
5206@item Accepted Values:
5207Boolean.
5208
5209@item Default Value:
5210@code{false}
5211@end itemize
5212@c lex_symbol
5213
5214
6b5a0de9
AD
5215@c ================================================== lr.default-reductions
5216
5bab9d08 5217@item lr.default-reductions
110ef36a 5218@cindex default reductions
5bab9d08 5219@findex %define lr.default-reductions
eb45ef3b
JD
5220@cindex delayed syntax errors
5221@cindex syntax errors delayed
5222
5223@itemize @bullet
5224@item Language(s): all
5225
5226@item Purpose: Specifies the kind of states that are permitted to
110ef36a
JD
5227contain default reductions.
5228That is, in such a state, Bison declares the reduction with the largest
5229lookahead set to be the default reduction and then removes that
5230lookahead set.
5231The advantages of default reductions are discussed below.
eb45ef3b
JD
5232The disadvantage is that, when the generated parser encounters a
5233syntactically unacceptable token, the parser might then perform
110ef36a 5234unnecessary default reductions before it can detect the syntax error.
eb45ef3b
JD
5235
5236(This feature is experimental.
5237More user feedback will help to stabilize it.)
5238
5239@item Accepted Values:
5240@itemize
cf499cff 5241@item @code{all}.
eb45ef3b
JD
5242For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
5243Summary,,lr.type}) by default, all states are permitted to contain
110ef36a 5244default reductions.
eb45ef3b
JD
5245The advantage is that parser table sizes can be significantly reduced.
5246The reason Bison does not by default attempt to address the disadvantage
5247of delayed syntax error detection is that this disadvantage is already
5248inherent in @acronym{LALR} and @acronym{IELR} parser tables.
110ef36a
JD
5249That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
5250reductions in an @acronym{LALR} or @acronym{IELR} state can contain
5251tokens that are syntactically incorrect for some left contexts.
eb45ef3b 5252
cf499cff 5253@item @code{consistent}.
eb45ef3b
JD
5254@cindex consistent states
5255A consistent state is a state that has only one possible action.
5256If that action is a reduction, then the parser does not need to request
5257a lookahead token from the scanner before performing that action.
5258However, the parser only recognizes the ability to ignore the lookahead
110ef36a
JD
5259token when such a reduction is encoded as a default reduction.
5260Thus, if default reductions are permitted in and only in consistent
5261states, then a canonical @acronym{LR} parser reports a syntax error as
5262soon as it @emph{needs} the syntactically unacceptable token from the
5263scanner.
eb45ef3b 5264
cf499cff 5265@item @code{accepting}.
eb45ef3b 5266@cindex accepting state
110ef36a
JD
5267By default, the only default reduction permitted in a canonical
5268@acronym{LR} parser is the accept action in the accepting state, which
5269the parser reaches only after reading all tokens from the input.
eb45ef3b
JD
5270Thus, the default canonical @acronym{LR} parser reports a syntax error
5271as soon as it @emph{reaches} the syntactically unacceptable token
5272without performing any extra reductions.
5273@end itemize
5274
5275@item Default Value:
5276@itemize
cf499cff
JD
5277@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5278@item @code{all} otherwise.
eb45ef3b
JD
5279@end itemize
5280@end itemize
5281
6b5a0de9
AD
5282@c ============================================ lr.keep-unreachable-states
5283
67212941
JD
5284@item lr.keep-unreachable-states
5285@findex %define lr.keep-unreachable-states
31984206
JD
5286
5287@itemize @bullet
5288@item Language(s): all
5289
5290@item Purpose: Requests that Bison allow unreachable parser states to remain in
5291the parser tables.
5292Bison considers a state to be unreachable if there exists no sequence of
5293transitions from the start state to that state.
5294A state can become unreachable during conflict resolution if Bison disables a
5295shift action leading to it from a predecessor state.
5296Keeping unreachable states is sometimes useful for analysis purposes, but they
5297are useless in the generated parser.
5298
5299@item Accepted Values: Boolean
5300
cf499cff 5301@item Default Value: @code{false}
31984206
JD
5302
5303@item Caveats:
5304
5305@itemize @bullet
cff03fb2
JD
5306
5307@item Unreachable states may contain conflicts and may use rules not used in
5308any other state.
31984206
JD
5309Thus, keeping unreachable states may induce warnings that are irrelevant to
5310your parser's behavior, and it may eliminate warnings that are relevant.
5311Of course, the change in warnings may actually be relevant to a parser table
5312analysis that wants to keep unreachable states, so this behavior will likely
5313remain in future Bison releases.
5314
5315@item While Bison is able to remove unreachable states, it is not guaranteed to
5316remove other kinds of useless states.
5317Specifically, when Bison disables reduce actions during conflict resolution,
5318some goto actions may become useless, and thus some additional states may
5319become useless.
5320If Bison were to compute which goto actions were useless and then disable those
5321actions, it could identify such states as unreachable and then remove those
5322states.
5323However, Bison does not compute which goto actions are useless.
5324@end itemize
5325@end itemize
67212941 5326@c lr.keep-unreachable-states
31984206 5327
6b5a0de9
AD
5328@c ================================================== lr.type
5329
eb45ef3b
JD
5330@item lr.type
5331@findex %define lr.type
5332@cindex @acronym{LALR}
5333@cindex @acronym{IELR}
5334@cindex @acronym{LR}
5335
5336@itemize @bullet
5337@item Language(s): all
5338
5339@item Purpose: Specifies the type of parser tables within the
5340@acronym{LR}(1) family.
5341(This feature is experimental.
5342More user feedback will help to stabilize it.)
5343
5344@item Accepted Values:
5345@itemize
cf499cff 5346@item @code{lalr}.
eb45ef3b
JD
5347While Bison generates @acronym{LALR} parser tables by default for
5348historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5349always preferable for deterministic parsers.
5350The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5351mysterious conflicts and thus may not accept the full set of sentences
5352that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5353@xref{Mystery Conflicts}, for details.
5354However, there are at least two scenarios where @acronym{LALR} may be
5355worthwhile:
5356@itemize
5357@cindex @acronym{GLR} with @acronym{LALR}
5358@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5359do not resolve any conflicts statically (for example, with @code{%left}
5360or @code{%prec}), then the parser explores all potential parses of any
5361given input.
110ef36a
JD
5362In this case, the use of @acronym{LALR} parser tables is guaranteed not
5363to alter the language accepted by the parser.
eb45ef3b
JD
5364@acronym{LALR} parser tables are the smallest parser tables Bison can
5365currently generate, so they may be preferable.
5366
5367@item Occasionally during development, an especially malformed grammar
5368with a major recurring flaw may severely impede the @acronym{IELR} or
5369canonical @acronym{LR} parser table generation algorithm.
5370@acronym{LALR} can be a quick way to generate parser tables in order to
5371investigate such problems while ignoring the more subtle differences
5372from @acronym{IELR} and canonical @acronym{LR}.
5373@end itemize
5374
cf499cff 5375@item @code{ielr}.
eb45ef3b
JD
5376@acronym{IELR} is a minimal @acronym{LR} algorithm.
5377That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5378@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5379set of sentences.
5380However, as for @acronym{LALR}, the number of parser states is often an
5381order of magnitude less for @acronym{IELR} than for canonical
5382@acronym{LR}.
5383More importantly, because canonical @acronym{LR}'s extra parser states
5384may contain duplicate conflicts in the case of non-@acronym{LR}
5385grammars, the number of conflicts for @acronym{IELR} is often an order
5386of magnitude less as well.
5387This can significantly reduce the complexity of developing of a grammar.
5388
cf499cff 5389@item @code{canonical-lr}.
eb45ef3b
JD
5390@cindex delayed syntax errors
5391@cindex syntax errors delayed
110ef36a
JD
5392The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5393that, for every left context of every canonical @acronym{LR} state, the
5394set of tokens accepted by that state is the exact set of tokens that is
5395syntactically acceptable in that left context.
5396Thus, the only difference in parsing behavior is that the canonical
eb45ef3b
JD
5397@acronym{LR} parser can report a syntax error as soon as possible
5398without performing any unnecessary reductions.
5bab9d08 5399@xref{Decl Summary,,lr.default-reductions}, for further details.
eb45ef3b
JD
5400Even when canonical @acronym{LR} behavior is ultimately desired,
5401@acronym{IELR}'s elimination of duplicate conflicts should still
5402facilitate the development of a grammar.
5403@end itemize
5404
cf499cff 5405@item Default Value: @code{lalr}
eb45ef3b
JD
5406@end itemize
5407
67501061
AD
5408
5409@c ================================================== namespace
793fbca5
JD
5410@item namespace
5411@findex %define namespace
67501061 5412Obsoleted by @code{api.namespace}
fa819509
AD
5413@c namespace
5414
31b850d2
AD
5415
5416@c ================================================== parse.assert
0c90a1f5
AD
5417@item parse.assert
5418@findex %define parse.assert
5419
5420@itemize
5421@item Languages(s): C++
5422
5423@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5424In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5425constructed and
0c90a1f5
AD
5426destroyed properly. This option checks these constraints.
5427
5428@item Accepted Values: Boolean
5429
5430@item Default Value: @code{false}
5431@end itemize
5432@c parse.assert
5433
31b850d2
AD
5434
5435@c ================================================== parse.error
5436@item parse.error
5437@findex %define parse.error
5438@itemize
5439@item Languages(s):
5440all.
5441@item Purpose:
5442Control the kind of error messages passed to the error reporting
5443function. @xref{Error Reporting, ,The Error Reporting Function
5444@code{yyerror}}.
5445@item Accepted Values:
5446@itemize
cf499cff 5447@item @code{simple}
31b850d2
AD
5448Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5449error"}}.
cf499cff 5450@item @code{verbose}
31b850d2
AD
5451Error messages report the unexpected token, and possibly the expected
5452ones.
5453@end itemize
5454
5455@item Default Value:
5456@code{simple}
5457@end itemize
5458@c parse.error
5459
5460
5461@c ================================================== parse.trace
fa819509
AD
5462@item parse.trace
5463@findex %define parse.trace
5464
5465@itemize
5466@item Languages(s): C, C++
5467
5468@item Purpose: Require parser instrumentation for tracing.
5469In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5470is not already defined, so that the debugging facilities are compiled.
5471@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5472
fa819509
AD
5473@item Accepted Values: Boolean
5474
5475@item Default Value: @code{false}
5476@end itemize
fa819509 5477@c parse.trace
99c08fb6 5478
3cdc21cf
AD
5479@c ================================================== variant
5480@item variant
5481@findex %define variant
5482
5483@itemize @bullet
5484@item Language(s):
5485C++
5486
5487@item Purpose:
5488Requests variant-based semantic values.
5489@xref{C++ Variants}.
5490
5491@item Accepted Values:
5492Boolean.
5493
5494@item Default Value:
5495@code{false}
5496@end itemize
5497@c variant
5498
5499
99c08fb6 5500@end table
d782395d 5501@end deffn
99c08fb6 5502@c ---------------------------------------------------------- %define
d782395d 5503
18b519c0 5504@deffn {Directive} %defines
4bfd5e4e
PE
5505Write a header file containing macro definitions for the token type
5506names defined in the grammar as well as a few other declarations.
d8988b2f 5507If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5508is named @file{@var{name}.h}.
d8988b2f 5509
b321737f 5510For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5511@code{YYSTYPE} is already defined as a macro or you have used a
5512@code{<@var{type}>} tag without using @code{%union}.
5513Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5514(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5515require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5516or type definition
f8e1c9e5
AD
5517(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5518arrange for these definitions to be propagated to all modules, e.g., by
5519putting them in a prerequisite header that is included both by your
5520parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5521
5522Unless your parser is pure, the output header declares @code{yylval}
5523as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5524Parser}.
5525
5526If you have also used locations, the output header declares
5527@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5528the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5529Locations}.
5530
f8e1c9e5
AD
5531This output file is normally essential if you wish to put the definition
5532of @code{yylex} in a separate source file, because @code{yylex}
5533typically needs to be able to refer to the above-mentioned declarations
5534and to the token type codes. @xref{Token Values, ,Semantic Values of
5535Tokens}.
9bc0dd67 5536
16dc6a9e
JD
5537@findex %code requires
5538@findex %code provides
5539If you have declared @code{%code requires} or @code{%code provides}, the output
5540header also contains their code.
148d66d8 5541@xref{Decl Summary, ,%code}.
592d0b1e
PB
5542@end deffn
5543
02975b9a
JD
5544@deffn {Directive} %defines @var{defines-file}
5545Same as above, but save in the file @var{defines-file}.
5546@end deffn
5547
18b519c0 5548@deffn {Directive} %destructor
258b75ca 5549Specify how the parser should reclaim the memory associated to
fa7e68c3 5550discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5551@end deffn
72f889cc 5552
02975b9a 5553@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5554Specify a prefix to use for all Bison output file names. The names are
5555chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5556@end deffn
d8988b2f 5557
e6e704dc 5558@deffn {Directive} %language "@var{language}"
0e021770 5559Specify the programming language for the generated parser. Currently
59da312b 5560supported languages include C, C++, and Java.
e6e704dc 5561@var{language} is case-insensitive.
ed4d67dc
JD
5562
5563This directive is experimental and its effect may be modified in future
5564releases.
0e021770
PE
5565@end deffn
5566
18b519c0 5567@deffn {Directive} %locations
89cab50d
AD
5568Generate the code processing the locations (@pxref{Action Features,
5569,Special Features for Use in Actions}). This mode is enabled as soon as
5570the grammar uses the special @samp{@@@var{n}} tokens, but if your
5571grammar does not use it, using @samp{%locations} allows for more
6e649e65 5572accurate syntax error messages.
18b519c0 5573@end deffn
89cab50d 5574
02975b9a 5575@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5576Rename the external symbols used in the parser so that they start with
5577@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5578in C parsers
d8988b2f 5579is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5580@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5581(if locations are used) @code{yylloc}. If you use a push parser,
5582@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5583@code{yypstate_new} and @code{yypstate_delete} will
5584also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5585names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5586For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5587section.
aa08666d 5588@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5589@end deffn
931c7513 5590
91d2c560 5591@ifset defaultprec
22fccf95
PE
5592@deffn {Directive} %no-default-prec
5593Do not assign a precedence to rules lacking an explicit @code{%prec}
5594modifier (@pxref{Contextual Precedence, ,Context-Dependent
5595Precedence}).
5596@end deffn
91d2c560 5597@end ifset
22fccf95 5598
18b519c0 5599@deffn {Directive} %no-lines
931c7513
RS
5600Don't generate any @code{#line} preprocessor commands in the parser
5601file. Ordinarily Bison writes these commands in the parser file so that
5602the C compiler and debuggers will associate errors and object code with
5603your source file (the grammar file). This directive causes them to
5604associate errors with the parser file, treating it an independent source
5605file in its own right.
18b519c0 5606@end deffn
931c7513 5607
02975b9a 5608@deffn {Directive} %output "@var{file}"
fa4d969f 5609Specify @var{file} for the parser file.
18b519c0 5610@end deffn
6deb4447 5611
18b519c0 5612@deffn {Directive} %pure-parser
67501061 5613Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5614for which Bison is more careful to warn about unreasonable usage.
18b519c0 5615@end deffn
6deb4447 5616
b50d2359 5617@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5618Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5619Require a Version of Bison}.
b50d2359
AD
5620@end deffn
5621
0e021770 5622@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5623Specify the skeleton to use.
5624
ed4d67dc
JD
5625@c You probably don't need this option unless you are developing Bison.
5626@c You should use @code{%language} if you want to specify the skeleton for a
5627@c different language, because it is clearer and because it will always choose the
5628@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5629
5630If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5631file in the Bison installation directory.
5632If it does, @var{file} is an absolute file name or a file name relative to the
5633directory of the grammar file.
5634This is similar to how most shells resolve commands.
0e021770
PE
5635@end deffn
5636
18b519c0 5637@deffn {Directive} %token-table
931c7513
RS
5638Generate an array of token names in the parser file. The name of the
5639array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5640token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5641three elements of @code{yytname} correspond to the predefined tokens
5642@code{"$end"},
88bce5a2
AD
5643@code{"error"}, and @code{"$undefined"}; after these come the symbols
5644defined in the grammar file.
931c7513 5645
9e0876fb
PE
5646The name in the table includes all the characters needed to represent
5647the token in Bison. For single-character literals and literal
5648strings, this includes the surrounding quoting characters and any
5649escape sequences. For example, the Bison single-character literal
5650@code{'+'} corresponds to a three-character name, represented in C as
5651@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5652corresponds to a five-character name, represented in C as
5653@code{"\"\\\\/\""}.
931c7513 5654
8c9a50be 5655When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5656definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5657@code{YYNRULES}, and @code{YYNSTATES}:
5658
5659@table @code
5660@item YYNTOKENS
5661The highest token number, plus one.
5662@item YYNNTS
9ecbd125 5663The number of nonterminal symbols.
931c7513
RS
5664@item YYNRULES
5665The number of grammar rules,
5666@item YYNSTATES
5667The number of parser states (@pxref{Parser States}).
5668@end table
18b519c0 5669@end deffn
d8988b2f 5670
18b519c0 5671@deffn {Directive} %verbose
d8988b2f 5672Write an extra output file containing verbose descriptions of the
742e4900 5673parser states and what is done for each type of lookahead token in
72d2299c 5674that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5675information.
18b519c0 5676@end deffn
d8988b2f 5677
18b519c0 5678@deffn {Directive} %yacc
d8988b2f
AD
5679Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5680including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5681@end deffn
d8988b2f
AD
5682
5683
342b8b6e 5684@node Multiple Parsers
bfa74976
RS
5685@section Multiple Parsers in the Same Program
5686
5687Most programs that use Bison parse only one language and therefore contain
5688only one Bison parser. But what if you want to parse more than one
5689language with the same program? Then you need to avoid a name conflict
5690between different definitions of @code{yyparse}, @code{yylval}, and so on.
5691
5692The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5693(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5694functions and variables of the Bison parser to start with @var{prefix}
5695instead of @samp{yy}. You can use this to give each parser distinct
5696names that do not conflict.
bfa74976
RS
5697
5698The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5699@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5700@code{yychar} and @code{yydebug}. If you use a push parser,
5701@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5702@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5703For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5704@code{clex}, and so on.
bfa74976
RS
5705
5706@strong{All the other variables and macros associated with Bison are not
5707renamed.} These others are not global; there is no conflict if the same
5708name is used in different parsers. For example, @code{YYSTYPE} is not
5709renamed, but defining this in different ways in different parsers causes
5710no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5711
5712The @samp{-p} option works by adding macro definitions to the beginning
5713of the parser source file, defining @code{yyparse} as
5714@code{@var{prefix}parse}, and so on. This effectively substitutes one
5715name for the other in the entire parser file.
5716
342b8b6e 5717@node Interface
bfa74976
RS
5718@chapter Parser C-Language Interface
5719@cindex C-language interface
5720@cindex interface
5721
5722The Bison parser is actually a C function named @code{yyparse}. Here we
5723describe the interface conventions of @code{yyparse} and the other
5724functions that it needs to use.
5725
5726Keep in mind that the parser uses many C identifiers starting with
5727@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5728identifier (aside from those in this manual) in an action or in epilogue
5729in the grammar file, you are likely to run into trouble.
bfa74976
RS
5730
5731@menu
f5f419de
DJ
5732* Parser Function:: How to call @code{yyparse} and what it returns.
5733* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5734* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5735* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5736* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5737* Lexical:: You must supply a function @code{yylex}
5738 which reads tokens.
5739* Error Reporting:: You must supply a function @code{yyerror}.
5740* Action Features:: Special features for use in actions.
5741* Internationalization:: How to let the parser speak in the user's
5742 native language.
bfa74976
RS
5743@end menu
5744
342b8b6e 5745@node Parser Function
bfa74976
RS
5746@section The Parser Function @code{yyparse}
5747@findex yyparse
5748
5749You call the function @code{yyparse} to cause parsing to occur. This
5750function reads tokens, executes actions, and ultimately returns when it
5751encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5752write an action which directs @code{yyparse} to return immediately
5753without reading further.
bfa74976 5754
2a8d363a
AD
5755
5756@deftypefun int yyparse (void)
bfa74976
RS
5757The value returned by @code{yyparse} is 0 if parsing was successful (return
5758is due to end-of-input).
5759
b47dbebe
PE
5760The value is 1 if parsing failed because of invalid input, i.e., input
5761that contains a syntax error or that causes @code{YYABORT} to be
5762invoked.
5763
5764The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5765@end deftypefun
bfa74976
RS
5766
5767In an action, you can cause immediate return from @code{yyparse} by using
5768these macros:
5769
2a8d363a 5770@defmac YYACCEPT
bfa74976
RS
5771@findex YYACCEPT
5772Return immediately with value 0 (to report success).
2a8d363a 5773@end defmac
bfa74976 5774
2a8d363a 5775@defmac YYABORT
bfa74976
RS
5776@findex YYABORT
5777Return immediately with value 1 (to report failure).
2a8d363a
AD
5778@end defmac
5779
5780If you use a reentrant parser, you can optionally pass additional
5781parameter information to it in a reentrant way. To do so, use the
5782declaration @code{%parse-param}:
5783
2055a44e 5784@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5785@findex %parse-param
2055a44e
AD
5786Declare that one or more
5787@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5788The @var{argument-declaration} is used when declaring
feeb0eda
PE
5789functions or prototypes. The last identifier in
5790@var{argument-declaration} must be the argument name.
2a8d363a
AD
5791@end deffn
5792
5793Here's an example. Write this in the parser:
5794
5795@example
2055a44e 5796%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5797@end example
5798
5799@noindent
5800Then call the parser like this:
5801
5802@example
5803@{
5804 int nastiness, randomness;
5805 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5806 value = yyparse (&nastiness, &randomness);
5807 @dots{}
5808@}
5809@end example
5810
5811@noindent
5812In the grammar actions, use expressions like this to refer to the data:
5813
5814@example
5815exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5816@end example
5817
9987d1b3
JD
5818@node Push Parser Function
5819@section The Push Parser Function @code{yypush_parse}
5820@findex yypush_parse
5821
59da312b
JD
5822(The current push parsing interface is experimental and may evolve.
5823More user feedback will help to stabilize it.)
5824
f4101aa6 5825You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5826function is available if either the @samp{%define api.push-pull push} or
5827@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5828@xref{Push Decl, ,A Push Parser}.
5829
5830@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5831The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5832following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5833is required to finish parsing the grammar.
5834@end deftypefun
5835
5836@node Pull Parser Function
5837@section The Pull Parser Function @code{yypull_parse}
5838@findex yypull_parse
5839
59da312b
JD
5840(The current push parsing interface is experimental and may evolve.
5841More user feedback will help to stabilize it.)
5842
f4101aa6 5843You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5844stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5845declaration is used.
9987d1b3
JD
5846@xref{Push Decl, ,A Push Parser}.
5847
5848@deftypefun int yypull_parse (yypstate *yyps)
5849The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5850@end deftypefun
5851
5852@node Parser Create Function
5853@section The Parser Create Function @code{yystate_new}
5854@findex yypstate_new
5855
59da312b
JD
5856(The current push parsing interface is experimental and may evolve.
5857More user feedback will help to stabilize it.)
5858
f4101aa6 5859You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5860This function is available if either the @samp{%define api.push-pull push} or
5861@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5862@xref{Push Decl, ,A Push Parser}.
5863
5864@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5865The function will return a valid parser instance if there was memory available
333e670c
JD
5866or 0 if no memory was available.
5867In impure mode, it will also return 0 if a parser instance is currently
5868allocated.
9987d1b3
JD
5869@end deftypefun
5870
5871@node Parser Delete Function
5872@section The Parser Delete Function @code{yystate_delete}
5873@findex yypstate_delete
5874
59da312b
JD
5875(The current push parsing interface is experimental and may evolve.
5876More user feedback will help to stabilize it.)
5877
9987d1b3 5878You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5879function is available if either the @samp{%define api.push-pull push} or
5880@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5881@xref{Push Decl, ,A Push Parser}.
5882
5883@deftypefun void yypstate_delete (yypstate *yyps)
5884This function will reclaim the memory associated with a parser instance.
5885After this call, you should no longer attempt to use the parser instance.
5886@end deftypefun
bfa74976 5887
342b8b6e 5888@node Lexical
bfa74976
RS
5889@section The Lexical Analyzer Function @code{yylex}
5890@findex yylex
5891@cindex lexical analyzer
5892
5893The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5894the input stream and returns them to the parser. Bison does not create
5895this function automatically; you must write it so that @code{yyparse} can
5896call it. The function is sometimes referred to as a lexical scanner.
5897
5898In simple programs, @code{yylex} is often defined at the end of the Bison
5899grammar file. If @code{yylex} is defined in a separate source file, you
5900need to arrange for the token-type macro definitions to be available there.
5901To do this, use the @samp{-d} option when you run Bison, so that it will
5902write these macro definitions into a separate header file
5903@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5904that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5905
5906@menu
5907* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5908* Token Values:: How @code{yylex} must return the semantic value
5909 of the token it has read.
5910* Token Locations:: How @code{yylex} must return the text location
5911 (line number, etc.) of the token, if the
5912 actions want that.
5913* Pure Calling:: How the calling convention differs in a pure parser
5914 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5915@end menu
5916
342b8b6e 5917@node Calling Convention
bfa74976
RS
5918@subsection Calling Convention for @code{yylex}
5919
72d2299c
PE
5920The value that @code{yylex} returns must be the positive numeric code
5921for the type of token it has just found; a zero or negative value
5922signifies end-of-input.
bfa74976
RS
5923
5924When a token is referred to in the grammar rules by a name, that name
5925in the parser file becomes a C macro whose definition is the proper
5926numeric code for that token type. So @code{yylex} can use the name
5927to indicate that type. @xref{Symbols}.
5928
5929When a token is referred to in the grammar rules by a character literal,
5930the numeric code for that character is also the code for the token type.
72d2299c
PE
5931So @code{yylex} can simply return that character code, possibly converted
5932to @code{unsigned char} to avoid sign-extension. The null character
5933must not be used this way, because its code is zero and that
bfa74976
RS
5934signifies end-of-input.
5935
5936Here is an example showing these things:
5937
5938@example
13863333
AD
5939int
5940yylex (void)
bfa74976
RS
5941@{
5942 @dots{}
72d2299c 5943 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5944 return 0;
5945 @dots{}
5946 if (c == '+' || c == '-')
72d2299c 5947 return c; /* Assume token type for `+' is '+'. */
bfa74976 5948 @dots{}
72d2299c 5949 return INT; /* Return the type of the token. */
bfa74976
RS
5950 @dots{}
5951@}
5952@end example
5953
5954@noindent
5955This interface has been designed so that the output from the @code{lex}
5956utility can be used without change as the definition of @code{yylex}.
5957
931c7513
RS
5958If the grammar uses literal string tokens, there are two ways that
5959@code{yylex} can determine the token type codes for them:
5960
5961@itemize @bullet
5962@item
5963If the grammar defines symbolic token names as aliases for the
5964literal string tokens, @code{yylex} can use these symbolic names like
5965all others. In this case, the use of the literal string tokens in
5966the grammar file has no effect on @code{yylex}.
5967
5968@item
9ecbd125 5969@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5970table. The index of the token in the table is the token type's code.
9ecbd125 5971The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5972double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5973token's characters are escaped as necessary to be suitable as input
5974to Bison.
931c7513 5975
9e0876fb
PE
5976Here's code for looking up a multicharacter token in @code{yytname},
5977assuming that the characters of the token are stored in
5978@code{token_buffer}, and assuming that the token does not contain any
5979characters like @samp{"} that require escaping.
931c7513
RS
5980
5981@smallexample
5982for (i = 0; i < YYNTOKENS; i++)
5983 @{
5984 if (yytname[i] != 0
5985 && yytname[i][0] == '"'
68449b3a
PE
5986 && ! strncmp (yytname[i] + 1, token_buffer,
5987 strlen (token_buffer))
931c7513
RS
5988 && yytname[i][strlen (token_buffer) + 1] == '"'
5989 && yytname[i][strlen (token_buffer) + 2] == 0)
5990 break;
5991 @}
5992@end smallexample
5993
5994The @code{yytname} table is generated only if you use the
8c9a50be 5995@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5996@end itemize
5997
342b8b6e 5998@node Token Values
bfa74976
RS
5999@subsection Semantic Values of Tokens
6000
6001@vindex yylval
9d9b8b70 6002In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6003be stored into the global variable @code{yylval}. When you are using
6004just one data type for semantic values, @code{yylval} has that type.
6005Thus, if the type is @code{int} (the default), you might write this in
6006@code{yylex}:
6007
6008@example
6009@group
6010 @dots{}
72d2299c
PE
6011 yylval = value; /* Put value onto Bison stack. */
6012 return INT; /* Return the type of the token. */
bfa74976
RS
6013 @dots{}
6014@end group
6015@end example
6016
6017When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6018made from the @code{%union} declaration (@pxref{Union Decl, ,The
6019Collection of Value Types}). So when you store a token's value, you
6020must use the proper member of the union. If the @code{%union}
6021declaration looks like this:
bfa74976
RS
6022
6023@example
6024@group
6025%union @{
6026 int intval;
6027 double val;
6028 symrec *tptr;
6029@}
6030@end group
6031@end example
6032
6033@noindent
6034then the code in @code{yylex} might look like this:
6035
6036@example
6037@group
6038 @dots{}
72d2299c
PE
6039 yylval.intval = value; /* Put value onto Bison stack. */
6040 return INT; /* Return the type of the token. */
bfa74976
RS
6041 @dots{}
6042@end group
6043@end example
6044
95923bd6
AD
6045@node Token Locations
6046@subsection Textual Locations of Tokens
bfa74976
RS
6047
6048@vindex yylloc
847bf1f5 6049If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6050Tracking Locations}) in actions to keep track of the textual locations
6051of tokens and groupings, then you must provide this information in
6052@code{yylex}. The function @code{yyparse} expects to find the textual
6053location of a token just parsed in the global variable @code{yylloc}.
6054So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6055
6056By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6057initialize the members that are going to be used by the actions. The
6058four members are called @code{first_line}, @code{first_column},
6059@code{last_line} and @code{last_column}. Note that the use of this
6060feature makes the parser noticeably slower.
bfa74976
RS
6061
6062@tindex YYLTYPE
6063The data type of @code{yylloc} has the name @code{YYLTYPE}.
6064
342b8b6e 6065@node Pure Calling
c656404a 6066@subsection Calling Conventions for Pure Parsers
bfa74976 6067
67501061 6068When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6069pure, reentrant parser, the global communication variables @code{yylval}
6070and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6071Parser}.) In such parsers the two global variables are replaced by
6072pointers passed as arguments to @code{yylex}. You must declare them as
6073shown here, and pass the information back by storing it through those
6074pointers.
bfa74976
RS
6075
6076@example
13863333
AD
6077int
6078yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6079@{
6080 @dots{}
6081 *lvalp = value; /* Put value onto Bison stack. */
6082 return INT; /* Return the type of the token. */
6083 @dots{}
6084@}
6085@end example
6086
6087If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6088textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6089this case, omit the second argument; @code{yylex} will be called with
6090only one argument.
6091
2055a44e 6092If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6093@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6094Function}). To pass additional arguments to both @code{yylex} and
6095@code{yyparse}, use @code{%param}.
e425e872 6096
2055a44e 6097@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6098@findex %lex-param
2055a44e
AD
6099Specify that @var{argument-declaration} are additional @code{yylex} argument
6100declarations. You may pass one or more such declarations, which is
6101equivalent to repeating @code{%lex-param}.
6102@end deffn
6103
6104@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6105@findex %param
6106Specify that @var{argument-declaration} are additional
6107@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6108@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6109@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6110declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6111@end deffn
e425e872 6112
2a8d363a 6113For instance:
e425e872
RS
6114
6115@example
2055a44e
AD
6116%lex-param @{scanner_mode *mode@}
6117%parse-param @{parser_mode *mode@}
6118%param @{environment_type *env@}
e425e872
RS
6119@end example
6120
6121@noindent
2a8d363a 6122results in the following signature:
e425e872
RS
6123
6124@example
2055a44e
AD
6125int yylex (scanner_mode *mode, environment_type *env);
6126int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6127@end example
6128
67501061 6129If @samp{%define api.pure} is added:
c656404a
RS
6130
6131@example
2055a44e
AD
6132int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6133int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6134@end example
6135
2a8d363a 6136@noindent
67501061 6137and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6138
2a8d363a 6139@example
2055a44e
AD
6140int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6141 scanner_mode *mode, environment_type *env);
6142int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6143@end example
931c7513 6144
342b8b6e 6145@node Error Reporting
bfa74976
RS
6146@section The Error Reporting Function @code{yyerror}
6147@cindex error reporting function
6148@findex yyerror
6149@cindex parse error
6150@cindex syntax error
6151
31b850d2 6152The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6153whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6154action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6155macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6156in Actions}).
bfa74976
RS
6157
6158The Bison parser expects to report the error by calling an error
6159reporting function named @code{yyerror}, which you must supply. It is
6160called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6161receives one argument. For a syntax error, the string is normally
6162@w{@code{"syntax error"}}.
bfa74976 6163
31b850d2 6164@findex %define parse.error
cf499cff 6165If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6166declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6167Section}), then Bison provides a more verbose and specific error message
6e649e65 6168string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6169
1a059451
PE
6170The parser can detect one other kind of error: memory exhaustion. This
6171can happen when the input contains constructions that are very deeply
bfa74976 6172nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6173parser normally extends its stack automatically up to a very large limit. But
6174if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6175fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6176
6177In some cases diagnostics like @w{@code{"syntax error"}} are
6178translated automatically from English to some other language before
6179they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6180
6181The following definition suffices in simple programs:
6182
6183@example
6184@group
13863333 6185void
38a92d50 6186yyerror (char const *s)
bfa74976
RS
6187@{
6188@end group
6189@group
6190 fprintf (stderr, "%s\n", s);
6191@}
6192@end group
6193@end example
6194
6195After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6196error recovery if you have written suitable error recovery grammar rules
6197(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6198immediately return 1.
6199
93724f13 6200Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6201an access to the current location.
6202This is indeed the case for the @acronym{GLR}
2a8d363a 6203parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6204@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6205@code{yyerror} are:
6206
6207@example
38a92d50
PE
6208void yyerror (char const *msg); /* Yacc parsers. */
6209void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6210@end example
6211
feeb0eda 6212If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6213
6214@example
b317297e
PE
6215void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6216void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6217@end example
6218
fa7e68c3 6219Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6220convention for absolutely pure parsers, i.e., when the calling
6221convention of @code{yylex} @emph{and} the calling convention of
67501061 6222@samp{%define api.pure} are pure.
d9df47b6 6223I.e.:
2a8d363a
AD
6224
6225@example
6226/* Location tracking. */
6227%locations
6228/* Pure yylex. */
d9df47b6 6229%define api.pure
feeb0eda 6230%lex-param @{int *nastiness@}
2a8d363a 6231/* Pure yyparse. */
feeb0eda
PE
6232%parse-param @{int *nastiness@}
6233%parse-param @{int *randomness@}
2a8d363a
AD
6234@end example
6235
6236@noindent
6237results in the following signatures for all the parser kinds:
6238
6239@example
6240int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6241int yyparse (int *nastiness, int *randomness);
93724f13
AD
6242void yyerror (YYLTYPE *locp,
6243 int *nastiness, int *randomness,
38a92d50 6244 char const *msg);
2a8d363a
AD
6245@end example
6246
1c0c3e95 6247@noindent
38a92d50
PE
6248The prototypes are only indications of how the code produced by Bison
6249uses @code{yyerror}. Bison-generated code always ignores the returned
6250value, so @code{yyerror} can return any type, including @code{void}.
6251Also, @code{yyerror} can be a variadic function; that is why the
6252message is always passed last.
6253
6254Traditionally @code{yyerror} returns an @code{int} that is always
6255ignored, but this is purely for historical reasons, and @code{void} is
6256preferable since it more accurately describes the return type for
6257@code{yyerror}.
93724f13 6258
bfa74976
RS
6259@vindex yynerrs
6260The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6261reported so far. Normally this variable is global; but if you
704a47c4
AD
6262request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6263then it is a local variable which only the actions can access.
bfa74976 6264
342b8b6e 6265@node Action Features
bfa74976
RS
6266@section Special Features for Use in Actions
6267@cindex summary, action features
6268@cindex action features summary
6269
6270Here is a table of Bison constructs, variables and macros that
6271are useful in actions.
6272
18b519c0 6273@deffn {Variable} $$
bfa74976
RS
6274Acts like a variable that contains the semantic value for the
6275grouping made by the current rule. @xref{Actions}.
18b519c0 6276@end deffn
bfa74976 6277
18b519c0 6278@deffn {Variable} $@var{n}
bfa74976
RS
6279Acts like a variable that contains the semantic value for the
6280@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6281@end deffn
bfa74976 6282
18b519c0 6283@deffn {Variable} $<@var{typealt}>$
bfa74976 6284Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6285specified by the @code{%union} declaration. @xref{Action Types, ,Data
6286Types of Values in Actions}.
18b519c0 6287@end deffn
bfa74976 6288
18b519c0 6289@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6290Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6291union specified by the @code{%union} declaration.
e0c471a9 6292@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6293@end deffn
bfa74976 6294
18b519c0 6295@deffn {Macro} YYABORT;
bfa74976
RS
6296Return immediately from @code{yyparse}, indicating failure.
6297@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6298@end deffn
bfa74976 6299
18b519c0 6300@deffn {Macro} YYACCEPT;
bfa74976
RS
6301Return immediately from @code{yyparse}, indicating success.
6302@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6303@end deffn
bfa74976 6304
18b519c0 6305@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6306@findex YYBACKUP
6307Unshift a token. This macro is allowed only for rules that reduce
742e4900 6308a single value, and only when there is no lookahead token.
c827f760 6309It is also disallowed in @acronym{GLR} parsers.
742e4900 6310It installs a lookahead token with token type @var{token} and
bfa74976
RS
6311semantic value @var{value}; then it discards the value that was
6312going to be reduced by this rule.
6313
6314If the macro is used when it is not valid, such as when there is
742e4900 6315a lookahead token already, then it reports a syntax error with
bfa74976
RS
6316a message @samp{cannot back up} and performs ordinary error
6317recovery.
6318
6319In either case, the rest of the action is not executed.
18b519c0 6320@end deffn
bfa74976 6321
18b519c0 6322@deffn {Macro} YYEMPTY
bfa74976 6323@vindex YYEMPTY
742e4900 6324Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6325@end deffn
bfa74976 6326
32c29292
JD
6327@deffn {Macro} YYEOF
6328@vindex YYEOF
742e4900 6329Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6330stream.
6331@end deffn
6332
18b519c0 6333@deffn {Macro} YYERROR;
bfa74976
RS
6334@findex YYERROR
6335Cause an immediate syntax error. This statement initiates error
6336recovery just as if the parser itself had detected an error; however, it
6337does not call @code{yyerror}, and does not print any message. If you
6338want to print an error message, call @code{yyerror} explicitly before
6339the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6340@end deffn
bfa74976 6341
18b519c0 6342@deffn {Macro} YYRECOVERING
02103984
PE
6343@findex YYRECOVERING
6344The expression @code{YYRECOVERING ()} yields 1 when the parser
6345is recovering from a syntax error, and 0 otherwise.
bfa74976 6346@xref{Error Recovery}.
18b519c0 6347@end deffn
bfa74976 6348
18b519c0 6349@deffn {Variable} yychar
742e4900
JD
6350Variable containing either the lookahead token, or @code{YYEOF} when the
6351lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6352has been performed so the next token is not yet known.
6353Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6354Actions}).
742e4900 6355@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6356@end deffn
bfa74976 6357
18b519c0 6358@deffn {Macro} yyclearin;
742e4900 6359Discard the current lookahead token. This is useful primarily in
32c29292
JD
6360error rules.
6361Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6362Semantic Actions}).
6363@xref{Error Recovery}.
18b519c0 6364@end deffn
bfa74976 6365
18b519c0 6366@deffn {Macro} yyerrok;
bfa74976 6367Resume generating error messages immediately for subsequent syntax
13863333 6368errors. This is useful primarily in error rules.
bfa74976 6369@xref{Error Recovery}.
18b519c0 6370@end deffn
bfa74976 6371
32c29292 6372@deffn {Variable} yylloc
742e4900 6373Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6374to @code{YYEMPTY} or @code{YYEOF}.
6375Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6376Actions}).
6377@xref{Actions and Locations, ,Actions and Locations}.
6378@end deffn
6379
6380@deffn {Variable} yylval
742e4900 6381Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6382not set to @code{YYEMPTY} or @code{YYEOF}.
6383Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6384Actions}).
6385@xref{Actions, ,Actions}.
6386@end deffn
6387
18b519c0 6388@deffn {Value} @@$
847bf1f5 6389@findex @@$
95923bd6 6390Acts like a structure variable containing information on the textual location
847bf1f5
AD
6391of the grouping made by the current rule. @xref{Locations, ,
6392Tracking Locations}.
bfa74976 6393
847bf1f5
AD
6394@c Check if those paragraphs are still useful or not.
6395
6396@c @example
6397@c struct @{
6398@c int first_line, last_line;
6399@c int first_column, last_column;
6400@c @};
6401@c @end example
6402
6403@c Thus, to get the starting line number of the third component, you would
6404@c use @samp{@@3.first_line}.
bfa74976 6405
847bf1f5
AD
6406@c In order for the members of this structure to contain valid information,
6407@c you must make @code{yylex} supply this information about each token.
6408@c If you need only certain members, then @code{yylex} need only fill in
6409@c those members.
bfa74976 6410
847bf1f5 6411@c The use of this feature makes the parser noticeably slower.
18b519c0 6412@end deffn
847bf1f5 6413
18b519c0 6414@deffn {Value} @@@var{n}
847bf1f5 6415@findex @@@var{n}
95923bd6 6416Acts like a structure variable containing information on the textual location
847bf1f5
AD
6417of the @var{n}th component of the current rule. @xref{Locations, ,
6418Tracking Locations}.
18b519c0 6419@end deffn
bfa74976 6420
f7ab6a50
PE
6421@node Internationalization
6422@section Parser Internationalization
6423@cindex internationalization
6424@cindex i18n
6425@cindex NLS
6426@cindex gettext
6427@cindex bison-po
6428
6429A Bison-generated parser can print diagnostics, including error and
6430tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6431also supports outputting diagnostics in the user's native language. To
6432make this work, the user should set the usual environment variables.
6433@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6434For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6435set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6436encoding. The exact set of available locales depends on the user's
6437installation.
6438
6439The maintainer of a package that uses a Bison-generated parser enables
6440the internationalization of the parser's output through the following
6441steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6442@acronym{GNU} Automake.
6443
6444@enumerate
6445@item
30757c8c 6446@cindex bison-i18n.m4
f7ab6a50
PE
6447Into the directory containing the @acronym{GNU} Autoconf macros used
6448by the package---often called @file{m4}---copy the
6449@file{bison-i18n.m4} file installed by Bison under
6450@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6451For example:
6452
6453@example
6454cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6455@end example
6456
6457@item
30757c8c
PE
6458@findex BISON_I18N
6459@vindex BISON_LOCALEDIR
6460@vindex YYENABLE_NLS
f7ab6a50
PE
6461In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6462invocation, add an invocation of @code{BISON_I18N}. This macro is
6463defined in the file @file{bison-i18n.m4} that you copied earlier. It
6464causes @samp{configure} to find the value of the
30757c8c
PE
6465@code{BISON_LOCALEDIR} variable, and it defines the source-language
6466symbol @code{YYENABLE_NLS} to enable translations in the
6467Bison-generated parser.
f7ab6a50
PE
6468
6469@item
6470In the @code{main} function of your program, designate the directory
6471containing Bison's runtime message catalog, through a call to
6472@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6473For example:
6474
6475@example
6476bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6477@end example
6478
6479Typically this appears after any other call @code{bindtextdomain
6480(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6481@samp{BISON_LOCALEDIR} to be defined as a string through the
6482@file{Makefile}.
6483
6484@item
6485In the @file{Makefile.am} that controls the compilation of the @code{main}
6486function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6487either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6488
6489@example
6490DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6491@end example
6492
6493or:
6494
6495@example
6496AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6497@end example
6498
6499@item
6500Finally, invoke the command @command{autoreconf} to generate the build
6501infrastructure.
6502@end enumerate
6503
bfa74976 6504
342b8b6e 6505@node Algorithm
13863333
AD
6506@chapter The Bison Parser Algorithm
6507@cindex Bison parser algorithm
bfa74976
RS
6508@cindex algorithm of parser
6509@cindex shifting
6510@cindex reduction
6511@cindex parser stack
6512@cindex stack, parser
6513
6514As Bison reads tokens, it pushes them onto a stack along with their
6515semantic values. The stack is called the @dfn{parser stack}. Pushing a
6516token is traditionally called @dfn{shifting}.
6517
6518For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6519@samp{3} to come. The stack will have four elements, one for each token
6520that was shifted.
6521
6522But the stack does not always have an element for each token read. When
6523the last @var{n} tokens and groupings shifted match the components of a
6524grammar rule, they can be combined according to that rule. This is called
6525@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6526single grouping whose symbol is the result (left hand side) of that rule.
6527Running the rule's action is part of the process of reduction, because this
6528is what computes the semantic value of the resulting grouping.
6529
6530For example, if the infix calculator's parser stack contains this:
6531
6532@example
65331 + 5 * 3
6534@end example
6535
6536@noindent
6537and the next input token is a newline character, then the last three
6538elements can be reduced to 15 via the rule:
6539
6540@example
6541expr: expr '*' expr;
6542@end example
6543
6544@noindent
6545Then the stack contains just these three elements:
6546
6547@example
65481 + 15
6549@end example
6550
6551@noindent
6552At this point, another reduction can be made, resulting in the single value
655316. Then the newline token can be shifted.
6554
6555The parser tries, by shifts and reductions, to reduce the entire input down
6556to a single grouping whose symbol is the grammar's start-symbol
6557(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6558
6559This kind of parser is known in the literature as a bottom-up parser.
6560
6561@menu
742e4900 6562* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6563* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6564* Precedence:: Operator precedence works by resolving conflicts.
6565* Contextual Precedence:: When an operator's precedence depends on context.
6566* Parser States:: The parser is a finite-state-machine with stack.
6567* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6568* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6569* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6570* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6571@end menu
6572
742e4900
JD
6573@node Lookahead
6574@section Lookahead Tokens
6575@cindex lookahead token
bfa74976
RS
6576
6577The Bison parser does @emph{not} always reduce immediately as soon as the
6578last @var{n} tokens and groupings match a rule. This is because such a
6579simple strategy is inadequate to handle most languages. Instead, when a
6580reduction is possible, the parser sometimes ``looks ahead'' at the next
6581token in order to decide what to do.
6582
6583When a token is read, it is not immediately shifted; first it becomes the
742e4900 6584@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6585perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6586the lookahead token remains off to the side. When no more reductions
6587should take place, the lookahead token is shifted onto the stack. This
bfa74976 6588does not mean that all possible reductions have been done; depending on the
742e4900 6589token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6590application.
6591
742e4900 6592Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6593expressions which contain binary addition operators and postfix unary
6594factorial operators (@samp{!}), and allow parentheses for grouping.
6595
6596@example
6597@group
6598expr: term '+' expr
6599 | term
6600 ;
6601@end group
6602
6603@group
6604term: '(' expr ')'
6605 | term '!'
6606 | NUMBER
6607 ;
6608@end group
6609@end example
6610
6611Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6612should be done? If the following token is @samp{)}, then the first three
6613tokens must be reduced to form an @code{expr}. This is the only valid
6614course, because shifting the @samp{)} would produce a sequence of symbols
6615@w{@code{term ')'}}, and no rule allows this.
6616
6617If the following token is @samp{!}, then it must be shifted immediately so
6618that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6619parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6620@code{expr}. It would then be impossible to shift the @samp{!} because
6621doing so would produce on the stack the sequence of symbols @code{expr
6622'!'}. No rule allows that sequence.
6623
6624@vindex yychar
32c29292
JD
6625@vindex yylval
6626@vindex yylloc
742e4900 6627The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6628Its semantic value and location, if any, are stored in the variables
6629@code{yylval} and @code{yylloc}.
bfa74976
RS
6630@xref{Action Features, ,Special Features for Use in Actions}.
6631
342b8b6e 6632@node Shift/Reduce
bfa74976
RS
6633@section Shift/Reduce Conflicts
6634@cindex conflicts
6635@cindex shift/reduce conflicts
6636@cindex dangling @code{else}
6637@cindex @code{else}, dangling
6638
6639Suppose we are parsing a language which has if-then and if-then-else
6640statements, with a pair of rules like this:
6641
6642@example
6643@group
6644if_stmt:
6645 IF expr THEN stmt
6646 | IF expr THEN stmt ELSE stmt
6647 ;
6648@end group
6649@end example
6650
6651@noindent
6652Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6653terminal symbols for specific keyword tokens.
6654
742e4900 6655When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6656contents of the stack (assuming the input is valid) are just right for
6657reduction by the first rule. But it is also legitimate to shift the
6658@code{ELSE}, because that would lead to eventual reduction by the second
6659rule.
6660
6661This situation, where either a shift or a reduction would be valid, is
6662called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6663these conflicts by choosing to shift, unless otherwise directed by
6664operator precedence declarations. To see the reason for this, let's
6665contrast it with the other alternative.
6666
6667Since the parser prefers to shift the @code{ELSE}, the result is to attach
6668the else-clause to the innermost if-statement, making these two inputs
6669equivalent:
6670
6671@example
6672if x then if y then win (); else lose;
6673
6674if x then do; if y then win (); else lose; end;
6675@end example
6676
6677But if the parser chose to reduce when possible rather than shift, the
6678result would be to attach the else-clause to the outermost if-statement,
6679making these two inputs equivalent:
6680
6681@example
6682if x then if y then win (); else lose;
6683
6684if x then do; if y then win (); end; else lose;
6685@end example
6686
6687The conflict exists because the grammar as written is ambiguous: either
6688parsing of the simple nested if-statement is legitimate. The established
6689convention is that these ambiguities are resolved by attaching the
6690else-clause to the innermost if-statement; this is what Bison accomplishes
6691by choosing to shift rather than reduce. (It would ideally be cleaner to
6692write an unambiguous grammar, but that is very hard to do in this case.)
6693This particular ambiguity was first encountered in the specifications of
6694Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6695
6696To avoid warnings from Bison about predictable, legitimate shift/reduce
6697conflicts, use the @code{%expect @var{n}} declaration. There will be no
6698warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6699@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6700
6701The definition of @code{if_stmt} above is solely to blame for the
6702conflict, but the conflict does not actually appear without additional
6703rules. Here is a complete Bison input file that actually manifests the
6704conflict:
6705
6706@example
6707@group
6708%token IF THEN ELSE variable
6709%%
6710@end group
6711@group
6712stmt: expr
6713 | if_stmt
6714 ;
6715@end group
6716
6717@group
6718if_stmt:
6719 IF expr THEN stmt
6720 | IF expr THEN stmt ELSE stmt
6721 ;
6722@end group
6723
6724expr: variable
6725 ;
6726@end example
6727
342b8b6e 6728@node Precedence
bfa74976
RS
6729@section Operator Precedence
6730@cindex operator precedence
6731@cindex precedence of operators
6732
6733Another situation where shift/reduce conflicts appear is in arithmetic
6734expressions. Here shifting is not always the preferred resolution; the
6735Bison declarations for operator precedence allow you to specify when to
6736shift and when to reduce.
6737
6738@menu
6739* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6740* Using Precedence:: How to specify precedence and associativity.
6741* Precedence Only:: How to specify precedence only.
bfa74976
RS
6742* Precedence Examples:: How these features are used in the previous example.
6743* How Precedence:: How they work.
6744@end menu
6745
342b8b6e 6746@node Why Precedence
bfa74976
RS
6747@subsection When Precedence is Needed
6748
6749Consider the following ambiguous grammar fragment (ambiguous because the
6750input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6751
6752@example
6753@group
6754expr: expr '-' expr
6755 | expr '*' expr
6756 | expr '<' expr
6757 | '(' expr ')'
6758 @dots{}
6759 ;
6760@end group
6761@end example
6762
6763@noindent
6764Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6765should it reduce them via the rule for the subtraction operator? It
6766depends on the next token. Of course, if the next token is @samp{)}, we
6767must reduce; shifting is invalid because no single rule can reduce the
6768token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6769the next token is @samp{*} or @samp{<}, we have a choice: either
6770shifting or reduction would allow the parse to complete, but with
6771different results.
6772
6773To decide which one Bison should do, we must consider the results. If
6774the next operator token @var{op} is shifted, then it must be reduced
6775first in order to permit another opportunity to reduce the difference.
6776The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6777hand, if the subtraction is reduced before shifting @var{op}, the result
6778is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6779reduce should depend on the relative precedence of the operators
6780@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6781@samp{<}.
bfa74976
RS
6782
6783@cindex associativity
6784What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6785@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6786operators we prefer the former, which is called @dfn{left association}.
6787The latter alternative, @dfn{right association}, is desirable for
6788assignment operators. The choice of left or right association is a
6789matter of whether the parser chooses to shift or reduce when the stack
742e4900 6790contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6791makes right-associativity.
bfa74976 6792
342b8b6e 6793@node Using Precedence
bfa74976
RS
6794@subsection Specifying Operator Precedence
6795@findex %left
bfa74976 6796@findex %nonassoc
d78f0ac9
AD
6797@findex %precedence
6798@findex %right
bfa74976
RS
6799
6800Bison allows you to specify these choices with the operator precedence
6801declarations @code{%left} and @code{%right}. Each such declaration
6802contains a list of tokens, which are operators whose precedence and
6803associativity is being declared. The @code{%left} declaration makes all
6804those operators left-associative and the @code{%right} declaration makes
6805them right-associative. A third alternative is @code{%nonassoc}, which
6806declares that it is a syntax error to find the same operator twice ``in a
6807row''.
d78f0ac9
AD
6808The last alternative, @code{%precedence}, allows to define only
6809precedence and no associativity at all. As a result, any
6810associativity-related conflict that remains will be reported as an
6811compile-time error. The directive @code{%nonassoc} creates run-time
6812error: using the operator in a associative way is a syntax error. The
6813directive @code{%precedence} creates compile-time errors: an operator
6814@emph{can} be involved in an associativity-related conflict, contrary to
6815what expected the grammar author.
bfa74976
RS
6816
6817The relative precedence of different operators is controlled by the
d78f0ac9
AD
6818order in which they are declared. The first precedence/associativity
6819declaration in the file declares the operators whose
bfa74976
RS
6820precedence is lowest, the next such declaration declares the operators
6821whose precedence is a little higher, and so on.
6822
d78f0ac9
AD
6823@node Precedence Only
6824@subsection Specifying Precedence Only
6825@findex %precedence
6826
6827Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6828@code{%nonassoc}, which all defines precedence and associativity, little
6829attention is paid to the fact that precedence cannot be defined without
6830defining associativity. Yet, sometimes, when trying to solve a
6831conflict, precedence suffices. In such a case, using @code{%left},
6832@code{%right}, or @code{%nonassoc} might hide future (associativity
6833related) conflicts that would remain hidden.
6834
6835The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6836Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6837in the following situation, where the period denotes the current parsing
6838state:
6839
6840@example
6841if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6842@end example
6843
6844The conflict involves the reduction of the rule @samp{IF expr THEN
6845stmt}, which precedence is by default that of its last token
6846(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6847disambiguation (attach the @code{else} to the closest @code{if}),
6848shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6849higher than that of @code{THEN}. But neither is expected to be involved
6850in an associativity related conflict, which can be specified as follows.
6851
6852@example
6853%precedence THEN
6854%precedence ELSE
6855@end example
6856
6857The unary-minus is another typical example where associativity is
6858usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6859Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6860used to declare the precedence of @code{NEG}, which is more than needed
6861since it also defines its associativity. While this is harmless in the
6862traditional example, who knows how @code{NEG} might be used in future
6863evolutions of the grammar@dots{}
6864
342b8b6e 6865@node Precedence Examples
bfa74976
RS
6866@subsection Precedence Examples
6867
6868In our example, we would want the following declarations:
6869
6870@example
6871%left '<'
6872%left '-'
6873%left '*'
6874@end example
6875
6876In a more complete example, which supports other operators as well, we
6877would declare them in groups of equal precedence. For example, @code{'+'} is
6878declared with @code{'-'}:
6879
6880@example
6881%left '<' '>' '=' NE LE GE
6882%left '+' '-'
6883%left '*' '/'
6884@end example
6885
6886@noindent
6887(Here @code{NE} and so on stand for the operators for ``not equal''
6888and so on. We assume that these tokens are more than one character long
6889and therefore are represented by names, not character literals.)
6890
342b8b6e 6891@node How Precedence
bfa74976
RS
6892@subsection How Precedence Works
6893
6894The first effect of the precedence declarations is to assign precedence
6895levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6896precedence levels to certain rules: each rule gets its precedence from
6897the last terminal symbol mentioned in the components. (You can also
6898specify explicitly the precedence of a rule. @xref{Contextual
6899Precedence, ,Context-Dependent Precedence}.)
6900
6901Finally, the resolution of conflicts works by comparing the precedence
742e4900 6902of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6903token's precedence is higher, the choice is to shift. If the rule's
6904precedence is higher, the choice is to reduce. If they have equal
6905precedence, the choice is made based on the associativity of that
6906precedence level. The verbose output file made by @samp{-v}
6907(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6908resolved.
bfa74976
RS
6909
6910Not all rules and not all tokens have precedence. If either the rule or
742e4900 6911the lookahead token has no precedence, then the default is to shift.
bfa74976 6912
342b8b6e 6913@node Contextual Precedence
bfa74976
RS
6914@section Context-Dependent Precedence
6915@cindex context-dependent precedence
6916@cindex unary operator precedence
6917@cindex precedence, context-dependent
6918@cindex precedence, unary operator
6919@findex %prec
6920
6921Often the precedence of an operator depends on the context. This sounds
6922outlandish at first, but it is really very common. For example, a minus
6923sign typically has a very high precedence as a unary operator, and a
6924somewhat lower precedence (lower than multiplication) as a binary operator.
6925
d78f0ac9
AD
6926The Bison precedence declarations
6927can only be used once for a given token; so a token has
bfa74976
RS
6928only one precedence declared in this way. For context-dependent
6929precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6930modifier for rules.
bfa74976
RS
6931
6932The @code{%prec} modifier declares the precedence of a particular rule by
6933specifying a terminal symbol whose precedence should be used for that rule.
6934It's not necessary for that symbol to appear otherwise in the rule. The
6935modifier's syntax is:
6936
6937@example
6938%prec @var{terminal-symbol}
6939@end example
6940
6941@noindent
6942and it is written after the components of the rule. Its effect is to
6943assign the rule the precedence of @var{terminal-symbol}, overriding
6944the precedence that would be deduced for it in the ordinary way. The
6945altered rule precedence then affects how conflicts involving that rule
6946are resolved (@pxref{Precedence, ,Operator Precedence}).
6947
6948Here is how @code{%prec} solves the problem of unary minus. First, declare
6949a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6950are no tokens of this type, but the symbol serves to stand for its
6951precedence:
6952
6953@example
6954@dots{}
6955%left '+' '-'
6956%left '*'
6957%left UMINUS
6958@end example
6959
6960Now the precedence of @code{UMINUS} can be used in specific rules:
6961
6962@example
6963@group
6964exp: @dots{}
6965 | exp '-' exp
6966 @dots{}
6967 | '-' exp %prec UMINUS
6968@end group
6969@end example
6970
91d2c560 6971@ifset defaultprec
39a06c25
PE
6972If you forget to append @code{%prec UMINUS} to the rule for unary
6973minus, Bison silently assumes that minus has its usual precedence.
6974This kind of problem can be tricky to debug, since one typically
6975discovers the mistake only by testing the code.
6976
22fccf95 6977The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6978this kind of problem systematically. It causes rules that lack a
6979@code{%prec} modifier to have no precedence, even if the last terminal
6980symbol mentioned in their components has a declared precedence.
6981
22fccf95 6982If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6983for all rules that participate in precedence conflict resolution.
6984Then you will see any shift/reduce conflict until you tell Bison how
6985to resolve it, either by changing your grammar or by adding an
6986explicit precedence. This will probably add declarations to the
6987grammar, but it helps to protect against incorrect rule precedences.
6988
22fccf95
PE
6989The effect of @code{%no-default-prec;} can be reversed by giving
6990@code{%default-prec;}, which is the default.
91d2c560 6991@end ifset
39a06c25 6992
342b8b6e 6993@node Parser States
bfa74976
RS
6994@section Parser States
6995@cindex finite-state machine
6996@cindex parser state
6997@cindex state (of parser)
6998
6999The function @code{yyparse} is implemented using a finite-state machine.
7000The values pushed on the parser stack are not simply token type codes; they
7001represent the entire sequence of terminal and nonterminal symbols at or
7002near the top of the stack. The current state collects all the information
7003about previous input which is relevant to deciding what to do next.
7004
742e4900
JD
7005Each time a lookahead token is read, the current parser state together
7006with the type of lookahead token are looked up in a table. This table
7007entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7008specifies the new parser state, which is pushed onto the top of the
7009parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7010This means that a certain number of tokens or groupings are taken off
7011the top of the stack, and replaced by one grouping. In other words,
7012that number of states are popped from the stack, and one new state is
7013pushed.
7014
742e4900 7015There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7016is erroneous in the current state. This causes error processing to begin
7017(@pxref{Error Recovery}).
7018
342b8b6e 7019@node Reduce/Reduce
bfa74976
RS
7020@section Reduce/Reduce Conflicts
7021@cindex reduce/reduce conflict
7022@cindex conflicts, reduce/reduce
7023
7024A reduce/reduce conflict occurs if there are two or more rules that apply
7025to the same sequence of input. This usually indicates a serious error
7026in the grammar.
7027
7028For example, here is an erroneous attempt to define a sequence
7029of zero or more @code{word} groupings.
7030
7031@example
7032sequence: /* empty */
7033 @{ printf ("empty sequence\n"); @}
7034 | maybeword
7035 | sequence word
7036 @{ printf ("added word %s\n", $2); @}
7037 ;
7038
7039maybeword: /* empty */
7040 @{ printf ("empty maybeword\n"); @}
7041 | word
7042 @{ printf ("single word %s\n", $1); @}
7043 ;
7044@end example
7045
7046@noindent
7047The error is an ambiguity: there is more than one way to parse a single
7048@code{word} into a @code{sequence}. It could be reduced to a
7049@code{maybeword} and then into a @code{sequence} via the second rule.
7050Alternatively, nothing-at-all could be reduced into a @code{sequence}
7051via the first rule, and this could be combined with the @code{word}
7052using the third rule for @code{sequence}.
7053
7054There is also more than one way to reduce nothing-at-all into a
7055@code{sequence}. This can be done directly via the first rule,
7056or indirectly via @code{maybeword} and then the second rule.
7057
7058You might think that this is a distinction without a difference, because it
7059does not change whether any particular input is valid or not. But it does
7060affect which actions are run. One parsing order runs the second rule's
7061action; the other runs the first rule's action and the third rule's action.
7062In this example, the output of the program changes.
7063
7064Bison resolves a reduce/reduce conflict by choosing to use the rule that
7065appears first in the grammar, but it is very risky to rely on this. Every
7066reduce/reduce conflict must be studied and usually eliminated. Here is the
7067proper way to define @code{sequence}:
7068
7069@example
7070sequence: /* empty */
7071 @{ printf ("empty sequence\n"); @}
7072 | sequence word
7073 @{ printf ("added word %s\n", $2); @}
7074 ;
7075@end example
7076
7077Here is another common error that yields a reduce/reduce conflict:
7078
7079@example
7080sequence: /* empty */
7081 | sequence words
7082 | sequence redirects
7083 ;
7084
7085words: /* empty */
7086 | words word
7087 ;
7088
7089redirects:/* empty */
7090 | redirects redirect
7091 ;
7092@end example
7093
7094@noindent
7095The intention here is to define a sequence which can contain either
7096@code{word} or @code{redirect} groupings. The individual definitions of
7097@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7098three together make a subtle ambiguity: even an empty input can be parsed
7099in infinitely many ways!
7100
7101Consider: nothing-at-all could be a @code{words}. Or it could be two
7102@code{words} in a row, or three, or any number. It could equally well be a
7103@code{redirects}, or two, or any number. Or it could be a @code{words}
7104followed by three @code{redirects} and another @code{words}. And so on.
7105
7106Here are two ways to correct these rules. First, to make it a single level
7107of sequence:
7108
7109@example
7110sequence: /* empty */
7111 | sequence word
7112 | sequence redirect
7113 ;
7114@end example
7115
7116Second, to prevent either a @code{words} or a @code{redirects}
7117from being empty:
7118
7119@example
7120sequence: /* empty */
7121 | sequence words
7122 | sequence redirects
7123 ;
7124
7125words: word
7126 | words word
7127 ;
7128
7129redirects:redirect
7130 | redirects redirect
7131 ;
7132@end example
7133
342b8b6e 7134@node Mystery Conflicts
bfa74976
RS
7135@section Mysterious Reduce/Reduce Conflicts
7136
7137Sometimes reduce/reduce conflicts can occur that don't look warranted.
7138Here is an example:
7139
7140@example
7141@group
7142%token ID
7143
7144%%
7145def: param_spec return_spec ','
7146 ;
7147param_spec:
7148 type
7149 | name_list ':' type
7150 ;
7151@end group
7152@group
7153return_spec:
7154 type
7155 | name ':' type
7156 ;
7157@end group
7158@group
7159type: ID
7160 ;
7161@end group
7162@group
7163name: ID
7164 ;
7165name_list:
7166 name
7167 | name ',' name_list
7168 ;
7169@end group
7170@end example
7171
7172It would seem that this grammar can be parsed with only a single token
742e4900 7173of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7174a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 7175@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 7176
c827f760
PE
7177@cindex @acronym{LR}(1)
7178@cindex @acronym{LALR}(1)
eb45ef3b
JD
7179However, for historical reasons, Bison cannot by default handle all
7180@acronym{LR}(1) grammars.
7181In this grammar, two contexts, that after an @code{ID} at the beginning
7182of a @code{param_spec} and likewise at the beginning of a
7183@code{return_spec}, are similar enough that Bison assumes they are the
7184same.
7185They appear similar because the same set of rules would be
bfa74976
RS
7186active---the rule for reducing to a @code{name} and that for reducing to
7187a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7188that the rules would require different lookahead tokens in the two
bfa74976
RS
7189contexts, so it makes a single parser state for them both. Combining
7190the two contexts causes a conflict later. In parser terminology, this
c827f760 7191occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 7192
eb45ef3b
JD
7193For many practical grammars (specifically those that fall into the
7194non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
7195difficulties beyond just mysterious reduce/reduce conflicts.
7196The best way to fix all these problems is to select a different parser
7197table generation algorithm.
7198Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
7199the former is more efficient and easier to debug during development.
7200@xref{Decl Summary,,lr.type}, for details.
7201(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7202are experimental.
7203More user feedback will help to stabilize them.)
7204
7205If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7206can often fix a mysterious conflict by identifying the two parser states
7207that are being confused, and adding something to make them look
7208distinct. In the above example, adding one rule to
bfa74976
RS
7209@code{return_spec} as follows makes the problem go away:
7210
7211@example
7212@group
7213%token BOGUS
7214@dots{}
7215%%
7216@dots{}
7217return_spec:
7218 type
7219 | name ':' type
7220 /* This rule is never used. */
7221 | ID BOGUS
7222 ;
7223@end group
7224@end example
7225
7226This corrects the problem because it introduces the possibility of an
7227additional active rule in the context after the @code{ID} at the beginning of
7228@code{return_spec}. This rule is not active in the corresponding context
7229in a @code{param_spec}, so the two contexts receive distinct parser states.
7230As long as the token @code{BOGUS} is never generated by @code{yylex},
7231the added rule cannot alter the way actual input is parsed.
7232
7233In this particular example, there is another way to solve the problem:
7234rewrite the rule for @code{return_spec} to use @code{ID} directly
7235instead of via @code{name}. This also causes the two confusing
7236contexts to have different sets of active rules, because the one for
7237@code{return_spec} activates the altered rule for @code{return_spec}
7238rather than the one for @code{name}.
7239
7240@example
7241param_spec:
7242 type
7243 | name_list ':' type
7244 ;
7245return_spec:
7246 type
7247 | ID ':' type
7248 ;
7249@end example
7250
e054b190
PE
7251For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7252generators, please see:
7253Frank DeRemer and Thomas Pennello, Efficient Computation of
7254@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7255Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7256pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7257
fae437e8 7258@node Generalized LR Parsing
c827f760
PE
7259@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7260@cindex @acronym{GLR} parsing
7261@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7262@cindex ambiguous grammars
9d9b8b70 7263@cindex nondeterministic parsing
676385e2 7264
fae437e8
AD
7265Bison produces @emph{deterministic} parsers that choose uniquely
7266when to reduce and which reduction to apply
742e4900 7267based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7268As a result, normal Bison handles a proper subset of the family of
7269context-free languages.
fae437e8 7270Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7271sequence of reductions cannot have deterministic parsers in this sense.
7272The same is true of languages that require more than one symbol of
742e4900 7273lookahead, since the parser lacks the information necessary to make a
676385e2 7274decision at the point it must be made in a shift-reduce parser.
fae437e8 7275Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7276there are languages where Bison's default choice of how to
676385e2
PH
7277summarize the input seen so far loses necessary information.
7278
7279When you use the @samp{%glr-parser} declaration in your grammar file,
7280Bison generates a parser that uses a different algorithm, called
c827f760
PE
7281Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7282parser uses the same basic
676385e2
PH
7283algorithm for parsing as an ordinary Bison parser, but behaves
7284differently in cases where there is a shift-reduce conflict that has not
fae437e8 7285been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7286reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7287situation, it
fae437e8 7288effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7289shift or reduction. These parsers then proceed as usual, consuming
7290tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7291and split further, with the result that instead of a sequence of states,
c827f760 7292a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7293
7294In effect, each stack represents a guess as to what the proper parse
7295is. Additional input may indicate that a guess was wrong, in which case
7296the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7297actions generated in each stack are saved, rather than being executed
676385e2 7298immediately. When a stack disappears, its saved semantic actions never
fae437e8 7299get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7300their sets of semantic actions are both saved with the state that
7301results from the reduction. We say that two stacks are equivalent
fae437e8 7302when they both represent the same sequence of states,
676385e2
PH
7303and each pair of corresponding states represents a
7304grammar symbol that produces the same segment of the input token
7305stream.
7306
7307Whenever the parser makes a transition from having multiple
eb45ef3b 7308states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7309algorithm, after resolving and executing the saved-up actions.
7310At this transition, some of the states on the stack will have semantic
7311values that are sets (actually multisets) of possible actions. The
7312parser tries to pick one of the actions by first finding one whose rule
7313has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7314declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7315precedence, but there the same merging function is declared for both
fae437e8 7316rules by the @samp{%merge} declaration,
676385e2
PH
7317Bison resolves and evaluates both and then calls the merge function on
7318the result. Otherwise, it reports an ambiguity.
7319
c827f760 7320It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7321permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7322size of the input), any unambiguous (not necessarily
eb45ef3b 7323@acronym{LR}(1)) grammar in
fae437e8 7324quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7325context-free grammar in cubic worst-case time. However, Bison currently
7326uses a simpler data structure that requires time proportional to the
7327length of the input times the maximum number of stacks required for any
9d9b8b70 7328prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7329grammars can require exponential time and space to process. Such badly
7330behaving examples, however, are not generally of practical interest.
9d9b8b70 7331Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7332doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7333structure should generally be adequate. On @acronym{LR}(1) portions of a
7334grammar, in particular, it is only slightly slower than with the
7335deterministic @acronym{LR}(1) Bison parser.
676385e2 7336
fa7e68c3 7337For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7338Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7339Generalised @acronym{LR} Parsers, Royal Holloway, University of
7340London, Department of Computer Science, TR-00-12,
7341@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7342(2000-12-24).
7343
1a059451
PE
7344@node Memory Management
7345@section Memory Management, and How to Avoid Memory Exhaustion
7346@cindex memory exhaustion
7347@cindex memory management
bfa74976
RS
7348@cindex stack overflow
7349@cindex parser stack overflow
7350@cindex overflow of parser stack
7351
1a059451 7352The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7353not reduced. When this happens, the parser function @code{yyparse}
1a059451 7354calls @code{yyerror} and then returns 2.
bfa74976 7355
c827f760 7356Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7357usually results from using a right recursion instead of a left
7358recursion, @xref{Recursion, ,Recursive Rules}.
7359
bfa74976
RS
7360@vindex YYMAXDEPTH
7361By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7362parser stack can become before memory is exhausted. Define the
bfa74976
RS
7363macro with a value that is an integer. This value is the maximum number
7364of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7365
7366The stack space allowed is not necessarily allocated. If you specify a
1a059451 7367large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7368stack at first, and then makes it bigger by stages as needed. This
7369increasing allocation happens automatically and silently. Therefore,
7370you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7371space for ordinary inputs that do not need much stack.
7372
d7e14fc0
PE
7373However, do not allow @code{YYMAXDEPTH} to be a value so large that
7374arithmetic overflow could occur when calculating the size of the stack
7375space. Also, do not allow @code{YYMAXDEPTH} to be less than
7376@code{YYINITDEPTH}.
7377
bfa74976
RS
7378@cindex default stack limit
7379The default value of @code{YYMAXDEPTH}, if you do not define it, is
738010000.
7381
7382@vindex YYINITDEPTH
7383You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7384macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7385parser in C, this value must be a compile-time constant
d7e14fc0
PE
7386unless you are assuming C99 or some other target language or compiler
7387that allows variable-length arrays. The default is 200.
7388
1a059451 7389Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7390
d1a1114f 7391@c FIXME: C++ output.
f50bfcd6 7392Because of semantic differences between C and C++, the deterministic
eb45ef3b 7393parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7394by C++ compilers. In this precise case (compiling a C parser as C++) you are
7395suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7396this deficiency in a future release.
d1a1114f 7397
342b8b6e 7398@node Error Recovery
bfa74976
RS
7399@chapter Error Recovery
7400@cindex error recovery
7401@cindex recovery from errors
7402
6e649e65 7403It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7404error. For example, a compiler should recover sufficiently to parse the
7405rest of the input file and check it for errors; a calculator should accept
7406another expression.
7407
7408In a simple interactive command parser where each input is one line, it may
7409be sufficient to allow @code{yyparse} to return 1 on error and have the
7410caller ignore the rest of the input line when that happens (and then call
7411@code{yyparse} again). But this is inadequate for a compiler, because it
7412forgets all the syntactic context leading up to the error. A syntax error
7413deep within a function in the compiler input should not cause the compiler
7414to treat the following line like the beginning of a source file.
7415
7416@findex error
7417You can define how to recover from a syntax error by writing rules to
7418recognize the special token @code{error}. This is a terminal symbol that
7419is always defined (you need not declare it) and reserved for error
7420handling. The Bison parser generates an @code{error} token whenever a
7421syntax error happens; if you have provided a rule to recognize this token
13863333 7422in the current context, the parse can continue.
bfa74976
RS
7423
7424For example:
7425
7426@example
7427stmnts: /* empty string */
7428 | stmnts '\n'
7429 | stmnts exp '\n'
7430 | stmnts error '\n'
7431@end example
7432
7433The fourth rule in this example says that an error followed by a newline
7434makes a valid addition to any @code{stmnts}.
7435
7436What happens if a syntax error occurs in the middle of an @code{exp}? The
7437error recovery rule, interpreted strictly, applies to the precise sequence
7438of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7439the middle of an @code{exp}, there will probably be some additional tokens
7440and subexpressions on the stack after the last @code{stmnts}, and there
7441will be tokens to read before the next newline. So the rule is not
7442applicable in the ordinary way.
7443
7444But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7445the semantic context and part of the input. First it discards states
7446and objects from the stack until it gets back to a state in which the
bfa74976 7447@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7448already parsed are discarded, back to the last complete @code{stmnts}.)
7449At this point the @code{error} token can be shifted. Then, if the old
742e4900 7450lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7451tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7452this example, Bison reads and discards input until the next newline so
7453that the fourth rule can apply. Note that discarded symbols are
7454possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7455Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7456
7457The choice of error rules in the grammar is a choice of strategies for
7458error recovery. A simple and useful strategy is simply to skip the rest of
7459the current input line or current statement if an error is detected:
7460
7461@example
72d2299c 7462stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7463@end example
7464
7465It is also useful to recover to the matching close-delimiter of an
7466opening-delimiter that has already been parsed. Otherwise the
7467close-delimiter will probably appear to be unmatched, and generate another,
7468spurious error message:
7469
7470@example
7471primary: '(' expr ')'
7472 | '(' error ')'
7473 @dots{}
7474 ;
7475@end example
7476
7477Error recovery strategies are necessarily guesses. When they guess wrong,
7478one syntax error often leads to another. In the above example, the error
7479recovery rule guesses that an error is due to bad input within one
7480@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7481middle of a valid @code{stmnt}. After the error recovery rule recovers
7482from the first error, another syntax error will be found straightaway,
7483since the text following the spurious semicolon is also an invalid
7484@code{stmnt}.
7485
7486To prevent an outpouring of error messages, the parser will output no error
7487message for another syntax error that happens shortly after the first; only
7488after three consecutive input tokens have been successfully shifted will
7489error messages resume.
7490
7491Note that rules which accept the @code{error} token may have actions, just
7492as any other rules can.
7493
7494@findex yyerrok
7495You can make error messages resume immediately by using the macro
7496@code{yyerrok} in an action. If you do this in the error rule's action, no
7497error messages will be suppressed. This macro requires no arguments;
7498@samp{yyerrok;} is a valid C statement.
7499
7500@findex yyclearin
742e4900 7501The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7502this is unacceptable, then the macro @code{yyclearin} may be used to clear
7503this token. Write the statement @samp{yyclearin;} in the error rule's
7504action.
32c29292 7505@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7506
6e649e65 7507For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7508called that advances the input stream to some point where parsing should
7509once again commence. The next symbol returned by the lexical scanner is
742e4900 7510probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7511with @samp{yyclearin;}.
7512
7513@vindex YYRECOVERING
02103984
PE
7514The expression @code{YYRECOVERING ()} yields 1 when the parser
7515is recovering from a syntax error, and 0 otherwise.
7516Syntax error diagnostics are suppressed while recovering from a syntax
7517error.
bfa74976 7518
342b8b6e 7519@node Context Dependency
bfa74976
RS
7520@chapter Handling Context Dependencies
7521
7522The Bison paradigm is to parse tokens first, then group them into larger
7523syntactic units. In many languages, the meaning of a token is affected by
7524its context. Although this violates the Bison paradigm, certain techniques
7525(known as @dfn{kludges}) may enable you to write Bison parsers for such
7526languages.
7527
7528@menu
7529* Semantic Tokens:: Token parsing can depend on the semantic context.
7530* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7531* Tie-in Recovery:: Lexical tie-ins have implications for how
7532 error recovery rules must be written.
7533@end menu
7534
7535(Actually, ``kludge'' means any technique that gets its job done but is
7536neither clean nor robust.)
7537
342b8b6e 7538@node Semantic Tokens
bfa74976
RS
7539@section Semantic Info in Token Types
7540
7541The C language has a context dependency: the way an identifier is used
7542depends on what its current meaning is. For example, consider this:
7543
7544@example
7545foo (x);
7546@end example
7547
7548This looks like a function call statement, but if @code{foo} is a typedef
7549name, then this is actually a declaration of @code{x}. How can a Bison
7550parser for C decide how to parse this input?
7551
c827f760 7552The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7553@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7554identifier, it looks up the current declaration of the identifier in order
7555to decide which token type to return: @code{TYPENAME} if the identifier is
7556declared as a typedef, @code{IDENTIFIER} otherwise.
7557
7558The grammar rules can then express the context dependency by the choice of
7559token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7560but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7561@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7562is @emph{not} significant, such as in declarations that can shadow a
7563typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7564accepted---there is one rule for each of the two token types.
7565
7566This technique is simple to use if the decision of which kinds of
7567identifiers to allow is made at a place close to where the identifier is
7568parsed. But in C this is not always so: C allows a declaration to
7569redeclare a typedef name provided an explicit type has been specified
7570earlier:
7571
7572@example
3a4f411f
PE
7573typedef int foo, bar;
7574int baz (void)
7575@{
7576 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7577 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7578 return foo (bar);
7579@}
bfa74976
RS
7580@end example
7581
7582Unfortunately, the name being declared is separated from the declaration
7583construct itself by a complicated syntactic structure---the ``declarator''.
7584
9ecbd125 7585As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7586all the nonterminal names changed: once for parsing a declaration in
7587which a typedef name can be redefined, and once for parsing a
7588declaration in which that can't be done. Here is a part of the
7589duplication, with actions omitted for brevity:
bfa74976
RS
7590
7591@example
7592initdcl:
7593 declarator maybeasm '='
7594 init
7595 | declarator maybeasm
7596 ;
7597
7598notype_initdcl:
7599 notype_declarator maybeasm '='
7600 init
7601 | notype_declarator maybeasm
7602 ;
7603@end example
7604
7605@noindent
7606Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7607cannot. The distinction between @code{declarator} and
7608@code{notype_declarator} is the same sort of thing.
7609
7610There is some similarity between this technique and a lexical tie-in
7611(described next), in that information which alters the lexical analysis is
7612changed during parsing by other parts of the program. The difference is
7613here the information is global, and is used for other purposes in the
7614program. A true lexical tie-in has a special-purpose flag controlled by
7615the syntactic context.
7616
342b8b6e 7617@node Lexical Tie-ins
bfa74976
RS
7618@section Lexical Tie-ins
7619@cindex lexical tie-in
7620
7621One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7622which is set by Bison actions, whose purpose is to alter the way tokens are
7623parsed.
7624
7625For example, suppose we have a language vaguely like C, but with a special
7626construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7627an expression in parentheses in which all integers are hexadecimal. In
7628particular, the token @samp{a1b} must be treated as an integer rather than
7629as an identifier if it appears in that context. Here is how you can do it:
7630
7631@example
7632@group
7633%@{
38a92d50
PE
7634 int hexflag;
7635 int yylex (void);
7636 void yyerror (char const *);
bfa74976
RS
7637%@}
7638%%
7639@dots{}
7640@end group
7641@group
7642expr: IDENTIFIER
7643 | constant
7644 | HEX '('
7645 @{ hexflag = 1; @}
7646 expr ')'
7647 @{ hexflag = 0;
7648 $$ = $4; @}
7649 | expr '+' expr
7650 @{ $$ = make_sum ($1, $3); @}
7651 @dots{}
7652 ;
7653@end group
7654
7655@group
7656constant:
7657 INTEGER
7658 | STRING
7659 ;
7660@end group
7661@end example
7662
7663@noindent
7664Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7665it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7666with letters are parsed as integers if possible.
7667
342b8b6e
AD
7668The declaration of @code{hexflag} shown in the prologue of the parser file
7669is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7670You must also write the code in @code{yylex} to obey the flag.
bfa74976 7671
342b8b6e 7672@node Tie-in Recovery
bfa74976
RS
7673@section Lexical Tie-ins and Error Recovery
7674
7675Lexical tie-ins make strict demands on any error recovery rules you have.
7676@xref{Error Recovery}.
7677
7678The reason for this is that the purpose of an error recovery rule is to
7679abort the parsing of one construct and resume in some larger construct.
7680For example, in C-like languages, a typical error recovery rule is to skip
7681tokens until the next semicolon, and then start a new statement, like this:
7682
7683@example
7684stmt: expr ';'
7685 | IF '(' expr ')' stmt @{ @dots{} @}
7686 @dots{}
7687 error ';'
7688 @{ hexflag = 0; @}
7689 ;
7690@end example
7691
7692If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7693construct, this error rule will apply, and then the action for the
7694completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7695remain set for the entire rest of the input, or until the next @code{hex}
7696keyword, causing identifiers to be misinterpreted as integers.
7697
7698To avoid this problem the error recovery rule itself clears @code{hexflag}.
7699
7700There may also be an error recovery rule that works within expressions.
7701For example, there could be a rule which applies within parentheses
7702and skips to the close-parenthesis:
7703
7704@example
7705@group
7706expr: @dots{}
7707 | '(' expr ')'
7708 @{ $$ = $2; @}
7709 | '(' error ')'
7710 @dots{}
7711@end group
7712@end example
7713
7714If this rule acts within the @code{hex} construct, it is not going to abort
7715that construct (since it applies to an inner level of parentheses within
7716the construct). Therefore, it should not clear the flag: the rest of
7717the @code{hex} construct should be parsed with the flag still in effect.
7718
7719What if there is an error recovery rule which might abort out of the
7720@code{hex} construct or might not, depending on circumstances? There is no
7721way you can write the action to determine whether a @code{hex} construct is
7722being aborted or not. So if you are using a lexical tie-in, you had better
7723make sure your error recovery rules are not of this kind. Each rule must
7724be such that you can be sure that it always will, or always won't, have to
7725clear the flag.
7726
ec3bc396
AD
7727@c ================================================== Debugging Your Parser
7728
342b8b6e 7729@node Debugging
bfa74976 7730@chapter Debugging Your Parser
ec3bc396
AD
7731
7732Developing a parser can be a challenge, especially if you don't
7733understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7734Algorithm}). Even so, sometimes a detailed description of the automaton
7735can help (@pxref{Understanding, , Understanding Your Parser}), or
7736tracing the execution of the parser can give some insight on why it
7737behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7738
7739@menu
7740* Understanding:: Understanding the structure of your parser.
7741* Tracing:: Tracing the execution of your parser.
7742@end menu
7743
7744@node Understanding
7745@section Understanding Your Parser
7746
7747As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7748Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7749frequent than one would hope), looking at this automaton is required to
7750tune or simply fix a parser. Bison provides two different
35fe0834 7751representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7752
7753The textual file is generated when the options @option{--report} or
7754@option{--verbose} are specified, see @xref{Invocation, , Invoking
7755Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7756the parser output file name, and adding @samp{.output} instead.
7757Therefore, if the input file is @file{foo.y}, then the parser file is
7758called @file{foo.tab.c} by default. As a consequence, the verbose
7759output file is called @file{foo.output}.
7760
7761The following grammar file, @file{calc.y}, will be used in the sequel:
7762
7763@example
7764%token NUM STR
7765%left '+' '-'
7766%left '*'
7767%%
7768exp: exp '+' exp
7769 | exp '-' exp
7770 | exp '*' exp
7771 | exp '/' exp
7772 | NUM
7773 ;
7774useless: STR;
7775%%
7776@end example
7777
88bce5a2
AD
7778@command{bison} reports:
7779
7780@example
8f0d265e
JD
7781calc.y: warning: 1 nonterminal useless in grammar
7782calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7783calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7784calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7785calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7786@end example
7787
7788When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7789creates a file @file{calc.output} with contents detailed below. The
7790order of the output and the exact presentation might vary, but the
7791interpretation is the same.
ec3bc396
AD
7792
7793The first section includes details on conflicts that were solved thanks
7794to precedence and/or associativity:
7795
7796@example
7797Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7798Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7799Conflict in state 8 between rule 2 and token '*' resolved as shift.
7800@exdent @dots{}
7801@end example
7802
7803@noindent
7804The next section lists states that still have conflicts.
7805
7806@example
5a99098d
PE
7807State 8 conflicts: 1 shift/reduce
7808State 9 conflicts: 1 shift/reduce
7809State 10 conflicts: 1 shift/reduce
7810State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7811@end example
7812
7813@noindent
7814@cindex token, useless
7815@cindex useless token
7816@cindex nonterminal, useless
7817@cindex useless nonterminal
7818@cindex rule, useless
7819@cindex useless rule
7820The next section reports useless tokens, nonterminal and rules. Useless
7821nonterminals and rules are removed in order to produce a smaller parser,
7822but useless tokens are preserved, since they might be used by the
d80fb37a 7823scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7824below):
7825
7826@example
d80fb37a 7827Nonterminals useless in grammar:
ec3bc396
AD
7828 useless
7829
d80fb37a 7830Terminals unused in grammar:
ec3bc396
AD
7831 STR
7832
cff03fb2 7833Rules useless in grammar:
ec3bc396
AD
7834#6 useless: STR;
7835@end example
7836
7837@noindent
7838The next section reproduces the exact grammar that Bison used:
7839
7840@example
7841Grammar
7842
7843 Number, Line, Rule
88bce5a2 7844 0 5 $accept -> exp $end
ec3bc396
AD
7845 1 5 exp -> exp '+' exp
7846 2 6 exp -> exp '-' exp
7847 3 7 exp -> exp '*' exp
7848 4 8 exp -> exp '/' exp
7849 5 9 exp -> NUM
7850@end example
7851
7852@noindent
7853and reports the uses of the symbols:
7854
7855@example
7856Terminals, with rules where they appear
7857
88bce5a2 7858$end (0) 0
ec3bc396
AD
7859'*' (42) 3
7860'+' (43) 1
7861'-' (45) 2
7862'/' (47) 4
7863error (256)
7864NUM (258) 5
7865
7866Nonterminals, with rules where they appear
7867
88bce5a2 7868$accept (8)
ec3bc396
AD
7869 on left: 0
7870exp (9)
7871 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7872@end example
7873
7874@noindent
7875@cindex item
7876@cindex pointed rule
7877@cindex rule, pointed
7878Bison then proceeds onto the automaton itself, describing each state
7879with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7880item is a production rule together with a point (marked by @samp{.})
7881that the input cursor.
7882
7883@example
7884state 0
7885
88bce5a2 7886 $accept -> . exp $ (rule 0)
ec3bc396 7887
2a8d363a 7888 NUM shift, and go to state 1
ec3bc396 7889
2a8d363a 7890 exp go to state 2
ec3bc396
AD
7891@end example
7892
7893This reads as follows: ``state 0 corresponds to being at the very
7894beginning of the parsing, in the initial rule, right before the start
7895symbol (here, @code{exp}). When the parser returns to this state right
7896after having reduced a rule that produced an @code{exp}, the control
7897flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7898symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7899the parse stack, and the control flow jumps to state 1. Any other
742e4900 7900lookahead triggers a syntax error.''
ec3bc396
AD
7901
7902@cindex core, item set
7903@cindex item set core
7904@cindex kernel, item set
7905@cindex item set core
7906Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7907report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7908at the beginning of any rule deriving an @code{exp}. By default Bison
7909reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7910you want to see more detail you can invoke @command{bison} with
7911@option{--report=itemset} to list all the items, include those that can
7912be derived:
7913
7914@example
7915state 0
7916
88bce5a2 7917 $accept -> . exp $ (rule 0)
ec3bc396
AD
7918 exp -> . exp '+' exp (rule 1)
7919 exp -> . exp '-' exp (rule 2)
7920 exp -> . exp '*' exp (rule 3)
7921 exp -> . exp '/' exp (rule 4)
7922 exp -> . NUM (rule 5)
7923
7924 NUM shift, and go to state 1
7925
7926 exp go to state 2
7927@end example
7928
7929@noindent
7930In the state 1...
7931
7932@example
7933state 1
7934
7935 exp -> NUM . (rule 5)
7936
2a8d363a 7937 $default reduce using rule 5 (exp)
ec3bc396
AD
7938@end example
7939
7940@noindent
742e4900 7941the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7942(@samp{$default}), the parser will reduce it. If it was coming from
7943state 0, then, after this reduction it will return to state 0, and will
7944jump to state 2 (@samp{exp: go to state 2}).
7945
7946@example
7947state 2
7948
88bce5a2 7949 $accept -> exp . $ (rule 0)
ec3bc396
AD
7950 exp -> exp . '+' exp (rule 1)
7951 exp -> exp . '-' exp (rule 2)
7952 exp -> exp . '*' exp (rule 3)
7953 exp -> exp . '/' exp (rule 4)
7954
2a8d363a
AD
7955 $ shift, and go to state 3
7956 '+' shift, and go to state 4
7957 '-' shift, and go to state 5
7958 '*' shift, and go to state 6
7959 '/' shift, and go to state 7
ec3bc396
AD
7960@end example
7961
7962@noindent
7963In state 2, the automaton can only shift a symbol. For instance,
742e4900 7964because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7965@samp{+}, it will be shifted on the parse stack, and the automaton
7966control will jump to state 4, corresponding to the item @samp{exp -> exp
7967'+' . exp}. Since there is no default action, any other token than
6e649e65 7968those listed above will trigger a syntax error.
ec3bc396 7969
eb45ef3b 7970@cindex accepting state
ec3bc396
AD
7971The state 3 is named the @dfn{final state}, or the @dfn{accepting
7972state}:
7973
7974@example
7975state 3
7976
88bce5a2 7977 $accept -> exp $ . (rule 0)
ec3bc396 7978
2a8d363a 7979 $default accept
ec3bc396
AD
7980@end example
7981
7982@noindent
7983the initial rule is completed (the start symbol and the end
7984of input were read), the parsing exits successfully.
7985
7986The interpretation of states 4 to 7 is straightforward, and is left to
7987the reader.
7988
7989@example
7990state 4
7991
7992 exp -> exp '+' . exp (rule 1)
7993
2a8d363a 7994 NUM shift, and go to state 1
ec3bc396 7995
2a8d363a 7996 exp go to state 8
ec3bc396
AD
7997
7998state 5
7999
8000 exp -> exp '-' . exp (rule 2)
8001
2a8d363a 8002 NUM shift, and go to state 1
ec3bc396 8003
2a8d363a 8004 exp go to state 9
ec3bc396
AD
8005
8006state 6
8007
8008 exp -> exp '*' . exp (rule 3)
8009
2a8d363a 8010 NUM shift, and go to state 1
ec3bc396 8011
2a8d363a 8012 exp go to state 10
ec3bc396
AD
8013
8014state 7
8015
8016 exp -> exp '/' . exp (rule 4)
8017
2a8d363a 8018 NUM shift, and go to state 1
ec3bc396 8019
2a8d363a 8020 exp go to state 11
ec3bc396
AD
8021@end example
8022
5a99098d
PE
8023As was announced in beginning of the report, @samp{State 8 conflicts:
80241 shift/reduce}:
ec3bc396
AD
8025
8026@example
8027state 8
8028
8029 exp -> exp . '+' exp (rule 1)
8030 exp -> exp '+' exp . (rule 1)
8031 exp -> exp . '-' exp (rule 2)
8032 exp -> exp . '*' exp (rule 3)
8033 exp -> exp . '/' exp (rule 4)
8034
2a8d363a
AD
8035 '*' shift, and go to state 6
8036 '/' shift, and go to state 7
ec3bc396 8037
2a8d363a
AD
8038 '/' [reduce using rule 1 (exp)]
8039 $default reduce using rule 1 (exp)
ec3bc396
AD
8040@end example
8041
742e4900 8042Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8043either shifting (and going to state 7), or reducing rule 1. The
8044conflict means that either the grammar is ambiguous, or the parser lacks
8045information to make the right decision. Indeed the grammar is
8046ambiguous, as, since we did not specify the precedence of @samp{/}, the
8047sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8048NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8049NUM}, which corresponds to reducing rule 1.
8050
eb45ef3b 8051Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8052arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8053Shift/Reduce Conflicts}. Discarded actions are reported in between
8054square brackets.
8055
8056Note that all the previous states had a single possible action: either
8057shifting the next token and going to the corresponding state, or
8058reducing a single rule. In the other cases, i.e., when shifting
8059@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8060possible, the lookahead is required to select the action. State 8 is
8061one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8062is shifting, otherwise the action is reducing rule 1. In other words,
8063the first two items, corresponding to rule 1, are not eligible when the
742e4900 8064lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8065precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8066with some set of possible lookahead tokens. When run with
8067@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8068
8069@example
8070state 8
8071
88c78747 8072 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8073 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8074 exp -> exp . '-' exp (rule 2)
8075 exp -> exp . '*' exp (rule 3)
8076 exp -> exp . '/' exp (rule 4)
8077
8078 '*' shift, and go to state 6
8079 '/' shift, and go to state 7
8080
8081 '/' [reduce using rule 1 (exp)]
8082 $default reduce using rule 1 (exp)
8083@end example
8084
8085The remaining states are similar:
8086
8087@example
8088state 9
8089
8090 exp -> exp . '+' exp (rule 1)
8091 exp -> exp . '-' exp (rule 2)
8092 exp -> exp '-' exp . (rule 2)
8093 exp -> exp . '*' exp (rule 3)
8094 exp -> exp . '/' exp (rule 4)
8095
2a8d363a
AD
8096 '*' shift, and go to state 6
8097 '/' shift, and go to state 7
ec3bc396 8098
2a8d363a
AD
8099 '/' [reduce using rule 2 (exp)]
8100 $default reduce using rule 2 (exp)
ec3bc396
AD
8101
8102state 10
8103
8104 exp -> exp . '+' exp (rule 1)
8105 exp -> exp . '-' exp (rule 2)
8106 exp -> exp . '*' exp (rule 3)
8107 exp -> exp '*' exp . (rule 3)
8108 exp -> exp . '/' exp (rule 4)
8109
2a8d363a 8110 '/' shift, and go to state 7
ec3bc396 8111
2a8d363a
AD
8112 '/' [reduce using rule 3 (exp)]
8113 $default reduce using rule 3 (exp)
ec3bc396
AD
8114
8115state 11
8116
8117 exp -> exp . '+' exp (rule 1)
8118 exp -> exp . '-' exp (rule 2)
8119 exp -> exp . '*' exp (rule 3)
8120 exp -> exp . '/' exp (rule 4)
8121 exp -> exp '/' exp . (rule 4)
8122
2a8d363a
AD
8123 '+' shift, and go to state 4
8124 '-' shift, and go to state 5
8125 '*' shift, and go to state 6
8126 '/' shift, and go to state 7
ec3bc396 8127
2a8d363a
AD
8128 '+' [reduce using rule 4 (exp)]
8129 '-' [reduce using rule 4 (exp)]
8130 '*' [reduce using rule 4 (exp)]
8131 '/' [reduce using rule 4 (exp)]
8132 $default reduce using rule 4 (exp)
ec3bc396
AD
8133@end example
8134
8135@noindent
fa7e68c3
PE
8136Observe that state 11 contains conflicts not only due to the lack of
8137precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8138@samp{*}, but also because the
ec3bc396
AD
8139associativity of @samp{/} is not specified.
8140
8141
8142@node Tracing
8143@section Tracing Your Parser
bfa74976
RS
8144@findex yydebug
8145@cindex debugging
8146@cindex tracing the parser
8147
8148If a Bison grammar compiles properly but doesn't do what you want when it
8149runs, the @code{yydebug} parser-trace feature can help you figure out why.
8150
3ded9a63
AD
8151There are several means to enable compilation of trace facilities:
8152
8153@table @asis
8154@item the macro @code{YYDEBUG}
8155@findex YYDEBUG
8156Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 8157parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
8158@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8159YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8160Prologue}).
8161
8162@item the option @option{-t}, @option{--debug}
8163Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 8164,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
8165
8166@item the directive @samp{%debug}
8167@findex %debug
fa819509
AD
8168Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8169Summary}). This Bison extension is maintained for backward
8170compatibility with previous versions of Bison.
8171
8172@item the variable @samp{parse.trace}
8173@findex %define parse.trace
8174Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8175,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8176(@pxref{Bison Options}). This is a Bison extension, which is especially
8177useful for languages that don't use a preprocessor. Unless
8178@acronym{POSIX} and Yacc portability matter to you, this is the
8179preferred solution.
3ded9a63
AD
8180@end table
8181
fa819509 8182We suggest that you always enable the trace option so that debugging is
3ded9a63 8183always possible.
bfa74976 8184
02a81e05 8185The trace facility outputs messages with macro calls of the form
e2742e46 8186@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8187@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8188arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8189define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8190and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8191
8192Once you have compiled the program with trace facilities, the way to
8193request a trace is to store a nonzero value in the variable @code{yydebug}.
8194You can do this by making the C code do it (in @code{main}, perhaps), or
8195you can alter the value with a C debugger.
8196
8197Each step taken by the parser when @code{yydebug} is nonzero produces a
8198line or two of trace information, written on @code{stderr}. The trace
8199messages tell you these things:
8200
8201@itemize @bullet
8202@item
8203Each time the parser calls @code{yylex}, what kind of token was read.
8204
8205@item
8206Each time a token is shifted, the depth and complete contents of the
8207state stack (@pxref{Parser States}).
8208
8209@item
8210Each time a rule is reduced, which rule it is, and the complete contents
8211of the state stack afterward.
8212@end itemize
8213
8214To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8215produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8216Bison}). This file shows the meaning of each state in terms of
8217positions in various rules, and also what each state will do with each
8218possible input token. As you read the successive trace messages, you
8219can see that the parser is functioning according to its specification in
8220the listing file. Eventually you will arrive at the place where
8221something undesirable happens, and you will see which parts of the
8222grammar are to blame.
bfa74976
RS
8223
8224The parser file is a C program and you can use C debuggers on it, but it's
8225not easy to interpret what it is doing. The parser function is a
8226finite-state machine interpreter, and aside from the actions it executes
8227the same code over and over. Only the values of variables show where in
8228the grammar it is working.
8229
8230@findex YYPRINT
8231The debugging information normally gives the token type of each token
8232read, but not its semantic value. You can optionally define a macro
8233named @code{YYPRINT} to provide a way to print the value. If you define
8234@code{YYPRINT}, it should take three arguments. The parser will pass a
8235standard I/O stream, the numeric code for the token type, and the token
8236value (from @code{yylval}).
8237
8238Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8239calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8240
8241@smallexample
38a92d50
PE
8242%@{
8243 static void print_token_value (FILE *, int, YYSTYPE);
8244 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8245%@}
8246
8247@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8248
8249static void
831d3c99 8250print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8251@{
8252 if (type == VAR)
d3c4e709 8253 fprintf (file, "%s", value.tptr->name);
bfa74976 8254 else if (type == NUM)
d3c4e709 8255 fprintf (file, "%d", value.val);
bfa74976
RS
8256@}
8257@end smallexample
8258
ec3bc396
AD
8259@c ================================================= Invoking Bison
8260
342b8b6e 8261@node Invocation
bfa74976
RS
8262@chapter Invoking Bison
8263@cindex invoking Bison
8264@cindex Bison invocation
8265@cindex options for invoking Bison
8266
8267The usual way to invoke Bison is as follows:
8268
8269@example
8270bison @var{infile}
8271@end example
8272
8273Here @var{infile} is the grammar file name, which usually ends in
8274@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8275with @samp{.tab.c} and removing any leading directory. Thus, the
8276@samp{bison foo.y} file name yields
8277@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8278@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8279C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8280or @file{foo.y++}. Then, the output files will take an extension like
8281the given one as input (respectively @file{foo.tab.cpp} and
8282@file{foo.tab.c++}).
fa4d969f 8283This feature takes effect with all options that manipulate file names like
234a3be3
AD
8284@samp{-o} or @samp{-d}.
8285
8286For example :
8287
8288@example
8289bison -d @var{infile.yxx}
8290@end example
84163231 8291@noindent
72d2299c 8292will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8293
8294@example
b56471a6 8295bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8296@end example
84163231 8297@noindent
234a3be3
AD
8298will produce @file{output.c++} and @file{outfile.h++}.
8299
397ec073
PE
8300For compatibility with @acronym{POSIX}, the standard Bison
8301distribution also contains a shell script called @command{yacc} that
8302invokes Bison with the @option{-y} option.
8303
bfa74976 8304@menu
13863333 8305* Bison Options:: All the options described in detail,
c827f760 8306 in alphabetical order by short options.
bfa74976 8307* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8308* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8309@end menu
8310
342b8b6e 8311@node Bison Options
bfa74976
RS
8312@section Bison Options
8313
8314Bison supports both traditional single-letter options and mnemonic long
8315option names. Long option names are indicated with @samp{--} instead of
8316@samp{-}. Abbreviations for option names are allowed as long as they
8317are unique. When a long option takes an argument, like
8318@samp{--file-prefix}, connect the option name and the argument with
8319@samp{=}.
8320
8321Here is a list of options that can be used with Bison, alphabetized by
8322short option. It is followed by a cross key alphabetized by long
8323option.
8324
89cab50d
AD
8325@c Please, keep this ordered as in `bison --help'.
8326@noindent
8327Operations modes:
8328@table @option
8329@item -h
8330@itemx --help
8331Print a summary of the command-line options to Bison and exit.
bfa74976 8332
89cab50d
AD
8333@item -V
8334@itemx --version
8335Print the version number of Bison and exit.
bfa74976 8336
f7ab6a50
PE
8337@item --print-localedir
8338Print the name of the directory containing locale-dependent data.
8339
a0de5091
JD
8340@item --print-datadir
8341Print the name of the directory containing skeletons and XSLT.
8342
89cab50d
AD
8343@item -y
8344@itemx --yacc
54662697
PE
8345Act more like the traditional Yacc command. This can cause
8346different diagnostics to be generated, and may change behavior in
8347other minor ways. Most importantly, imitate Yacc's output
8348file name conventions, so that the parser output file is called
89cab50d 8349@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8350@file{y.tab.h}.
eb45ef3b 8351Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8352statements in addition to an @code{enum} to associate token numbers with token
8353names.
8354Thus, the following shell script can substitute for Yacc, and the Bison
8355distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8356
89cab50d 8357@example
397ec073 8358#! /bin/sh
26e06a21 8359bison -y "$@@"
89cab50d 8360@end example
54662697
PE
8361
8362The @option{-y}/@option{--yacc} option is intended for use with
8363traditional Yacc grammars. If your grammar uses a Bison extension
8364like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8365this option is specified.
8366
1d5b3c08
JD
8367@item -W [@var{category}]
8368@itemx --warnings[=@var{category}]
118d4978
AD
8369Output warnings falling in @var{category}. @var{category} can be one
8370of:
8371@table @code
8372@item midrule-values
8e55b3aa
JD
8373Warn about mid-rule values that are set but not used within any of the actions
8374of the parent rule.
8375For example, warn about unused @code{$2} in:
118d4978
AD
8376
8377@example
8378exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8379@end example
8380
8e55b3aa
JD
8381Also warn about mid-rule values that are used but not set.
8382For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8383
8384@example
8385 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8386@end example
8387
8388These warnings are not enabled by default since they sometimes prove to
8389be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8390@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8391
8392
8393@item yacc
8394Incompatibilities with @acronym{POSIX} Yacc.
8395
8396@item all
8e55b3aa 8397All the warnings.
118d4978 8398@item none
8e55b3aa 8399Turn off all the warnings.
118d4978 8400@item error
8e55b3aa 8401Treat warnings as errors.
118d4978
AD
8402@end table
8403
8404A category can be turned off by prefixing its name with @samp{no-}. For
8405instance, @option{-Wno-syntax} will hide the warnings about unused
8406variables.
89cab50d
AD
8407@end table
8408
8409@noindent
8410Tuning the parser:
8411
8412@table @option
8413@item -t
8414@itemx --debug
4947ebdb
PE
8415In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8416already defined, so that the debugging facilities are compiled.
ec3bc396 8417@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8418
58697c6d
AD
8419@item -D @var{name}[=@var{value}]
8420@itemx --define=@var{name}[=@var{value}]
17aed602 8421@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8422@itemx --force-define=@var{name}[=@var{value}]
8423Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8424(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8425definitions for the same @var{name} as follows:
8426
8427@itemize
8428@item
0b6d43c5
JD
8429Bison quietly ignores all command-line definitions for @var{name} except
8430the last.
de5ab940 8431@item
0b6d43c5
JD
8432If that command-line definition is specified by a @code{-D} or
8433@code{--define}, Bison reports an error for any @code{%define}
8434definition for @var{name}.
de5ab940 8435@item
0b6d43c5
JD
8436If that command-line definition is specified by a @code{-F} or
8437@code{--force-define} instead, Bison quietly ignores all @code{%define}
8438definitions for @var{name}.
8439@item
8440Otherwise, Bison reports an error if there are multiple @code{%define}
8441definitions for @var{name}.
de5ab940
JD
8442@end itemize
8443
8444You should avoid using @code{-F} and @code{--force-define} in your
8445makefiles unless you are confident that it is safe to quietly ignore any
8446conflicting @code{%define} that may be added to the grammar file.
58697c6d 8447
0e021770
PE
8448@item -L @var{language}
8449@itemx --language=@var{language}
8450Specify the programming language for the generated parser, as if
8451@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8452Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8453@var{language} is case-insensitive.
0e021770 8454
ed4d67dc
JD
8455This option is experimental and its effect may be modified in future
8456releases.
8457
89cab50d 8458@item --locations
d8988b2f 8459Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8460
8461@item -p @var{prefix}
8462@itemx --name-prefix=@var{prefix}
02975b9a 8463Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8464@xref{Decl Summary}.
bfa74976
RS
8465
8466@item -l
8467@itemx --no-lines
8468Don't put any @code{#line} preprocessor commands in the parser file.
8469Ordinarily Bison puts them in the parser file so that the C compiler
8470and debuggers will associate errors with your source file, the
8471grammar file. This option causes them to associate errors with the
95e742f7 8472parser file, treating it as an independent source file in its own right.
bfa74976 8473
e6e704dc
JD
8474@item -S @var{file}
8475@itemx --skeleton=@var{file}
a7867f53 8476Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8477(@pxref{Decl Summary, , Bison Declaration Summary}).
8478
ed4d67dc
JD
8479@c You probably don't need this option unless you are developing Bison.
8480@c You should use @option{--language} if you want to specify the skeleton for a
8481@c different language, because it is clearer and because it will always
8482@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8483
a7867f53
JD
8484If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8485file in the Bison installation directory.
8486If it does, @var{file} is an absolute file name or a file name relative to the
8487current working directory.
8488This is similar to how most shells resolve commands.
8489
89cab50d
AD
8490@item -k
8491@itemx --token-table
d8988b2f 8492Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8493@end table
bfa74976 8494
89cab50d
AD
8495@noindent
8496Adjust the output:
bfa74976 8497
89cab50d 8498@table @option
8e55b3aa 8499@item --defines[=@var{file}]
d8988b2f 8500Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8501file containing macro definitions for the token type names defined in
4bfd5e4e 8502the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8503
8e55b3aa
JD
8504@item -d
8505This is the same as @code{--defines} except @code{-d} does not accept a
8506@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8507with other short options.
342b8b6e 8508
89cab50d
AD
8509@item -b @var{file-prefix}
8510@itemx --file-prefix=@var{prefix}
9c437126 8511Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8512for all Bison output file names. @xref{Decl Summary}.
bfa74976 8513
ec3bc396
AD
8514@item -r @var{things}
8515@itemx --report=@var{things}
8516Write an extra output file containing verbose description of the comma
8517separated list of @var{things} among:
8518
8519@table @code
8520@item state
8521Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8522parser's automaton.
ec3bc396 8523
742e4900 8524@item lookahead
ec3bc396 8525Implies @code{state} and augments the description of the automaton with
742e4900 8526each rule's lookahead set.
ec3bc396
AD
8527
8528@item itemset
8529Implies @code{state} and augments the description of the automaton with
8530the full set of items for each state, instead of its core only.
8531@end table
8532
1bb2bd75
JD
8533@item --report-file=@var{file}
8534Specify the @var{file} for the verbose description.
8535
bfa74976
RS
8536@item -v
8537@itemx --verbose
9c437126 8538Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8539file containing verbose descriptions of the grammar and
72d2299c 8540parser. @xref{Decl Summary}.
bfa74976 8541
fa4d969f
PE
8542@item -o @var{file}
8543@itemx --output=@var{file}
8544Specify the @var{file} for the parser file.
bfa74976 8545
fa4d969f 8546The other output files' names are constructed from @var{file} as
d8988b2f 8547described under the @samp{-v} and @samp{-d} options.
342b8b6e 8548
a7c09cba 8549@item -g [@var{file}]
8e55b3aa 8550@itemx --graph[=@var{file}]
eb45ef3b 8551Output a graphical representation of the parser's
35fe0834
PE
8552automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8553@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8554@code{@var{file}} is optional.
8555If omitted and the grammar file is @file{foo.y}, the output file will be
8556@file{foo.dot}.
59da312b 8557
a7c09cba 8558@item -x [@var{file}]
8e55b3aa 8559@itemx --xml[=@var{file}]
eb45ef3b 8560Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8561@code{@var{file}} is optional.
59da312b
JD
8562If omitted and the grammar file is @file{foo.y}, the output file will be
8563@file{foo.xml}.
8564(The current XML schema is experimental and may evolve.
8565More user feedback will help to stabilize it.)
bfa74976
RS
8566@end table
8567
342b8b6e 8568@node Option Cross Key
bfa74976
RS
8569@section Option Cross Key
8570
8571Here is a list of options, alphabetized by long option, to help you find
de5ab940 8572the corresponding short option and directive.
bfa74976 8573
de5ab940 8574@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8575@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8576@include cross-options.texi
aa08666d 8577@end multitable
bfa74976 8578
93dd49ab
PE
8579@node Yacc Library
8580@section Yacc Library
8581
8582The Yacc library contains default implementations of the
8583@code{yyerror} and @code{main} functions. These default
8584implementations are normally not useful, but @acronym{POSIX} requires
8585them. To use the Yacc library, link your program with the
8586@option{-ly} option. Note that Bison's implementation of the Yacc
8587library is distributed under the terms of the @acronym{GNU} General
8588Public License (@pxref{Copying}).
8589
8590If you use the Yacc library's @code{yyerror} function, you should
8591declare @code{yyerror} as follows:
8592
8593@example
8594int yyerror (char const *);
8595@end example
8596
8597Bison ignores the @code{int} value returned by this @code{yyerror}.
8598If you use the Yacc library's @code{main} function, your
8599@code{yyparse} function should have the following type signature:
8600
8601@example
8602int yyparse (void);
8603@end example
8604
12545799
AD
8605@c ================================================= C++ Bison
8606
8405b70c
PB
8607@node Other Languages
8608@chapter Parsers Written In Other Languages
12545799
AD
8609
8610@menu
8611* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8612* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8613@end menu
8614
8615@node C++ Parsers
8616@section C++ Parsers
8617
8618@menu
8619* C++ Bison Interface:: Asking for C++ parser generation
8620* C++ Semantic Values:: %union vs. C++
8621* C++ Location Values:: The position and location classes
8622* C++ Parser Interface:: Instantiating and running the parser
8623* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8624* A Complete C++ Example:: Demonstrating their use
12545799
AD
8625@end menu
8626
8627@node C++ Bison Interface
8628@subsection C++ Bison Interface
ed4d67dc 8629@c - %skeleton "lalr1.cc"
12545799
AD
8630@c - Always pure
8631@c - initial action
8632
eb45ef3b 8633The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8634@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8635@option{--skeleton=lalr1.cc}.
e6e704dc 8636@xref{Decl Summary}.
0e021770 8637
793fbca5
JD
8638When run, @command{bison} will create several entities in the @samp{yy}
8639namespace.
67501061
AD
8640@findex %define api.namespace
8641Use the @samp{%define api.namespace} directive to change the namespace
8642name, see
793fbca5
JD
8643@ref{Decl Summary}.
8644The various classes are generated in the following files:
aa08666d 8645
12545799
AD
8646@table @file
8647@item position.hh
8648@itemx location.hh
8649The definition of the classes @code{position} and @code{location},
3cdc21cf 8650used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8651
8652@item stack.hh
8653An auxiliary class @code{stack} used by the parser.
8654
fa4d969f
PE
8655@item @var{file}.hh
8656@itemx @var{file}.cc
cd8b5791
AD
8657(Assuming the extension of the input file was @samp{.yy}.) The
8658declaration and implementation of the C++ parser class. The basename
8659and extension of these two files follow the same rules as with regular C
8660parsers (@pxref{Invocation}).
12545799 8661
cd8b5791
AD
8662The header is @emph{mandatory}; you must either pass
8663@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8664@samp{%defines} directive.
8665@end table
8666
8667All these files are documented using Doxygen; run @command{doxygen}
8668for a complete and accurate documentation.
8669
8670@node C++ Semantic Values
8671@subsection C++ Semantic Values
8672@c - No objects in unions
178e123e 8673@c - YYSTYPE
12545799
AD
8674@c - Printer and destructor
8675
3cdc21cf
AD
8676Bison supports two different means to handle semantic values in C++. One is
8677alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8678practitioners know, unions are inconvenient in C++, therefore another
8679approach is provided, based on variants (@pxref{C++ Variants}).
8680
8681@menu
8682* C++ Unions:: Semantic values cannot be objects
8683* C++ Variants:: Using objects as semantic values
8684@end menu
8685
8686@node C++ Unions
8687@subsubsection C++ Unions
8688
12545799
AD
8689The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8690Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8691@code{union}, which have a few specific features in C++.
12545799
AD
8692@itemize @minus
8693@item
fb9712a9
AD
8694The type @code{YYSTYPE} is defined but its use is discouraged: rather
8695you should refer to the parser's encapsulated type
8696@code{yy::parser::semantic_type}.
12545799
AD
8697@item
8698Non POD (Plain Old Data) types cannot be used. C++ forbids any
8699instance of classes with constructors in unions: only @emph{pointers}
8700to such objects are allowed.
8701@end itemize
8702
8703Because objects have to be stored via pointers, memory is not
8704reclaimed automatically: using the @code{%destructor} directive is the
8705only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8706Symbols}.
8707
3cdc21cf
AD
8708@node C++ Variants
8709@subsubsection C++ Variants
8710
8711Starting with version 2.6, Bison provides a @emph{variant} based
8712implementation of semantic values for C++. This alleviates all the
8713limitations reported in the previous section, and in particular, object
8714types can be used without pointers.
8715
8716To enable variant-based semantic values, set @code{%define} variable
8717@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8718@code{%union} is ignored, and instead of using the name of the fields of the
8719@code{%union} to ``type'' the symbols, use genuine types.
8720
8721For instance, instead of
8722
8723@example
8724%union
8725@{
8726 int ival;
8727 std::string* sval;
8728@}
8729%token <ival> NUMBER;
8730%token <sval> STRING;
8731@end example
8732
8733@noindent
8734write
8735
8736@example
8737%token <int> NUMBER;
8738%token <std::string> STRING;
8739@end example
8740
8741@code{STRING} is no longer a pointer, which should fairly simplify the user
8742actions in the grammar and in the scanner (in particular the memory
8743management).
8744
8745Since C++ features destructors, and since it is customary to specialize
8746@code{operator<<} to support uniform printing of values, variants also
8747typically simplify Bison printers and destructors.
8748
8749Variants are stricter than unions. When based on unions, you may play any
8750dirty game with @code{yylval}, say storing an @code{int}, reading a
8751@code{char*}, and then storing a @code{double} in it. This is no longer
8752possible with variants: they must be initialized, then assigned to, and
8753eventually, destroyed.
8754
8755@deftypemethod {semantic_type} {T&} build<T> ()
8756Initialize, but leave empty. Returns the address where the actual value may
8757be stored. Requires that the variant was not initialized yet.
8758@end deftypemethod
8759
8760@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8761Initialize, and copy-construct from @var{t}.
8762@end deftypemethod
8763
8764
8765@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8766appeared unacceptable to require Boost on the user's machine (i.e., the
8767machine on which the generated parser will be compiled, not the machine on
8768which @command{bison} was run). Second, for each possible semantic value,
8769Boost.Variant not only stores the value, but also a tag specifying its
8770type. But the parser already ``knows'' the type of the semantic value, so
8771that would be duplicating the information.
8772
8773Therefore we developed light-weight variants whose type tag is external (so
8774they are really like @code{unions} for C++ actually). But our code is much
8775less mature that Boost.Variant. So there is a number of limitations in
8776(the current implementation of) variants:
8777@itemize
8778@item
8779Alignment must be enforced: values should be aligned in memory according to
8780the most demanding type. Computing the smallest alignment possible requires
8781meta-programming techniques that are not currently implemented in Bison, and
8782therefore, since, as far as we know, @code{double} is the most demanding
8783type on all platforms, alignments are enforced for @code{double} whatever
8784types are actually used. This may waste space in some cases.
8785
8786@item
8787Our implementation is not conforming with strict aliasing rules. Alias
8788analysis is a technique used in optimizing compilers to detect when two
8789pointers are disjoint (they cannot ``meet''). Our implementation breaks
8790some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8791alias analysis must be disabled}. Use the option
8792@option{-fno-strict-aliasing} to compile the generated parser.
8793
8794@item
8795There might be portability issues we are not aware of.
8796@end itemize
8797
a6ca4ce2 8798As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8799is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8800
8801@node C++ Location Values
8802@subsection C++ Location Values
8803@c - %locations
8804@c - class Position
8805@c - class Location
16dc6a9e 8806@c - %define filename_type "const symbol::Symbol"
12545799
AD
8807
8808When the directive @code{%locations} is used, the C++ parser supports
8809location tracking, see @ref{Locations, , Locations Overview}. Two
8810auxiliary classes define a @code{position}, a single point in a file,
8811and a @code{location}, a range composed of a pair of
8812@code{position}s (possibly spanning several files).
8813
fa4d969f 8814@deftypemethod {position} {std::string*} file
12545799
AD
8815The name of the file. It will always be handled as a pointer, the
8816parser will never duplicate nor deallocate it. As an experimental
8817feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8818filename_type "@var{type}"}.
12545799
AD
8819@end deftypemethod
8820
8821@deftypemethod {position} {unsigned int} line
8822The line, starting at 1.
8823@end deftypemethod
8824
8825@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8826Advance by @var{height} lines, resetting the column number.
8827@end deftypemethod
8828
8829@deftypemethod {position} {unsigned int} column
8830The column, starting at 0.
8831@end deftypemethod
8832
8833@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8834Advance by @var{width} columns, without changing the line number.
8835@end deftypemethod
8836
8837@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8838@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8839@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8840@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8841Various forms of syntactic sugar for @code{columns}.
8842@end deftypemethod
8843
8844@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8845Report @var{p} on @var{o} like this:
fa4d969f
PE
8846@samp{@var{file}:@var{line}.@var{column}}, or
8847@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8848@end deftypemethod
8849
8850@deftypemethod {location} {position} begin
8851@deftypemethodx {location} {position} end
8852The first, inclusive, position of the range, and the first beyond.
8853@end deftypemethod
8854
8855@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8856@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8857Advance the @code{end} position.
8858@end deftypemethod
8859
8860@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8861@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8862@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8863Various forms of syntactic sugar.
8864@end deftypemethod
8865
8866@deftypemethod {location} {void} step ()
8867Move @code{begin} onto @code{end}.
8868@end deftypemethod
8869
8870
8871@node C++ Parser Interface
8872@subsection C++ Parser Interface
8873@c - define parser_class_name
8874@c - Ctor
8875@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8876@c debug_stream.
8877@c - Reporting errors
8878
8879The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8880declare and define the parser class in the namespace @code{yy}. The
8881class name defaults to @code{parser}, but may be changed using
16dc6a9e 8882@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8883this class is detailed below. It can be extended using the
12545799
AD
8884@code{%parse-param} feature: its semantics is slightly changed since
8885it describes an additional member of the parser class, and an
8886additional argument for its constructor.
8887
3cdc21cf
AD
8888@defcv {Type} {parser} {semantic_type}
8889@defcvx {Type} {parser} {location_type}
8890The types for semantic values and locations (if enabled).
8891@end defcv
8892
86e5b440
AD
8893@defcv {Type} {parser} {token}
8894A structure that contains (only) the definition of the tokens as the
8895@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8896scanner should use @code{yy::parser::token::FOO}. The scanner can use
8897@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8898(@pxref{Calc++ Scanner}).
8899@end defcv
8900
3cdc21cf
AD
8901@defcv {Type} {parser} {syntax_error}
8902This class derives from @code{std::runtime_error}. Throw instances of it
8903from user actions to raise parse errors. This is equivalent with first
8904invoking @code{error} to report the location and message of the syntax
8905error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
8906But contrary to @code{YYERROR} which can only be invoked from user actions
8907(i.e., written in the action itself), the exception can be thrown from
8908function invoked from the user action.
8a0adb01 8909@end defcv
12545799
AD
8910
8911@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8912Build a new parser object. There are no arguments by default, unless
8913@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8914@end deftypemethod
8915
3cdc21cf
AD
8916@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
8917@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
8918Instantiate a syntax-error exception.
8919@end deftypemethod
8920
12545799
AD
8921@deftypemethod {parser} {int} parse ()
8922Run the syntactic analysis, and return 0 on success, 1 otherwise.
8923@end deftypemethod
8924
8925@deftypemethod {parser} {std::ostream&} debug_stream ()
8926@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8927Get or set the stream used for tracing the parsing. It defaults to
8928@code{std::cerr}.
8929@end deftypemethod
8930
8931@deftypemethod {parser} {debug_level_type} debug_level ()
8932@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8933Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8934or nonzero, full tracing.
12545799
AD
8935@end deftypemethod
8936
8937@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 8938@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
8939The definition for this member function must be supplied by the user:
8940the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
8941described by @var{m}. If location tracking is not enabled, the second
8942signature is used.
12545799
AD
8943@end deftypemethod
8944
8945
8946@node C++ Scanner Interface
8947@subsection C++ Scanner Interface
8948@c - prefix for yylex.
8949@c - Pure interface to yylex
8950@c - %lex-param
8951
8952The parser invokes the scanner by calling @code{yylex}. Contrary to C
8953parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
8954@samp{%define api.pure} directive. The actual interface with @code{yylex}
8955depends whether you use unions, or variants.
12545799 8956
3cdc21cf
AD
8957@menu
8958* Split Symbols:: Passing symbols as two/three components
8959* Complete Symbols:: Making symbols a whole
8960@end menu
8961
8962@node Split Symbols
8963@subsubsection Split Symbols
8964
8965Therefore the interface is as follows.
8966
86e5b440
AD
8967@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
8968@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
8969Return the next token. Its type is the return value, its semantic value and
8970location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
8971@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8972@end deftypemethod
8973
3cdc21cf
AD
8974Note that when using variants, the interface for @code{yylex} is the same,
8975but @code{yylval} is handled differently.
8976
8977Regular union-based code in Lex scanner typically look like:
8978
8979@example
8980[0-9]+ @{
8981 yylval.ival = text_to_int (yytext);
8982 return yy::parser::INTEGER;
8983 @}
8984[a-z]+ @{
8985 yylval.sval = new std::string (yytext);
8986 return yy::parser::IDENTIFIER;
8987 @}
8988@end example
8989
8990Using variants, @code{yylval} is already constructed, but it is not
8991initialized. So the code would look like:
8992
8993@example
8994[0-9]+ @{
8995 yylval.build<int>() = text_to_int (yytext);
8996 return yy::parser::INTEGER;
8997 @}
8998[a-z]+ @{
8999 yylval.build<std::string> = yytext;
9000 return yy::parser::IDENTIFIER;
9001 @}
9002@end example
9003
9004@noindent
9005or
9006
9007@example
9008[0-9]+ @{
9009 yylval.build(text_to_int (yytext));
9010 return yy::parser::INTEGER;
9011 @}
9012[a-z]+ @{
9013 yylval.build(yytext);
9014 return yy::parser::IDENTIFIER;
9015 @}
9016@end example
9017
9018
9019@node Complete Symbols
9020@subsubsection Complete Symbols
9021
9022If you specified both @code{%define variant} and @code{%define lex_symbol},
9023the @code{parser} class also defines the class @code{parser::symbol_type}
9024which defines a @emph{complete} symbol, aggregating its type (i.e., the
9025traditional value returned by @code{yylex}), its semantic value (i.e., the
9026value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9027
9028@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9029Build a complete terminal symbol which token type is @var{type}, and which
9030semantic value is @var{value}. If location tracking is enabled, also pass
9031the @var{location}.
9032@end deftypemethod
9033
9034This interface is low-level and should not be used for two reasons. First,
9035it is inconvenient, as you still have to build the semantic value, which is
9036a variant, and second, because consistency is not enforced: as with unions,
9037it is still possible to give an integer as semantic value for a string.
9038
9039So for each token type, Bison generates named constructors as follows.
9040
9041@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9042@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9043Build a complete terminal symbol for the token type @var{token} (not
9044including the @code{api.tokens.prefix}) whose possible semantic value is
9045@var{value} of adequate @var{value_type}. If location tracking is enabled,
9046also pass the @var{location}.
9047@end deftypemethod
9048
9049For instance, given the following declarations:
9050
9051@example
9052%define api.tokens.prefix "TOK_"
9053%token <std::string> IDENTIFIER;
9054%token <int> INTEGER;
9055%token COLON;
9056@end example
9057
9058@noindent
9059Bison generates the following functions:
9060
9061@example
9062symbol_type make_IDENTIFIER(const std::string& v,
9063 const location_type& l);
9064symbol_type make_INTEGER(const int& v,
9065 const location_type& loc);
9066symbol_type make_COLON(const location_type& loc);
9067@end example
9068
9069@noindent
9070which should be used in a Lex-scanner as follows.
9071
9072@example
9073[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9074[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9075":" return yy::parser::make_COLON(loc);
9076@end example
9077
9078Tokens that do not have an identifier are not accessible: you cannot simply
9079use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9080
9081@node A Complete C++ Example
8405b70c 9082@subsection A Complete C++ Example
12545799
AD
9083
9084This section demonstrates the use of a C++ parser with a simple but
9085complete example. This example should be available on your system,
3cdc21cf 9086ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9087focuses on the use of Bison, therefore the design of the various C++
9088classes is very naive: no accessors, no encapsulation of members etc.
9089We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9090demonstrate the various interactions. A hand-written scanner is
12545799
AD
9091actually easier to interface with.
9092
9093@menu
9094* Calc++ --- C++ Calculator:: The specifications
9095* Calc++ Parsing Driver:: An active parsing context
9096* Calc++ Parser:: A parser class
9097* Calc++ Scanner:: A pure C++ Flex scanner
9098* Calc++ Top Level:: Conducting the band
9099@end menu
9100
9101@node Calc++ --- C++ Calculator
8405b70c 9102@subsubsection Calc++ --- C++ Calculator
12545799
AD
9103
9104Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9105expression, possibly preceded by variable assignments. An
12545799
AD
9106environment containing possibly predefined variables such as
9107@code{one} and @code{two}, is exchanged with the parser. An example
9108of valid input follows.
9109
9110@example
9111three := 3
9112seven := one + two * three
9113seven * seven
9114@end example
9115
9116@node Calc++ Parsing Driver
8405b70c 9117@subsubsection Calc++ Parsing Driver
12545799
AD
9118@c - An env
9119@c - A place to store error messages
9120@c - A place for the result
9121
9122To support a pure interface with the parser (and the scanner) the
9123technique of the ``parsing context'' is convenient: a structure
9124containing all the data to exchange. Since, in addition to simply
9125launch the parsing, there are several auxiliary tasks to execute (open
9126the file for parsing, instantiate the parser etc.), we recommend
9127transforming the simple parsing context structure into a fully blown
9128@dfn{parsing driver} class.
9129
9130The declaration of this driver class, @file{calc++-driver.hh}, is as
9131follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9132required standard library components, and the declaration of the parser
9133class.
12545799 9134
1c59e0a1 9135@comment file: calc++-driver.hh
12545799
AD
9136@example
9137#ifndef CALCXX_DRIVER_HH
9138# define CALCXX_DRIVER_HH
9139# include <string>
9140# include <map>
fb9712a9 9141# include "calc++-parser.hh"
12545799
AD
9142@end example
9143
12545799
AD
9144
9145@noindent
9146Then comes the declaration of the scanning function. Flex expects
9147the signature of @code{yylex} to be defined in the macro
9148@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9149factor both as follows.
1c59e0a1
AD
9150
9151@comment file: calc++-driver.hh
12545799 9152@example
3dc5e96b 9153// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9154# define YY_DECL \
9155 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9156// ... and declare it for the parser's sake.
9157YY_DECL;
9158@end example
9159
9160@noindent
9161The @code{calcxx_driver} class is then declared with its most obvious
9162members.
9163
1c59e0a1 9164@comment file: calc++-driver.hh
12545799
AD
9165@example
9166// Conducting the whole scanning and parsing of Calc++.
9167class calcxx_driver
9168@{
9169public:
9170 calcxx_driver ();
9171 virtual ~calcxx_driver ();
9172
9173 std::map<std::string, int> variables;
9174
9175 int result;
9176@end example
9177
9178@noindent
3cdc21cf
AD
9179To encapsulate the coordination with the Flex scanner, it is useful to have
9180member functions to open and close the scanning phase.
12545799 9181
1c59e0a1 9182@comment file: calc++-driver.hh
12545799
AD
9183@example
9184 // Handling the scanner.
9185 void scan_begin ();
9186 void scan_end ();
9187 bool trace_scanning;
9188@end example
9189
9190@noindent
9191Similarly for the parser itself.
9192
1c59e0a1 9193@comment file: calc++-driver.hh
12545799 9194@example
3cdc21cf
AD
9195 // Run the parser on file F.
9196 // Return 0 on success.
bb32f4f2 9197 int parse (const std::string& f);
3cdc21cf
AD
9198 // The name of the file being parsed.
9199 // Used later to pass the file name to the location tracker.
12545799 9200 std::string file;
3cdc21cf 9201 // Whether parser traces should be generated.
12545799
AD
9202 bool trace_parsing;
9203@end example
9204
9205@noindent
9206To demonstrate pure handling of parse errors, instead of simply
9207dumping them on the standard error output, we will pass them to the
9208compiler driver using the following two member functions. Finally, we
9209close the class declaration and CPP guard.
9210
1c59e0a1 9211@comment file: calc++-driver.hh
12545799
AD
9212@example
9213 // Error handling.
9214 void error (const yy::location& l, const std::string& m);
9215 void error (const std::string& m);
9216@};
9217#endif // ! CALCXX_DRIVER_HH
9218@end example
9219
9220The implementation of the driver is straightforward. The @code{parse}
9221member function deserves some attention. The @code{error} functions
9222are simple stubs, they should actually register the located error
9223messages and set error state.
9224
1c59e0a1 9225@comment file: calc++-driver.cc
12545799
AD
9226@example
9227#include "calc++-driver.hh"
9228#include "calc++-parser.hh"
9229
9230calcxx_driver::calcxx_driver ()
9231 : trace_scanning (false), trace_parsing (false)
9232@{
9233 variables["one"] = 1;
9234 variables["two"] = 2;
9235@}
9236
9237calcxx_driver::~calcxx_driver ()
9238@{
9239@}
9240
bb32f4f2 9241int
12545799
AD
9242calcxx_driver::parse (const std::string &f)
9243@{
9244 file = f;
9245 scan_begin ();
9246 yy::calcxx_parser parser (*this);
9247 parser.set_debug_level (trace_parsing);
bb32f4f2 9248 int res = parser.parse ();
12545799 9249 scan_end ();
bb32f4f2 9250 return res;
12545799
AD
9251@}
9252
9253void
9254calcxx_driver::error (const yy::location& l, const std::string& m)
9255@{
9256 std::cerr << l << ": " << m << std::endl;
9257@}
9258
9259void
9260calcxx_driver::error (const std::string& m)
9261@{
9262 std::cerr << m << std::endl;
9263@}
9264@end example
9265
9266@node Calc++ Parser
8405b70c 9267@subsubsection Calc++ Parser
12545799 9268
b50d2359 9269The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9270the C++ deterministic parser skeleton, the creation of the parser header
9271file, and specifies the name of the parser class.
9272Because the C++ skeleton changed several times, it is safer to require
9273the version you designed the grammar for.
1c59e0a1
AD
9274
9275@comment file: calc++-parser.yy
12545799 9276@example
ed4d67dc 9277%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9278%require "@value{VERSION}"
12545799 9279%defines
16dc6a9e 9280%define parser_class_name "calcxx_parser"
fb9712a9
AD
9281@end example
9282
3cdc21cf
AD
9283@noindent
9284@findex %define variant
9285@findex %define lex_symbol
9286This example will use genuine C++ objects as semantic values, therefore, we
9287require the variant-based interface. To make sure we properly use it, we
9288enable assertions. To fully benefit from type-safety and more natural
9289definition of ``symbol'', we enable @code{lex_symbol}.
9290
9291@comment file: calc++-parser.yy
9292@example
9293%define variant
9294%define parse.assert
9295%define lex_symbol
9296@end example
9297
fb9712a9 9298@noindent
16dc6a9e 9299@findex %code requires
3cdc21cf
AD
9300Then come the declarations/inclusions needed by the semantic values.
9301Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9302to include the header of the other, which is, of course, insane. This
3cdc21cf 9303mutual dependency will be broken using forward declarations. Because the
fb9712a9 9304driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9305particular its inner types), it is the parser's header which will use a
9306forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9307
9308@comment file: calc++-parser.yy
9309@example
3cdc21cf
AD
9310%code requires
9311@{
12545799 9312# include <string>
fb9712a9 9313class calcxx_driver;
9bc0dd67 9314@}
12545799
AD
9315@end example
9316
9317@noindent
9318The driver is passed by reference to the parser and to the scanner.
9319This provides a simple but effective pure interface, not relying on
9320global variables.
9321
1c59e0a1 9322@comment file: calc++-parser.yy
12545799
AD
9323@example
9324// The parsing context.
2055a44e 9325%param @{ calcxx_driver& driver @}
12545799
AD
9326@end example
9327
9328@noindent
2055a44e 9329Then we request location tracking, and initialize the
f50bfcd6 9330first location's file name. Afterward new locations are computed
12545799 9331relatively to the previous locations: the file name will be
2055a44e 9332propagated.
12545799 9333
1c59e0a1 9334@comment file: calc++-parser.yy
12545799
AD
9335@example
9336%locations
9337%initial-action
9338@{
9339 // Initialize the initial location.
b47dbebe 9340 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9341@};
9342@end example
9343
9344@noindent
2055a44e 9345Use the following two directives to enable parser tracing and verbose
12545799
AD
9346error messages.
9347
1c59e0a1 9348@comment file: calc++-parser.yy
12545799 9349@example
fa819509 9350%define parse.trace
cf499cff 9351%define parse.error verbose
12545799
AD
9352@end example
9353
fb9712a9 9354@noindent
136a0f76
PB
9355@findex %code
9356The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9357@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9358
9359@comment file: calc++-parser.yy
9360@example
3cdc21cf
AD
9361%code
9362@{
fb9712a9 9363# include "calc++-driver.hh"
34f98f46 9364@}
fb9712a9
AD
9365@end example
9366
9367
12545799
AD
9368@noindent
9369The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9370allows for nicer error messages referring to ``end of file'' instead of
9371``$end''. Similarly user friendly names are provided for each symbol.
9372To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9373prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9374
1c59e0a1 9375@comment file: calc++-parser.yy
12545799 9376@example
4c6622c2 9377%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9378%token
9379 END 0 "end of file"
9380 ASSIGN ":="
9381 MINUS "-"
9382 PLUS "+"
9383 STAR "*"
9384 SLASH "/"
9385 LPAREN "("
9386 RPAREN ")"
9387;
12545799
AD
9388@end example
9389
9390@noindent
3cdc21cf
AD
9391Since we use variant-based semantic values, @code{%union} is not used, and
9392both @code{%type} and @code{%token} expect genuine types, as opposed to type
9393tags.
12545799 9394
1c59e0a1 9395@comment file: calc++-parser.yy
12545799 9396@example
3cdc21cf
AD
9397%token <std::string> IDENTIFIER "identifier"
9398%token <int> NUMBER "number"
9399%type <int> exp
9400@end example
9401
9402@noindent
9403No @code{%destructor} is needed to enable memory deallocation during error
9404recovery; the memory, for strings for instance, will be reclaimed by the
9405regular destructors. All the values are printed using their
9406@code{operator<<}.
12545799 9407
3cdc21cf
AD
9408@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9409@comment file: calc++-parser.yy
9410@example
9411%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9412@end example
9413
9414@noindent
3cdc21cf
AD
9415The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9416Location Tracking Calculator: @code{ltcalc}}).
12545799 9417
1c59e0a1 9418@comment file: calc++-parser.yy
12545799
AD
9419@example
9420%%
9421%start unit;
9422unit: assignments exp @{ driver.result = $2; @};
9423
99c08fb6
AD
9424assignments:
9425 assignments assignment @{@}
9426| /* Nothing. */ @{@};
12545799 9427
3dc5e96b 9428assignment:
3cdc21cf 9429 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9430
3cdc21cf
AD
9431%left "+" "-";
9432%left "*" "/";
99c08fb6 9433exp:
3cdc21cf
AD
9434 exp "+" exp @{ $$ = $1 + $3; @}
9435| exp "-" exp @{ $$ = $1 - $3; @}
9436| exp "*" exp @{ $$ = $1 * $3; @}
9437| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9438| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9439| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9440| "number" @{ std::swap ($$, $1); @};
12545799
AD
9441%%
9442@end example
9443
9444@noindent
9445Finally the @code{error} member function registers the errors to the
9446driver.
9447
1c59e0a1 9448@comment file: calc++-parser.yy
12545799
AD
9449@example
9450void
3cdc21cf 9451yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9452 const std::string& m)
12545799
AD
9453@{
9454 driver.error (l, m);
9455@}
9456@end example
9457
9458@node Calc++ Scanner
8405b70c 9459@subsubsection Calc++ Scanner
12545799
AD
9460
9461The Flex scanner first includes the driver declaration, then the
9462parser's to get the set of defined tokens.
9463
1c59e0a1 9464@comment file: calc++-scanner.ll
12545799
AD
9465@example
9466%@{ /* -*- C++ -*- */
3c248d70
AD
9467# include <cerrno>
9468# include <climits>
3cdc21cf 9469# include <cstdlib>
12545799
AD
9470# include <string>
9471# include "calc++-driver.hh"
9472# include "calc++-parser.hh"
eaea13f5 9473
3cdc21cf
AD
9474// Work around an incompatibility in flex (at least versions
9475// 2.5.31 through 2.5.33): it generates code that does
9476// not conform to C89. See Debian bug 333231
9477// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9478# undef yywrap
9479# define yywrap() 1
eaea13f5 9480
3cdc21cf
AD
9481// The location of the current token.
9482static yy::location loc;
12545799
AD
9483%@}
9484@end example
9485
9486@noindent
9487Because there is no @code{#include}-like feature we don't need
9488@code{yywrap}, we don't need @code{unput} either, and we parse an
9489actual file, this is not an interactive session with the user.
3cdc21cf 9490Finally, we enable scanner tracing.
12545799 9491
1c59e0a1 9492@comment file: calc++-scanner.ll
12545799
AD
9493@example
9494%option noyywrap nounput batch debug
9495@end example
9496
9497@noindent
9498Abbreviations allow for more readable rules.
9499
1c59e0a1 9500@comment file: calc++-scanner.ll
12545799
AD
9501@example
9502id [a-zA-Z][a-zA-Z_0-9]*
9503int [0-9]+
9504blank [ \t]
9505@end example
9506
9507@noindent
9d9b8b70 9508The following paragraph suffices to track locations accurately. Each
12545799 9509time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9510position. Then when a pattern is matched, its width is added to the end
9511column. When matching ends of lines, the end
12545799
AD
9512cursor is adjusted, and each time blanks are matched, the begin cursor
9513is moved onto the end cursor to effectively ignore the blanks
9514preceding tokens. Comments would be treated equally.
9515
1c59e0a1 9516@comment file: calc++-scanner.ll
12545799 9517@example
828c373b 9518%@{
3cdc21cf
AD
9519 // Code run each time a pattern is matched.
9520 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9521%@}
12545799
AD
9522%%
9523%@{
3cdc21cf
AD
9524 // Code run each time yylex is called.
9525 loc.step ();
12545799 9526%@}
3cdc21cf
AD
9527@{blank@}+ loc.step ();
9528[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9529@end example
9530
9531@noindent
3cdc21cf 9532The rules are simple. The driver is used to report errors.
12545799 9533
1c59e0a1 9534@comment file: calc++-scanner.ll
12545799 9535@example
3cdc21cf
AD
9536"-" return yy::calcxx_parser::make_MINUS(loc);
9537"+" return yy::calcxx_parser::make_PLUS(loc);
9538"*" return yy::calcxx_parser::make_STAR(loc);
9539"/" return yy::calcxx_parser::make_SLASH(loc);
9540"(" return yy::calcxx_parser::make_LPAREN(loc);
9541")" return yy::calcxx_parser::make_RPAREN(loc);
9542":=" return yy::calcxx_parser::make_ASSIGN(loc);
9543
04098407
PE
9544@{int@} @{
9545 errno = 0;
9546 long n = strtol (yytext, NULL, 10);
9547 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9548 driver.error (loc, "integer is out of range");
9549 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9550@}
3cdc21cf
AD
9551@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9552. driver.error (loc, "invalid character");
9553<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9554%%
9555@end example
9556
9557@noindent
3cdc21cf 9558Finally, because the scanner-related driver's member-functions depend
12545799
AD
9559on the scanner's data, it is simpler to implement them in this file.
9560
1c59e0a1 9561@comment file: calc++-scanner.ll
12545799
AD
9562@example
9563void
9564calcxx_driver::scan_begin ()
9565@{
9566 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9567 if (file == "-")
9568 yyin = stdin;
9569 else if (!(yyin = fopen (file.c_str (), "r")))
9570 @{
3cdc21cf 9571 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9572 exit (1);
9573 @}
12545799
AD
9574@}
9575
9576void
9577calcxx_driver::scan_end ()
9578@{
9579 fclose (yyin);
9580@}
9581@end example
9582
9583@node Calc++ Top Level
8405b70c 9584@subsubsection Calc++ Top Level
12545799
AD
9585
9586The top level file, @file{calc++.cc}, poses no problem.
9587
1c59e0a1 9588@comment file: calc++.cc
12545799
AD
9589@example
9590#include <iostream>
9591#include "calc++-driver.hh"
9592
9593int
fa4d969f 9594main (int argc, char *argv[])
12545799 9595@{
414c76a4 9596 int res = 0;
12545799
AD
9597 calcxx_driver driver;
9598 for (++argv; argv[0]; ++argv)
9599 if (*argv == std::string ("-p"))
9600 driver.trace_parsing = true;
9601 else if (*argv == std::string ("-s"))
9602 driver.trace_scanning = true;
bb32f4f2
AD
9603 else if (!driver.parse (*argv))
9604 std::cout << driver.result << std::endl;
414c76a4
AD
9605 else
9606 res = 1;
9607 return res;
12545799
AD
9608@}
9609@end example
9610
8405b70c
PB
9611@node Java Parsers
9612@section Java Parsers
9613
9614@menu
f5f419de
DJ
9615* Java Bison Interface:: Asking for Java parser generation
9616* Java Semantic Values:: %type and %token vs. Java
9617* Java Location Values:: The position and location classes
9618* Java Parser Interface:: Instantiating and running the parser
9619* Java Scanner Interface:: Specifying the scanner for the parser
9620* Java Action Features:: Special features for use in actions
9621* Java Differences:: Differences between C/C++ and Java Grammars
9622* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9623@end menu
9624
9625@node Java Bison Interface
9626@subsection Java Bison Interface
9627@c - %language "Java"
8405b70c 9628
59da312b
JD
9629(The current Java interface is experimental and may evolve.
9630More user feedback will help to stabilize it.)
9631
e254a580
DJ
9632The Java parser skeletons are selected using the @code{%language "Java"}
9633directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9634
e254a580
DJ
9635@c FIXME: Documented bug.
9636When generating a Java parser, @code{bison @var{basename}.y} will create
9637a single Java source file named @file{@var{basename}.java}. Using an
9638input file without a @file{.y} suffix is currently broken. The basename
9639of the output file can be changed by the @code{%file-prefix} directive
9640or the @option{-p}/@option{--name-prefix} option. The entire output file
9641name can be changed by the @code{%output} directive or the
9642@option{-o}/@option{--output} option. The output file contains a single
9643class for the parser.
8405b70c 9644
e254a580 9645You can create documentation for generated parsers using Javadoc.
8405b70c 9646
e254a580
DJ
9647Contrary to C parsers, Java parsers do not use global variables; the
9648state of the parser is always local to an instance of the parser class.
9649Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9650and @samp{%define api.pure} directives does not do anything when used in
e254a580 9651Java.
8405b70c 9652
e254a580 9653Push parsers are currently unsupported in Java and @code{%define
67212941 9654api.push-pull} have no effect.
01b477c6 9655
e254a580
DJ
9656@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9657@code{glr-parser} directive.
9658
9659No header file can be generated for Java parsers. Do not use the
9660@code{%defines} directive or the @option{-d}/@option{--defines} options.
9661
9662@c FIXME: Possible code change.
fa819509
AD
9663Currently, support for tracing is always compiled
9664in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9665directives and the
e254a580
DJ
9666@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9667options have no effect. This may change in the future to eliminate
fa819509
AD
9668unused code in the generated parser, so use @samp{%define parse.trace}
9669explicitly
1979121c 9670if needed. Also, in the future the
e254a580
DJ
9671@code{%token-table} directive might enable a public interface to
9672access the token names and codes.
8405b70c 9673
09ccae9b 9674Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9675hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9676Try reducing the amount of code in actions and static initializers;
9677otherwise, report a bug so that the parser skeleton will be improved.
9678
9679
8405b70c
PB
9680@node Java Semantic Values
9681@subsection Java Semantic Values
9682@c - No %union, specify type in %type/%token.
9683@c - YYSTYPE
9684@c - Printer and destructor
9685
9686There is no @code{%union} directive in Java parsers. Instead, the
9687semantic values' types (class names) should be specified in the
9688@code{%type} or @code{%token} directive:
9689
9690@example
9691%type <Expression> expr assignment_expr term factor
9692%type <Integer> number
9693@end example
9694
9695By default, the semantic stack is declared to have @code{Object} members,
9696which means that the class types you specify can be of any class.
9697To improve the type safety of the parser, you can declare the common
67501061 9698superclass of all the semantic values using the @samp{%define stype}
e254a580 9699directive. For example, after the following declaration:
8405b70c
PB
9700
9701@example
e254a580 9702%define stype "ASTNode"
8405b70c
PB
9703@end example
9704
9705@noindent
9706any @code{%type} or @code{%token} specifying a semantic type which
9707is not a subclass of ASTNode, will cause a compile-time error.
9708
e254a580 9709@c FIXME: Documented bug.
8405b70c
PB
9710Types used in the directives may be qualified with a package name.
9711Primitive data types are accepted for Java version 1.5 or later. Note
9712that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9713Generic types may not be used; this is due to a limitation in the
9714implementation of Bison, and may change in future releases.
8405b70c
PB
9715
9716Java parsers do not support @code{%destructor}, since the language
9717adopts garbage collection. The parser will try to hold references
9718to semantic values for as little time as needed.
9719
9720Java parsers do not support @code{%printer}, as @code{toString()}
9721can be used to print the semantic values. This however may change
9722(in a backwards-compatible way) in future versions of Bison.
9723
9724
9725@node Java Location Values
9726@subsection Java Location Values
9727@c - %locations
9728@c - class Position
9729@c - class Location
9730
9731When the directive @code{%locations} is used, the Java parser
9732supports location tracking, see @ref{Locations, , Locations Overview}.
9733An auxiliary user-defined class defines a @dfn{position}, a single point
9734in a file; Bison itself defines a class representing a @dfn{location},
9735a range composed of a pair of positions (possibly spanning several
9736files). The location class is an inner class of the parser; the name
e254a580 9737is @code{Location} by default, and may also be renamed using
cf499cff 9738@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9739
9740The location class treats the position as a completely opaque value.
9741By default, the class name is @code{Position}, but this can be changed
67501061 9742with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9743be supplied by the user.
8405b70c
PB
9744
9745
e254a580
DJ
9746@deftypeivar {Location} {Position} begin
9747@deftypeivarx {Location} {Position} end
8405b70c 9748The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9749@end deftypeivar
9750
9751@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9752Create a @code{Location} denoting an empty range located at a given point.
e254a580 9753@end deftypeop
8405b70c 9754
e254a580
DJ
9755@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9756Create a @code{Location} from the endpoints of the range.
9757@end deftypeop
9758
9759@deftypemethod {Location} {String} toString ()
8405b70c
PB
9760Prints the range represented by the location. For this to work
9761properly, the position class should override the @code{equals} and
9762@code{toString} methods appropriately.
9763@end deftypemethod
9764
9765
9766@node Java Parser Interface
9767@subsection Java Parser Interface
9768@c - define parser_class_name
9769@c - Ctor
9770@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9771@c debug_stream.
9772@c - Reporting errors
9773
e254a580
DJ
9774The name of the generated parser class defaults to @code{YYParser}. The
9775@code{YY} prefix may be changed using the @code{%name-prefix} directive
9776or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9777@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9778the class. The interface of this class is detailed below.
8405b70c 9779
e254a580 9780By default, the parser class has package visibility. A declaration
67501061 9781@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9782according to the Java language specification, the name of the @file{.java}
9783file should match the name of the class in this case. Similarly, you can
9784use @code{abstract}, @code{final} and @code{strictfp} with the
9785@code{%define} declaration to add other modifiers to the parser class.
67501061 9786A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9787be used to add any number of annotations to the parser class.
e254a580
DJ
9788
9789The Java package name of the parser class can be specified using the
67501061 9790@samp{%define package} directive. The superclass and the implemented
e254a580 9791interfaces of the parser class can be specified with the @code{%define
67501061 9792extends} and @samp{%define implements} directives.
e254a580
DJ
9793
9794The parser class defines an inner class, @code{Location}, that is used
9795for location tracking (see @ref{Java Location Values}), and a inner
9796interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9797these inner class/interface, and the members described in the interface
9798below, all the other members and fields are preceded with a @code{yy} or
9799@code{YY} prefix to avoid clashes with user code.
9800
e254a580
DJ
9801The parser class can be extended using the @code{%parse-param}
9802directive. Each occurrence of the directive will add a @code{protected
9803final} field to the parser class, and an argument to its constructor,
9804which initialize them automatically.
9805
e254a580
DJ
9806@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9807Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9808no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9809@code{%lex-param}s are used.
1979121c
DJ
9810
9811Use @code{%code init} for code added to the start of the constructor
9812body. This is especially useful to initialize superclasses. Use
f50bfcd6 9813@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9814@end deftypeop
9815
9816@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9817Build a new parser object using the specified scanner. There are no
2055a44e
AD
9818additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9819used.
e254a580
DJ
9820
9821If the scanner is defined by @code{%code lexer}, this constructor is
9822declared @code{protected} and is called automatically with a scanner
2055a44e 9823created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9824
9825Use @code{%code init} for code added to the start of the constructor
9826body. This is especially useful to initialize superclasses. Use
67501061 9827@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9828@end deftypeop
8405b70c
PB
9829
9830@deftypemethod {YYParser} {boolean} parse ()
9831Run the syntactic analysis, and return @code{true} on success,
9832@code{false} otherwise.
9833@end deftypemethod
9834
1979121c
DJ
9835@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9836@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9837Get or set the option to produce verbose error messages. These are only
cf499cff 9838available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9839verbose error messages.
9840@end deftypemethod
9841
9842@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9843@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9844@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9845Print an error message using the @code{yyerror} method of the scanner
9846instance in use. The @code{Location} and @code{Position} parameters are
9847available only if location tracking is active.
9848@end deftypemethod
9849
01b477c6 9850@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9851During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9852from a syntax error.
9853@xref{Error Recovery}.
8405b70c
PB
9854@end deftypemethod
9855
9856@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9857@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9858Get or set the stream used for tracing the parsing. It defaults to
9859@code{System.err}.
9860@end deftypemethod
9861
9862@deftypemethod {YYParser} {int} getDebugLevel ()
9863@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9864Get or set the tracing level. Currently its value is either 0, no trace,
9865or nonzero, full tracing.
9866@end deftypemethod
9867
1979121c
DJ
9868@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9869@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9870Identify the Bison version and skeleton used to generate this parser.
9871@end deftypecv
9872
8405b70c
PB
9873
9874@node Java Scanner Interface
9875@subsection Java Scanner Interface
01b477c6 9876@c - %code lexer
8405b70c 9877@c - %lex-param
01b477c6 9878@c - Lexer interface
8405b70c 9879
e254a580
DJ
9880There are two possible ways to interface a Bison-generated Java parser
9881with a scanner: the scanner may be defined by @code{%code lexer}, or
9882defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9883@code{Lexer} inner interface of the parser class. This interface also
9884contain constants for all user-defined token names and the predefined
9885@code{EOF} token.
e254a580
DJ
9886
9887In the first case, the body of the scanner class is placed in
9888@code{%code lexer} blocks. If you want to pass parameters from the
9889parser constructor to the scanner constructor, specify them with
9890@code{%lex-param}; they are passed before @code{%parse-param}s to the
9891constructor.
01b477c6 9892
59c5ac72 9893In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9894which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9895The constructor of the parser object will then accept an object
9896implementing the interface; @code{%lex-param} is not used in this
9897case.
9898
9899In both cases, the scanner has to implement the following methods.
9900
e254a580
DJ
9901@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9902This method is defined by the user to emit an error message. The first
9903parameter is omitted if location tracking is not active. Its type can be
67501061 9904changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
9905@end deftypemethod
9906
e254a580 9907@deftypemethod {Lexer} {int} yylex ()
8405b70c 9908Return the next token. Its type is the return value, its semantic
f50bfcd6 9909value and location are saved and returned by the their methods in the
e254a580
DJ
9910interface.
9911
67501061 9912Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 9913Default is @code{java.io.IOException}.
8405b70c
PB
9914@end deftypemethod
9915
9916@deftypemethod {Lexer} {Position} getStartPos ()
9917@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9918Return respectively the first position of the last token that
9919@code{yylex} returned, and the first position beyond it. These
9920methods are not needed unless location tracking is active.
8405b70c 9921
67501061 9922The return type can be changed using @samp{%define position_type
8405b70c
PB
9923"@var{class-name}".}
9924@end deftypemethod
9925
9926@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 9927Return the semantic value of the last token that yylex returned.
8405b70c 9928
67501061 9929The return type can be changed using @samp{%define stype
8405b70c
PB
9930"@var{class-name}".}
9931@end deftypemethod
9932
9933
e254a580
DJ
9934@node Java Action Features
9935@subsection Special Features for Use in Java Actions
9936
9937The following special constructs can be uses in Java actions.
9938Other analogous C action features are currently unavailable for Java.
9939
67501061 9940Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
9941actions, and initial actions specified by @code{%initial-action}.
9942
9943@defvar $@var{n}
9944The semantic value for the @var{n}th component of the current rule.
9945This may not be assigned to.
9946@xref{Java Semantic Values}.
9947@end defvar
9948
9949@defvar $<@var{typealt}>@var{n}
9950Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9951@xref{Java Semantic Values}.
9952@end defvar
9953
9954@defvar $$
9955The semantic value for the grouping made by the current rule. As a
9956value, this is in the base type (@code{Object} or as specified by
67501061 9957@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
9958casts are not allowed on the left-hand side of Java assignments.
9959Use an explicit Java cast if the correct subtype is needed.
9960@xref{Java Semantic Values}.
9961@end defvar
9962
9963@defvar $<@var{typealt}>$
9964Same as @code{$$} since Java always allow assigning to the base type.
9965Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9966for setting the value but there is currently no easy way to distinguish
9967these constructs.
9968@xref{Java Semantic Values}.
9969@end defvar
9970
9971@defvar @@@var{n}
9972The location information of the @var{n}th component of the current rule.
9973This may not be assigned to.
9974@xref{Java Location Values}.
9975@end defvar
9976
9977@defvar @@$
9978The location information of the grouping made by the current rule.
9979@xref{Java Location Values}.
9980@end defvar
9981
9982@deffn {Statement} {return YYABORT;}
9983Return immediately from the parser, indicating failure.
9984@xref{Java Parser Interface}.
9985@end deffn
8405b70c 9986
e254a580
DJ
9987@deffn {Statement} {return YYACCEPT;}
9988Return immediately from the parser, indicating success.
9989@xref{Java Parser Interface}.
9990@end deffn
8405b70c 9991
e254a580 9992@deffn {Statement} {return YYERROR;}
c265fd6b 9993Start error recovery without printing an error message.
e254a580
DJ
9994@xref{Error Recovery}.
9995@end deffn
8405b70c 9996
e254a580
DJ
9997@deftypefn {Function} {boolean} recovering ()
9998Return whether error recovery is being done. In this state, the parser
9999reads token until it reaches a known state, and then restarts normal
10000operation.
10001@xref{Error Recovery}.
10002@end deftypefn
8405b70c 10003
1979121c
DJ
10004@deftypefn {Function} {void} yyerror (String @var{msg})
10005@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10006@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10007Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10008instance in use. The @code{Location} and @code{Position} parameters are
10009available only if location tracking is active.
e254a580 10010@end deftypefn
8405b70c 10011
8405b70c 10012
8405b70c
PB
10013@node Java Differences
10014@subsection Differences between C/C++ and Java Grammars
10015
10016The different structure of the Java language forces several differences
10017between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10018section summarizes these differences.
8405b70c
PB
10019
10020@itemize
10021@item
01b477c6 10022Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10023@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10024macros. Instead, they should be preceded by @code{return} when they
10025appear in an action. The actual definition of these symbols is
8405b70c
PB
10026opaque to the Bison grammar, and it might change in the future. The
10027only meaningful operation that you can do, is to return them.
e254a580 10028See @pxref{Java Action Features}.
8405b70c
PB
10029
10030Note that of these three symbols, only @code{YYACCEPT} and
10031@code{YYABORT} will cause a return from the @code{yyparse}
10032method@footnote{Java parsers include the actions in a separate
10033method than @code{yyparse} in order to have an intuitive syntax that
10034corresponds to these C macros.}.
10035
e254a580
DJ
10036@item
10037Java lacks unions, so @code{%union} has no effect. Instead, semantic
10038values have a common base type: @code{Object} or as specified by
f50bfcd6 10039@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10040@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10041an union. The type of @code{$$}, even with angle brackets, is the base
10042type since Java casts are not allow on the left-hand side of assignments.
10043Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10044left-hand side of assignments. See @pxref{Java Semantic Values} and
10045@pxref{Java Action Features}.
10046
8405b70c 10047@item
f50bfcd6 10048The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10049@table @asis
10050@item @code{%code imports}
10051blocks are placed at the beginning of the Java source code. They may
10052include copyright notices. For a @code{package} declarations, it is
67501061 10053suggested to use @samp{%define package} instead.
8405b70c 10054
01b477c6
PB
10055@item unqualified @code{%code}
10056blocks are placed inside the parser class.
10057
10058@item @code{%code lexer}
10059blocks, if specified, should include the implementation of the
10060scanner. If there is no such block, the scanner can be any class
10061that implements the appropriate interface (see @pxref{Java Scanner
10062Interface}).
29553547 10063@end table
8405b70c
PB
10064
10065Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10066In particular, @code{%@{ @dots{} %@}} blocks should not be used
10067and may give an error in future versions of Bison.
10068
01b477c6 10069The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10070be used to define other classes used by the parser @emph{outside}
10071the parser class.
8405b70c
PB
10072@end itemize
10073
e254a580
DJ
10074
10075@node Java Declarations Summary
10076@subsection Java Declarations Summary
10077
10078This summary only include declarations specific to Java or have special
10079meaning when used in a Java parser.
10080
10081@deffn {Directive} {%language "Java"}
10082Generate a Java class for the parser.
10083@end deffn
10084
10085@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10086A parameter for the lexer class defined by @code{%code lexer}
10087@emph{only}, added as parameters to the lexer constructor and the parser
10088constructor that @emph{creates} a lexer. Default is none.
10089@xref{Java Scanner Interface}.
10090@end deffn
10091
10092@deffn {Directive} %name-prefix "@var{prefix}"
10093The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10094@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10095@xref{Java Bison Interface}.
10096@end deffn
10097
10098@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10099A parameter for the parser class added as parameters to constructor(s)
10100and as fields initialized by the constructor(s). Default is none.
10101@xref{Java Parser Interface}.
10102@end deffn
10103
10104@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10105Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10106@xref{Java Semantic Values}.
10107@end deffn
10108
10109@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10110Declare the type of nonterminals. Note that the angle brackets enclose
10111a Java @emph{type}.
10112@xref{Java Semantic Values}.
10113@end deffn
10114
10115@deffn {Directive} %code @{ @var{code} @dots{} @}
10116Code appended to the inside of the parser class.
10117@xref{Java Differences}.
10118@end deffn
10119
10120@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10121Code inserted just after the @code{package} declaration.
10122@xref{Java Differences}.
10123@end deffn
10124
1979121c
DJ
10125@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10126Code inserted at the beginning of the parser constructor body.
10127@xref{Java Parser Interface}.
10128@end deffn
10129
e254a580
DJ
10130@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10131Code added to the body of a inner lexer class within the parser class.
10132@xref{Java Scanner Interface}.
10133@end deffn
10134
10135@deffn {Directive} %% @var{code} @dots{}
10136Code (after the second @code{%%}) appended to the end of the file,
10137@emph{outside} the parser class.
10138@xref{Java Differences}.
10139@end deffn
10140
10141@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10142Not supported. Use @code{%code imports} instead.
e254a580
DJ
10143@xref{Java Differences}.
10144@end deffn
10145
10146@deffn {Directive} {%define abstract}
10147Whether the parser class is declared @code{abstract}. Default is false.
10148@xref{Java Bison Interface}.
10149@end deffn
10150
1979121c
DJ
10151@deffn {Directive} {%define annotations} "@var{annotations}"
10152The Java annotations for the parser class. Default is none.
10153@xref{Java Bison Interface}.
10154@end deffn
10155
e254a580
DJ
10156@deffn {Directive} {%define extends} "@var{superclass}"
10157The superclass of the parser class. Default is none.
10158@xref{Java Bison Interface}.
10159@end deffn
10160
10161@deffn {Directive} {%define final}
10162Whether the parser class is declared @code{final}. Default is false.
10163@xref{Java Bison Interface}.
10164@end deffn
10165
10166@deffn {Directive} {%define implements} "@var{interfaces}"
10167The implemented interfaces of the parser class, a comma-separated list.
10168Default is none.
10169@xref{Java Bison Interface}.
10170@end deffn
10171
1979121c
DJ
10172@deffn {Directive} {%define init_throws} "@var{exceptions}"
10173The exceptions thrown by @code{%code init} from the parser class
10174constructor. Default is none.
10175@xref{Java Parser Interface}.
10176@end deffn
10177
e254a580
DJ
10178@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10179The exceptions thrown by the @code{yylex} method of the lexer, a
10180comma-separated list. Default is @code{java.io.IOException}.
10181@xref{Java Scanner Interface}.
10182@end deffn
10183
10184@deffn {Directive} {%define location_type} "@var{class}"
10185The name of the class used for locations (a range between two
10186positions). This class is generated as an inner class of the parser
10187class by @command{bison}. Default is @code{Location}.
10188@xref{Java Location Values}.
10189@end deffn
10190
10191@deffn {Directive} {%define package} "@var{package}"
10192The package to put the parser class in. Default is none.
10193@xref{Java Bison Interface}.
10194@end deffn
10195
10196@deffn {Directive} {%define parser_class_name} "@var{name}"
10197The name of the parser class. Default is @code{YYParser} or
10198@code{@var{name-prefix}Parser}.
10199@xref{Java Bison Interface}.
10200@end deffn
10201
10202@deffn {Directive} {%define position_type} "@var{class}"
10203The name of the class used for positions. This class must be supplied by
10204the user. Default is @code{Position}.
10205@xref{Java Location Values}.
10206@end deffn
10207
10208@deffn {Directive} {%define public}
10209Whether the parser class is declared @code{public}. Default is false.
10210@xref{Java Bison Interface}.
10211@end deffn
10212
10213@deffn {Directive} {%define stype} "@var{class}"
10214The base type of semantic values. Default is @code{Object}.
10215@xref{Java Semantic Values}.
10216@end deffn
10217
10218@deffn {Directive} {%define strictfp}
10219Whether the parser class is declared @code{strictfp}. Default is false.
10220@xref{Java Bison Interface}.
10221@end deffn
10222
10223@deffn {Directive} {%define throws} "@var{exceptions}"
10224The exceptions thrown by user-supplied parser actions and
10225@code{%initial-action}, a comma-separated list. Default is none.
10226@xref{Java Parser Interface}.
10227@end deffn
10228
10229
12545799 10230@c ================================================= FAQ
d1a1114f
AD
10231
10232@node FAQ
10233@chapter Frequently Asked Questions
10234@cindex frequently asked questions
10235@cindex questions
10236
10237Several questions about Bison come up occasionally. Here some of them
10238are addressed.
10239
10240@menu
55ba27be
AD
10241* Memory Exhausted:: Breaking the Stack Limits
10242* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10243* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10244* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10245* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
10246* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
10247* I can't build Bison:: Troubleshooting
10248* Where can I find help?:: Troubleshouting
10249* Bug Reports:: Troublereporting
8405b70c 10250* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10251* Beta Testing:: Experimenting development versions
10252* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10253@end menu
10254
1a059451
PE
10255@node Memory Exhausted
10256@section Memory Exhausted
d1a1114f
AD
10257
10258@display
1a059451 10259My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10260message. What can I do?
10261@end display
10262
10263This question is already addressed elsewhere, @xref{Recursion,
10264,Recursive Rules}.
10265
e64fec0a
PE
10266@node How Can I Reset the Parser
10267@section How Can I Reset the Parser
5b066063 10268
0e14ad77
PE
10269The following phenomenon has several symptoms, resulting in the
10270following typical questions:
5b066063
AD
10271
10272@display
10273I invoke @code{yyparse} several times, and on correct input it works
10274properly; but when a parse error is found, all the other calls fail
0e14ad77 10275too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10276@end display
10277
10278@noindent
10279or
10280
10281@display
0e14ad77 10282My parser includes support for an @samp{#include}-like feature, in
5b066063 10283which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10284although I did specify @samp{%define api.pure}.
5b066063
AD
10285@end display
10286
0e14ad77
PE
10287These problems typically come not from Bison itself, but from
10288Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10289speed, they might not notice a change of input file. As a
10290demonstration, consider the following source file,
10291@file{first-line.l}:
10292
10293@verbatim
10294%{
10295#include <stdio.h>
10296#include <stdlib.h>
10297%}
10298%%
10299.*\n ECHO; return 1;
10300%%
10301int
0e14ad77 10302yyparse (char const *file)
5b066063
AD
10303{
10304 yyin = fopen (file, "r");
10305 if (!yyin)
10306 exit (2);
fa7e68c3 10307 /* One token only. */
5b066063 10308 yylex ();
0e14ad77 10309 if (fclose (yyin) != 0)
5b066063
AD
10310 exit (3);
10311 return 0;
10312}
10313
10314int
0e14ad77 10315main (void)
5b066063
AD
10316{
10317 yyparse ("input");
10318 yyparse ("input");
10319 return 0;
10320}
10321@end verbatim
10322
10323@noindent
10324If the file @file{input} contains
10325
10326@verbatim
10327input:1: Hello,
10328input:2: World!
10329@end verbatim
10330
10331@noindent
0e14ad77 10332then instead of getting the first line twice, you get:
5b066063
AD
10333
10334@example
10335$ @kbd{flex -ofirst-line.c first-line.l}
10336$ @kbd{gcc -ofirst-line first-line.c -ll}
10337$ @kbd{./first-line}
10338input:1: Hello,
10339input:2: World!
10340@end example
10341
0e14ad77
PE
10342Therefore, whenever you change @code{yyin}, you must tell the
10343Lex-generated scanner to discard its current buffer and switch to the
10344new one. This depends upon your implementation of Lex; see its
10345documentation for more. For Flex, it suffices to call
10346@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10347Flex-generated scanner needs to read from several input streams to
10348handle features like include files, you might consider using Flex
10349functions like @samp{yy_switch_to_buffer} that manipulate multiple
10350input buffers.
5b066063 10351
b165c324
AD
10352If your Flex-generated scanner uses start conditions (@pxref{Start
10353conditions, , Start conditions, flex, The Flex Manual}), you might
10354also want to reset the scanner's state, i.e., go back to the initial
10355start condition, through a call to @samp{BEGIN (0)}.
10356
fef4cb51
AD
10357@node Strings are Destroyed
10358@section Strings are Destroyed
10359
10360@display
c7e441b4 10361My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10362them. Instead of reporting @samp{"foo", "bar"}, it reports
10363@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10364@end display
10365
10366This error is probably the single most frequent ``bug report'' sent to
10367Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10368of the scanner. Consider the following Lex code:
fef4cb51
AD
10369
10370@verbatim
10371%{
10372#include <stdio.h>
10373char *yylval = NULL;
10374%}
10375%%
10376.* yylval = yytext; return 1;
10377\n /* IGNORE */
10378%%
10379int
10380main ()
10381{
fa7e68c3 10382 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10383 char *fst = (yylex (), yylval);
10384 char *snd = (yylex (), yylval);
10385 printf ("\"%s\", \"%s\"\n", fst, snd);
10386 return 0;
10387}
10388@end verbatim
10389
10390If you compile and run this code, you get:
10391
10392@example
10393$ @kbd{flex -osplit-lines.c split-lines.l}
10394$ @kbd{gcc -osplit-lines split-lines.c -ll}
10395$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10396"one
10397two", "two"
10398@end example
10399
10400@noindent
10401this is because @code{yytext} is a buffer provided for @emph{reading}
10402in the action, but if you want to keep it, you have to duplicate it
10403(e.g., using @code{strdup}). Note that the output may depend on how
10404your implementation of Lex handles @code{yytext}. For instance, when
10405given the Lex compatibility option @option{-l} (which triggers the
10406option @samp{%array}) Flex generates a different behavior:
10407
10408@example
10409$ @kbd{flex -l -osplit-lines.c split-lines.l}
10410$ @kbd{gcc -osplit-lines split-lines.c -ll}
10411$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10412"two", "two"
10413@end example
10414
10415
2fa09258
AD
10416@node Implementing Gotos/Loops
10417@section Implementing Gotos/Loops
a06ea4aa
AD
10418
10419@display
10420My simple calculator supports variables, assignments, and functions,
2fa09258 10421but how can I implement gotos, or loops?
a06ea4aa
AD
10422@end display
10423
10424Although very pedagogical, the examples included in the document blur
a1c84f45 10425the distinction to make between the parser---whose job is to recover
a06ea4aa 10426the structure of a text and to transmit it to subsequent modules of
a1c84f45 10427the program---and the processing (such as the execution) of this
a06ea4aa
AD
10428structure. This works well with so called straight line programs,
10429i.e., precisely those that have a straightforward execution model:
10430execute simple instructions one after the others.
10431
10432@cindex abstract syntax tree
10433@cindex @acronym{AST}
10434If you want a richer model, you will probably need to use the parser
10435to construct a tree that does represent the structure it has
10436recovered; this tree is usually called the @dfn{abstract syntax tree},
10437or @dfn{@acronym{AST}} for short. Then, walking through this tree,
10438traversing it in various ways, will enable treatments such as its
10439execution or its translation, which will result in an interpreter or a
10440compiler.
10441
10442This topic is way beyond the scope of this manual, and the reader is
10443invited to consult the dedicated literature.
10444
10445
ed2e6384
AD
10446@node Multiple start-symbols
10447@section Multiple start-symbols
10448
10449@display
10450I have several closely related grammars, and I would like to share their
10451implementations. In fact, I could use a single grammar but with
10452multiple entry points.
10453@end display
10454
10455Bison does not support multiple start-symbols, but there is a very
10456simple means to simulate them. If @code{foo} and @code{bar} are the two
10457pseudo start-symbols, then introduce two new tokens, say
10458@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10459real start-symbol:
10460
10461@example
10462%token START_FOO START_BAR;
10463%start start;
10464start: START_FOO foo
10465 | START_BAR bar;
10466@end example
10467
10468These tokens prevents the introduction of new conflicts. As far as the
10469parser goes, that is all that is needed.
10470
10471Now the difficult part is ensuring that the scanner will send these
10472tokens first. If your scanner is hand-written, that should be
10473straightforward. If your scanner is generated by Lex, them there is
10474simple means to do it: recall that anything between @samp{%@{ ... %@}}
10475after the first @code{%%} is copied verbatim in the top of the generated
10476@code{yylex} function. Make sure a variable @code{start_token} is
10477available in the scanner (e.g., a global variable or using
10478@code{%lex-param} etc.), and use the following:
10479
10480@example
10481 /* @r{Prologue.} */
10482%%
10483%@{
10484 if (start_token)
10485 @{
10486 int t = start_token;
10487 start_token = 0;
10488 return t;
10489 @}
10490%@}
10491 /* @r{The rules.} */
10492@end example
10493
10494
55ba27be
AD
10495@node Secure? Conform?
10496@section Secure? Conform?
10497
10498@display
10499Is Bison secure? Does it conform to POSIX?
10500@end display
10501
10502If you're looking for a guarantee or certification, we don't provide it.
10503However, Bison is intended to be a reliable program that conforms to the
10504@acronym{POSIX} specification for Yacc. If you run into problems,
10505please send us a bug report.
10506
10507@node I can't build Bison
10508@section I can't build Bison
10509
10510@display
8c5b881d
PE
10511I can't build Bison because @command{make} complains that
10512@code{msgfmt} is not found.
55ba27be
AD
10513What should I do?
10514@end display
10515
10516Like most GNU packages with internationalization support, that feature
10517is turned on by default. If you have problems building in the @file{po}
10518subdirectory, it indicates that your system's internationalization
10519support is lacking. You can re-configure Bison with
10520@option{--disable-nls} to turn off this support, or you can install GNU
10521gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10522Bison. See the file @file{ABOUT-NLS} for more information.
10523
10524
10525@node Where can I find help?
10526@section Where can I find help?
10527
10528@display
10529I'm having trouble using Bison. Where can I find help?
10530@end display
10531
10532First, read this fine manual. Beyond that, you can send mail to
10533@email{help-bison@@gnu.org}. This mailing list is intended to be
10534populated with people who are willing to answer questions about using
10535and installing Bison. Please keep in mind that (most of) the people on
10536the list have aspects of their lives which are not related to Bison (!),
10537so you may not receive an answer to your question right away. This can
10538be frustrating, but please try not to honk them off; remember that any
10539help they provide is purely voluntary and out of the kindness of their
10540hearts.
10541
10542@node Bug Reports
10543@section Bug Reports
10544
10545@display
10546I found a bug. What should I include in the bug report?
10547@end display
10548
10549Before you send a bug report, make sure you are using the latest
10550version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10551mirrors. Be sure to include the version number in your bug report. If
10552the bug is present in the latest version but not in a previous version,
10553try to determine the most recent version which did not contain the bug.
10554
10555If the bug is parser-related, you should include the smallest grammar
10556you can which demonstrates the bug. The grammar file should also be
10557complete (i.e., I should be able to run it through Bison without having
10558to edit or add anything). The smaller and simpler the grammar, the
10559easier it will be to fix the bug.
10560
10561Include information about your compilation environment, including your
10562operating system's name and version and your compiler's name and
10563version. If you have trouble compiling, you should also include a
10564transcript of the build session, starting with the invocation of
10565`configure'. Depending on the nature of the bug, you may be asked to
10566send additional files as well (such as `config.h' or `config.cache').
10567
10568Patches are most welcome, but not required. That is, do not hesitate to
10569send a bug report just because you can not provide a fix.
10570
10571Send bug reports to @email{bug-bison@@gnu.org}.
10572
8405b70c
PB
10573@node More Languages
10574@section More Languages
55ba27be
AD
10575
10576@display
8405b70c 10577Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10578favorite language here}?
10579@end display
10580
8405b70c 10581C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10582languages; contributions are welcome.
10583
10584@node Beta Testing
10585@section Beta Testing
10586
10587@display
10588What is involved in being a beta tester?
10589@end display
10590
10591It's not terribly involved. Basically, you would download a test
10592release, compile it, and use it to build and run a parser or two. After
10593that, you would submit either a bug report or a message saying that
10594everything is okay. It is important to report successes as well as
10595failures because test releases eventually become mainstream releases,
10596but only if they are adequately tested. If no one tests, development is
10597essentially halted.
10598
10599Beta testers are particularly needed for operating systems to which the
10600developers do not have easy access. They currently have easy access to
10601recent GNU/Linux and Solaris versions. Reports about other operating
10602systems are especially welcome.
10603
10604@node Mailing Lists
10605@section Mailing Lists
10606
10607@display
10608How do I join the help-bison and bug-bison mailing lists?
10609@end display
10610
10611See @url{http://lists.gnu.org/}.
a06ea4aa 10612
d1a1114f
AD
10613@c ================================================= Table of Symbols
10614
342b8b6e 10615@node Table of Symbols
bfa74976
RS
10616@appendix Bison Symbols
10617@cindex Bison symbols, table of
10618@cindex symbols in Bison, table of
10619
18b519c0 10620@deffn {Variable} @@$
3ded9a63 10621In an action, the location of the left-hand side of the rule.
88bce5a2 10622@xref{Locations, , Locations Overview}.
18b519c0 10623@end deffn
3ded9a63 10624
18b519c0 10625@deffn {Variable} @@@var{n}
3ded9a63
AD
10626In an action, the location of the @var{n}-th symbol of the right-hand
10627side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10628@end deffn
3ded9a63 10629
d013372c
AR
10630@deffn {Variable} @@@var{name}
10631In an action, the location of a symbol addressed by name.
10632@xref{Locations, , Locations Overview}.
10633@end deffn
10634
10635@deffn {Variable} @@[@var{name}]
10636In an action, the location of a symbol addressed by name.
10637@xref{Locations, , Locations Overview}.
10638@end deffn
10639
18b519c0 10640@deffn {Variable} $$
3ded9a63
AD
10641In an action, the semantic value of the left-hand side of the rule.
10642@xref{Actions}.
18b519c0 10643@end deffn
3ded9a63 10644
18b519c0 10645@deffn {Variable} $@var{n}
3ded9a63
AD
10646In an action, the semantic value of the @var{n}-th symbol of the
10647right-hand side of the rule. @xref{Actions}.
18b519c0 10648@end deffn
3ded9a63 10649
d013372c
AR
10650@deffn {Variable} $@var{name}
10651In an action, the semantic value of a symbol addressed by name.
10652@xref{Actions}.
10653@end deffn
10654
10655@deffn {Variable} $[@var{name}]
10656In an action, the semantic value of a symbol addressed by name.
10657@xref{Actions}.
10658@end deffn
10659
dd8d9022
AD
10660@deffn {Delimiter} %%
10661Delimiter used to separate the grammar rule section from the
10662Bison declarations section or the epilogue.
10663@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10664@end deffn
bfa74976 10665
dd8d9022
AD
10666@c Don't insert spaces, or check the DVI output.
10667@deffn {Delimiter} %@{@var{code}%@}
10668All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10669the output file uninterpreted. Such code forms the prologue of the input
10670file. @xref{Grammar Outline, ,Outline of a Bison
10671Grammar}.
18b519c0 10672@end deffn
bfa74976 10673
ca2a6d15
PH
10674@deffn {Directive} %?@{@var{expression}@}
10675Predicate actions. This is a type of action clause that may appear in
10676rules. The expression is evaluated, and if false, causes a syntax error. In
10677@acronym{GLR} parsers during nondeterministic operation,
10678this silently causes an alternative parse to die. During deterministic
10679operation, it is the same as the effect of YYERROR.
10680@xref{Semantic Predicates}.
10681
10682This feature is experimental.
10683More user feedback will help to determine whether it should become a permanent
10684feature.
10685@end deffn
10686
dd8d9022
AD
10687@deffn {Construct} /*@dots{}*/
10688Comment delimiters, as in C.
18b519c0 10689@end deffn
bfa74976 10690
dd8d9022
AD
10691@deffn {Delimiter} :
10692Separates a rule's result from its components. @xref{Rules, ,Syntax of
10693Grammar Rules}.
18b519c0 10694@end deffn
bfa74976 10695
dd8d9022
AD
10696@deffn {Delimiter} ;
10697Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10698@end deffn
bfa74976 10699
dd8d9022
AD
10700@deffn {Delimiter} |
10701Separates alternate rules for the same result nonterminal.
10702@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10703@end deffn
bfa74976 10704
12e35840
JD
10705@deffn {Directive} <*>
10706Used to define a default tagged @code{%destructor} or default tagged
10707@code{%printer}.
85894313
JD
10708
10709This feature is experimental.
10710More user feedback will help to determine whether it should become a permanent
10711feature.
10712
12e35840
JD
10713@xref{Destructor Decl, , Freeing Discarded Symbols}.
10714@end deffn
10715
3ebecc24 10716@deffn {Directive} <>
12e35840
JD
10717Used to define a default tagless @code{%destructor} or default tagless
10718@code{%printer}.
85894313
JD
10719
10720This feature is experimental.
10721More user feedback will help to determine whether it should become a permanent
10722feature.
10723
12e35840
JD
10724@xref{Destructor Decl, , Freeing Discarded Symbols}.
10725@end deffn
10726
dd8d9022
AD
10727@deffn {Symbol} $accept
10728The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10729$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10730Start-Symbol}. It cannot be used in the grammar.
18b519c0 10731@end deffn
bfa74976 10732
136a0f76 10733@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10734@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10735Insert @var{code} verbatim into output parser source.
10736@xref{Decl Summary,,%code}.
9bc0dd67
JD
10737@end deffn
10738
10739@deffn {Directive} %debug
10740Equip the parser for debugging. @xref{Decl Summary}.
10741@end deffn
10742
91d2c560 10743@ifset defaultprec
22fccf95
PE
10744@deffn {Directive} %default-prec
10745Assign a precedence to rules that lack an explicit @samp{%prec}
10746modifier. @xref{Contextual Precedence, ,Context-Dependent
10747Precedence}.
39a06c25 10748@end deffn
91d2c560 10749@end ifset
39a06c25 10750
148d66d8
JD
10751@deffn {Directive} %define @var{define-variable}
10752@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10753@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10754Define a variable to adjust Bison's behavior.
10755@xref{Decl Summary,,%define}.
10756@end deffn
10757
18b519c0 10758@deffn {Directive} %defines
6deb4447
AD
10759Bison declaration to create a header file meant for the scanner.
10760@xref{Decl Summary}.
18b519c0 10761@end deffn
6deb4447 10762
02975b9a
JD
10763@deffn {Directive} %defines @var{defines-file}
10764Same as above, but save in the file @var{defines-file}.
10765@xref{Decl Summary}.
10766@end deffn
10767
18b519c0 10768@deffn {Directive} %destructor
258b75ca 10769Specify how the parser should reclaim the memory associated to
fa7e68c3 10770discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10771@end deffn
72f889cc 10772
18b519c0 10773@deffn {Directive} %dprec
676385e2 10774Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10775time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10776@acronym{GLR} Parsers}.
18b519c0 10777@end deffn
676385e2 10778
dd8d9022
AD
10779@deffn {Symbol} $end
10780The predefined token marking the end of the token stream. It cannot be
10781used in the grammar.
10782@end deffn
10783
10784@deffn {Symbol} error
10785A token name reserved for error recovery. This token may be used in
10786grammar rules so as to allow the Bison parser to recognize an error in
10787the grammar without halting the process. In effect, a sentence
10788containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10789token @code{error} becomes the current lookahead token. Actions
10790corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10791token is reset to the token that originally caused the violation.
10792@xref{Error Recovery}.
18d192f0
AD
10793@end deffn
10794
18b519c0 10795@deffn {Directive} %error-verbose
cf499cff 10796An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10797@end deffn
2a8d363a 10798
02975b9a 10799@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10800Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10801Summary}.
18b519c0 10802@end deffn
d8988b2f 10803
18b519c0 10804@deffn {Directive} %glr-parser
c827f760
PE
10805Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10806Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10807@end deffn
676385e2 10808
dd8d9022
AD
10809@deffn {Directive} %initial-action
10810Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10811@end deffn
10812
e6e704dc
JD
10813@deffn {Directive} %language
10814Specify the programming language for the generated parser.
10815@xref{Decl Summary}.
10816@end deffn
10817
18b519c0 10818@deffn {Directive} %left
d78f0ac9 10819Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10820@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10821@end deffn
bfa74976 10822
2055a44e
AD
10823@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10824Bison declaration to specifying additional arguments that
2a8d363a
AD
10825@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10826for Pure Parsers}.
18b519c0 10827@end deffn
2a8d363a 10828
18b519c0 10829@deffn {Directive} %merge
676385e2 10830Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10831reduce/reduce conflict with a rule having the same merging function, the
676385e2 10832function is applied to the two semantic values to get a single result.
c827f760 10833@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10834@end deffn
676385e2 10835
02975b9a 10836@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10837Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10838@end deffn
d8988b2f 10839
91d2c560 10840@ifset defaultprec
22fccf95
PE
10841@deffn {Directive} %no-default-prec
10842Do not assign a precedence to rules that lack an explicit @samp{%prec}
10843modifier. @xref{Contextual Precedence, ,Context-Dependent
10844Precedence}.
10845@end deffn
91d2c560 10846@end ifset
22fccf95 10847
18b519c0 10848@deffn {Directive} %no-lines
931c7513
RS
10849Bison declaration to avoid generating @code{#line} directives in the
10850parser file. @xref{Decl Summary}.
18b519c0 10851@end deffn
931c7513 10852
18b519c0 10853@deffn {Directive} %nonassoc
d78f0ac9 10854Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10855@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10856@end deffn
bfa74976 10857
02975b9a 10858@deffn {Directive} %output "@var{file}"
72d2299c 10859Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10860Summary}.
18b519c0 10861@end deffn
d8988b2f 10862
2055a44e
AD
10863@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10864Bison declaration to specify additional arguments that both
10865@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10866Parser Function @code{yyparse}}.
10867@end deffn
10868
10869@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10870Bison declaration to specify additional arguments that @code{yyparse}
10871should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10872@end deffn
2a8d363a 10873
18b519c0 10874@deffn {Directive} %prec
bfa74976
RS
10875Bison declaration to assign a precedence to a specific rule.
10876@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10877@end deffn
bfa74976 10878
d78f0ac9
AD
10879@deffn {Directive} %precedence
10880Bison declaration to assign precedence to token(s), but no associativity
10881@xref{Precedence Decl, ,Operator Precedence}.
10882@end deffn
10883
18b519c0 10884@deffn {Directive} %pure-parser
67501061 10885Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10886for which Bison is more careful to warn about unreasonable usage.
18b519c0 10887@end deffn
bfa74976 10888
b50d2359 10889@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10890Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10891Require a Version of Bison}.
b50d2359
AD
10892@end deffn
10893
18b519c0 10894@deffn {Directive} %right
d78f0ac9 10895Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10896@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10897@end deffn
bfa74976 10898
e6e704dc
JD
10899@deffn {Directive} %skeleton
10900Specify the skeleton to use; usually for development.
10901@xref{Decl Summary}.
10902@end deffn
10903
18b519c0 10904@deffn {Directive} %start
704a47c4
AD
10905Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10906Start-Symbol}.
18b519c0 10907@end deffn
bfa74976 10908
18b519c0 10909@deffn {Directive} %token
bfa74976
RS
10910Bison declaration to declare token(s) without specifying precedence.
10911@xref{Token Decl, ,Token Type Names}.
18b519c0 10912@end deffn
bfa74976 10913
18b519c0 10914@deffn {Directive} %token-table
931c7513
RS
10915Bison declaration to include a token name table in the parser file.
10916@xref{Decl Summary}.
18b519c0 10917@end deffn
931c7513 10918
18b519c0 10919@deffn {Directive} %type
704a47c4
AD
10920Bison declaration to declare nonterminals. @xref{Type Decl,
10921,Nonterminal Symbols}.
18b519c0 10922@end deffn
bfa74976 10923
dd8d9022
AD
10924@deffn {Symbol} $undefined
10925The predefined token onto which all undefined values returned by
10926@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10927@code{error}.
10928@end deffn
10929
18b519c0 10930@deffn {Directive} %union
bfa74976
RS
10931Bison declaration to specify several possible data types for semantic
10932values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10933@end deffn
bfa74976 10934
dd8d9022
AD
10935@deffn {Macro} YYABORT
10936Macro to pretend that an unrecoverable syntax error has occurred, by
10937making @code{yyparse} return 1 immediately. The error reporting
10938function @code{yyerror} is not called. @xref{Parser Function, ,The
10939Parser Function @code{yyparse}}.
8405b70c
PB
10940
10941For Java parsers, this functionality is invoked using @code{return YYABORT;}
10942instead.
dd8d9022 10943@end deffn
3ded9a63 10944
dd8d9022
AD
10945@deffn {Macro} YYACCEPT
10946Macro to pretend that a complete utterance of the language has been
10947read, by making @code{yyparse} return 0 immediately.
10948@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10949
10950For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10951instead.
dd8d9022 10952@end deffn
bfa74976 10953
dd8d9022 10954@deffn {Macro} YYBACKUP
742e4900 10955Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10956token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10957@end deffn
bfa74976 10958
dd8d9022 10959@deffn {Variable} yychar
32c29292 10960External integer variable that contains the integer value of the
742e4900 10961lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10962@code{yyparse}.) Error-recovery rule actions may examine this variable.
10963@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10964@end deffn
bfa74976 10965
dd8d9022
AD
10966@deffn {Variable} yyclearin
10967Macro used in error-recovery rule actions. It clears the previous
742e4900 10968lookahead token. @xref{Error Recovery}.
18b519c0 10969@end deffn
bfa74976 10970
dd8d9022
AD
10971@deffn {Macro} YYDEBUG
10972Macro to define to equip the parser with tracing code. @xref{Tracing,
10973,Tracing Your Parser}.
18b519c0 10974@end deffn
bfa74976 10975
dd8d9022
AD
10976@deffn {Variable} yydebug
10977External integer variable set to zero by default. If @code{yydebug}
10978is given a nonzero value, the parser will output information on input
10979symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10980@end deffn
bfa74976 10981
dd8d9022
AD
10982@deffn {Macro} yyerrok
10983Macro to cause parser to recover immediately to its normal mode
10984after a syntax error. @xref{Error Recovery}.
10985@end deffn
10986
10987@deffn {Macro} YYERROR
10988Macro to pretend that a syntax error has just been detected: call
10989@code{yyerror} and then perform normal error recovery if possible
10990(@pxref{Error Recovery}), or (if recovery is impossible) make
10991@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10992
10993For Java parsers, this functionality is invoked using @code{return YYERROR;}
10994instead.
dd8d9022
AD
10995@end deffn
10996
10997@deffn {Function} yyerror
10998User-supplied function to be called by @code{yyparse} on error.
71b00ed8 10999@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11000@end deffn
11001
11002@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11003An obsolete macro used in the @file{yacc.c} skeleton, that you define
11004with @code{#define} in the prologue to request verbose, specific error
11005message strings when @code{yyerror} is called. It doesn't matter what
11006definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11007it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11008(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11009@end deffn
11010
11011@deffn {Macro} YYINITDEPTH
11012Macro for specifying the initial size of the parser stack.
1a059451 11013@xref{Memory Management}.
dd8d9022
AD
11014@end deffn
11015
11016@deffn {Function} yylex
11017User-supplied lexical analyzer function, called with no arguments to get
11018the next token. @xref{Lexical, ,The Lexical Analyzer Function
11019@code{yylex}}.
11020@end deffn
11021
11022@deffn {Macro} YYLEX_PARAM
11023An obsolete macro for specifying an extra argument (or list of extra
32c29292 11024arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11025macro is deprecated, and is supported only for Yacc like parsers.
11026@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11027@end deffn
11028
11029@deffn {Variable} yylloc
11030External variable in which @code{yylex} should place the line and column
11031numbers associated with a token. (In a pure parser, it is a local
11032variable within @code{yyparse}, and its address is passed to
32c29292
JD
11033@code{yylex}.)
11034You can ignore this variable if you don't use the @samp{@@} feature in the
11035grammar actions.
11036@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11037In semantic actions, it stores the location of the lookahead token.
32c29292 11038@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11039@end deffn
11040
11041@deffn {Type} YYLTYPE
11042Data type of @code{yylloc}; by default, a structure with four
11043members. @xref{Location Type, , Data Types of Locations}.
11044@end deffn
11045
11046@deffn {Variable} yylval
11047External variable in which @code{yylex} should place the semantic
11048value associated with a token. (In a pure parser, it is a local
11049variable within @code{yyparse}, and its address is passed to
32c29292
JD
11050@code{yylex}.)
11051@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11052In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11053@xref{Actions, ,Actions}.
dd8d9022
AD
11054@end deffn
11055
11056@deffn {Macro} YYMAXDEPTH
1a059451
PE
11057Macro for specifying the maximum size of the parser stack. @xref{Memory
11058Management}.
dd8d9022
AD
11059@end deffn
11060
11061@deffn {Variable} yynerrs
8a2800e7 11062Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11063(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11064pure push parser, it is a member of yypstate.)
dd8d9022
AD
11065@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11066@end deffn
11067
11068@deffn {Function} yyparse
11069The parser function produced by Bison; call this function to start
11070parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11071@end deffn
11072
9987d1b3 11073@deffn {Function} yypstate_delete
f4101aa6 11074The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11075call this function to delete the memory associated with a parser.
f4101aa6 11076@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11077@code{yypstate_delete}}.
59da312b
JD
11078(The current push parsing interface is experimental and may evolve.
11079More user feedback will help to stabilize it.)
9987d1b3
JD
11080@end deffn
11081
11082@deffn {Function} yypstate_new
f4101aa6 11083The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11084call this function to create a new parser.
f4101aa6 11085@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11086@code{yypstate_new}}.
59da312b
JD
11087(The current push parsing interface is experimental and may evolve.
11088More user feedback will help to stabilize it.)
9987d1b3
JD
11089@end deffn
11090
11091@deffn {Function} yypull_parse
f4101aa6
AD
11092The parser function produced by Bison in push mode; call this function to
11093parse the rest of the input stream.
11094@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11095@code{yypull_parse}}.
59da312b
JD
11096(The current push parsing interface is experimental and may evolve.
11097More user feedback will help to stabilize it.)
9987d1b3
JD
11098@end deffn
11099
11100@deffn {Function} yypush_parse
f4101aa6
AD
11101The parser function produced by Bison in push mode; call this function to
11102parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11103@code{yypush_parse}}.
59da312b
JD
11104(The current push parsing interface is experimental and may evolve.
11105More user feedback will help to stabilize it.)
9987d1b3
JD
11106@end deffn
11107
dd8d9022
AD
11108@deffn {Macro} YYPARSE_PARAM
11109An obsolete macro for specifying the name of a parameter that
11110@code{yyparse} should accept. The use of this macro is deprecated, and
11111is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11112Conventions for Pure Parsers}.
11113@end deffn
11114
11115@deffn {Macro} YYRECOVERING
02103984
PE
11116The expression @code{YYRECOVERING ()} yields 1 when the parser
11117is recovering from a syntax error, and 0 otherwise.
11118@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11119@end deffn
11120
11121@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11122Macro used to control the use of @code{alloca} when the
11123deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11124the parser will use @code{malloc} to extend its stacks. If defined to
111251, the parser will use @code{alloca}. Values other than 0 and 1 are
11126reserved for future Bison extensions. If not defined,
11127@code{YYSTACK_USE_ALLOCA} defaults to 0.
11128
55289366 11129In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11130limited stack and with unreliable stack-overflow checking, you should
11131set @code{YYMAXDEPTH} to a value that cannot possibly result in
11132unchecked stack overflow on any of your target hosts when
11133@code{alloca} is called. You can inspect the code that Bison
11134generates in order to determine the proper numeric values. This will
11135require some expertise in low-level implementation details.
dd8d9022
AD
11136@end deffn
11137
11138@deffn {Type} YYSTYPE
11139Data type of semantic values; @code{int} by default.
11140@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11141@end deffn
bfa74976 11142
342b8b6e 11143@node Glossary
bfa74976
RS
11144@appendix Glossary
11145@cindex glossary
11146
11147@table @asis
eb45ef3b
JD
11148@item Accepting State
11149A state whose only action is the accept action.
11150The accepting state is thus a consistent state.
11151@xref{Understanding,,}.
11152
c827f760
PE
11153@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
11154Formal method of specifying context-free grammars originally proposed
11155by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11156committee document contributing to what became the Algol 60 report.
11157@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11158
eb45ef3b
JD
11159@item Consistent State
11160A state containing only one possible action.
5bab9d08 11161@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11162
bfa74976
RS
11163@item Context-free grammars
11164Grammars specified as rules that can be applied regardless of context.
11165Thus, if there is a rule which says that an integer can be used as an
11166expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11167permitted. @xref{Language and Grammar, ,Languages and Context-Free
11168Grammars}.
bfa74976 11169
110ef36a
JD
11170@item Default Reduction
11171The reduction that a parser should perform if the current parser state
eb45ef3b 11172contains no other action for the lookahead token.
110ef36a
JD
11173In permitted parser states, Bison declares the reduction with the
11174largest lookahead set to be the default reduction and removes that
11175lookahead set.
5bab9d08 11176@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11177
bfa74976
RS
11178@item Dynamic allocation
11179Allocation of memory that occurs during execution, rather than at
11180compile time or on entry to a function.
11181
11182@item Empty string
11183Analogous to the empty set in set theory, the empty string is a
11184character string of length zero.
11185
11186@item Finite-state stack machine
11187A ``machine'' that has discrete states in which it is said to exist at
11188each instant in time. As input to the machine is processed, the
11189machine moves from state to state as specified by the logic of the
11190machine. In the case of the parser, the input is the language being
11191parsed, and the states correspond to various stages in the grammar
c827f760 11192rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11193
c827f760 11194@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 11195A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
11196that are not @acronym{LR}(1). It resolves situations that Bison's
11197deterministic parsing
676385e2
PH
11198algorithm cannot by effectively splitting off multiple parsers, trying all
11199possible parsers, and discarding those that fail in the light of additional
c827f760
PE
11200right context. @xref{Generalized LR Parsing, ,Generalized
11201@acronym{LR} Parsing}.
676385e2 11202
bfa74976
RS
11203@item Grouping
11204A language construct that is (in general) grammatically divisible;
c827f760 11205for example, `expression' or `declaration' in C@.
bfa74976
RS
11206@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11207
eb45ef3b
JD
11208@item @acronym{IELR}(1)
11209A minimal @acronym{LR}(1) parser table generation algorithm.
11210That is, given any context-free grammar, @acronym{IELR}(1) generates
11211parser tables with the full language recognition power of canonical
11212@acronym{LR}(1) but with nearly the same number of parser states as
11213@acronym{LALR}(1).
11214This reduction in parser states is often an order of magnitude.
11215More importantly, because canonical @acronym{LR}(1)'s extra parser
11216states may contain duplicate conflicts in the case of
11217non-@acronym{LR}(1) grammars, the number of conflicts for
11218@acronym{IELR}(1) is often an order of magnitude less as well.
11219This can significantly reduce the complexity of developing of a grammar.
11220@xref{Decl Summary,,lr.type}.
11221
bfa74976
RS
11222@item Infix operator
11223An arithmetic operator that is placed between the operands on which it
11224performs some operation.
11225
11226@item Input stream
11227A continuous flow of data between devices or programs.
11228
11229@item Language construct
11230One of the typical usage schemas of the language. For example, one of
11231the constructs of the C language is the @code{if} statement.
11232@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11233
11234@item Left associativity
11235Operators having left associativity are analyzed from left to right:
11236@samp{a+b+c} first computes @samp{a+b} and then combines with
11237@samp{c}. @xref{Precedence, ,Operator Precedence}.
11238
11239@item Left recursion
89cab50d
AD
11240A rule whose result symbol is also its first component symbol; for
11241example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11242Rules}.
bfa74976
RS
11243
11244@item Left-to-right parsing
11245Parsing a sentence of a language by analyzing it token by token from
c827f760 11246left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11247
11248@item Lexical analyzer (scanner)
11249A function that reads an input stream and returns tokens one by one.
11250@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11251
11252@item Lexical tie-in
11253A flag, set by actions in the grammar rules, which alters the way
11254tokens are parsed. @xref{Lexical Tie-ins}.
11255
931c7513 11256@item Literal string token
14ded682 11257A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11258
742e4900
JD
11259@item Lookahead token
11260A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11261Tokens}.
bfa74976 11262
c827f760 11263@item @acronym{LALR}(1)
bfa74976 11264The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
11265generators) can handle by default; a subset of @acronym{LR}(1).
11266@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11267
c827f760 11268@item @acronym{LR}(1)
bfa74976 11269The class of context-free grammars in which at most one token of
742e4900 11270lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11271
11272@item Nonterminal symbol
11273A grammar symbol standing for a grammatical construct that can
11274be expressed through rules in terms of smaller constructs; in other
11275words, a construct that is not a token. @xref{Symbols}.
11276
bfa74976
RS
11277@item Parser
11278A function that recognizes valid sentences of a language by analyzing
11279the syntax structure of a set of tokens passed to it from a lexical
11280analyzer.
11281
11282@item Postfix operator
11283An arithmetic operator that is placed after the operands upon which it
11284performs some operation.
11285
11286@item Reduction
11287Replacing a string of nonterminals and/or terminals with a single
89cab50d 11288nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11289Parser Algorithm}.
bfa74976
RS
11290
11291@item Reentrant
11292A reentrant subprogram is a subprogram which can be in invoked any
11293number of times in parallel, without interference between the various
11294invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11295
11296@item Reverse polish notation
11297A language in which all operators are postfix operators.
11298
11299@item Right recursion
89cab50d
AD
11300A rule whose result symbol is also its last component symbol; for
11301example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11302Rules}.
bfa74976
RS
11303
11304@item Semantics
11305In computer languages, the semantics are specified by the actions
11306taken for each instance of the language, i.e., the meaning of
11307each statement. @xref{Semantics, ,Defining Language Semantics}.
11308
11309@item Shift
11310A parser is said to shift when it makes the choice of analyzing
11311further input from the stream rather than reducing immediately some
c827f760 11312already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11313
11314@item Single-character literal
11315A single character that is recognized and interpreted as is.
11316@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11317
11318@item Start symbol
11319The nonterminal symbol that stands for a complete valid utterance in
11320the language being parsed. The start symbol is usually listed as the
13863333 11321first nonterminal symbol in a language specification.
bfa74976
RS
11322@xref{Start Decl, ,The Start-Symbol}.
11323
11324@item Symbol table
11325A data structure where symbol names and associated data are stored
11326during parsing to allow for recognition and use of existing
11327information in repeated uses of a symbol. @xref{Multi-function Calc}.
11328
6e649e65
PE
11329@item Syntax error
11330An error encountered during parsing of an input stream due to invalid
11331syntax. @xref{Error Recovery}.
11332
bfa74976
RS
11333@item Token
11334A basic, grammatically indivisible unit of a language. The symbol
11335that describes a token in the grammar is a terminal symbol.
11336The input of the Bison parser is a stream of tokens which comes from
11337the lexical analyzer. @xref{Symbols}.
11338
11339@item Terminal symbol
89cab50d
AD
11340A grammar symbol that has no rules in the grammar and therefore is
11341grammatically indivisible. The piece of text it represents is a token.
11342@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11343@end table
11344
342b8b6e 11345@node Copying This Manual
f2b5126e 11346@appendix Copying This Manual
f2b5126e
PB
11347@include fdl.texi
11348
342b8b6e 11349@node Index
bfa74976
RS
11350@unnumbered Index
11351
11352@printindex cp
11353
bfa74976 11354@bye
a06ea4aa 11355
6b5a0de9
AD
11356@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11357@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11358@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11359@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11360@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11361@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11362@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11363@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11364@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11365@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11366@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11367@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11368@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11369@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11370@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11371@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11372@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11373@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11374@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11375@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11376@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11377@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11378@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11379@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11380@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11381@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11382@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11383@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11384@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
11385@c LocalWords: subexpressions declarator nondeferred config libintl postfix
11386@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11387@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11388@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11389@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11390@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11391@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11392@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11393@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11394@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11395@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11396@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11397@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11398@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11399@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11400@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11401@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11402@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11403@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11404@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11405@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
1625df5b 11406@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
6b5a0de9 11407@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11408
11409@c Local Variables:
11410@c ispell-dictionary: "american"
11411@c fill-column: 76
11412@c End: