]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Remove restrictions on expanding GLR stacks in C++.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
7d424de1
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
804e83b2 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 140* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f5f419de 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
d013372c 210* Named References:: Using named references in actions.
bfa74976 211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976
RS
231* Decl Summary:: Table of all Bison declarations.
232
233Parser C-Language Interface
234
f5f419de
DJ
235* Parser Function:: How to call @code{yyparse} and what it returns.
236* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
237* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
238* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
239* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
240* Lexical:: You must supply a function @code{yylex}
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244* Internationalization:: How to let the parser speak in the user's
245 native language.
bfa74976
RS
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
252* Token Locations:: How @code{yylex} must return the text location
253 (line number, etc.) of the token, if the
254 actions want that.
255* Pure Calling:: How the calling convention differs in a pure parser
256 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 257
13863333 258The Bison Parser Algorithm
bfa74976 259
742e4900 260* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
273* Using Precedence:: How to specify precedence and associativity.
274* Precedence Only:: How to specify precedence only.
bfa74976
RS
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f5f419de
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f5f419de
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
337* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f5f419de 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
9dc3ee6d
JD
357annotated context-free grammar into a deterministic @acronym{LR} or
358generalized @acronym{LR} (@acronym{GLR}) parser employing
359@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
360parser tables.
eb45ef3b
JD
361Once you are proficient with Bison, you can use it to develop a wide
362range of language parsers, from those used in simple desk calculators to
363complex programming languages.
bfa74976
RS
364
365Bison is upward compatible with Yacc: all properly-written Yacc grammars
366ought to work with Bison with no change. Anyone familiar with Yacc
367should be able to use Bison with little trouble. You need to be fluent in
1e137b71 368C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
369
370We begin with tutorial chapters that explain the basic concepts of using
371Bison and show three explained examples, each building on the last. If you
372don't know Bison or Yacc, start by reading these chapters. Reference
373chapters follow which describe specific aspects of Bison in detail.
374
931c7513
RS
375Bison was written primarily by Robert Corbett; Richard Stallman made it
376Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 377multi-character string literals and other features.
931c7513 378
df1af54c 379This edition corresponds to version @value{VERSION} of Bison.
bfa74976 380
342b8b6e 381@node Conditions
bfa74976
RS
382@unnumbered Conditions for Using Bison
383
193d7c70
PE
384The distribution terms for Bison-generated parsers permit using the
385parsers in nonfree programs. Before Bison version 2.2, these extra
386permissions applied only when Bison was generating @acronym{LALR}(1)
387parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 388parsers could be used only in programs that were free software.
a31239f1 389
c827f760
PE
390The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
391compiler, have never
9ecbd125 392had such a requirement. They could always be used for nonfree
a31239f1
RS
393software. The reason Bison was different was not due to a special
394policy decision; it resulted from applying the usual General Public
395License to all of the Bison source code.
396
397The output of the Bison utility---the Bison parser file---contains a
398verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
399parser's implementation. (The actions from your grammar are inserted
400into this implementation at one point, but most of the rest of the
401implementation is not changed.) When we applied the @acronym{GPL}
402terms to the skeleton code for the parser's implementation,
a31239f1
RS
403the effect was to restrict the use of Bison output to free software.
404
405We didn't change the terms because of sympathy for people who want to
406make software proprietary. @strong{Software should be free.} But we
407concluded that limiting Bison's use to free software was doing little to
408encourage people to make other software free. So we decided to make the
409practical conditions for using Bison match the practical conditions for
c827f760 410using the other @acronym{GNU} tools.
bfa74976 411
193d7c70
PE
412This exception applies when Bison is generating code for a parser.
413You can tell whether the exception applies to a Bison output file by
414inspecting the file for text beginning with ``As a special
415exception@dots{}''. The text spells out the exact terms of the
416exception.
262aa8dd 417
f16b0819
PE
418@node Copying
419@unnumbered GNU GENERAL PUBLIC LICENSE
420@include gpl-3.0.texi
bfa74976 421
342b8b6e 422@node Concepts
bfa74976
RS
423@chapter The Concepts of Bison
424
425This chapter introduces many of the basic concepts without which the
426details of Bison will not make sense. If you do not already know how to
427use Bison or Yacc, we suggest you start by reading this chapter carefully.
428
429@menu
f5f419de
DJ
430* Language and Grammar:: Languages and context-free grammars,
431 as mathematical ideas.
432* Grammar in Bison:: How we represent grammars for Bison's sake.
433* Semantic Values:: Each token or syntactic grouping can have
434 a semantic value (the value of an integer,
435 the name of an identifier, etc.).
436* Semantic Actions:: Each rule can have an action containing C code.
437* GLR Parsers:: Writing parsers for general context-free languages.
438* Locations Overview:: Tracking Locations.
439* Bison Parser:: What are Bison's input and output,
440 how is the output used?
441* Stages:: Stages in writing and running Bison grammars.
442* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
443@end menu
444
342b8b6e 445@node Language and Grammar
bfa74976
RS
446@section Languages and Context-Free Grammars
447
bfa74976
RS
448@cindex context-free grammar
449@cindex grammar, context-free
450In order for Bison to parse a language, it must be described by a
451@dfn{context-free grammar}. This means that you specify one or more
452@dfn{syntactic groupings} and give rules for constructing them from their
453parts. For example, in the C language, one kind of grouping is called an
454`expression'. One rule for making an expression might be, ``An expression
455can be made of a minus sign and another expression''. Another would be,
456``An expression can be an integer''. As you can see, rules are often
457recursive, but there must be at least one rule which leads out of the
458recursion.
459
c827f760 460@cindex @acronym{BNF}
bfa74976
RS
461@cindex Backus-Naur form
462The most common formal system for presenting such rules for humans to read
c827f760
PE
463is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
464order to specify the language Algol 60. Any grammar expressed in
465@acronym{BNF} is a context-free grammar. The input to Bison is
466essentially machine-readable @acronym{BNF}.
bfa74976 467
c827f760 468@cindex @acronym{LALR}(1) grammars
eb45ef3b 469@cindex @acronym{IELR}(1) grammars
c827f760 470@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
471There are various important subclasses of context-free grammars.
472Although it can handle almost all context-free grammars, Bison is
473optimized for what are called @acronym{LR}(1) grammars.
474In brief, in these grammars, it must be possible to tell how to parse
475any portion of an input string with just a single token of lookahead.
476For historical reasons, Bison by default is limited by the additional
477restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
478@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
479more information on this.
eb45ef3b
JD
480To escape these additional restrictions, you can request
481@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
482@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 483
c827f760
PE
484@cindex @acronym{GLR} parsing
485@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 486@cindex ambiguous grammars
9d9b8b70 487@cindex nondeterministic parsing
9501dc6e 488
eb45ef3b 489Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
490roughly that the next grammar rule to apply at any point in the input is
491uniquely determined by the preceding input and a fixed, finite portion
742e4900 492(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 493grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 494apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 495grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 496lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
497With the proper declarations, Bison is also able to parse these more
498general context-free grammars, using a technique known as @acronym{GLR}
499parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
500are able to handle any context-free grammar for which the number of
501possible parses of any given string is finite.
676385e2 502
bfa74976
RS
503@cindex symbols (abstract)
504@cindex token
505@cindex syntactic grouping
506@cindex grouping, syntactic
9501dc6e
AD
507In the formal grammatical rules for a language, each kind of syntactic
508unit or grouping is named by a @dfn{symbol}. Those which are built by
509grouping smaller constructs according to grammatical rules are called
bfa74976
RS
510@dfn{nonterminal symbols}; those which can't be subdivided are called
511@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
512corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 513corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
514
515We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
516nonterminal, mean. The tokens of C are identifiers, constants (numeric
517and string), and the various keywords, arithmetic operators and
518punctuation marks. So the terminal symbols of a grammar for C include
519`identifier', `number', `string', plus one symbol for each keyword,
520operator or punctuation mark: `if', `return', `const', `static', `int',
521`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
522(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
523lexicography, not grammar.)
524
525Here is a simple C function subdivided into tokens:
526
9edcd895
AD
527@ifinfo
528@example
529int /* @r{keyword `int'} */
14d4662b 530square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
531 @r{identifier, close-paren} */
532@{ /* @r{open-brace} */
aa08666d
AD
533 return x * x; /* @r{keyword `return', identifier, asterisk,}
534 @r{identifier, semicolon} */
9edcd895
AD
535@} /* @r{close-brace} */
536@end example
537@end ifinfo
538@ifnotinfo
bfa74976
RS
539@example
540int /* @r{keyword `int'} */
14d4662b 541square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 542@{ /* @r{open-brace} */
9edcd895 543 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
544@} /* @r{close-brace} */
545@end example
9edcd895 546@end ifnotinfo
bfa74976
RS
547
548The syntactic groupings of C include the expression, the statement, the
549declaration, and the function definition. These are represented in the
550grammar of C by nonterminal symbols `expression', `statement',
551`declaration' and `function definition'. The full grammar uses dozens of
552additional language constructs, each with its own nonterminal symbol, in
553order to express the meanings of these four. The example above is a
554function definition; it contains one declaration, and one statement. In
555the statement, each @samp{x} is an expression and so is @samp{x * x}.
556
557Each nonterminal symbol must have grammatical rules showing how it is made
558out of simpler constructs. For example, one kind of C statement is the
559@code{return} statement; this would be described with a grammar rule which
560reads informally as follows:
561
562@quotation
563A `statement' can be made of a `return' keyword, an `expression' and a
564`semicolon'.
565@end quotation
566
567@noindent
568There would be many other rules for `statement', one for each kind of
569statement in C.
570
571@cindex start symbol
572One nonterminal symbol must be distinguished as the special one which
573defines a complete utterance in the language. It is called the @dfn{start
574symbol}. In a compiler, this means a complete input program. In the C
575language, the nonterminal symbol `sequence of definitions and declarations'
576plays this role.
577
578For example, @samp{1 + 2} is a valid C expression---a valid part of a C
579program---but it is not valid as an @emph{entire} C program. In the
580context-free grammar of C, this follows from the fact that `expression' is
581not the start symbol.
582
583The Bison parser reads a sequence of tokens as its input, and groups the
584tokens using the grammar rules. If the input is valid, the end result is
585that the entire token sequence reduces to a single grouping whose symbol is
586the grammar's start symbol. If we use a grammar for C, the entire input
587must be a `sequence of definitions and declarations'. If not, the parser
588reports a syntax error.
589
342b8b6e 590@node Grammar in Bison
bfa74976
RS
591@section From Formal Rules to Bison Input
592@cindex Bison grammar
593@cindex grammar, Bison
594@cindex formal grammar
595
596A formal grammar is a mathematical construct. To define the language
597for Bison, you must write a file expressing the grammar in Bison syntax:
598a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
599
600A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 601as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
602in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
603
604The Bison representation for a terminal symbol is also called a @dfn{token
605type}. Token types as well can be represented as C-like identifiers. By
606convention, these identifiers should be upper case to distinguish them from
607nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
608@code{RETURN}. A terminal symbol that stands for a particular keyword in
609the language should be named after that keyword converted to upper case.
610The terminal symbol @code{error} is reserved for error recovery.
931c7513 611@xref{Symbols}.
bfa74976
RS
612
613A terminal symbol can also be represented as a character literal, just like
614a C character constant. You should do this whenever a token is just a
615single character (parenthesis, plus-sign, etc.): use that same character in
616a literal as the terminal symbol for that token.
617
931c7513
RS
618A third way to represent a terminal symbol is with a C string constant
619containing several characters. @xref{Symbols}, for more information.
620
bfa74976
RS
621The grammar rules also have an expression in Bison syntax. For example,
622here is the Bison rule for a C @code{return} statement. The semicolon in
623quotes is a literal character token, representing part of the C syntax for
624the statement; the naked semicolon, and the colon, are Bison punctuation
625used in every rule.
626
627@example
628stmt: RETURN expr ';'
629 ;
630@end example
631
632@noindent
633@xref{Rules, ,Syntax of Grammar Rules}.
634
342b8b6e 635@node Semantic Values
bfa74976
RS
636@section Semantic Values
637@cindex semantic value
638@cindex value, semantic
639
640A formal grammar selects tokens only by their classifications: for example,
641if a rule mentions the terminal symbol `integer constant', it means that
642@emph{any} integer constant is grammatically valid in that position. The
643precise value of the constant is irrelevant to how to parse the input: if
644@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 645grammatical.
bfa74976
RS
646
647But the precise value is very important for what the input means once it is
648parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6493989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
650has both a token type and a @dfn{semantic value}. @xref{Semantics,
651,Defining Language Semantics},
bfa74976
RS
652for details.
653
654The token type is a terminal symbol defined in the grammar, such as
655@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
656you need to know to decide where the token may validly appear and how to
657group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 658except their types.
bfa74976
RS
659
660The semantic value has all the rest of the information about the
661meaning of the token, such as the value of an integer, or the name of an
662identifier. (A token such as @code{','} which is just punctuation doesn't
663need to have any semantic value.)
664
665For example, an input token might be classified as token type
666@code{INTEGER} and have the semantic value 4. Another input token might
667have the same token type @code{INTEGER} but value 3989. When a grammar
668rule says that @code{INTEGER} is allowed, either of these tokens is
669acceptable because each is an @code{INTEGER}. When the parser accepts the
670token, it keeps track of the token's semantic value.
671
672Each grouping can also have a semantic value as well as its nonterminal
673symbol. For example, in a calculator, an expression typically has a
674semantic value that is a number. In a compiler for a programming
675language, an expression typically has a semantic value that is a tree
676structure describing the meaning of the expression.
677
342b8b6e 678@node Semantic Actions
bfa74976
RS
679@section Semantic Actions
680@cindex semantic actions
681@cindex actions, semantic
682
683In order to be useful, a program must do more than parse input; it must
684also produce some output based on the input. In a Bison grammar, a grammar
685rule can have an @dfn{action} made up of C statements. Each time the
686parser recognizes a match for that rule, the action is executed.
687@xref{Actions}.
13863333 688
bfa74976
RS
689Most of the time, the purpose of an action is to compute the semantic value
690of the whole construct from the semantic values of its parts. For example,
691suppose we have a rule which says an expression can be the sum of two
692expressions. When the parser recognizes such a sum, each of the
693subexpressions has a semantic value which describes how it was built up.
694The action for this rule should create a similar sort of value for the
695newly recognized larger expression.
696
697For example, here is a rule that says an expression can be the sum of
698two subexpressions:
699
700@example
701expr: expr '+' expr @{ $$ = $1 + $3; @}
702 ;
703@end example
704
705@noindent
706The action says how to produce the semantic value of the sum expression
707from the values of the two subexpressions.
708
676385e2 709@node GLR Parsers
c827f760
PE
710@section Writing @acronym{GLR} Parsers
711@cindex @acronym{GLR} parsing
712@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
713@findex %glr-parser
714@cindex conflicts
715@cindex shift/reduce conflicts
fa7e68c3 716@cindex reduce/reduce conflicts
676385e2 717
eb45ef3b
JD
718In some grammars, Bison's deterministic
719@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
720certain grammar rule at a given point. That is, it may not be able to
721decide (on the basis of the input read so far) which of two possible
722reductions (applications of a grammar rule) applies, or whether to apply
723a reduction or read more of the input and apply a reduction later in the
724input. These are known respectively as @dfn{reduce/reduce} conflicts
725(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
726(@pxref{Shift/Reduce}).
727
eb45ef3b 728To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 729more general parsing algorithm is sometimes necessary. If you include
676385e2 730@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 731(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
732(@acronym{GLR}) parser. These parsers handle Bison grammars that
733contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 734declarations) identically to deterministic parsers. However, when
9501dc6e
AD
735faced with unresolved shift/reduce and reduce/reduce conflicts,
736@acronym{GLR} parsers use the simple expedient of doing both,
737effectively cloning the parser to follow both possibilities. Each of
738the resulting parsers can again split, so that at any given time, there
739can be any number of possible parses being explored. The parsers
676385e2
PH
740proceed in lockstep; that is, all of them consume (shift) a given input
741symbol before any of them proceed to the next. Each of the cloned
742parsers eventually meets one of two possible fates: either it runs into
743a parsing error, in which case it simply vanishes, or it merges with
744another parser, because the two of them have reduced the input to an
745identical set of symbols.
746
747During the time that there are multiple parsers, semantic actions are
748recorded, but not performed. When a parser disappears, its recorded
749semantic actions disappear as well, and are never performed. When a
750reduction makes two parsers identical, causing them to merge, Bison
751records both sets of semantic actions. Whenever the last two parsers
752merge, reverting to the single-parser case, Bison resolves all the
753outstanding actions either by precedences given to the grammar rules
754involved, or by performing both actions, and then calling a designated
755user-defined function on the resulting values to produce an arbitrary
756merged result.
757
fa7e68c3 758@menu
f5f419de
DJ
759* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
760* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
20be2f92 761* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 762* Semantic Predicates:: Controlling a parse with arbitrary computations.
f5f419de 763* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
764@end menu
765
766@node Simple GLR Parsers
767@subsection Using @acronym{GLR} on Unambiguous Grammars
768@cindex @acronym{GLR} parsing, unambiguous grammars
769@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
770@findex %glr-parser
771@findex %expect-rr
772@cindex conflicts
773@cindex reduce/reduce conflicts
774@cindex shift/reduce conflicts
775
776In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
777to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
778Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
779
780Consider a problem that
781arises in the declaration of enumerated and subrange types in the
782programming language Pascal. Here are some examples:
783
784@example
785type subrange = lo .. hi;
786type enum = (a, b, c);
787@end example
788
789@noindent
790The original language standard allows only numeric
791literals and constant identifiers for the subrange bounds (@samp{lo}
792and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79310206) and many other
794Pascal implementations allow arbitrary expressions there. This gives
795rise to the following situation, containing a superfluous pair of
796parentheses:
797
798@example
799type subrange = (a) .. b;
800@end example
801
802@noindent
803Compare this to the following declaration of an enumerated
804type with only one value:
805
806@example
807type enum = (a);
808@end example
809
810@noindent
811(These declarations are contrived, but they are syntactically
812valid, and more-complicated cases can come up in practical programs.)
813
814These two declarations look identical until the @samp{..} token.
eb45ef3b 815With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
816possible to decide between the two forms when the identifier
817@samp{a} is parsed. It is, however, desirable
818for a parser to decide this, since in the latter case
819@samp{a} must become a new identifier to represent the enumeration
820value, while in the former case @samp{a} must be evaluated with its
821current meaning, which may be a constant or even a function call.
822
823You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
824to be resolved later, but this typically requires substantial
825contortions in both semantic actions and large parts of the
826grammar, where the parentheses are nested in the recursive rules for
827expressions.
828
829You might think of using the lexer to distinguish between the two
830forms by returning different tokens for currently defined and
831undefined identifiers. But if these declarations occur in a local
832scope, and @samp{a} is defined in an outer scope, then both forms
833are possible---either locally redefining @samp{a}, or using the
834value of @samp{a} from the outer scope. So this approach cannot
835work.
836
e757bb10 837A simple solution to this problem is to declare the parser to
fa7e68c3
PE
838use the @acronym{GLR} algorithm.
839When the @acronym{GLR} parser reaches the critical state, it
840merely splits into two branches and pursues both syntax rules
841simultaneously. Sooner or later, one of them runs into a parsing
842error. If there is a @samp{..} token before the next
843@samp{;}, the rule for enumerated types fails since it cannot
844accept @samp{..} anywhere; otherwise, the subrange type rule
845fails since it requires a @samp{..} token. So one of the branches
846fails silently, and the other one continues normally, performing
847all the intermediate actions that were postponed during the split.
848
849If the input is syntactically incorrect, both branches fail and the parser
850reports a syntax error as usual.
851
852The effect of all this is that the parser seems to ``guess'' the
853correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
854lookahead than the underlying @acronym{LR}(1) algorithm actually allows
855for. In this example, @acronym{LR}(2) would suffice, but also some cases
856that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
857
858In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
859and the current Bison parser even takes exponential time and space
860for some grammars. In practice, this rarely happens, and for many
861grammars it is possible to prove that it cannot happen.
862The present example contains only one conflict between two
863rules, and the type-declaration context containing the conflict
864cannot be nested. So the number of
865branches that can exist at any time is limited by the constant 2,
866and the parsing time is still linear.
867
868Here is a Bison grammar corresponding to the example above. It
869parses a vastly simplified form of Pascal type declarations.
870
871@example
872%token TYPE DOTDOT ID
873
874@group
875%left '+' '-'
876%left '*' '/'
877@end group
878
879%%
880
881@group
882type_decl : TYPE ID '=' type ';'
883 ;
884@end group
885
886@group
887type : '(' id_list ')'
888 | expr DOTDOT expr
889 ;
890@end group
891
892@group
893id_list : ID
894 | id_list ',' ID
895 ;
896@end group
897
898@group
899expr : '(' expr ')'
900 | expr '+' expr
901 | expr '-' expr
902 | expr '*' expr
903 | expr '/' expr
904 | ID
905 ;
906@end group
907@end example
908
eb45ef3b 909When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
910about one reduce/reduce conflict. In the conflicting situation the
911parser chooses one of the alternatives, arbitrarily the one
912declared first. Therefore the following correct input is not
913recognized:
914
915@example
916type t = (a) .. b;
917@end example
918
919The parser can be turned into a @acronym{GLR} parser, while also telling Bison
920to be silent about the one known reduce/reduce conflict, by
e757bb10 921adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
922@samp{%%}):
923
924@example
925%glr-parser
926%expect-rr 1
927@end example
928
929@noindent
930No change in the grammar itself is required. Now the
931parser recognizes all valid declarations, according to the
932limited syntax above, transparently. In fact, the user does not even
933notice when the parser splits.
934
f8e1c9e5
AD
935So here we have a case where we can use the benefits of @acronym{GLR},
936almost without disadvantages. Even in simple cases like this, however,
937there are at least two potential problems to beware. First, always
938analyze the conflicts reported by Bison to make sure that @acronym{GLR}
939splitting is only done where it is intended. A @acronym{GLR} parser
940splitting inadvertently may cause problems less obvious than an
eb45ef3b 941@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
942conflict. Second, consider interactions with the lexer (@pxref{Semantic
943Tokens}) with great care. Since a split parser consumes tokens without
944performing any actions during the split, the lexer cannot obtain
945information via parser actions. Some cases of lexer interactions can be
946eliminated by using @acronym{GLR} to shift the complications from the
947lexer to the parser. You must check the remaining cases for
948correctness.
949
950In our example, it would be safe for the lexer to return tokens based on
951their current meanings in some symbol table, because no new symbols are
952defined in the middle of a type declaration. Though it is possible for
953a parser to define the enumeration constants as they are parsed, before
954the type declaration is completed, it actually makes no difference since
955they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
956
957@node Merging GLR Parses
958@subsection Using @acronym{GLR} to Resolve Ambiguities
959@cindex @acronym{GLR} parsing, ambiguous grammars
960@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
961@findex %dprec
962@findex %merge
963@cindex conflicts
964@cindex reduce/reduce conflicts
965
2a8d363a 966Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
967
968@example
969%@{
38a92d50
PE
970 #include <stdio.h>
971 #define YYSTYPE char const *
972 int yylex (void);
973 void yyerror (char const *);
676385e2
PH
974%@}
975
976%token TYPENAME ID
977
978%right '='
979%left '+'
980
981%glr-parser
982
983%%
984
fae437e8 985prog :
676385e2
PH
986 | prog stmt @{ printf ("\n"); @}
987 ;
988
989stmt : expr ';' %dprec 1
990 | decl %dprec 2
991 ;
992
2a8d363a 993expr : ID @{ printf ("%s ", $$); @}
fae437e8 994 | TYPENAME '(' expr ')'
2a8d363a
AD
995 @{ printf ("%s <cast> ", $1); @}
996 | expr '+' expr @{ printf ("+ "); @}
997 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
998 ;
999
fae437e8 1000decl : TYPENAME declarator ';'
2a8d363a 1001 @{ printf ("%s <declare> ", $1); @}
676385e2 1002 | TYPENAME declarator '=' expr ';'
2a8d363a 1003 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1004 ;
1005
2a8d363a 1006declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1007 | '(' declarator ')'
1008 ;
1009@end example
1010
1011@noindent
1012This models a problematic part of the C++ grammar---the ambiguity between
1013certain declarations and statements. For example,
1014
1015@example
1016T (x) = y+z;
1017@end example
1018
1019@noindent
1020parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1021(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1022@samp{x} as an @code{ID}).
676385e2 1023Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1024@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1025time it encounters @code{x} in the example above. Since this is a
1026@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1027each choice of resolving the reduce/reduce conflict.
1028Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1029however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1030ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1031the other reduces @code{stmt : decl}, after which both parsers are in an
1032identical state: they've seen @samp{prog stmt} and have the same unprocessed
1033input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1034
1035At this point, the @acronym{GLR} parser requires a specification in the
1036grammar of how to choose between the competing parses.
1037In the example above, the two @code{%dprec}
e757bb10 1038declarations specify that Bison is to give precedence
fa7e68c3 1039to the parse that interprets the example as a
676385e2
PH
1040@code{decl}, which implies that @code{x} is a declarator.
1041The parser therefore prints
1042
1043@example
fae437e8 1044"x" y z + T <init-declare>
676385e2
PH
1045@end example
1046
fa7e68c3
PE
1047The @code{%dprec} declarations only come into play when more than one
1048parse survives. Consider a different input string for this parser:
676385e2
PH
1049
1050@example
1051T (x) + y;
1052@end example
1053
1054@noindent
e757bb10 1055This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1056construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1057Here, there is no ambiguity (this cannot be parsed as a declaration).
1058However, at the time the Bison parser encounters @code{x}, it does not
1059have enough information to resolve the reduce/reduce conflict (again,
1060between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1061case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1062into two, one assuming that @code{x} is an @code{expr}, and the other
1063assuming @code{x} is a @code{declarator}. The second of these parsers
1064then vanishes when it sees @code{+}, and the parser prints
1065
1066@example
fae437e8 1067x T <cast> y +
676385e2
PH
1068@end example
1069
1070Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1071the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1072actions of the two possible parsers, rather than choosing one over the
1073other. To do so, you could change the declaration of @code{stmt} as
1074follows:
1075
1076@example
1077stmt : expr ';' %merge <stmtMerge>
1078 | decl %merge <stmtMerge>
1079 ;
1080@end example
1081
1082@noindent
676385e2
PH
1083and define the @code{stmtMerge} function as:
1084
1085@example
38a92d50
PE
1086static YYSTYPE
1087stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1088@{
1089 printf ("<OR> ");
1090 return "";
1091@}
1092@end example
1093
1094@noindent
1095with an accompanying forward declaration
1096in the C declarations at the beginning of the file:
1097
1098@example
1099%@{
38a92d50 1100 #define YYSTYPE char const *
676385e2
PH
1101 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1102%@}
1103@end example
1104
1105@noindent
fa7e68c3
PE
1106With these declarations, the resulting parser parses the first example
1107as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1108
1109@example
fae437e8 1110"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1111@end example
1112
fa7e68c3 1113Bison requires that all of the
e757bb10 1114productions that participate in any particular merge have identical
fa7e68c3
PE
1115@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1116and the parser will report an error during any parse that results in
1117the offending merge.
9501dc6e 1118
32c29292
JD
1119@node GLR Semantic Actions
1120@subsection GLR Semantic Actions
1121
20be2f92
PH
1122The nature of @acronym{GLR} parsing and the structure of the generated
1123parsers give rise to certain restrictions on semantic values and actions.
1124
1125@subsubsection Deferred semantic actions
32c29292
JD
1126@cindex deferred semantic actions
1127By definition, a deferred semantic action is not performed at the same time as
1128the associated reduction.
1129This raises caveats for several Bison features you might use in a semantic
1130action in a @acronym{GLR} parser.
1131
1132@vindex yychar
1133@cindex @acronym{GLR} parsers and @code{yychar}
1134@vindex yylval
1135@cindex @acronym{GLR} parsers and @code{yylval}
1136@vindex yylloc
1137@cindex @acronym{GLR} parsers and @code{yylloc}
1138In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1139the lookahead token present at the time of the associated reduction.
32c29292
JD
1140After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1141you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1142lookahead token's semantic value and location, if any.
32c29292
JD
1143In a nondeferred semantic action, you can also modify any of these variables to
1144influence syntax analysis.
742e4900 1145@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1146
1147@findex yyclearin
1148@cindex @acronym{GLR} parsers and @code{yyclearin}
1149In a deferred semantic action, it's too late to influence syntax analysis.
1150In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1151shallow copies of the values they had at the time of the associated reduction.
1152For this reason alone, modifying them is dangerous.
1153Moreover, the result of modifying them is undefined and subject to change with
1154future versions of Bison.
1155For example, if a semantic action might be deferred, you should never write it
1156to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1157memory referenced by @code{yylval}.
1158
20be2f92 1159@subsubsection YYERROR
32c29292
JD
1160@findex YYERROR
1161@cindex @acronym{GLR} parsers and @code{YYERROR}
1162Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1163(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1164initiate error recovery.
1165During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1166the same as its effect in a deterministic parser.
20be2f92
PH
1167The effect in a deferred action is similar, but the precise point of the
1168error is undefined; instead, the parser reverts to deterministic operation,
1169selecting an unspecified stack on which to continue with a syntax error.
1170In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1171parsing, @code{YYERROR} silently prunes
1172the parse that invoked the test.
1173
1174@subsubsection Restrictions on semantic values and locations
1175@acronym{GLR} parsers require that you use POD (Plain Old Data) types for
1176semantic values and location types when using the generated parsers as
1177C++ code.
8710fc41 1178
ca2a6d15
PH
1179@node Semantic Predicates
1180@subsection Controlling a Parse with Arbitrary Predicates
1181@findex %?
1182@cindex Semantic predicates in @acronym{GLR} parsers
1183
1184In addition to the @code{%dprec} and @code{%merge} directives,
1185@acronym{GLR} parsers
1186allow you to reject parses on the basis of arbitrary computations executed
1187in user code, without having Bison treat this rejection as an error
1188if there are alternative parses. (This feature is experimental and may
1189evolve. We welcome user feedback.) For example,
1190
1191@smallexample
1192widget :
1193 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1194 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1195 ;
1196@end smallexample
1197
1198@noindent
1199is one way to allow the same parser to handle two different syntaxes for
1200widgets. The clause preceded by @code{%?} is treated like an ordinary
1201action, except that its text is treated as an expression and is always
1202evaluated immediately (even when in nondeterministic mode). If the
1203expression yields 0 (false), the clause is treated as a syntax error,
1204which, in a nondeterministic parser, causes the stack in which it is reduced
1205to die. In a deterministic parser, it acts like YYERROR.
1206
1207As the example shows, predicates otherwise look like semantic actions, and
1208therefore you must be take them into account when determining the numbers
1209to use for denoting the semantic values of right-hand side symbols.
1210Predicate actions, however, have no defined value, and may not be given
1211labels.
1212
1213There is a subtle difference between semantic predicates and ordinary
1214actions in nondeterministic mode, since the latter are deferred.
1215For example, we could try to rewrite the previous example as
1216
1217@smallexample
1218widget :
1219 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1220 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1221 ;
1222@end smallexample
1223
1224@noindent
1225(reversing the sense of the predicate tests to cause an error when they are
1226false). However, this
1227does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1228have overlapping syntax.
1229Since the mid-rule actions testing @code{new_syntax} are deferred,
1230a @acronym{GLR} parser first encounters the unresolved ambiguous reduction
1231for cases where @code{new_args} and @code{old_args} recognize the same string
1232@emph{before} performing the tests of @code{new_syntax}. It therefore
1233reports an error.
1234
1235Finally, be careful in writing predicates: deferred actions have not been
1236evaluated, so that using them in a predicate will have undefined effects.
1237
fa7e68c3
PE
1238@node Compiler Requirements
1239@subsection Considerations when Compiling @acronym{GLR} Parsers
1240@cindex @code{inline}
9501dc6e 1241@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1242
38a92d50
PE
1243The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1244later. In addition, they use the @code{inline} keyword, which is not
1245C89, but is C99 and is a common extension in pre-C99 compilers. It is
1246up to the user of these parsers to handle
9501dc6e
AD
1247portability issues. For instance, if using Autoconf and the Autoconf
1248macro @code{AC_C_INLINE}, a mere
1249
1250@example
1251%@{
38a92d50 1252 #include <config.h>
9501dc6e
AD
1253%@}
1254@end example
1255
1256@noindent
1257will suffice. Otherwise, we suggest
1258
1259@example
1260%@{
38a92d50
PE
1261 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1262 #define inline
1263 #endif
9501dc6e
AD
1264%@}
1265@end example
676385e2 1266
342b8b6e 1267@node Locations Overview
847bf1f5
AD
1268@section Locations
1269@cindex location
95923bd6
AD
1270@cindex textual location
1271@cindex location, textual
847bf1f5
AD
1272
1273Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1274and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1275the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1276Bison provides a mechanism for handling these locations.
1277
72d2299c 1278Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1279associated location, but the type of locations is the same for all tokens and
72d2299c 1280groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1281structure for storing locations (@pxref{Locations}, for more details).
1282
1283Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1284set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1285is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1286@code{@@3}.
1287
1288When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1289of its left hand side (@pxref{Actions}). In the same way, another default
1290action is used for locations. However, the action for locations is general
847bf1f5 1291enough for most cases, meaning there is usually no need to describe for each
72d2299c 1292rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1293grouping, the default behavior of the output parser is to take the beginning
1294of the first symbol, and the end of the last symbol.
1295
342b8b6e 1296@node Bison Parser
bfa74976
RS
1297@section Bison Output: the Parser File
1298@cindex Bison parser
1299@cindex Bison utility
1300@cindex lexical analyzer, purpose
1301@cindex parser
1302
1303When you run Bison, you give it a Bison grammar file as input. The output
1304is a C source file that parses the language described by the grammar.
1305This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1306utility and the Bison parser are two distinct programs: the Bison utility
1307is a program whose output is the Bison parser that becomes part of your
1308program.
1309
1310The job of the Bison parser is to group tokens into groupings according to
1311the grammar rules---for example, to build identifiers and operators into
1312expressions. As it does this, it runs the actions for the grammar rules it
1313uses.
1314
704a47c4
AD
1315The tokens come from a function called the @dfn{lexical analyzer} that
1316you must supply in some fashion (such as by writing it in C). The Bison
1317parser calls the lexical analyzer each time it wants a new token. It
1318doesn't know what is ``inside'' the tokens (though their semantic values
1319may reflect this). Typically the lexical analyzer makes the tokens by
1320parsing characters of text, but Bison does not depend on this.
1321@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1322
1323The Bison parser file is C code which defines a function named
1324@code{yyparse} which implements that grammar. This function does not make
1325a complete C program: you must supply some additional functions. One is
1326the lexical analyzer. Another is an error-reporting function which the
1327parser calls to report an error. In addition, a complete C program must
1328start with a function called @code{main}; you have to provide this, and
1329arrange for it to call @code{yyparse} or the parser will never run.
1330@xref{Interface, ,Parser C-Language Interface}.
1331
f7ab6a50 1332Aside from the token type names and the symbols in the actions you
7093d0f5 1333write, all symbols defined in the Bison parser file itself
bfa74976
RS
1334begin with @samp{yy} or @samp{YY}. This includes interface functions
1335such as the lexical analyzer function @code{yylex}, the error reporting
1336function @code{yyerror} and the parser function @code{yyparse} itself.
1337This also includes numerous identifiers used for internal purposes.
1338Therefore, you should avoid using C identifiers starting with @samp{yy}
1339or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1340this manual. Also, you should avoid using the C identifiers
1341@samp{malloc} and @samp{free} for anything other than their usual
1342meanings.
bfa74976 1343
7093d0f5
AD
1344In some cases the Bison parser file includes system headers, and in
1345those cases your code should respect the identifiers reserved by those
55289366 1346headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1347@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1348declare memory allocators and related types. @code{<libintl.h>} is
1349included if message translation is in use
1350(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1351be included if you define @code{YYDEBUG} to a nonzero value
1352(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1353
342b8b6e 1354@node Stages
bfa74976
RS
1355@section Stages in Using Bison
1356@cindex stages in using Bison
1357@cindex using Bison
1358
1359The actual language-design process using Bison, from grammar specification
1360to a working compiler or interpreter, has these parts:
1361
1362@enumerate
1363@item
1364Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1365(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1366in the language, describe the action that is to be taken when an
1367instance of that rule is recognized. The action is described by a
1368sequence of C statements.
bfa74976
RS
1369
1370@item
704a47c4
AD
1371Write a lexical analyzer to process input and pass tokens to the parser.
1372The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1373Lexical Analyzer Function @code{yylex}}). It could also be produced
1374using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1375
1376@item
1377Write a controlling function that calls the Bison-produced parser.
1378
1379@item
1380Write error-reporting routines.
1381@end enumerate
1382
1383To turn this source code as written into a runnable program, you
1384must follow these steps:
1385
1386@enumerate
1387@item
1388Run Bison on the grammar to produce the parser.
1389
1390@item
1391Compile the code output by Bison, as well as any other source files.
1392
1393@item
1394Link the object files to produce the finished product.
1395@end enumerate
1396
342b8b6e 1397@node Grammar Layout
bfa74976
RS
1398@section The Overall Layout of a Bison Grammar
1399@cindex grammar file
1400@cindex file format
1401@cindex format of grammar file
1402@cindex layout of Bison grammar
1403
1404The input file for the Bison utility is a @dfn{Bison grammar file}. The
1405general form of a Bison grammar file is as follows:
1406
1407@example
1408%@{
08e49d20 1409@var{Prologue}
bfa74976
RS
1410%@}
1411
1412@var{Bison declarations}
1413
1414%%
1415@var{Grammar rules}
1416%%
08e49d20 1417@var{Epilogue}
bfa74976
RS
1418@end example
1419
1420@noindent
1421The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1422in every Bison grammar file to separate the sections.
1423
72d2299c 1424The prologue may define types and variables used in the actions. You can
342b8b6e 1425also use preprocessor commands to define macros used there, and use
bfa74976 1426@code{#include} to include header files that do any of these things.
38a92d50
PE
1427You need to declare the lexical analyzer @code{yylex} and the error
1428printer @code{yyerror} here, along with any other global identifiers
1429used by the actions in the grammar rules.
bfa74976
RS
1430
1431The Bison declarations declare the names of the terminal and nonterminal
1432symbols, and may also describe operator precedence and the data types of
1433semantic values of various symbols.
1434
1435The grammar rules define how to construct each nonterminal symbol from its
1436parts.
1437
38a92d50
PE
1438The epilogue can contain any code you want to use. Often the
1439definitions of functions declared in the prologue go here. In a
1440simple program, all the rest of the program can go here.
bfa74976 1441
342b8b6e 1442@node Examples
bfa74976
RS
1443@chapter Examples
1444@cindex simple examples
1445@cindex examples, simple
1446
1447Now we show and explain three sample programs written using Bison: a
1448reverse polish notation calculator, an algebraic (infix) notation
1449calculator, and a multi-function calculator. All three have been tested
1450under BSD Unix 4.3; each produces a usable, though limited, interactive
1451desk-top calculator.
1452
1453These examples are simple, but Bison grammars for real programming
aa08666d
AD
1454languages are written the same way. You can copy these examples into a
1455source file to try them.
bfa74976
RS
1456
1457@menu
f5f419de
DJ
1458* RPN Calc:: Reverse polish notation calculator;
1459 a first example with no operator precedence.
1460* Infix Calc:: Infix (algebraic) notation calculator.
1461 Operator precedence is introduced.
bfa74976 1462* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1463* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1464* Multi-function Calc:: Calculator with memory and trig functions.
1465 It uses multiple data-types for semantic values.
1466* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1467@end menu
1468
342b8b6e 1469@node RPN Calc
bfa74976
RS
1470@section Reverse Polish Notation Calculator
1471@cindex reverse polish notation
1472@cindex polish notation calculator
1473@cindex @code{rpcalc}
1474@cindex calculator, simple
1475
1476The first example is that of a simple double-precision @dfn{reverse polish
1477notation} calculator (a calculator using postfix operators). This example
1478provides a good starting point, since operator precedence is not an issue.
1479The second example will illustrate how operator precedence is handled.
1480
1481The source code for this calculator is named @file{rpcalc.y}. The
1482@samp{.y} extension is a convention used for Bison input files.
1483
1484@menu
f5f419de
DJ
1485* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1486* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1487* Rpcalc Lexer:: The lexical analyzer.
1488* Rpcalc Main:: The controlling function.
1489* Rpcalc Error:: The error reporting function.
1490* Rpcalc Generate:: Running Bison on the grammar file.
1491* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1492@end menu
1493
f5f419de 1494@node Rpcalc Declarations
bfa74976
RS
1495@subsection Declarations for @code{rpcalc}
1496
1497Here are the C and Bison declarations for the reverse polish notation
1498calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1499
1500@example
72d2299c 1501/* Reverse polish notation calculator. */
bfa74976
RS
1502
1503%@{
38a92d50
PE
1504 #define YYSTYPE double
1505 #include <math.h>
1506 int yylex (void);
1507 void yyerror (char const *);
bfa74976
RS
1508%@}
1509
1510%token NUM
1511
72d2299c 1512%% /* Grammar rules and actions follow. */
bfa74976
RS
1513@end example
1514
75f5aaea 1515The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1516preprocessor directives and two forward declarations.
bfa74976
RS
1517
1518The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1519specifying the C data type for semantic values of both tokens and
1520groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1521Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1522don't define it, @code{int} is the default. Because we specify
1523@code{double}, each token and each expression has an associated value,
1524which is a floating point number.
bfa74976
RS
1525
1526The @code{#include} directive is used to declare the exponentiation
1527function @code{pow}.
1528
38a92d50
PE
1529The forward declarations for @code{yylex} and @code{yyerror} are
1530needed because the C language requires that functions be declared
1531before they are used. These functions will be defined in the
1532epilogue, but the parser calls them so they must be declared in the
1533prologue.
1534
704a47c4
AD
1535The second section, Bison declarations, provides information to Bison
1536about the token types (@pxref{Bison Declarations, ,The Bison
1537Declarations Section}). Each terminal symbol that is not a
1538single-character literal must be declared here. (Single-character
bfa74976
RS
1539literals normally don't need to be declared.) In this example, all the
1540arithmetic operators are designated by single-character literals, so the
1541only terminal symbol that needs to be declared is @code{NUM}, the token
1542type for numeric constants.
1543
342b8b6e 1544@node Rpcalc Rules
bfa74976
RS
1545@subsection Grammar Rules for @code{rpcalc}
1546
1547Here are the grammar rules for the reverse polish notation calculator.
1548
1549@example
1550input: /* empty */
1551 | input line
1552;
1553
1554line: '\n'
18b519c0 1555 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1556;
1557
18b519c0
AD
1558exp: NUM @{ $$ = $1; @}
1559 | exp exp '+' @{ $$ = $1 + $2; @}
1560 | exp exp '-' @{ $$ = $1 - $2; @}
1561 | exp exp '*' @{ $$ = $1 * $2; @}
1562 | exp exp '/' @{ $$ = $1 / $2; @}
1563 /* Exponentiation */
1564 | exp exp '^' @{ $$ = pow ($1, $2); @}
1565 /* Unary minus */
1566 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1567;
1568%%
1569@end example
1570
1571The groupings of the rpcalc ``language'' defined here are the expression
1572(given the name @code{exp}), the line of input (@code{line}), and the
1573complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1574symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1575which is read as ``or''. The following sections explain what these rules
1576mean.
1577
1578The semantics of the language is determined by the actions taken when a
1579grouping is recognized. The actions are the C code that appears inside
1580braces. @xref{Actions}.
1581
1582You must specify these actions in C, but Bison provides the means for
1583passing semantic values between the rules. In each action, the
1584pseudo-variable @code{$$} stands for the semantic value for the grouping
1585that the rule is going to construct. Assigning a value to @code{$$} is the
1586main job of most actions. The semantic values of the components of the
1587rule are referred to as @code{$1}, @code{$2}, and so on.
1588
1589@menu
13863333
AD
1590* Rpcalc Input::
1591* Rpcalc Line::
1592* Rpcalc Expr::
bfa74976
RS
1593@end menu
1594
342b8b6e 1595@node Rpcalc Input
bfa74976
RS
1596@subsubsection Explanation of @code{input}
1597
1598Consider the definition of @code{input}:
1599
1600@example
1601input: /* empty */
1602 | input line
1603;
1604@end example
1605
1606This definition reads as follows: ``A complete input is either an empty
1607string, or a complete input followed by an input line''. Notice that
1608``complete input'' is defined in terms of itself. This definition is said
1609to be @dfn{left recursive} since @code{input} appears always as the
1610leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1611
1612The first alternative is empty because there are no symbols between the
1613colon and the first @samp{|}; this means that @code{input} can match an
1614empty string of input (no tokens). We write the rules this way because it
1615is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1616It's conventional to put an empty alternative first and write the comment
1617@samp{/* empty */} in it.
1618
1619The second alternate rule (@code{input line}) handles all nontrivial input.
1620It means, ``After reading any number of lines, read one more line if
1621possible.'' The left recursion makes this rule into a loop. Since the
1622first alternative matches empty input, the loop can be executed zero or
1623more times.
1624
1625The parser function @code{yyparse} continues to process input until a
1626grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1627input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1628
342b8b6e 1629@node Rpcalc Line
bfa74976
RS
1630@subsubsection Explanation of @code{line}
1631
1632Now consider the definition of @code{line}:
1633
1634@example
1635line: '\n'
1636 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1637;
1638@end example
1639
1640The first alternative is a token which is a newline character; this means
1641that rpcalc accepts a blank line (and ignores it, since there is no
1642action). The second alternative is an expression followed by a newline.
1643This is the alternative that makes rpcalc useful. The semantic value of
1644the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1645question is the first symbol in the alternative. The action prints this
1646value, which is the result of the computation the user asked for.
1647
1648This action is unusual because it does not assign a value to @code{$$}. As
1649a consequence, the semantic value associated with the @code{line} is
1650uninitialized (its value will be unpredictable). This would be a bug if
1651that value were ever used, but we don't use it: once rpcalc has printed the
1652value of the user's input line, that value is no longer needed.
1653
342b8b6e 1654@node Rpcalc Expr
bfa74976
RS
1655@subsubsection Explanation of @code{expr}
1656
1657The @code{exp} grouping has several rules, one for each kind of expression.
1658The first rule handles the simplest expressions: those that are just numbers.
1659The second handles an addition-expression, which looks like two expressions
1660followed by a plus-sign. The third handles subtraction, and so on.
1661
1662@example
1663exp: NUM
1664 | exp exp '+' @{ $$ = $1 + $2; @}
1665 | exp exp '-' @{ $$ = $1 - $2; @}
1666 @dots{}
1667 ;
1668@end example
1669
1670We have used @samp{|} to join all the rules for @code{exp}, but we could
1671equally well have written them separately:
1672
1673@example
1674exp: NUM ;
1675exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1676exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1677 @dots{}
1678@end example
1679
1680Most of the rules have actions that compute the value of the expression in
1681terms of the value of its parts. For example, in the rule for addition,
1682@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1683the second one. The third component, @code{'+'}, has no meaningful
1684associated semantic value, but if it had one you could refer to it as
1685@code{$3}. When @code{yyparse} recognizes a sum expression using this
1686rule, the sum of the two subexpressions' values is produced as the value of
1687the entire expression. @xref{Actions}.
1688
1689You don't have to give an action for every rule. When a rule has no
1690action, Bison by default copies the value of @code{$1} into @code{$$}.
1691This is what happens in the first rule (the one that uses @code{NUM}).
1692
1693The formatting shown here is the recommended convention, but Bison does
72d2299c 1694not require it. You can add or change white space as much as you wish.
bfa74976
RS
1695For example, this:
1696
1697@example
99a9344e 1698exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1699@end example
1700
1701@noindent
1702means the same thing as this:
1703
1704@example
1705exp: NUM
1706 | exp exp '+' @{ $$ = $1 + $2; @}
1707 | @dots{}
99a9344e 1708;
bfa74976
RS
1709@end example
1710
1711@noindent
1712The latter, however, is much more readable.
1713
342b8b6e 1714@node Rpcalc Lexer
bfa74976
RS
1715@subsection The @code{rpcalc} Lexical Analyzer
1716@cindex writing a lexical analyzer
1717@cindex lexical analyzer, writing
1718
704a47c4
AD
1719The lexical analyzer's job is low-level parsing: converting characters
1720or sequences of characters into tokens. The Bison parser gets its
1721tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1722Analyzer Function @code{yylex}}.
bfa74976 1723
c827f760
PE
1724Only a simple lexical analyzer is needed for the @acronym{RPN}
1725calculator. This
bfa74976
RS
1726lexical analyzer skips blanks and tabs, then reads in numbers as
1727@code{double} and returns them as @code{NUM} tokens. Any other character
1728that isn't part of a number is a separate token. Note that the token-code
1729for such a single-character token is the character itself.
1730
1731The return value of the lexical analyzer function is a numeric code which
1732represents a token type. The same text used in Bison rules to stand for
1733this token type is also a C expression for the numeric code for the type.
1734This works in two ways. If the token type is a character literal, then its
e966383b 1735numeric code is that of the character; you can use the same
bfa74976
RS
1736character literal in the lexical analyzer to express the number. If the
1737token type is an identifier, that identifier is defined by Bison as a C
1738macro whose definition is the appropriate number. In this example,
1739therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1740
1964ad8c
AD
1741The semantic value of the token (if it has one) is stored into the
1742global variable @code{yylval}, which is where the Bison parser will look
1743for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1744defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1745,Declarations for @code{rpcalc}}.)
bfa74976 1746
72d2299c
PE
1747A token type code of zero is returned if the end-of-input is encountered.
1748(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1749
1750Here is the code for the lexical analyzer:
1751
1752@example
1753@group
72d2299c 1754/* The lexical analyzer returns a double floating point
e966383b 1755 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1756 of the character read if not a number. It skips all blanks
1757 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1758
1759#include <ctype.h>
1760@end group
1761
1762@group
13863333
AD
1763int
1764yylex (void)
bfa74976
RS
1765@{
1766 int c;
1767
72d2299c 1768 /* Skip white space. */
13863333 1769 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1770 ;
1771@end group
1772@group
72d2299c 1773 /* Process numbers. */
13863333 1774 if (c == '.' || isdigit (c))
bfa74976
RS
1775 @{
1776 ungetc (c, stdin);
1777 scanf ("%lf", &yylval);
1778 return NUM;
1779 @}
1780@end group
1781@group
72d2299c 1782 /* Return end-of-input. */
13863333 1783 if (c == EOF)
bfa74976 1784 return 0;
72d2299c 1785 /* Return a single char. */
13863333 1786 return c;
bfa74976
RS
1787@}
1788@end group
1789@end example
1790
342b8b6e 1791@node Rpcalc Main
bfa74976
RS
1792@subsection The Controlling Function
1793@cindex controlling function
1794@cindex main function in simple example
1795
1796In keeping with the spirit of this example, the controlling function is
1797kept to the bare minimum. The only requirement is that it call
1798@code{yyparse} to start the process of parsing.
1799
1800@example
1801@group
13863333
AD
1802int
1803main (void)
bfa74976 1804@{
13863333 1805 return yyparse ();
bfa74976
RS
1806@}
1807@end group
1808@end example
1809
342b8b6e 1810@node Rpcalc Error
bfa74976
RS
1811@subsection The Error Reporting Routine
1812@cindex error reporting routine
1813
1814When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1815function @code{yyerror} to print an error message (usually but not
6e649e65 1816always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1817@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1818here is the definition we will use:
bfa74976
RS
1819
1820@example
1821@group
1822#include <stdio.h>
1823
38a92d50 1824/* Called by yyparse on error. */
13863333 1825void
38a92d50 1826yyerror (char const *s)
bfa74976 1827@{
4e03e201 1828 fprintf (stderr, "%s\n", s);
bfa74976
RS
1829@}
1830@end group
1831@end example
1832
1833After @code{yyerror} returns, the Bison parser may recover from the error
1834and continue parsing if the grammar contains a suitable error rule
1835(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1836have not written any error rules in this example, so any invalid input will
1837cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1838real calculator, but it is adequate for the first example.
bfa74976 1839
f5f419de 1840@node Rpcalc Generate
bfa74976
RS
1841@subsection Running Bison to Make the Parser
1842@cindex running Bison (introduction)
1843
ceed8467
AD
1844Before running Bison to produce a parser, we need to decide how to
1845arrange all the source code in one or more source files. For such a
1846simple example, the easiest thing is to put everything in one file. The
1847definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1848end, in the epilogue of the file
75f5aaea 1849(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1850
1851For a large project, you would probably have several source files, and use
1852@code{make} to arrange to recompile them.
1853
1854With all the source in a single file, you use the following command to
1855convert it into a parser file:
1856
1857@example
fa4d969f 1858bison @var{file}.y
bfa74976
RS
1859@end example
1860
1861@noindent
1862In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1863@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1864removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1865Bison contains the source code for @code{yyparse}. The additional
1866functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1867are copied verbatim to the output.
1868
342b8b6e 1869@node Rpcalc Compile
bfa74976
RS
1870@subsection Compiling the Parser File
1871@cindex compiling the parser
1872
1873Here is how to compile and run the parser file:
1874
1875@example
1876@group
1877# @r{List files in current directory.}
9edcd895 1878$ @kbd{ls}
bfa74976
RS
1879rpcalc.tab.c rpcalc.y
1880@end group
1881
1882@group
1883# @r{Compile the Bison parser.}
1884# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1885$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1886@end group
1887
1888@group
1889# @r{List files again.}
9edcd895 1890$ @kbd{ls}
bfa74976
RS
1891rpcalc rpcalc.tab.c rpcalc.y
1892@end group
1893@end example
1894
1895The file @file{rpcalc} now contains the executable code. Here is an
1896example session using @code{rpcalc}.
1897
1898@example
9edcd895
AD
1899$ @kbd{rpcalc}
1900@kbd{4 9 +}
bfa74976 190113
9edcd895 1902@kbd{3 7 + 3 4 5 *+-}
bfa74976 1903-13
9edcd895 1904@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 190513
9edcd895 1906@kbd{5 6 / 4 n +}
bfa74976 1907-3.166666667
9edcd895 1908@kbd{3 4 ^} @r{Exponentiation}
bfa74976 190981
9edcd895
AD
1910@kbd{^D} @r{End-of-file indicator}
1911$
bfa74976
RS
1912@end example
1913
342b8b6e 1914@node Infix Calc
bfa74976
RS
1915@section Infix Notation Calculator: @code{calc}
1916@cindex infix notation calculator
1917@cindex @code{calc}
1918@cindex calculator, infix notation
1919
1920We now modify rpcalc to handle infix operators instead of postfix. Infix
1921notation involves the concept of operator precedence and the need for
1922parentheses nested to arbitrary depth. Here is the Bison code for
1923@file{calc.y}, an infix desk-top calculator.
1924
1925@example
38a92d50 1926/* Infix notation calculator. */
bfa74976
RS
1927
1928%@{
38a92d50
PE
1929 #define YYSTYPE double
1930 #include <math.h>
1931 #include <stdio.h>
1932 int yylex (void);
1933 void yyerror (char const *);
bfa74976
RS
1934%@}
1935
38a92d50 1936/* Bison declarations. */
bfa74976
RS
1937%token NUM
1938%left '-' '+'
1939%left '*' '/'
d78f0ac9
AD
1940%precedence NEG /* negation--unary minus */
1941%right '^' /* exponentiation */
bfa74976 1942
38a92d50
PE
1943%% /* The grammar follows. */
1944input: /* empty */
bfa74976
RS
1945 | input line
1946;
1947
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950;
1951
1952exp: NUM @{ $$ = $1; @}
1953 | exp '+' exp @{ $$ = $1 + $3; @}
1954 | exp '-' exp @{ $$ = $1 - $3; @}
1955 | exp '*' exp @{ $$ = $1 * $3; @}
1956 | exp '/' exp @{ $$ = $1 / $3; @}
1957 | '-' exp %prec NEG @{ $$ = -$2; @}
1958 | exp '^' exp @{ $$ = pow ($1, $3); @}
1959 | '(' exp ')' @{ $$ = $2; @}
1960;
1961%%
1962@end example
1963
1964@noindent
ceed8467
AD
1965The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1966same as before.
bfa74976
RS
1967
1968There are two important new features shown in this code.
1969
1970In the second section (Bison declarations), @code{%left} declares token
1971types and says they are left-associative operators. The declarations
1972@code{%left} and @code{%right} (right associativity) take the place of
1973@code{%token} which is used to declare a token type name without
d78f0ac9 1974associativity/precedence. (These tokens are single-character literals, which
bfa74976 1975ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1976the associativity/precedence.)
bfa74976
RS
1977
1978Operator precedence is determined by the line ordering of the
1979declarations; the higher the line number of the declaration (lower on
1980the page or screen), the higher the precedence. Hence, exponentiation
1981has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1982by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1983only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1984Precedence}.
bfa74976 1985
704a47c4
AD
1986The other important new feature is the @code{%prec} in the grammar
1987section for the unary minus operator. The @code{%prec} simply instructs
1988Bison that the rule @samp{| '-' exp} has the same precedence as
1989@code{NEG}---in this case the next-to-highest. @xref{Contextual
1990Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1991
1992Here is a sample run of @file{calc.y}:
1993
1994@need 500
1995@example
9edcd895
AD
1996$ @kbd{calc}
1997@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19986.880952381
9edcd895 1999@kbd{-56 + 2}
bfa74976 2000-54
9edcd895 2001@kbd{3 ^ 2}
bfa74976
RS
20029
2003@end example
2004
342b8b6e 2005@node Simple Error Recovery
bfa74976
RS
2006@section Simple Error Recovery
2007@cindex error recovery, simple
2008
2009Up to this point, this manual has not addressed the issue of @dfn{error
2010recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2011error. All we have handled is error reporting with @code{yyerror}.
2012Recall that by default @code{yyparse} returns after calling
2013@code{yyerror}. This means that an erroneous input line causes the
2014calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2015
2016The Bison language itself includes the reserved word @code{error}, which
2017may be included in the grammar rules. In the example below it has
2018been added to one of the alternatives for @code{line}:
2019
2020@example
2021@group
2022line: '\n'
2023 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2024 | error '\n' @{ yyerrok; @}
2025;
2026@end group
2027@end example
2028
ceed8467 2029This addition to the grammar allows for simple error recovery in the
6e649e65 2030event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2031read, the error will be recognized by the third rule for @code{line},
2032and parsing will continue. (The @code{yyerror} function is still called
2033upon to print its message as well.) The action executes the statement
2034@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2035that error recovery is complete (@pxref{Error Recovery}). Note the
2036difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2037misprint.
bfa74976
RS
2038
2039This form of error recovery deals with syntax errors. There are other
2040kinds of errors; for example, division by zero, which raises an exception
2041signal that is normally fatal. A real calculator program must handle this
2042signal and use @code{longjmp} to return to @code{main} and resume parsing
2043input lines; it would also have to discard the rest of the current line of
2044input. We won't discuss this issue further because it is not specific to
2045Bison programs.
2046
342b8b6e
AD
2047@node Location Tracking Calc
2048@section Location Tracking Calculator: @code{ltcalc}
2049@cindex location tracking calculator
2050@cindex @code{ltcalc}
2051@cindex calculator, location tracking
2052
9edcd895
AD
2053This example extends the infix notation calculator with location
2054tracking. This feature will be used to improve the error messages. For
2055the sake of clarity, this example is a simple integer calculator, since
2056most of the work needed to use locations will be done in the lexical
72d2299c 2057analyzer.
342b8b6e
AD
2058
2059@menu
f5f419de
DJ
2060* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2061* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2062* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2063@end menu
2064
f5f419de 2065@node Ltcalc Declarations
342b8b6e
AD
2066@subsection Declarations for @code{ltcalc}
2067
9edcd895
AD
2068The C and Bison declarations for the location tracking calculator are
2069the same as the declarations for the infix notation calculator.
342b8b6e
AD
2070
2071@example
2072/* Location tracking calculator. */
2073
2074%@{
38a92d50
PE
2075 #define YYSTYPE int
2076 #include <math.h>
2077 int yylex (void);
2078 void yyerror (char const *);
342b8b6e
AD
2079%@}
2080
2081/* Bison declarations. */
2082%token NUM
2083
2084%left '-' '+'
2085%left '*' '/'
d78f0ac9 2086%precedence NEG
342b8b6e
AD
2087%right '^'
2088
38a92d50 2089%% /* The grammar follows. */
342b8b6e
AD
2090@end example
2091
9edcd895
AD
2092@noindent
2093Note there are no declarations specific to locations. Defining a data
2094type for storing locations is not needed: we will use the type provided
2095by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2096four member structure with the following integer fields:
2097@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2098@code{last_column}. By conventions, and in accordance with the GNU
2099Coding Standards and common practice, the line and column count both
2100start at 1.
342b8b6e
AD
2101
2102@node Ltcalc Rules
2103@subsection Grammar Rules for @code{ltcalc}
2104
9edcd895
AD
2105Whether handling locations or not has no effect on the syntax of your
2106language. Therefore, grammar rules for this example will be very close
2107to those of the previous example: we will only modify them to benefit
2108from the new information.
342b8b6e 2109
9edcd895
AD
2110Here, we will use locations to report divisions by zero, and locate the
2111wrong expressions or subexpressions.
342b8b6e
AD
2112
2113@example
2114@group
2115input : /* empty */
2116 | input line
2117;
2118@end group
2119
2120@group
2121line : '\n'
2122 | exp '\n' @{ printf ("%d\n", $1); @}
2123;
2124@end group
2125
2126@group
2127exp : NUM @{ $$ = $1; @}
2128 | exp '+' exp @{ $$ = $1 + $3; @}
2129 | exp '-' exp @{ $$ = $1 - $3; @}
2130 | exp '*' exp @{ $$ = $1 * $3; @}
2131@end group
342b8b6e 2132@group
9edcd895 2133 | exp '/' exp
342b8b6e
AD
2134 @{
2135 if ($3)
2136 $$ = $1 / $3;
2137 else
2138 @{
2139 $$ = 1;
9edcd895
AD
2140 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2141 @@3.first_line, @@3.first_column,
2142 @@3.last_line, @@3.last_column);
342b8b6e
AD
2143 @}
2144 @}
2145@end group
2146@group
178e123e 2147 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2148 | exp '^' exp @{ $$ = pow ($1, $3); @}
2149 | '(' exp ')' @{ $$ = $2; @}
2150@end group
2151@end example
2152
2153This code shows how to reach locations inside of semantic actions, by
2154using the pseudo-variables @code{@@@var{n}} for rule components, and the
2155pseudo-variable @code{@@$} for groupings.
2156
9edcd895
AD
2157We don't need to assign a value to @code{@@$}: the output parser does it
2158automatically. By default, before executing the C code of each action,
2159@code{@@$} is set to range from the beginning of @code{@@1} to the end
2160of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2161can be redefined (@pxref{Location Default Action, , Default Action for
2162Locations}), and for very specific rules, @code{@@$} can be computed by
2163hand.
342b8b6e
AD
2164
2165@node Ltcalc Lexer
2166@subsection The @code{ltcalc} Lexical Analyzer.
2167
9edcd895 2168Until now, we relied on Bison's defaults to enable location
72d2299c 2169tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2170able to feed the parser with the token locations, as it already does for
2171semantic values.
342b8b6e 2172
9edcd895
AD
2173To this end, we must take into account every single character of the
2174input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2175
2176@example
2177@group
2178int
2179yylex (void)
2180@{
2181 int c;
18b519c0 2182@end group
342b8b6e 2183
18b519c0 2184@group
72d2299c 2185 /* Skip white space. */
342b8b6e
AD
2186 while ((c = getchar ()) == ' ' || c == '\t')
2187 ++yylloc.last_column;
18b519c0 2188@end group
342b8b6e 2189
18b519c0 2190@group
72d2299c 2191 /* Step. */
342b8b6e
AD
2192 yylloc.first_line = yylloc.last_line;
2193 yylloc.first_column = yylloc.last_column;
2194@end group
2195
2196@group
72d2299c 2197 /* Process numbers. */
342b8b6e
AD
2198 if (isdigit (c))
2199 @{
2200 yylval = c - '0';
2201 ++yylloc.last_column;
2202 while (isdigit (c = getchar ()))
2203 @{
2204 ++yylloc.last_column;
2205 yylval = yylval * 10 + c - '0';
2206 @}
2207 ungetc (c, stdin);
2208 return NUM;
2209 @}
2210@end group
2211
72d2299c 2212 /* Return end-of-input. */
342b8b6e
AD
2213 if (c == EOF)
2214 return 0;
2215
72d2299c 2216 /* Return a single char, and update location. */
342b8b6e
AD
2217 if (c == '\n')
2218 @{
2219 ++yylloc.last_line;
2220 yylloc.last_column = 0;
2221 @}
2222 else
2223 ++yylloc.last_column;
2224 return c;
2225@}
2226@end example
2227
9edcd895
AD
2228Basically, the lexical analyzer performs the same processing as before:
2229it skips blanks and tabs, and reads numbers or single-character tokens.
2230In addition, it updates @code{yylloc}, the global variable (of type
2231@code{YYLTYPE}) containing the token's location.
342b8b6e 2232
9edcd895 2233Now, each time this function returns a token, the parser has its number
72d2299c 2234as well as its semantic value, and its location in the text. The last
9edcd895
AD
2235needed change is to initialize @code{yylloc}, for example in the
2236controlling function:
342b8b6e
AD
2237
2238@example
9edcd895 2239@group
342b8b6e
AD
2240int
2241main (void)
2242@{
2243 yylloc.first_line = yylloc.last_line = 1;
2244 yylloc.first_column = yylloc.last_column = 0;
2245 return yyparse ();
2246@}
9edcd895 2247@end group
342b8b6e
AD
2248@end example
2249
9edcd895
AD
2250Remember that computing locations is not a matter of syntax. Every
2251character must be associated to a location update, whether it is in
2252valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2253
2254@node Multi-function Calc
bfa74976
RS
2255@section Multi-Function Calculator: @code{mfcalc}
2256@cindex multi-function calculator
2257@cindex @code{mfcalc}
2258@cindex calculator, multi-function
2259
2260Now that the basics of Bison have been discussed, it is time to move on to
2261a more advanced problem. The above calculators provided only five
2262functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2263be nice to have a calculator that provides other mathematical functions such
2264as @code{sin}, @code{cos}, etc.
2265
2266It is easy to add new operators to the infix calculator as long as they are
2267only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2268back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2269adding a new operator. But we want something more flexible: built-in
2270functions whose syntax has this form:
2271
2272@example
2273@var{function_name} (@var{argument})
2274@end example
2275
2276@noindent
2277At the same time, we will add memory to the calculator, by allowing you
2278to create named variables, store values in them, and use them later.
2279Here is a sample session with the multi-function calculator:
2280
2281@example
9edcd895
AD
2282$ @kbd{mfcalc}
2283@kbd{pi = 3.141592653589}
bfa74976 22843.1415926536
9edcd895 2285@kbd{sin(pi)}
bfa74976 22860.0000000000
9edcd895 2287@kbd{alpha = beta1 = 2.3}
bfa74976 22882.3000000000
9edcd895 2289@kbd{alpha}
bfa74976 22902.3000000000
9edcd895 2291@kbd{ln(alpha)}
bfa74976 22920.8329091229
9edcd895 2293@kbd{exp(ln(beta1))}
bfa74976 22942.3000000000
9edcd895 2295$
bfa74976
RS
2296@end example
2297
2298Note that multiple assignment and nested function calls are permitted.
2299
2300@menu
f5f419de
DJ
2301* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2302* Mfcalc Rules:: Grammar rules for the calculator.
2303* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2304@end menu
2305
f5f419de 2306@node Mfcalc Declarations
bfa74976
RS
2307@subsection Declarations for @code{mfcalc}
2308
2309Here are the C and Bison declarations for the multi-function calculator.
2310
2311@smallexample
18b519c0 2312@group
bfa74976 2313%@{
38a92d50
PE
2314 #include <math.h> /* For math functions, cos(), sin(), etc. */
2315 #include "calc.h" /* Contains definition of `symrec'. */
2316 int yylex (void);
2317 void yyerror (char const *);
bfa74976 2318%@}
18b519c0
AD
2319@end group
2320@group
bfa74976 2321%union @{
38a92d50
PE
2322 double val; /* For returning numbers. */
2323 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2324@}
18b519c0 2325@end group
38a92d50
PE
2326%token <val> NUM /* Simple double precision number. */
2327%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2328%type <val> exp
2329
18b519c0 2330@group
bfa74976
RS
2331%right '='
2332%left '-' '+'
2333%left '*' '/'
d78f0ac9
AD
2334%precedence NEG /* negation--unary minus */
2335%right '^' /* exponentiation */
18b519c0 2336@end group
38a92d50 2337%% /* The grammar follows. */
bfa74976
RS
2338@end smallexample
2339
2340The above grammar introduces only two new features of the Bison language.
2341These features allow semantic values to have various data types
2342(@pxref{Multiple Types, ,More Than One Value Type}).
2343
2344The @code{%union} declaration specifies the entire list of possible types;
2345this is instead of defining @code{YYSTYPE}. The allowable types are now
2346double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2347the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2348
2349Since values can now have various types, it is necessary to associate a
2350type with each grammar symbol whose semantic value is used. These symbols
2351are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2352declarations are augmented with information about their data type (placed
2353between angle brackets).
2354
704a47c4
AD
2355The Bison construct @code{%type} is used for declaring nonterminal
2356symbols, just as @code{%token} is used for declaring token types. We
2357have not used @code{%type} before because nonterminal symbols are
2358normally declared implicitly by the rules that define them. But
2359@code{exp} must be declared explicitly so we can specify its value type.
2360@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2361
342b8b6e 2362@node Mfcalc Rules
bfa74976
RS
2363@subsection Grammar Rules for @code{mfcalc}
2364
2365Here are the grammar rules for the multi-function calculator.
2366Most of them are copied directly from @code{calc}; three rules,
2367those which mention @code{VAR} or @code{FNCT}, are new.
2368
2369@smallexample
18b519c0 2370@group
bfa74976
RS
2371input: /* empty */
2372 | input line
2373;
18b519c0 2374@end group
bfa74976 2375
18b519c0 2376@group
bfa74976
RS
2377line:
2378 '\n'
2379 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2380 | error '\n' @{ yyerrok; @}
2381;
18b519c0 2382@end group
bfa74976 2383
18b519c0 2384@group
bfa74976
RS
2385exp: NUM @{ $$ = $1; @}
2386 | VAR @{ $$ = $1->value.var; @}
2387 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2388 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2389 | exp '+' exp @{ $$ = $1 + $3; @}
2390 | exp '-' exp @{ $$ = $1 - $3; @}
2391 | exp '*' exp @{ $$ = $1 * $3; @}
2392 | exp '/' exp @{ $$ = $1 / $3; @}
2393 | '-' exp %prec NEG @{ $$ = -$2; @}
2394 | exp '^' exp @{ $$ = pow ($1, $3); @}
2395 | '(' exp ')' @{ $$ = $2; @}
2396;
18b519c0 2397@end group
38a92d50 2398/* End of grammar. */
bfa74976
RS
2399%%
2400@end smallexample
2401
f5f419de 2402@node Mfcalc Symbol Table
bfa74976
RS
2403@subsection The @code{mfcalc} Symbol Table
2404@cindex symbol table example
2405
2406The multi-function calculator requires a symbol table to keep track of the
2407names and meanings of variables and functions. This doesn't affect the
2408grammar rules (except for the actions) or the Bison declarations, but it
2409requires some additional C functions for support.
2410
2411The symbol table itself consists of a linked list of records. Its
2412definition, which is kept in the header @file{calc.h}, is as follows. It
2413provides for either functions or variables to be placed in the table.
2414
2415@smallexample
2416@group
38a92d50 2417/* Function type. */
32dfccf8 2418typedef double (*func_t) (double);
72f889cc 2419@end group
32dfccf8 2420
72f889cc 2421@group
38a92d50 2422/* Data type for links in the chain of symbols. */
bfa74976
RS
2423struct symrec
2424@{
38a92d50 2425 char *name; /* name of symbol */
bfa74976 2426 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2427 union
2428 @{
38a92d50
PE
2429 double var; /* value of a VAR */
2430 func_t fnctptr; /* value of a FNCT */
bfa74976 2431 @} value;
38a92d50 2432 struct symrec *next; /* link field */
bfa74976
RS
2433@};
2434@end group
2435
2436@group
2437typedef struct symrec symrec;
2438
38a92d50 2439/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2440extern symrec *sym_table;
2441
a730d142 2442symrec *putsym (char const *, int);
38a92d50 2443symrec *getsym (char const *);
bfa74976
RS
2444@end group
2445@end smallexample
2446
2447The new version of @code{main} includes a call to @code{init_table}, a
2448function that initializes the symbol table. Here it is, and
2449@code{init_table} as well:
2450
2451@smallexample
bfa74976
RS
2452#include <stdio.h>
2453
18b519c0 2454@group
38a92d50 2455/* Called by yyparse on error. */
13863333 2456void
38a92d50 2457yyerror (char const *s)
bfa74976
RS
2458@{
2459 printf ("%s\n", s);
2460@}
18b519c0 2461@end group
bfa74976 2462
18b519c0 2463@group
bfa74976
RS
2464struct init
2465@{
38a92d50
PE
2466 char const *fname;
2467 double (*fnct) (double);
bfa74976
RS
2468@};
2469@end group
2470
2471@group
38a92d50 2472struct init const arith_fncts[] =
13863333 2473@{
32dfccf8
AD
2474 "sin", sin,
2475 "cos", cos,
13863333 2476 "atan", atan,
32dfccf8
AD
2477 "ln", log,
2478 "exp", exp,
13863333
AD
2479 "sqrt", sqrt,
2480 0, 0
2481@};
18b519c0 2482@end group
bfa74976 2483
18b519c0 2484@group
bfa74976 2485/* The symbol table: a chain of `struct symrec'. */
38a92d50 2486symrec *sym_table;
bfa74976
RS
2487@end group
2488
2489@group
72d2299c 2490/* Put arithmetic functions in table. */
13863333
AD
2491void
2492init_table (void)
bfa74976
RS
2493@{
2494 int i;
2495 symrec *ptr;
2496 for (i = 0; arith_fncts[i].fname != 0; i++)
2497 @{
2498 ptr = putsym (arith_fncts[i].fname, FNCT);
2499 ptr->value.fnctptr = arith_fncts[i].fnct;
2500 @}
2501@}
2502@end group
38a92d50
PE
2503
2504@group
2505int
2506main (void)
2507@{
2508 init_table ();
2509 return yyparse ();
2510@}
2511@end group
bfa74976
RS
2512@end smallexample
2513
2514By simply editing the initialization list and adding the necessary include
2515files, you can add additional functions to the calculator.
2516
2517Two important functions allow look-up and installation of symbols in the
2518symbol table. The function @code{putsym} is passed a name and the type
2519(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2520linked to the front of the list, and a pointer to the object is returned.
2521The function @code{getsym} is passed the name of the symbol to look up. If
2522found, a pointer to that symbol is returned; otherwise zero is returned.
2523
2524@smallexample
2525symrec *
38a92d50 2526putsym (char const *sym_name, int sym_type)
bfa74976
RS
2527@{
2528 symrec *ptr;
2529 ptr = (symrec *) malloc (sizeof (symrec));
2530 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2531 strcpy (ptr->name,sym_name);
2532 ptr->type = sym_type;
72d2299c 2533 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2534 ptr->next = (struct symrec *)sym_table;
2535 sym_table = ptr;
2536 return ptr;
2537@}
2538
2539symrec *
38a92d50 2540getsym (char const *sym_name)
bfa74976
RS
2541@{
2542 symrec *ptr;
2543 for (ptr = sym_table; ptr != (symrec *) 0;
2544 ptr = (symrec *)ptr->next)
2545 if (strcmp (ptr->name,sym_name) == 0)
2546 return ptr;
2547 return 0;
2548@}
2549@end smallexample
2550
2551The function @code{yylex} must now recognize variables, numeric values, and
2552the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2553characters with a leading letter are recognized as either variables or
bfa74976
RS
2554functions depending on what the symbol table says about them.
2555
2556The string is passed to @code{getsym} for look up in the symbol table. If
2557the name appears in the table, a pointer to its location and its type
2558(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2559already in the table, then it is installed as a @code{VAR} using
2560@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2561returned to @code{yyparse}.
bfa74976
RS
2562
2563No change is needed in the handling of numeric values and arithmetic
2564operators in @code{yylex}.
2565
2566@smallexample
2567@group
2568#include <ctype.h>
18b519c0 2569@end group
13863333 2570
18b519c0 2571@group
13863333
AD
2572int
2573yylex (void)
bfa74976
RS
2574@{
2575 int c;
2576
72d2299c 2577 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2578 while ((c = getchar ()) == ' ' || c == '\t');
2579
2580 if (c == EOF)
2581 return 0;
2582@end group
2583
2584@group
2585 /* Char starts a number => parse the number. */
2586 if (c == '.' || isdigit (c))
2587 @{
2588 ungetc (c, stdin);
2589 scanf ("%lf", &yylval.val);
2590 return NUM;
2591 @}
2592@end group
2593
2594@group
2595 /* Char starts an identifier => read the name. */
2596 if (isalpha (c))
2597 @{
2598 symrec *s;
2599 static char *symbuf = 0;
2600 static int length = 0;
2601 int i;
2602@end group
2603
2604@group
2605 /* Initially make the buffer long enough
2606 for a 40-character symbol name. */
2607 if (length == 0)
2608 length = 40, symbuf = (char *)malloc (length + 1);
2609
2610 i = 0;
2611 do
2612@end group
2613@group
2614 @{
2615 /* If buffer is full, make it bigger. */
2616 if (i == length)
2617 @{
2618 length *= 2;
18b519c0 2619 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2620 @}
2621 /* Add this character to the buffer. */
2622 symbuf[i++] = c;
2623 /* Get another character. */
2624 c = getchar ();
2625 @}
2626@end group
2627@group
72d2299c 2628 while (isalnum (c));
bfa74976
RS
2629
2630 ungetc (c, stdin);
2631 symbuf[i] = '\0';
2632@end group
2633
2634@group
2635 s = getsym (symbuf);
2636 if (s == 0)
2637 s = putsym (symbuf, VAR);
2638 yylval.tptr = s;
2639 return s->type;
2640 @}
2641
2642 /* Any other character is a token by itself. */
2643 return c;
2644@}
2645@end group
2646@end smallexample
2647
72d2299c 2648This program is both powerful and flexible. You may easily add new
704a47c4
AD
2649functions, and it is a simple job to modify this code to install
2650predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2651
342b8b6e 2652@node Exercises
bfa74976
RS
2653@section Exercises
2654@cindex exercises
2655
2656@enumerate
2657@item
2658Add some new functions from @file{math.h} to the initialization list.
2659
2660@item
2661Add another array that contains constants and their values. Then
2662modify @code{init_table} to add these constants to the symbol table.
2663It will be easiest to give the constants type @code{VAR}.
2664
2665@item
2666Make the program report an error if the user refers to an
2667uninitialized variable in any way except to store a value in it.
2668@end enumerate
2669
342b8b6e 2670@node Grammar File
bfa74976
RS
2671@chapter Bison Grammar Files
2672
2673Bison takes as input a context-free grammar specification and produces a
2674C-language function that recognizes correct instances of the grammar.
2675
2676The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2677@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2678
2679@menu
2680* Grammar Outline:: Overall layout of the grammar file.
2681* Symbols:: Terminal and nonterminal symbols.
2682* Rules:: How to write grammar rules.
2683* Recursion:: Writing recursive rules.
2684* Semantics:: Semantic values and actions.
847bf1f5 2685* Locations:: Locations and actions.
bfa74976
RS
2686* Declarations:: All kinds of Bison declarations are described here.
2687* Multiple Parsers:: Putting more than one Bison parser in one program.
2688@end menu
2689
342b8b6e 2690@node Grammar Outline
bfa74976
RS
2691@section Outline of a Bison Grammar
2692
2693A Bison grammar file has four main sections, shown here with the
2694appropriate delimiters:
2695
2696@example
2697%@{
38a92d50 2698 @var{Prologue}
bfa74976
RS
2699%@}
2700
2701@var{Bison declarations}
2702
2703%%
2704@var{Grammar rules}
2705%%
2706
75f5aaea 2707@var{Epilogue}
bfa74976
RS
2708@end example
2709
2710Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2711As a @acronym{GNU} extension, @samp{//} introduces a comment that
2712continues until end of line.
bfa74976
RS
2713
2714@menu
f5f419de 2715* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2716* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2717* Bison Declarations:: Syntax and usage of the Bison declarations section.
2718* Grammar Rules:: Syntax and usage of the grammar rules section.
2719* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2720@end menu
2721
38a92d50 2722@node Prologue
75f5aaea
MA
2723@subsection The prologue
2724@cindex declarations section
2725@cindex Prologue
2726@cindex declarations
bfa74976 2727
f8e1c9e5
AD
2728The @var{Prologue} section contains macro definitions and declarations
2729of functions and variables that are used in the actions in the grammar
2730rules. These are copied to the beginning of the parser file so that
2731they precede the definition of @code{yyparse}. You can use
2732@samp{#include} to get the declarations from a header file. If you
2733don't need any C declarations, you may omit the @samp{%@{} and
2734@samp{%@}} delimiters that bracket this section.
bfa74976 2735
9c437126 2736The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2737of @samp{%@}} that is outside a comment, a string literal, or a
2738character constant.
2739
c732d2c6
AD
2740You may have more than one @var{Prologue} section, intermixed with the
2741@var{Bison declarations}. This allows you to have C and Bison
2742declarations that refer to each other. For example, the @code{%union}
2743declaration may use types defined in a header file, and you may wish to
2744prototype functions that take arguments of type @code{YYSTYPE}. This
2745can be done with two @var{Prologue} blocks, one before and one after the
2746@code{%union} declaration.
2747
2748@smallexample
2749%@{
aef3da86 2750 #define _GNU_SOURCE
38a92d50
PE
2751 #include <stdio.h>
2752 #include "ptypes.h"
c732d2c6
AD
2753%@}
2754
2755%union @{
779e7ceb 2756 long int n;
c732d2c6
AD
2757 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2758@}
2759
2760%@{
38a92d50
PE
2761 static void print_token_value (FILE *, int, YYSTYPE);
2762 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2763%@}
2764
2765@dots{}
2766@end smallexample
2767
aef3da86
PE
2768When in doubt, it is usually safer to put prologue code before all
2769Bison declarations, rather than after. For example, any definitions
2770of feature test macros like @code{_GNU_SOURCE} or
2771@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2772feature test macros can affect the behavior of Bison-generated
2773@code{#include} directives.
2774
2cbe6b7f
JD
2775@node Prologue Alternatives
2776@subsection Prologue Alternatives
2777@cindex Prologue Alternatives
2778
136a0f76 2779@findex %code
16dc6a9e
JD
2780@findex %code requires
2781@findex %code provides
2782@findex %code top
85894313 2783
2cbe6b7f
JD
2784The functionality of @var{Prologue} sections can often be subtle and
2785inflexible.
8e0a5e9e
JD
2786As an alternative, Bison provides a %code directive with an explicit qualifier
2787field, which identifies the purpose of the code and thus the location(s) where
2788Bison should generate it.
2789For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2790one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2791@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2792
2793Look again at the example of the previous section:
2794
2795@smallexample
2796%@{
2797 #define _GNU_SOURCE
2798 #include <stdio.h>
2799 #include "ptypes.h"
2800%@}
2801
2802%union @{
2803 long int n;
2804 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2805@}
2806
2807%@{
2808 static void print_token_value (FILE *, int, YYSTYPE);
2809 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2810%@}
2811
2812@dots{}
2813@end smallexample
2814
2815@noindent
2816Notice that there are two @var{Prologue} sections here, but there's a subtle
2817distinction between their functionality.
2818For example, if you decide to override Bison's default definition for
2819@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2820definition?
2821You should write it in the first since Bison will insert that code into the
8e0a5e9e 2822parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2823In which @var{Prologue} section should you prototype an internal function,
2824@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2825arguments?
2826You should prototype it in the second since Bison will insert that code
2827@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2828
2829This distinction in functionality between the two @var{Prologue} sections is
2830established by the appearance of the @code{%union} between them.
a501eca9 2831This behavior raises a few questions.
2cbe6b7f
JD
2832First, why should the position of a @code{%union} affect definitions related to
2833@code{YYLTYPE} and @code{yytokentype}?
2834Second, what if there is no @code{%union}?
2835In that case, the second kind of @var{Prologue} section is not available.
2836This behavior is not intuitive.
2837
8e0a5e9e 2838To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2839@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2840Let's go ahead and add the new @code{YYLTYPE} definition and the
2841@code{trace_token} prototype at the same time:
2842
2843@smallexample
16dc6a9e 2844%code top @{
2cbe6b7f
JD
2845 #define _GNU_SOURCE
2846 #include <stdio.h>
8e0a5e9e
JD
2847
2848 /* WARNING: The following code really belongs
16dc6a9e 2849 * in a `%code requires'; see below. */
8e0a5e9e 2850
2cbe6b7f
JD
2851 #include "ptypes.h"
2852 #define YYLTYPE YYLTYPE
2853 typedef struct YYLTYPE
2854 @{
2855 int first_line;
2856 int first_column;
2857 int last_line;
2858 int last_column;
2859 char *filename;
2860 @} YYLTYPE;
2861@}
2862
2863%union @{
2864 long int n;
2865 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2866@}
2867
2868%code @{
2869 static void print_token_value (FILE *, int, YYSTYPE);
2870 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2871 static void trace_token (enum yytokentype token, YYLTYPE loc);
2872@}
2873
2874@dots{}
2875@end smallexample
2876
2877@noindent
16dc6a9e
JD
2878In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2879functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2880explicit which kind you intend.
2cbe6b7f
JD
2881Moreover, both kinds are always available even in the absence of @code{%union}.
2882
16dc6a9e 2883The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2884The first two lines before the warning need to appear near the top of the
2885parser source code file.
2886The first line after the warning is required by @code{YYSTYPE} and thus also
2887needs to appear in the parser source code file.
2cbe6b7f 2888However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2889(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2890the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2891The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2892override the default @code{YYLTYPE} definition there.
2893
16dc6a9e 2894In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2895lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2896definitions.
16dc6a9e 2897Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2898
2899@smallexample
16dc6a9e 2900%code top @{
2cbe6b7f
JD
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903@}
2904
16dc6a9e 2905%code requires @{
9bc0dd67
JD
2906 #include "ptypes.h"
2907@}
2908%union @{
2909 long int n;
2910 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2911@}
2912
16dc6a9e 2913%code requires @{
2cbe6b7f
JD
2914 #define YYLTYPE YYLTYPE
2915 typedef struct YYLTYPE
2916 @{
2917 int first_line;
2918 int first_column;
2919 int last_line;
2920 int last_column;
2921 char *filename;
2922 @} YYLTYPE;
2923@}
2924
136a0f76 2925%code @{
2cbe6b7f
JD
2926 static void print_token_value (FILE *, int, YYSTYPE);
2927 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2928 static void trace_token (enum yytokentype token, YYLTYPE loc);
2929@}
2930
2931@dots{}
2932@end smallexample
2933
2934@noindent
2935Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2936definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2937definitions in both the parser source code file and the parser header file.
16dc6a9e 2938(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2939place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2940
a501eca9 2941When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2942should prefer @code{%code requires} over @code{%code top} regardless of whether
2943you instruct Bison to generate a parser header file.
a501eca9 2944When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2945source code file and that has no special need to appear at the top of that
16dc6a9e 2946file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2947These practices will make the purpose of each block of your code explicit to
2948Bison and to other developers reading your grammar file.
8e0a5e9e 2949Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2950@code{%code requires} to be the most important of the four @var{Prologue}
2951alternatives.
a501eca9 2952
2cbe6b7f
JD
2953At some point while developing your parser, you might decide to provide
2954@code{trace_token} to modules that are external to your parser.
2955Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2956header file and the parser source code file.
2957Since this function is not a dependency required by @code{YYSTYPE} or
2958@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2959@code{%code requires}.
2cbe6b7f 2960More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2961@code{%code requires} is not sufficient.
8e0a5e9e 2962Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2963@code{%code provides}:
2cbe6b7f
JD
2964
2965@smallexample
16dc6a9e 2966%code top @{
2cbe6b7f 2967 #define _GNU_SOURCE
136a0f76 2968 #include <stdio.h>
2cbe6b7f 2969@}
136a0f76 2970
16dc6a9e 2971%code requires @{
2cbe6b7f
JD
2972 #include "ptypes.h"
2973@}
2974%union @{
2975 long int n;
2976 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2977@}
2978
16dc6a9e 2979%code requires @{
2cbe6b7f
JD
2980 #define YYLTYPE YYLTYPE
2981 typedef struct YYLTYPE
2982 @{
2983 int first_line;
2984 int first_column;
2985 int last_line;
2986 int last_column;
2987 char *filename;
2988 @} YYLTYPE;
2989@}
2990
16dc6a9e 2991%code provides @{
2cbe6b7f
JD
2992 void trace_token (enum yytokentype token, YYLTYPE loc);
2993@}
2994
2995%code @{
9bc0dd67
JD
2996 static void print_token_value (FILE *, int, YYSTYPE);
2997 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2998@}
9bc0dd67
JD
2999
3000@dots{}
3001@end smallexample
3002
2cbe6b7f
JD
3003@noindent
3004Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
3005file and the parser source code file after the definitions for
3006@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
3007
3008The above examples are careful to write directives in an order that reflects
8e0a5e9e 3009the layout of the generated parser source code and header files:
16dc6a9e 3010@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3011@code{%code}.
a501eca9 3012While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3013this order, Bison does not require it.
3014Instead, Bison lets you choose an organization that makes sense to you.
3015
a501eca9 3016You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3017In that case, Bison concatenates the contained code in declaration order.
3018This is the only way in which the position of one of these directives within
3019the grammar file affects its functionality.
3020
3021The result of the previous two properties is greater flexibility in how you may
3022organize your grammar file.
3023For example, you may organize semantic-type-related directives by semantic
3024type:
3025
3026@smallexample
16dc6a9e 3027%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3028%union @{ type1 field1; @}
3029%destructor @{ type1_free ($$); @} <field1>
3030%printer @{ type1_print ($$); @} <field1>
3031
16dc6a9e 3032%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3033%union @{ type2 field2; @}
3034%destructor @{ type2_free ($$); @} <field2>
3035%printer @{ type2_print ($$); @} <field2>
3036@end smallexample
3037
3038@noindent
3039You could even place each of the above directive groups in the rules section of
3040the grammar file next to the set of rules that uses the associated semantic
3041type.
61fee93e
JD
3042(In the rules section, you must terminate each of those directives with a
3043semicolon.)
2cbe6b7f
JD
3044And you don't have to worry that some directive (like a @code{%union}) in the
3045definitions section is going to adversely affect their functionality in some
3046counter-intuitive manner just because it comes first.
3047Such an organization is not possible using @var{Prologue} sections.
3048
a501eca9 3049This section has been concerned with explaining the advantages of the four
8e0a5e9e 3050@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3051However, in most cases when using these directives, you shouldn't need to
3052think about all the low-level ordering issues discussed here.
3053Instead, you should simply use these directives to label each block of your
3054code according to its purpose and let Bison handle the ordering.
3055@code{%code} is the most generic label.
16dc6a9e
JD
3056Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3057as needed.
a501eca9 3058
342b8b6e 3059@node Bison Declarations
bfa74976
RS
3060@subsection The Bison Declarations Section
3061@cindex Bison declarations (introduction)
3062@cindex declarations, Bison (introduction)
3063
3064The @var{Bison declarations} section contains declarations that define
3065terminal and nonterminal symbols, specify precedence, and so on.
3066In some simple grammars you may not need any declarations.
3067@xref{Declarations, ,Bison Declarations}.
3068
342b8b6e 3069@node Grammar Rules
bfa74976
RS
3070@subsection The Grammar Rules Section
3071@cindex grammar rules section
3072@cindex rules section for grammar
3073
3074The @dfn{grammar rules} section contains one or more Bison grammar
3075rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3076
3077There must always be at least one grammar rule, and the first
3078@samp{%%} (which precedes the grammar rules) may never be omitted even
3079if it is the first thing in the file.
3080
38a92d50 3081@node Epilogue
75f5aaea 3082@subsection The epilogue
bfa74976 3083@cindex additional C code section
75f5aaea 3084@cindex epilogue
bfa74976
RS
3085@cindex C code, section for additional
3086
08e49d20
PE
3087The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3088the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3089place to put anything that you want to have in the parser file but which need
3090not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3091definitions of @code{yylex} and @code{yyerror} often go here. Because
3092C requires functions to be declared before being used, you often need
3093to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3094even if you define them in the Epilogue.
75f5aaea 3095@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3096
3097If the last section is empty, you may omit the @samp{%%} that separates it
3098from the grammar rules.
3099
f8e1c9e5
AD
3100The Bison parser itself contains many macros and identifiers whose names
3101start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3102any such names (except those documented in this manual) in the epilogue
3103of the grammar file.
bfa74976 3104
342b8b6e 3105@node Symbols
bfa74976
RS
3106@section Symbols, Terminal and Nonterminal
3107@cindex nonterminal symbol
3108@cindex terminal symbol
3109@cindex token type
3110@cindex symbol
3111
3112@dfn{Symbols} in Bison grammars represent the grammatical classifications
3113of the language.
3114
3115A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3116class of syntactically equivalent tokens. You use the symbol in grammar
3117rules to mean that a token in that class is allowed. The symbol is
3118represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3119function returns a token type code to indicate what kind of token has
3120been read. You don't need to know what the code value is; you can use
3121the symbol to stand for it.
bfa74976 3122
f8e1c9e5
AD
3123A @dfn{nonterminal symbol} stands for a class of syntactically
3124equivalent groupings. The symbol name is used in writing grammar rules.
3125By convention, it should be all lower case.
bfa74976 3126
cdf3f113
AD
3127Symbol names can contain letters, underscores, periods, dashes, and (not
3128at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3129extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3130that contain periods or dashes make little sense: since they are not
3131valid symbols (in most programming languages) they are not exported as
3132token names.
bfa74976 3133
931c7513 3134There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3135
3136@itemize @bullet
3137@item
3138A @dfn{named token type} is written with an identifier, like an
c827f760 3139identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3140such name must be defined with a Bison declaration such as
3141@code{%token}. @xref{Token Decl, ,Token Type Names}.
3142
3143@item
3144@cindex character token
3145@cindex literal token
3146@cindex single-character literal
931c7513
RS
3147A @dfn{character token type} (or @dfn{literal character token}) is
3148written in the grammar using the same syntax used in C for character
3149constants; for example, @code{'+'} is a character token type. A
3150character token type doesn't need to be declared unless you need to
3151specify its semantic value data type (@pxref{Value Type, ,Data Types of
3152Semantic Values}), associativity, or precedence (@pxref{Precedence,
3153,Operator Precedence}).
bfa74976
RS
3154
3155By convention, a character token type is used only to represent a
3156token that consists of that particular character. Thus, the token
3157type @code{'+'} is used to represent the character @samp{+} as a
3158token. Nothing enforces this convention, but if you depart from it,
3159your program will confuse other readers.
3160
3161All the usual escape sequences used in character literals in C can be
3162used in Bison as well, but you must not use the null character as a
72d2299c
PE
3163character literal because its numeric code, zero, signifies
3164end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3165for @code{yylex}}). Also, unlike standard C, trigraphs have no
3166special meaning in Bison character literals, nor is backslash-newline
3167allowed.
931c7513
RS
3168
3169@item
3170@cindex string token
3171@cindex literal string token
9ecbd125 3172@cindex multicharacter literal
931c7513
RS
3173A @dfn{literal string token} is written like a C string constant; for
3174example, @code{"<="} is a literal string token. A literal string token
3175doesn't need to be declared unless you need to specify its semantic
14ded682 3176value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3177(@pxref{Precedence}).
3178
3179You can associate the literal string token with a symbolic name as an
3180alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3181Declarations}). If you don't do that, the lexical analyzer has to
3182retrieve the token number for the literal string token from the
3183@code{yytname} table (@pxref{Calling Convention}).
3184
c827f760 3185@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3186
3187By convention, a literal string token is used only to represent a token
3188that consists of that particular string. Thus, you should use the token
3189type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3190does not enforce this convention, but if you depart from it, people who
931c7513
RS
3191read your program will be confused.
3192
3193All the escape sequences used in string literals in C can be used in
92ac3705
PE
3194Bison as well, except that you must not use a null character within a
3195string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3196meaning in Bison string literals, nor is backslash-newline allowed. A
3197literal string token must contain two or more characters; for a token
3198containing just one character, use a character token (see above).
bfa74976
RS
3199@end itemize
3200
3201How you choose to write a terminal symbol has no effect on its
3202grammatical meaning. That depends only on where it appears in rules and
3203on when the parser function returns that symbol.
3204
72d2299c
PE
3205The value returned by @code{yylex} is always one of the terminal
3206symbols, except that a zero or negative value signifies end-of-input.
3207Whichever way you write the token type in the grammar rules, you write
3208it the same way in the definition of @code{yylex}. The numeric code
3209for a character token type is simply the positive numeric code of the
3210character, so @code{yylex} can use the identical value to generate the
3211requisite code, though you may need to convert it to @code{unsigned
3212char} to avoid sign-extension on hosts where @code{char} is signed.
3213Each named token type becomes a C macro in
bfa74976 3214the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3215(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3216@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3217
3218If @code{yylex} is defined in a separate file, you need to arrange for the
3219token-type macro definitions to be available there. Use the @samp{-d}
3220option when you run Bison, so that it will write these macro definitions
3221into a separate header file @file{@var{name}.tab.h} which you can include
3222in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3223
72d2299c 3224If you want to write a grammar that is portable to any Standard C
9d9b8b70 3225host, you must use only nonnull character tokens taken from the basic
c827f760 3226execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3227digits, the 52 lower- and upper-case English letters, and the
3228characters in the following C-language string:
3229
3230@example
3231"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3232@end example
3233
f8e1c9e5
AD
3234The @code{yylex} function and Bison must use a consistent character set
3235and encoding for character tokens. For example, if you run Bison in an
3236@acronym{ASCII} environment, but then compile and run the resulting
3237program in an environment that uses an incompatible character set like
3238@acronym{EBCDIC}, the resulting program may not work because the tables
3239generated by Bison will assume @acronym{ASCII} numeric values for
3240character tokens. It is standard practice for software distributions to
3241contain C source files that were generated by Bison in an
3242@acronym{ASCII} environment, so installers on platforms that are
3243incompatible with @acronym{ASCII} must rebuild those files before
3244compiling them.
e966383b 3245
bfa74976
RS
3246The symbol @code{error} is a terminal symbol reserved for error recovery
3247(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3248In particular, @code{yylex} should never return this value. The default
3249value of the error token is 256, unless you explicitly assigned 256 to
3250one of your tokens with a @code{%token} declaration.
bfa74976 3251
342b8b6e 3252@node Rules
bfa74976
RS
3253@section Syntax of Grammar Rules
3254@cindex rule syntax
3255@cindex grammar rule syntax
3256@cindex syntax of grammar rules
3257
3258A Bison grammar rule has the following general form:
3259
3260@example
e425e872 3261@group
bfa74976
RS
3262@var{result}: @var{components}@dots{}
3263 ;
e425e872 3264@end group
bfa74976
RS
3265@end example
3266
3267@noindent
9ecbd125 3268where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3269and @var{components} are various terminal and nonterminal symbols that
13863333 3270are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3271
3272For example,
3273
3274@example
3275@group
3276exp: exp '+' exp
3277 ;
3278@end group
3279@end example
3280
3281@noindent
3282says that two groupings of type @code{exp}, with a @samp{+} token in between,
3283can be combined into a larger grouping of type @code{exp}.
3284
72d2299c
PE
3285White space in rules is significant only to separate symbols. You can add
3286extra white space as you wish.
bfa74976
RS
3287
3288Scattered among the components can be @var{actions} that determine
3289the semantics of the rule. An action looks like this:
3290
3291@example
3292@{@var{C statements}@}
3293@end example
3294
3295@noindent
287c78f6
PE
3296@cindex braced code
3297This is an example of @dfn{braced code}, that is, C code surrounded by
3298braces, much like a compound statement in C@. Braced code can contain
3299any sequence of C tokens, so long as its braces are balanced. Bison
3300does not check the braced code for correctness directly; it merely
3301copies the code to the output file, where the C compiler can check it.
3302
3303Within braced code, the balanced-brace count is not affected by braces
3304within comments, string literals, or character constants, but it is
3305affected by the C digraphs @samp{<%} and @samp{%>} that represent
3306braces. At the top level braced code must be terminated by @samp{@}}
3307and not by a digraph. Bison does not look for trigraphs, so if braced
3308code uses trigraphs you should ensure that they do not affect the
3309nesting of braces or the boundaries of comments, string literals, or
3310character constants.
3311
bfa74976
RS
3312Usually there is only one action and it follows the components.
3313@xref{Actions}.
3314
3315@findex |
3316Multiple rules for the same @var{result} can be written separately or can
3317be joined with the vertical-bar character @samp{|} as follows:
3318
bfa74976
RS
3319@example
3320@group
3321@var{result}: @var{rule1-components}@dots{}
3322 | @var{rule2-components}@dots{}
3323 @dots{}
3324 ;
3325@end group
3326@end example
bfa74976
RS
3327
3328@noindent
3329They are still considered distinct rules even when joined in this way.
3330
3331If @var{components} in a rule is empty, it means that @var{result} can
3332match the empty string. For example, here is how to define a
3333comma-separated sequence of zero or more @code{exp} groupings:
3334
3335@example
3336@group
3337expseq: /* empty */
3338 | expseq1
3339 ;
3340@end group
3341
3342@group
3343expseq1: exp
3344 | expseq1 ',' exp
3345 ;
3346@end group
3347@end example
3348
3349@noindent
3350It is customary to write a comment @samp{/* empty */} in each rule
3351with no components.
3352
342b8b6e 3353@node Recursion
bfa74976
RS
3354@section Recursive Rules
3355@cindex recursive rule
3356
f8e1c9e5
AD
3357A rule is called @dfn{recursive} when its @var{result} nonterminal
3358appears also on its right hand side. Nearly all Bison grammars need to
3359use recursion, because that is the only way to define a sequence of any
3360number of a particular thing. Consider this recursive definition of a
9ecbd125 3361comma-separated sequence of one or more expressions:
bfa74976
RS
3362
3363@example
3364@group
3365expseq1: exp
3366 | expseq1 ',' exp
3367 ;
3368@end group
3369@end example
3370
3371@cindex left recursion
3372@cindex right recursion
3373@noindent
3374Since the recursive use of @code{expseq1} is the leftmost symbol in the
3375right hand side, we call this @dfn{left recursion}. By contrast, here
3376the same construct is defined using @dfn{right recursion}:
3377
3378@example
3379@group
3380expseq1: exp
3381 | exp ',' expseq1
3382 ;
3383@end group
3384@end example
3385
3386@noindent
ec3bc396
AD
3387Any kind of sequence can be defined using either left recursion or right
3388recursion, but you should always use left recursion, because it can
3389parse a sequence of any number of elements with bounded stack space.
3390Right recursion uses up space on the Bison stack in proportion to the
3391number of elements in the sequence, because all the elements must be
3392shifted onto the stack before the rule can be applied even once.
3393@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3394of this.
bfa74976
RS
3395
3396@cindex mutual recursion
3397@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3398rule does not appear directly on its right hand side, but does appear
3399in rules for other nonterminals which do appear on its right hand
13863333 3400side.
bfa74976
RS
3401
3402For example:
3403
3404@example
3405@group
3406expr: primary
3407 | primary '+' primary
3408 ;
3409@end group
3410
3411@group
3412primary: constant
3413 | '(' expr ')'
3414 ;
3415@end group
3416@end example
3417
3418@noindent
3419defines two mutually-recursive nonterminals, since each refers to the
3420other.
3421
342b8b6e 3422@node Semantics
bfa74976
RS
3423@section Defining Language Semantics
3424@cindex defining language semantics
13863333 3425@cindex language semantics, defining
bfa74976
RS
3426
3427The grammar rules for a language determine only the syntax. The semantics
3428are determined by the semantic values associated with various tokens and
3429groupings, and by the actions taken when various groupings are recognized.
3430
3431For example, the calculator calculates properly because the value
3432associated with each expression is the proper number; it adds properly
3433because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3434the numbers associated with @var{x} and @var{y}.
3435
3436@menu
3437* Value Type:: Specifying one data type for all semantic values.
3438* Multiple Types:: Specifying several alternative data types.
3439* Actions:: An action is the semantic definition of a grammar rule.
3440* Action Types:: Specifying data types for actions to operate on.
3441* Mid-Rule Actions:: Most actions go at the end of a rule.
3442 This says when, why and how to use the exceptional
3443 action in the middle of a rule.
d013372c 3444* Named References:: Using named references in actions.
bfa74976
RS
3445@end menu
3446
342b8b6e 3447@node Value Type
bfa74976
RS
3448@subsection Data Types of Semantic Values
3449@cindex semantic value type
3450@cindex value type, semantic
3451@cindex data types of semantic values
3452@cindex default data type
3453
3454In a simple program it may be sufficient to use the same data type for
3455the semantic values of all language constructs. This was true in the
c827f760 3456@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3457Notation Calculator}).
bfa74976 3458
ddc8ede1
PE
3459Bison normally uses the type @code{int} for semantic values if your
3460program uses the same data type for all language constructs. To
bfa74976
RS
3461specify some other type, define @code{YYSTYPE} as a macro, like this:
3462
3463@example
3464#define YYSTYPE double
3465@end example
3466
3467@noindent
50cce58e
PE
3468@code{YYSTYPE}'s replacement list should be a type name
3469that does not contain parentheses or square brackets.
342b8b6e 3470This macro definition must go in the prologue of the grammar file
75f5aaea 3471(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3472
342b8b6e 3473@node Multiple Types
bfa74976
RS
3474@subsection More Than One Value Type
3475
3476In most programs, you will need different data types for different kinds
3477of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3478@code{int} or @code{long int}, while a string constant needs type
3479@code{char *}, and an identifier might need a pointer to an entry in the
3480symbol table.
bfa74976
RS
3481
3482To use more than one data type for semantic values in one parser, Bison
3483requires you to do two things:
3484
3485@itemize @bullet
3486@item
ddc8ede1 3487Specify the entire collection of possible data types, either by using the
704a47c4 3488@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3489Value Types}), or by using a @code{typedef} or a @code{#define} to
3490define @code{YYSTYPE} to be a union type whose member names are
3491the type tags.
bfa74976
RS
3492
3493@item
14ded682
AD
3494Choose one of those types for each symbol (terminal or nonterminal) for
3495which semantic values are used. This is done for tokens with the
3496@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3497and for groupings with the @code{%type} Bison declaration (@pxref{Type
3498Decl, ,Nonterminal Symbols}).
bfa74976
RS
3499@end itemize
3500
342b8b6e 3501@node Actions
bfa74976
RS
3502@subsection Actions
3503@cindex action
3504@vindex $$
3505@vindex $@var{n}
d013372c
AR
3506@vindex $@var{name}
3507@vindex $[@var{name}]
bfa74976
RS
3508
3509An action accompanies a syntactic rule and contains C code to be executed
3510each time an instance of that rule is recognized. The task of most actions
3511is to compute a semantic value for the grouping built by the rule from the
3512semantic values associated with tokens or smaller groupings.
3513
287c78f6
PE
3514An action consists of braced code containing C statements, and can be
3515placed at any position in the rule;
704a47c4
AD
3516it is executed at that position. Most rules have just one action at the
3517end of the rule, following all the components. Actions in the middle of
3518a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3519Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3520
3521The C code in an action can refer to the semantic values of the components
3522matched by the rule with the construct @code{$@var{n}}, which stands for
3523the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3524being constructed is @code{$$}. In addition, the semantic values of
3525symbols can be accessed with the named references construct
3526@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3527constructs into expressions of the appropriate type when it copies the
d013372c
AR
3528actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3529stands for the current grouping) is translated to a modifiable
0cc3da3a 3530lvalue, so it can be assigned to.
bfa74976
RS
3531
3532Here is a typical example:
3533
3534@example
3535@group
3536exp: @dots{}
3537 | exp '+' exp
3538 @{ $$ = $1 + $3; @}
3539@end group
3540@end example
3541
d013372c
AR
3542Or, in terms of named references:
3543
3544@example
3545@group
3546exp[result]: @dots{}
3547 | exp[left] '+' exp[right]
3548 @{ $result = $left + $right; @}
3549@end group
3550@end example
3551
bfa74976
RS
3552@noindent
3553This rule constructs an @code{exp} from two smaller @code{exp} groupings
3554connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3555(@code{$left} and @code{$right})
bfa74976
RS
3556refer to the semantic values of the two component @code{exp} groupings,
3557which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3558The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3559semantic value of
bfa74976
RS
3560the addition-expression just recognized by the rule. If there were a
3561useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3562referred to as @code{$2}.
bfa74976 3563
d013372c
AR
3564@xref{Named References,,Using Named References}, for more information
3565about using the named references construct.
3566
3ded9a63
AD
3567Note that the vertical-bar character @samp{|} is really a rule
3568separator, and actions are attached to a single rule. This is a
3569difference with tools like Flex, for which @samp{|} stands for either
3570``or'', or ``the same action as that of the next rule''. In the
3571following example, the action is triggered only when @samp{b} is found:
3572
3573@example
3574@group
3575a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3576@end group
3577@end example
3578
bfa74976
RS
3579@cindex default action
3580If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3581@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3582becomes the value of the whole rule. Of course, the default action is
3583valid only if the two data types match. There is no meaningful default
3584action for an empty rule; every empty rule must have an explicit action
3585unless the rule's value does not matter.
bfa74976
RS
3586
3587@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3588to tokens and groupings on the stack @emph{before} those that match the
3589current rule. This is a very risky practice, and to use it reliably
3590you must be certain of the context in which the rule is applied. Here
3591is a case in which you can use this reliably:
3592
3593@example
3594@group
3595foo: expr bar '+' expr @{ @dots{} @}
3596 | expr bar '-' expr @{ @dots{} @}
3597 ;
3598@end group
3599
3600@group
3601bar: /* empty */
3602 @{ previous_expr = $0; @}
3603 ;
3604@end group
3605@end example
3606
3607As long as @code{bar} is used only in the fashion shown here, @code{$0}
3608always refers to the @code{expr} which precedes @code{bar} in the
3609definition of @code{foo}.
3610
32c29292 3611@vindex yylval
742e4900 3612It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3613any, from a semantic action.
3614This semantic value is stored in @code{yylval}.
3615@xref{Action Features, ,Special Features for Use in Actions}.
3616
342b8b6e 3617@node Action Types
bfa74976
RS
3618@subsection Data Types of Values in Actions
3619@cindex action data types
3620@cindex data types in actions
3621
3622If you have chosen a single data type for semantic values, the @code{$$}
3623and @code{$@var{n}} constructs always have that data type.
3624
3625If you have used @code{%union} to specify a variety of data types, then you
3626must declare a choice among these types for each terminal or nonterminal
3627symbol that can have a semantic value. Then each time you use @code{$$} or
3628@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3629in the rule. In this example,
bfa74976
RS
3630
3631@example
3632@group
3633exp: @dots{}
3634 | exp '+' exp
3635 @{ $$ = $1 + $3; @}
3636@end group
3637@end example
3638
3639@noindent
3640@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3641have the data type declared for the nonterminal symbol @code{exp}. If
3642@code{$2} were used, it would have the data type declared for the
e0c471a9 3643terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3644
3645Alternatively, you can specify the data type when you refer to the value,
3646by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3647reference. For example, if you have defined types as shown here:
3648
3649@example
3650@group
3651%union @{
3652 int itype;
3653 double dtype;
3654@}
3655@end group
3656@end example
3657
3658@noindent
3659then you can write @code{$<itype>1} to refer to the first subunit of the
3660rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3661
342b8b6e 3662@node Mid-Rule Actions
bfa74976
RS
3663@subsection Actions in Mid-Rule
3664@cindex actions in mid-rule
3665@cindex mid-rule actions
3666
3667Occasionally it is useful to put an action in the middle of a rule.
3668These actions are written just like usual end-of-rule actions, but they
3669are executed before the parser even recognizes the following components.
3670
3671A mid-rule action may refer to the components preceding it using
3672@code{$@var{n}}, but it may not refer to subsequent components because
3673it is run before they are parsed.
3674
3675The mid-rule action itself counts as one of the components of the rule.
3676This makes a difference when there is another action later in the same rule
3677(and usually there is another at the end): you have to count the actions
3678along with the symbols when working out which number @var{n} to use in
3679@code{$@var{n}}.
3680
3681The mid-rule action can also have a semantic value. The action can set
3682its value with an assignment to @code{$$}, and actions later in the rule
3683can refer to the value using @code{$@var{n}}. Since there is no symbol
3684to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3685in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3686specify a data type each time you refer to this value.
bfa74976
RS
3687
3688There is no way to set the value of the entire rule with a mid-rule
3689action, because assignments to @code{$$} do not have that effect. The
3690only way to set the value for the entire rule is with an ordinary action
3691at the end of the rule.
3692
3693Here is an example from a hypothetical compiler, handling a @code{let}
3694statement that looks like @samp{let (@var{variable}) @var{statement}} and
3695serves to create a variable named @var{variable} temporarily for the
3696duration of @var{statement}. To parse this construct, we must put
3697@var{variable} into the symbol table while @var{statement} is parsed, then
3698remove it afterward. Here is how it is done:
3699
3700@example
3701@group
3702stmt: LET '(' var ')'
3703 @{ $<context>$ = push_context ();
3704 declare_variable ($3); @}
3705 stmt @{ $$ = $6;
3706 pop_context ($<context>5); @}
3707@end group
3708@end example
3709
3710@noindent
3711As soon as @samp{let (@var{variable})} has been recognized, the first
3712action is run. It saves a copy of the current semantic context (the
3713list of accessible variables) as its semantic value, using alternative
3714@code{context} in the data-type union. Then it calls
3715@code{declare_variable} to add the new variable to that list. Once the
3716first action is finished, the embedded statement @code{stmt} can be
3717parsed. Note that the mid-rule action is component number 5, so the
3718@samp{stmt} is component number 6.
3719
3720After the embedded statement is parsed, its semantic value becomes the
3721value of the entire @code{let}-statement. Then the semantic value from the
3722earlier action is used to restore the prior list of variables. This
3723removes the temporary @code{let}-variable from the list so that it won't
3724appear to exist while the rest of the program is parsed.
3725
841a7737
JD
3726@findex %destructor
3727@cindex discarded symbols, mid-rule actions
3728@cindex error recovery, mid-rule actions
3729In the above example, if the parser initiates error recovery (@pxref{Error
3730Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3731it might discard the previous semantic context @code{$<context>5} without
3732restoring it.
3733Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3734Discarded Symbols}).
ec5479ce
JD
3735However, Bison currently provides no means to declare a destructor specific to
3736a particular mid-rule action's semantic value.
841a7737
JD
3737
3738One solution is to bury the mid-rule action inside a nonterminal symbol and to
3739declare a destructor for that symbol:
3740
3741@example
3742@group
3743%type <context> let
3744%destructor @{ pop_context ($$); @} let
3745
3746%%
3747
3748stmt: let stmt
3749 @{ $$ = $2;
3750 pop_context ($1); @}
3751 ;
3752
3753let: LET '(' var ')'
3754 @{ $$ = push_context ();
3755 declare_variable ($3); @}
3756 ;
3757
3758@end group
3759@end example
3760
3761@noindent
3762Note that the action is now at the end of its rule.
3763Any mid-rule action can be converted to an end-of-rule action in this way, and
3764this is what Bison actually does to implement mid-rule actions.
3765
bfa74976
RS
3766Taking action before a rule is completely recognized often leads to
3767conflicts since the parser must commit to a parse in order to execute the
3768action. For example, the following two rules, without mid-rule actions,
3769can coexist in a working parser because the parser can shift the open-brace
3770token and look at what follows before deciding whether there is a
3771declaration or not:
3772
3773@example
3774@group
3775compound: '@{' declarations statements '@}'
3776 | '@{' statements '@}'
3777 ;
3778@end group
3779@end example
3780
3781@noindent
3782But when we add a mid-rule action as follows, the rules become nonfunctional:
3783
3784@example
3785@group
3786compound: @{ prepare_for_local_variables (); @}
3787 '@{' declarations statements '@}'
3788@end group
3789@group
3790 | '@{' statements '@}'
3791 ;
3792@end group
3793@end example
3794
3795@noindent
3796Now the parser is forced to decide whether to run the mid-rule action
3797when it has read no farther than the open-brace. In other words, it
3798must commit to using one rule or the other, without sufficient
3799information to do it correctly. (The open-brace token is what is called
742e4900
JD
3800the @dfn{lookahead} token at this time, since the parser is still
3801deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3802
3803You might think that you could correct the problem by putting identical
3804actions into the two rules, like this:
3805
3806@example
3807@group
3808compound: @{ prepare_for_local_variables (); @}
3809 '@{' declarations statements '@}'
3810 | @{ prepare_for_local_variables (); @}
3811 '@{' statements '@}'
3812 ;
3813@end group
3814@end example
3815
3816@noindent
3817But this does not help, because Bison does not realize that the two actions
3818are identical. (Bison never tries to understand the C code in an action.)
3819
3820If the grammar is such that a declaration can be distinguished from a
3821statement by the first token (which is true in C), then one solution which
3822does work is to put the action after the open-brace, like this:
3823
3824@example
3825@group
3826compound: '@{' @{ prepare_for_local_variables (); @}
3827 declarations statements '@}'
3828 | '@{' statements '@}'
3829 ;
3830@end group
3831@end example
3832
3833@noindent
3834Now the first token of the following declaration or statement,
3835which would in any case tell Bison which rule to use, can still do so.
3836
3837Another solution is to bury the action inside a nonterminal symbol which
3838serves as a subroutine:
3839
3840@example
3841@group
3842subroutine: /* empty */
3843 @{ prepare_for_local_variables (); @}
3844 ;
3845
3846@end group
3847
3848@group
3849compound: subroutine
3850 '@{' declarations statements '@}'
3851 | subroutine
3852 '@{' statements '@}'
3853 ;
3854@end group
3855@end example
3856
3857@noindent
3858Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3859deciding which rule for @code{compound} it will eventually use.
bfa74976 3860
d013372c
AR
3861@node Named References
3862@subsection Using Named References
3863@cindex named references
3864
3865While every semantic value can be accessed with positional references
3866@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3867them by name. First of all, original symbol names may be used as named
3868references. For example:
3869
3870@example
3871@group
3872invocation: op '(' args ')'
3873 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3874@end group
3875@end example
3876
3877@noindent
3878The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3879mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3880
3881@example
3882@group
3883invocation: op '(' args ')'
3884 @{ $$ = new_invocation ($op, $args, @@$); @}
3885@end group
3886@end example
3887
3888@noindent
3889However, sometimes regular symbol names are not sufficient due to
3890ambiguities:
3891
3892@example
3893@group
3894exp: exp '/' exp
3895 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3896
3897exp: exp '/' exp
3898 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3899
3900exp: exp '/' exp
3901 @{ $$ = $1 / $3; @} // No error.
3902@end group
3903@end example
3904
3905@noindent
3906When ambiguity occurs, explicitly declared names may be used for values and
3907locations. Explicit names are declared as a bracketed name after a symbol
3908appearance in rule definitions. For example:
3909@example
3910@group
3911exp[result]: exp[left] '/' exp[right]
3912 @{ $result = $left / $right; @}
3913@end group
3914@end example
3915
3916@noindent
3917Explicit names may be declared for RHS and for LHS symbols as well. In order
3918to access a semantic value generated by a mid-rule action, an explicit name
3919may also be declared by putting a bracketed name after the closing brace of
3920the mid-rule action code:
3921@example
3922@group
3923exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3924 @{ $res = $left + $right; @}
3925@end group
3926@end example
3927
3928@noindent
3929
3930In references, in order to specify names containing dots and dashes, an explicit
3931bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3932@example
3933@group
3934if-stmt: IF '(' expr ')' THEN then.stmt ';'
3935 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3936@end group
3937@end example
3938
3939It often happens that named references are followed by a dot, dash or other
3940C punctuation marks and operators. By default, Bison will read
3941@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3942@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3943value. In order to force Bison to recognize @code{name.suffix} in its entirety
3944as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3945must be used.
3946
3947
342b8b6e 3948@node Locations
847bf1f5
AD
3949@section Tracking Locations
3950@cindex location
95923bd6
AD
3951@cindex textual location
3952@cindex location, textual
847bf1f5
AD
3953
3954Though grammar rules and semantic actions are enough to write a fully
72d2299c 3955functional parser, it can be useful to process some additional information,
3e259915
MA
3956especially symbol locations.
3957
704a47c4
AD
3958The way locations are handled is defined by providing a data type, and
3959actions to take when rules are matched.
847bf1f5
AD
3960
3961@menu
3962* Location Type:: Specifying a data type for locations.
3963* Actions and Locations:: Using locations in actions.
3964* Location Default Action:: Defining a general way to compute locations.
3965@end menu
3966
342b8b6e 3967@node Location Type
847bf1f5
AD
3968@subsection Data Type of Locations
3969@cindex data type of locations
3970@cindex default location type
3971
3972Defining a data type for locations is much simpler than for semantic values,
3973since all tokens and groupings always use the same type.
3974
50cce58e
PE
3975You can specify the type of locations by defining a macro called
3976@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3977defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3978When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3979four members:
3980
3981@example
6273355b 3982typedef struct YYLTYPE
847bf1f5
AD
3983@{
3984 int first_line;
3985 int first_column;
3986 int last_line;
3987 int last_column;
6273355b 3988@} YYLTYPE;
847bf1f5
AD
3989@end example
3990
d59e456d
AD
3991When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3992initializes all these fields to 1 for @code{yylloc}. To initialize
3993@code{yylloc} with a custom location type (or to chose a different
3994initialization), use the @code{%initial-action} directive. @xref{Initial
3995Action Decl, , Performing Actions before Parsing}.
cd48d21d 3996
342b8b6e 3997@node Actions and Locations
847bf1f5
AD
3998@subsection Actions and Locations
3999@cindex location actions
4000@cindex actions, location
4001@vindex @@$
4002@vindex @@@var{n}
d013372c
AR
4003@vindex @@@var{name}
4004@vindex @@[@var{name}]
847bf1f5
AD
4005
4006Actions are not only useful for defining language semantics, but also for
4007describing the behavior of the output parser with locations.
4008
4009The most obvious way for building locations of syntactic groupings is very
72d2299c 4010similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4011constructs can be used to access the locations of the elements being matched.
4012The location of the @var{n}th component of the right hand side is
4013@code{@@@var{n}}, while the location of the left hand side grouping is
4014@code{@@$}.
4015
d013372c
AR
4016In addition, the named references construct @code{@@@var{name}} and
4017@code{@@[@var{name}]} may also be used to address the symbol locations.
4018@xref{Named References,,Using Named References}, for more information
4019about using the named references construct.
4020
3e259915 4021Here is a basic example using the default data type for locations:
847bf1f5
AD
4022
4023@example
4024@group
4025exp: @dots{}
3e259915 4026 | exp '/' exp
847bf1f5 4027 @{
3e259915
MA
4028 @@$.first_column = @@1.first_column;
4029 @@$.first_line = @@1.first_line;
847bf1f5
AD
4030 @@$.last_column = @@3.last_column;
4031 @@$.last_line = @@3.last_line;
3e259915
MA
4032 if ($3)
4033 $$ = $1 / $3;
4034 else
4035 @{
4036 $$ = 1;
4e03e201
AD
4037 fprintf (stderr,
4038 "Division by zero, l%d,c%d-l%d,c%d",
4039 @@3.first_line, @@3.first_column,
4040 @@3.last_line, @@3.last_column);
3e259915 4041 @}
847bf1f5
AD
4042 @}
4043@end group
4044@end example
4045
3e259915 4046As for semantic values, there is a default action for locations that is
72d2299c 4047run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4048beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4049last symbol.
3e259915 4050
72d2299c 4051With this default action, the location tracking can be fully automatic. The
3e259915
MA
4052example above simply rewrites this way:
4053
4054@example
4055@group
4056exp: @dots{}
4057 | exp '/' exp
4058 @{
4059 if ($3)
4060 $$ = $1 / $3;
4061 else
4062 @{
4063 $$ = 1;
4e03e201
AD
4064 fprintf (stderr,
4065 "Division by zero, l%d,c%d-l%d,c%d",
4066 @@3.first_line, @@3.first_column,
4067 @@3.last_line, @@3.last_column);
3e259915
MA
4068 @}
4069 @}
4070@end group
4071@end example
847bf1f5 4072
32c29292 4073@vindex yylloc
742e4900 4074It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4075from a semantic action.
4076This location is stored in @code{yylloc}.
4077@xref{Action Features, ,Special Features for Use in Actions}.
4078
342b8b6e 4079@node Location Default Action
847bf1f5
AD
4080@subsection Default Action for Locations
4081@vindex YYLLOC_DEFAULT
8710fc41 4082@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4083
72d2299c 4084Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4085locations are much more general than semantic values, there is room in
4086the output parser to redefine the default action to take for each
72d2299c 4087rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4088matched, before the associated action is run. It is also invoked
4089while processing a syntax error, to compute the error's location.
8710fc41
JD
4090Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4091parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4092of that ambiguity.
847bf1f5 4093
3e259915 4094Most of the time, this macro is general enough to suppress location
79282c6c 4095dedicated code from semantic actions.
847bf1f5 4096
72d2299c 4097The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4098the location of the grouping (the result of the computation). When a
766de5eb 4099rule is matched, the second parameter identifies locations of
96b93a3d 4100all right hand side elements of the rule being matched, and the third
8710fc41
JD
4101parameter is the size of the rule's right hand side.
4102When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4103right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4104When processing a syntax error, the second parameter identifies locations
4105of the symbols that were discarded during error processing, and the third
96b93a3d 4106parameter is the number of discarded symbols.
847bf1f5 4107
766de5eb 4108By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4109
766de5eb 4110@smallexample
847bf1f5 4111@group
766de5eb
PE
4112# define YYLLOC_DEFAULT(Current, Rhs, N) \
4113 do \
4114 if (N) \
4115 @{ \
4116 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4117 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4118 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4119 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4120 @} \
4121 else \
4122 @{ \
4123 (Current).first_line = (Current).last_line = \
4124 YYRHSLOC(Rhs, 0).last_line; \
4125 (Current).first_column = (Current).last_column = \
4126 YYRHSLOC(Rhs, 0).last_column; \
4127 @} \
4128 while (0)
847bf1f5 4129@end group
766de5eb 4130@end smallexample
676385e2 4131
766de5eb
PE
4132where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4133in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4134just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4135
3e259915 4136When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4137
3e259915 4138@itemize @bullet
79282c6c 4139@item
72d2299c 4140All arguments are free of side-effects. However, only the first one (the
3e259915 4141result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4142
3e259915 4143@item
766de5eb
PE
4144For consistency with semantic actions, valid indexes within the
4145right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4146valid index, and it refers to the symbol just before the reduction.
4147During error processing @var{n} is always positive.
0ae99356
PE
4148
4149@item
4150Your macro should parenthesize its arguments, if need be, since the
4151actual arguments may not be surrounded by parentheses. Also, your
4152macro should expand to something that can be used as a single
4153statement when it is followed by a semicolon.
3e259915 4154@end itemize
847bf1f5 4155
342b8b6e 4156@node Declarations
bfa74976
RS
4157@section Bison Declarations
4158@cindex declarations, Bison
4159@cindex Bison declarations
4160
4161The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4162used in formulating the grammar and the data types of semantic values.
4163@xref{Symbols}.
4164
4165All token type names (but not single-character literal tokens such as
4166@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4167declared if you need to specify which data type to use for the semantic
4168value (@pxref{Multiple Types, ,More Than One Value Type}).
4169
4170The first rule in the file also specifies the start symbol, by default.
4171If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4172it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4173Grammars}).
bfa74976
RS
4174
4175@menu
b50d2359 4176* Require Decl:: Requiring a Bison version.
bfa74976
RS
4177* Token Decl:: Declaring terminal symbols.
4178* Precedence Decl:: Declaring terminals with precedence and associativity.
4179* Union Decl:: Declaring the set of all semantic value types.
4180* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4181* Initial Action Decl:: Code run before parsing starts.
72f889cc 4182* Destructor Decl:: Declaring how symbols are freed.
d6328241 4183* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4184* Start Decl:: Specifying the start symbol.
4185* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4186* Push Decl:: Requesting a push parser.
bfa74976
RS
4187* Decl Summary:: Table of all Bison declarations.
4188@end menu
4189
b50d2359
AD
4190@node Require Decl
4191@subsection Require a Version of Bison
4192@cindex version requirement
4193@cindex requiring a version of Bison
4194@findex %require
4195
4196You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4197the requirement is not met, @command{bison} exits with an error (exit
4198status 63).
b50d2359
AD
4199
4200@example
4201%require "@var{version}"
4202@end example
4203
342b8b6e 4204@node Token Decl
bfa74976
RS
4205@subsection Token Type Names
4206@cindex declaring token type names
4207@cindex token type names, declaring
931c7513 4208@cindex declaring literal string tokens
bfa74976
RS
4209@findex %token
4210
4211The basic way to declare a token type name (terminal symbol) is as follows:
4212
4213@example
4214%token @var{name}
4215@end example
4216
4217Bison will convert this into a @code{#define} directive in
4218the parser, so that the function @code{yylex} (if it is in this file)
4219can use the name @var{name} to stand for this token type's code.
4220
d78f0ac9
AD
4221Alternatively, you can use @code{%left}, @code{%right},
4222@code{%precedence}, or
14ded682
AD
4223@code{%nonassoc} instead of @code{%token}, if you wish to specify
4224associativity and precedence. @xref{Precedence Decl, ,Operator
4225Precedence}.
bfa74976
RS
4226
4227You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4228a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4229following the token name:
bfa74976
RS
4230
4231@example
4232%token NUM 300
1452af69 4233%token XNUM 0x12d // a GNU extension
bfa74976
RS
4234@end example
4235
4236@noindent
4237It is generally best, however, to let Bison choose the numeric codes for
4238all token types. Bison will automatically select codes that don't conflict
e966383b 4239with each other or with normal characters.
bfa74976
RS
4240
4241In the event that the stack type is a union, you must augment the
4242@code{%token} or other token declaration to include the data type
704a47c4
AD
4243alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4244Than One Value Type}).
bfa74976
RS
4245
4246For example:
4247
4248@example
4249@group
4250%union @{ /* define stack type */
4251 double val;
4252 symrec *tptr;
4253@}
4254%token <val> NUM /* define token NUM and its type */
4255@end group
4256@end example
4257
931c7513
RS
4258You can associate a literal string token with a token type name by
4259writing the literal string at the end of a @code{%token}
4260declaration which declares the name. For example:
4261
4262@example
4263%token arrow "=>"
4264@end example
4265
4266@noindent
4267For example, a grammar for the C language might specify these names with
4268equivalent literal string tokens:
4269
4270@example
4271%token <operator> OR "||"
4272%token <operator> LE 134 "<="
4273%left OR "<="
4274@end example
4275
4276@noindent
4277Once you equate the literal string and the token name, you can use them
4278interchangeably in further declarations or the grammar rules. The
4279@code{yylex} function can use the token name or the literal string to
4280obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4281Syntax error messages passed to @code{yyerror} from the parser will reference
4282the literal string instead of the token name.
4283
4284The token numbered as 0 corresponds to end of file; the following line
4285allows for nicer error messages referring to ``end of file'' instead
4286of ``$end'':
4287
4288@example
4289%token END 0 "end of file"
4290@end example
931c7513 4291
342b8b6e 4292@node Precedence Decl
bfa74976
RS
4293@subsection Operator Precedence
4294@cindex precedence declarations
4295@cindex declaring operator precedence
4296@cindex operator precedence, declaring
4297
d78f0ac9
AD
4298Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4299@code{%precedence} declaration to
bfa74976
RS
4300declare a token and specify its precedence and associativity, all at
4301once. These are called @dfn{precedence declarations}.
704a47c4
AD
4302@xref{Precedence, ,Operator Precedence}, for general information on
4303operator precedence.
bfa74976 4304
ab7f29f8 4305The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4306@code{%token}: either
4307
4308@example
4309%left @var{symbols}@dots{}
4310@end example
4311
4312@noindent
4313or
4314
4315@example
4316%left <@var{type}> @var{symbols}@dots{}
4317@end example
4318
4319And indeed any of these declarations serves the purposes of @code{%token}.
4320But in addition, they specify the associativity and relative precedence for
4321all the @var{symbols}:
4322
4323@itemize @bullet
4324@item
4325The associativity of an operator @var{op} determines how repeated uses
4326of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4327@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4328grouping @var{y} with @var{z} first. @code{%left} specifies
4329left-associativity (grouping @var{x} with @var{y} first) and
4330@code{%right} specifies right-associativity (grouping @var{y} with
4331@var{z} first). @code{%nonassoc} specifies no associativity, which
4332means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4333considered a syntax error.
4334
d78f0ac9
AD
4335@code{%precedence} gives only precedence to the @var{symbols}, and
4336defines no associativity at all. Use this to define precedence only,
4337and leave any potential conflict due to associativity enabled.
4338
bfa74976
RS
4339@item
4340The precedence of an operator determines how it nests with other operators.
4341All the tokens declared in a single precedence declaration have equal
4342precedence and nest together according to their associativity.
4343When two tokens declared in different precedence declarations associate,
4344the one declared later has the higher precedence and is grouped first.
4345@end itemize
4346
ab7f29f8
JD
4347For backward compatibility, there is a confusing difference between the
4348argument lists of @code{%token} and precedence declarations.
4349Only a @code{%token} can associate a literal string with a token type name.
4350A precedence declaration always interprets a literal string as a reference to a
4351separate token.
4352For example:
4353
4354@example
4355%left OR "<=" // Does not declare an alias.
4356%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4357@end example
4358
342b8b6e 4359@node Union Decl
bfa74976
RS
4360@subsection The Collection of Value Types
4361@cindex declaring value types
4362@cindex value types, declaring
4363@findex %union
4364
287c78f6
PE
4365The @code{%union} declaration specifies the entire collection of
4366possible data types for semantic values. The keyword @code{%union} is
4367followed by braced code containing the same thing that goes inside a
4368@code{union} in C@.
bfa74976
RS
4369
4370For example:
4371
4372@example
4373@group
4374%union @{
4375 double val;
4376 symrec *tptr;
4377@}
4378@end group
4379@end example
4380
4381@noindent
4382This says that the two alternative types are @code{double} and @code{symrec
4383*}. They are given names @code{val} and @code{tptr}; these names are used
4384in the @code{%token} and @code{%type} declarations to pick one of the types
4385for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4386
6273355b
PE
4387As an extension to @acronym{POSIX}, a tag is allowed after the
4388@code{union}. For example:
4389
4390@example
4391@group
4392%union value @{
4393 double val;
4394 symrec *tptr;
4395@}
4396@end group
4397@end example
4398
d6ca7905 4399@noindent
6273355b
PE
4400specifies the union tag @code{value}, so the corresponding C type is
4401@code{union value}. If you do not specify a tag, it defaults to
4402@code{YYSTYPE}.
4403
d6ca7905
PE
4404As another extension to @acronym{POSIX}, you may specify multiple
4405@code{%union} declarations; their contents are concatenated. However,
4406only the first @code{%union} declaration can specify a tag.
4407
6273355b 4408Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4409a semicolon after the closing brace.
4410
ddc8ede1
PE
4411Instead of @code{%union}, you can define and use your own union type
4412@code{YYSTYPE} if your grammar contains at least one
4413@samp{<@var{type}>} tag. For example, you can put the following into
4414a header file @file{parser.h}:
4415
4416@example
4417@group
4418union YYSTYPE @{
4419 double val;
4420 symrec *tptr;
4421@};
4422typedef union YYSTYPE YYSTYPE;
4423@end group
4424@end example
4425
4426@noindent
4427and then your grammar can use the following
4428instead of @code{%union}:
4429
4430@example
4431@group
4432%@{
4433#include "parser.h"
4434%@}
4435%type <val> expr
4436%token <tptr> ID
4437@end group
4438@end example
4439
342b8b6e 4440@node Type Decl
bfa74976
RS
4441@subsection Nonterminal Symbols
4442@cindex declaring value types, nonterminals
4443@cindex value types, nonterminals, declaring
4444@findex %type
4445
4446@noindent
4447When you use @code{%union} to specify multiple value types, you must
4448declare the value type of each nonterminal symbol for which values are
4449used. This is done with a @code{%type} declaration, like this:
4450
4451@example
4452%type <@var{type}> @var{nonterminal}@dots{}
4453@end example
4454
4455@noindent
704a47c4
AD
4456Here @var{nonterminal} is the name of a nonterminal symbol, and
4457@var{type} is the name given in the @code{%union} to the alternative
4458that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4459can give any number of nonterminal symbols in the same @code{%type}
4460declaration, if they have the same value type. Use spaces to separate
4461the symbol names.
bfa74976 4462
931c7513
RS
4463You can also declare the value type of a terminal symbol. To do this,
4464use the same @code{<@var{type}>} construction in a declaration for the
4465terminal symbol. All kinds of token declarations allow
4466@code{<@var{type}>}.
4467
18d192f0
AD
4468@node Initial Action Decl
4469@subsection Performing Actions before Parsing
4470@findex %initial-action
4471
4472Sometimes your parser needs to perform some initializations before
4473parsing. The @code{%initial-action} directive allows for such arbitrary
4474code.
4475
4476@deffn {Directive} %initial-action @{ @var{code} @}
4477@findex %initial-action
287c78f6 4478Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4479@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4480@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4481@code{%parse-param}.
18d192f0
AD
4482@end deffn
4483
451364ed
AD
4484For instance, if your locations use a file name, you may use
4485
4486@example
48b16bbc 4487%parse-param @{ char const *file_name @};
451364ed
AD
4488%initial-action
4489@{
4626a15d 4490 @@$.initialize (file_name);
451364ed
AD
4491@};
4492@end example
4493
18d192f0 4494
72f889cc
AD
4495@node Destructor Decl
4496@subsection Freeing Discarded Symbols
4497@cindex freeing discarded symbols
4498@findex %destructor
12e35840 4499@findex <*>
3ebecc24 4500@findex <>
a85284cf
AD
4501During error recovery (@pxref{Error Recovery}), symbols already pushed
4502on the stack and tokens coming from the rest of the file are discarded
4503until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4504or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4505symbols on the stack must be discarded. Even if the parser succeeds, it
4506must discard the start symbol.
258b75ca
PE
4507
4508When discarded symbols convey heap based information, this memory is
4509lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4510in traditional compilers, it is unacceptable for programs like shells or
4511protocol implementations that may parse and execute indefinitely.
258b75ca 4512
a85284cf
AD
4513The @code{%destructor} directive defines code that is called when a
4514symbol is automatically discarded.
72f889cc
AD
4515
4516@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4517@findex %destructor
287c78f6
PE
4518Invoke the braced @var{code} whenever the parser discards one of the
4519@var{symbols}.
4b367315 4520Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4521with the discarded symbol, and @code{@@$} designates its location.
4522The additional parser parameters are also available (@pxref{Parser Function, ,
4523The Parser Function @code{yyparse}}).
ec5479ce 4524
b2a0b7ca
JD
4525When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4526per-symbol @code{%destructor}.
4527You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4528tag among @var{symbols}.
b2a0b7ca 4529In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4530grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4531per-symbol @code{%destructor}.
4532
12e35840 4533Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4534(These default forms are experimental.
4535More user feedback will help to determine whether they should become permanent
4536features.)
3ebecc24 4537You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4538exactly one @code{%destructor} declaration in your grammar file.
4539The parser will invoke the @var{code} associated with one of these whenever it
4540discards any user-defined grammar symbol that has no per-symbol and no per-type
4541@code{%destructor}.
4542The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4543symbol for which you have formally declared a semantic type tag (@code{%type}
4544counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4545The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4546symbol that has no declared semantic type tag.
72f889cc
AD
4547@end deffn
4548
b2a0b7ca 4549@noindent
12e35840 4550For example:
72f889cc
AD
4551
4552@smallexample
ec5479ce
JD
4553%union @{ char *string; @}
4554%token <string> STRING1
4555%token <string> STRING2
4556%type <string> string1
4557%type <string> string2
b2a0b7ca
JD
4558%union @{ char character; @}
4559%token <character> CHR
4560%type <character> chr
12e35840
JD
4561%token TAGLESS
4562
b2a0b7ca 4563%destructor @{ @} <character>
12e35840
JD
4564%destructor @{ free ($$); @} <*>
4565%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4566%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4567@end smallexample
4568
4569@noindent
b2a0b7ca
JD
4570guarantees that, when the parser discards any user-defined symbol that has a
4571semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4572to @code{free} by default.
ec5479ce
JD
4573However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4574prints its line number to @code{stdout}.
4575It performs only the second @code{%destructor} in this case, so it invokes
4576@code{free} only once.
12e35840
JD
4577Finally, the parser merely prints a message whenever it discards any symbol,
4578such as @code{TAGLESS}, that has no semantic type tag.
4579
4580A Bison-generated parser invokes the default @code{%destructor}s only for
4581user-defined as opposed to Bison-defined symbols.
4582For example, the parser will not invoke either kind of default
4583@code{%destructor} for the special Bison-defined symbols @code{$accept},
4584@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4585none of which you can reference in your grammar.
4586It also will not invoke either for the @code{error} token (@pxref{Table of
4587Symbols, ,error}), which is always defined by Bison regardless of whether you
4588reference it in your grammar.
4589However, it may invoke one of them for the end token (token 0) if you
4590redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4591
4592@smallexample
4593%token END 0
4594@end smallexample
4595
12e35840
JD
4596@cindex actions in mid-rule
4597@cindex mid-rule actions
4598Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4599mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4600That is, Bison does not consider a mid-rule to have a semantic value if you do
4601not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4602@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4603rule.
4604However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4605@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4606
3508ce36
JD
4607@ignore
4608@noindent
4609In the future, it may be possible to redefine the @code{error} token as a
4610nonterminal that captures the discarded symbols.
4611In that case, the parser will invoke the default destructor for it as well.
4612@end ignore
4613
e757bb10
AD
4614@sp 1
4615
4616@cindex discarded symbols
4617@dfn{Discarded symbols} are the following:
4618
4619@itemize
4620@item
4621stacked symbols popped during the first phase of error recovery,
4622@item
4623incoming terminals during the second phase of error recovery,
4624@item
742e4900 4625the current lookahead and the entire stack (except the current
9d9b8b70 4626right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4627@item
4628the start symbol, when the parser succeeds.
e757bb10
AD
4629@end itemize
4630
9d9b8b70
PE
4631The parser can @dfn{return immediately} because of an explicit call to
4632@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4633exhaustion.
4634
29553547 4635Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4636error via @code{YYERROR} are not discarded automatically. As a rule
4637of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4638the memory.
e757bb10 4639
342b8b6e 4640@node Expect Decl
bfa74976
RS
4641@subsection Suppressing Conflict Warnings
4642@cindex suppressing conflict warnings
4643@cindex preventing warnings about conflicts
4644@cindex warnings, preventing
4645@cindex conflicts, suppressing warnings of
4646@findex %expect
d6328241 4647@findex %expect-rr
bfa74976
RS
4648
4649Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4650(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4651have harmless shift/reduce conflicts which are resolved in a predictable
4652way and would be difficult to eliminate. It is desirable to suppress
4653the warning about these conflicts unless the number of conflicts
4654changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4655
4656The declaration looks like this:
4657
4658@example
4659%expect @var{n}
4660@end example
4661
035aa4a0
PE
4662Here @var{n} is a decimal integer. The declaration says there should
4663be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4664Bison reports an error if the number of shift/reduce conflicts differs
4665from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4666
eb45ef3b 4667For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4668serious, and should be eliminated entirely. Bison will always report
4669reduce/reduce conflicts for these parsers. With @acronym{GLR}
4670parsers, however, both kinds of conflicts are routine; otherwise,
4671there would be no need to use @acronym{GLR} parsing. Therefore, it is
4672also possible to specify an expected number of reduce/reduce conflicts
4673in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4674
4675@example
4676%expect-rr @var{n}
4677@end example
4678
bfa74976
RS
4679In general, using @code{%expect} involves these steps:
4680
4681@itemize @bullet
4682@item
4683Compile your grammar without @code{%expect}. Use the @samp{-v} option
4684to get a verbose list of where the conflicts occur. Bison will also
4685print the number of conflicts.
4686
4687@item
4688Check each of the conflicts to make sure that Bison's default
4689resolution is what you really want. If not, rewrite the grammar and
4690go back to the beginning.
4691
4692@item
4693Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4694number which Bison printed. With @acronym{GLR} parsers, add an
4695@code{%expect-rr} declaration as well.
bfa74976
RS
4696@end itemize
4697
035aa4a0
PE
4698Now Bison will warn you if you introduce an unexpected conflict, but
4699will keep silent otherwise.
bfa74976 4700
342b8b6e 4701@node Start Decl
bfa74976
RS
4702@subsection The Start-Symbol
4703@cindex declaring the start symbol
4704@cindex start symbol, declaring
4705@cindex default start symbol
4706@findex %start
4707
4708Bison assumes by default that the start symbol for the grammar is the first
4709nonterminal specified in the grammar specification section. The programmer
4710may override this restriction with the @code{%start} declaration as follows:
4711
4712@example
4713%start @var{symbol}
4714@end example
4715
342b8b6e 4716@node Pure Decl
bfa74976
RS
4717@subsection A Pure (Reentrant) Parser
4718@cindex reentrant parser
4719@cindex pure parser
d9df47b6 4720@findex %define api.pure
bfa74976
RS
4721
4722A @dfn{reentrant} program is one which does not alter in the course of
4723execution; in other words, it consists entirely of @dfn{pure} (read-only)
4724code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4725for example, a nonreentrant program may not be safe to call from a signal
4726handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4727program must be called only within interlocks.
4728
70811b85 4729Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4730suitable for most uses, and it permits compatibility with Yacc. (The
4731standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4732statically allocated variables for communication with @code{yylex},
4733including @code{yylval} and @code{yylloc}.)
bfa74976 4734
70811b85 4735Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4736declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4737reentrant. It looks like this:
bfa74976
RS
4738
4739@example
d9df47b6 4740%define api.pure
bfa74976
RS
4741@end example
4742
70811b85
RS
4743The result is that the communication variables @code{yylval} and
4744@code{yylloc} become local variables in @code{yyparse}, and a different
4745calling convention is used for the lexical analyzer function
4746@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4747Parsers}, for the details of this. The variable @code{yynerrs}
4748becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4749of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4750Reporting Function @code{yyerror}}). The convention for calling
4751@code{yyparse} itself is unchanged.
4752
4753Whether the parser is pure has nothing to do with the grammar rules.
4754You can generate either a pure parser or a nonreentrant parser from any
4755valid grammar.
bfa74976 4756
9987d1b3
JD
4757@node Push Decl
4758@subsection A Push Parser
4759@cindex push parser
4760@cindex push parser
67212941 4761@findex %define api.push-pull
9987d1b3 4762
59da312b
JD
4763(The current push parsing interface is experimental and may evolve.
4764More user feedback will help to stabilize it.)
4765
f4101aa6
AD
4766A pull parser is called once and it takes control until all its input
4767is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4768each time a new token is made available.
4769
f4101aa6 4770A push parser is typically useful when the parser is part of a
9987d1b3 4771main event loop in the client's application. This is typically
f4101aa6
AD
4772a requirement of a GUI, when the main event loop needs to be triggered
4773within a certain time period.
9987d1b3 4774
d782395d
JD
4775Normally, Bison generates a pull parser.
4776The following Bison declaration says that you want the parser to be a push
67212941 4777parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4778
4779@example
cf499cff 4780%define api.push-pull push
9987d1b3
JD
4781@end example
4782
4783In almost all cases, you want to ensure that your push parser is also
4784a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4785time you should create an impure push parser is to have backwards
9987d1b3
JD
4786compatibility with the impure Yacc pull mode interface. Unless you know
4787what you are doing, your declarations should look like this:
4788
4789@example
d9df47b6 4790%define api.pure
cf499cff 4791%define api.push-pull push
9987d1b3
JD
4792@end example
4793
f4101aa6
AD
4794There is a major notable functional difference between the pure push parser
4795and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4796many parser instances, of the same type of parser, in memory at the same time.
4797An impure push parser should only use one parser at a time.
4798
4799When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4800the generated parser. @code{yypstate} is a structure that the generated
4801parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4802function that will create a new parser instance. @code{yypstate_delete}
4803will free the resources associated with the corresponding parser instance.
f4101aa6 4804Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4805token is available to provide the parser. A trivial example
4806of using a pure push parser would look like this:
4807
4808@example
4809int status;
4810yypstate *ps = yypstate_new ();
4811do @{
4812 status = yypush_parse (ps, yylex (), NULL);
4813@} while (status == YYPUSH_MORE);
4814yypstate_delete (ps);
4815@end example
4816
4817If the user decided to use an impure push parser, a few things about
f4101aa6 4818the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4819a global variable instead of a variable in the @code{yypush_parse} function.
4820For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4821changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4822example would thus look like this:
4823
4824@example
4825extern int yychar;
4826int status;
4827yypstate *ps = yypstate_new ();
4828do @{
4829 yychar = yylex ();
4830 status = yypush_parse (ps);
4831@} while (status == YYPUSH_MORE);
4832yypstate_delete (ps);
4833@end example
4834
f4101aa6 4835That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4836for use by the next invocation of the @code{yypush_parse} function.
4837
f4101aa6 4838Bison also supports both the push parser interface along with the pull parser
9987d1b3 4839interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4840you should replace the @samp{%define api.push-pull push} declaration with the
4841@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4842the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4843and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4844would be used. However, the user should note that it is implemented in the
d782395d
JD
4845generated parser by calling @code{yypull_parse}.
4846This makes the @code{yyparse} function that is generated with the
cf499cff 4847@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4848@code{yyparse} function. If the user
4849calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4850stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4851and then @code{yypull_parse} the rest of the input stream. If you would like
4852to switch back and forth between between parsing styles, you would have to
4853write your own @code{yypull_parse} function that knows when to quit looking
4854for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4855like this:
4856
4857@example
4858yypstate *ps = yypstate_new ();
4859yypull_parse (ps); /* Will call the lexer */
4860yypstate_delete (ps);
4861@end example
4862
67501061 4863Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4864the generated parser with @samp{%define api.push-pull both} as it did for
4865@samp{%define api.push-pull push}.
9987d1b3 4866
342b8b6e 4867@node Decl Summary
bfa74976
RS
4868@subsection Bison Declaration Summary
4869@cindex Bison declaration summary
4870@cindex declaration summary
4871@cindex summary, Bison declaration
4872
d8988b2f 4873Here is a summary of the declarations used to define a grammar:
bfa74976 4874
18b519c0 4875@deffn {Directive} %union
bfa74976
RS
4876Declare the collection of data types that semantic values may have
4877(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4878@end deffn
bfa74976 4879
18b519c0 4880@deffn {Directive} %token
bfa74976
RS
4881Declare a terminal symbol (token type name) with no precedence
4882or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4883@end deffn
bfa74976 4884
18b519c0 4885@deffn {Directive} %right
bfa74976
RS
4886Declare a terminal symbol (token type name) that is right-associative
4887(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4888@end deffn
bfa74976 4889
18b519c0 4890@deffn {Directive} %left
bfa74976
RS
4891Declare a terminal symbol (token type name) that is left-associative
4892(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4893@end deffn
bfa74976 4894
18b519c0 4895@deffn {Directive} %nonassoc
bfa74976 4896Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4897(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4898Using it in a way that would be associative is a syntax error.
4899@end deffn
4900
91d2c560 4901@ifset defaultprec
39a06c25 4902@deffn {Directive} %default-prec
22fccf95 4903Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4904(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4905@end deffn
91d2c560 4906@end ifset
bfa74976 4907
18b519c0 4908@deffn {Directive} %type
bfa74976
RS
4909Declare the type of semantic values for a nonterminal symbol
4910(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Directive} %start
89cab50d
AD
4914Specify the grammar's start symbol (@pxref{Start Decl, ,The
4915Start-Symbol}).
18b519c0 4916@end deffn
bfa74976 4917
18b519c0 4918@deffn {Directive} %expect
bfa74976
RS
4919Declare the expected number of shift-reduce conflicts
4920(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4921@end deffn
4922
bfa74976 4923
d8988b2f
AD
4924@sp 1
4925@noindent
4926In order to change the behavior of @command{bison}, use the following
4927directives:
4928
148d66d8
JD
4929@deffn {Directive} %code @{@var{code}@}
4930@findex %code
4931This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4932It inserts @var{code} verbatim at a language-dependent default location in the
4933output@footnote{The default location is actually skeleton-dependent;
4934 writers of non-standard skeletons however should choose the default location
4935 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4936
4937@cindex Prologue
8405b70c 4938For C/C++, the default location is the parser source code
148d66d8
JD
4939file after the usual contents of the parser header file.
4940Thus, @code{%code} replaces the traditional Yacc prologue,
4941@code{%@{@var{code}%@}}, for most purposes.
4942For a detailed discussion, see @ref{Prologue Alternatives}.
4943
8405b70c 4944For Java, the default location is inside the parser class.
148d66d8
JD
4945@end deffn
4946
4947@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4948This is the qualified form of the @code{%code} directive.
4949If you need to specify location-sensitive verbatim @var{code} that does not
4950belong at the default location selected by the unqualified @code{%code} form,
4951use this form instead.
4952
4953@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4954where Bison should generate it.
c6abeab1
JD
4955Not all @var{qualifier}s are accepted for all target languages.
4956Unaccepted @var{qualifier}s produce an error.
4957Some of the accepted @var{qualifier}s are:
148d66d8
JD
4958
4959@itemize @bullet
148d66d8 4960@item requires
793fbca5 4961@findex %code requires
148d66d8
JD
4962
4963@itemize @bullet
4964@item Language(s): C, C++
4965
4966@item Purpose: This is the best place to write dependency code required for
4967@code{YYSTYPE} and @code{YYLTYPE}.
4968In other words, it's the best place to define types referenced in @code{%union}
4969directives, and it's the best place to override Bison's default @code{YYSTYPE}
4970and @code{YYLTYPE} definitions.
4971
4972@item Location(s): The parser header file and the parser source code file
4973before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4974@end itemize
4975
4976@item provides
4977@findex %code provides
4978
4979@itemize @bullet
4980@item Language(s): C, C++
4981
4982@item Purpose: This is the best place to write additional definitions and
4983declarations that should be provided to other modules.
4984
4985@item Location(s): The parser header file and the parser source code file after
4986the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4987@end itemize
4988
4989@item top
4990@findex %code top
4991
4992@itemize @bullet
4993@item Language(s): C, C++
4994
4995@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4996usually be more appropriate than @code{%code top}.
4997However, occasionally it is necessary to insert code much nearer the top of the
4998parser source code file.
4999For example:
5000
5001@smallexample
5002%code top @{
5003 #define _GNU_SOURCE
5004 #include <stdio.h>
5005@}
5006@end smallexample
5007
5008@item Location(s): Near the top of the parser source code file.
5009@end itemize
8405b70c 5010
148d66d8
JD
5011@item imports
5012@findex %code imports
5013
5014@itemize @bullet
5015@item Language(s): Java
5016
5017@item Purpose: This is the best place to write Java import directives.
5018
5019@item Location(s): The parser Java file after any Java package directive and
5020before any class definitions.
5021@end itemize
148d66d8
JD
5022@end itemize
5023
148d66d8
JD
5024@cindex Prologue
5025For a detailed discussion of how to use @code{%code} in place of the
5026traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5027@end deffn
5028
18b519c0 5029@deffn {Directive} %debug
fa819509
AD
5030Instrument the output parser for traces. Obsoleted by @samp{%define
5031parse.trace}.
ec3bc396 5032@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5033@end deffn
d8988b2f 5034
c1d19e10 5035@deffn {Directive} %define @var{variable}
cf499cff 5036@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5037@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5038Define a variable to adjust Bison's behavior.
9611cfa2 5039
0b6d43c5 5040It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5041times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5042
cf499cff
JD
5043@var{value} must be placed in quotation marks if it contains any
5044character other than a letter, underscore, period, dash, or non-initial
5045digit.
5046
5047Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5048@code{""}.
5049
c6abeab1 5050Some @var{variable}s take Boolean values.
9611cfa2
JD
5051In this case, Bison will complain if the variable definition does not meet one
5052of the following four conditions:
5053
5054@enumerate
cf499cff 5055@item @code{@var{value}} is @code{true}
9611cfa2 5056
cf499cff
JD
5057@item @code{@var{value}} is omitted (or @code{""} is specified).
5058This is equivalent to @code{true}.
9611cfa2 5059
cf499cff 5060@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5061
5062@item @var{variable} is never defined.
c6abeab1 5063In this case, Bison selects a default value.
9611cfa2 5064@end enumerate
148d66d8 5065
c6abeab1
JD
5066What @var{variable}s are accepted, as well as their meanings and default
5067values, depend on the selected target language and/or the parser
5068skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5069Summary,,%skeleton}).
5070Unaccepted @var{variable}s produce an error.
793fbca5
JD
5071Some of the accepted @var{variable}s are:
5072
fa819509 5073@table @code
6b5a0de9 5074@c ================================================== api.namespace
67501061
AD
5075@item api.namespace
5076@findex %define api.namespace
5077@itemize
5078@item Languages(s): C++
5079
5080@item Purpose: Specifies the namespace for the parser class.
5081For example, if you specify:
5082
5083@smallexample
5084%define api.namespace "foo::bar"
5085@end smallexample
5086
5087Bison uses @code{foo::bar} verbatim in references such as:
5088
5089@smallexample
5090foo::bar::parser::semantic_type
5091@end smallexample
5092
5093However, to open a namespace, Bison removes any leading @code{::} and then
5094splits on any remaining occurrences:
5095
5096@smallexample
5097namespace foo @{ namespace bar @{
5098 class position;
5099 class location;
5100@} @}
5101@end smallexample
5102
5103@item Accepted Values:
5104Any absolute or relative C++ namespace reference without a trailing
5105@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5106
5107@item Default Value:
5108The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5109This usage of @code{%name-prefix} is for backward compatibility and can
5110be confusing since @code{%name-prefix} also specifies the textual prefix
5111for the lexical analyzer function. Thus, if you specify
5112@code{%name-prefix}, it is best to also specify @samp{%define
5113api.namespace} so that @code{%name-prefix} @emph{only} affects the
5114lexical analyzer function. For example, if you specify:
5115
5116@smallexample
5117%define api.namespace "foo"
5118%name-prefix "bar::"
5119@end smallexample
5120
5121The parser namespace is @code{foo} and @code{yylex} is referenced as
5122@code{bar::lex}.
5123@end itemize
5124@c namespace
5125
5126
5127
5128@c ================================================== api.pure
d9df47b6
JD
5129@item api.pure
5130@findex %define api.pure
5131
5132@itemize @bullet
5133@item Language(s): C
5134
5135@item Purpose: Request a pure (reentrant) parser program.
5136@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5137
5138@item Accepted Values: Boolean
5139
cf499cff 5140@item Default Value: @code{false}
d9df47b6 5141@end itemize
71b00ed8 5142@c api.pure
d9df47b6 5143
67501061
AD
5144
5145
5146@c ================================================== api.push-pull
67212941
JD
5147@item api.push-pull
5148@findex %define api.push-pull
793fbca5
JD
5149
5150@itemize @bullet
eb45ef3b 5151@item Language(s): C (deterministic parsers only)
793fbca5
JD
5152
5153@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 5154@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5155(The current push parsing interface is experimental and may evolve.
5156More user feedback will help to stabilize it.)
793fbca5 5157
cf499cff 5158@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5159
cf499cff 5160@item Default Value: @code{pull}
793fbca5 5161@end itemize
67212941 5162@c api.push-pull
71b00ed8 5163
6b5a0de9
AD
5164
5165
5166@c ================================================== api.tokens.prefix
4c6622c2
AD
5167@item api.tokens.prefix
5168@findex %define api.tokens.prefix
5169
5170@itemize
5171@item Languages(s): all
5172
5173@item Purpose:
5174Add a prefix to the token names when generating their definition in the
5175target language. For instance
5176
5177@example
5178%token FILE for ERROR
5179%define api.tokens.prefix "TOK_"
5180%%
5181start: FILE for ERROR;
5182@end example
5183
5184@noindent
5185generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5186and @code{TOK_ERROR} in the generated source files. In particular, the
5187scanner must use these prefixed token names, while the grammar itself
5188may still use the short names (as in the sample rule given above). The
5189generated informational files (@file{*.output}, @file{*.xml},
5190@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5191and @ref{Calc++ Scanner}, for a complete example.
5192
5193@item Accepted Values:
5194Any string. Should be a valid identifier prefix in the target language,
5195in other words, it should typically be an identifier itself (sequence of
5196letters, underscores, and ---not at the beginning--- digits).
5197
5198@item Default Value:
5199empty
5200@end itemize
5201@c api.tokens.prefix
5202
5203
3cdc21cf
AD
5204@c ================================================== lex_symbol
5205@item variant
5206@findex %define lex_symbol
5207
5208@itemize @bullet
5209@item Language(s):
5210C++
5211
5212@item Purpose:
5213When variant-based semantic values are enabled (@pxref{C++ Variants}),
5214request that symbols be handled as a whole (type, value, and possibly
5215location) in the scanner. @xref{Complete Symbols}, for details.
5216
5217@item Accepted Values:
5218Boolean.
5219
5220@item Default Value:
5221@code{false}
5222@end itemize
5223@c lex_symbol
5224
5225
6b5a0de9
AD
5226@c ================================================== lr.default-reductions
5227
5bab9d08 5228@item lr.default-reductions
110ef36a 5229@cindex default reductions
5bab9d08 5230@findex %define lr.default-reductions
eb45ef3b
JD
5231@cindex delayed syntax errors
5232@cindex syntax errors delayed
5233
5234@itemize @bullet
5235@item Language(s): all
5236
5237@item Purpose: Specifies the kind of states that are permitted to
110ef36a
JD
5238contain default reductions.
5239That is, in such a state, Bison declares the reduction with the largest
5240lookahead set to be the default reduction and then removes that
5241lookahead set.
5242The advantages of default reductions are discussed below.
eb45ef3b
JD
5243The disadvantage is that, when the generated parser encounters a
5244syntactically unacceptable token, the parser might then perform
110ef36a 5245unnecessary default reductions before it can detect the syntax error.
eb45ef3b
JD
5246
5247(This feature is experimental.
5248More user feedback will help to stabilize it.)
5249
5250@item Accepted Values:
5251@itemize
cf499cff 5252@item @code{all}.
eb45ef3b
JD
5253For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
5254Summary,,lr.type}) by default, all states are permitted to contain
110ef36a 5255default reductions.
eb45ef3b
JD
5256The advantage is that parser table sizes can be significantly reduced.
5257The reason Bison does not by default attempt to address the disadvantage
5258of delayed syntax error detection is that this disadvantage is already
5259inherent in @acronym{LALR} and @acronym{IELR} parser tables.
110ef36a
JD
5260That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
5261reductions in an @acronym{LALR} or @acronym{IELR} state can contain
5262tokens that are syntactically incorrect for some left contexts.
eb45ef3b 5263
cf499cff 5264@item @code{consistent}.
eb45ef3b
JD
5265@cindex consistent states
5266A consistent state is a state that has only one possible action.
5267If that action is a reduction, then the parser does not need to request
5268a lookahead token from the scanner before performing that action.
5269However, the parser only recognizes the ability to ignore the lookahead
110ef36a
JD
5270token when such a reduction is encoded as a default reduction.
5271Thus, if default reductions are permitted in and only in consistent
5272states, then a canonical @acronym{LR} parser reports a syntax error as
5273soon as it @emph{needs} the syntactically unacceptable token from the
5274scanner.
eb45ef3b 5275
cf499cff 5276@item @code{accepting}.
eb45ef3b 5277@cindex accepting state
110ef36a
JD
5278By default, the only default reduction permitted in a canonical
5279@acronym{LR} parser is the accept action in the accepting state, which
5280the parser reaches only after reading all tokens from the input.
eb45ef3b
JD
5281Thus, the default canonical @acronym{LR} parser reports a syntax error
5282as soon as it @emph{reaches} the syntactically unacceptable token
5283without performing any extra reductions.
5284@end itemize
5285
5286@item Default Value:
5287@itemize
cf499cff
JD
5288@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5289@item @code{all} otherwise.
eb45ef3b
JD
5290@end itemize
5291@end itemize
5292
6b5a0de9
AD
5293@c ============================================ lr.keep-unreachable-states
5294
67212941
JD
5295@item lr.keep-unreachable-states
5296@findex %define lr.keep-unreachable-states
31984206
JD
5297
5298@itemize @bullet
5299@item Language(s): all
5300
5301@item Purpose: Requests that Bison allow unreachable parser states to remain in
5302the parser tables.
5303Bison considers a state to be unreachable if there exists no sequence of
5304transitions from the start state to that state.
5305A state can become unreachable during conflict resolution if Bison disables a
5306shift action leading to it from a predecessor state.
5307Keeping unreachable states is sometimes useful for analysis purposes, but they
5308are useless in the generated parser.
5309
5310@item Accepted Values: Boolean
5311
cf499cff 5312@item Default Value: @code{false}
31984206
JD
5313
5314@item Caveats:
5315
5316@itemize @bullet
cff03fb2
JD
5317
5318@item Unreachable states may contain conflicts and may use rules not used in
5319any other state.
31984206
JD
5320Thus, keeping unreachable states may induce warnings that are irrelevant to
5321your parser's behavior, and it may eliminate warnings that are relevant.
5322Of course, the change in warnings may actually be relevant to a parser table
5323analysis that wants to keep unreachable states, so this behavior will likely
5324remain in future Bison releases.
5325
5326@item While Bison is able to remove unreachable states, it is not guaranteed to
5327remove other kinds of useless states.
5328Specifically, when Bison disables reduce actions during conflict resolution,
5329some goto actions may become useless, and thus some additional states may
5330become useless.
5331If Bison were to compute which goto actions were useless and then disable those
5332actions, it could identify such states as unreachable and then remove those
5333states.
5334However, Bison does not compute which goto actions are useless.
5335@end itemize
5336@end itemize
67212941 5337@c lr.keep-unreachable-states
31984206 5338
6b5a0de9
AD
5339@c ================================================== lr.type
5340
eb45ef3b
JD
5341@item lr.type
5342@findex %define lr.type
5343@cindex @acronym{LALR}
5344@cindex @acronym{IELR}
5345@cindex @acronym{LR}
5346
5347@itemize @bullet
5348@item Language(s): all
5349
5350@item Purpose: Specifies the type of parser tables within the
5351@acronym{LR}(1) family.
5352(This feature is experimental.
5353More user feedback will help to stabilize it.)
5354
5355@item Accepted Values:
5356@itemize
cf499cff 5357@item @code{lalr}.
eb45ef3b
JD
5358While Bison generates @acronym{LALR} parser tables by default for
5359historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5360always preferable for deterministic parsers.
5361The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5362mysterious conflicts and thus may not accept the full set of sentences
5363that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5364@xref{Mystery Conflicts}, for details.
5365However, there are at least two scenarios where @acronym{LALR} may be
5366worthwhile:
5367@itemize
5368@cindex @acronym{GLR} with @acronym{LALR}
5369@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5370do not resolve any conflicts statically (for example, with @code{%left}
5371or @code{%prec}), then the parser explores all potential parses of any
5372given input.
110ef36a
JD
5373In this case, the use of @acronym{LALR} parser tables is guaranteed not
5374to alter the language accepted by the parser.
eb45ef3b
JD
5375@acronym{LALR} parser tables are the smallest parser tables Bison can
5376currently generate, so they may be preferable.
5377
5378@item Occasionally during development, an especially malformed grammar
5379with a major recurring flaw may severely impede the @acronym{IELR} or
5380canonical @acronym{LR} parser table generation algorithm.
5381@acronym{LALR} can be a quick way to generate parser tables in order to
5382investigate such problems while ignoring the more subtle differences
5383from @acronym{IELR} and canonical @acronym{LR}.
5384@end itemize
5385
cf499cff 5386@item @code{ielr}.
eb45ef3b
JD
5387@acronym{IELR} is a minimal @acronym{LR} algorithm.
5388That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5389@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5390set of sentences.
5391However, as for @acronym{LALR}, the number of parser states is often an
5392order of magnitude less for @acronym{IELR} than for canonical
5393@acronym{LR}.
5394More importantly, because canonical @acronym{LR}'s extra parser states
5395may contain duplicate conflicts in the case of non-@acronym{LR}
5396grammars, the number of conflicts for @acronym{IELR} is often an order
5397of magnitude less as well.
5398This can significantly reduce the complexity of developing of a grammar.
5399
cf499cff 5400@item @code{canonical-lr}.
eb45ef3b
JD
5401@cindex delayed syntax errors
5402@cindex syntax errors delayed
110ef36a
JD
5403The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5404that, for every left context of every canonical @acronym{LR} state, the
5405set of tokens accepted by that state is the exact set of tokens that is
5406syntactically acceptable in that left context.
5407Thus, the only difference in parsing behavior is that the canonical
eb45ef3b
JD
5408@acronym{LR} parser can report a syntax error as soon as possible
5409without performing any unnecessary reductions.
5bab9d08 5410@xref{Decl Summary,,lr.default-reductions}, for further details.
eb45ef3b
JD
5411Even when canonical @acronym{LR} behavior is ultimately desired,
5412@acronym{IELR}'s elimination of duplicate conflicts should still
5413facilitate the development of a grammar.
5414@end itemize
5415
cf499cff 5416@item Default Value: @code{lalr}
eb45ef3b
JD
5417@end itemize
5418
67501061
AD
5419
5420@c ================================================== namespace
793fbca5
JD
5421@item namespace
5422@findex %define namespace
67501061 5423Obsoleted by @code{api.namespace}
fa819509
AD
5424@c namespace
5425
31b850d2
AD
5426
5427@c ================================================== parse.assert
0c90a1f5
AD
5428@item parse.assert
5429@findex %define parse.assert
5430
5431@itemize
5432@item Languages(s): C++
5433
5434@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5435In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5436constructed and
0c90a1f5
AD
5437destroyed properly. This option checks these constraints.
5438
5439@item Accepted Values: Boolean
5440
5441@item Default Value: @code{false}
5442@end itemize
5443@c parse.assert
5444
31b850d2
AD
5445
5446@c ================================================== parse.error
5447@item parse.error
5448@findex %define parse.error
5449@itemize
5450@item Languages(s):
5451all.
5452@item Purpose:
5453Control the kind of error messages passed to the error reporting
5454function. @xref{Error Reporting, ,The Error Reporting Function
5455@code{yyerror}}.
5456@item Accepted Values:
5457@itemize
cf499cff 5458@item @code{simple}
31b850d2
AD
5459Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5460error"}}.
cf499cff 5461@item @code{verbose}
31b850d2
AD
5462Error messages report the unexpected token, and possibly the expected
5463ones.
5464@end itemize
5465
5466@item Default Value:
5467@code{simple}
5468@end itemize
5469@c parse.error
5470
5471
5472@c ================================================== parse.trace
fa819509
AD
5473@item parse.trace
5474@findex %define parse.trace
5475
5476@itemize
5477@item Languages(s): C, C++
5478
5479@item Purpose: Require parser instrumentation for tracing.
5480In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5481is not already defined, so that the debugging facilities are compiled.
5482@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5483
fa819509
AD
5484@item Accepted Values: Boolean
5485
5486@item Default Value: @code{false}
5487@end itemize
fa819509 5488@c parse.trace
99c08fb6 5489
3cdc21cf
AD
5490@c ================================================== variant
5491@item variant
5492@findex %define variant
5493
5494@itemize @bullet
5495@item Language(s):
5496C++
5497
5498@item Purpose:
5499Requests variant-based semantic values.
5500@xref{C++ Variants}.
5501
5502@item Accepted Values:
5503Boolean.
5504
5505@item Default Value:
5506@code{false}
5507@end itemize
5508@c variant
5509
5510
99c08fb6 5511@end table
d782395d 5512@end deffn
99c08fb6 5513@c ---------------------------------------------------------- %define
d782395d 5514
18b519c0 5515@deffn {Directive} %defines
4bfd5e4e
PE
5516Write a header file containing macro definitions for the token type
5517names defined in the grammar as well as a few other declarations.
d8988b2f 5518If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5519is named @file{@var{name}.h}.
d8988b2f 5520
b321737f 5521For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5522@code{YYSTYPE} is already defined as a macro or you have used a
5523@code{<@var{type}>} tag without using @code{%union}.
5524Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5525(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5526require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5527or type definition
f8e1c9e5
AD
5528(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5529arrange for these definitions to be propagated to all modules, e.g., by
5530putting them in a prerequisite header that is included both by your
5531parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5532
5533Unless your parser is pure, the output header declares @code{yylval}
5534as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5535Parser}.
5536
5537If you have also used locations, the output header declares
5538@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5539the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5540Locations}.
5541
f8e1c9e5
AD
5542This output file is normally essential if you wish to put the definition
5543of @code{yylex} in a separate source file, because @code{yylex}
5544typically needs to be able to refer to the above-mentioned declarations
5545and to the token type codes. @xref{Token Values, ,Semantic Values of
5546Tokens}.
9bc0dd67 5547
16dc6a9e
JD
5548@findex %code requires
5549@findex %code provides
5550If you have declared @code{%code requires} or @code{%code provides}, the output
5551header also contains their code.
148d66d8 5552@xref{Decl Summary, ,%code}.
592d0b1e
PB
5553@end deffn
5554
02975b9a
JD
5555@deffn {Directive} %defines @var{defines-file}
5556Same as above, but save in the file @var{defines-file}.
5557@end deffn
5558
18b519c0 5559@deffn {Directive} %destructor
258b75ca 5560Specify how the parser should reclaim the memory associated to
fa7e68c3 5561discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5562@end deffn
72f889cc 5563
02975b9a 5564@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5565Specify a prefix to use for all Bison output file names. The names are
5566chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5567@end deffn
d8988b2f 5568
e6e704dc 5569@deffn {Directive} %language "@var{language}"
0e021770 5570Specify the programming language for the generated parser. Currently
59da312b 5571supported languages include C, C++, and Java.
e6e704dc 5572@var{language} is case-insensitive.
ed4d67dc
JD
5573
5574This directive is experimental and its effect may be modified in future
5575releases.
0e021770
PE
5576@end deffn
5577
18b519c0 5578@deffn {Directive} %locations
89cab50d
AD
5579Generate the code processing the locations (@pxref{Action Features,
5580,Special Features for Use in Actions}). This mode is enabled as soon as
5581the grammar uses the special @samp{@@@var{n}} tokens, but if your
5582grammar does not use it, using @samp{%locations} allows for more
6e649e65 5583accurate syntax error messages.
18b519c0 5584@end deffn
89cab50d 5585
02975b9a 5586@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5587Rename the external symbols used in the parser so that they start with
5588@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5589in C parsers
d8988b2f 5590is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5591@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5592(if locations are used) @code{yylloc}. If you use a push parser,
5593@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5594@code{yypstate_new} and @code{yypstate_delete} will
5595also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5596names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5597For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5598section.
aa08666d 5599@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5600@end deffn
931c7513 5601
91d2c560 5602@ifset defaultprec
22fccf95
PE
5603@deffn {Directive} %no-default-prec
5604Do not assign a precedence to rules lacking an explicit @code{%prec}
5605modifier (@pxref{Contextual Precedence, ,Context-Dependent
5606Precedence}).
5607@end deffn
91d2c560 5608@end ifset
22fccf95 5609
18b519c0 5610@deffn {Directive} %no-lines
931c7513
RS
5611Don't generate any @code{#line} preprocessor commands in the parser
5612file. Ordinarily Bison writes these commands in the parser file so that
5613the C compiler and debuggers will associate errors and object code with
5614your source file (the grammar file). This directive causes them to
5615associate errors with the parser file, treating it an independent source
5616file in its own right.
18b519c0 5617@end deffn
931c7513 5618
02975b9a 5619@deffn {Directive} %output "@var{file}"
fa4d969f 5620Specify @var{file} for the parser file.
18b519c0 5621@end deffn
6deb4447 5622
18b519c0 5623@deffn {Directive} %pure-parser
67501061 5624Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5625for which Bison is more careful to warn about unreasonable usage.
18b519c0 5626@end deffn
6deb4447 5627
b50d2359 5628@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5629Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5630Require a Version of Bison}.
b50d2359
AD
5631@end deffn
5632
0e021770 5633@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5634Specify the skeleton to use.
5635
ed4d67dc
JD
5636@c You probably don't need this option unless you are developing Bison.
5637@c You should use @code{%language} if you want to specify the skeleton for a
5638@c different language, because it is clearer and because it will always choose the
5639@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5640
5641If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5642file in the Bison installation directory.
5643If it does, @var{file} is an absolute file name or a file name relative to the
5644directory of the grammar file.
5645This is similar to how most shells resolve commands.
0e021770
PE
5646@end deffn
5647
18b519c0 5648@deffn {Directive} %token-table
931c7513
RS
5649Generate an array of token names in the parser file. The name of the
5650array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5651token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5652three elements of @code{yytname} correspond to the predefined tokens
5653@code{"$end"},
88bce5a2
AD
5654@code{"error"}, and @code{"$undefined"}; after these come the symbols
5655defined in the grammar file.
931c7513 5656
9e0876fb
PE
5657The name in the table includes all the characters needed to represent
5658the token in Bison. For single-character literals and literal
5659strings, this includes the surrounding quoting characters and any
5660escape sequences. For example, the Bison single-character literal
5661@code{'+'} corresponds to a three-character name, represented in C as
5662@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5663corresponds to a five-character name, represented in C as
5664@code{"\"\\\\/\""}.
931c7513 5665
8c9a50be 5666When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5667definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5668@code{YYNRULES}, and @code{YYNSTATES}:
5669
5670@table @code
5671@item YYNTOKENS
5672The highest token number, plus one.
5673@item YYNNTS
9ecbd125 5674The number of nonterminal symbols.
931c7513
RS
5675@item YYNRULES
5676The number of grammar rules,
5677@item YYNSTATES
5678The number of parser states (@pxref{Parser States}).
5679@end table
18b519c0 5680@end deffn
d8988b2f 5681
18b519c0 5682@deffn {Directive} %verbose
d8988b2f 5683Write an extra output file containing verbose descriptions of the
742e4900 5684parser states and what is done for each type of lookahead token in
72d2299c 5685that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5686information.
18b519c0 5687@end deffn
d8988b2f 5688
18b519c0 5689@deffn {Directive} %yacc
d8988b2f
AD
5690Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5691including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5692@end deffn
d8988b2f
AD
5693
5694
342b8b6e 5695@node Multiple Parsers
bfa74976
RS
5696@section Multiple Parsers in the Same Program
5697
5698Most programs that use Bison parse only one language and therefore contain
5699only one Bison parser. But what if you want to parse more than one
5700language with the same program? Then you need to avoid a name conflict
5701between different definitions of @code{yyparse}, @code{yylval}, and so on.
5702
5703The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5704(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5705functions and variables of the Bison parser to start with @var{prefix}
5706instead of @samp{yy}. You can use this to give each parser distinct
5707names that do not conflict.
bfa74976
RS
5708
5709The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5710@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5711@code{yychar} and @code{yydebug}. If you use a push parser,
5712@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5713@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5714For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5715@code{clex}, and so on.
bfa74976
RS
5716
5717@strong{All the other variables and macros associated with Bison are not
5718renamed.} These others are not global; there is no conflict if the same
5719name is used in different parsers. For example, @code{YYSTYPE} is not
5720renamed, but defining this in different ways in different parsers causes
5721no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5722
5723The @samp{-p} option works by adding macro definitions to the beginning
5724of the parser source file, defining @code{yyparse} as
5725@code{@var{prefix}parse}, and so on. This effectively substitutes one
5726name for the other in the entire parser file.
5727
342b8b6e 5728@node Interface
bfa74976
RS
5729@chapter Parser C-Language Interface
5730@cindex C-language interface
5731@cindex interface
5732
5733The Bison parser is actually a C function named @code{yyparse}. Here we
5734describe the interface conventions of @code{yyparse} and the other
5735functions that it needs to use.
5736
5737Keep in mind that the parser uses many C identifiers starting with
5738@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5739identifier (aside from those in this manual) in an action or in epilogue
5740in the grammar file, you are likely to run into trouble.
bfa74976
RS
5741
5742@menu
f5f419de
DJ
5743* Parser Function:: How to call @code{yyparse} and what it returns.
5744* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5745* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5746* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5747* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5748* Lexical:: You must supply a function @code{yylex}
5749 which reads tokens.
5750* Error Reporting:: You must supply a function @code{yyerror}.
5751* Action Features:: Special features for use in actions.
5752* Internationalization:: How to let the parser speak in the user's
5753 native language.
bfa74976
RS
5754@end menu
5755
342b8b6e 5756@node Parser Function
bfa74976
RS
5757@section The Parser Function @code{yyparse}
5758@findex yyparse
5759
5760You call the function @code{yyparse} to cause parsing to occur. This
5761function reads tokens, executes actions, and ultimately returns when it
5762encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5763write an action which directs @code{yyparse} to return immediately
5764without reading further.
bfa74976 5765
2a8d363a
AD
5766
5767@deftypefun int yyparse (void)
bfa74976
RS
5768The value returned by @code{yyparse} is 0 if parsing was successful (return
5769is due to end-of-input).
5770
b47dbebe
PE
5771The value is 1 if parsing failed because of invalid input, i.e., input
5772that contains a syntax error or that causes @code{YYABORT} to be
5773invoked.
5774
5775The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5776@end deftypefun
bfa74976
RS
5777
5778In an action, you can cause immediate return from @code{yyparse} by using
5779these macros:
5780
2a8d363a 5781@defmac YYACCEPT
bfa74976
RS
5782@findex YYACCEPT
5783Return immediately with value 0 (to report success).
2a8d363a 5784@end defmac
bfa74976 5785
2a8d363a 5786@defmac YYABORT
bfa74976
RS
5787@findex YYABORT
5788Return immediately with value 1 (to report failure).
2a8d363a
AD
5789@end defmac
5790
5791If you use a reentrant parser, you can optionally pass additional
5792parameter information to it in a reentrant way. To do so, use the
5793declaration @code{%parse-param}:
5794
2055a44e 5795@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5796@findex %parse-param
2055a44e
AD
5797Declare that one or more
5798@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5799The @var{argument-declaration} is used when declaring
feeb0eda
PE
5800functions or prototypes. The last identifier in
5801@var{argument-declaration} must be the argument name.
2a8d363a
AD
5802@end deffn
5803
5804Here's an example. Write this in the parser:
5805
5806@example
2055a44e 5807%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5808@end example
5809
5810@noindent
5811Then call the parser like this:
5812
5813@example
5814@{
5815 int nastiness, randomness;
5816 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5817 value = yyparse (&nastiness, &randomness);
5818 @dots{}
5819@}
5820@end example
5821
5822@noindent
5823In the grammar actions, use expressions like this to refer to the data:
5824
5825@example
5826exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5827@end example
5828
9987d1b3
JD
5829@node Push Parser Function
5830@section The Push Parser Function @code{yypush_parse}
5831@findex yypush_parse
5832
59da312b
JD
5833(The current push parsing interface is experimental and may evolve.
5834More user feedback will help to stabilize it.)
5835
f4101aa6 5836You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5837function is available if either the @samp{%define api.push-pull push} or
5838@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5839@xref{Push Decl, ,A Push Parser}.
5840
5841@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5842The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5843following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5844is required to finish parsing the grammar.
5845@end deftypefun
5846
5847@node Pull Parser Function
5848@section The Pull Parser Function @code{yypull_parse}
5849@findex yypull_parse
5850
59da312b
JD
5851(The current push parsing interface is experimental and may evolve.
5852More user feedback will help to stabilize it.)
5853
f4101aa6 5854You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5855stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5856declaration is used.
9987d1b3
JD
5857@xref{Push Decl, ,A Push Parser}.
5858
5859@deftypefun int yypull_parse (yypstate *yyps)
5860The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5861@end deftypefun
5862
5863@node Parser Create Function
5864@section The Parser Create Function @code{yystate_new}
5865@findex yypstate_new
5866
59da312b
JD
5867(The current push parsing interface is experimental and may evolve.
5868More user feedback will help to stabilize it.)
5869
f4101aa6 5870You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5871This function is available if either the @samp{%define api.push-pull push} or
5872@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5873@xref{Push Decl, ,A Push Parser}.
5874
5875@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5876The function will return a valid parser instance if there was memory available
333e670c
JD
5877or 0 if no memory was available.
5878In impure mode, it will also return 0 if a parser instance is currently
5879allocated.
9987d1b3
JD
5880@end deftypefun
5881
5882@node Parser Delete Function
5883@section The Parser Delete Function @code{yystate_delete}
5884@findex yypstate_delete
5885
59da312b
JD
5886(The current push parsing interface is experimental and may evolve.
5887More user feedback will help to stabilize it.)
5888
9987d1b3 5889You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5890function is available if either the @samp{%define api.push-pull push} or
5891@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5892@xref{Push Decl, ,A Push Parser}.
5893
5894@deftypefun void yypstate_delete (yypstate *yyps)
5895This function will reclaim the memory associated with a parser instance.
5896After this call, you should no longer attempt to use the parser instance.
5897@end deftypefun
bfa74976 5898
342b8b6e 5899@node Lexical
bfa74976
RS
5900@section The Lexical Analyzer Function @code{yylex}
5901@findex yylex
5902@cindex lexical analyzer
5903
5904The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5905the input stream and returns them to the parser. Bison does not create
5906this function automatically; you must write it so that @code{yyparse} can
5907call it. The function is sometimes referred to as a lexical scanner.
5908
5909In simple programs, @code{yylex} is often defined at the end of the Bison
5910grammar file. If @code{yylex} is defined in a separate source file, you
5911need to arrange for the token-type macro definitions to be available there.
5912To do this, use the @samp{-d} option when you run Bison, so that it will
5913write these macro definitions into a separate header file
5914@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5915that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5916
5917@menu
5918* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5919* Token Values:: How @code{yylex} must return the semantic value
5920 of the token it has read.
5921* Token Locations:: How @code{yylex} must return the text location
5922 (line number, etc.) of the token, if the
5923 actions want that.
5924* Pure Calling:: How the calling convention differs in a pure parser
5925 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5926@end menu
5927
342b8b6e 5928@node Calling Convention
bfa74976
RS
5929@subsection Calling Convention for @code{yylex}
5930
72d2299c
PE
5931The value that @code{yylex} returns must be the positive numeric code
5932for the type of token it has just found; a zero or negative value
5933signifies end-of-input.
bfa74976
RS
5934
5935When a token is referred to in the grammar rules by a name, that name
5936in the parser file becomes a C macro whose definition is the proper
5937numeric code for that token type. So @code{yylex} can use the name
5938to indicate that type. @xref{Symbols}.
5939
5940When a token is referred to in the grammar rules by a character literal,
5941the numeric code for that character is also the code for the token type.
72d2299c
PE
5942So @code{yylex} can simply return that character code, possibly converted
5943to @code{unsigned char} to avoid sign-extension. The null character
5944must not be used this way, because its code is zero and that
bfa74976
RS
5945signifies end-of-input.
5946
5947Here is an example showing these things:
5948
5949@example
13863333
AD
5950int
5951yylex (void)
bfa74976
RS
5952@{
5953 @dots{}
72d2299c 5954 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5955 return 0;
5956 @dots{}
5957 if (c == '+' || c == '-')
72d2299c 5958 return c; /* Assume token type for `+' is '+'. */
bfa74976 5959 @dots{}
72d2299c 5960 return INT; /* Return the type of the token. */
bfa74976
RS
5961 @dots{}
5962@}
5963@end example
5964
5965@noindent
5966This interface has been designed so that the output from the @code{lex}
5967utility can be used without change as the definition of @code{yylex}.
5968
931c7513
RS
5969If the grammar uses literal string tokens, there are two ways that
5970@code{yylex} can determine the token type codes for them:
5971
5972@itemize @bullet
5973@item
5974If the grammar defines symbolic token names as aliases for the
5975literal string tokens, @code{yylex} can use these symbolic names like
5976all others. In this case, the use of the literal string tokens in
5977the grammar file has no effect on @code{yylex}.
5978
5979@item
9ecbd125 5980@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5981table. The index of the token in the table is the token type's code.
9ecbd125 5982The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5983double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5984token's characters are escaped as necessary to be suitable as input
5985to Bison.
931c7513 5986
9e0876fb
PE
5987Here's code for looking up a multicharacter token in @code{yytname},
5988assuming that the characters of the token are stored in
5989@code{token_buffer}, and assuming that the token does not contain any
5990characters like @samp{"} that require escaping.
931c7513
RS
5991
5992@smallexample
5993for (i = 0; i < YYNTOKENS; i++)
5994 @{
5995 if (yytname[i] != 0
5996 && yytname[i][0] == '"'
68449b3a
PE
5997 && ! strncmp (yytname[i] + 1, token_buffer,
5998 strlen (token_buffer))
931c7513
RS
5999 && yytname[i][strlen (token_buffer) + 1] == '"'
6000 && yytname[i][strlen (token_buffer) + 2] == 0)
6001 break;
6002 @}
6003@end smallexample
6004
6005The @code{yytname} table is generated only if you use the
8c9a50be 6006@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6007@end itemize
6008
342b8b6e 6009@node Token Values
bfa74976
RS
6010@subsection Semantic Values of Tokens
6011
6012@vindex yylval
9d9b8b70 6013In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6014be stored into the global variable @code{yylval}. When you are using
6015just one data type for semantic values, @code{yylval} has that type.
6016Thus, if the type is @code{int} (the default), you might write this in
6017@code{yylex}:
6018
6019@example
6020@group
6021 @dots{}
72d2299c
PE
6022 yylval = value; /* Put value onto Bison stack. */
6023 return INT; /* Return the type of the token. */
bfa74976
RS
6024 @dots{}
6025@end group
6026@end example
6027
6028When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6029made from the @code{%union} declaration (@pxref{Union Decl, ,The
6030Collection of Value Types}). So when you store a token's value, you
6031must use the proper member of the union. If the @code{%union}
6032declaration looks like this:
bfa74976
RS
6033
6034@example
6035@group
6036%union @{
6037 int intval;
6038 double val;
6039 symrec *tptr;
6040@}
6041@end group
6042@end example
6043
6044@noindent
6045then the code in @code{yylex} might look like this:
6046
6047@example
6048@group
6049 @dots{}
72d2299c
PE
6050 yylval.intval = value; /* Put value onto Bison stack. */
6051 return INT; /* Return the type of the token. */
bfa74976
RS
6052 @dots{}
6053@end group
6054@end example
6055
95923bd6
AD
6056@node Token Locations
6057@subsection Textual Locations of Tokens
bfa74976
RS
6058
6059@vindex yylloc
847bf1f5 6060If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6061Tracking Locations}) in actions to keep track of the textual locations
6062of tokens and groupings, then you must provide this information in
6063@code{yylex}. The function @code{yyparse} expects to find the textual
6064location of a token just parsed in the global variable @code{yylloc}.
6065So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6066
6067By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6068initialize the members that are going to be used by the actions. The
6069four members are called @code{first_line}, @code{first_column},
6070@code{last_line} and @code{last_column}. Note that the use of this
6071feature makes the parser noticeably slower.
bfa74976
RS
6072
6073@tindex YYLTYPE
6074The data type of @code{yylloc} has the name @code{YYLTYPE}.
6075
342b8b6e 6076@node Pure Calling
c656404a 6077@subsection Calling Conventions for Pure Parsers
bfa74976 6078
67501061 6079When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6080pure, reentrant parser, the global communication variables @code{yylval}
6081and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6082Parser}.) In such parsers the two global variables are replaced by
6083pointers passed as arguments to @code{yylex}. You must declare them as
6084shown here, and pass the information back by storing it through those
6085pointers.
bfa74976
RS
6086
6087@example
13863333
AD
6088int
6089yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6090@{
6091 @dots{}
6092 *lvalp = value; /* Put value onto Bison stack. */
6093 return INT; /* Return the type of the token. */
6094 @dots{}
6095@}
6096@end example
6097
6098If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6099textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6100this case, omit the second argument; @code{yylex} will be called with
6101only one argument.
6102
2055a44e 6103If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6104@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6105Function}). To pass additional arguments to both @code{yylex} and
6106@code{yyparse}, use @code{%param}.
e425e872 6107
2055a44e 6108@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6109@findex %lex-param
2055a44e
AD
6110Specify that @var{argument-declaration} are additional @code{yylex} argument
6111declarations. You may pass one or more such declarations, which is
6112equivalent to repeating @code{%lex-param}.
6113@end deffn
6114
6115@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6116@findex %param
6117Specify that @var{argument-declaration} are additional
6118@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6119@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6120@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6121declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6122@end deffn
e425e872 6123
2a8d363a 6124For instance:
e425e872
RS
6125
6126@example
2055a44e
AD
6127%lex-param @{scanner_mode *mode@}
6128%parse-param @{parser_mode *mode@}
6129%param @{environment_type *env@}
e425e872
RS
6130@end example
6131
6132@noindent
2a8d363a 6133results in the following signature:
e425e872
RS
6134
6135@example
2055a44e
AD
6136int yylex (scanner_mode *mode, environment_type *env);
6137int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6138@end example
6139
67501061 6140If @samp{%define api.pure} is added:
c656404a
RS
6141
6142@example
2055a44e
AD
6143int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6144int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6145@end example
6146
2a8d363a 6147@noindent
67501061 6148and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6149
2a8d363a 6150@example
2055a44e
AD
6151int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6152 scanner_mode *mode, environment_type *env);
6153int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6154@end example
931c7513 6155
342b8b6e 6156@node Error Reporting
bfa74976
RS
6157@section The Error Reporting Function @code{yyerror}
6158@cindex error reporting function
6159@findex yyerror
6160@cindex parse error
6161@cindex syntax error
6162
31b850d2 6163The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6164whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6165action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6166macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6167in Actions}).
bfa74976
RS
6168
6169The Bison parser expects to report the error by calling an error
6170reporting function named @code{yyerror}, which you must supply. It is
6171called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6172receives one argument. For a syntax error, the string is normally
6173@w{@code{"syntax error"}}.
bfa74976 6174
31b850d2 6175@findex %define parse.error
cf499cff 6176If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6177declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6178Section}), then Bison provides a more verbose and specific error message
6e649e65 6179string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6180
1a059451
PE
6181The parser can detect one other kind of error: memory exhaustion. This
6182can happen when the input contains constructions that are very deeply
bfa74976 6183nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6184parser normally extends its stack automatically up to a very large limit. But
6185if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6186fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6187
6188In some cases diagnostics like @w{@code{"syntax error"}} are
6189translated automatically from English to some other language before
6190they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6191
6192The following definition suffices in simple programs:
6193
6194@example
6195@group
13863333 6196void
38a92d50 6197yyerror (char const *s)
bfa74976
RS
6198@{
6199@end group
6200@group
6201 fprintf (stderr, "%s\n", s);
6202@}
6203@end group
6204@end example
6205
6206After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6207error recovery if you have written suitable error recovery grammar rules
6208(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6209immediately return 1.
6210
93724f13 6211Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6212an access to the current location.
6213This is indeed the case for the @acronym{GLR}
2a8d363a 6214parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6215@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6216@code{yyerror} are:
6217
6218@example
38a92d50
PE
6219void yyerror (char const *msg); /* Yacc parsers. */
6220void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6221@end example
6222
feeb0eda 6223If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6224
6225@example
b317297e
PE
6226void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6227void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6228@end example
6229
fa7e68c3 6230Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6231convention for absolutely pure parsers, i.e., when the calling
6232convention of @code{yylex} @emph{and} the calling convention of
67501061 6233@samp{%define api.pure} are pure.
d9df47b6 6234I.e.:
2a8d363a
AD
6235
6236@example
6237/* Location tracking. */
6238%locations
6239/* Pure yylex. */
d9df47b6 6240%define api.pure
feeb0eda 6241%lex-param @{int *nastiness@}
2a8d363a 6242/* Pure yyparse. */
feeb0eda
PE
6243%parse-param @{int *nastiness@}
6244%parse-param @{int *randomness@}
2a8d363a
AD
6245@end example
6246
6247@noindent
6248results in the following signatures for all the parser kinds:
6249
6250@example
6251int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6252int yyparse (int *nastiness, int *randomness);
93724f13
AD
6253void yyerror (YYLTYPE *locp,
6254 int *nastiness, int *randomness,
38a92d50 6255 char const *msg);
2a8d363a
AD
6256@end example
6257
1c0c3e95 6258@noindent
38a92d50
PE
6259The prototypes are only indications of how the code produced by Bison
6260uses @code{yyerror}. Bison-generated code always ignores the returned
6261value, so @code{yyerror} can return any type, including @code{void}.
6262Also, @code{yyerror} can be a variadic function; that is why the
6263message is always passed last.
6264
6265Traditionally @code{yyerror} returns an @code{int} that is always
6266ignored, but this is purely for historical reasons, and @code{void} is
6267preferable since it more accurately describes the return type for
6268@code{yyerror}.
93724f13 6269
bfa74976
RS
6270@vindex yynerrs
6271The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6272reported so far. Normally this variable is global; but if you
704a47c4
AD
6273request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6274then it is a local variable which only the actions can access.
bfa74976 6275
342b8b6e 6276@node Action Features
bfa74976
RS
6277@section Special Features for Use in Actions
6278@cindex summary, action features
6279@cindex action features summary
6280
6281Here is a table of Bison constructs, variables and macros that
6282are useful in actions.
6283
18b519c0 6284@deffn {Variable} $$
bfa74976
RS
6285Acts like a variable that contains the semantic value for the
6286grouping made by the current rule. @xref{Actions}.
18b519c0 6287@end deffn
bfa74976 6288
18b519c0 6289@deffn {Variable} $@var{n}
bfa74976
RS
6290Acts like a variable that contains the semantic value for the
6291@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6292@end deffn
bfa74976 6293
18b519c0 6294@deffn {Variable} $<@var{typealt}>$
bfa74976 6295Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6296specified by the @code{%union} declaration. @xref{Action Types, ,Data
6297Types of Values in Actions}.
18b519c0 6298@end deffn
bfa74976 6299
18b519c0 6300@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6301Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6302union specified by the @code{%union} declaration.
e0c471a9 6303@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6304@end deffn
bfa74976 6305
18b519c0 6306@deffn {Macro} YYABORT;
bfa74976
RS
6307Return immediately from @code{yyparse}, indicating failure.
6308@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6309@end deffn
bfa74976 6310
18b519c0 6311@deffn {Macro} YYACCEPT;
bfa74976
RS
6312Return immediately from @code{yyparse}, indicating success.
6313@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6314@end deffn
bfa74976 6315
18b519c0 6316@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6317@findex YYBACKUP
6318Unshift a token. This macro is allowed only for rules that reduce
742e4900 6319a single value, and only when there is no lookahead token.
c827f760 6320It is also disallowed in @acronym{GLR} parsers.
742e4900 6321It installs a lookahead token with token type @var{token} and
bfa74976
RS
6322semantic value @var{value}; then it discards the value that was
6323going to be reduced by this rule.
6324
6325If the macro is used when it is not valid, such as when there is
742e4900 6326a lookahead token already, then it reports a syntax error with
bfa74976
RS
6327a message @samp{cannot back up} and performs ordinary error
6328recovery.
6329
6330In either case, the rest of the action is not executed.
18b519c0 6331@end deffn
bfa74976 6332
18b519c0 6333@deffn {Macro} YYEMPTY
bfa74976 6334@vindex YYEMPTY
742e4900 6335Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6336@end deffn
bfa74976 6337
32c29292
JD
6338@deffn {Macro} YYEOF
6339@vindex YYEOF
742e4900 6340Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6341stream.
6342@end deffn
6343
18b519c0 6344@deffn {Macro} YYERROR;
bfa74976
RS
6345@findex YYERROR
6346Cause an immediate syntax error. This statement initiates error
6347recovery just as if the parser itself had detected an error; however, it
6348does not call @code{yyerror}, and does not print any message. If you
6349want to print an error message, call @code{yyerror} explicitly before
6350the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6351@end deffn
bfa74976 6352
18b519c0 6353@deffn {Macro} YYRECOVERING
02103984
PE
6354@findex YYRECOVERING
6355The expression @code{YYRECOVERING ()} yields 1 when the parser
6356is recovering from a syntax error, and 0 otherwise.
bfa74976 6357@xref{Error Recovery}.
18b519c0 6358@end deffn
bfa74976 6359
18b519c0 6360@deffn {Variable} yychar
742e4900
JD
6361Variable containing either the lookahead token, or @code{YYEOF} when the
6362lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6363has been performed so the next token is not yet known.
6364Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6365Actions}).
742e4900 6366@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6367@end deffn
bfa74976 6368
18b519c0 6369@deffn {Macro} yyclearin;
742e4900 6370Discard the current lookahead token. This is useful primarily in
32c29292
JD
6371error rules.
6372Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6373Semantic Actions}).
6374@xref{Error Recovery}.
18b519c0 6375@end deffn
bfa74976 6376
18b519c0 6377@deffn {Macro} yyerrok;
bfa74976 6378Resume generating error messages immediately for subsequent syntax
13863333 6379errors. This is useful primarily in error rules.
bfa74976 6380@xref{Error Recovery}.
18b519c0 6381@end deffn
bfa74976 6382
32c29292 6383@deffn {Variable} yylloc
742e4900 6384Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6385to @code{YYEMPTY} or @code{YYEOF}.
6386Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6387Actions}).
6388@xref{Actions and Locations, ,Actions and Locations}.
6389@end deffn
6390
6391@deffn {Variable} yylval
742e4900 6392Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6393not set to @code{YYEMPTY} or @code{YYEOF}.
6394Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6395Actions}).
6396@xref{Actions, ,Actions}.
6397@end deffn
6398
18b519c0 6399@deffn {Value} @@$
847bf1f5 6400@findex @@$
95923bd6 6401Acts like a structure variable containing information on the textual location
847bf1f5
AD
6402of the grouping made by the current rule. @xref{Locations, ,
6403Tracking Locations}.
bfa74976 6404
847bf1f5
AD
6405@c Check if those paragraphs are still useful or not.
6406
6407@c @example
6408@c struct @{
6409@c int first_line, last_line;
6410@c int first_column, last_column;
6411@c @};
6412@c @end example
6413
6414@c Thus, to get the starting line number of the third component, you would
6415@c use @samp{@@3.first_line}.
bfa74976 6416
847bf1f5
AD
6417@c In order for the members of this structure to contain valid information,
6418@c you must make @code{yylex} supply this information about each token.
6419@c If you need only certain members, then @code{yylex} need only fill in
6420@c those members.
bfa74976 6421
847bf1f5 6422@c The use of this feature makes the parser noticeably slower.
18b519c0 6423@end deffn
847bf1f5 6424
18b519c0 6425@deffn {Value} @@@var{n}
847bf1f5 6426@findex @@@var{n}
95923bd6 6427Acts like a structure variable containing information on the textual location
847bf1f5
AD
6428of the @var{n}th component of the current rule. @xref{Locations, ,
6429Tracking Locations}.
18b519c0 6430@end deffn
bfa74976 6431
f7ab6a50
PE
6432@node Internationalization
6433@section Parser Internationalization
6434@cindex internationalization
6435@cindex i18n
6436@cindex NLS
6437@cindex gettext
6438@cindex bison-po
6439
6440A Bison-generated parser can print diagnostics, including error and
6441tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6442also supports outputting diagnostics in the user's native language. To
6443make this work, the user should set the usual environment variables.
6444@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6445For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6446set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6447encoding. The exact set of available locales depends on the user's
6448installation.
6449
6450The maintainer of a package that uses a Bison-generated parser enables
6451the internationalization of the parser's output through the following
6452steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6453@acronym{GNU} Automake.
6454
6455@enumerate
6456@item
30757c8c 6457@cindex bison-i18n.m4
f7ab6a50
PE
6458Into the directory containing the @acronym{GNU} Autoconf macros used
6459by the package---often called @file{m4}---copy the
6460@file{bison-i18n.m4} file installed by Bison under
6461@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6462For example:
6463
6464@example
6465cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6466@end example
6467
6468@item
30757c8c
PE
6469@findex BISON_I18N
6470@vindex BISON_LOCALEDIR
6471@vindex YYENABLE_NLS
f7ab6a50
PE
6472In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6473invocation, add an invocation of @code{BISON_I18N}. This macro is
6474defined in the file @file{bison-i18n.m4} that you copied earlier. It
6475causes @samp{configure} to find the value of the
30757c8c
PE
6476@code{BISON_LOCALEDIR} variable, and it defines the source-language
6477symbol @code{YYENABLE_NLS} to enable translations in the
6478Bison-generated parser.
f7ab6a50
PE
6479
6480@item
6481In the @code{main} function of your program, designate the directory
6482containing Bison's runtime message catalog, through a call to
6483@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6484For example:
6485
6486@example
6487bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6488@end example
6489
6490Typically this appears after any other call @code{bindtextdomain
6491(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6492@samp{BISON_LOCALEDIR} to be defined as a string through the
6493@file{Makefile}.
6494
6495@item
6496In the @file{Makefile.am} that controls the compilation of the @code{main}
6497function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6498either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6499
6500@example
6501DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6502@end example
6503
6504or:
6505
6506@example
6507AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6508@end example
6509
6510@item
6511Finally, invoke the command @command{autoreconf} to generate the build
6512infrastructure.
6513@end enumerate
6514
bfa74976 6515
342b8b6e 6516@node Algorithm
13863333
AD
6517@chapter The Bison Parser Algorithm
6518@cindex Bison parser algorithm
bfa74976
RS
6519@cindex algorithm of parser
6520@cindex shifting
6521@cindex reduction
6522@cindex parser stack
6523@cindex stack, parser
6524
6525As Bison reads tokens, it pushes them onto a stack along with their
6526semantic values. The stack is called the @dfn{parser stack}. Pushing a
6527token is traditionally called @dfn{shifting}.
6528
6529For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6530@samp{3} to come. The stack will have four elements, one for each token
6531that was shifted.
6532
6533But the stack does not always have an element for each token read. When
6534the last @var{n} tokens and groupings shifted match the components of a
6535grammar rule, they can be combined according to that rule. This is called
6536@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6537single grouping whose symbol is the result (left hand side) of that rule.
6538Running the rule's action is part of the process of reduction, because this
6539is what computes the semantic value of the resulting grouping.
6540
6541For example, if the infix calculator's parser stack contains this:
6542
6543@example
65441 + 5 * 3
6545@end example
6546
6547@noindent
6548and the next input token is a newline character, then the last three
6549elements can be reduced to 15 via the rule:
6550
6551@example
6552expr: expr '*' expr;
6553@end example
6554
6555@noindent
6556Then the stack contains just these three elements:
6557
6558@example
65591 + 15
6560@end example
6561
6562@noindent
6563At this point, another reduction can be made, resulting in the single value
656416. Then the newline token can be shifted.
6565
6566The parser tries, by shifts and reductions, to reduce the entire input down
6567to a single grouping whose symbol is the grammar's start-symbol
6568(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6569
6570This kind of parser is known in the literature as a bottom-up parser.
6571
6572@menu
742e4900 6573* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6574* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6575* Precedence:: Operator precedence works by resolving conflicts.
6576* Contextual Precedence:: When an operator's precedence depends on context.
6577* Parser States:: The parser is a finite-state-machine with stack.
6578* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6579* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6580* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6581* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6582@end menu
6583
742e4900
JD
6584@node Lookahead
6585@section Lookahead Tokens
6586@cindex lookahead token
bfa74976
RS
6587
6588The Bison parser does @emph{not} always reduce immediately as soon as the
6589last @var{n} tokens and groupings match a rule. This is because such a
6590simple strategy is inadequate to handle most languages. Instead, when a
6591reduction is possible, the parser sometimes ``looks ahead'' at the next
6592token in order to decide what to do.
6593
6594When a token is read, it is not immediately shifted; first it becomes the
742e4900 6595@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6596perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6597the lookahead token remains off to the side. When no more reductions
6598should take place, the lookahead token is shifted onto the stack. This
bfa74976 6599does not mean that all possible reductions have been done; depending on the
742e4900 6600token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6601application.
6602
742e4900 6603Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6604expressions which contain binary addition operators and postfix unary
6605factorial operators (@samp{!}), and allow parentheses for grouping.
6606
6607@example
6608@group
6609expr: term '+' expr
6610 | term
6611 ;
6612@end group
6613
6614@group
6615term: '(' expr ')'
6616 | term '!'
6617 | NUMBER
6618 ;
6619@end group
6620@end example
6621
6622Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6623should be done? If the following token is @samp{)}, then the first three
6624tokens must be reduced to form an @code{expr}. This is the only valid
6625course, because shifting the @samp{)} would produce a sequence of symbols
6626@w{@code{term ')'}}, and no rule allows this.
6627
6628If the following token is @samp{!}, then it must be shifted immediately so
6629that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6630parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6631@code{expr}. It would then be impossible to shift the @samp{!} because
6632doing so would produce on the stack the sequence of symbols @code{expr
6633'!'}. No rule allows that sequence.
6634
6635@vindex yychar
32c29292
JD
6636@vindex yylval
6637@vindex yylloc
742e4900 6638The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6639Its semantic value and location, if any, are stored in the variables
6640@code{yylval} and @code{yylloc}.
bfa74976
RS
6641@xref{Action Features, ,Special Features for Use in Actions}.
6642
342b8b6e 6643@node Shift/Reduce
bfa74976
RS
6644@section Shift/Reduce Conflicts
6645@cindex conflicts
6646@cindex shift/reduce conflicts
6647@cindex dangling @code{else}
6648@cindex @code{else}, dangling
6649
6650Suppose we are parsing a language which has if-then and if-then-else
6651statements, with a pair of rules like this:
6652
6653@example
6654@group
6655if_stmt:
6656 IF expr THEN stmt
6657 | IF expr THEN stmt ELSE stmt
6658 ;
6659@end group
6660@end example
6661
6662@noindent
6663Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6664terminal symbols for specific keyword tokens.
6665
742e4900 6666When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6667contents of the stack (assuming the input is valid) are just right for
6668reduction by the first rule. But it is also legitimate to shift the
6669@code{ELSE}, because that would lead to eventual reduction by the second
6670rule.
6671
6672This situation, where either a shift or a reduction would be valid, is
6673called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6674these conflicts by choosing to shift, unless otherwise directed by
6675operator precedence declarations. To see the reason for this, let's
6676contrast it with the other alternative.
6677
6678Since the parser prefers to shift the @code{ELSE}, the result is to attach
6679the else-clause to the innermost if-statement, making these two inputs
6680equivalent:
6681
6682@example
6683if x then if y then win (); else lose;
6684
6685if x then do; if y then win (); else lose; end;
6686@end example
6687
6688But if the parser chose to reduce when possible rather than shift, the
6689result would be to attach the else-clause to the outermost if-statement,
6690making these two inputs equivalent:
6691
6692@example
6693if x then if y then win (); else lose;
6694
6695if x then do; if y then win (); end; else lose;
6696@end example
6697
6698The conflict exists because the grammar as written is ambiguous: either
6699parsing of the simple nested if-statement is legitimate. The established
6700convention is that these ambiguities are resolved by attaching the
6701else-clause to the innermost if-statement; this is what Bison accomplishes
6702by choosing to shift rather than reduce. (It would ideally be cleaner to
6703write an unambiguous grammar, but that is very hard to do in this case.)
6704This particular ambiguity was first encountered in the specifications of
6705Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6706
6707To avoid warnings from Bison about predictable, legitimate shift/reduce
6708conflicts, use the @code{%expect @var{n}} declaration. There will be no
6709warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6710@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6711
6712The definition of @code{if_stmt} above is solely to blame for the
6713conflict, but the conflict does not actually appear without additional
6714rules. Here is a complete Bison input file that actually manifests the
6715conflict:
6716
6717@example
6718@group
6719%token IF THEN ELSE variable
6720%%
6721@end group
6722@group
6723stmt: expr
6724 | if_stmt
6725 ;
6726@end group
6727
6728@group
6729if_stmt:
6730 IF expr THEN stmt
6731 | IF expr THEN stmt ELSE stmt
6732 ;
6733@end group
6734
6735expr: variable
6736 ;
6737@end example
6738
342b8b6e 6739@node Precedence
bfa74976
RS
6740@section Operator Precedence
6741@cindex operator precedence
6742@cindex precedence of operators
6743
6744Another situation where shift/reduce conflicts appear is in arithmetic
6745expressions. Here shifting is not always the preferred resolution; the
6746Bison declarations for operator precedence allow you to specify when to
6747shift and when to reduce.
6748
6749@menu
6750* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6751* Using Precedence:: How to specify precedence and associativity.
6752* Precedence Only:: How to specify precedence only.
bfa74976
RS
6753* Precedence Examples:: How these features are used in the previous example.
6754* How Precedence:: How they work.
6755@end menu
6756
342b8b6e 6757@node Why Precedence
bfa74976
RS
6758@subsection When Precedence is Needed
6759
6760Consider the following ambiguous grammar fragment (ambiguous because the
6761input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6762
6763@example
6764@group
6765expr: expr '-' expr
6766 | expr '*' expr
6767 | expr '<' expr
6768 | '(' expr ')'
6769 @dots{}
6770 ;
6771@end group
6772@end example
6773
6774@noindent
6775Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6776should it reduce them via the rule for the subtraction operator? It
6777depends on the next token. Of course, if the next token is @samp{)}, we
6778must reduce; shifting is invalid because no single rule can reduce the
6779token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6780the next token is @samp{*} or @samp{<}, we have a choice: either
6781shifting or reduction would allow the parse to complete, but with
6782different results.
6783
6784To decide which one Bison should do, we must consider the results. If
6785the next operator token @var{op} is shifted, then it must be reduced
6786first in order to permit another opportunity to reduce the difference.
6787The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6788hand, if the subtraction is reduced before shifting @var{op}, the result
6789is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6790reduce should depend on the relative precedence of the operators
6791@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6792@samp{<}.
bfa74976
RS
6793
6794@cindex associativity
6795What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6796@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6797operators we prefer the former, which is called @dfn{left association}.
6798The latter alternative, @dfn{right association}, is desirable for
6799assignment operators. The choice of left or right association is a
6800matter of whether the parser chooses to shift or reduce when the stack
742e4900 6801contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6802makes right-associativity.
bfa74976 6803
342b8b6e 6804@node Using Precedence
bfa74976
RS
6805@subsection Specifying Operator Precedence
6806@findex %left
bfa74976 6807@findex %nonassoc
d78f0ac9
AD
6808@findex %precedence
6809@findex %right
bfa74976
RS
6810
6811Bison allows you to specify these choices with the operator precedence
6812declarations @code{%left} and @code{%right}. Each such declaration
6813contains a list of tokens, which are operators whose precedence and
6814associativity is being declared. The @code{%left} declaration makes all
6815those operators left-associative and the @code{%right} declaration makes
6816them right-associative. A third alternative is @code{%nonassoc}, which
6817declares that it is a syntax error to find the same operator twice ``in a
6818row''.
d78f0ac9
AD
6819The last alternative, @code{%precedence}, allows to define only
6820precedence and no associativity at all. As a result, any
6821associativity-related conflict that remains will be reported as an
6822compile-time error. The directive @code{%nonassoc} creates run-time
6823error: using the operator in a associative way is a syntax error. The
6824directive @code{%precedence} creates compile-time errors: an operator
6825@emph{can} be involved in an associativity-related conflict, contrary to
6826what expected the grammar author.
bfa74976
RS
6827
6828The relative precedence of different operators is controlled by the
d78f0ac9
AD
6829order in which they are declared. The first precedence/associativity
6830declaration in the file declares the operators whose
bfa74976
RS
6831precedence is lowest, the next such declaration declares the operators
6832whose precedence is a little higher, and so on.
6833
d78f0ac9
AD
6834@node Precedence Only
6835@subsection Specifying Precedence Only
6836@findex %precedence
6837
6838Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6839@code{%nonassoc}, which all defines precedence and associativity, little
6840attention is paid to the fact that precedence cannot be defined without
6841defining associativity. Yet, sometimes, when trying to solve a
6842conflict, precedence suffices. In such a case, using @code{%left},
6843@code{%right}, or @code{%nonassoc} might hide future (associativity
6844related) conflicts that would remain hidden.
6845
6846The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6847Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6848in the following situation, where the period denotes the current parsing
6849state:
6850
6851@example
6852if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6853@end example
6854
6855The conflict involves the reduction of the rule @samp{IF expr THEN
6856stmt}, which precedence is by default that of its last token
6857(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6858disambiguation (attach the @code{else} to the closest @code{if}),
6859shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6860higher than that of @code{THEN}. But neither is expected to be involved
6861in an associativity related conflict, which can be specified as follows.
6862
6863@example
6864%precedence THEN
6865%precedence ELSE
6866@end example
6867
6868The unary-minus is another typical example where associativity is
6869usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6870Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6871used to declare the precedence of @code{NEG}, which is more than needed
6872since it also defines its associativity. While this is harmless in the
6873traditional example, who knows how @code{NEG} might be used in future
6874evolutions of the grammar@dots{}
6875
342b8b6e 6876@node Precedence Examples
bfa74976
RS
6877@subsection Precedence Examples
6878
6879In our example, we would want the following declarations:
6880
6881@example
6882%left '<'
6883%left '-'
6884%left '*'
6885@end example
6886
6887In a more complete example, which supports other operators as well, we
6888would declare them in groups of equal precedence. For example, @code{'+'} is
6889declared with @code{'-'}:
6890
6891@example
6892%left '<' '>' '=' NE LE GE
6893%left '+' '-'
6894%left '*' '/'
6895@end example
6896
6897@noindent
6898(Here @code{NE} and so on stand for the operators for ``not equal''
6899and so on. We assume that these tokens are more than one character long
6900and therefore are represented by names, not character literals.)
6901
342b8b6e 6902@node How Precedence
bfa74976
RS
6903@subsection How Precedence Works
6904
6905The first effect of the precedence declarations is to assign precedence
6906levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6907precedence levels to certain rules: each rule gets its precedence from
6908the last terminal symbol mentioned in the components. (You can also
6909specify explicitly the precedence of a rule. @xref{Contextual
6910Precedence, ,Context-Dependent Precedence}.)
6911
6912Finally, the resolution of conflicts works by comparing the precedence
742e4900 6913of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6914token's precedence is higher, the choice is to shift. If the rule's
6915precedence is higher, the choice is to reduce. If they have equal
6916precedence, the choice is made based on the associativity of that
6917precedence level. The verbose output file made by @samp{-v}
6918(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6919resolved.
bfa74976
RS
6920
6921Not all rules and not all tokens have precedence. If either the rule or
742e4900 6922the lookahead token has no precedence, then the default is to shift.
bfa74976 6923
342b8b6e 6924@node Contextual Precedence
bfa74976
RS
6925@section Context-Dependent Precedence
6926@cindex context-dependent precedence
6927@cindex unary operator precedence
6928@cindex precedence, context-dependent
6929@cindex precedence, unary operator
6930@findex %prec
6931
6932Often the precedence of an operator depends on the context. This sounds
6933outlandish at first, but it is really very common. For example, a minus
6934sign typically has a very high precedence as a unary operator, and a
6935somewhat lower precedence (lower than multiplication) as a binary operator.
6936
d78f0ac9
AD
6937The Bison precedence declarations
6938can only be used once for a given token; so a token has
bfa74976
RS
6939only one precedence declared in this way. For context-dependent
6940precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6941modifier for rules.
bfa74976
RS
6942
6943The @code{%prec} modifier declares the precedence of a particular rule by
6944specifying a terminal symbol whose precedence should be used for that rule.
6945It's not necessary for that symbol to appear otherwise in the rule. The
6946modifier's syntax is:
6947
6948@example
6949%prec @var{terminal-symbol}
6950@end example
6951
6952@noindent
6953and it is written after the components of the rule. Its effect is to
6954assign the rule the precedence of @var{terminal-symbol}, overriding
6955the precedence that would be deduced for it in the ordinary way. The
6956altered rule precedence then affects how conflicts involving that rule
6957are resolved (@pxref{Precedence, ,Operator Precedence}).
6958
6959Here is how @code{%prec} solves the problem of unary minus. First, declare
6960a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6961are no tokens of this type, but the symbol serves to stand for its
6962precedence:
6963
6964@example
6965@dots{}
6966%left '+' '-'
6967%left '*'
6968%left UMINUS
6969@end example
6970
6971Now the precedence of @code{UMINUS} can be used in specific rules:
6972
6973@example
6974@group
6975exp: @dots{}
6976 | exp '-' exp
6977 @dots{}
6978 | '-' exp %prec UMINUS
6979@end group
6980@end example
6981
91d2c560 6982@ifset defaultprec
39a06c25
PE
6983If you forget to append @code{%prec UMINUS} to the rule for unary
6984minus, Bison silently assumes that minus has its usual precedence.
6985This kind of problem can be tricky to debug, since one typically
6986discovers the mistake only by testing the code.
6987
22fccf95 6988The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6989this kind of problem systematically. It causes rules that lack a
6990@code{%prec} modifier to have no precedence, even if the last terminal
6991symbol mentioned in their components has a declared precedence.
6992
22fccf95 6993If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6994for all rules that participate in precedence conflict resolution.
6995Then you will see any shift/reduce conflict until you tell Bison how
6996to resolve it, either by changing your grammar or by adding an
6997explicit precedence. This will probably add declarations to the
6998grammar, but it helps to protect against incorrect rule precedences.
6999
22fccf95
PE
7000The effect of @code{%no-default-prec;} can be reversed by giving
7001@code{%default-prec;}, which is the default.
91d2c560 7002@end ifset
39a06c25 7003
342b8b6e 7004@node Parser States
bfa74976
RS
7005@section Parser States
7006@cindex finite-state machine
7007@cindex parser state
7008@cindex state (of parser)
7009
7010The function @code{yyparse} is implemented using a finite-state machine.
7011The values pushed on the parser stack are not simply token type codes; they
7012represent the entire sequence of terminal and nonterminal symbols at or
7013near the top of the stack. The current state collects all the information
7014about previous input which is relevant to deciding what to do next.
7015
742e4900
JD
7016Each time a lookahead token is read, the current parser state together
7017with the type of lookahead token are looked up in a table. This table
7018entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7019specifies the new parser state, which is pushed onto the top of the
7020parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7021This means that a certain number of tokens or groupings are taken off
7022the top of the stack, and replaced by one grouping. In other words,
7023that number of states are popped from the stack, and one new state is
7024pushed.
7025
742e4900 7026There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7027is erroneous in the current state. This causes error processing to begin
7028(@pxref{Error Recovery}).
7029
342b8b6e 7030@node Reduce/Reduce
bfa74976
RS
7031@section Reduce/Reduce Conflicts
7032@cindex reduce/reduce conflict
7033@cindex conflicts, reduce/reduce
7034
7035A reduce/reduce conflict occurs if there are two or more rules that apply
7036to the same sequence of input. This usually indicates a serious error
7037in the grammar.
7038
7039For example, here is an erroneous attempt to define a sequence
7040of zero or more @code{word} groupings.
7041
7042@example
7043sequence: /* empty */
7044 @{ printf ("empty sequence\n"); @}
7045 | maybeword
7046 | sequence word
7047 @{ printf ("added word %s\n", $2); @}
7048 ;
7049
7050maybeword: /* empty */
7051 @{ printf ("empty maybeword\n"); @}
7052 | word
7053 @{ printf ("single word %s\n", $1); @}
7054 ;
7055@end example
7056
7057@noindent
7058The error is an ambiguity: there is more than one way to parse a single
7059@code{word} into a @code{sequence}. It could be reduced to a
7060@code{maybeword} and then into a @code{sequence} via the second rule.
7061Alternatively, nothing-at-all could be reduced into a @code{sequence}
7062via the first rule, and this could be combined with the @code{word}
7063using the third rule for @code{sequence}.
7064
7065There is also more than one way to reduce nothing-at-all into a
7066@code{sequence}. This can be done directly via the first rule,
7067or indirectly via @code{maybeword} and then the second rule.
7068
7069You might think that this is a distinction without a difference, because it
7070does not change whether any particular input is valid or not. But it does
7071affect which actions are run. One parsing order runs the second rule's
7072action; the other runs the first rule's action and the third rule's action.
7073In this example, the output of the program changes.
7074
7075Bison resolves a reduce/reduce conflict by choosing to use the rule that
7076appears first in the grammar, but it is very risky to rely on this. Every
7077reduce/reduce conflict must be studied and usually eliminated. Here is the
7078proper way to define @code{sequence}:
7079
7080@example
7081sequence: /* empty */
7082 @{ printf ("empty sequence\n"); @}
7083 | sequence word
7084 @{ printf ("added word %s\n", $2); @}
7085 ;
7086@end example
7087
7088Here is another common error that yields a reduce/reduce conflict:
7089
7090@example
7091sequence: /* empty */
7092 | sequence words
7093 | sequence redirects
7094 ;
7095
7096words: /* empty */
7097 | words word
7098 ;
7099
7100redirects:/* empty */
7101 | redirects redirect
7102 ;
7103@end example
7104
7105@noindent
7106The intention here is to define a sequence which can contain either
7107@code{word} or @code{redirect} groupings. The individual definitions of
7108@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7109three together make a subtle ambiguity: even an empty input can be parsed
7110in infinitely many ways!
7111
7112Consider: nothing-at-all could be a @code{words}. Or it could be two
7113@code{words} in a row, or three, or any number. It could equally well be a
7114@code{redirects}, or two, or any number. Or it could be a @code{words}
7115followed by three @code{redirects} and another @code{words}. And so on.
7116
7117Here are two ways to correct these rules. First, to make it a single level
7118of sequence:
7119
7120@example
7121sequence: /* empty */
7122 | sequence word
7123 | sequence redirect
7124 ;
7125@end example
7126
7127Second, to prevent either a @code{words} or a @code{redirects}
7128from being empty:
7129
7130@example
7131sequence: /* empty */
7132 | sequence words
7133 | sequence redirects
7134 ;
7135
7136words: word
7137 | words word
7138 ;
7139
7140redirects:redirect
7141 | redirects redirect
7142 ;
7143@end example
7144
342b8b6e 7145@node Mystery Conflicts
bfa74976
RS
7146@section Mysterious Reduce/Reduce Conflicts
7147
7148Sometimes reduce/reduce conflicts can occur that don't look warranted.
7149Here is an example:
7150
7151@example
7152@group
7153%token ID
7154
7155%%
7156def: param_spec return_spec ','
7157 ;
7158param_spec:
7159 type
7160 | name_list ':' type
7161 ;
7162@end group
7163@group
7164return_spec:
7165 type
7166 | name ':' type
7167 ;
7168@end group
7169@group
7170type: ID
7171 ;
7172@end group
7173@group
7174name: ID
7175 ;
7176name_list:
7177 name
7178 | name ',' name_list
7179 ;
7180@end group
7181@end example
7182
7183It would seem that this grammar can be parsed with only a single token
742e4900 7184of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7185a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 7186@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 7187
c827f760
PE
7188@cindex @acronym{LR}(1)
7189@cindex @acronym{LALR}(1)
eb45ef3b
JD
7190However, for historical reasons, Bison cannot by default handle all
7191@acronym{LR}(1) grammars.
7192In this grammar, two contexts, that after an @code{ID} at the beginning
7193of a @code{param_spec} and likewise at the beginning of a
7194@code{return_spec}, are similar enough that Bison assumes they are the
7195same.
7196They appear similar because the same set of rules would be
bfa74976
RS
7197active---the rule for reducing to a @code{name} and that for reducing to
7198a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7199that the rules would require different lookahead tokens in the two
bfa74976
RS
7200contexts, so it makes a single parser state for them both. Combining
7201the two contexts causes a conflict later. In parser terminology, this
c827f760 7202occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 7203
eb45ef3b
JD
7204For many practical grammars (specifically those that fall into the
7205non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
7206difficulties beyond just mysterious reduce/reduce conflicts.
7207The best way to fix all these problems is to select a different parser
7208table generation algorithm.
7209Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
7210the former is more efficient and easier to debug during development.
7211@xref{Decl Summary,,lr.type}, for details.
7212(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7213are experimental.
7214More user feedback will help to stabilize them.)
7215
7216If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7217can often fix a mysterious conflict by identifying the two parser states
7218that are being confused, and adding something to make them look
7219distinct. In the above example, adding one rule to
bfa74976
RS
7220@code{return_spec} as follows makes the problem go away:
7221
7222@example
7223@group
7224%token BOGUS
7225@dots{}
7226%%
7227@dots{}
7228return_spec:
7229 type
7230 | name ':' type
7231 /* This rule is never used. */
7232 | ID BOGUS
7233 ;
7234@end group
7235@end example
7236
7237This corrects the problem because it introduces the possibility of an
7238additional active rule in the context after the @code{ID} at the beginning of
7239@code{return_spec}. This rule is not active in the corresponding context
7240in a @code{param_spec}, so the two contexts receive distinct parser states.
7241As long as the token @code{BOGUS} is never generated by @code{yylex},
7242the added rule cannot alter the way actual input is parsed.
7243
7244In this particular example, there is another way to solve the problem:
7245rewrite the rule for @code{return_spec} to use @code{ID} directly
7246instead of via @code{name}. This also causes the two confusing
7247contexts to have different sets of active rules, because the one for
7248@code{return_spec} activates the altered rule for @code{return_spec}
7249rather than the one for @code{name}.
7250
7251@example
7252param_spec:
7253 type
7254 | name_list ':' type
7255 ;
7256return_spec:
7257 type
7258 | ID ':' type
7259 ;
7260@end example
7261
e054b190
PE
7262For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7263generators, please see:
7264Frank DeRemer and Thomas Pennello, Efficient Computation of
7265@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7266Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7267pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7268
fae437e8 7269@node Generalized LR Parsing
c827f760
PE
7270@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7271@cindex @acronym{GLR} parsing
7272@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7273@cindex ambiguous grammars
9d9b8b70 7274@cindex nondeterministic parsing
676385e2 7275
fae437e8
AD
7276Bison produces @emph{deterministic} parsers that choose uniquely
7277when to reduce and which reduction to apply
742e4900 7278based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7279As a result, normal Bison handles a proper subset of the family of
7280context-free languages.
fae437e8 7281Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7282sequence of reductions cannot have deterministic parsers in this sense.
7283The same is true of languages that require more than one symbol of
742e4900 7284lookahead, since the parser lacks the information necessary to make a
676385e2 7285decision at the point it must be made in a shift-reduce parser.
fae437e8 7286Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7287there are languages where Bison's default choice of how to
676385e2
PH
7288summarize the input seen so far loses necessary information.
7289
7290When you use the @samp{%glr-parser} declaration in your grammar file,
7291Bison generates a parser that uses a different algorithm, called
c827f760
PE
7292Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7293parser uses the same basic
676385e2
PH
7294algorithm for parsing as an ordinary Bison parser, but behaves
7295differently in cases where there is a shift-reduce conflict that has not
fae437e8 7296been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7297reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7298situation, it
fae437e8 7299effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7300shift or reduction. These parsers then proceed as usual, consuming
7301tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7302and split further, with the result that instead of a sequence of states,
c827f760 7303a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7304
7305In effect, each stack represents a guess as to what the proper parse
7306is. Additional input may indicate that a guess was wrong, in which case
7307the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7308actions generated in each stack are saved, rather than being executed
676385e2 7309immediately. When a stack disappears, its saved semantic actions never
fae437e8 7310get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7311their sets of semantic actions are both saved with the state that
7312results from the reduction. We say that two stacks are equivalent
fae437e8 7313when they both represent the same sequence of states,
676385e2
PH
7314and each pair of corresponding states represents a
7315grammar symbol that produces the same segment of the input token
7316stream.
7317
7318Whenever the parser makes a transition from having multiple
eb45ef3b 7319states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7320algorithm, after resolving and executing the saved-up actions.
7321At this transition, some of the states on the stack will have semantic
7322values that are sets (actually multisets) of possible actions. The
7323parser tries to pick one of the actions by first finding one whose rule
7324has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7325declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7326precedence, but there the same merging function is declared for both
fae437e8 7327rules by the @samp{%merge} declaration,
676385e2
PH
7328Bison resolves and evaluates both and then calls the merge function on
7329the result. Otherwise, it reports an ambiguity.
7330
c827f760 7331It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7332permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7333size of the input), any unambiguous (not necessarily
eb45ef3b 7334@acronym{LR}(1)) grammar in
fae437e8 7335quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7336context-free grammar in cubic worst-case time. However, Bison currently
7337uses a simpler data structure that requires time proportional to the
7338length of the input times the maximum number of stacks required for any
9d9b8b70 7339prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7340grammars can require exponential time and space to process. Such badly
7341behaving examples, however, are not generally of practical interest.
9d9b8b70 7342Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7343doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7344structure should generally be adequate. On @acronym{LR}(1) portions of a
7345grammar, in particular, it is only slightly slower than with the
7346deterministic @acronym{LR}(1) Bison parser.
676385e2 7347
fa7e68c3 7348For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7349Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7350Generalised @acronym{LR} Parsers, Royal Holloway, University of
7351London, Department of Computer Science, TR-00-12,
7352@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7353(2000-12-24).
7354
1a059451
PE
7355@node Memory Management
7356@section Memory Management, and How to Avoid Memory Exhaustion
7357@cindex memory exhaustion
7358@cindex memory management
bfa74976
RS
7359@cindex stack overflow
7360@cindex parser stack overflow
7361@cindex overflow of parser stack
7362
1a059451 7363The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7364not reduced. When this happens, the parser function @code{yyparse}
1a059451 7365calls @code{yyerror} and then returns 2.
bfa74976 7366
c827f760 7367Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7368usually results from using a right recursion instead of a left
7369recursion, @xref{Recursion, ,Recursive Rules}.
7370
bfa74976
RS
7371@vindex YYMAXDEPTH
7372By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7373parser stack can become before memory is exhausted. Define the
bfa74976
RS
7374macro with a value that is an integer. This value is the maximum number
7375of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7376
7377The stack space allowed is not necessarily allocated. If you specify a
1a059451 7378large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7379stack at first, and then makes it bigger by stages as needed. This
7380increasing allocation happens automatically and silently. Therefore,
7381you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7382space for ordinary inputs that do not need much stack.
7383
d7e14fc0
PE
7384However, do not allow @code{YYMAXDEPTH} to be a value so large that
7385arithmetic overflow could occur when calculating the size of the stack
7386space. Also, do not allow @code{YYMAXDEPTH} to be less than
7387@code{YYINITDEPTH}.
7388
bfa74976
RS
7389@cindex default stack limit
7390The default value of @code{YYMAXDEPTH}, if you do not define it, is
739110000.
7392
7393@vindex YYINITDEPTH
7394You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7395macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7396parser in C, this value must be a compile-time constant
d7e14fc0
PE
7397unless you are assuming C99 or some other target language or compiler
7398that allows variable-length arrays. The default is 200.
7399
1a059451 7400Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7401
20be2f92
PH
7402You can generate a deterministic parser containing C++ user code from
7403the default (C) skeleton, as well as from the C++ skeleton
7404(@pxref{C++ Parsers}). However, if you do use the default skeleton
7405and want to allow the parsing stack to grow,
7406be careful not to use semantic types or location types that require
7407non-trivial copy constructors.
7408The C skeleton bypasses these constructors when copying data to
7409new, larger stacks.
d1a1114f 7410
342b8b6e 7411@node Error Recovery
bfa74976
RS
7412@chapter Error Recovery
7413@cindex error recovery
7414@cindex recovery from errors
7415
6e649e65 7416It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7417error. For example, a compiler should recover sufficiently to parse the
7418rest of the input file and check it for errors; a calculator should accept
7419another expression.
7420
7421In a simple interactive command parser where each input is one line, it may
7422be sufficient to allow @code{yyparse} to return 1 on error and have the
7423caller ignore the rest of the input line when that happens (and then call
7424@code{yyparse} again). But this is inadequate for a compiler, because it
7425forgets all the syntactic context leading up to the error. A syntax error
7426deep within a function in the compiler input should not cause the compiler
7427to treat the following line like the beginning of a source file.
7428
7429@findex error
7430You can define how to recover from a syntax error by writing rules to
7431recognize the special token @code{error}. This is a terminal symbol that
7432is always defined (you need not declare it) and reserved for error
7433handling. The Bison parser generates an @code{error} token whenever a
7434syntax error happens; if you have provided a rule to recognize this token
13863333 7435in the current context, the parse can continue.
bfa74976
RS
7436
7437For example:
7438
7439@example
7440stmnts: /* empty string */
7441 | stmnts '\n'
7442 | stmnts exp '\n'
7443 | stmnts error '\n'
7444@end example
7445
7446The fourth rule in this example says that an error followed by a newline
7447makes a valid addition to any @code{stmnts}.
7448
7449What happens if a syntax error occurs in the middle of an @code{exp}? The
7450error recovery rule, interpreted strictly, applies to the precise sequence
7451of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7452the middle of an @code{exp}, there will probably be some additional tokens
7453and subexpressions on the stack after the last @code{stmnts}, and there
7454will be tokens to read before the next newline. So the rule is not
7455applicable in the ordinary way.
7456
7457But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7458the semantic context and part of the input. First it discards states
7459and objects from the stack until it gets back to a state in which the
bfa74976 7460@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7461already parsed are discarded, back to the last complete @code{stmnts}.)
7462At this point the @code{error} token can be shifted. Then, if the old
742e4900 7463lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7464tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7465this example, Bison reads and discards input until the next newline so
7466that the fourth rule can apply. Note that discarded symbols are
7467possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7468Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7469
7470The choice of error rules in the grammar is a choice of strategies for
7471error recovery. A simple and useful strategy is simply to skip the rest of
7472the current input line or current statement if an error is detected:
7473
7474@example
72d2299c 7475stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7476@end example
7477
7478It is also useful to recover to the matching close-delimiter of an
7479opening-delimiter that has already been parsed. Otherwise the
7480close-delimiter will probably appear to be unmatched, and generate another,
7481spurious error message:
7482
7483@example
7484primary: '(' expr ')'
7485 | '(' error ')'
7486 @dots{}
7487 ;
7488@end example
7489
7490Error recovery strategies are necessarily guesses. When they guess wrong,
7491one syntax error often leads to another. In the above example, the error
7492recovery rule guesses that an error is due to bad input within one
7493@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7494middle of a valid @code{stmnt}. After the error recovery rule recovers
7495from the first error, another syntax error will be found straightaway,
7496since the text following the spurious semicolon is also an invalid
7497@code{stmnt}.
7498
7499To prevent an outpouring of error messages, the parser will output no error
7500message for another syntax error that happens shortly after the first; only
7501after three consecutive input tokens have been successfully shifted will
7502error messages resume.
7503
7504Note that rules which accept the @code{error} token may have actions, just
7505as any other rules can.
7506
7507@findex yyerrok
7508You can make error messages resume immediately by using the macro
7509@code{yyerrok} in an action. If you do this in the error rule's action, no
7510error messages will be suppressed. This macro requires no arguments;
7511@samp{yyerrok;} is a valid C statement.
7512
7513@findex yyclearin
742e4900 7514The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7515this is unacceptable, then the macro @code{yyclearin} may be used to clear
7516this token. Write the statement @samp{yyclearin;} in the error rule's
7517action.
32c29292 7518@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7519
6e649e65 7520For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7521called that advances the input stream to some point where parsing should
7522once again commence. The next symbol returned by the lexical scanner is
742e4900 7523probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7524with @samp{yyclearin;}.
7525
7526@vindex YYRECOVERING
02103984
PE
7527The expression @code{YYRECOVERING ()} yields 1 when the parser
7528is recovering from a syntax error, and 0 otherwise.
7529Syntax error diagnostics are suppressed while recovering from a syntax
7530error.
bfa74976 7531
342b8b6e 7532@node Context Dependency
bfa74976
RS
7533@chapter Handling Context Dependencies
7534
7535The Bison paradigm is to parse tokens first, then group them into larger
7536syntactic units. In many languages, the meaning of a token is affected by
7537its context. Although this violates the Bison paradigm, certain techniques
7538(known as @dfn{kludges}) may enable you to write Bison parsers for such
7539languages.
7540
7541@menu
7542* Semantic Tokens:: Token parsing can depend on the semantic context.
7543* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7544* Tie-in Recovery:: Lexical tie-ins have implications for how
7545 error recovery rules must be written.
7546@end menu
7547
7548(Actually, ``kludge'' means any technique that gets its job done but is
7549neither clean nor robust.)
7550
342b8b6e 7551@node Semantic Tokens
bfa74976
RS
7552@section Semantic Info in Token Types
7553
7554The C language has a context dependency: the way an identifier is used
7555depends on what its current meaning is. For example, consider this:
7556
7557@example
7558foo (x);
7559@end example
7560
7561This looks like a function call statement, but if @code{foo} is a typedef
7562name, then this is actually a declaration of @code{x}. How can a Bison
7563parser for C decide how to parse this input?
7564
c827f760 7565The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7566@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7567identifier, it looks up the current declaration of the identifier in order
7568to decide which token type to return: @code{TYPENAME} if the identifier is
7569declared as a typedef, @code{IDENTIFIER} otherwise.
7570
7571The grammar rules can then express the context dependency by the choice of
7572token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7573but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7574@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7575is @emph{not} significant, such as in declarations that can shadow a
7576typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7577accepted---there is one rule for each of the two token types.
7578
7579This technique is simple to use if the decision of which kinds of
7580identifiers to allow is made at a place close to where the identifier is
7581parsed. But in C this is not always so: C allows a declaration to
7582redeclare a typedef name provided an explicit type has been specified
7583earlier:
7584
7585@example
3a4f411f
PE
7586typedef int foo, bar;
7587int baz (void)
7588@{
7589 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7590 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7591 return foo (bar);
7592@}
bfa74976
RS
7593@end example
7594
7595Unfortunately, the name being declared is separated from the declaration
7596construct itself by a complicated syntactic structure---the ``declarator''.
7597
9ecbd125 7598As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7599all the nonterminal names changed: once for parsing a declaration in
7600which a typedef name can be redefined, and once for parsing a
7601declaration in which that can't be done. Here is a part of the
7602duplication, with actions omitted for brevity:
bfa74976
RS
7603
7604@example
7605initdcl:
7606 declarator maybeasm '='
7607 init
7608 | declarator maybeasm
7609 ;
7610
7611notype_initdcl:
7612 notype_declarator maybeasm '='
7613 init
7614 | notype_declarator maybeasm
7615 ;
7616@end example
7617
7618@noindent
7619Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7620cannot. The distinction between @code{declarator} and
7621@code{notype_declarator} is the same sort of thing.
7622
7623There is some similarity between this technique and a lexical tie-in
7624(described next), in that information which alters the lexical analysis is
7625changed during parsing by other parts of the program. The difference is
7626here the information is global, and is used for other purposes in the
7627program. A true lexical tie-in has a special-purpose flag controlled by
7628the syntactic context.
7629
342b8b6e 7630@node Lexical Tie-ins
bfa74976
RS
7631@section Lexical Tie-ins
7632@cindex lexical tie-in
7633
7634One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7635which is set by Bison actions, whose purpose is to alter the way tokens are
7636parsed.
7637
7638For example, suppose we have a language vaguely like C, but with a special
7639construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7640an expression in parentheses in which all integers are hexadecimal. In
7641particular, the token @samp{a1b} must be treated as an integer rather than
7642as an identifier if it appears in that context. Here is how you can do it:
7643
7644@example
7645@group
7646%@{
38a92d50
PE
7647 int hexflag;
7648 int yylex (void);
7649 void yyerror (char const *);
bfa74976
RS
7650%@}
7651%%
7652@dots{}
7653@end group
7654@group
7655expr: IDENTIFIER
7656 | constant
7657 | HEX '('
7658 @{ hexflag = 1; @}
7659 expr ')'
7660 @{ hexflag = 0;
7661 $$ = $4; @}
7662 | expr '+' expr
7663 @{ $$ = make_sum ($1, $3); @}
7664 @dots{}
7665 ;
7666@end group
7667
7668@group
7669constant:
7670 INTEGER
7671 | STRING
7672 ;
7673@end group
7674@end example
7675
7676@noindent
7677Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7678it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7679with letters are parsed as integers if possible.
7680
342b8b6e
AD
7681The declaration of @code{hexflag} shown in the prologue of the parser file
7682is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7683You must also write the code in @code{yylex} to obey the flag.
bfa74976 7684
342b8b6e 7685@node Tie-in Recovery
bfa74976
RS
7686@section Lexical Tie-ins and Error Recovery
7687
7688Lexical tie-ins make strict demands on any error recovery rules you have.
7689@xref{Error Recovery}.
7690
7691The reason for this is that the purpose of an error recovery rule is to
7692abort the parsing of one construct and resume in some larger construct.
7693For example, in C-like languages, a typical error recovery rule is to skip
7694tokens until the next semicolon, and then start a new statement, like this:
7695
7696@example
7697stmt: expr ';'
7698 | IF '(' expr ')' stmt @{ @dots{} @}
7699 @dots{}
7700 error ';'
7701 @{ hexflag = 0; @}
7702 ;
7703@end example
7704
7705If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7706construct, this error rule will apply, and then the action for the
7707completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7708remain set for the entire rest of the input, or until the next @code{hex}
7709keyword, causing identifiers to be misinterpreted as integers.
7710
7711To avoid this problem the error recovery rule itself clears @code{hexflag}.
7712
7713There may also be an error recovery rule that works within expressions.
7714For example, there could be a rule which applies within parentheses
7715and skips to the close-parenthesis:
7716
7717@example
7718@group
7719expr: @dots{}
7720 | '(' expr ')'
7721 @{ $$ = $2; @}
7722 | '(' error ')'
7723 @dots{}
7724@end group
7725@end example
7726
7727If this rule acts within the @code{hex} construct, it is not going to abort
7728that construct (since it applies to an inner level of parentheses within
7729the construct). Therefore, it should not clear the flag: the rest of
7730the @code{hex} construct should be parsed with the flag still in effect.
7731
7732What if there is an error recovery rule which might abort out of the
7733@code{hex} construct or might not, depending on circumstances? There is no
7734way you can write the action to determine whether a @code{hex} construct is
7735being aborted or not. So if you are using a lexical tie-in, you had better
7736make sure your error recovery rules are not of this kind. Each rule must
7737be such that you can be sure that it always will, or always won't, have to
7738clear the flag.
7739
ec3bc396
AD
7740@c ================================================== Debugging Your Parser
7741
342b8b6e 7742@node Debugging
bfa74976 7743@chapter Debugging Your Parser
ec3bc396
AD
7744
7745Developing a parser can be a challenge, especially if you don't
7746understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7747Algorithm}). Even so, sometimes a detailed description of the automaton
7748can help (@pxref{Understanding, , Understanding Your Parser}), or
7749tracing the execution of the parser can give some insight on why it
7750behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7751
7752@menu
7753* Understanding:: Understanding the structure of your parser.
7754* Tracing:: Tracing the execution of your parser.
7755@end menu
7756
7757@node Understanding
7758@section Understanding Your Parser
7759
7760As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7761Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7762frequent than one would hope), looking at this automaton is required to
7763tune or simply fix a parser. Bison provides two different
35fe0834 7764representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7765
7766The textual file is generated when the options @option{--report} or
7767@option{--verbose} are specified, see @xref{Invocation, , Invoking
7768Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7769the parser output file name, and adding @samp{.output} instead.
7770Therefore, if the input file is @file{foo.y}, then the parser file is
7771called @file{foo.tab.c} by default. As a consequence, the verbose
7772output file is called @file{foo.output}.
7773
7774The following grammar file, @file{calc.y}, will be used in the sequel:
7775
7776@example
7777%token NUM STR
7778%left '+' '-'
7779%left '*'
7780%%
7781exp: exp '+' exp
7782 | exp '-' exp
7783 | exp '*' exp
7784 | exp '/' exp
7785 | NUM
7786 ;
7787useless: STR;
7788%%
7789@end example
7790
88bce5a2
AD
7791@command{bison} reports:
7792
7793@example
8f0d265e
JD
7794calc.y: warning: 1 nonterminal useless in grammar
7795calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7796calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7797calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7798calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7799@end example
7800
7801When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7802creates a file @file{calc.output} with contents detailed below. The
7803order of the output and the exact presentation might vary, but the
7804interpretation is the same.
ec3bc396
AD
7805
7806The first section includes details on conflicts that were solved thanks
7807to precedence and/or associativity:
7808
7809@example
7810Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7811Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7812Conflict in state 8 between rule 2 and token '*' resolved as shift.
7813@exdent @dots{}
7814@end example
7815
7816@noindent
7817The next section lists states that still have conflicts.
7818
7819@example
5a99098d
PE
7820State 8 conflicts: 1 shift/reduce
7821State 9 conflicts: 1 shift/reduce
7822State 10 conflicts: 1 shift/reduce
7823State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7824@end example
7825
7826@noindent
7827@cindex token, useless
7828@cindex useless token
7829@cindex nonterminal, useless
7830@cindex useless nonterminal
7831@cindex rule, useless
7832@cindex useless rule
7833The next section reports useless tokens, nonterminal and rules. Useless
7834nonterminals and rules are removed in order to produce a smaller parser,
7835but useless tokens are preserved, since they might be used by the
d80fb37a 7836scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7837below):
7838
7839@example
d80fb37a 7840Nonterminals useless in grammar:
ec3bc396
AD
7841 useless
7842
d80fb37a 7843Terminals unused in grammar:
ec3bc396
AD
7844 STR
7845
cff03fb2 7846Rules useless in grammar:
ec3bc396
AD
7847#6 useless: STR;
7848@end example
7849
7850@noindent
7851The next section reproduces the exact grammar that Bison used:
7852
7853@example
7854Grammar
7855
7856 Number, Line, Rule
88bce5a2 7857 0 5 $accept -> exp $end
ec3bc396
AD
7858 1 5 exp -> exp '+' exp
7859 2 6 exp -> exp '-' exp
7860 3 7 exp -> exp '*' exp
7861 4 8 exp -> exp '/' exp
7862 5 9 exp -> NUM
7863@end example
7864
7865@noindent
7866and reports the uses of the symbols:
7867
7868@example
7869Terminals, with rules where they appear
7870
88bce5a2 7871$end (0) 0
ec3bc396
AD
7872'*' (42) 3
7873'+' (43) 1
7874'-' (45) 2
7875'/' (47) 4
7876error (256)
7877NUM (258) 5
7878
7879Nonterminals, with rules where they appear
7880
88bce5a2 7881$accept (8)
ec3bc396
AD
7882 on left: 0
7883exp (9)
7884 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7885@end example
7886
7887@noindent
7888@cindex item
7889@cindex pointed rule
7890@cindex rule, pointed
7891Bison then proceeds onto the automaton itself, describing each state
7892with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7893item is a production rule together with a point (marked by @samp{.})
7894that the input cursor.
7895
7896@example
7897state 0
7898
88bce5a2 7899 $accept -> . exp $ (rule 0)
ec3bc396 7900
2a8d363a 7901 NUM shift, and go to state 1
ec3bc396 7902
2a8d363a 7903 exp go to state 2
ec3bc396
AD
7904@end example
7905
7906This reads as follows: ``state 0 corresponds to being at the very
7907beginning of the parsing, in the initial rule, right before the start
7908symbol (here, @code{exp}). When the parser returns to this state right
7909after having reduced a rule that produced an @code{exp}, the control
7910flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7911symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7912the parse stack, and the control flow jumps to state 1. Any other
742e4900 7913lookahead triggers a syntax error.''
ec3bc396
AD
7914
7915@cindex core, item set
7916@cindex item set core
7917@cindex kernel, item set
7918@cindex item set core
7919Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7920report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7921at the beginning of any rule deriving an @code{exp}. By default Bison
7922reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7923you want to see more detail you can invoke @command{bison} with
7924@option{--report=itemset} to list all the items, include those that can
7925be derived:
7926
7927@example
7928state 0
7929
88bce5a2 7930 $accept -> . exp $ (rule 0)
ec3bc396
AD
7931 exp -> . exp '+' exp (rule 1)
7932 exp -> . exp '-' exp (rule 2)
7933 exp -> . exp '*' exp (rule 3)
7934 exp -> . exp '/' exp (rule 4)
7935 exp -> . NUM (rule 5)
7936
7937 NUM shift, and go to state 1
7938
7939 exp go to state 2
7940@end example
7941
7942@noindent
7943In the state 1...
7944
7945@example
7946state 1
7947
7948 exp -> NUM . (rule 5)
7949
2a8d363a 7950 $default reduce using rule 5 (exp)
ec3bc396
AD
7951@end example
7952
7953@noindent
742e4900 7954the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7955(@samp{$default}), the parser will reduce it. If it was coming from
7956state 0, then, after this reduction it will return to state 0, and will
7957jump to state 2 (@samp{exp: go to state 2}).
7958
7959@example
7960state 2
7961
88bce5a2 7962 $accept -> exp . $ (rule 0)
ec3bc396
AD
7963 exp -> exp . '+' exp (rule 1)
7964 exp -> exp . '-' exp (rule 2)
7965 exp -> exp . '*' exp (rule 3)
7966 exp -> exp . '/' exp (rule 4)
7967
2a8d363a
AD
7968 $ shift, and go to state 3
7969 '+' shift, and go to state 4
7970 '-' shift, and go to state 5
7971 '*' shift, and go to state 6
7972 '/' shift, and go to state 7
ec3bc396
AD
7973@end example
7974
7975@noindent
7976In state 2, the automaton can only shift a symbol. For instance,
742e4900 7977because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7978@samp{+}, it will be shifted on the parse stack, and the automaton
7979control will jump to state 4, corresponding to the item @samp{exp -> exp
7980'+' . exp}. Since there is no default action, any other token than
6e649e65 7981those listed above will trigger a syntax error.
ec3bc396 7982
eb45ef3b 7983@cindex accepting state
ec3bc396
AD
7984The state 3 is named the @dfn{final state}, or the @dfn{accepting
7985state}:
7986
7987@example
7988state 3
7989
88bce5a2 7990 $accept -> exp $ . (rule 0)
ec3bc396 7991
2a8d363a 7992 $default accept
ec3bc396
AD
7993@end example
7994
7995@noindent
7996the initial rule is completed (the start symbol and the end
7997of input were read), the parsing exits successfully.
7998
7999The interpretation of states 4 to 7 is straightforward, and is left to
8000the reader.
8001
8002@example
8003state 4
8004
8005 exp -> exp '+' . exp (rule 1)
8006
2a8d363a 8007 NUM shift, and go to state 1
ec3bc396 8008
2a8d363a 8009 exp go to state 8
ec3bc396
AD
8010
8011state 5
8012
8013 exp -> exp '-' . exp (rule 2)
8014
2a8d363a 8015 NUM shift, and go to state 1
ec3bc396 8016
2a8d363a 8017 exp go to state 9
ec3bc396
AD
8018
8019state 6
8020
8021 exp -> exp '*' . exp (rule 3)
8022
2a8d363a 8023 NUM shift, and go to state 1
ec3bc396 8024
2a8d363a 8025 exp go to state 10
ec3bc396
AD
8026
8027state 7
8028
8029 exp -> exp '/' . exp (rule 4)
8030
2a8d363a 8031 NUM shift, and go to state 1
ec3bc396 8032
2a8d363a 8033 exp go to state 11
ec3bc396
AD
8034@end example
8035
5a99098d
PE
8036As was announced in beginning of the report, @samp{State 8 conflicts:
80371 shift/reduce}:
ec3bc396
AD
8038
8039@example
8040state 8
8041
8042 exp -> exp . '+' exp (rule 1)
8043 exp -> exp '+' exp . (rule 1)
8044 exp -> exp . '-' exp (rule 2)
8045 exp -> exp . '*' exp (rule 3)
8046 exp -> exp . '/' exp (rule 4)
8047
2a8d363a
AD
8048 '*' shift, and go to state 6
8049 '/' shift, and go to state 7
ec3bc396 8050
2a8d363a
AD
8051 '/' [reduce using rule 1 (exp)]
8052 $default reduce using rule 1 (exp)
ec3bc396
AD
8053@end example
8054
742e4900 8055Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8056either shifting (and going to state 7), or reducing rule 1. The
8057conflict means that either the grammar is ambiguous, or the parser lacks
8058information to make the right decision. Indeed the grammar is
8059ambiguous, as, since we did not specify the precedence of @samp{/}, the
8060sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8061NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8062NUM}, which corresponds to reducing rule 1.
8063
eb45ef3b 8064Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8065arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8066Shift/Reduce Conflicts}. Discarded actions are reported in between
8067square brackets.
8068
8069Note that all the previous states had a single possible action: either
8070shifting the next token and going to the corresponding state, or
8071reducing a single rule. In the other cases, i.e., when shifting
8072@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8073possible, the lookahead is required to select the action. State 8 is
8074one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8075is shifting, otherwise the action is reducing rule 1. In other words,
8076the first two items, corresponding to rule 1, are not eligible when the
742e4900 8077lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8078precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8079with some set of possible lookahead tokens. When run with
8080@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8081
8082@example
8083state 8
8084
88c78747 8085 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8086 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8087 exp -> exp . '-' exp (rule 2)
8088 exp -> exp . '*' exp (rule 3)
8089 exp -> exp . '/' exp (rule 4)
8090
8091 '*' shift, and go to state 6
8092 '/' shift, and go to state 7
8093
8094 '/' [reduce using rule 1 (exp)]
8095 $default reduce using rule 1 (exp)
8096@end example
8097
8098The remaining states are similar:
8099
8100@example
8101state 9
8102
8103 exp -> exp . '+' exp (rule 1)
8104 exp -> exp . '-' exp (rule 2)
8105 exp -> exp '-' exp . (rule 2)
8106 exp -> exp . '*' exp (rule 3)
8107 exp -> exp . '/' exp (rule 4)
8108
2a8d363a
AD
8109 '*' shift, and go to state 6
8110 '/' shift, and go to state 7
ec3bc396 8111
2a8d363a
AD
8112 '/' [reduce using rule 2 (exp)]
8113 $default reduce using rule 2 (exp)
ec3bc396
AD
8114
8115state 10
8116
8117 exp -> exp . '+' exp (rule 1)
8118 exp -> exp . '-' exp (rule 2)
8119 exp -> exp . '*' exp (rule 3)
8120 exp -> exp '*' exp . (rule 3)
8121 exp -> exp . '/' exp (rule 4)
8122
2a8d363a 8123 '/' shift, and go to state 7
ec3bc396 8124
2a8d363a
AD
8125 '/' [reduce using rule 3 (exp)]
8126 $default reduce using rule 3 (exp)
ec3bc396
AD
8127
8128state 11
8129
8130 exp -> exp . '+' exp (rule 1)
8131 exp -> exp . '-' exp (rule 2)
8132 exp -> exp . '*' exp (rule 3)
8133 exp -> exp . '/' exp (rule 4)
8134 exp -> exp '/' exp . (rule 4)
8135
2a8d363a
AD
8136 '+' shift, and go to state 4
8137 '-' shift, and go to state 5
8138 '*' shift, and go to state 6
8139 '/' shift, and go to state 7
ec3bc396 8140
2a8d363a
AD
8141 '+' [reduce using rule 4 (exp)]
8142 '-' [reduce using rule 4 (exp)]
8143 '*' [reduce using rule 4 (exp)]
8144 '/' [reduce using rule 4 (exp)]
8145 $default reduce using rule 4 (exp)
ec3bc396
AD
8146@end example
8147
8148@noindent
fa7e68c3
PE
8149Observe that state 11 contains conflicts not only due to the lack of
8150precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8151@samp{*}, but also because the
ec3bc396
AD
8152associativity of @samp{/} is not specified.
8153
8154
8155@node Tracing
8156@section Tracing Your Parser
bfa74976
RS
8157@findex yydebug
8158@cindex debugging
8159@cindex tracing the parser
8160
8161If a Bison grammar compiles properly but doesn't do what you want when it
8162runs, the @code{yydebug} parser-trace feature can help you figure out why.
8163
3ded9a63
AD
8164There are several means to enable compilation of trace facilities:
8165
8166@table @asis
8167@item the macro @code{YYDEBUG}
8168@findex YYDEBUG
8169Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 8170parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
8171@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8172YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8173Prologue}).
8174
8175@item the option @option{-t}, @option{--debug}
8176Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 8177,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
8178
8179@item the directive @samp{%debug}
8180@findex %debug
fa819509
AD
8181Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8182Summary}). This Bison extension is maintained for backward
8183compatibility with previous versions of Bison.
8184
8185@item the variable @samp{parse.trace}
8186@findex %define parse.trace
8187Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8188,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8189(@pxref{Bison Options}). This is a Bison extension, which is especially
8190useful for languages that don't use a preprocessor. Unless
8191@acronym{POSIX} and Yacc portability matter to you, this is the
8192preferred solution.
3ded9a63
AD
8193@end table
8194
fa819509 8195We suggest that you always enable the trace option so that debugging is
3ded9a63 8196always possible.
bfa74976 8197
02a81e05 8198The trace facility outputs messages with macro calls of the form
e2742e46 8199@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8200@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8201arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8202define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8203and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8204
8205Once you have compiled the program with trace facilities, the way to
8206request a trace is to store a nonzero value in the variable @code{yydebug}.
8207You can do this by making the C code do it (in @code{main}, perhaps), or
8208you can alter the value with a C debugger.
8209
8210Each step taken by the parser when @code{yydebug} is nonzero produces a
8211line or two of trace information, written on @code{stderr}. The trace
8212messages tell you these things:
8213
8214@itemize @bullet
8215@item
8216Each time the parser calls @code{yylex}, what kind of token was read.
8217
8218@item
8219Each time a token is shifted, the depth and complete contents of the
8220state stack (@pxref{Parser States}).
8221
8222@item
8223Each time a rule is reduced, which rule it is, and the complete contents
8224of the state stack afterward.
8225@end itemize
8226
8227To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8228produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8229Bison}). This file shows the meaning of each state in terms of
8230positions in various rules, and also what each state will do with each
8231possible input token. As you read the successive trace messages, you
8232can see that the parser is functioning according to its specification in
8233the listing file. Eventually you will arrive at the place where
8234something undesirable happens, and you will see which parts of the
8235grammar are to blame.
bfa74976
RS
8236
8237The parser file is a C program and you can use C debuggers on it, but it's
8238not easy to interpret what it is doing. The parser function is a
8239finite-state machine interpreter, and aside from the actions it executes
8240the same code over and over. Only the values of variables show where in
8241the grammar it is working.
8242
8243@findex YYPRINT
8244The debugging information normally gives the token type of each token
8245read, but not its semantic value. You can optionally define a macro
8246named @code{YYPRINT} to provide a way to print the value. If you define
8247@code{YYPRINT}, it should take three arguments. The parser will pass a
8248standard I/O stream, the numeric code for the token type, and the token
8249value (from @code{yylval}).
8250
8251Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8252calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8253
8254@smallexample
38a92d50
PE
8255%@{
8256 static void print_token_value (FILE *, int, YYSTYPE);
8257 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8258%@}
8259
8260@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8261
8262static void
831d3c99 8263print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8264@{
8265 if (type == VAR)
d3c4e709 8266 fprintf (file, "%s", value.tptr->name);
bfa74976 8267 else if (type == NUM)
d3c4e709 8268 fprintf (file, "%d", value.val);
bfa74976
RS
8269@}
8270@end smallexample
8271
ec3bc396
AD
8272@c ================================================= Invoking Bison
8273
342b8b6e 8274@node Invocation
bfa74976
RS
8275@chapter Invoking Bison
8276@cindex invoking Bison
8277@cindex Bison invocation
8278@cindex options for invoking Bison
8279
8280The usual way to invoke Bison is as follows:
8281
8282@example
8283bison @var{infile}
8284@end example
8285
8286Here @var{infile} is the grammar file name, which usually ends in
8287@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8288with @samp{.tab.c} and removing any leading directory. Thus, the
8289@samp{bison foo.y} file name yields
8290@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8291@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8292C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8293or @file{foo.y++}. Then, the output files will take an extension like
8294the given one as input (respectively @file{foo.tab.cpp} and
8295@file{foo.tab.c++}).
fa4d969f 8296This feature takes effect with all options that manipulate file names like
234a3be3
AD
8297@samp{-o} or @samp{-d}.
8298
8299For example :
8300
8301@example
8302bison -d @var{infile.yxx}
8303@end example
84163231 8304@noindent
72d2299c 8305will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8306
8307@example
b56471a6 8308bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8309@end example
84163231 8310@noindent
234a3be3
AD
8311will produce @file{output.c++} and @file{outfile.h++}.
8312
397ec073
PE
8313For compatibility with @acronym{POSIX}, the standard Bison
8314distribution also contains a shell script called @command{yacc} that
8315invokes Bison with the @option{-y} option.
8316
bfa74976 8317@menu
13863333 8318* Bison Options:: All the options described in detail,
c827f760 8319 in alphabetical order by short options.
bfa74976 8320* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8321* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8322@end menu
8323
342b8b6e 8324@node Bison Options
bfa74976
RS
8325@section Bison Options
8326
8327Bison supports both traditional single-letter options and mnemonic long
8328option names. Long option names are indicated with @samp{--} instead of
8329@samp{-}. Abbreviations for option names are allowed as long as they
8330are unique. When a long option takes an argument, like
8331@samp{--file-prefix}, connect the option name and the argument with
8332@samp{=}.
8333
8334Here is a list of options that can be used with Bison, alphabetized by
8335short option. It is followed by a cross key alphabetized by long
8336option.
8337
89cab50d
AD
8338@c Please, keep this ordered as in `bison --help'.
8339@noindent
8340Operations modes:
8341@table @option
8342@item -h
8343@itemx --help
8344Print a summary of the command-line options to Bison and exit.
bfa74976 8345
89cab50d
AD
8346@item -V
8347@itemx --version
8348Print the version number of Bison and exit.
bfa74976 8349
f7ab6a50
PE
8350@item --print-localedir
8351Print the name of the directory containing locale-dependent data.
8352
a0de5091
JD
8353@item --print-datadir
8354Print the name of the directory containing skeletons and XSLT.
8355
89cab50d
AD
8356@item -y
8357@itemx --yacc
54662697
PE
8358Act more like the traditional Yacc command. This can cause
8359different diagnostics to be generated, and may change behavior in
8360other minor ways. Most importantly, imitate Yacc's output
8361file name conventions, so that the parser output file is called
89cab50d 8362@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8363@file{y.tab.h}.
eb45ef3b 8364Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8365statements in addition to an @code{enum} to associate token numbers with token
8366names.
8367Thus, the following shell script can substitute for Yacc, and the Bison
8368distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8369
89cab50d 8370@example
397ec073 8371#! /bin/sh
26e06a21 8372bison -y "$@@"
89cab50d 8373@end example
54662697
PE
8374
8375The @option{-y}/@option{--yacc} option is intended for use with
8376traditional Yacc grammars. If your grammar uses a Bison extension
8377like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8378this option is specified.
8379
1d5b3c08
JD
8380@item -W [@var{category}]
8381@itemx --warnings[=@var{category}]
118d4978
AD
8382Output warnings falling in @var{category}. @var{category} can be one
8383of:
8384@table @code
8385@item midrule-values
8e55b3aa
JD
8386Warn about mid-rule values that are set but not used within any of the actions
8387of the parent rule.
8388For example, warn about unused @code{$2} in:
118d4978
AD
8389
8390@example
8391exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8392@end example
8393
8e55b3aa
JD
8394Also warn about mid-rule values that are used but not set.
8395For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8396
8397@example
8398 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8399@end example
8400
8401These warnings are not enabled by default since they sometimes prove to
8402be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8403@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8404
8405
8406@item yacc
8407Incompatibilities with @acronym{POSIX} Yacc.
8408
8409@item all
8e55b3aa 8410All the warnings.
118d4978 8411@item none
8e55b3aa 8412Turn off all the warnings.
118d4978 8413@item error
8e55b3aa 8414Treat warnings as errors.
118d4978
AD
8415@end table
8416
8417A category can be turned off by prefixing its name with @samp{no-}. For
8418instance, @option{-Wno-syntax} will hide the warnings about unused
8419variables.
89cab50d
AD
8420@end table
8421
8422@noindent
8423Tuning the parser:
8424
8425@table @option
8426@item -t
8427@itemx --debug
4947ebdb
PE
8428In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8429already defined, so that the debugging facilities are compiled.
ec3bc396 8430@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8431
58697c6d
AD
8432@item -D @var{name}[=@var{value}]
8433@itemx --define=@var{name}[=@var{value}]
17aed602 8434@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8435@itemx --force-define=@var{name}[=@var{value}]
8436Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8437(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8438definitions for the same @var{name} as follows:
8439
8440@itemize
8441@item
0b6d43c5
JD
8442Bison quietly ignores all command-line definitions for @var{name} except
8443the last.
de5ab940 8444@item
0b6d43c5
JD
8445If that command-line definition is specified by a @code{-D} or
8446@code{--define}, Bison reports an error for any @code{%define}
8447definition for @var{name}.
de5ab940 8448@item
0b6d43c5
JD
8449If that command-line definition is specified by a @code{-F} or
8450@code{--force-define} instead, Bison quietly ignores all @code{%define}
8451definitions for @var{name}.
8452@item
8453Otherwise, Bison reports an error if there are multiple @code{%define}
8454definitions for @var{name}.
de5ab940
JD
8455@end itemize
8456
8457You should avoid using @code{-F} and @code{--force-define} in your
8458makefiles unless you are confident that it is safe to quietly ignore any
8459conflicting @code{%define} that may be added to the grammar file.
58697c6d 8460
0e021770
PE
8461@item -L @var{language}
8462@itemx --language=@var{language}
8463Specify the programming language for the generated parser, as if
8464@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8465Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8466@var{language} is case-insensitive.
0e021770 8467
ed4d67dc
JD
8468This option is experimental and its effect may be modified in future
8469releases.
8470
89cab50d 8471@item --locations
d8988b2f 8472Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8473
8474@item -p @var{prefix}
8475@itemx --name-prefix=@var{prefix}
02975b9a 8476Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8477@xref{Decl Summary}.
bfa74976
RS
8478
8479@item -l
8480@itemx --no-lines
8481Don't put any @code{#line} preprocessor commands in the parser file.
8482Ordinarily Bison puts them in the parser file so that the C compiler
8483and debuggers will associate errors with your source file, the
8484grammar file. This option causes them to associate errors with the
95e742f7 8485parser file, treating it as an independent source file in its own right.
bfa74976 8486
e6e704dc
JD
8487@item -S @var{file}
8488@itemx --skeleton=@var{file}
a7867f53 8489Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8490(@pxref{Decl Summary, , Bison Declaration Summary}).
8491
ed4d67dc
JD
8492@c You probably don't need this option unless you are developing Bison.
8493@c You should use @option{--language} if you want to specify the skeleton for a
8494@c different language, because it is clearer and because it will always
8495@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8496
a7867f53
JD
8497If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8498file in the Bison installation directory.
8499If it does, @var{file} is an absolute file name or a file name relative to the
8500current working directory.
8501This is similar to how most shells resolve commands.
8502
89cab50d
AD
8503@item -k
8504@itemx --token-table
d8988b2f 8505Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8506@end table
bfa74976 8507
89cab50d
AD
8508@noindent
8509Adjust the output:
bfa74976 8510
89cab50d 8511@table @option
8e55b3aa 8512@item --defines[=@var{file}]
d8988b2f 8513Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8514file containing macro definitions for the token type names defined in
4bfd5e4e 8515the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8516
8e55b3aa
JD
8517@item -d
8518This is the same as @code{--defines} except @code{-d} does not accept a
8519@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8520with other short options.
342b8b6e 8521
89cab50d
AD
8522@item -b @var{file-prefix}
8523@itemx --file-prefix=@var{prefix}
9c437126 8524Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8525for all Bison output file names. @xref{Decl Summary}.
bfa74976 8526
ec3bc396
AD
8527@item -r @var{things}
8528@itemx --report=@var{things}
8529Write an extra output file containing verbose description of the comma
8530separated list of @var{things} among:
8531
8532@table @code
8533@item state
8534Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8535parser's automaton.
ec3bc396 8536
742e4900 8537@item lookahead
ec3bc396 8538Implies @code{state} and augments the description of the automaton with
742e4900 8539each rule's lookahead set.
ec3bc396
AD
8540
8541@item itemset
8542Implies @code{state} and augments the description of the automaton with
8543the full set of items for each state, instead of its core only.
8544@end table
8545
1bb2bd75
JD
8546@item --report-file=@var{file}
8547Specify the @var{file} for the verbose description.
8548
bfa74976
RS
8549@item -v
8550@itemx --verbose
9c437126 8551Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8552file containing verbose descriptions of the grammar and
72d2299c 8553parser. @xref{Decl Summary}.
bfa74976 8554
fa4d969f
PE
8555@item -o @var{file}
8556@itemx --output=@var{file}
8557Specify the @var{file} for the parser file.
bfa74976 8558
fa4d969f 8559The other output files' names are constructed from @var{file} as
d8988b2f 8560described under the @samp{-v} and @samp{-d} options.
342b8b6e 8561
a7c09cba 8562@item -g [@var{file}]
8e55b3aa 8563@itemx --graph[=@var{file}]
eb45ef3b 8564Output a graphical representation of the parser's
35fe0834
PE
8565automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8566@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8567@code{@var{file}} is optional.
8568If omitted and the grammar file is @file{foo.y}, the output file will be
8569@file{foo.dot}.
59da312b 8570
a7c09cba 8571@item -x [@var{file}]
8e55b3aa 8572@itemx --xml[=@var{file}]
eb45ef3b 8573Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8574@code{@var{file}} is optional.
59da312b
JD
8575If omitted and the grammar file is @file{foo.y}, the output file will be
8576@file{foo.xml}.
8577(The current XML schema is experimental and may evolve.
8578More user feedback will help to stabilize it.)
bfa74976
RS
8579@end table
8580
342b8b6e 8581@node Option Cross Key
bfa74976
RS
8582@section Option Cross Key
8583
8584Here is a list of options, alphabetized by long option, to help you find
de5ab940 8585the corresponding short option and directive.
bfa74976 8586
de5ab940 8587@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8588@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8589@include cross-options.texi
aa08666d 8590@end multitable
bfa74976 8591
93dd49ab
PE
8592@node Yacc Library
8593@section Yacc Library
8594
8595The Yacc library contains default implementations of the
8596@code{yyerror} and @code{main} functions. These default
8597implementations are normally not useful, but @acronym{POSIX} requires
8598them. To use the Yacc library, link your program with the
8599@option{-ly} option. Note that Bison's implementation of the Yacc
8600library is distributed under the terms of the @acronym{GNU} General
8601Public License (@pxref{Copying}).
8602
8603If you use the Yacc library's @code{yyerror} function, you should
8604declare @code{yyerror} as follows:
8605
8606@example
8607int yyerror (char const *);
8608@end example
8609
8610Bison ignores the @code{int} value returned by this @code{yyerror}.
8611If you use the Yacc library's @code{main} function, your
8612@code{yyparse} function should have the following type signature:
8613
8614@example
8615int yyparse (void);
8616@end example
8617
12545799
AD
8618@c ================================================= C++ Bison
8619
8405b70c
PB
8620@node Other Languages
8621@chapter Parsers Written In Other Languages
12545799
AD
8622
8623@menu
8624* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8625* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8626@end menu
8627
8628@node C++ Parsers
8629@section C++ Parsers
8630
8631@menu
8632* C++ Bison Interface:: Asking for C++ parser generation
8633* C++ Semantic Values:: %union vs. C++
8634* C++ Location Values:: The position and location classes
8635* C++ Parser Interface:: Instantiating and running the parser
8636* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8637* A Complete C++ Example:: Demonstrating their use
12545799
AD
8638@end menu
8639
8640@node C++ Bison Interface
8641@subsection C++ Bison Interface
ed4d67dc 8642@c - %skeleton "lalr1.cc"
12545799
AD
8643@c - Always pure
8644@c - initial action
8645
eb45ef3b 8646The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8647@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8648@option{--skeleton=lalr1.cc}.
e6e704dc 8649@xref{Decl Summary}.
0e021770 8650
793fbca5
JD
8651When run, @command{bison} will create several entities in the @samp{yy}
8652namespace.
67501061
AD
8653@findex %define api.namespace
8654Use the @samp{%define api.namespace} directive to change the namespace
8655name, see
793fbca5
JD
8656@ref{Decl Summary}.
8657The various classes are generated in the following files:
aa08666d 8658
12545799
AD
8659@table @file
8660@item position.hh
8661@itemx location.hh
8662The definition of the classes @code{position} and @code{location},
3cdc21cf 8663used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8664
8665@item stack.hh
8666An auxiliary class @code{stack} used by the parser.
8667
fa4d969f
PE
8668@item @var{file}.hh
8669@itemx @var{file}.cc
cd8b5791
AD
8670(Assuming the extension of the input file was @samp{.yy}.) The
8671declaration and implementation of the C++ parser class. The basename
8672and extension of these two files follow the same rules as with regular C
8673parsers (@pxref{Invocation}).
12545799 8674
cd8b5791
AD
8675The header is @emph{mandatory}; you must either pass
8676@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8677@samp{%defines} directive.
8678@end table
8679
8680All these files are documented using Doxygen; run @command{doxygen}
8681for a complete and accurate documentation.
8682
8683@node C++ Semantic Values
8684@subsection C++ Semantic Values
8685@c - No objects in unions
178e123e 8686@c - YYSTYPE
12545799
AD
8687@c - Printer and destructor
8688
3cdc21cf
AD
8689Bison supports two different means to handle semantic values in C++. One is
8690alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8691practitioners know, unions are inconvenient in C++, therefore another
8692approach is provided, based on variants (@pxref{C++ Variants}).
8693
8694@menu
8695* C++ Unions:: Semantic values cannot be objects
8696* C++ Variants:: Using objects as semantic values
8697@end menu
8698
8699@node C++ Unions
8700@subsubsection C++ Unions
8701
12545799
AD
8702The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8703Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8704@code{union}, which have a few specific features in C++.
12545799
AD
8705@itemize @minus
8706@item
fb9712a9
AD
8707The type @code{YYSTYPE} is defined but its use is discouraged: rather
8708you should refer to the parser's encapsulated type
8709@code{yy::parser::semantic_type}.
12545799
AD
8710@item
8711Non POD (Plain Old Data) types cannot be used. C++ forbids any
8712instance of classes with constructors in unions: only @emph{pointers}
8713to such objects are allowed.
8714@end itemize
8715
8716Because objects have to be stored via pointers, memory is not
8717reclaimed automatically: using the @code{%destructor} directive is the
8718only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8719Symbols}.
8720
3cdc21cf
AD
8721@node C++ Variants
8722@subsubsection C++ Variants
8723
8724Starting with version 2.6, Bison provides a @emph{variant} based
8725implementation of semantic values for C++. This alleviates all the
8726limitations reported in the previous section, and in particular, object
8727types can be used without pointers.
8728
8729To enable variant-based semantic values, set @code{%define} variable
8730@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8731@code{%union} is ignored, and instead of using the name of the fields of the
8732@code{%union} to ``type'' the symbols, use genuine types.
8733
8734For instance, instead of
8735
8736@example
8737%union
8738@{
8739 int ival;
8740 std::string* sval;
8741@}
8742%token <ival> NUMBER;
8743%token <sval> STRING;
8744@end example
8745
8746@noindent
8747write
8748
8749@example
8750%token <int> NUMBER;
8751%token <std::string> STRING;
8752@end example
8753
8754@code{STRING} is no longer a pointer, which should fairly simplify the user
8755actions in the grammar and in the scanner (in particular the memory
8756management).
8757
8758Since C++ features destructors, and since it is customary to specialize
8759@code{operator<<} to support uniform printing of values, variants also
8760typically simplify Bison printers and destructors.
8761
8762Variants are stricter than unions. When based on unions, you may play any
8763dirty game with @code{yylval}, say storing an @code{int}, reading a
8764@code{char*}, and then storing a @code{double} in it. This is no longer
8765possible with variants: they must be initialized, then assigned to, and
8766eventually, destroyed.
8767
8768@deftypemethod {semantic_type} {T&} build<T> ()
8769Initialize, but leave empty. Returns the address where the actual value may
8770be stored. Requires that the variant was not initialized yet.
8771@end deftypemethod
8772
8773@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8774Initialize, and copy-construct from @var{t}.
8775@end deftypemethod
8776
8777
8778@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8779appeared unacceptable to require Boost on the user's machine (i.e., the
8780machine on which the generated parser will be compiled, not the machine on
8781which @command{bison} was run). Second, for each possible semantic value,
8782Boost.Variant not only stores the value, but also a tag specifying its
8783type. But the parser already ``knows'' the type of the semantic value, so
8784that would be duplicating the information.
8785
8786Therefore we developed light-weight variants whose type tag is external (so
8787they are really like @code{unions} for C++ actually). But our code is much
8788less mature that Boost.Variant. So there is a number of limitations in
8789(the current implementation of) variants:
8790@itemize
8791@item
8792Alignment must be enforced: values should be aligned in memory according to
8793the most demanding type. Computing the smallest alignment possible requires
8794meta-programming techniques that are not currently implemented in Bison, and
8795therefore, since, as far as we know, @code{double} is the most demanding
8796type on all platforms, alignments are enforced for @code{double} whatever
8797types are actually used. This may waste space in some cases.
8798
8799@item
8800Our implementation is not conforming with strict aliasing rules. Alias
8801analysis is a technique used in optimizing compilers to detect when two
8802pointers are disjoint (they cannot ``meet''). Our implementation breaks
8803some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8804alias analysis must be disabled}. Use the option
8805@option{-fno-strict-aliasing} to compile the generated parser.
8806
8807@item
8808There might be portability issues we are not aware of.
8809@end itemize
8810
a6ca4ce2 8811As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8812is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8813
8814@node C++ Location Values
8815@subsection C++ Location Values
8816@c - %locations
8817@c - class Position
8818@c - class Location
16dc6a9e 8819@c - %define filename_type "const symbol::Symbol"
12545799
AD
8820
8821When the directive @code{%locations} is used, the C++ parser supports
8822location tracking, see @ref{Locations, , Locations Overview}. Two
8823auxiliary classes define a @code{position}, a single point in a file,
8824and a @code{location}, a range composed of a pair of
8825@code{position}s (possibly spanning several files).
8826
fa4d969f 8827@deftypemethod {position} {std::string*} file
12545799
AD
8828The name of the file. It will always be handled as a pointer, the
8829parser will never duplicate nor deallocate it. As an experimental
8830feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8831filename_type "@var{type}"}.
12545799
AD
8832@end deftypemethod
8833
8834@deftypemethod {position} {unsigned int} line
8835The line, starting at 1.
8836@end deftypemethod
8837
8838@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8839Advance by @var{height} lines, resetting the column number.
8840@end deftypemethod
8841
8842@deftypemethod {position} {unsigned int} column
8843The column, starting at 0.
8844@end deftypemethod
8845
8846@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8847Advance by @var{width} columns, without changing the line number.
8848@end deftypemethod
8849
8850@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8851@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8852@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8853@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8854Various forms of syntactic sugar for @code{columns}.
8855@end deftypemethod
8856
8857@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8858Report @var{p} on @var{o} like this:
fa4d969f
PE
8859@samp{@var{file}:@var{line}.@var{column}}, or
8860@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8861@end deftypemethod
8862
8863@deftypemethod {location} {position} begin
8864@deftypemethodx {location} {position} end
8865The first, inclusive, position of the range, and the first beyond.
8866@end deftypemethod
8867
8868@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8869@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8870Advance the @code{end} position.
8871@end deftypemethod
8872
8873@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8874@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8875@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8876Various forms of syntactic sugar.
8877@end deftypemethod
8878
8879@deftypemethod {location} {void} step ()
8880Move @code{begin} onto @code{end}.
8881@end deftypemethod
8882
8883
8884@node C++ Parser Interface
8885@subsection C++ Parser Interface
8886@c - define parser_class_name
8887@c - Ctor
8888@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8889@c debug_stream.
8890@c - Reporting errors
8891
8892The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8893declare and define the parser class in the namespace @code{yy}. The
8894class name defaults to @code{parser}, but may be changed using
16dc6a9e 8895@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8896this class is detailed below. It can be extended using the
12545799
AD
8897@code{%parse-param} feature: its semantics is slightly changed since
8898it describes an additional member of the parser class, and an
8899additional argument for its constructor.
8900
3cdc21cf
AD
8901@defcv {Type} {parser} {semantic_type}
8902@defcvx {Type} {parser} {location_type}
8903The types for semantic values and locations (if enabled).
8904@end defcv
8905
86e5b440
AD
8906@defcv {Type} {parser} {token}
8907A structure that contains (only) the definition of the tokens as the
8908@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8909scanner should use @code{yy::parser::token::FOO}. The scanner can use
8910@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8911(@pxref{Calc++ Scanner}).
8912@end defcv
8913
3cdc21cf
AD
8914@defcv {Type} {parser} {syntax_error}
8915This class derives from @code{std::runtime_error}. Throw instances of it
8916from user actions to raise parse errors. This is equivalent with first
8917invoking @code{error} to report the location and message of the syntax
8918error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
8919But contrary to @code{YYERROR} which can only be invoked from user actions
8920(i.e., written in the action itself), the exception can be thrown from
8921function invoked from the user action.
8a0adb01 8922@end defcv
12545799
AD
8923
8924@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8925Build a new parser object. There are no arguments by default, unless
8926@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8927@end deftypemethod
8928
3cdc21cf
AD
8929@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
8930@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
8931Instantiate a syntax-error exception.
8932@end deftypemethod
8933
12545799
AD
8934@deftypemethod {parser} {int} parse ()
8935Run the syntactic analysis, and return 0 on success, 1 otherwise.
8936@end deftypemethod
8937
8938@deftypemethod {parser} {std::ostream&} debug_stream ()
8939@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8940Get or set the stream used for tracing the parsing. It defaults to
8941@code{std::cerr}.
8942@end deftypemethod
8943
8944@deftypemethod {parser} {debug_level_type} debug_level ()
8945@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8946Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8947or nonzero, full tracing.
12545799
AD
8948@end deftypemethod
8949
8950@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 8951@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
8952The definition for this member function must be supplied by the user:
8953the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
8954described by @var{m}. If location tracking is not enabled, the second
8955signature is used.
12545799
AD
8956@end deftypemethod
8957
8958
8959@node C++ Scanner Interface
8960@subsection C++ Scanner Interface
8961@c - prefix for yylex.
8962@c - Pure interface to yylex
8963@c - %lex-param
8964
8965The parser invokes the scanner by calling @code{yylex}. Contrary to C
8966parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
8967@samp{%define api.pure} directive. The actual interface with @code{yylex}
8968depends whether you use unions, or variants.
12545799 8969
3cdc21cf
AD
8970@menu
8971* Split Symbols:: Passing symbols as two/three components
8972* Complete Symbols:: Making symbols a whole
8973@end menu
8974
8975@node Split Symbols
8976@subsubsection Split Symbols
8977
8978Therefore the interface is as follows.
8979
86e5b440
AD
8980@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
8981@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
8982Return the next token. Its type is the return value, its semantic value and
8983location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
8984@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8985@end deftypemethod
8986
3cdc21cf
AD
8987Note that when using variants, the interface for @code{yylex} is the same,
8988but @code{yylval} is handled differently.
8989
8990Regular union-based code in Lex scanner typically look like:
8991
8992@example
8993[0-9]+ @{
8994 yylval.ival = text_to_int (yytext);
8995 return yy::parser::INTEGER;
8996 @}
8997[a-z]+ @{
8998 yylval.sval = new std::string (yytext);
8999 return yy::parser::IDENTIFIER;
9000 @}
9001@end example
9002
9003Using variants, @code{yylval} is already constructed, but it is not
9004initialized. So the code would look like:
9005
9006@example
9007[0-9]+ @{
9008 yylval.build<int>() = text_to_int (yytext);
9009 return yy::parser::INTEGER;
9010 @}
9011[a-z]+ @{
9012 yylval.build<std::string> = yytext;
9013 return yy::parser::IDENTIFIER;
9014 @}
9015@end example
9016
9017@noindent
9018or
9019
9020@example
9021[0-9]+ @{
9022 yylval.build(text_to_int (yytext));
9023 return yy::parser::INTEGER;
9024 @}
9025[a-z]+ @{
9026 yylval.build(yytext);
9027 return yy::parser::IDENTIFIER;
9028 @}
9029@end example
9030
9031
9032@node Complete Symbols
9033@subsubsection Complete Symbols
9034
9035If you specified both @code{%define variant} and @code{%define lex_symbol},
9036the @code{parser} class also defines the class @code{parser::symbol_type}
9037which defines a @emph{complete} symbol, aggregating its type (i.e., the
9038traditional value returned by @code{yylex}), its semantic value (i.e., the
9039value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9040
9041@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9042Build a complete terminal symbol which token type is @var{type}, and which
9043semantic value is @var{value}. If location tracking is enabled, also pass
9044the @var{location}.
9045@end deftypemethod
9046
9047This interface is low-level and should not be used for two reasons. First,
9048it is inconvenient, as you still have to build the semantic value, which is
9049a variant, and second, because consistency is not enforced: as with unions,
9050it is still possible to give an integer as semantic value for a string.
9051
9052So for each token type, Bison generates named constructors as follows.
9053
9054@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9055@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9056Build a complete terminal symbol for the token type @var{token} (not
9057including the @code{api.tokens.prefix}) whose possible semantic value is
9058@var{value} of adequate @var{value_type}. If location tracking is enabled,
9059also pass the @var{location}.
9060@end deftypemethod
9061
9062For instance, given the following declarations:
9063
9064@example
9065%define api.tokens.prefix "TOK_"
9066%token <std::string> IDENTIFIER;
9067%token <int> INTEGER;
9068%token COLON;
9069@end example
9070
9071@noindent
9072Bison generates the following functions:
9073
9074@example
9075symbol_type make_IDENTIFIER(const std::string& v,
9076 const location_type& l);
9077symbol_type make_INTEGER(const int& v,
9078 const location_type& loc);
9079symbol_type make_COLON(const location_type& loc);
9080@end example
9081
9082@noindent
9083which should be used in a Lex-scanner as follows.
9084
9085@example
9086[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9087[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9088":" return yy::parser::make_COLON(loc);
9089@end example
9090
9091Tokens that do not have an identifier are not accessible: you cannot simply
9092use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9093
9094@node A Complete C++ Example
8405b70c 9095@subsection A Complete C++ Example
12545799
AD
9096
9097This section demonstrates the use of a C++ parser with a simple but
9098complete example. This example should be available on your system,
3cdc21cf 9099ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9100focuses on the use of Bison, therefore the design of the various C++
9101classes is very naive: no accessors, no encapsulation of members etc.
9102We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9103demonstrate the various interactions. A hand-written scanner is
12545799
AD
9104actually easier to interface with.
9105
9106@menu
9107* Calc++ --- C++ Calculator:: The specifications
9108* Calc++ Parsing Driver:: An active parsing context
9109* Calc++ Parser:: A parser class
9110* Calc++ Scanner:: A pure C++ Flex scanner
9111* Calc++ Top Level:: Conducting the band
9112@end menu
9113
9114@node Calc++ --- C++ Calculator
8405b70c 9115@subsubsection Calc++ --- C++ Calculator
12545799
AD
9116
9117Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9118expression, possibly preceded by variable assignments. An
12545799
AD
9119environment containing possibly predefined variables such as
9120@code{one} and @code{two}, is exchanged with the parser. An example
9121of valid input follows.
9122
9123@example
9124three := 3
9125seven := one + two * three
9126seven * seven
9127@end example
9128
9129@node Calc++ Parsing Driver
8405b70c 9130@subsubsection Calc++ Parsing Driver
12545799
AD
9131@c - An env
9132@c - A place to store error messages
9133@c - A place for the result
9134
9135To support a pure interface with the parser (and the scanner) the
9136technique of the ``parsing context'' is convenient: a structure
9137containing all the data to exchange. Since, in addition to simply
9138launch the parsing, there are several auxiliary tasks to execute (open
9139the file for parsing, instantiate the parser etc.), we recommend
9140transforming the simple parsing context structure into a fully blown
9141@dfn{parsing driver} class.
9142
9143The declaration of this driver class, @file{calc++-driver.hh}, is as
9144follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9145required standard library components, and the declaration of the parser
9146class.
12545799 9147
1c59e0a1 9148@comment file: calc++-driver.hh
12545799
AD
9149@example
9150#ifndef CALCXX_DRIVER_HH
9151# define CALCXX_DRIVER_HH
9152# include <string>
9153# include <map>
fb9712a9 9154# include "calc++-parser.hh"
12545799
AD
9155@end example
9156
12545799
AD
9157
9158@noindent
9159Then comes the declaration of the scanning function. Flex expects
9160the signature of @code{yylex} to be defined in the macro
9161@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9162factor both as follows.
1c59e0a1
AD
9163
9164@comment file: calc++-driver.hh
12545799 9165@example
3dc5e96b 9166// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9167# define YY_DECL \
9168 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9169// ... and declare it for the parser's sake.
9170YY_DECL;
9171@end example
9172
9173@noindent
9174The @code{calcxx_driver} class is then declared with its most obvious
9175members.
9176
1c59e0a1 9177@comment file: calc++-driver.hh
12545799
AD
9178@example
9179// Conducting the whole scanning and parsing of Calc++.
9180class calcxx_driver
9181@{
9182public:
9183 calcxx_driver ();
9184 virtual ~calcxx_driver ();
9185
9186 std::map<std::string, int> variables;
9187
9188 int result;
9189@end example
9190
9191@noindent
3cdc21cf
AD
9192To encapsulate the coordination with the Flex scanner, it is useful to have
9193member functions to open and close the scanning phase.
12545799 9194
1c59e0a1 9195@comment file: calc++-driver.hh
12545799
AD
9196@example
9197 // Handling the scanner.
9198 void scan_begin ();
9199 void scan_end ();
9200 bool trace_scanning;
9201@end example
9202
9203@noindent
9204Similarly for the parser itself.
9205
1c59e0a1 9206@comment file: calc++-driver.hh
12545799 9207@example
3cdc21cf
AD
9208 // Run the parser on file F.
9209 // Return 0 on success.
bb32f4f2 9210 int parse (const std::string& f);
3cdc21cf
AD
9211 // The name of the file being parsed.
9212 // Used later to pass the file name to the location tracker.
12545799 9213 std::string file;
3cdc21cf 9214 // Whether parser traces should be generated.
12545799
AD
9215 bool trace_parsing;
9216@end example
9217
9218@noindent
9219To demonstrate pure handling of parse errors, instead of simply
9220dumping them on the standard error output, we will pass them to the
9221compiler driver using the following two member functions. Finally, we
9222close the class declaration and CPP guard.
9223
1c59e0a1 9224@comment file: calc++-driver.hh
12545799
AD
9225@example
9226 // Error handling.
9227 void error (const yy::location& l, const std::string& m);
9228 void error (const std::string& m);
9229@};
9230#endif // ! CALCXX_DRIVER_HH
9231@end example
9232
9233The implementation of the driver is straightforward. The @code{parse}
9234member function deserves some attention. The @code{error} functions
9235are simple stubs, they should actually register the located error
9236messages and set error state.
9237
1c59e0a1 9238@comment file: calc++-driver.cc
12545799
AD
9239@example
9240#include "calc++-driver.hh"
9241#include "calc++-parser.hh"
9242
9243calcxx_driver::calcxx_driver ()
9244 : trace_scanning (false), trace_parsing (false)
9245@{
9246 variables["one"] = 1;
9247 variables["two"] = 2;
9248@}
9249
9250calcxx_driver::~calcxx_driver ()
9251@{
9252@}
9253
bb32f4f2 9254int
12545799
AD
9255calcxx_driver::parse (const std::string &f)
9256@{
9257 file = f;
9258 scan_begin ();
9259 yy::calcxx_parser parser (*this);
9260 parser.set_debug_level (trace_parsing);
bb32f4f2 9261 int res = parser.parse ();
12545799 9262 scan_end ();
bb32f4f2 9263 return res;
12545799
AD
9264@}
9265
9266void
9267calcxx_driver::error (const yy::location& l, const std::string& m)
9268@{
9269 std::cerr << l << ": " << m << std::endl;
9270@}
9271
9272void
9273calcxx_driver::error (const std::string& m)
9274@{
9275 std::cerr << m << std::endl;
9276@}
9277@end example
9278
9279@node Calc++ Parser
8405b70c 9280@subsubsection Calc++ Parser
12545799 9281
b50d2359 9282The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9283the C++ deterministic parser skeleton, the creation of the parser header
9284file, and specifies the name of the parser class.
9285Because the C++ skeleton changed several times, it is safer to require
9286the version you designed the grammar for.
1c59e0a1
AD
9287
9288@comment file: calc++-parser.yy
12545799 9289@example
ed4d67dc 9290%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9291%require "@value{VERSION}"
12545799 9292%defines
16dc6a9e 9293%define parser_class_name "calcxx_parser"
fb9712a9
AD
9294@end example
9295
3cdc21cf
AD
9296@noindent
9297@findex %define variant
9298@findex %define lex_symbol
9299This example will use genuine C++ objects as semantic values, therefore, we
9300require the variant-based interface. To make sure we properly use it, we
9301enable assertions. To fully benefit from type-safety and more natural
9302definition of ``symbol'', we enable @code{lex_symbol}.
9303
9304@comment file: calc++-parser.yy
9305@example
9306%define variant
9307%define parse.assert
9308%define lex_symbol
9309@end example
9310
fb9712a9 9311@noindent
16dc6a9e 9312@findex %code requires
3cdc21cf
AD
9313Then come the declarations/inclusions needed by the semantic values.
9314Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9315to include the header of the other, which is, of course, insane. This
3cdc21cf 9316mutual dependency will be broken using forward declarations. Because the
fb9712a9 9317driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9318particular its inner types), it is the parser's header which will use a
9319forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9320
9321@comment file: calc++-parser.yy
9322@example
3cdc21cf
AD
9323%code requires
9324@{
12545799 9325# include <string>
fb9712a9 9326class calcxx_driver;
9bc0dd67 9327@}
12545799
AD
9328@end example
9329
9330@noindent
9331The driver is passed by reference to the parser and to the scanner.
9332This provides a simple but effective pure interface, not relying on
9333global variables.
9334
1c59e0a1 9335@comment file: calc++-parser.yy
12545799
AD
9336@example
9337// The parsing context.
2055a44e 9338%param @{ calcxx_driver& driver @}
12545799
AD
9339@end example
9340
9341@noindent
2055a44e 9342Then we request location tracking, and initialize the
f50bfcd6 9343first location's file name. Afterward new locations are computed
12545799 9344relatively to the previous locations: the file name will be
2055a44e 9345propagated.
12545799 9346
1c59e0a1 9347@comment file: calc++-parser.yy
12545799
AD
9348@example
9349%locations
9350%initial-action
9351@{
9352 // Initialize the initial location.
b47dbebe 9353 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9354@};
9355@end example
9356
9357@noindent
2055a44e 9358Use the following two directives to enable parser tracing and verbose
12545799
AD
9359error messages.
9360
1c59e0a1 9361@comment file: calc++-parser.yy
12545799 9362@example
fa819509 9363%define parse.trace
cf499cff 9364%define parse.error verbose
12545799
AD
9365@end example
9366
fb9712a9 9367@noindent
136a0f76
PB
9368@findex %code
9369The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9370@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9371
9372@comment file: calc++-parser.yy
9373@example
3cdc21cf
AD
9374%code
9375@{
fb9712a9 9376# include "calc++-driver.hh"
34f98f46 9377@}
fb9712a9
AD
9378@end example
9379
9380
12545799
AD
9381@noindent
9382The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9383allows for nicer error messages referring to ``end of file'' instead of
9384``$end''. Similarly user friendly names are provided for each symbol.
9385To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9386prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9387
1c59e0a1 9388@comment file: calc++-parser.yy
12545799 9389@example
4c6622c2 9390%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9391%token
9392 END 0 "end of file"
9393 ASSIGN ":="
9394 MINUS "-"
9395 PLUS "+"
9396 STAR "*"
9397 SLASH "/"
9398 LPAREN "("
9399 RPAREN ")"
9400;
12545799
AD
9401@end example
9402
9403@noindent
3cdc21cf
AD
9404Since we use variant-based semantic values, @code{%union} is not used, and
9405both @code{%type} and @code{%token} expect genuine types, as opposed to type
9406tags.
12545799 9407
1c59e0a1 9408@comment file: calc++-parser.yy
12545799 9409@example
3cdc21cf
AD
9410%token <std::string> IDENTIFIER "identifier"
9411%token <int> NUMBER "number"
9412%type <int> exp
9413@end example
9414
9415@noindent
9416No @code{%destructor} is needed to enable memory deallocation during error
9417recovery; the memory, for strings for instance, will be reclaimed by the
9418regular destructors. All the values are printed using their
9419@code{operator<<}.
12545799 9420
3cdc21cf
AD
9421@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9422@comment file: calc++-parser.yy
9423@example
9424%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9425@end example
9426
9427@noindent
3cdc21cf
AD
9428The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9429Location Tracking Calculator: @code{ltcalc}}).
12545799 9430
1c59e0a1 9431@comment file: calc++-parser.yy
12545799
AD
9432@example
9433%%
9434%start unit;
9435unit: assignments exp @{ driver.result = $2; @};
9436
99c08fb6
AD
9437assignments:
9438 assignments assignment @{@}
9439| /* Nothing. */ @{@};
12545799 9440
3dc5e96b 9441assignment:
3cdc21cf 9442 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9443
3cdc21cf
AD
9444%left "+" "-";
9445%left "*" "/";
99c08fb6 9446exp:
3cdc21cf
AD
9447 exp "+" exp @{ $$ = $1 + $3; @}
9448| exp "-" exp @{ $$ = $1 - $3; @}
9449| exp "*" exp @{ $$ = $1 * $3; @}
9450| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9451| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9452| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9453| "number" @{ std::swap ($$, $1); @};
12545799
AD
9454%%
9455@end example
9456
9457@noindent
9458Finally the @code{error} member function registers the errors to the
9459driver.
9460
1c59e0a1 9461@comment file: calc++-parser.yy
12545799
AD
9462@example
9463void
3cdc21cf 9464yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9465 const std::string& m)
12545799
AD
9466@{
9467 driver.error (l, m);
9468@}
9469@end example
9470
9471@node Calc++ Scanner
8405b70c 9472@subsubsection Calc++ Scanner
12545799
AD
9473
9474The Flex scanner first includes the driver declaration, then the
9475parser's to get the set of defined tokens.
9476
1c59e0a1 9477@comment file: calc++-scanner.ll
12545799
AD
9478@example
9479%@{ /* -*- C++ -*- */
3c248d70
AD
9480# include <cerrno>
9481# include <climits>
3cdc21cf 9482# include <cstdlib>
12545799
AD
9483# include <string>
9484# include "calc++-driver.hh"
9485# include "calc++-parser.hh"
eaea13f5 9486
3cdc21cf
AD
9487// Work around an incompatibility in flex (at least versions
9488// 2.5.31 through 2.5.33): it generates code that does
9489// not conform to C89. See Debian bug 333231
9490// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9491# undef yywrap
9492# define yywrap() 1
eaea13f5 9493
3cdc21cf
AD
9494// The location of the current token.
9495static yy::location loc;
12545799
AD
9496%@}
9497@end example
9498
9499@noindent
9500Because there is no @code{#include}-like feature we don't need
9501@code{yywrap}, we don't need @code{unput} either, and we parse an
9502actual file, this is not an interactive session with the user.
3cdc21cf 9503Finally, we enable scanner tracing.
12545799 9504
1c59e0a1 9505@comment file: calc++-scanner.ll
12545799
AD
9506@example
9507%option noyywrap nounput batch debug
9508@end example
9509
9510@noindent
9511Abbreviations allow for more readable rules.
9512
1c59e0a1 9513@comment file: calc++-scanner.ll
12545799
AD
9514@example
9515id [a-zA-Z][a-zA-Z_0-9]*
9516int [0-9]+
9517blank [ \t]
9518@end example
9519
9520@noindent
9d9b8b70 9521The following paragraph suffices to track locations accurately. Each
12545799 9522time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9523position. Then when a pattern is matched, its width is added to the end
9524column. When matching ends of lines, the end
12545799
AD
9525cursor is adjusted, and each time blanks are matched, the begin cursor
9526is moved onto the end cursor to effectively ignore the blanks
9527preceding tokens. Comments would be treated equally.
9528
1c59e0a1 9529@comment file: calc++-scanner.ll
12545799 9530@example
828c373b 9531%@{
3cdc21cf
AD
9532 // Code run each time a pattern is matched.
9533 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9534%@}
12545799
AD
9535%%
9536%@{
3cdc21cf
AD
9537 // Code run each time yylex is called.
9538 loc.step ();
12545799 9539%@}
3cdc21cf
AD
9540@{blank@}+ loc.step ();
9541[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9542@end example
9543
9544@noindent
3cdc21cf 9545The rules are simple. The driver is used to report errors.
12545799 9546
1c59e0a1 9547@comment file: calc++-scanner.ll
12545799 9548@example
3cdc21cf
AD
9549"-" return yy::calcxx_parser::make_MINUS(loc);
9550"+" return yy::calcxx_parser::make_PLUS(loc);
9551"*" return yy::calcxx_parser::make_STAR(loc);
9552"/" return yy::calcxx_parser::make_SLASH(loc);
9553"(" return yy::calcxx_parser::make_LPAREN(loc);
9554")" return yy::calcxx_parser::make_RPAREN(loc);
9555":=" return yy::calcxx_parser::make_ASSIGN(loc);
9556
04098407
PE
9557@{int@} @{
9558 errno = 0;
9559 long n = strtol (yytext, NULL, 10);
9560 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9561 driver.error (loc, "integer is out of range");
9562 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9563@}
3cdc21cf
AD
9564@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9565. driver.error (loc, "invalid character");
9566<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9567%%
9568@end example
9569
9570@noindent
3cdc21cf 9571Finally, because the scanner-related driver's member-functions depend
12545799
AD
9572on the scanner's data, it is simpler to implement them in this file.
9573
1c59e0a1 9574@comment file: calc++-scanner.ll
12545799
AD
9575@example
9576void
9577calcxx_driver::scan_begin ()
9578@{
9579 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9580 if (file == "-")
9581 yyin = stdin;
9582 else if (!(yyin = fopen (file.c_str (), "r")))
9583 @{
3cdc21cf 9584 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9585 exit (1);
9586 @}
12545799
AD
9587@}
9588
9589void
9590calcxx_driver::scan_end ()
9591@{
9592 fclose (yyin);
9593@}
9594@end example
9595
9596@node Calc++ Top Level
8405b70c 9597@subsubsection Calc++ Top Level
12545799
AD
9598
9599The top level file, @file{calc++.cc}, poses no problem.
9600
1c59e0a1 9601@comment file: calc++.cc
12545799
AD
9602@example
9603#include <iostream>
9604#include "calc++-driver.hh"
9605
9606int
fa4d969f 9607main (int argc, char *argv[])
12545799 9608@{
414c76a4 9609 int res = 0;
12545799
AD
9610 calcxx_driver driver;
9611 for (++argv; argv[0]; ++argv)
9612 if (*argv == std::string ("-p"))
9613 driver.trace_parsing = true;
9614 else if (*argv == std::string ("-s"))
9615 driver.trace_scanning = true;
bb32f4f2
AD
9616 else if (!driver.parse (*argv))
9617 std::cout << driver.result << std::endl;
414c76a4
AD
9618 else
9619 res = 1;
9620 return res;
12545799
AD
9621@}
9622@end example
9623
8405b70c
PB
9624@node Java Parsers
9625@section Java Parsers
9626
9627@menu
f5f419de
DJ
9628* Java Bison Interface:: Asking for Java parser generation
9629* Java Semantic Values:: %type and %token vs. Java
9630* Java Location Values:: The position and location classes
9631* Java Parser Interface:: Instantiating and running the parser
9632* Java Scanner Interface:: Specifying the scanner for the parser
9633* Java Action Features:: Special features for use in actions
9634* Java Differences:: Differences between C/C++ and Java Grammars
9635* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9636@end menu
9637
9638@node Java Bison Interface
9639@subsection Java Bison Interface
9640@c - %language "Java"
8405b70c 9641
59da312b
JD
9642(The current Java interface is experimental and may evolve.
9643More user feedback will help to stabilize it.)
9644
e254a580
DJ
9645The Java parser skeletons are selected using the @code{%language "Java"}
9646directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9647
e254a580
DJ
9648@c FIXME: Documented bug.
9649When generating a Java parser, @code{bison @var{basename}.y} will create
9650a single Java source file named @file{@var{basename}.java}. Using an
9651input file without a @file{.y} suffix is currently broken. The basename
9652of the output file can be changed by the @code{%file-prefix} directive
9653or the @option{-p}/@option{--name-prefix} option. The entire output file
9654name can be changed by the @code{%output} directive or the
9655@option{-o}/@option{--output} option. The output file contains a single
9656class for the parser.
8405b70c 9657
e254a580 9658You can create documentation for generated parsers using Javadoc.
8405b70c 9659
e254a580
DJ
9660Contrary to C parsers, Java parsers do not use global variables; the
9661state of the parser is always local to an instance of the parser class.
9662Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9663and @samp{%define api.pure} directives does not do anything when used in
e254a580 9664Java.
8405b70c 9665
e254a580 9666Push parsers are currently unsupported in Java and @code{%define
67212941 9667api.push-pull} have no effect.
01b477c6 9668
e254a580
DJ
9669@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9670@code{glr-parser} directive.
9671
9672No header file can be generated for Java parsers. Do not use the
9673@code{%defines} directive or the @option{-d}/@option{--defines} options.
9674
9675@c FIXME: Possible code change.
fa819509
AD
9676Currently, support for tracing is always compiled
9677in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9678directives and the
e254a580
DJ
9679@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9680options have no effect. This may change in the future to eliminate
fa819509
AD
9681unused code in the generated parser, so use @samp{%define parse.trace}
9682explicitly
1979121c 9683if needed. Also, in the future the
e254a580
DJ
9684@code{%token-table} directive might enable a public interface to
9685access the token names and codes.
8405b70c 9686
09ccae9b 9687Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9688hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9689Try reducing the amount of code in actions and static initializers;
9690otherwise, report a bug so that the parser skeleton will be improved.
9691
9692
8405b70c
PB
9693@node Java Semantic Values
9694@subsection Java Semantic Values
9695@c - No %union, specify type in %type/%token.
9696@c - YYSTYPE
9697@c - Printer and destructor
9698
9699There is no @code{%union} directive in Java parsers. Instead, the
9700semantic values' types (class names) should be specified in the
9701@code{%type} or @code{%token} directive:
9702
9703@example
9704%type <Expression> expr assignment_expr term factor
9705%type <Integer> number
9706@end example
9707
9708By default, the semantic stack is declared to have @code{Object} members,
9709which means that the class types you specify can be of any class.
9710To improve the type safety of the parser, you can declare the common
67501061 9711superclass of all the semantic values using the @samp{%define stype}
e254a580 9712directive. For example, after the following declaration:
8405b70c
PB
9713
9714@example
e254a580 9715%define stype "ASTNode"
8405b70c
PB
9716@end example
9717
9718@noindent
9719any @code{%type} or @code{%token} specifying a semantic type which
9720is not a subclass of ASTNode, will cause a compile-time error.
9721
e254a580 9722@c FIXME: Documented bug.
8405b70c
PB
9723Types used in the directives may be qualified with a package name.
9724Primitive data types are accepted for Java version 1.5 or later. Note
9725that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9726Generic types may not be used; this is due to a limitation in the
9727implementation of Bison, and may change in future releases.
8405b70c
PB
9728
9729Java parsers do not support @code{%destructor}, since the language
9730adopts garbage collection. The parser will try to hold references
9731to semantic values for as little time as needed.
9732
9733Java parsers do not support @code{%printer}, as @code{toString()}
9734can be used to print the semantic values. This however may change
9735(in a backwards-compatible way) in future versions of Bison.
9736
9737
9738@node Java Location Values
9739@subsection Java Location Values
9740@c - %locations
9741@c - class Position
9742@c - class Location
9743
9744When the directive @code{%locations} is used, the Java parser
9745supports location tracking, see @ref{Locations, , Locations Overview}.
9746An auxiliary user-defined class defines a @dfn{position}, a single point
9747in a file; Bison itself defines a class representing a @dfn{location},
9748a range composed of a pair of positions (possibly spanning several
9749files). The location class is an inner class of the parser; the name
e254a580 9750is @code{Location} by default, and may also be renamed using
cf499cff 9751@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9752
9753The location class treats the position as a completely opaque value.
9754By default, the class name is @code{Position}, but this can be changed
67501061 9755with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9756be supplied by the user.
8405b70c
PB
9757
9758
e254a580
DJ
9759@deftypeivar {Location} {Position} begin
9760@deftypeivarx {Location} {Position} end
8405b70c 9761The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9762@end deftypeivar
9763
9764@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9765Create a @code{Location} denoting an empty range located at a given point.
e254a580 9766@end deftypeop
8405b70c 9767
e254a580
DJ
9768@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9769Create a @code{Location} from the endpoints of the range.
9770@end deftypeop
9771
9772@deftypemethod {Location} {String} toString ()
8405b70c
PB
9773Prints the range represented by the location. For this to work
9774properly, the position class should override the @code{equals} and
9775@code{toString} methods appropriately.
9776@end deftypemethod
9777
9778
9779@node Java Parser Interface
9780@subsection Java Parser Interface
9781@c - define parser_class_name
9782@c - Ctor
9783@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9784@c debug_stream.
9785@c - Reporting errors
9786
e254a580
DJ
9787The name of the generated parser class defaults to @code{YYParser}. The
9788@code{YY} prefix may be changed using the @code{%name-prefix} directive
9789or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9790@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9791the class. The interface of this class is detailed below.
8405b70c 9792
e254a580 9793By default, the parser class has package visibility. A declaration
67501061 9794@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9795according to the Java language specification, the name of the @file{.java}
9796file should match the name of the class in this case. Similarly, you can
9797use @code{abstract}, @code{final} and @code{strictfp} with the
9798@code{%define} declaration to add other modifiers to the parser class.
67501061 9799A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9800be used to add any number of annotations to the parser class.
e254a580
DJ
9801
9802The Java package name of the parser class can be specified using the
67501061 9803@samp{%define package} directive. The superclass and the implemented
e254a580 9804interfaces of the parser class can be specified with the @code{%define
67501061 9805extends} and @samp{%define implements} directives.
e254a580
DJ
9806
9807The parser class defines an inner class, @code{Location}, that is used
9808for location tracking (see @ref{Java Location Values}), and a inner
9809interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9810these inner class/interface, and the members described in the interface
9811below, all the other members and fields are preceded with a @code{yy} or
9812@code{YY} prefix to avoid clashes with user code.
9813
e254a580
DJ
9814The parser class can be extended using the @code{%parse-param}
9815directive. Each occurrence of the directive will add a @code{protected
9816final} field to the parser class, and an argument to its constructor,
9817which initialize them automatically.
9818
e254a580
DJ
9819@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9820Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9821no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9822@code{%lex-param}s are used.
1979121c
DJ
9823
9824Use @code{%code init} for code added to the start of the constructor
9825body. This is especially useful to initialize superclasses. Use
f50bfcd6 9826@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9827@end deftypeop
9828
9829@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9830Build a new parser object using the specified scanner. There are no
2055a44e
AD
9831additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9832used.
e254a580
DJ
9833
9834If the scanner is defined by @code{%code lexer}, this constructor is
9835declared @code{protected} and is called automatically with a scanner
2055a44e 9836created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9837
9838Use @code{%code init} for code added to the start of the constructor
9839body. This is especially useful to initialize superclasses. Use
67501061 9840@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9841@end deftypeop
8405b70c
PB
9842
9843@deftypemethod {YYParser} {boolean} parse ()
9844Run the syntactic analysis, and return @code{true} on success,
9845@code{false} otherwise.
9846@end deftypemethod
9847
1979121c
DJ
9848@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9849@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9850Get or set the option to produce verbose error messages. These are only
cf499cff 9851available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9852verbose error messages.
9853@end deftypemethod
9854
9855@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9856@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9857@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9858Print an error message using the @code{yyerror} method of the scanner
9859instance in use. The @code{Location} and @code{Position} parameters are
9860available only if location tracking is active.
9861@end deftypemethod
9862
01b477c6 9863@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9864During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9865from a syntax error.
9866@xref{Error Recovery}.
8405b70c
PB
9867@end deftypemethod
9868
9869@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9870@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9871Get or set the stream used for tracing the parsing. It defaults to
9872@code{System.err}.
9873@end deftypemethod
9874
9875@deftypemethod {YYParser} {int} getDebugLevel ()
9876@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9877Get or set the tracing level. Currently its value is either 0, no trace,
9878or nonzero, full tracing.
9879@end deftypemethod
9880
1979121c
DJ
9881@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9882@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9883Identify the Bison version and skeleton used to generate this parser.
9884@end deftypecv
9885
8405b70c
PB
9886
9887@node Java Scanner Interface
9888@subsection Java Scanner Interface
01b477c6 9889@c - %code lexer
8405b70c 9890@c - %lex-param
01b477c6 9891@c - Lexer interface
8405b70c 9892
e254a580
DJ
9893There are two possible ways to interface a Bison-generated Java parser
9894with a scanner: the scanner may be defined by @code{%code lexer}, or
9895defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9896@code{Lexer} inner interface of the parser class. This interface also
9897contain constants for all user-defined token names and the predefined
9898@code{EOF} token.
e254a580
DJ
9899
9900In the first case, the body of the scanner class is placed in
9901@code{%code lexer} blocks. If you want to pass parameters from the
9902parser constructor to the scanner constructor, specify them with
9903@code{%lex-param}; they are passed before @code{%parse-param}s to the
9904constructor.
01b477c6 9905
59c5ac72 9906In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9907which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9908The constructor of the parser object will then accept an object
9909implementing the interface; @code{%lex-param} is not used in this
9910case.
9911
9912In both cases, the scanner has to implement the following methods.
9913
e254a580
DJ
9914@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9915This method is defined by the user to emit an error message. The first
9916parameter is omitted if location tracking is not active. Its type can be
67501061 9917changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
9918@end deftypemethod
9919
e254a580 9920@deftypemethod {Lexer} {int} yylex ()
8405b70c 9921Return the next token. Its type is the return value, its semantic
f50bfcd6 9922value and location are saved and returned by the their methods in the
e254a580
DJ
9923interface.
9924
67501061 9925Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 9926Default is @code{java.io.IOException}.
8405b70c
PB
9927@end deftypemethod
9928
9929@deftypemethod {Lexer} {Position} getStartPos ()
9930@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9931Return respectively the first position of the last token that
9932@code{yylex} returned, and the first position beyond it. These
9933methods are not needed unless location tracking is active.
8405b70c 9934
67501061 9935The return type can be changed using @samp{%define position_type
8405b70c
PB
9936"@var{class-name}".}
9937@end deftypemethod
9938
9939@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 9940Return the semantic value of the last token that yylex returned.
8405b70c 9941
67501061 9942The return type can be changed using @samp{%define stype
8405b70c
PB
9943"@var{class-name}".}
9944@end deftypemethod
9945
9946
e254a580
DJ
9947@node Java Action Features
9948@subsection Special Features for Use in Java Actions
9949
9950The following special constructs can be uses in Java actions.
9951Other analogous C action features are currently unavailable for Java.
9952
67501061 9953Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
9954actions, and initial actions specified by @code{%initial-action}.
9955
9956@defvar $@var{n}
9957The semantic value for the @var{n}th component of the current rule.
9958This may not be assigned to.
9959@xref{Java Semantic Values}.
9960@end defvar
9961
9962@defvar $<@var{typealt}>@var{n}
9963Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9964@xref{Java Semantic Values}.
9965@end defvar
9966
9967@defvar $$
9968The semantic value for the grouping made by the current rule. As a
9969value, this is in the base type (@code{Object} or as specified by
67501061 9970@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
9971casts are not allowed on the left-hand side of Java assignments.
9972Use an explicit Java cast if the correct subtype is needed.
9973@xref{Java Semantic Values}.
9974@end defvar
9975
9976@defvar $<@var{typealt}>$
9977Same as @code{$$} since Java always allow assigning to the base type.
9978Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9979for setting the value but there is currently no easy way to distinguish
9980these constructs.
9981@xref{Java Semantic Values}.
9982@end defvar
9983
9984@defvar @@@var{n}
9985The location information of the @var{n}th component of the current rule.
9986This may not be assigned to.
9987@xref{Java Location Values}.
9988@end defvar
9989
9990@defvar @@$
9991The location information of the grouping made by the current rule.
9992@xref{Java Location Values}.
9993@end defvar
9994
9995@deffn {Statement} {return YYABORT;}
9996Return immediately from the parser, indicating failure.
9997@xref{Java Parser Interface}.
9998@end deffn
8405b70c 9999
e254a580
DJ
10000@deffn {Statement} {return YYACCEPT;}
10001Return immediately from the parser, indicating success.
10002@xref{Java Parser Interface}.
10003@end deffn
8405b70c 10004
e254a580 10005@deffn {Statement} {return YYERROR;}
c265fd6b 10006Start error recovery without printing an error message.
e254a580
DJ
10007@xref{Error Recovery}.
10008@end deffn
8405b70c 10009
e254a580
DJ
10010@deftypefn {Function} {boolean} recovering ()
10011Return whether error recovery is being done. In this state, the parser
10012reads token until it reaches a known state, and then restarts normal
10013operation.
10014@xref{Error Recovery}.
10015@end deftypefn
8405b70c 10016
1979121c
DJ
10017@deftypefn {Function} {void} yyerror (String @var{msg})
10018@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10019@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10020Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10021instance in use. The @code{Location} and @code{Position} parameters are
10022available only if location tracking is active.
e254a580 10023@end deftypefn
8405b70c 10024
8405b70c 10025
8405b70c
PB
10026@node Java Differences
10027@subsection Differences between C/C++ and Java Grammars
10028
10029The different structure of the Java language forces several differences
10030between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10031section summarizes these differences.
8405b70c
PB
10032
10033@itemize
10034@item
01b477c6 10035Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10036@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10037macros. Instead, they should be preceded by @code{return} when they
10038appear in an action. The actual definition of these symbols is
8405b70c
PB
10039opaque to the Bison grammar, and it might change in the future. The
10040only meaningful operation that you can do, is to return them.
e254a580 10041See @pxref{Java Action Features}.
8405b70c
PB
10042
10043Note that of these three symbols, only @code{YYACCEPT} and
10044@code{YYABORT} will cause a return from the @code{yyparse}
10045method@footnote{Java parsers include the actions in a separate
10046method than @code{yyparse} in order to have an intuitive syntax that
10047corresponds to these C macros.}.
10048
e254a580
DJ
10049@item
10050Java lacks unions, so @code{%union} has no effect. Instead, semantic
10051values have a common base type: @code{Object} or as specified by
f50bfcd6 10052@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10053@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10054an union. The type of @code{$$}, even with angle brackets, is the base
10055type since Java casts are not allow on the left-hand side of assignments.
10056Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10057left-hand side of assignments. See @pxref{Java Semantic Values} and
10058@pxref{Java Action Features}.
10059
8405b70c 10060@item
f50bfcd6 10061The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10062@table @asis
10063@item @code{%code imports}
10064blocks are placed at the beginning of the Java source code. They may
10065include copyright notices. For a @code{package} declarations, it is
67501061 10066suggested to use @samp{%define package} instead.
8405b70c 10067
01b477c6
PB
10068@item unqualified @code{%code}
10069blocks are placed inside the parser class.
10070
10071@item @code{%code lexer}
10072blocks, if specified, should include the implementation of the
10073scanner. If there is no such block, the scanner can be any class
10074that implements the appropriate interface (see @pxref{Java Scanner
10075Interface}).
29553547 10076@end table
8405b70c
PB
10077
10078Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10079In particular, @code{%@{ @dots{} %@}} blocks should not be used
10080and may give an error in future versions of Bison.
10081
01b477c6 10082The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10083be used to define other classes used by the parser @emph{outside}
10084the parser class.
8405b70c
PB
10085@end itemize
10086
e254a580
DJ
10087
10088@node Java Declarations Summary
10089@subsection Java Declarations Summary
10090
10091This summary only include declarations specific to Java or have special
10092meaning when used in a Java parser.
10093
10094@deffn {Directive} {%language "Java"}
10095Generate a Java class for the parser.
10096@end deffn
10097
10098@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10099A parameter for the lexer class defined by @code{%code lexer}
10100@emph{only}, added as parameters to the lexer constructor and the parser
10101constructor that @emph{creates} a lexer. Default is none.
10102@xref{Java Scanner Interface}.
10103@end deffn
10104
10105@deffn {Directive} %name-prefix "@var{prefix}"
10106The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10107@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10108@xref{Java Bison Interface}.
10109@end deffn
10110
10111@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10112A parameter for the parser class added as parameters to constructor(s)
10113and as fields initialized by the constructor(s). Default is none.
10114@xref{Java Parser Interface}.
10115@end deffn
10116
10117@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10118Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10119@xref{Java Semantic Values}.
10120@end deffn
10121
10122@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10123Declare the type of nonterminals. Note that the angle brackets enclose
10124a Java @emph{type}.
10125@xref{Java Semantic Values}.
10126@end deffn
10127
10128@deffn {Directive} %code @{ @var{code} @dots{} @}
10129Code appended to the inside of the parser class.
10130@xref{Java Differences}.
10131@end deffn
10132
10133@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10134Code inserted just after the @code{package} declaration.
10135@xref{Java Differences}.
10136@end deffn
10137
1979121c
DJ
10138@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10139Code inserted at the beginning of the parser constructor body.
10140@xref{Java Parser Interface}.
10141@end deffn
10142
e254a580
DJ
10143@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10144Code added to the body of a inner lexer class within the parser class.
10145@xref{Java Scanner Interface}.
10146@end deffn
10147
10148@deffn {Directive} %% @var{code} @dots{}
10149Code (after the second @code{%%}) appended to the end of the file,
10150@emph{outside} the parser class.
10151@xref{Java Differences}.
10152@end deffn
10153
10154@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10155Not supported. Use @code{%code imports} instead.
e254a580
DJ
10156@xref{Java Differences}.
10157@end deffn
10158
10159@deffn {Directive} {%define abstract}
10160Whether the parser class is declared @code{abstract}. Default is false.
10161@xref{Java Bison Interface}.
10162@end deffn
10163
1979121c
DJ
10164@deffn {Directive} {%define annotations} "@var{annotations}"
10165The Java annotations for the parser class. Default is none.
10166@xref{Java Bison Interface}.
10167@end deffn
10168
e254a580
DJ
10169@deffn {Directive} {%define extends} "@var{superclass}"
10170The superclass of the parser class. Default is none.
10171@xref{Java Bison Interface}.
10172@end deffn
10173
10174@deffn {Directive} {%define final}
10175Whether the parser class is declared @code{final}. Default is false.
10176@xref{Java Bison Interface}.
10177@end deffn
10178
10179@deffn {Directive} {%define implements} "@var{interfaces}"
10180The implemented interfaces of the parser class, a comma-separated list.
10181Default is none.
10182@xref{Java Bison Interface}.
10183@end deffn
10184
1979121c
DJ
10185@deffn {Directive} {%define init_throws} "@var{exceptions}"
10186The exceptions thrown by @code{%code init} from the parser class
10187constructor. Default is none.
10188@xref{Java Parser Interface}.
10189@end deffn
10190
e254a580
DJ
10191@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10192The exceptions thrown by the @code{yylex} method of the lexer, a
10193comma-separated list. Default is @code{java.io.IOException}.
10194@xref{Java Scanner Interface}.
10195@end deffn
10196
10197@deffn {Directive} {%define location_type} "@var{class}"
10198The name of the class used for locations (a range between two
10199positions). This class is generated as an inner class of the parser
10200class by @command{bison}. Default is @code{Location}.
10201@xref{Java Location Values}.
10202@end deffn
10203
10204@deffn {Directive} {%define package} "@var{package}"
10205The package to put the parser class in. Default is none.
10206@xref{Java Bison Interface}.
10207@end deffn
10208
10209@deffn {Directive} {%define parser_class_name} "@var{name}"
10210The name of the parser class. Default is @code{YYParser} or
10211@code{@var{name-prefix}Parser}.
10212@xref{Java Bison Interface}.
10213@end deffn
10214
10215@deffn {Directive} {%define position_type} "@var{class}"
10216The name of the class used for positions. This class must be supplied by
10217the user. Default is @code{Position}.
10218@xref{Java Location Values}.
10219@end deffn
10220
10221@deffn {Directive} {%define public}
10222Whether the parser class is declared @code{public}. Default is false.
10223@xref{Java Bison Interface}.
10224@end deffn
10225
10226@deffn {Directive} {%define stype} "@var{class}"
10227The base type of semantic values. Default is @code{Object}.
10228@xref{Java Semantic Values}.
10229@end deffn
10230
10231@deffn {Directive} {%define strictfp}
10232Whether the parser class is declared @code{strictfp}. Default is false.
10233@xref{Java Bison Interface}.
10234@end deffn
10235
10236@deffn {Directive} {%define throws} "@var{exceptions}"
10237The exceptions thrown by user-supplied parser actions and
10238@code{%initial-action}, a comma-separated list. Default is none.
10239@xref{Java Parser Interface}.
10240@end deffn
10241
10242
12545799 10243@c ================================================= FAQ
d1a1114f
AD
10244
10245@node FAQ
10246@chapter Frequently Asked Questions
10247@cindex frequently asked questions
10248@cindex questions
10249
10250Several questions about Bison come up occasionally. Here some of them
10251are addressed.
10252
10253@menu
55ba27be
AD
10254* Memory Exhausted:: Breaking the Stack Limits
10255* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10256* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10257* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10258* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
10259* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
10260* I can't build Bison:: Troubleshooting
10261* Where can I find help?:: Troubleshouting
10262* Bug Reports:: Troublereporting
8405b70c 10263* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10264* Beta Testing:: Experimenting development versions
10265* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10266@end menu
10267
1a059451
PE
10268@node Memory Exhausted
10269@section Memory Exhausted
d1a1114f
AD
10270
10271@display
1a059451 10272My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10273message. What can I do?
10274@end display
10275
10276This question is already addressed elsewhere, @xref{Recursion,
10277,Recursive Rules}.
10278
e64fec0a
PE
10279@node How Can I Reset the Parser
10280@section How Can I Reset the Parser
5b066063 10281
0e14ad77
PE
10282The following phenomenon has several symptoms, resulting in the
10283following typical questions:
5b066063
AD
10284
10285@display
10286I invoke @code{yyparse} several times, and on correct input it works
10287properly; but when a parse error is found, all the other calls fail
0e14ad77 10288too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10289@end display
10290
10291@noindent
10292or
10293
10294@display
0e14ad77 10295My parser includes support for an @samp{#include}-like feature, in
5b066063 10296which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10297although I did specify @samp{%define api.pure}.
5b066063
AD
10298@end display
10299
0e14ad77
PE
10300These problems typically come not from Bison itself, but from
10301Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10302speed, they might not notice a change of input file. As a
10303demonstration, consider the following source file,
10304@file{first-line.l}:
10305
10306@verbatim
10307%{
10308#include <stdio.h>
10309#include <stdlib.h>
10310%}
10311%%
10312.*\n ECHO; return 1;
10313%%
10314int
0e14ad77 10315yyparse (char const *file)
5b066063
AD
10316{
10317 yyin = fopen (file, "r");
10318 if (!yyin)
10319 exit (2);
fa7e68c3 10320 /* One token only. */
5b066063 10321 yylex ();
0e14ad77 10322 if (fclose (yyin) != 0)
5b066063
AD
10323 exit (3);
10324 return 0;
10325}
10326
10327int
0e14ad77 10328main (void)
5b066063
AD
10329{
10330 yyparse ("input");
10331 yyparse ("input");
10332 return 0;
10333}
10334@end verbatim
10335
10336@noindent
10337If the file @file{input} contains
10338
10339@verbatim
10340input:1: Hello,
10341input:2: World!
10342@end verbatim
10343
10344@noindent
0e14ad77 10345then instead of getting the first line twice, you get:
5b066063
AD
10346
10347@example
10348$ @kbd{flex -ofirst-line.c first-line.l}
10349$ @kbd{gcc -ofirst-line first-line.c -ll}
10350$ @kbd{./first-line}
10351input:1: Hello,
10352input:2: World!
10353@end example
10354
0e14ad77
PE
10355Therefore, whenever you change @code{yyin}, you must tell the
10356Lex-generated scanner to discard its current buffer and switch to the
10357new one. This depends upon your implementation of Lex; see its
10358documentation for more. For Flex, it suffices to call
10359@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10360Flex-generated scanner needs to read from several input streams to
10361handle features like include files, you might consider using Flex
10362functions like @samp{yy_switch_to_buffer} that manipulate multiple
10363input buffers.
5b066063 10364
b165c324
AD
10365If your Flex-generated scanner uses start conditions (@pxref{Start
10366conditions, , Start conditions, flex, The Flex Manual}), you might
10367also want to reset the scanner's state, i.e., go back to the initial
10368start condition, through a call to @samp{BEGIN (0)}.
10369
fef4cb51
AD
10370@node Strings are Destroyed
10371@section Strings are Destroyed
10372
10373@display
c7e441b4 10374My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10375them. Instead of reporting @samp{"foo", "bar"}, it reports
10376@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10377@end display
10378
10379This error is probably the single most frequent ``bug report'' sent to
10380Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10381of the scanner. Consider the following Lex code:
fef4cb51
AD
10382
10383@verbatim
10384%{
10385#include <stdio.h>
10386char *yylval = NULL;
10387%}
10388%%
10389.* yylval = yytext; return 1;
10390\n /* IGNORE */
10391%%
10392int
10393main ()
10394{
fa7e68c3 10395 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10396 char *fst = (yylex (), yylval);
10397 char *snd = (yylex (), yylval);
10398 printf ("\"%s\", \"%s\"\n", fst, snd);
10399 return 0;
10400}
10401@end verbatim
10402
10403If you compile and run this code, you get:
10404
10405@example
10406$ @kbd{flex -osplit-lines.c split-lines.l}
10407$ @kbd{gcc -osplit-lines split-lines.c -ll}
10408$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10409"one
10410two", "two"
10411@end example
10412
10413@noindent
10414this is because @code{yytext} is a buffer provided for @emph{reading}
10415in the action, but if you want to keep it, you have to duplicate it
10416(e.g., using @code{strdup}). Note that the output may depend on how
10417your implementation of Lex handles @code{yytext}. For instance, when
10418given the Lex compatibility option @option{-l} (which triggers the
10419option @samp{%array}) Flex generates a different behavior:
10420
10421@example
10422$ @kbd{flex -l -osplit-lines.c split-lines.l}
10423$ @kbd{gcc -osplit-lines split-lines.c -ll}
10424$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10425"two", "two"
10426@end example
10427
10428
2fa09258
AD
10429@node Implementing Gotos/Loops
10430@section Implementing Gotos/Loops
a06ea4aa
AD
10431
10432@display
10433My simple calculator supports variables, assignments, and functions,
2fa09258 10434but how can I implement gotos, or loops?
a06ea4aa
AD
10435@end display
10436
10437Although very pedagogical, the examples included in the document blur
a1c84f45 10438the distinction to make between the parser---whose job is to recover
a06ea4aa 10439the structure of a text and to transmit it to subsequent modules of
a1c84f45 10440the program---and the processing (such as the execution) of this
a06ea4aa
AD
10441structure. This works well with so called straight line programs,
10442i.e., precisely those that have a straightforward execution model:
10443execute simple instructions one after the others.
10444
10445@cindex abstract syntax tree
10446@cindex @acronym{AST}
10447If you want a richer model, you will probably need to use the parser
10448to construct a tree that does represent the structure it has
10449recovered; this tree is usually called the @dfn{abstract syntax tree},
10450or @dfn{@acronym{AST}} for short. Then, walking through this tree,
10451traversing it in various ways, will enable treatments such as its
10452execution or its translation, which will result in an interpreter or a
10453compiler.
10454
10455This topic is way beyond the scope of this manual, and the reader is
10456invited to consult the dedicated literature.
10457
10458
ed2e6384
AD
10459@node Multiple start-symbols
10460@section Multiple start-symbols
10461
10462@display
10463I have several closely related grammars, and I would like to share their
10464implementations. In fact, I could use a single grammar but with
10465multiple entry points.
10466@end display
10467
10468Bison does not support multiple start-symbols, but there is a very
10469simple means to simulate them. If @code{foo} and @code{bar} are the two
10470pseudo start-symbols, then introduce two new tokens, say
10471@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10472real start-symbol:
10473
10474@example
10475%token START_FOO START_BAR;
10476%start start;
10477start: START_FOO foo
10478 | START_BAR bar;
10479@end example
10480
10481These tokens prevents the introduction of new conflicts. As far as the
10482parser goes, that is all that is needed.
10483
10484Now the difficult part is ensuring that the scanner will send these
10485tokens first. If your scanner is hand-written, that should be
10486straightforward. If your scanner is generated by Lex, them there is
10487simple means to do it: recall that anything between @samp{%@{ ... %@}}
10488after the first @code{%%} is copied verbatim in the top of the generated
10489@code{yylex} function. Make sure a variable @code{start_token} is
10490available in the scanner (e.g., a global variable or using
10491@code{%lex-param} etc.), and use the following:
10492
10493@example
10494 /* @r{Prologue.} */
10495%%
10496%@{
10497 if (start_token)
10498 @{
10499 int t = start_token;
10500 start_token = 0;
10501 return t;
10502 @}
10503%@}
10504 /* @r{The rules.} */
10505@end example
10506
10507
55ba27be
AD
10508@node Secure? Conform?
10509@section Secure? Conform?
10510
10511@display
10512Is Bison secure? Does it conform to POSIX?
10513@end display
10514
10515If you're looking for a guarantee or certification, we don't provide it.
10516However, Bison is intended to be a reliable program that conforms to the
10517@acronym{POSIX} specification for Yacc. If you run into problems,
10518please send us a bug report.
10519
10520@node I can't build Bison
10521@section I can't build Bison
10522
10523@display
8c5b881d
PE
10524I can't build Bison because @command{make} complains that
10525@code{msgfmt} is not found.
55ba27be
AD
10526What should I do?
10527@end display
10528
10529Like most GNU packages with internationalization support, that feature
10530is turned on by default. If you have problems building in the @file{po}
10531subdirectory, it indicates that your system's internationalization
10532support is lacking. You can re-configure Bison with
10533@option{--disable-nls} to turn off this support, or you can install GNU
10534gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10535Bison. See the file @file{ABOUT-NLS} for more information.
10536
10537
10538@node Where can I find help?
10539@section Where can I find help?
10540
10541@display
10542I'm having trouble using Bison. Where can I find help?
10543@end display
10544
10545First, read this fine manual. Beyond that, you can send mail to
10546@email{help-bison@@gnu.org}. This mailing list is intended to be
10547populated with people who are willing to answer questions about using
10548and installing Bison. Please keep in mind that (most of) the people on
10549the list have aspects of their lives which are not related to Bison (!),
10550so you may not receive an answer to your question right away. This can
10551be frustrating, but please try not to honk them off; remember that any
10552help they provide is purely voluntary and out of the kindness of their
10553hearts.
10554
10555@node Bug Reports
10556@section Bug Reports
10557
10558@display
10559I found a bug. What should I include in the bug report?
10560@end display
10561
10562Before you send a bug report, make sure you are using the latest
10563version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10564mirrors. Be sure to include the version number in your bug report. If
10565the bug is present in the latest version but not in a previous version,
10566try to determine the most recent version which did not contain the bug.
10567
10568If the bug is parser-related, you should include the smallest grammar
10569you can which demonstrates the bug. The grammar file should also be
10570complete (i.e., I should be able to run it through Bison without having
10571to edit or add anything). The smaller and simpler the grammar, the
10572easier it will be to fix the bug.
10573
10574Include information about your compilation environment, including your
10575operating system's name and version and your compiler's name and
10576version. If you have trouble compiling, you should also include a
10577transcript of the build session, starting with the invocation of
10578`configure'. Depending on the nature of the bug, you may be asked to
10579send additional files as well (such as `config.h' or `config.cache').
10580
10581Patches are most welcome, but not required. That is, do not hesitate to
10582send a bug report just because you can not provide a fix.
10583
10584Send bug reports to @email{bug-bison@@gnu.org}.
10585
8405b70c
PB
10586@node More Languages
10587@section More Languages
55ba27be
AD
10588
10589@display
8405b70c 10590Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10591favorite language here}?
10592@end display
10593
8405b70c 10594C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10595languages; contributions are welcome.
10596
10597@node Beta Testing
10598@section Beta Testing
10599
10600@display
10601What is involved in being a beta tester?
10602@end display
10603
10604It's not terribly involved. Basically, you would download a test
10605release, compile it, and use it to build and run a parser or two. After
10606that, you would submit either a bug report or a message saying that
10607everything is okay. It is important to report successes as well as
10608failures because test releases eventually become mainstream releases,
10609but only if they are adequately tested. If no one tests, development is
10610essentially halted.
10611
10612Beta testers are particularly needed for operating systems to which the
10613developers do not have easy access. They currently have easy access to
10614recent GNU/Linux and Solaris versions. Reports about other operating
10615systems are especially welcome.
10616
10617@node Mailing Lists
10618@section Mailing Lists
10619
10620@display
10621How do I join the help-bison and bug-bison mailing lists?
10622@end display
10623
10624See @url{http://lists.gnu.org/}.
a06ea4aa 10625
d1a1114f
AD
10626@c ================================================= Table of Symbols
10627
342b8b6e 10628@node Table of Symbols
bfa74976
RS
10629@appendix Bison Symbols
10630@cindex Bison symbols, table of
10631@cindex symbols in Bison, table of
10632
18b519c0 10633@deffn {Variable} @@$
3ded9a63 10634In an action, the location of the left-hand side of the rule.
88bce5a2 10635@xref{Locations, , Locations Overview}.
18b519c0 10636@end deffn
3ded9a63 10637
18b519c0 10638@deffn {Variable} @@@var{n}
3ded9a63
AD
10639In an action, the location of the @var{n}-th symbol of the right-hand
10640side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10641@end deffn
3ded9a63 10642
d013372c
AR
10643@deffn {Variable} @@@var{name}
10644In an action, the location of a symbol addressed by name.
10645@xref{Locations, , Locations Overview}.
10646@end deffn
10647
10648@deffn {Variable} @@[@var{name}]
10649In an action, the location of a symbol addressed by name.
10650@xref{Locations, , Locations Overview}.
10651@end deffn
10652
18b519c0 10653@deffn {Variable} $$
3ded9a63
AD
10654In an action, the semantic value of the left-hand side of the rule.
10655@xref{Actions}.
18b519c0 10656@end deffn
3ded9a63 10657
18b519c0 10658@deffn {Variable} $@var{n}
3ded9a63
AD
10659In an action, the semantic value of the @var{n}-th symbol of the
10660right-hand side of the rule. @xref{Actions}.
18b519c0 10661@end deffn
3ded9a63 10662
d013372c
AR
10663@deffn {Variable} $@var{name}
10664In an action, the semantic value of a symbol addressed by name.
10665@xref{Actions}.
10666@end deffn
10667
10668@deffn {Variable} $[@var{name}]
10669In an action, the semantic value of a symbol addressed by name.
10670@xref{Actions}.
10671@end deffn
10672
dd8d9022
AD
10673@deffn {Delimiter} %%
10674Delimiter used to separate the grammar rule section from the
10675Bison declarations section or the epilogue.
10676@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10677@end deffn
bfa74976 10678
dd8d9022
AD
10679@c Don't insert spaces, or check the DVI output.
10680@deffn {Delimiter} %@{@var{code}%@}
10681All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10682the output file uninterpreted. Such code forms the prologue of the input
10683file. @xref{Grammar Outline, ,Outline of a Bison
10684Grammar}.
18b519c0 10685@end deffn
bfa74976 10686
ca2a6d15
PH
10687@deffn {Directive} %?@{@var{expression}@}
10688Predicate actions. This is a type of action clause that may appear in
10689rules. The expression is evaluated, and if false, causes a syntax error. In
10690@acronym{GLR} parsers during nondeterministic operation,
10691this silently causes an alternative parse to die. During deterministic
10692operation, it is the same as the effect of YYERROR.
10693@xref{Semantic Predicates}.
10694
10695This feature is experimental.
10696More user feedback will help to determine whether it should become a permanent
10697feature.
10698@end deffn
10699
dd8d9022
AD
10700@deffn {Construct} /*@dots{}*/
10701Comment delimiters, as in C.
18b519c0 10702@end deffn
bfa74976 10703
dd8d9022
AD
10704@deffn {Delimiter} :
10705Separates a rule's result from its components. @xref{Rules, ,Syntax of
10706Grammar Rules}.
18b519c0 10707@end deffn
bfa74976 10708
dd8d9022
AD
10709@deffn {Delimiter} ;
10710Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10711@end deffn
bfa74976 10712
dd8d9022
AD
10713@deffn {Delimiter} |
10714Separates alternate rules for the same result nonterminal.
10715@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10716@end deffn
bfa74976 10717
12e35840
JD
10718@deffn {Directive} <*>
10719Used to define a default tagged @code{%destructor} or default tagged
10720@code{%printer}.
85894313
JD
10721
10722This feature is experimental.
10723More user feedback will help to determine whether it should become a permanent
10724feature.
10725
12e35840
JD
10726@xref{Destructor Decl, , Freeing Discarded Symbols}.
10727@end deffn
10728
3ebecc24 10729@deffn {Directive} <>
12e35840
JD
10730Used to define a default tagless @code{%destructor} or default tagless
10731@code{%printer}.
85894313
JD
10732
10733This feature is experimental.
10734More user feedback will help to determine whether it should become a permanent
10735feature.
10736
12e35840
JD
10737@xref{Destructor Decl, , Freeing Discarded Symbols}.
10738@end deffn
10739
dd8d9022
AD
10740@deffn {Symbol} $accept
10741The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10742$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10743Start-Symbol}. It cannot be used in the grammar.
18b519c0 10744@end deffn
bfa74976 10745
136a0f76 10746@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10747@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10748Insert @var{code} verbatim into output parser source.
10749@xref{Decl Summary,,%code}.
9bc0dd67
JD
10750@end deffn
10751
10752@deffn {Directive} %debug
10753Equip the parser for debugging. @xref{Decl Summary}.
10754@end deffn
10755
91d2c560 10756@ifset defaultprec
22fccf95
PE
10757@deffn {Directive} %default-prec
10758Assign a precedence to rules that lack an explicit @samp{%prec}
10759modifier. @xref{Contextual Precedence, ,Context-Dependent
10760Precedence}.
39a06c25 10761@end deffn
91d2c560 10762@end ifset
39a06c25 10763
148d66d8
JD
10764@deffn {Directive} %define @var{define-variable}
10765@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10766@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10767Define a variable to adjust Bison's behavior.
10768@xref{Decl Summary,,%define}.
10769@end deffn
10770
18b519c0 10771@deffn {Directive} %defines
6deb4447
AD
10772Bison declaration to create a header file meant for the scanner.
10773@xref{Decl Summary}.
18b519c0 10774@end deffn
6deb4447 10775
02975b9a
JD
10776@deffn {Directive} %defines @var{defines-file}
10777Same as above, but save in the file @var{defines-file}.
10778@xref{Decl Summary}.
10779@end deffn
10780
18b519c0 10781@deffn {Directive} %destructor
258b75ca 10782Specify how the parser should reclaim the memory associated to
fa7e68c3 10783discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10784@end deffn
72f889cc 10785
18b519c0 10786@deffn {Directive} %dprec
676385e2 10787Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10788time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10789@acronym{GLR} Parsers}.
18b519c0 10790@end deffn
676385e2 10791
dd8d9022
AD
10792@deffn {Symbol} $end
10793The predefined token marking the end of the token stream. It cannot be
10794used in the grammar.
10795@end deffn
10796
10797@deffn {Symbol} error
10798A token name reserved for error recovery. This token may be used in
10799grammar rules so as to allow the Bison parser to recognize an error in
10800the grammar without halting the process. In effect, a sentence
10801containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10802token @code{error} becomes the current lookahead token. Actions
10803corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10804token is reset to the token that originally caused the violation.
10805@xref{Error Recovery}.
18d192f0
AD
10806@end deffn
10807
18b519c0 10808@deffn {Directive} %error-verbose
cf499cff 10809An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10810@end deffn
2a8d363a 10811
02975b9a 10812@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10813Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10814Summary}.
18b519c0 10815@end deffn
d8988b2f 10816
18b519c0 10817@deffn {Directive} %glr-parser
c827f760
PE
10818Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10819Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10820@end deffn
676385e2 10821
dd8d9022
AD
10822@deffn {Directive} %initial-action
10823Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10824@end deffn
10825
e6e704dc
JD
10826@deffn {Directive} %language
10827Specify the programming language for the generated parser.
10828@xref{Decl Summary}.
10829@end deffn
10830
18b519c0 10831@deffn {Directive} %left
d78f0ac9 10832Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10833@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10834@end deffn
bfa74976 10835
2055a44e
AD
10836@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10837Bison declaration to specifying additional arguments that
2a8d363a
AD
10838@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10839for Pure Parsers}.
18b519c0 10840@end deffn
2a8d363a 10841
18b519c0 10842@deffn {Directive} %merge
676385e2 10843Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10844reduce/reduce conflict with a rule having the same merging function, the
676385e2 10845function is applied to the two semantic values to get a single result.
c827f760 10846@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10847@end deffn
676385e2 10848
02975b9a 10849@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10850Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10851@end deffn
d8988b2f 10852
91d2c560 10853@ifset defaultprec
22fccf95
PE
10854@deffn {Directive} %no-default-prec
10855Do not assign a precedence to rules that lack an explicit @samp{%prec}
10856modifier. @xref{Contextual Precedence, ,Context-Dependent
10857Precedence}.
10858@end deffn
91d2c560 10859@end ifset
22fccf95 10860
18b519c0 10861@deffn {Directive} %no-lines
931c7513
RS
10862Bison declaration to avoid generating @code{#line} directives in the
10863parser file. @xref{Decl Summary}.
18b519c0 10864@end deffn
931c7513 10865
18b519c0 10866@deffn {Directive} %nonassoc
d78f0ac9 10867Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10868@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10869@end deffn
bfa74976 10870
02975b9a 10871@deffn {Directive} %output "@var{file}"
72d2299c 10872Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10873Summary}.
18b519c0 10874@end deffn
d8988b2f 10875
2055a44e
AD
10876@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10877Bison declaration to specify additional arguments that both
10878@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10879Parser Function @code{yyparse}}.
10880@end deffn
10881
10882@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10883Bison declaration to specify additional arguments that @code{yyparse}
10884should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10885@end deffn
2a8d363a 10886
18b519c0 10887@deffn {Directive} %prec
bfa74976
RS
10888Bison declaration to assign a precedence to a specific rule.
10889@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10890@end deffn
bfa74976 10891
d78f0ac9
AD
10892@deffn {Directive} %precedence
10893Bison declaration to assign precedence to token(s), but no associativity
10894@xref{Precedence Decl, ,Operator Precedence}.
10895@end deffn
10896
18b519c0 10897@deffn {Directive} %pure-parser
67501061 10898Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10899for which Bison is more careful to warn about unreasonable usage.
18b519c0 10900@end deffn
bfa74976 10901
b50d2359 10902@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10903Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10904Require a Version of Bison}.
b50d2359
AD
10905@end deffn
10906
18b519c0 10907@deffn {Directive} %right
d78f0ac9 10908Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10909@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10910@end deffn
bfa74976 10911
e6e704dc
JD
10912@deffn {Directive} %skeleton
10913Specify the skeleton to use; usually for development.
10914@xref{Decl Summary}.
10915@end deffn
10916
18b519c0 10917@deffn {Directive} %start
704a47c4
AD
10918Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10919Start-Symbol}.
18b519c0 10920@end deffn
bfa74976 10921
18b519c0 10922@deffn {Directive} %token
bfa74976
RS
10923Bison declaration to declare token(s) without specifying precedence.
10924@xref{Token Decl, ,Token Type Names}.
18b519c0 10925@end deffn
bfa74976 10926
18b519c0 10927@deffn {Directive} %token-table
931c7513
RS
10928Bison declaration to include a token name table in the parser file.
10929@xref{Decl Summary}.
18b519c0 10930@end deffn
931c7513 10931
18b519c0 10932@deffn {Directive} %type
704a47c4
AD
10933Bison declaration to declare nonterminals. @xref{Type Decl,
10934,Nonterminal Symbols}.
18b519c0 10935@end deffn
bfa74976 10936
dd8d9022
AD
10937@deffn {Symbol} $undefined
10938The predefined token onto which all undefined values returned by
10939@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10940@code{error}.
10941@end deffn
10942
18b519c0 10943@deffn {Directive} %union
bfa74976
RS
10944Bison declaration to specify several possible data types for semantic
10945values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10946@end deffn
bfa74976 10947
dd8d9022
AD
10948@deffn {Macro} YYABORT
10949Macro to pretend that an unrecoverable syntax error has occurred, by
10950making @code{yyparse} return 1 immediately. The error reporting
10951function @code{yyerror} is not called. @xref{Parser Function, ,The
10952Parser Function @code{yyparse}}.
8405b70c
PB
10953
10954For Java parsers, this functionality is invoked using @code{return YYABORT;}
10955instead.
dd8d9022 10956@end deffn
3ded9a63 10957
dd8d9022
AD
10958@deffn {Macro} YYACCEPT
10959Macro to pretend that a complete utterance of the language has been
10960read, by making @code{yyparse} return 0 immediately.
10961@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10962
10963For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10964instead.
dd8d9022 10965@end deffn
bfa74976 10966
dd8d9022 10967@deffn {Macro} YYBACKUP
742e4900 10968Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10969token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10970@end deffn
bfa74976 10971
dd8d9022 10972@deffn {Variable} yychar
32c29292 10973External integer variable that contains the integer value of the
742e4900 10974lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10975@code{yyparse}.) Error-recovery rule actions may examine this variable.
10976@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10977@end deffn
bfa74976 10978
dd8d9022
AD
10979@deffn {Variable} yyclearin
10980Macro used in error-recovery rule actions. It clears the previous
742e4900 10981lookahead token. @xref{Error Recovery}.
18b519c0 10982@end deffn
bfa74976 10983
dd8d9022
AD
10984@deffn {Macro} YYDEBUG
10985Macro to define to equip the parser with tracing code. @xref{Tracing,
10986,Tracing Your Parser}.
18b519c0 10987@end deffn
bfa74976 10988
dd8d9022
AD
10989@deffn {Variable} yydebug
10990External integer variable set to zero by default. If @code{yydebug}
10991is given a nonzero value, the parser will output information on input
10992symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10993@end deffn
bfa74976 10994
dd8d9022
AD
10995@deffn {Macro} yyerrok
10996Macro to cause parser to recover immediately to its normal mode
10997after a syntax error. @xref{Error Recovery}.
10998@end deffn
10999
11000@deffn {Macro} YYERROR
11001Macro to pretend that a syntax error has just been detected: call
11002@code{yyerror} and then perform normal error recovery if possible
11003(@pxref{Error Recovery}), or (if recovery is impossible) make
11004@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11005
11006For Java parsers, this functionality is invoked using @code{return YYERROR;}
11007instead.
dd8d9022
AD
11008@end deffn
11009
11010@deffn {Function} yyerror
11011User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11012@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11013@end deffn
11014
11015@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11016An obsolete macro used in the @file{yacc.c} skeleton, that you define
11017with @code{#define} in the prologue to request verbose, specific error
11018message strings when @code{yyerror} is called. It doesn't matter what
11019definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11020it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11021(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11022@end deffn
11023
11024@deffn {Macro} YYINITDEPTH
11025Macro for specifying the initial size of the parser stack.
1a059451 11026@xref{Memory Management}.
dd8d9022
AD
11027@end deffn
11028
11029@deffn {Function} yylex
11030User-supplied lexical analyzer function, called with no arguments to get
11031the next token. @xref{Lexical, ,The Lexical Analyzer Function
11032@code{yylex}}.
11033@end deffn
11034
11035@deffn {Macro} YYLEX_PARAM
11036An obsolete macro for specifying an extra argument (or list of extra
32c29292 11037arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11038macro is deprecated, and is supported only for Yacc like parsers.
11039@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11040@end deffn
11041
11042@deffn {Variable} yylloc
11043External variable in which @code{yylex} should place the line and column
11044numbers associated with a token. (In a pure parser, it is a local
11045variable within @code{yyparse}, and its address is passed to
32c29292
JD
11046@code{yylex}.)
11047You can ignore this variable if you don't use the @samp{@@} feature in the
11048grammar actions.
11049@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11050In semantic actions, it stores the location of the lookahead token.
32c29292 11051@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11052@end deffn
11053
11054@deffn {Type} YYLTYPE
11055Data type of @code{yylloc}; by default, a structure with four
11056members. @xref{Location Type, , Data Types of Locations}.
11057@end deffn
11058
11059@deffn {Variable} yylval
11060External variable in which @code{yylex} should place the semantic
11061value associated with a token. (In a pure parser, it is a local
11062variable within @code{yyparse}, and its address is passed to
32c29292
JD
11063@code{yylex}.)
11064@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11065In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11066@xref{Actions, ,Actions}.
dd8d9022
AD
11067@end deffn
11068
11069@deffn {Macro} YYMAXDEPTH
1a059451
PE
11070Macro for specifying the maximum size of the parser stack. @xref{Memory
11071Management}.
dd8d9022
AD
11072@end deffn
11073
11074@deffn {Variable} yynerrs
8a2800e7 11075Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11076(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11077pure push parser, it is a member of yypstate.)
dd8d9022
AD
11078@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11079@end deffn
11080
11081@deffn {Function} yyparse
11082The parser function produced by Bison; call this function to start
11083parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11084@end deffn
11085
9987d1b3 11086@deffn {Function} yypstate_delete
f4101aa6 11087The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11088call this function to delete the memory associated with a parser.
f4101aa6 11089@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11090@code{yypstate_delete}}.
59da312b
JD
11091(The current push parsing interface is experimental and may evolve.
11092More user feedback will help to stabilize it.)
9987d1b3
JD
11093@end deffn
11094
11095@deffn {Function} yypstate_new
f4101aa6 11096The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11097call this function to create a new parser.
f4101aa6 11098@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11099@code{yypstate_new}}.
59da312b
JD
11100(The current push parsing interface is experimental and may evolve.
11101More user feedback will help to stabilize it.)
9987d1b3
JD
11102@end deffn
11103
11104@deffn {Function} yypull_parse
f4101aa6
AD
11105The parser function produced by Bison in push mode; call this function to
11106parse the rest of the input stream.
11107@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11108@code{yypull_parse}}.
59da312b
JD
11109(The current push parsing interface is experimental and may evolve.
11110More user feedback will help to stabilize it.)
9987d1b3
JD
11111@end deffn
11112
11113@deffn {Function} yypush_parse
f4101aa6
AD
11114The parser function produced by Bison in push mode; call this function to
11115parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11116@code{yypush_parse}}.
59da312b
JD
11117(The current push parsing interface is experimental and may evolve.
11118More user feedback will help to stabilize it.)
9987d1b3
JD
11119@end deffn
11120
dd8d9022
AD
11121@deffn {Macro} YYPARSE_PARAM
11122An obsolete macro for specifying the name of a parameter that
11123@code{yyparse} should accept. The use of this macro is deprecated, and
11124is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11125Conventions for Pure Parsers}.
11126@end deffn
11127
11128@deffn {Macro} YYRECOVERING
02103984
PE
11129The expression @code{YYRECOVERING ()} yields 1 when the parser
11130is recovering from a syntax error, and 0 otherwise.
11131@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11132@end deffn
11133
11134@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11135Macro used to control the use of @code{alloca} when the
11136deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11137the parser will use @code{malloc} to extend its stacks. If defined to
111381, the parser will use @code{alloca}. Values other than 0 and 1 are
11139reserved for future Bison extensions. If not defined,
11140@code{YYSTACK_USE_ALLOCA} defaults to 0.
11141
55289366 11142In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11143limited stack and with unreliable stack-overflow checking, you should
11144set @code{YYMAXDEPTH} to a value that cannot possibly result in
11145unchecked stack overflow on any of your target hosts when
11146@code{alloca} is called. You can inspect the code that Bison
11147generates in order to determine the proper numeric values. This will
11148require some expertise in low-level implementation details.
dd8d9022
AD
11149@end deffn
11150
11151@deffn {Type} YYSTYPE
11152Data type of semantic values; @code{int} by default.
11153@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11154@end deffn
bfa74976 11155
342b8b6e 11156@node Glossary
bfa74976
RS
11157@appendix Glossary
11158@cindex glossary
11159
11160@table @asis
eb45ef3b
JD
11161@item Accepting State
11162A state whose only action is the accept action.
11163The accepting state is thus a consistent state.
11164@xref{Understanding,,}.
11165
c827f760
PE
11166@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
11167Formal method of specifying context-free grammars originally proposed
11168by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11169committee document contributing to what became the Algol 60 report.
11170@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11171
eb45ef3b
JD
11172@item Consistent State
11173A state containing only one possible action.
5bab9d08 11174@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11175
bfa74976
RS
11176@item Context-free grammars
11177Grammars specified as rules that can be applied regardless of context.
11178Thus, if there is a rule which says that an integer can be used as an
11179expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11180permitted. @xref{Language and Grammar, ,Languages and Context-Free
11181Grammars}.
bfa74976 11182
110ef36a
JD
11183@item Default Reduction
11184The reduction that a parser should perform if the current parser state
eb45ef3b 11185contains no other action for the lookahead token.
110ef36a
JD
11186In permitted parser states, Bison declares the reduction with the
11187largest lookahead set to be the default reduction and removes that
11188lookahead set.
5bab9d08 11189@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11190
bfa74976
RS
11191@item Dynamic allocation
11192Allocation of memory that occurs during execution, rather than at
11193compile time or on entry to a function.
11194
11195@item Empty string
11196Analogous to the empty set in set theory, the empty string is a
11197character string of length zero.
11198
11199@item Finite-state stack machine
11200A ``machine'' that has discrete states in which it is said to exist at
11201each instant in time. As input to the machine is processed, the
11202machine moves from state to state as specified by the logic of the
11203machine. In the case of the parser, the input is the language being
11204parsed, and the states correspond to various stages in the grammar
c827f760 11205rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11206
c827f760 11207@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 11208A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
11209that are not @acronym{LR}(1). It resolves situations that Bison's
11210deterministic parsing
676385e2
PH
11211algorithm cannot by effectively splitting off multiple parsers, trying all
11212possible parsers, and discarding those that fail in the light of additional
c827f760
PE
11213right context. @xref{Generalized LR Parsing, ,Generalized
11214@acronym{LR} Parsing}.
676385e2 11215
bfa74976
RS
11216@item Grouping
11217A language construct that is (in general) grammatically divisible;
c827f760 11218for example, `expression' or `declaration' in C@.
bfa74976
RS
11219@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11220
eb45ef3b
JD
11221@item @acronym{IELR}(1)
11222A minimal @acronym{LR}(1) parser table generation algorithm.
11223That is, given any context-free grammar, @acronym{IELR}(1) generates
11224parser tables with the full language recognition power of canonical
11225@acronym{LR}(1) but with nearly the same number of parser states as
11226@acronym{LALR}(1).
11227This reduction in parser states is often an order of magnitude.
11228More importantly, because canonical @acronym{LR}(1)'s extra parser
11229states may contain duplicate conflicts in the case of
11230non-@acronym{LR}(1) grammars, the number of conflicts for
11231@acronym{IELR}(1) is often an order of magnitude less as well.
11232This can significantly reduce the complexity of developing of a grammar.
11233@xref{Decl Summary,,lr.type}.
11234
bfa74976
RS
11235@item Infix operator
11236An arithmetic operator that is placed between the operands on which it
11237performs some operation.
11238
11239@item Input stream
11240A continuous flow of data between devices or programs.
11241
11242@item Language construct
11243One of the typical usage schemas of the language. For example, one of
11244the constructs of the C language is the @code{if} statement.
11245@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11246
11247@item Left associativity
11248Operators having left associativity are analyzed from left to right:
11249@samp{a+b+c} first computes @samp{a+b} and then combines with
11250@samp{c}. @xref{Precedence, ,Operator Precedence}.
11251
11252@item Left recursion
89cab50d
AD
11253A rule whose result symbol is also its first component symbol; for
11254example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11255Rules}.
bfa74976
RS
11256
11257@item Left-to-right parsing
11258Parsing a sentence of a language by analyzing it token by token from
c827f760 11259left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11260
11261@item Lexical analyzer (scanner)
11262A function that reads an input stream and returns tokens one by one.
11263@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11264
11265@item Lexical tie-in
11266A flag, set by actions in the grammar rules, which alters the way
11267tokens are parsed. @xref{Lexical Tie-ins}.
11268
931c7513 11269@item Literal string token
14ded682 11270A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11271
742e4900
JD
11272@item Lookahead token
11273A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11274Tokens}.
bfa74976 11275
c827f760 11276@item @acronym{LALR}(1)
bfa74976 11277The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
11278generators) can handle by default; a subset of @acronym{LR}(1).
11279@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11280
c827f760 11281@item @acronym{LR}(1)
bfa74976 11282The class of context-free grammars in which at most one token of
742e4900 11283lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11284
11285@item Nonterminal symbol
11286A grammar symbol standing for a grammatical construct that can
11287be expressed through rules in terms of smaller constructs; in other
11288words, a construct that is not a token. @xref{Symbols}.
11289
bfa74976
RS
11290@item Parser
11291A function that recognizes valid sentences of a language by analyzing
11292the syntax structure of a set of tokens passed to it from a lexical
11293analyzer.
11294
11295@item Postfix operator
11296An arithmetic operator that is placed after the operands upon which it
11297performs some operation.
11298
11299@item Reduction
11300Replacing a string of nonterminals and/or terminals with a single
89cab50d 11301nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11302Parser Algorithm}.
bfa74976
RS
11303
11304@item Reentrant
11305A reentrant subprogram is a subprogram which can be in invoked any
11306number of times in parallel, without interference between the various
11307invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11308
11309@item Reverse polish notation
11310A language in which all operators are postfix operators.
11311
11312@item Right recursion
89cab50d
AD
11313A rule whose result symbol is also its last component symbol; for
11314example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11315Rules}.
bfa74976
RS
11316
11317@item Semantics
11318In computer languages, the semantics are specified by the actions
11319taken for each instance of the language, i.e., the meaning of
11320each statement. @xref{Semantics, ,Defining Language Semantics}.
11321
11322@item Shift
11323A parser is said to shift when it makes the choice of analyzing
11324further input from the stream rather than reducing immediately some
c827f760 11325already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11326
11327@item Single-character literal
11328A single character that is recognized and interpreted as is.
11329@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11330
11331@item Start symbol
11332The nonterminal symbol that stands for a complete valid utterance in
11333the language being parsed. The start symbol is usually listed as the
13863333 11334first nonterminal symbol in a language specification.
bfa74976
RS
11335@xref{Start Decl, ,The Start-Symbol}.
11336
11337@item Symbol table
11338A data structure where symbol names and associated data are stored
11339during parsing to allow for recognition and use of existing
11340information in repeated uses of a symbol. @xref{Multi-function Calc}.
11341
6e649e65
PE
11342@item Syntax error
11343An error encountered during parsing of an input stream due to invalid
11344syntax. @xref{Error Recovery}.
11345
bfa74976
RS
11346@item Token
11347A basic, grammatically indivisible unit of a language. The symbol
11348that describes a token in the grammar is a terminal symbol.
11349The input of the Bison parser is a stream of tokens which comes from
11350the lexical analyzer. @xref{Symbols}.
11351
11352@item Terminal symbol
89cab50d
AD
11353A grammar symbol that has no rules in the grammar and therefore is
11354grammatically indivisible. The piece of text it represents is a token.
11355@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11356@end table
11357
342b8b6e 11358@node Copying This Manual
f2b5126e 11359@appendix Copying This Manual
f2b5126e
PB
11360@include fdl.texi
11361
342b8b6e 11362@node Index
bfa74976
RS
11363@unnumbered Index
11364
11365@printindex cp
11366
bfa74976 11367@bye
a06ea4aa 11368
6b5a0de9
AD
11369@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11370@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11371@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11372@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11373@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11374@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11375@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11376@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11377@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11378@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11379@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11380@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11381@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11382@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11383@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11384@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11385@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11386@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11387@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11388@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11389@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11390@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11391@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11392@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11393@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11394@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11395@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11396@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11397@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
11398@c LocalWords: subexpressions declarator nondeferred config libintl postfix
11399@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11400@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11401@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11402@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11403@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11404@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11405@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11406@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11407@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11408@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11409@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11410@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11411@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11412@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11413@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11414@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11415@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11416@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11417@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11418@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
1625df5b 11419@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
6b5a0de9 11420@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11421
11422@c Local Variables:
11423@c ispell-dictionary: "american"
11424@c fill-column: 76
11425@c End: