]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Document %define lr.type and lr.default_rules.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1d5b3c08
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f5f419de
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
271* Using Precedence:: How to specify precedence and associativity.
272* Precedence Only:: How to specify precedence only.
bfa74976
RS
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f5f419de
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f5f419de
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f5f419de 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
eb45ef3b
JD
355annotated context-free grammar into a deterministic or @acronym{GLR}
356parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
357@acronym{LR}(1) parser tables.
358Once you are proficient with Bison, you can use it to develop a wide
359range of language parsers, from those used in simple desk calculators to
360complex programming languages.
bfa74976
RS
361
362Bison is upward compatible with Yacc: all properly-written Yacc grammars
363ought to work with Bison with no change. Anyone familiar with Yacc
364should be able to use Bison with little trouble. You need to be fluent in
1e137b71 365C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
366
367We begin with tutorial chapters that explain the basic concepts of using
368Bison and show three explained examples, each building on the last. If you
369don't know Bison or Yacc, start by reading these chapters. Reference
370chapters follow which describe specific aspects of Bison in detail.
371
931c7513
RS
372Bison was written primarily by Robert Corbett; Richard Stallman made it
373Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 374multi-character string literals and other features.
931c7513 375
df1af54c 376This edition corresponds to version @value{VERSION} of Bison.
bfa74976 377
342b8b6e 378@node Conditions
bfa74976
RS
379@unnumbered Conditions for Using Bison
380
193d7c70
PE
381The distribution terms for Bison-generated parsers permit using the
382parsers in nonfree programs. Before Bison version 2.2, these extra
383permissions applied only when Bison was generating @acronym{LALR}(1)
384parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 385parsers could be used only in programs that were free software.
a31239f1 386
c827f760
PE
387The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
388compiler, have never
9ecbd125 389had such a requirement. They could always be used for nonfree
a31239f1
RS
390software. The reason Bison was different was not due to a special
391policy decision; it resulted from applying the usual General Public
392License to all of the Bison source code.
393
394The output of the Bison utility---the Bison parser file---contains a
395verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
396parser's implementation. (The actions from your grammar are inserted
397into this implementation at one point, but most of the rest of the
398implementation is not changed.) When we applied the @acronym{GPL}
399terms to the skeleton code for the parser's implementation,
a31239f1
RS
400the effect was to restrict the use of Bison output to free software.
401
402We didn't change the terms because of sympathy for people who want to
403make software proprietary. @strong{Software should be free.} But we
404concluded that limiting Bison's use to free software was doing little to
405encourage people to make other software free. So we decided to make the
406practical conditions for using Bison match the practical conditions for
c827f760 407using the other @acronym{GNU} tools.
bfa74976 408
193d7c70
PE
409This exception applies when Bison is generating code for a parser.
410You can tell whether the exception applies to a Bison output file by
411inspecting the file for text beginning with ``As a special
412exception@dots{}''. The text spells out the exact terms of the
413exception.
262aa8dd 414
f16b0819
PE
415@node Copying
416@unnumbered GNU GENERAL PUBLIC LICENSE
417@include gpl-3.0.texi
bfa74976 418
342b8b6e 419@node Concepts
bfa74976
RS
420@chapter The Concepts of Bison
421
422This chapter introduces many of the basic concepts without which the
423details of Bison will not make sense. If you do not already know how to
424use Bison or Yacc, we suggest you start by reading this chapter carefully.
425
426@menu
f5f419de
DJ
427* Language and Grammar:: Languages and context-free grammars,
428 as mathematical ideas.
429* Grammar in Bison:: How we represent grammars for Bison's sake.
430* Semantic Values:: Each token or syntactic grouping can have
431 a semantic value (the value of an integer,
432 the name of an identifier, etc.).
433* Semantic Actions:: Each rule can have an action containing C code.
434* GLR Parsers:: Writing parsers for general context-free languages.
435* Locations Overview:: Tracking Locations.
436* Bison Parser:: What are Bison's input and output,
437 how is the output used?
438* Stages:: Stages in writing and running Bison grammars.
439* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
440@end menu
441
342b8b6e 442@node Language and Grammar
bfa74976
RS
443@section Languages and Context-Free Grammars
444
bfa74976
RS
445@cindex context-free grammar
446@cindex grammar, context-free
447In order for Bison to parse a language, it must be described by a
448@dfn{context-free grammar}. This means that you specify one or more
449@dfn{syntactic groupings} and give rules for constructing them from their
450parts. For example, in the C language, one kind of grouping is called an
451`expression'. One rule for making an expression might be, ``An expression
452can be made of a minus sign and another expression''. Another would be,
453``An expression can be an integer''. As you can see, rules are often
454recursive, but there must be at least one rule which leads out of the
455recursion.
456
c827f760 457@cindex @acronym{BNF}
bfa74976
RS
458@cindex Backus-Naur form
459The most common formal system for presenting such rules for humans to read
c827f760
PE
460is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
461order to specify the language Algol 60. Any grammar expressed in
462@acronym{BNF} is a context-free grammar. The input to Bison is
463essentially machine-readable @acronym{BNF}.
bfa74976 464
c827f760 465@cindex @acronym{LALR}(1) grammars
eb45ef3b 466@cindex @acronym{IELR}(1) grammars
c827f760 467@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
468There are various important subclasses of context-free grammars.
469Although it can handle almost all context-free grammars, Bison is
470optimized for what are called @acronym{LR}(1) grammars.
471In brief, in these grammars, it must be possible to tell how to parse
472any portion of an input string with just a single token of lookahead.
473For historical reasons, Bison by default is limited by the additional
474restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
eb45ef3b
JD
477To escape these additional restrictions, you can request
478@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
479@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 480
c827f760
PE
481@cindex @acronym{GLR} parsing
482@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 483@cindex ambiguous grammars
9d9b8b70 484@cindex nondeterministic parsing
9501dc6e 485
eb45ef3b 486Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
487roughly that the next grammar rule to apply at any point in the input is
488uniquely determined by the preceding input and a fixed, finite portion
742e4900 489(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 490grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 491apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 492grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 493lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
494With the proper declarations, Bison is also able to parse these more
495general context-free grammars, using a technique known as @acronym{GLR}
496parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
497are able to handle any context-free grammar for which the number of
498possible parses of any given string is finite.
676385e2 499
bfa74976
RS
500@cindex symbols (abstract)
501@cindex token
502@cindex syntactic grouping
503@cindex grouping, syntactic
9501dc6e
AD
504In the formal grammatical rules for a language, each kind of syntactic
505unit or grouping is named by a @dfn{symbol}. Those which are built by
506grouping smaller constructs according to grammatical rules are called
bfa74976
RS
507@dfn{nonterminal symbols}; those which can't be subdivided are called
508@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
509corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 510corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
511
512We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
513nonterminal, mean. The tokens of C are identifiers, constants (numeric
514and string), and the various keywords, arithmetic operators and
515punctuation marks. So the terminal symbols of a grammar for C include
516`identifier', `number', `string', plus one symbol for each keyword,
517operator or punctuation mark: `if', `return', `const', `static', `int',
518`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
519(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
520lexicography, not grammar.)
521
522Here is a simple C function subdivided into tokens:
523
9edcd895
AD
524@ifinfo
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
528 @r{identifier, close-paren} */
529@{ /* @r{open-brace} */
aa08666d
AD
530 return x * x; /* @r{keyword `return', identifier, asterisk,}
531 @r{identifier, semicolon} */
9edcd895
AD
532@} /* @r{close-brace} */
533@end example
534@end ifinfo
535@ifnotinfo
bfa74976
RS
536@example
537int /* @r{keyword `int'} */
14d4662b 538square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 539@{ /* @r{open-brace} */
9edcd895 540 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
541@} /* @r{close-brace} */
542@end example
9edcd895 543@end ifnotinfo
bfa74976
RS
544
545The syntactic groupings of C include the expression, the statement, the
546declaration, and the function definition. These are represented in the
547grammar of C by nonterminal symbols `expression', `statement',
548`declaration' and `function definition'. The full grammar uses dozens of
549additional language constructs, each with its own nonterminal symbol, in
550order to express the meanings of these four. The example above is a
551function definition; it contains one declaration, and one statement. In
552the statement, each @samp{x} is an expression and so is @samp{x * x}.
553
554Each nonterminal symbol must have grammatical rules showing how it is made
555out of simpler constructs. For example, one kind of C statement is the
556@code{return} statement; this would be described with a grammar rule which
557reads informally as follows:
558
559@quotation
560A `statement' can be made of a `return' keyword, an `expression' and a
561`semicolon'.
562@end quotation
563
564@noindent
565There would be many other rules for `statement', one for each kind of
566statement in C.
567
568@cindex start symbol
569One nonterminal symbol must be distinguished as the special one which
570defines a complete utterance in the language. It is called the @dfn{start
571symbol}. In a compiler, this means a complete input program. In the C
572language, the nonterminal symbol `sequence of definitions and declarations'
573plays this role.
574
575For example, @samp{1 + 2} is a valid C expression---a valid part of a C
576program---but it is not valid as an @emph{entire} C program. In the
577context-free grammar of C, this follows from the fact that `expression' is
578not the start symbol.
579
580The Bison parser reads a sequence of tokens as its input, and groups the
581tokens using the grammar rules. If the input is valid, the end result is
582that the entire token sequence reduces to a single grouping whose symbol is
583the grammar's start symbol. If we use a grammar for C, the entire input
584must be a `sequence of definitions and declarations'. If not, the parser
585reports a syntax error.
586
342b8b6e 587@node Grammar in Bison
bfa74976
RS
588@section From Formal Rules to Bison Input
589@cindex Bison grammar
590@cindex grammar, Bison
591@cindex formal grammar
592
593A formal grammar is a mathematical construct. To define the language
594for Bison, you must write a file expressing the grammar in Bison syntax:
595a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
596
597A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 598as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
599in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
600
601The Bison representation for a terminal symbol is also called a @dfn{token
602type}. Token types as well can be represented as C-like identifiers. By
603convention, these identifiers should be upper case to distinguish them from
604nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
605@code{RETURN}. A terminal symbol that stands for a particular keyword in
606the language should be named after that keyword converted to upper case.
607The terminal symbol @code{error} is reserved for error recovery.
931c7513 608@xref{Symbols}.
bfa74976
RS
609
610A terminal symbol can also be represented as a character literal, just like
611a C character constant. You should do this whenever a token is just a
612single character (parenthesis, plus-sign, etc.): use that same character in
613a literal as the terminal symbol for that token.
614
931c7513
RS
615A third way to represent a terminal symbol is with a C string constant
616containing several characters. @xref{Symbols}, for more information.
617
bfa74976
RS
618The grammar rules also have an expression in Bison syntax. For example,
619here is the Bison rule for a C @code{return} statement. The semicolon in
620quotes is a literal character token, representing part of the C syntax for
621the statement; the naked semicolon, and the colon, are Bison punctuation
622used in every rule.
623
624@example
625stmt: RETURN expr ';'
626 ;
627@end example
628
629@noindent
630@xref{Rules, ,Syntax of Grammar Rules}.
631
342b8b6e 632@node Semantic Values
bfa74976
RS
633@section Semantic Values
634@cindex semantic value
635@cindex value, semantic
636
637A formal grammar selects tokens only by their classifications: for example,
638if a rule mentions the terminal symbol `integer constant', it means that
639@emph{any} integer constant is grammatically valid in that position. The
640precise value of the constant is irrelevant to how to parse the input: if
641@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 642grammatical.
bfa74976
RS
643
644But the precise value is very important for what the input means once it is
645parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6463989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
647has both a token type and a @dfn{semantic value}. @xref{Semantics,
648,Defining Language Semantics},
bfa74976
RS
649for details.
650
651The token type is a terminal symbol defined in the grammar, such as
652@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
653you need to know to decide where the token may validly appear and how to
654group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 655except their types.
bfa74976
RS
656
657The semantic value has all the rest of the information about the
658meaning of the token, such as the value of an integer, or the name of an
659identifier. (A token such as @code{','} which is just punctuation doesn't
660need to have any semantic value.)
661
662For example, an input token might be classified as token type
663@code{INTEGER} and have the semantic value 4. Another input token might
664have the same token type @code{INTEGER} but value 3989. When a grammar
665rule says that @code{INTEGER} is allowed, either of these tokens is
666acceptable because each is an @code{INTEGER}. When the parser accepts the
667token, it keeps track of the token's semantic value.
668
669Each grouping can also have a semantic value as well as its nonterminal
670symbol. For example, in a calculator, an expression typically has a
671semantic value that is a number. In a compiler for a programming
672language, an expression typically has a semantic value that is a tree
673structure describing the meaning of the expression.
674
342b8b6e 675@node Semantic Actions
bfa74976
RS
676@section Semantic Actions
677@cindex semantic actions
678@cindex actions, semantic
679
680In order to be useful, a program must do more than parse input; it must
681also produce some output based on the input. In a Bison grammar, a grammar
682rule can have an @dfn{action} made up of C statements. Each time the
683parser recognizes a match for that rule, the action is executed.
684@xref{Actions}.
13863333 685
bfa74976
RS
686Most of the time, the purpose of an action is to compute the semantic value
687of the whole construct from the semantic values of its parts. For example,
688suppose we have a rule which says an expression can be the sum of two
689expressions. When the parser recognizes such a sum, each of the
690subexpressions has a semantic value which describes how it was built up.
691The action for this rule should create a similar sort of value for the
692newly recognized larger expression.
693
694For example, here is a rule that says an expression can be the sum of
695two subexpressions:
696
697@example
698expr: expr '+' expr @{ $$ = $1 + $3; @}
699 ;
700@end example
701
702@noindent
703The action says how to produce the semantic value of the sum expression
704from the values of the two subexpressions.
705
676385e2 706@node GLR Parsers
c827f760
PE
707@section Writing @acronym{GLR} Parsers
708@cindex @acronym{GLR} parsing
709@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
710@findex %glr-parser
711@cindex conflicts
712@cindex shift/reduce conflicts
fa7e68c3 713@cindex reduce/reduce conflicts
676385e2 714
eb45ef3b
JD
715In some grammars, Bison's deterministic
716@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
717certain grammar rule at a given point. That is, it may not be able to
718decide (on the basis of the input read so far) which of two possible
719reductions (applications of a grammar rule) applies, or whether to apply
720a reduction or read more of the input and apply a reduction later in the
721input. These are known respectively as @dfn{reduce/reduce} conflicts
722(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
723(@pxref{Shift/Reduce}).
724
eb45ef3b 725To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 726more general parsing algorithm is sometimes necessary. If you include
676385e2 727@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 728(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
729(@acronym{GLR}) parser. These parsers handle Bison grammars that
730contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 731declarations) identically to deterministic parsers. However, when
9501dc6e
AD
732faced with unresolved shift/reduce and reduce/reduce conflicts,
733@acronym{GLR} parsers use the simple expedient of doing both,
734effectively cloning the parser to follow both possibilities. Each of
735the resulting parsers can again split, so that at any given time, there
736can be any number of possible parses being explored. The parsers
676385e2
PH
737proceed in lockstep; that is, all of them consume (shift) a given input
738symbol before any of them proceed to the next. Each of the cloned
739parsers eventually meets one of two possible fates: either it runs into
740a parsing error, in which case it simply vanishes, or it merges with
741another parser, because the two of them have reduced the input to an
742identical set of symbols.
743
744During the time that there are multiple parsers, semantic actions are
745recorded, but not performed. When a parser disappears, its recorded
746semantic actions disappear as well, and are never performed. When a
747reduction makes two parsers identical, causing them to merge, Bison
748records both sets of semantic actions. Whenever the last two parsers
749merge, reverting to the single-parser case, Bison resolves all the
750outstanding actions either by precedences given to the grammar rules
751involved, or by performing both actions, and then calling a designated
752user-defined function on the resulting values to produce an arbitrary
753merged result.
754
fa7e68c3 755@menu
f5f419de
DJ
756* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
757* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
758* GLR Semantic Actions:: Deferred semantic actions have special concerns.
759* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
760@end menu
761
762@node Simple GLR Parsers
763@subsection Using @acronym{GLR} on Unambiguous Grammars
764@cindex @acronym{GLR} parsing, unambiguous grammars
765@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
766@findex %glr-parser
767@findex %expect-rr
768@cindex conflicts
769@cindex reduce/reduce conflicts
770@cindex shift/reduce conflicts
771
772In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
773to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
774Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
788and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
eb45ef3b 811With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
fa7e68c3
PE
834use the @acronym{GLR} algorithm.
835When the @acronym{GLR} parser reaches the critical state, it
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
850lookahead than the underlying @acronym{LR}(1) algorithm actually allows
851for. In this example, @acronym{LR}(2) would suffice, but also some cases
852that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
853
854In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
eb45ef3b 905When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
915The parser can be turned into a @acronym{GLR} parser, while also telling Bison
916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
f8e1c9e5
AD
931So here we have a case where we can use the benefits of @acronym{GLR},
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
934analyze the conflicts reported by Bison to make sure that @acronym{GLR}
935splitting is only done where it is intended. A @acronym{GLR} parser
936splitting inadvertently may cause problems less obvious than an
eb45ef3b 937@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
942eliminated by using @acronym{GLR} to shift the complications from the
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
954@subsection Using @acronym{GLR} to Resolve Ambiguities
955@cindex @acronym{GLR} parsing, ambiguous grammars
956@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1021time it encounters @code{x} in the example above. Since this is a
1022@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1030
1031At this point, the @acronym{GLR} parser requires a specification in the
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
e757bb10 1051This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
1122action in a @acronym{GLR} parser.
1123
1124@vindex yychar
1125@cindex @acronym{GLR} parsers and @code{yychar}
1126@vindex yylval
1127@cindex @acronym{GLR} parsers and @code{yylval}
1128@vindex yylloc
1129@cindex @acronym{GLR} parsers and @code{yylloc}
1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
1140@cindex @acronym{GLR} parsers and @code{yyclearin}
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
1152@cindex @acronym{GLR} parsers and @code{YYERROR}
1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1155initiate error recovery.
1156During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1157the same as its effect in a deterministic parser.
32c29292
JD
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41
JD
1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1162describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1163
fa7e68c3
PE
1164@node Compiler Requirements
1165@subsection Considerations when Compiling @acronym{GLR} Parsers
1166@cindex @code{inline}
9501dc6e 1167@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1168
38a92d50
PE
1169The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
55289366 1272headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f5f419de
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f5f419de
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f5f419de 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
c827f760
PE
1650Only a simple lexical analyzer is needed for the @acronym{RPN}
1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f5f419de 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
d78f0ac9
AD
1866%precedence NEG /* negation--unary minus */
1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
d78f0ac9 1900associativity/precedence. (These tokens are single-character literals, which
bfa74976 1901ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1902the associativity/precedence.)
bfa74976
RS
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1908by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1909only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f5f419de
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f5f419de 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
d78f0ac9 2012%precedence NEG
342b8b6e
AD
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f5f419de
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f5f419de 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
d78f0ac9
AD
2260%precedence NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f5f419de 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f5f419de 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313
JD
2709(The prologue alternatives described here are experimental.
2710More user feedback will help to determine whether they should become permanent
2711features.)
2712
2cbe6b7f
JD
2713The functionality of @var{Prologue} sections can often be subtle and
2714inflexible.
8e0a5e9e
JD
2715As an alternative, Bison provides a %code directive with an explicit qualifier
2716field, which identifies the purpose of the code and thus the location(s) where
2717Bison should generate it.
2718For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2719one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2720@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2721
2722Look again at the example of the previous section:
2723
2724@smallexample
2725%@{
2726 #define _GNU_SOURCE
2727 #include <stdio.h>
2728 #include "ptypes.h"
2729%@}
2730
2731%union @{
2732 long int n;
2733 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2734@}
2735
2736%@{
2737 static void print_token_value (FILE *, int, YYSTYPE);
2738 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2739%@}
2740
2741@dots{}
2742@end smallexample
2743
2744@noindent
2745Notice that there are two @var{Prologue} sections here, but there's a subtle
2746distinction between their functionality.
2747For example, if you decide to override Bison's default definition for
2748@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2749definition?
2750You should write it in the first since Bison will insert that code into the
8e0a5e9e 2751parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2752In which @var{Prologue} section should you prototype an internal function,
2753@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2754arguments?
2755You should prototype it in the second since Bison will insert that code
2756@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2757
2758This distinction in functionality between the two @var{Prologue} sections is
2759established by the appearance of the @code{%union} between them.
a501eca9 2760This behavior raises a few questions.
2cbe6b7f
JD
2761First, why should the position of a @code{%union} affect definitions related to
2762@code{YYLTYPE} and @code{yytokentype}?
2763Second, what if there is no @code{%union}?
2764In that case, the second kind of @var{Prologue} section is not available.
2765This behavior is not intuitive.
2766
8e0a5e9e 2767To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2768@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2769Let's go ahead and add the new @code{YYLTYPE} definition and the
2770@code{trace_token} prototype at the same time:
2771
2772@smallexample
16dc6a9e 2773%code top @{
2cbe6b7f
JD
2774 #define _GNU_SOURCE
2775 #include <stdio.h>
8e0a5e9e
JD
2776
2777 /* WARNING: The following code really belongs
16dc6a9e 2778 * in a `%code requires'; see below. */
8e0a5e9e 2779
2cbe6b7f
JD
2780 #include "ptypes.h"
2781 #define YYLTYPE YYLTYPE
2782 typedef struct YYLTYPE
2783 @{
2784 int first_line;
2785 int first_column;
2786 int last_line;
2787 int last_column;
2788 char *filename;
2789 @} YYLTYPE;
2790@}
2791
2792%union @{
2793 long int n;
2794 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2795@}
2796
2797%code @{
2798 static void print_token_value (FILE *, int, YYSTYPE);
2799 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2800 static void trace_token (enum yytokentype token, YYLTYPE loc);
2801@}
2802
2803@dots{}
2804@end smallexample
2805
2806@noindent
16dc6a9e
JD
2807In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2808functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2809explicit which kind you intend.
2cbe6b7f
JD
2810Moreover, both kinds are always available even in the absence of @code{%union}.
2811
16dc6a9e 2812The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2813The first two lines before the warning need to appear near the top of the
2814parser source code file.
2815The first line after the warning is required by @code{YYSTYPE} and thus also
2816needs to appear in the parser source code file.
2cbe6b7f 2817However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2818(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2819the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2820The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2821override the default @code{YYLTYPE} definition there.
2822
16dc6a9e 2823In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2824lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2825definitions.
16dc6a9e 2826Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2827
2828@smallexample
16dc6a9e 2829%code top @{
2cbe6b7f
JD
2830 #define _GNU_SOURCE
2831 #include <stdio.h>
2832@}
2833
16dc6a9e 2834%code requires @{
9bc0dd67
JD
2835 #include "ptypes.h"
2836@}
2837%union @{
2838 long int n;
2839 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2840@}
2841
16dc6a9e 2842%code requires @{
2cbe6b7f
JD
2843 #define YYLTYPE YYLTYPE
2844 typedef struct YYLTYPE
2845 @{
2846 int first_line;
2847 int first_column;
2848 int last_line;
2849 int last_column;
2850 char *filename;
2851 @} YYLTYPE;
2852@}
2853
136a0f76 2854%code @{
2cbe6b7f
JD
2855 static void print_token_value (FILE *, int, YYSTYPE);
2856 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2857 static void trace_token (enum yytokentype token, YYLTYPE loc);
2858@}
2859
2860@dots{}
2861@end smallexample
2862
2863@noindent
2864Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2865definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2866definitions in both the parser source code file and the parser header file.
16dc6a9e 2867(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2868place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2869
a501eca9 2870When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2871should prefer @code{%code requires} over @code{%code top} regardless of whether
2872you instruct Bison to generate a parser header file.
a501eca9 2873When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2874source code file and that has no special need to appear at the top of that
16dc6a9e 2875file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2876These practices will make the purpose of each block of your code explicit to
2877Bison and to other developers reading your grammar file.
8e0a5e9e 2878Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2879@code{%code requires} to be the most important of the four @var{Prologue}
2880alternatives.
a501eca9 2881
2cbe6b7f
JD
2882At some point while developing your parser, you might decide to provide
2883@code{trace_token} to modules that are external to your parser.
2884Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2885header file and the parser source code file.
2886Since this function is not a dependency required by @code{YYSTYPE} or
2887@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2888@code{%code requires}.
2cbe6b7f 2889More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2890@code{%code requires} is not sufficient.
8e0a5e9e 2891Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2892@code{%code provides}:
2cbe6b7f
JD
2893
2894@smallexample
16dc6a9e 2895%code top @{
2cbe6b7f 2896 #define _GNU_SOURCE
136a0f76 2897 #include <stdio.h>
2cbe6b7f 2898@}
136a0f76 2899
16dc6a9e 2900%code requires @{
2cbe6b7f
JD
2901 #include "ptypes.h"
2902@}
2903%union @{
2904 long int n;
2905 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2906@}
2907
16dc6a9e 2908%code requires @{
2cbe6b7f
JD
2909 #define YYLTYPE YYLTYPE
2910 typedef struct YYLTYPE
2911 @{
2912 int first_line;
2913 int first_column;
2914 int last_line;
2915 int last_column;
2916 char *filename;
2917 @} YYLTYPE;
2918@}
2919
16dc6a9e 2920%code provides @{
2cbe6b7f
JD
2921 void trace_token (enum yytokentype token, YYLTYPE loc);
2922@}
2923
2924%code @{
9bc0dd67
JD
2925 static void print_token_value (FILE *, int, YYSTYPE);
2926 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2927@}
9bc0dd67
JD
2928
2929@dots{}
2930@end smallexample
2931
2cbe6b7f
JD
2932@noindent
2933Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2934file and the parser source code file after the definitions for
2935@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2936
2937The above examples are careful to write directives in an order that reflects
8e0a5e9e 2938the layout of the generated parser source code and header files:
16dc6a9e 2939@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2940@code{%code}.
a501eca9 2941While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2942this order, Bison does not require it.
2943Instead, Bison lets you choose an organization that makes sense to you.
2944
a501eca9 2945You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2946In that case, Bison concatenates the contained code in declaration order.
2947This is the only way in which the position of one of these directives within
2948the grammar file affects its functionality.
2949
2950The result of the previous two properties is greater flexibility in how you may
2951organize your grammar file.
2952For example, you may organize semantic-type-related directives by semantic
2953type:
2954
2955@smallexample
16dc6a9e 2956%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2957%union @{ type1 field1; @}
2958%destructor @{ type1_free ($$); @} <field1>
2959%printer @{ type1_print ($$); @} <field1>
2960
16dc6a9e 2961%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2962%union @{ type2 field2; @}
2963%destructor @{ type2_free ($$); @} <field2>
2964%printer @{ type2_print ($$); @} <field2>
2965@end smallexample
2966
2967@noindent
2968You could even place each of the above directive groups in the rules section of
2969the grammar file next to the set of rules that uses the associated semantic
2970type.
61fee93e
JD
2971(In the rules section, you must terminate each of those directives with a
2972semicolon.)
2cbe6b7f
JD
2973And you don't have to worry that some directive (like a @code{%union}) in the
2974definitions section is going to adversely affect their functionality in some
2975counter-intuitive manner just because it comes first.
2976Such an organization is not possible using @var{Prologue} sections.
2977
a501eca9 2978This section has been concerned with explaining the advantages of the four
8e0a5e9e 2979@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2980However, in most cases when using these directives, you shouldn't need to
2981think about all the low-level ordering issues discussed here.
2982Instead, you should simply use these directives to label each block of your
2983code according to its purpose and let Bison handle the ordering.
2984@code{%code} is the most generic label.
16dc6a9e
JD
2985Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2986as needed.
a501eca9 2987
342b8b6e 2988@node Bison Declarations
bfa74976
RS
2989@subsection The Bison Declarations Section
2990@cindex Bison declarations (introduction)
2991@cindex declarations, Bison (introduction)
2992
2993The @var{Bison declarations} section contains declarations that define
2994terminal and nonterminal symbols, specify precedence, and so on.
2995In some simple grammars you may not need any declarations.
2996@xref{Declarations, ,Bison Declarations}.
2997
342b8b6e 2998@node Grammar Rules
bfa74976
RS
2999@subsection The Grammar Rules Section
3000@cindex grammar rules section
3001@cindex rules section for grammar
3002
3003The @dfn{grammar rules} section contains one or more Bison grammar
3004rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3005
3006There must always be at least one grammar rule, and the first
3007@samp{%%} (which precedes the grammar rules) may never be omitted even
3008if it is the first thing in the file.
3009
38a92d50 3010@node Epilogue
75f5aaea 3011@subsection The epilogue
bfa74976 3012@cindex additional C code section
75f5aaea 3013@cindex epilogue
bfa74976
RS
3014@cindex C code, section for additional
3015
08e49d20
PE
3016The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3017the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3018place to put anything that you want to have in the parser file but which need
3019not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3020definitions of @code{yylex} and @code{yyerror} often go here. Because
3021C requires functions to be declared before being used, you often need
3022to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3023even if you define them in the Epilogue.
75f5aaea 3024@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3025
3026If the last section is empty, you may omit the @samp{%%} that separates it
3027from the grammar rules.
3028
f8e1c9e5
AD
3029The Bison parser itself contains many macros and identifiers whose names
3030start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3031any such names (except those documented in this manual) in the epilogue
3032of the grammar file.
bfa74976 3033
342b8b6e 3034@node Symbols
bfa74976
RS
3035@section Symbols, Terminal and Nonterminal
3036@cindex nonterminal symbol
3037@cindex terminal symbol
3038@cindex token type
3039@cindex symbol
3040
3041@dfn{Symbols} in Bison grammars represent the grammatical classifications
3042of the language.
3043
3044A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3045class of syntactically equivalent tokens. You use the symbol in grammar
3046rules to mean that a token in that class is allowed. The symbol is
3047represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3048function returns a token type code to indicate what kind of token has
3049been read. You don't need to know what the code value is; you can use
3050the symbol to stand for it.
bfa74976 3051
f8e1c9e5
AD
3052A @dfn{nonterminal symbol} stands for a class of syntactically
3053equivalent groupings. The symbol name is used in writing grammar rules.
3054By convention, it should be all lower case.
bfa74976 3055
4f646c37
AD
3056Symbol names can contain letters, underscores, period, and (not at the
3057beginning) digits and dashes. Dashes in symbol names are a GNU
3058extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3059that contain periods or dashes make little sense: since they are not
3060valid symbols (in most programming languages) they are not exported as
3061token names.
bfa74976 3062
931c7513 3063There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3064
3065@itemize @bullet
3066@item
3067A @dfn{named token type} is written with an identifier, like an
c827f760 3068identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3069such name must be defined with a Bison declaration such as
3070@code{%token}. @xref{Token Decl, ,Token Type Names}.
3071
3072@item
3073@cindex character token
3074@cindex literal token
3075@cindex single-character literal
931c7513
RS
3076A @dfn{character token type} (or @dfn{literal character token}) is
3077written in the grammar using the same syntax used in C for character
3078constants; for example, @code{'+'} is a character token type. A
3079character token type doesn't need to be declared unless you need to
3080specify its semantic value data type (@pxref{Value Type, ,Data Types of
3081Semantic Values}), associativity, or precedence (@pxref{Precedence,
3082,Operator Precedence}).
bfa74976
RS
3083
3084By convention, a character token type is used only to represent a
3085token that consists of that particular character. Thus, the token
3086type @code{'+'} is used to represent the character @samp{+} as a
3087token. Nothing enforces this convention, but if you depart from it,
3088your program will confuse other readers.
3089
3090All the usual escape sequences used in character literals in C can be
3091used in Bison as well, but you must not use the null character as a
72d2299c
PE
3092character literal because its numeric code, zero, signifies
3093end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3094for @code{yylex}}). Also, unlike standard C, trigraphs have no
3095special meaning in Bison character literals, nor is backslash-newline
3096allowed.
931c7513
RS
3097
3098@item
3099@cindex string token
3100@cindex literal string token
9ecbd125 3101@cindex multicharacter literal
931c7513
RS
3102A @dfn{literal string token} is written like a C string constant; for
3103example, @code{"<="} is a literal string token. A literal string token
3104doesn't need to be declared unless you need to specify its semantic
14ded682 3105value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3106(@pxref{Precedence}).
3107
3108You can associate the literal string token with a symbolic name as an
3109alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3110Declarations}). If you don't do that, the lexical analyzer has to
3111retrieve the token number for the literal string token from the
3112@code{yytname} table (@pxref{Calling Convention}).
3113
c827f760 3114@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3115
3116By convention, a literal string token is used only to represent a token
3117that consists of that particular string. Thus, you should use the token
3118type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3119does not enforce this convention, but if you depart from it, people who
931c7513
RS
3120read your program will be confused.
3121
3122All the escape sequences used in string literals in C can be used in
92ac3705
PE
3123Bison as well, except that you must not use a null character within a
3124string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3125meaning in Bison string literals, nor is backslash-newline allowed. A
3126literal string token must contain two or more characters; for a token
3127containing just one character, use a character token (see above).
bfa74976
RS
3128@end itemize
3129
3130How you choose to write a terminal symbol has no effect on its
3131grammatical meaning. That depends only on where it appears in rules and
3132on when the parser function returns that symbol.
3133
72d2299c
PE
3134The value returned by @code{yylex} is always one of the terminal
3135symbols, except that a zero or negative value signifies end-of-input.
3136Whichever way you write the token type in the grammar rules, you write
3137it the same way in the definition of @code{yylex}. The numeric code
3138for a character token type is simply the positive numeric code of the
3139character, so @code{yylex} can use the identical value to generate the
3140requisite code, though you may need to convert it to @code{unsigned
3141char} to avoid sign-extension on hosts where @code{char} is signed.
3142Each named token type becomes a C macro in
bfa74976 3143the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3144(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3145@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3146
3147If @code{yylex} is defined in a separate file, you need to arrange for the
3148token-type macro definitions to be available there. Use the @samp{-d}
3149option when you run Bison, so that it will write these macro definitions
3150into a separate header file @file{@var{name}.tab.h} which you can include
3151in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3152
72d2299c 3153If you want to write a grammar that is portable to any Standard C
9d9b8b70 3154host, you must use only nonnull character tokens taken from the basic
c827f760 3155execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3156digits, the 52 lower- and upper-case English letters, and the
3157characters in the following C-language string:
3158
3159@example
3160"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3161@end example
3162
f8e1c9e5
AD
3163The @code{yylex} function and Bison must use a consistent character set
3164and encoding for character tokens. For example, if you run Bison in an
3165@acronym{ASCII} environment, but then compile and run the resulting
3166program in an environment that uses an incompatible character set like
3167@acronym{EBCDIC}, the resulting program may not work because the tables
3168generated by Bison will assume @acronym{ASCII} numeric values for
3169character tokens. It is standard practice for software distributions to
3170contain C source files that were generated by Bison in an
3171@acronym{ASCII} environment, so installers on platforms that are
3172incompatible with @acronym{ASCII} must rebuild those files before
3173compiling them.
e966383b 3174
bfa74976
RS
3175The symbol @code{error} is a terminal symbol reserved for error recovery
3176(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3177In particular, @code{yylex} should never return this value. The default
3178value of the error token is 256, unless you explicitly assigned 256 to
3179one of your tokens with a @code{%token} declaration.
bfa74976 3180
342b8b6e 3181@node Rules
bfa74976
RS
3182@section Syntax of Grammar Rules
3183@cindex rule syntax
3184@cindex grammar rule syntax
3185@cindex syntax of grammar rules
3186
3187A Bison grammar rule has the following general form:
3188
3189@example
e425e872 3190@group
bfa74976
RS
3191@var{result}: @var{components}@dots{}
3192 ;
e425e872 3193@end group
bfa74976
RS
3194@end example
3195
3196@noindent
9ecbd125 3197where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3198and @var{components} are various terminal and nonterminal symbols that
13863333 3199are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3200
3201For example,
3202
3203@example
3204@group
3205exp: exp '+' exp
3206 ;
3207@end group
3208@end example
3209
3210@noindent
3211says that two groupings of type @code{exp}, with a @samp{+} token in between,
3212can be combined into a larger grouping of type @code{exp}.
3213
72d2299c
PE
3214White space in rules is significant only to separate symbols. You can add
3215extra white space as you wish.
bfa74976
RS
3216
3217Scattered among the components can be @var{actions} that determine
3218the semantics of the rule. An action looks like this:
3219
3220@example
3221@{@var{C statements}@}
3222@end example
3223
3224@noindent
287c78f6
PE
3225@cindex braced code
3226This is an example of @dfn{braced code}, that is, C code surrounded by
3227braces, much like a compound statement in C@. Braced code can contain
3228any sequence of C tokens, so long as its braces are balanced. Bison
3229does not check the braced code for correctness directly; it merely
3230copies the code to the output file, where the C compiler can check it.
3231
3232Within braced code, the balanced-brace count is not affected by braces
3233within comments, string literals, or character constants, but it is
3234affected by the C digraphs @samp{<%} and @samp{%>} that represent
3235braces. At the top level braced code must be terminated by @samp{@}}
3236and not by a digraph. Bison does not look for trigraphs, so if braced
3237code uses trigraphs you should ensure that they do not affect the
3238nesting of braces or the boundaries of comments, string literals, or
3239character constants.
3240
bfa74976
RS
3241Usually there is only one action and it follows the components.
3242@xref{Actions}.
3243
3244@findex |
3245Multiple rules for the same @var{result} can be written separately or can
3246be joined with the vertical-bar character @samp{|} as follows:
3247
bfa74976
RS
3248@example
3249@group
3250@var{result}: @var{rule1-components}@dots{}
3251 | @var{rule2-components}@dots{}
3252 @dots{}
3253 ;
3254@end group
3255@end example
bfa74976
RS
3256
3257@noindent
3258They are still considered distinct rules even when joined in this way.
3259
3260If @var{components} in a rule is empty, it means that @var{result} can
3261match the empty string. For example, here is how to define a
3262comma-separated sequence of zero or more @code{exp} groupings:
3263
3264@example
3265@group
3266expseq: /* empty */
3267 | expseq1
3268 ;
3269@end group
3270
3271@group
3272expseq1: exp
3273 | expseq1 ',' exp
3274 ;
3275@end group
3276@end example
3277
3278@noindent
3279It is customary to write a comment @samp{/* empty */} in each rule
3280with no components.
3281
342b8b6e 3282@node Recursion
bfa74976
RS
3283@section Recursive Rules
3284@cindex recursive rule
3285
f8e1c9e5
AD
3286A rule is called @dfn{recursive} when its @var{result} nonterminal
3287appears also on its right hand side. Nearly all Bison grammars need to
3288use recursion, because that is the only way to define a sequence of any
3289number of a particular thing. Consider this recursive definition of a
9ecbd125 3290comma-separated sequence of one or more expressions:
bfa74976
RS
3291
3292@example
3293@group
3294expseq1: exp
3295 | expseq1 ',' exp
3296 ;
3297@end group
3298@end example
3299
3300@cindex left recursion
3301@cindex right recursion
3302@noindent
3303Since the recursive use of @code{expseq1} is the leftmost symbol in the
3304right hand side, we call this @dfn{left recursion}. By contrast, here
3305the same construct is defined using @dfn{right recursion}:
3306
3307@example
3308@group
3309expseq1: exp
3310 | exp ',' expseq1
3311 ;
3312@end group
3313@end example
3314
3315@noindent
ec3bc396
AD
3316Any kind of sequence can be defined using either left recursion or right
3317recursion, but you should always use left recursion, because it can
3318parse a sequence of any number of elements with bounded stack space.
3319Right recursion uses up space on the Bison stack in proportion to the
3320number of elements in the sequence, because all the elements must be
3321shifted onto the stack before the rule can be applied even once.
3322@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3323of this.
bfa74976
RS
3324
3325@cindex mutual recursion
3326@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3327rule does not appear directly on its right hand side, but does appear
3328in rules for other nonterminals which do appear on its right hand
13863333 3329side.
bfa74976
RS
3330
3331For example:
3332
3333@example
3334@group
3335expr: primary
3336 | primary '+' primary
3337 ;
3338@end group
3339
3340@group
3341primary: constant
3342 | '(' expr ')'
3343 ;
3344@end group
3345@end example
3346
3347@noindent
3348defines two mutually-recursive nonterminals, since each refers to the
3349other.
3350
342b8b6e 3351@node Semantics
bfa74976
RS
3352@section Defining Language Semantics
3353@cindex defining language semantics
13863333 3354@cindex language semantics, defining
bfa74976
RS
3355
3356The grammar rules for a language determine only the syntax. The semantics
3357are determined by the semantic values associated with various tokens and
3358groupings, and by the actions taken when various groupings are recognized.
3359
3360For example, the calculator calculates properly because the value
3361associated with each expression is the proper number; it adds properly
3362because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3363the numbers associated with @var{x} and @var{y}.
3364
3365@menu
3366* Value Type:: Specifying one data type for all semantic values.
3367* Multiple Types:: Specifying several alternative data types.
3368* Actions:: An action is the semantic definition of a grammar rule.
3369* Action Types:: Specifying data types for actions to operate on.
3370* Mid-Rule Actions:: Most actions go at the end of a rule.
3371 This says when, why and how to use the exceptional
3372 action in the middle of a rule.
3373@end menu
3374
342b8b6e 3375@node Value Type
bfa74976
RS
3376@subsection Data Types of Semantic Values
3377@cindex semantic value type
3378@cindex value type, semantic
3379@cindex data types of semantic values
3380@cindex default data type
3381
3382In a simple program it may be sufficient to use the same data type for
3383the semantic values of all language constructs. This was true in the
c827f760 3384@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3385Notation Calculator}).
bfa74976 3386
ddc8ede1
PE
3387Bison normally uses the type @code{int} for semantic values if your
3388program uses the same data type for all language constructs. To
bfa74976
RS
3389specify some other type, define @code{YYSTYPE} as a macro, like this:
3390
3391@example
3392#define YYSTYPE double
3393@end example
3394
3395@noindent
50cce58e
PE
3396@code{YYSTYPE}'s replacement list should be a type name
3397that does not contain parentheses or square brackets.
342b8b6e 3398This macro definition must go in the prologue of the grammar file
75f5aaea 3399(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3400
342b8b6e 3401@node Multiple Types
bfa74976
RS
3402@subsection More Than One Value Type
3403
3404In most programs, you will need different data types for different kinds
3405of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3406@code{int} or @code{long int}, while a string constant needs type
3407@code{char *}, and an identifier might need a pointer to an entry in the
3408symbol table.
bfa74976
RS
3409
3410To use more than one data type for semantic values in one parser, Bison
3411requires you to do two things:
3412
3413@itemize @bullet
3414@item
ddc8ede1 3415Specify the entire collection of possible data types, either by using the
704a47c4 3416@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3417Value Types}), or by using a @code{typedef} or a @code{#define} to
3418define @code{YYSTYPE} to be a union type whose member names are
3419the type tags.
bfa74976
RS
3420
3421@item
14ded682
AD
3422Choose one of those types for each symbol (terminal or nonterminal) for
3423which semantic values are used. This is done for tokens with the
3424@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3425and for groupings with the @code{%type} Bison declaration (@pxref{Type
3426Decl, ,Nonterminal Symbols}).
bfa74976
RS
3427@end itemize
3428
342b8b6e 3429@node Actions
bfa74976
RS
3430@subsection Actions
3431@cindex action
3432@vindex $$
3433@vindex $@var{n}
3434
3435An action accompanies a syntactic rule and contains C code to be executed
3436each time an instance of that rule is recognized. The task of most actions
3437is to compute a semantic value for the grouping built by the rule from the
3438semantic values associated with tokens or smaller groupings.
3439
287c78f6
PE
3440An action consists of braced code containing C statements, and can be
3441placed at any position in the rule;
704a47c4
AD
3442it is executed at that position. Most rules have just one action at the
3443end of the rule, following all the components. Actions in the middle of
3444a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3445Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3446
3447The C code in an action can refer to the semantic values of the components
3448matched by the rule with the construct @code{$@var{n}}, which stands for
3449the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3450being constructed is @code{$$}. Bison translates both of these
3451constructs into expressions of the appropriate type when it copies the
3452actions into the parser file. @code{$$} is translated to a modifiable
3453lvalue, so it can be assigned to.
bfa74976
RS
3454
3455Here is a typical example:
3456
3457@example
3458@group
3459exp: @dots{}
3460 | exp '+' exp
3461 @{ $$ = $1 + $3; @}
3462@end group
3463@end example
3464
3465@noindent
3466This rule constructs an @code{exp} from two smaller @code{exp} groupings
3467connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3468refer to the semantic values of the two component @code{exp} groupings,
3469which are the first and third symbols on the right hand side of the rule.
3470The sum is stored into @code{$$} so that it becomes the semantic value of
3471the addition-expression just recognized by the rule. If there were a
3472useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3473referred to as @code{$2}.
bfa74976 3474
3ded9a63
AD
3475Note that the vertical-bar character @samp{|} is really a rule
3476separator, and actions are attached to a single rule. This is a
3477difference with tools like Flex, for which @samp{|} stands for either
3478``or'', or ``the same action as that of the next rule''. In the
3479following example, the action is triggered only when @samp{b} is found:
3480
3481@example
3482@group
3483a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3484@end group
3485@end example
3486
bfa74976
RS
3487@cindex default action
3488If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3489@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3490becomes the value of the whole rule. Of course, the default action is
3491valid only if the two data types match. There is no meaningful default
3492action for an empty rule; every empty rule must have an explicit action
3493unless the rule's value does not matter.
bfa74976
RS
3494
3495@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3496to tokens and groupings on the stack @emph{before} those that match the
3497current rule. This is a very risky practice, and to use it reliably
3498you must be certain of the context in which the rule is applied. Here
3499is a case in which you can use this reliably:
3500
3501@example
3502@group
3503foo: expr bar '+' expr @{ @dots{} @}
3504 | expr bar '-' expr @{ @dots{} @}
3505 ;
3506@end group
3507
3508@group
3509bar: /* empty */
3510 @{ previous_expr = $0; @}
3511 ;
3512@end group
3513@end example
3514
3515As long as @code{bar} is used only in the fashion shown here, @code{$0}
3516always refers to the @code{expr} which precedes @code{bar} in the
3517definition of @code{foo}.
3518
32c29292 3519@vindex yylval
742e4900 3520It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3521any, from a semantic action.
3522This semantic value is stored in @code{yylval}.
3523@xref{Action Features, ,Special Features for Use in Actions}.
3524
342b8b6e 3525@node Action Types
bfa74976
RS
3526@subsection Data Types of Values in Actions
3527@cindex action data types
3528@cindex data types in actions
3529
3530If you have chosen a single data type for semantic values, the @code{$$}
3531and @code{$@var{n}} constructs always have that data type.
3532
3533If you have used @code{%union} to specify a variety of data types, then you
3534must declare a choice among these types for each terminal or nonterminal
3535symbol that can have a semantic value. Then each time you use @code{$$} or
3536@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3537in the rule. In this example,
bfa74976
RS
3538
3539@example
3540@group
3541exp: @dots{}
3542 | exp '+' exp
3543 @{ $$ = $1 + $3; @}
3544@end group
3545@end example
3546
3547@noindent
3548@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3549have the data type declared for the nonterminal symbol @code{exp}. If
3550@code{$2} were used, it would have the data type declared for the
e0c471a9 3551terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3552
3553Alternatively, you can specify the data type when you refer to the value,
3554by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3555reference. For example, if you have defined types as shown here:
3556
3557@example
3558@group
3559%union @{
3560 int itype;
3561 double dtype;
3562@}
3563@end group
3564@end example
3565
3566@noindent
3567then you can write @code{$<itype>1} to refer to the first subunit of the
3568rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3569
342b8b6e 3570@node Mid-Rule Actions
bfa74976
RS
3571@subsection Actions in Mid-Rule
3572@cindex actions in mid-rule
3573@cindex mid-rule actions
3574
3575Occasionally it is useful to put an action in the middle of a rule.
3576These actions are written just like usual end-of-rule actions, but they
3577are executed before the parser even recognizes the following components.
3578
3579A mid-rule action may refer to the components preceding it using
3580@code{$@var{n}}, but it may not refer to subsequent components because
3581it is run before they are parsed.
3582
3583The mid-rule action itself counts as one of the components of the rule.
3584This makes a difference when there is another action later in the same rule
3585(and usually there is another at the end): you have to count the actions
3586along with the symbols when working out which number @var{n} to use in
3587@code{$@var{n}}.
3588
3589The mid-rule action can also have a semantic value. The action can set
3590its value with an assignment to @code{$$}, and actions later in the rule
3591can refer to the value using @code{$@var{n}}. Since there is no symbol
3592to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3593in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3594specify a data type each time you refer to this value.
bfa74976
RS
3595
3596There is no way to set the value of the entire rule with a mid-rule
3597action, because assignments to @code{$$} do not have that effect. The
3598only way to set the value for the entire rule is with an ordinary action
3599at the end of the rule.
3600
3601Here is an example from a hypothetical compiler, handling a @code{let}
3602statement that looks like @samp{let (@var{variable}) @var{statement}} and
3603serves to create a variable named @var{variable} temporarily for the
3604duration of @var{statement}. To parse this construct, we must put
3605@var{variable} into the symbol table while @var{statement} is parsed, then
3606remove it afterward. Here is how it is done:
3607
3608@example
3609@group
3610stmt: LET '(' var ')'
3611 @{ $<context>$ = push_context ();
3612 declare_variable ($3); @}
3613 stmt @{ $$ = $6;
3614 pop_context ($<context>5); @}
3615@end group
3616@end example
3617
3618@noindent
3619As soon as @samp{let (@var{variable})} has been recognized, the first
3620action is run. It saves a copy of the current semantic context (the
3621list of accessible variables) as its semantic value, using alternative
3622@code{context} in the data-type union. Then it calls
3623@code{declare_variable} to add the new variable to that list. Once the
3624first action is finished, the embedded statement @code{stmt} can be
3625parsed. Note that the mid-rule action is component number 5, so the
3626@samp{stmt} is component number 6.
3627
3628After the embedded statement is parsed, its semantic value becomes the
3629value of the entire @code{let}-statement. Then the semantic value from the
3630earlier action is used to restore the prior list of variables. This
3631removes the temporary @code{let}-variable from the list so that it won't
3632appear to exist while the rest of the program is parsed.
3633
841a7737
JD
3634@findex %destructor
3635@cindex discarded symbols, mid-rule actions
3636@cindex error recovery, mid-rule actions
3637In the above example, if the parser initiates error recovery (@pxref{Error
3638Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3639it might discard the previous semantic context @code{$<context>5} without
3640restoring it.
3641Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3642Discarded Symbols}).
ec5479ce
JD
3643However, Bison currently provides no means to declare a destructor specific to
3644a particular mid-rule action's semantic value.
841a7737
JD
3645
3646One solution is to bury the mid-rule action inside a nonterminal symbol and to
3647declare a destructor for that symbol:
3648
3649@example
3650@group
3651%type <context> let
3652%destructor @{ pop_context ($$); @} let
3653
3654%%
3655
3656stmt: let stmt
3657 @{ $$ = $2;
3658 pop_context ($1); @}
3659 ;
3660
3661let: LET '(' var ')'
3662 @{ $$ = push_context ();
3663 declare_variable ($3); @}
3664 ;
3665
3666@end group
3667@end example
3668
3669@noindent
3670Note that the action is now at the end of its rule.
3671Any mid-rule action can be converted to an end-of-rule action in this way, and
3672this is what Bison actually does to implement mid-rule actions.
3673
bfa74976
RS
3674Taking action before a rule is completely recognized often leads to
3675conflicts since the parser must commit to a parse in order to execute the
3676action. For example, the following two rules, without mid-rule actions,
3677can coexist in a working parser because the parser can shift the open-brace
3678token and look at what follows before deciding whether there is a
3679declaration or not:
3680
3681@example
3682@group
3683compound: '@{' declarations statements '@}'
3684 | '@{' statements '@}'
3685 ;
3686@end group
3687@end example
3688
3689@noindent
3690But when we add a mid-rule action as follows, the rules become nonfunctional:
3691
3692@example
3693@group
3694compound: @{ prepare_for_local_variables (); @}
3695 '@{' declarations statements '@}'
3696@end group
3697@group
3698 | '@{' statements '@}'
3699 ;
3700@end group
3701@end example
3702
3703@noindent
3704Now the parser is forced to decide whether to run the mid-rule action
3705when it has read no farther than the open-brace. In other words, it
3706must commit to using one rule or the other, without sufficient
3707information to do it correctly. (The open-brace token is what is called
742e4900
JD
3708the @dfn{lookahead} token at this time, since the parser is still
3709deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3710
3711You might think that you could correct the problem by putting identical
3712actions into the two rules, like this:
3713
3714@example
3715@group
3716compound: @{ prepare_for_local_variables (); @}
3717 '@{' declarations statements '@}'
3718 | @{ prepare_for_local_variables (); @}
3719 '@{' statements '@}'
3720 ;
3721@end group
3722@end example
3723
3724@noindent
3725But this does not help, because Bison does not realize that the two actions
3726are identical. (Bison never tries to understand the C code in an action.)
3727
3728If the grammar is such that a declaration can be distinguished from a
3729statement by the first token (which is true in C), then one solution which
3730does work is to put the action after the open-brace, like this:
3731
3732@example
3733@group
3734compound: '@{' @{ prepare_for_local_variables (); @}
3735 declarations statements '@}'
3736 | '@{' statements '@}'
3737 ;
3738@end group
3739@end example
3740
3741@noindent
3742Now the first token of the following declaration or statement,
3743which would in any case tell Bison which rule to use, can still do so.
3744
3745Another solution is to bury the action inside a nonterminal symbol which
3746serves as a subroutine:
3747
3748@example
3749@group
3750subroutine: /* empty */
3751 @{ prepare_for_local_variables (); @}
3752 ;
3753
3754@end group
3755
3756@group
3757compound: subroutine
3758 '@{' declarations statements '@}'
3759 | subroutine
3760 '@{' statements '@}'
3761 ;
3762@end group
3763@end example
3764
3765@noindent
3766Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3767deciding which rule for @code{compound} it will eventually use.
bfa74976 3768
342b8b6e 3769@node Locations
847bf1f5
AD
3770@section Tracking Locations
3771@cindex location
95923bd6
AD
3772@cindex textual location
3773@cindex location, textual
847bf1f5
AD
3774
3775Though grammar rules and semantic actions are enough to write a fully
72d2299c 3776functional parser, it can be useful to process some additional information,
3e259915
MA
3777especially symbol locations.
3778
704a47c4
AD
3779The way locations are handled is defined by providing a data type, and
3780actions to take when rules are matched.
847bf1f5
AD
3781
3782@menu
3783* Location Type:: Specifying a data type for locations.
3784* Actions and Locations:: Using locations in actions.
3785* Location Default Action:: Defining a general way to compute locations.
3786@end menu
3787
342b8b6e 3788@node Location Type
847bf1f5
AD
3789@subsection Data Type of Locations
3790@cindex data type of locations
3791@cindex default location type
3792
3793Defining a data type for locations is much simpler than for semantic values,
3794since all tokens and groupings always use the same type.
3795
50cce58e
PE
3796You can specify the type of locations by defining a macro called
3797@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3798defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3799When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3800four members:
3801
3802@example
6273355b 3803typedef struct YYLTYPE
847bf1f5
AD
3804@{
3805 int first_line;
3806 int first_column;
3807 int last_line;
3808 int last_column;
6273355b 3809@} YYLTYPE;
847bf1f5
AD
3810@end example
3811
cd48d21d
AD
3812At the beginning of the parsing, Bison initializes all these fields to 1
3813for @code{yylloc}.
3814
342b8b6e 3815@node Actions and Locations
847bf1f5
AD
3816@subsection Actions and Locations
3817@cindex location actions
3818@cindex actions, location
3819@vindex @@$
3820@vindex @@@var{n}
3821
3822Actions are not only useful for defining language semantics, but also for
3823describing the behavior of the output parser with locations.
3824
3825The most obvious way for building locations of syntactic groupings is very
72d2299c 3826similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3827constructs can be used to access the locations of the elements being matched.
3828The location of the @var{n}th component of the right hand side is
3829@code{@@@var{n}}, while the location of the left hand side grouping is
3830@code{@@$}.
3831
3e259915 3832Here is a basic example using the default data type for locations:
847bf1f5
AD
3833
3834@example
3835@group
3836exp: @dots{}
3e259915 3837 | exp '/' exp
847bf1f5 3838 @{
3e259915
MA
3839 @@$.first_column = @@1.first_column;
3840 @@$.first_line = @@1.first_line;
847bf1f5
AD
3841 @@$.last_column = @@3.last_column;
3842 @@$.last_line = @@3.last_line;
3e259915
MA
3843 if ($3)
3844 $$ = $1 / $3;
3845 else
3846 @{
3847 $$ = 1;
4e03e201
AD
3848 fprintf (stderr,
3849 "Division by zero, l%d,c%d-l%d,c%d",
3850 @@3.first_line, @@3.first_column,
3851 @@3.last_line, @@3.last_column);
3e259915 3852 @}
847bf1f5
AD
3853 @}
3854@end group
3855@end example
3856
3e259915 3857As for semantic values, there is a default action for locations that is
72d2299c 3858run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3859beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3860last symbol.
3e259915 3861
72d2299c 3862With this default action, the location tracking can be fully automatic. The
3e259915
MA
3863example above simply rewrites this way:
3864
3865@example
3866@group
3867exp: @dots{}
3868 | exp '/' exp
3869 @{
3870 if ($3)
3871 $$ = $1 / $3;
3872 else
3873 @{
3874 $$ = 1;
4e03e201
AD
3875 fprintf (stderr,
3876 "Division by zero, l%d,c%d-l%d,c%d",
3877 @@3.first_line, @@3.first_column,
3878 @@3.last_line, @@3.last_column);
3e259915
MA
3879 @}
3880 @}
3881@end group
3882@end example
847bf1f5 3883
32c29292 3884@vindex yylloc
742e4900 3885It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3886from a semantic action.
3887This location is stored in @code{yylloc}.
3888@xref{Action Features, ,Special Features for Use in Actions}.
3889
342b8b6e 3890@node Location Default Action
847bf1f5
AD
3891@subsection Default Action for Locations
3892@vindex YYLLOC_DEFAULT
8710fc41 3893@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3894
72d2299c 3895Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3896locations are much more general than semantic values, there is room in
3897the output parser to redefine the default action to take for each
72d2299c 3898rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3899matched, before the associated action is run. It is also invoked
3900while processing a syntax error, to compute the error's location.
8710fc41
JD
3901Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3902parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3903of that ambiguity.
847bf1f5 3904
3e259915 3905Most of the time, this macro is general enough to suppress location
79282c6c 3906dedicated code from semantic actions.
847bf1f5 3907
72d2299c 3908The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3909the location of the grouping (the result of the computation). When a
766de5eb 3910rule is matched, the second parameter identifies locations of
96b93a3d 3911all right hand side elements of the rule being matched, and the third
8710fc41
JD
3912parameter is the size of the rule's right hand side.
3913When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3914right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3915When processing a syntax error, the second parameter identifies locations
3916of the symbols that were discarded during error processing, and the third
96b93a3d 3917parameter is the number of discarded symbols.
847bf1f5 3918
766de5eb 3919By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3920
766de5eb 3921@smallexample
847bf1f5 3922@group
766de5eb
PE
3923# define YYLLOC_DEFAULT(Current, Rhs, N) \
3924 do \
3925 if (N) \
3926 @{ \
3927 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3928 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3929 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3930 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3931 @} \
3932 else \
3933 @{ \
3934 (Current).first_line = (Current).last_line = \
3935 YYRHSLOC(Rhs, 0).last_line; \
3936 (Current).first_column = (Current).last_column = \
3937 YYRHSLOC(Rhs, 0).last_column; \
3938 @} \
3939 while (0)
847bf1f5 3940@end group
766de5eb 3941@end smallexample
676385e2 3942
766de5eb
PE
3943where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3944in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3945just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3946
3e259915 3947When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3948
3e259915 3949@itemize @bullet
79282c6c 3950@item
72d2299c 3951All arguments are free of side-effects. However, only the first one (the
3e259915 3952result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3953
3e259915 3954@item
766de5eb
PE
3955For consistency with semantic actions, valid indexes within the
3956right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3957valid index, and it refers to the symbol just before the reduction.
3958During error processing @var{n} is always positive.
0ae99356
PE
3959
3960@item
3961Your macro should parenthesize its arguments, if need be, since the
3962actual arguments may not be surrounded by parentheses. Also, your
3963macro should expand to something that can be used as a single
3964statement when it is followed by a semicolon.
3e259915 3965@end itemize
847bf1f5 3966
342b8b6e 3967@node Declarations
bfa74976
RS
3968@section Bison Declarations
3969@cindex declarations, Bison
3970@cindex Bison declarations
3971
3972The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3973used in formulating the grammar and the data types of semantic values.
3974@xref{Symbols}.
3975
3976All token type names (but not single-character literal tokens such as
3977@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3978declared if you need to specify which data type to use for the semantic
3979value (@pxref{Multiple Types, ,More Than One Value Type}).
3980
3981The first rule in the file also specifies the start symbol, by default.
3982If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3983it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3984Grammars}).
bfa74976
RS
3985
3986@menu
b50d2359 3987* Require Decl:: Requiring a Bison version.
bfa74976
RS
3988* Token Decl:: Declaring terminal symbols.
3989* Precedence Decl:: Declaring terminals with precedence and associativity.
3990* Union Decl:: Declaring the set of all semantic value types.
3991* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3992* Initial Action Decl:: Code run before parsing starts.
72f889cc 3993* Destructor Decl:: Declaring how symbols are freed.
d6328241 3994* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3995* Start Decl:: Specifying the start symbol.
3996* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3997* Push Decl:: Requesting a push parser.
bfa74976
RS
3998* Decl Summary:: Table of all Bison declarations.
3999@end menu
4000
b50d2359
AD
4001@node Require Decl
4002@subsection Require a Version of Bison
4003@cindex version requirement
4004@cindex requiring a version of Bison
4005@findex %require
4006
4007You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4008the requirement is not met, @command{bison} exits with an error (exit
4009status 63).
b50d2359
AD
4010
4011@example
4012%require "@var{version}"
4013@end example
4014
342b8b6e 4015@node Token Decl
bfa74976
RS
4016@subsection Token Type Names
4017@cindex declaring token type names
4018@cindex token type names, declaring
931c7513 4019@cindex declaring literal string tokens
bfa74976
RS
4020@findex %token
4021
4022The basic way to declare a token type name (terminal symbol) is as follows:
4023
4024@example
4025%token @var{name}
4026@end example
4027
4028Bison will convert this into a @code{#define} directive in
4029the parser, so that the function @code{yylex} (if it is in this file)
4030can use the name @var{name} to stand for this token type's code.
4031
d78f0ac9
AD
4032Alternatively, you can use @code{%left}, @code{%right},
4033@code{%precedence}, or
14ded682
AD
4034@code{%nonassoc} instead of @code{%token}, if you wish to specify
4035associativity and precedence. @xref{Precedence Decl, ,Operator
4036Precedence}.
bfa74976
RS
4037
4038You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4039a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4040following the token name:
bfa74976
RS
4041
4042@example
4043%token NUM 300
1452af69 4044%token XNUM 0x12d // a GNU extension
bfa74976
RS
4045@end example
4046
4047@noindent
4048It is generally best, however, to let Bison choose the numeric codes for
4049all token types. Bison will automatically select codes that don't conflict
e966383b 4050with each other or with normal characters.
bfa74976
RS
4051
4052In the event that the stack type is a union, you must augment the
4053@code{%token} or other token declaration to include the data type
704a47c4
AD
4054alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4055Than One Value Type}).
bfa74976
RS
4056
4057For example:
4058
4059@example
4060@group
4061%union @{ /* define stack type */
4062 double val;
4063 symrec *tptr;
4064@}
4065%token <val> NUM /* define token NUM and its type */
4066@end group
4067@end example
4068
931c7513
RS
4069You can associate a literal string token with a token type name by
4070writing the literal string at the end of a @code{%token}
4071declaration which declares the name. For example:
4072
4073@example
4074%token arrow "=>"
4075@end example
4076
4077@noindent
4078For example, a grammar for the C language might specify these names with
4079equivalent literal string tokens:
4080
4081@example
4082%token <operator> OR "||"
4083%token <operator> LE 134 "<="
4084%left OR "<="
4085@end example
4086
4087@noindent
4088Once you equate the literal string and the token name, you can use them
4089interchangeably in further declarations or the grammar rules. The
4090@code{yylex} function can use the token name or the literal string to
4091obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4092Syntax error messages passed to @code{yyerror} from the parser will reference
4093the literal string instead of the token name.
4094
4095The token numbered as 0 corresponds to end of file; the following line
4096allows for nicer error messages referring to ``end of file'' instead
4097of ``$end'':
4098
4099@example
4100%token END 0 "end of file"
4101@end example
931c7513 4102
342b8b6e 4103@node Precedence Decl
bfa74976
RS
4104@subsection Operator Precedence
4105@cindex precedence declarations
4106@cindex declaring operator precedence
4107@cindex operator precedence, declaring
4108
d78f0ac9
AD
4109Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4110@code{%precedence} declaration to
bfa74976
RS
4111declare a token and specify its precedence and associativity, all at
4112once. These are called @dfn{precedence declarations}.
704a47c4
AD
4113@xref{Precedence, ,Operator Precedence}, for general information on
4114operator precedence.
bfa74976 4115
ab7f29f8 4116The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4117@code{%token}: either
4118
4119@example
4120%left @var{symbols}@dots{}
4121@end example
4122
4123@noindent
4124or
4125
4126@example
4127%left <@var{type}> @var{symbols}@dots{}
4128@end example
4129
4130And indeed any of these declarations serves the purposes of @code{%token}.
4131But in addition, they specify the associativity and relative precedence for
4132all the @var{symbols}:
4133
4134@itemize @bullet
4135@item
4136The associativity of an operator @var{op} determines how repeated uses
4137of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4138@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4139grouping @var{y} with @var{z} first. @code{%left} specifies
4140left-associativity (grouping @var{x} with @var{y} first) and
4141@code{%right} specifies right-associativity (grouping @var{y} with
4142@var{z} first). @code{%nonassoc} specifies no associativity, which
4143means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4144considered a syntax error.
4145
d78f0ac9
AD
4146@code{%precedence} gives only precedence to the @var{symbols}, and
4147defines no associativity at all. Use this to define precedence only,
4148and leave any potential conflict due to associativity enabled.
4149
bfa74976
RS
4150@item
4151The precedence of an operator determines how it nests with other operators.
4152All the tokens declared in a single precedence declaration have equal
4153precedence and nest together according to their associativity.
4154When two tokens declared in different precedence declarations associate,
4155the one declared later has the higher precedence and is grouped first.
4156@end itemize
4157
ab7f29f8
JD
4158For backward compatibility, there is a confusing difference between the
4159argument lists of @code{%token} and precedence declarations.
4160Only a @code{%token} can associate a literal string with a token type name.
4161A precedence declaration always interprets a literal string as a reference to a
4162separate token.
4163For example:
4164
4165@example
4166%left OR "<=" // Does not declare an alias.
4167%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4168@end example
4169
342b8b6e 4170@node Union Decl
bfa74976
RS
4171@subsection The Collection of Value Types
4172@cindex declaring value types
4173@cindex value types, declaring
4174@findex %union
4175
287c78f6
PE
4176The @code{%union} declaration specifies the entire collection of
4177possible data types for semantic values. The keyword @code{%union} is
4178followed by braced code containing the same thing that goes inside a
4179@code{union} in C@.
bfa74976
RS
4180
4181For example:
4182
4183@example
4184@group
4185%union @{
4186 double val;
4187 symrec *tptr;
4188@}
4189@end group
4190@end example
4191
4192@noindent
4193This says that the two alternative types are @code{double} and @code{symrec
4194*}. They are given names @code{val} and @code{tptr}; these names are used
4195in the @code{%token} and @code{%type} declarations to pick one of the types
4196for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4197
6273355b
PE
4198As an extension to @acronym{POSIX}, a tag is allowed after the
4199@code{union}. For example:
4200
4201@example
4202@group
4203%union value @{
4204 double val;
4205 symrec *tptr;
4206@}
4207@end group
4208@end example
4209
d6ca7905 4210@noindent
6273355b
PE
4211specifies the union tag @code{value}, so the corresponding C type is
4212@code{union value}. If you do not specify a tag, it defaults to
4213@code{YYSTYPE}.
4214
d6ca7905
PE
4215As another extension to @acronym{POSIX}, you may specify multiple
4216@code{%union} declarations; their contents are concatenated. However,
4217only the first @code{%union} declaration can specify a tag.
4218
6273355b 4219Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4220a semicolon after the closing brace.
4221
ddc8ede1
PE
4222Instead of @code{%union}, you can define and use your own union type
4223@code{YYSTYPE} if your grammar contains at least one
4224@samp{<@var{type}>} tag. For example, you can put the following into
4225a header file @file{parser.h}:
4226
4227@example
4228@group
4229union YYSTYPE @{
4230 double val;
4231 symrec *tptr;
4232@};
4233typedef union YYSTYPE YYSTYPE;
4234@end group
4235@end example
4236
4237@noindent
4238and then your grammar can use the following
4239instead of @code{%union}:
4240
4241@example
4242@group
4243%@{
4244#include "parser.h"
4245%@}
4246%type <val> expr
4247%token <tptr> ID
4248@end group
4249@end example
4250
342b8b6e 4251@node Type Decl
bfa74976
RS
4252@subsection Nonterminal Symbols
4253@cindex declaring value types, nonterminals
4254@cindex value types, nonterminals, declaring
4255@findex %type
4256
4257@noindent
4258When you use @code{%union} to specify multiple value types, you must
4259declare the value type of each nonterminal symbol for which values are
4260used. This is done with a @code{%type} declaration, like this:
4261
4262@example
4263%type <@var{type}> @var{nonterminal}@dots{}
4264@end example
4265
4266@noindent
704a47c4
AD
4267Here @var{nonterminal} is the name of a nonterminal symbol, and
4268@var{type} is the name given in the @code{%union} to the alternative
4269that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4270can give any number of nonterminal symbols in the same @code{%type}
4271declaration, if they have the same value type. Use spaces to separate
4272the symbol names.
bfa74976 4273
931c7513
RS
4274You can also declare the value type of a terminal symbol. To do this,
4275use the same @code{<@var{type}>} construction in a declaration for the
4276terminal symbol. All kinds of token declarations allow
4277@code{<@var{type}>}.
4278
18d192f0
AD
4279@node Initial Action Decl
4280@subsection Performing Actions before Parsing
4281@findex %initial-action
4282
4283Sometimes your parser needs to perform some initializations before
4284parsing. The @code{%initial-action} directive allows for such arbitrary
4285code.
4286
4287@deffn {Directive} %initial-action @{ @var{code} @}
4288@findex %initial-action
287c78f6 4289Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4290@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4291@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4292@code{%parse-param}.
18d192f0
AD
4293@end deffn
4294
451364ed
AD
4295For instance, if your locations use a file name, you may use
4296
4297@example
48b16bbc 4298%parse-param @{ char const *file_name @};
451364ed
AD
4299%initial-action
4300@{
4626a15d 4301 @@$.initialize (file_name);
451364ed
AD
4302@};
4303@end example
4304
18d192f0 4305
72f889cc
AD
4306@node Destructor Decl
4307@subsection Freeing Discarded Symbols
4308@cindex freeing discarded symbols
4309@findex %destructor
12e35840 4310@findex <*>
3ebecc24 4311@findex <>
a85284cf
AD
4312During error recovery (@pxref{Error Recovery}), symbols already pushed
4313on the stack and tokens coming from the rest of the file are discarded
4314until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4315or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4316symbols on the stack must be discarded. Even if the parser succeeds, it
4317must discard the start symbol.
258b75ca
PE
4318
4319When discarded symbols convey heap based information, this memory is
4320lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4321in traditional compilers, it is unacceptable for programs like shells or
4322protocol implementations that may parse and execute indefinitely.
258b75ca 4323
a85284cf
AD
4324The @code{%destructor} directive defines code that is called when a
4325symbol is automatically discarded.
72f889cc
AD
4326
4327@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4328@findex %destructor
287c78f6
PE
4329Invoke the braced @var{code} whenever the parser discards one of the
4330@var{symbols}.
4b367315 4331Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4332with the discarded symbol, and @code{@@$} designates its location.
4333The additional parser parameters are also available (@pxref{Parser Function, ,
4334The Parser Function @code{yyparse}}).
ec5479ce 4335
b2a0b7ca
JD
4336When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4337per-symbol @code{%destructor}.
4338You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4339tag among @var{symbols}.
b2a0b7ca 4340In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4341grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4342per-symbol @code{%destructor}.
4343
12e35840 4344Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4345(These default forms are experimental.
4346More user feedback will help to determine whether they should become permanent
4347features.)
3ebecc24 4348You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4349exactly one @code{%destructor} declaration in your grammar file.
4350The parser will invoke the @var{code} associated with one of these whenever it
4351discards any user-defined grammar symbol that has no per-symbol and no per-type
4352@code{%destructor}.
4353The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4354symbol for which you have formally declared a semantic type tag (@code{%type}
4355counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4356The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4357symbol that has no declared semantic type tag.
72f889cc
AD
4358@end deffn
4359
b2a0b7ca 4360@noindent
12e35840 4361For example:
72f889cc
AD
4362
4363@smallexample
ec5479ce
JD
4364%union @{ char *string; @}
4365%token <string> STRING1
4366%token <string> STRING2
4367%type <string> string1
4368%type <string> string2
b2a0b7ca
JD
4369%union @{ char character; @}
4370%token <character> CHR
4371%type <character> chr
12e35840
JD
4372%token TAGLESS
4373
b2a0b7ca 4374%destructor @{ @} <character>
12e35840
JD
4375%destructor @{ free ($$); @} <*>
4376%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4377%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4378@end smallexample
4379
4380@noindent
b2a0b7ca
JD
4381guarantees that, when the parser discards any user-defined symbol that has a
4382semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4383to @code{free} by default.
ec5479ce
JD
4384However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4385prints its line number to @code{stdout}.
4386It performs only the second @code{%destructor} in this case, so it invokes
4387@code{free} only once.
12e35840
JD
4388Finally, the parser merely prints a message whenever it discards any symbol,
4389such as @code{TAGLESS}, that has no semantic type tag.
4390
4391A Bison-generated parser invokes the default @code{%destructor}s only for
4392user-defined as opposed to Bison-defined symbols.
4393For example, the parser will not invoke either kind of default
4394@code{%destructor} for the special Bison-defined symbols @code{$accept},
4395@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4396none of which you can reference in your grammar.
4397It also will not invoke either for the @code{error} token (@pxref{Table of
4398Symbols, ,error}), which is always defined by Bison regardless of whether you
4399reference it in your grammar.
4400However, it may invoke one of them for the end token (token 0) if you
4401redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4402
4403@smallexample
4404%token END 0
4405@end smallexample
4406
12e35840
JD
4407@cindex actions in mid-rule
4408@cindex mid-rule actions
4409Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4410mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4411That is, Bison does not consider a mid-rule to have a semantic value if you do
4412not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4413@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4414rule.
4415However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4416@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4417
3508ce36
JD
4418@ignore
4419@noindent
4420In the future, it may be possible to redefine the @code{error} token as a
4421nonterminal that captures the discarded symbols.
4422In that case, the parser will invoke the default destructor for it as well.
4423@end ignore
4424
e757bb10
AD
4425@sp 1
4426
4427@cindex discarded symbols
4428@dfn{Discarded symbols} are the following:
4429
4430@itemize
4431@item
4432stacked symbols popped during the first phase of error recovery,
4433@item
4434incoming terminals during the second phase of error recovery,
4435@item
742e4900 4436the current lookahead and the entire stack (except the current
9d9b8b70 4437right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4438@item
4439the start symbol, when the parser succeeds.
e757bb10
AD
4440@end itemize
4441
9d9b8b70
PE
4442The parser can @dfn{return immediately} because of an explicit call to
4443@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4444exhaustion.
4445
29553547 4446Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4447error via @code{YYERROR} are not discarded automatically. As a rule
4448of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4449the memory.
e757bb10 4450
342b8b6e 4451@node Expect Decl
bfa74976
RS
4452@subsection Suppressing Conflict Warnings
4453@cindex suppressing conflict warnings
4454@cindex preventing warnings about conflicts
4455@cindex warnings, preventing
4456@cindex conflicts, suppressing warnings of
4457@findex %expect
d6328241 4458@findex %expect-rr
bfa74976
RS
4459
4460Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4461(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4462have harmless shift/reduce conflicts which are resolved in a predictable
4463way and would be difficult to eliminate. It is desirable to suppress
4464the warning about these conflicts unless the number of conflicts
4465changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4466
4467The declaration looks like this:
4468
4469@example
4470%expect @var{n}
4471@end example
4472
035aa4a0
PE
4473Here @var{n} is a decimal integer. The declaration says there should
4474be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4475Bison reports an error if the number of shift/reduce conflicts differs
4476from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4477
eb45ef3b 4478For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4479serious, and should be eliminated entirely. Bison will always report
4480reduce/reduce conflicts for these parsers. With @acronym{GLR}
4481parsers, however, both kinds of conflicts are routine; otherwise,
4482there would be no need to use @acronym{GLR} parsing. Therefore, it is
4483also possible to specify an expected number of reduce/reduce conflicts
4484in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4485
4486@example
4487%expect-rr @var{n}
4488@end example
4489
bfa74976
RS
4490In general, using @code{%expect} involves these steps:
4491
4492@itemize @bullet
4493@item
4494Compile your grammar without @code{%expect}. Use the @samp{-v} option
4495to get a verbose list of where the conflicts occur. Bison will also
4496print the number of conflicts.
4497
4498@item
4499Check each of the conflicts to make sure that Bison's default
4500resolution is what you really want. If not, rewrite the grammar and
4501go back to the beginning.
4502
4503@item
4504Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4505number which Bison printed. With @acronym{GLR} parsers, add an
4506@code{%expect-rr} declaration as well.
bfa74976
RS
4507@end itemize
4508
035aa4a0
PE
4509Now Bison will warn you if you introduce an unexpected conflict, but
4510will keep silent otherwise.
bfa74976 4511
342b8b6e 4512@node Start Decl
bfa74976
RS
4513@subsection The Start-Symbol
4514@cindex declaring the start symbol
4515@cindex start symbol, declaring
4516@cindex default start symbol
4517@findex %start
4518
4519Bison assumes by default that the start symbol for the grammar is the first
4520nonterminal specified in the grammar specification section. The programmer
4521may override this restriction with the @code{%start} declaration as follows:
4522
4523@example
4524%start @var{symbol}
4525@end example
4526
342b8b6e 4527@node Pure Decl
bfa74976
RS
4528@subsection A Pure (Reentrant) Parser
4529@cindex reentrant parser
4530@cindex pure parser
d9df47b6 4531@findex %define api.pure
bfa74976
RS
4532
4533A @dfn{reentrant} program is one which does not alter in the course of
4534execution; in other words, it consists entirely of @dfn{pure} (read-only)
4535code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4536for example, a nonreentrant program may not be safe to call from a signal
4537handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4538program must be called only within interlocks.
4539
70811b85 4540Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4541suitable for most uses, and it permits compatibility with Yacc. (The
4542standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4543statically allocated variables for communication with @code{yylex},
4544including @code{yylval} and @code{yylloc}.)
bfa74976 4545
70811b85 4546Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4547declaration @code{%define api.pure} says that you want the parser to be
70811b85 4548reentrant. It looks like this:
bfa74976
RS
4549
4550@example
d9df47b6 4551%define api.pure
bfa74976
RS
4552@end example
4553
70811b85
RS
4554The result is that the communication variables @code{yylval} and
4555@code{yylloc} become local variables in @code{yyparse}, and a different
4556calling convention is used for the lexical analyzer function
4557@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4558Parsers}, for the details of this. The variable @code{yynerrs}
4559becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4560of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4561Reporting Function @code{yyerror}}). The convention for calling
4562@code{yyparse} itself is unchanged.
4563
4564Whether the parser is pure has nothing to do with the grammar rules.
4565You can generate either a pure parser or a nonreentrant parser from any
4566valid grammar.
bfa74976 4567
9987d1b3
JD
4568@node Push Decl
4569@subsection A Push Parser
4570@cindex push parser
4571@cindex push parser
c373bf8b 4572@findex %define api.push_pull
9987d1b3 4573
59da312b
JD
4574(The current push parsing interface is experimental and may evolve.
4575More user feedback will help to stabilize it.)
4576
f4101aa6
AD
4577A pull parser is called once and it takes control until all its input
4578is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4579each time a new token is made available.
4580
f4101aa6 4581A push parser is typically useful when the parser is part of a
9987d1b3 4582main event loop in the client's application. This is typically
f4101aa6
AD
4583a requirement of a GUI, when the main event loop needs to be triggered
4584within a certain time period.
9987d1b3 4585
d782395d
JD
4586Normally, Bison generates a pull parser.
4587The following Bison declaration says that you want the parser to be a push
c373bf8b 4588parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4589
4590@example
c373bf8b 4591%define api.push_pull "push"
9987d1b3
JD
4592@end example
4593
4594In almost all cases, you want to ensure that your push parser is also
4595a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4596time you should create an impure push parser is to have backwards
9987d1b3
JD
4597compatibility with the impure Yacc pull mode interface. Unless you know
4598what you are doing, your declarations should look like this:
4599
4600@example
d9df47b6 4601%define api.pure
c373bf8b 4602%define api.push_pull "push"
9987d1b3
JD
4603@end example
4604
f4101aa6
AD
4605There is a major notable functional difference between the pure push parser
4606and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4607many parser instances, of the same type of parser, in memory at the same time.
4608An impure push parser should only use one parser at a time.
4609
4610When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4611the generated parser. @code{yypstate} is a structure that the generated
4612parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4613function that will create a new parser instance. @code{yypstate_delete}
4614will free the resources associated with the corresponding parser instance.
f4101aa6 4615Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4616token is available to provide the parser. A trivial example
4617of using a pure push parser would look like this:
4618
4619@example
4620int status;
4621yypstate *ps = yypstate_new ();
4622do @{
4623 status = yypush_parse (ps, yylex (), NULL);
4624@} while (status == YYPUSH_MORE);
4625yypstate_delete (ps);
4626@end example
4627
4628If the user decided to use an impure push parser, a few things about
f4101aa6 4629the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4630a global variable instead of a variable in the @code{yypush_parse} function.
4631For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4632changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4633example would thus look like this:
4634
4635@example
4636extern int yychar;
4637int status;
4638yypstate *ps = yypstate_new ();
4639do @{
4640 yychar = yylex ();
4641 status = yypush_parse (ps);
4642@} while (status == YYPUSH_MORE);
4643yypstate_delete (ps);
4644@end example
4645
f4101aa6 4646That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4647for use by the next invocation of the @code{yypush_parse} function.
4648
f4101aa6 4649Bison also supports both the push parser interface along with the pull parser
9987d1b3 4650interface in the same generated parser. In order to get this functionality,
f4101aa6 4651you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4652@code{%define api.push_pull "both"} declaration. Doing this will create all of
4653the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4654and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4655would be used. However, the user should note that it is implemented in the
d782395d
JD
4656generated parser by calling @code{yypull_parse}.
4657This makes the @code{yyparse} function that is generated with the
c373bf8b 4658@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4659@code{yyparse} function. If the user
4660calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4661stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4662and then @code{yypull_parse} the rest of the input stream. If you would like
4663to switch back and forth between between parsing styles, you would have to
4664write your own @code{yypull_parse} function that knows when to quit looking
4665for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4666like this:
4667
4668@example
4669yypstate *ps = yypstate_new ();
4670yypull_parse (ps); /* Will call the lexer */
4671yypstate_delete (ps);
4672@end example
4673
d9df47b6 4674Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4675the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4676@code{%define api.push_pull "push"}.
9987d1b3 4677
342b8b6e 4678@node Decl Summary
bfa74976
RS
4679@subsection Bison Declaration Summary
4680@cindex Bison declaration summary
4681@cindex declaration summary
4682@cindex summary, Bison declaration
4683
d8988b2f 4684Here is a summary of the declarations used to define a grammar:
bfa74976 4685
18b519c0 4686@deffn {Directive} %union
bfa74976
RS
4687Declare the collection of data types that semantic values may have
4688(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4689@end deffn
bfa74976 4690
18b519c0 4691@deffn {Directive} %token
bfa74976
RS
4692Declare a terminal symbol (token type name) with no precedence
4693or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4694@end deffn
bfa74976 4695
18b519c0 4696@deffn {Directive} %right
bfa74976
RS
4697Declare a terminal symbol (token type name) that is right-associative
4698(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4699@end deffn
bfa74976 4700
18b519c0 4701@deffn {Directive} %left
bfa74976
RS
4702Declare a terminal symbol (token type name) that is left-associative
4703(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4704@end deffn
bfa74976 4705
18b519c0 4706@deffn {Directive} %nonassoc
bfa74976 4707Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4708(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4709Using it in a way that would be associative is a syntax error.
4710@end deffn
4711
91d2c560 4712@ifset defaultprec
39a06c25 4713@deffn {Directive} %default-prec
22fccf95 4714Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4715(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4716@end deffn
91d2c560 4717@end ifset
bfa74976 4718
18b519c0 4719@deffn {Directive} %type
bfa74976
RS
4720Declare the type of semantic values for a nonterminal symbol
4721(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4722@end deffn
bfa74976 4723
18b519c0 4724@deffn {Directive} %start
89cab50d
AD
4725Specify the grammar's start symbol (@pxref{Start Decl, ,The
4726Start-Symbol}).
18b519c0 4727@end deffn
bfa74976 4728
18b519c0 4729@deffn {Directive} %expect
bfa74976
RS
4730Declare the expected number of shift-reduce conflicts
4731(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4732@end deffn
4733
bfa74976 4734
d8988b2f
AD
4735@sp 1
4736@noindent
4737In order to change the behavior of @command{bison}, use the following
4738directives:
4739
148d66d8
JD
4740@deffn {Directive} %code @{@var{code}@}
4741@findex %code
4742This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4743It inserts @var{code} verbatim at a language-dependent default location in the
4744output@footnote{The default location is actually skeleton-dependent;
4745 writers of non-standard skeletons however should choose the default location
4746 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4747
4748@cindex Prologue
8405b70c 4749For C/C++, the default location is the parser source code
148d66d8
JD
4750file after the usual contents of the parser header file.
4751Thus, @code{%code} replaces the traditional Yacc prologue,
4752@code{%@{@var{code}%@}}, for most purposes.
4753For a detailed discussion, see @ref{Prologue Alternatives}.
4754
8405b70c 4755For Java, the default location is inside the parser class.
148d66d8
JD
4756
4757(Like all the Yacc prologue alternatives, this directive is experimental.
4758More user feedback will help to determine whether it should become a permanent
4759feature.)
4760@end deffn
4761
4762@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4763This is the qualified form of the @code{%code} directive.
4764If you need to specify location-sensitive verbatim @var{code} that does not
4765belong at the default location selected by the unqualified @code{%code} form,
4766use this form instead.
4767
4768@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4769where Bison should generate it.
4770Not all values of @var{qualifier} are available for all target languages:
4771
4772@itemize @bullet
148d66d8 4773@item requires
793fbca5 4774@findex %code requires
148d66d8
JD
4775
4776@itemize @bullet
4777@item Language(s): C, C++
4778
4779@item Purpose: This is the best place to write dependency code required for
4780@code{YYSTYPE} and @code{YYLTYPE}.
4781In other words, it's the best place to define types referenced in @code{%union}
4782directives, and it's the best place to override Bison's default @code{YYSTYPE}
4783and @code{YYLTYPE} definitions.
4784
4785@item Location(s): The parser header file and the parser source code file
4786before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4787@end itemize
4788
4789@item provides
4790@findex %code provides
4791
4792@itemize @bullet
4793@item Language(s): C, C++
4794
4795@item Purpose: This is the best place to write additional definitions and
4796declarations that should be provided to other modules.
4797
4798@item Location(s): The parser header file and the parser source code file after
4799the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4800@end itemize
4801
4802@item top
4803@findex %code top
4804
4805@itemize @bullet
4806@item Language(s): C, C++
4807
4808@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4809usually be more appropriate than @code{%code top}.
4810However, occasionally it is necessary to insert code much nearer the top of the
4811parser source code file.
4812For example:
4813
4814@smallexample
4815%code top @{
4816 #define _GNU_SOURCE
4817 #include <stdio.h>
4818@}
4819@end smallexample
4820
4821@item Location(s): Near the top of the parser source code file.
4822@end itemize
8405b70c 4823
148d66d8
JD
4824@item imports
4825@findex %code imports
4826
4827@itemize @bullet
4828@item Language(s): Java
4829
4830@item Purpose: This is the best place to write Java import directives.
4831
4832@item Location(s): The parser Java file after any Java package directive and
4833before any class definitions.
4834@end itemize
148d66d8
JD
4835@end itemize
4836
4837(Like all the Yacc prologue alternatives, this directive is experimental.
4838More user feedback will help to determine whether it should become a permanent
4839feature.)
4840
4841@cindex Prologue
4842For a detailed discussion of how to use @code{%code} in place of the
4843traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4844@end deffn
4845
18b519c0 4846@deffn {Directive} %debug
fa819509
AD
4847Instrument the output parser for traces. Obsoleted by @samp{%define
4848parse.trace}.
ec3bc396 4849@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4850@end deffn
d8988b2f 4851
c1d19e10
PB
4852@deffn {Directive} %define @var{variable}
4853@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4854Define a variable to adjust Bison's behavior.
4855The possible choices for @var{variable}, as well as their meanings, depend on
4856the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4857Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4858
4859Bison will warn if a @var{variable} is defined multiple times.
4860
4861Omitting @code{"@var{value}"} is always equivalent to specifying it as
4862@code{""}.
4863
922bdd7f 4864Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4865In this case, Bison will complain if the variable definition does not meet one
4866of the following four conditions:
4867
4868@enumerate
4869@item @code{"@var{value}"} is @code{"true"}
4870
4871@item @code{"@var{value}"} is omitted (or is @code{""}).
4872This is equivalent to @code{"true"}.
4873
4874@item @code{"@var{value}"} is @code{"false"}.
4875
4876@item @var{variable} is never defined.
4877In this case, Bison selects a default value, which may depend on the selected
4878target language and/or parser skeleton.
4879@end enumerate
148d66d8 4880
793fbca5
JD
4881Some of the accepted @var{variable}s are:
4882
fa819509 4883@table @code
d9df47b6
JD
4884@item api.pure
4885@findex %define api.pure
4886
4887@itemize @bullet
4888@item Language(s): C
4889
4890@item Purpose: Request a pure (reentrant) parser program.
4891@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4892
4893@item Accepted Values: Boolean
4894
4895@item Default Value: @code{"false"}
4896@end itemize
71b00ed8 4897@c api.pure
d9df47b6 4898
c373bf8b
JD
4899@item api.push_pull
4900@findex %define api.push_pull
793fbca5
JD
4901
4902@itemize @bullet
eb45ef3b 4903@item Language(s): C (deterministic parsers only)
793fbca5
JD
4904
4905@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4906@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4907(The current push parsing interface is experimental and may evolve.
4908More user feedback will help to stabilize it.)
793fbca5
JD
4909
4910@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4911
4912@item Default Value: @code{"pull"}
4913@end itemize
71b00ed8
AD
4914@c api.push_pull
4915
4916@item error-verbose
4917@findex %define error-verbose
4918@itemize
4919@item Languages(s):
4920all.
4921@item Purpose:
4922Enable the generation of more verbose error messages than a instead of
4923just plain @w{@code{"syntax error"}}. @xref{Error Reporting, ,The Error
4924Reporting Function @code{yyerror}}.
4925@item Accepted Values:
4926Boolean
4927@item Default Value:
4928@code{false}
4929@end itemize
4930@c error-verbose
4931
793fbca5 4932
eb45ef3b
JD
4933@item lr.default_rules
4934@cindex default rules
4935@findex %define lr.default_rules
4936@cindex delayed syntax errors
4937@cindex syntax errors delayed
4938
4939@itemize @bullet
4940@item Language(s): all
4941
4942@item Purpose: Specifies the kind of states that are permitted to
4943contain default rules.
4944That is, in such a state, Bison declares the rule with the largest
4945lookahead set to be the default rule by which to reduce and then removes
4946that lookahead set.
4947The advantages of default rules are discussed below.
4948The disadvantage is that, when the generated parser encounters a
4949syntactically unacceptable token, the parser might then perform
4950unnecessary reductions by default rules before it can detect the syntax
4951error.
4952
4953(This feature is experimental.
4954More user feedback will help to stabilize it.)
4955
4956@item Accepted Values:
4957@itemize
4958@item @code{"all"}.
4959For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
4960Summary,,lr.type}) by default, all states are permitted to contain
4961default rules.
4962The advantage is that parser table sizes can be significantly reduced.
4963The reason Bison does not by default attempt to address the disadvantage
4964of delayed syntax error detection is that this disadvantage is already
4965inherent in @acronym{LALR} and @acronym{IELR} parser tables.
4966That is, unlike a canonical @acronym{LR} state, an @acronym{LALR} or
4967@acronym{IELR} state can contain syntactically incorrect tokens in the
4968lookahead sets of its rules.
4969
4970@item @code{"consistent"}.
4971@cindex consistent states
4972A consistent state is a state that has only one possible action.
4973If that action is a reduction, then the parser does not need to request
4974a lookahead token from the scanner before performing that action.
4975However, the parser only recognizes the ability to ignore the lookahead
4976token when such a reduction is encoded as a default rule.
4977Thus, if default rules are permitted in and only in consistent states,
4978then a canonical @acronym{LR} parser reports a syntax error as soon as
4979it @emph{needs} the syntactically unacceptable token from the scanner.
4980
4981@item @code{"accepting"}.
4982@cindex accepting state
4983By default, the only default rule permitted in a canonical @acronym{LR}
4984parser is the accept rule in the accepting state, which the parser
4985reaches only after reading all tokens from the input.
4986Thus, the default canonical @acronym{LR} parser reports a syntax error
4987as soon as it @emph{reaches} the syntactically unacceptable token
4988without performing any extra reductions.
4989@end itemize
4990
4991@item Default Value:
4992@itemize
4993@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
4994@item @code{"all"} otherwise.
4995@end itemize
4996@end itemize
4997
31984206
JD
4998@item lr.keep_unreachable_states
4999@findex %define lr.keep_unreachable_states
5000
5001@itemize @bullet
5002@item Language(s): all
5003
5004@item Purpose: Requests that Bison allow unreachable parser states to remain in
5005the parser tables.
5006Bison considers a state to be unreachable if there exists no sequence of
5007transitions from the start state to that state.
5008A state can become unreachable during conflict resolution if Bison disables a
5009shift action leading to it from a predecessor state.
5010Keeping unreachable states is sometimes useful for analysis purposes, but they
5011are useless in the generated parser.
5012
5013@item Accepted Values: Boolean
5014
5015@item Default Value: @code{"false"}
5016
5017@item Caveats:
5018
5019@itemize @bullet
cff03fb2
JD
5020
5021@item Unreachable states may contain conflicts and may use rules not used in
5022any other state.
31984206
JD
5023Thus, keeping unreachable states may induce warnings that are irrelevant to
5024your parser's behavior, and it may eliminate warnings that are relevant.
5025Of course, the change in warnings may actually be relevant to a parser table
5026analysis that wants to keep unreachable states, so this behavior will likely
5027remain in future Bison releases.
5028
5029@item While Bison is able to remove unreachable states, it is not guaranteed to
5030remove other kinds of useless states.
5031Specifically, when Bison disables reduce actions during conflict resolution,
5032some goto actions may become useless, and thus some additional states may
5033become useless.
5034If Bison were to compute which goto actions were useless and then disable those
5035actions, it could identify such states as unreachable and then remove those
5036states.
5037However, Bison does not compute which goto actions are useless.
5038@end itemize
5039@end itemize
71b00ed8 5040@c lr.keep_unreachable_states
31984206 5041
eb45ef3b
JD
5042@item lr.type
5043@findex %define lr.type
5044@cindex @acronym{LALR}
5045@cindex @acronym{IELR}
5046@cindex @acronym{LR}
5047
5048@itemize @bullet
5049@item Language(s): all
5050
5051@item Purpose: Specifies the type of parser tables within the
5052@acronym{LR}(1) family.
5053(This feature is experimental.
5054More user feedback will help to stabilize it.)
5055
5056@item Accepted Values:
5057@itemize
5058@item @code{"LALR"}.
5059While Bison generates @acronym{LALR} parser tables by default for
5060historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5061always preferable for deterministic parsers.
5062The trouble is that @acronym{LALR} parser tables can suffer from
5063mysterious conflicts and may not accept the full set of sentences that
5064@acronym{IELR} and canonical @acronym{LR} accept.
5065@xref{Mystery Conflicts}, for details.
5066However, there are at least two scenarios where @acronym{LALR} may be
5067worthwhile:
5068@itemize
5069@cindex @acronym{GLR} with @acronym{LALR}
5070@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5071do not resolve any conflicts statically (for example, with @code{%left}
5072or @code{%prec}), then the parser explores all potential parses of any
5073given input.
5074Thus, the use of @acronym{LALR} parser tables is guaranteed not to alter
5075the language accepted by the parser.
5076@acronym{LALR} parser tables are the smallest parser tables Bison can
5077currently generate, so they may be preferable.
5078
5079@item Occasionally during development, an especially malformed grammar
5080with a major recurring flaw may severely impede the @acronym{IELR} or
5081canonical @acronym{LR} parser table generation algorithm.
5082@acronym{LALR} can be a quick way to generate parser tables in order to
5083investigate such problems while ignoring the more subtle differences
5084from @acronym{IELR} and canonical @acronym{LR}.
5085@end itemize
5086
5087@item @code{"IELR"}.
5088@acronym{IELR} is a minimal @acronym{LR} algorithm.
5089That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5090@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5091set of sentences.
5092However, as for @acronym{LALR}, the number of parser states is often an
5093order of magnitude less for @acronym{IELR} than for canonical
5094@acronym{LR}.
5095More importantly, because canonical @acronym{LR}'s extra parser states
5096may contain duplicate conflicts in the case of non-@acronym{LR}
5097grammars, the number of conflicts for @acronym{IELR} is often an order
5098of magnitude less as well.
5099This can significantly reduce the complexity of developing of a grammar.
5100
5101@item @code{"canonical LR"}.
5102@cindex delayed syntax errors
5103@cindex syntax errors delayed
5104The only advantage of canonical @acronym{LR} over @acronym{IELR} is that
5105every canonical @acronym{LR} state encodes that state's exact set of
5106syntactically acceptable tokens.
5107The only difference in parsing behavior is then that the canonical
5108@acronym{LR} parser can report a syntax error as soon as possible
5109without performing any unnecessary reductions.
5110@xref{Decl Summary,,lr.default_rules}, for further details.
5111Even when canonical @acronym{LR} behavior is ultimately desired,
5112@acronym{IELR}'s elimination of duplicate conflicts should still
5113facilitate the development of a grammar.
5114@end itemize
5115
5116@item Default Value: @code{"LALR"}
5117@end itemize
5118
793fbca5
JD
5119@item namespace
5120@findex %define namespace
5121
5122@itemize
5123@item Languages(s): C++
5124
5125@item Purpose: Specifies the namespace for the parser class.
5126For example, if you specify:
5127
5128@smallexample
5129%define namespace "foo::bar"
5130@end smallexample
5131
5132Bison uses @code{foo::bar} verbatim in references such as:
5133
5134@smallexample
5135foo::bar::parser::semantic_type
5136@end smallexample
5137
5138However, to open a namespace, Bison removes any leading @code{::} and then
5139splits on any remaining occurrences:
5140
5141@smallexample
5142namespace foo @{ namespace bar @{
5143 class position;
5144 class location;
5145@} @}
5146@end smallexample
5147
5148@item Accepted Values: Any absolute or relative C++ namespace reference without
5149a trailing @code{"::"}.
5150For example, @code{"foo"} or @code{"::foo::bar"}.
5151
5152@item Default Value: The value specified by @code{%name-prefix}, which defaults
5153to @code{yy}.
5154This usage of @code{%name-prefix} is for backward compatibility and can be
5155confusing since @code{%name-prefix} also specifies the textual prefix for the
5156lexical analyzer function.
5157Thus, if you specify @code{%name-prefix}, it is best to also specify
5158@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5159lexical analyzer function.
5160For example, if you specify:
5161
5162@smallexample
5163%define namespace "foo"
5164%name-prefix "bar::"
5165@end smallexample
5166
5167The parser namespace is @code{foo} and @code{yylex} is referenced as
5168@code{bar::lex}.
5169@end itemize
fa819509
AD
5170@c namespace
5171
0c90a1f5
AD
5172@item parse.assert
5173@findex %define parse.assert
5174
5175@itemize
5176@item Languages(s): C++
5177
5178@item Purpose: Issue runtime assertions to catch invalid uses.
5179In C++, when variants are used, symbols must be constructed and
5180destroyed properly. This option checks these constraints.
5181
5182@item Accepted Values: Boolean
5183
5184@item Default Value: @code{false}
5185@end itemize
5186@c parse.assert
5187
fa819509
AD
5188@item parse.trace
5189@findex %define parse.trace
5190
5191@itemize
5192@item Languages(s): C, C++
5193
5194@item Purpose: Require parser instrumentation for tracing.
5195In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5196is not already defined, so that the debugging facilities are compiled.
5197@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5198
fa819509
AD
5199@item Accepted Values: Boolean
5200
5201@item Default Value: @code{false}
5202@end itemize
5203@end table
5204@c parse.trace
d782395d 5205@end deffn
fa819509 5206@c %define
d782395d 5207
18b519c0 5208@deffn {Directive} %defines
4bfd5e4e
PE
5209Write a header file containing macro definitions for the token type
5210names defined in the grammar as well as a few other declarations.
d8988b2f 5211If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5212is named @file{@var{name}.h}.
d8988b2f 5213
b321737f 5214For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5215@code{YYSTYPE} is already defined as a macro or you have used a
5216@code{<@var{type}>} tag without using @code{%union}.
5217Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5218(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5219require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5220or type definition
f8e1c9e5
AD
5221(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5222arrange for these definitions to be propagated to all modules, e.g., by
5223putting them in a prerequisite header that is included both by your
5224parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5225
5226Unless your parser is pure, the output header declares @code{yylval}
5227as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5228Parser}.
5229
5230If you have also used locations, the output header declares
5231@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5232the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5233Locations}.
5234
f8e1c9e5
AD
5235This output file is normally essential if you wish to put the definition
5236of @code{yylex} in a separate source file, because @code{yylex}
5237typically needs to be able to refer to the above-mentioned declarations
5238and to the token type codes. @xref{Token Values, ,Semantic Values of
5239Tokens}.
9bc0dd67 5240
16dc6a9e
JD
5241@findex %code requires
5242@findex %code provides
5243If you have declared @code{%code requires} or @code{%code provides}, the output
5244header also contains their code.
148d66d8 5245@xref{Decl Summary, ,%code}.
592d0b1e
PB
5246@end deffn
5247
02975b9a
JD
5248@deffn {Directive} %defines @var{defines-file}
5249Same as above, but save in the file @var{defines-file}.
5250@end deffn
5251
18b519c0 5252@deffn {Directive} %destructor
258b75ca 5253Specify how the parser should reclaim the memory associated to
fa7e68c3 5254discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5255@end deffn
72f889cc 5256
02975b9a 5257@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5258Specify a prefix to use for all Bison output file names. The names are
5259chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5260@end deffn
d8988b2f 5261
e6e704dc 5262@deffn {Directive} %language "@var{language}"
0e021770 5263Specify the programming language for the generated parser. Currently
59da312b 5264supported languages include C, C++, and Java.
e6e704dc 5265@var{language} is case-insensitive.
ed4d67dc
JD
5266
5267This directive is experimental and its effect may be modified in future
5268releases.
0e021770
PE
5269@end deffn
5270
18b519c0 5271@deffn {Directive} %locations
89cab50d
AD
5272Generate the code processing the locations (@pxref{Action Features,
5273,Special Features for Use in Actions}). This mode is enabled as soon as
5274the grammar uses the special @samp{@@@var{n}} tokens, but if your
5275grammar does not use it, using @samp{%locations} allows for more
6e649e65 5276accurate syntax error messages.
18b519c0 5277@end deffn
89cab50d 5278
02975b9a 5279@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5280Rename the external symbols used in the parser so that they start with
5281@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5282in C parsers
d8988b2f 5283is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5284@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5285(if locations are used) @code{yylloc}. If you use a push parser,
5286@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5287@code{yypstate_new} and @code{yypstate_delete} will
5288also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5289names become @code{c_parse}, @code{c_lex}, and so on.
5290For C++ parsers, see the @code{%define namespace} documentation in this
5291section.
aa08666d 5292@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5293@end deffn
931c7513 5294
91d2c560 5295@ifset defaultprec
22fccf95
PE
5296@deffn {Directive} %no-default-prec
5297Do not assign a precedence to rules lacking an explicit @code{%prec}
5298modifier (@pxref{Contextual Precedence, ,Context-Dependent
5299Precedence}).
5300@end deffn
91d2c560 5301@end ifset
22fccf95 5302
18b519c0 5303@deffn {Directive} %no-lines
931c7513
RS
5304Don't generate any @code{#line} preprocessor commands in the parser
5305file. Ordinarily Bison writes these commands in the parser file so that
5306the C compiler and debuggers will associate errors and object code with
5307your source file (the grammar file). This directive causes them to
5308associate errors with the parser file, treating it an independent source
5309file in its own right.
18b519c0 5310@end deffn
931c7513 5311
02975b9a 5312@deffn {Directive} %output "@var{file}"
fa4d969f 5313Specify @var{file} for the parser file.
18b519c0 5314@end deffn
6deb4447 5315
18b519c0 5316@deffn {Directive} %pure-parser
d9df47b6
JD
5317Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5318for which Bison is more careful to warn about unreasonable usage.
18b519c0 5319@end deffn
6deb4447 5320
b50d2359 5321@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5322Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5323Require a Version of Bison}.
b50d2359
AD
5324@end deffn
5325
0e021770 5326@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5327Specify the skeleton to use.
5328
ed4d67dc
JD
5329@c You probably don't need this option unless you are developing Bison.
5330@c You should use @code{%language} if you want to specify the skeleton for a
5331@c different language, because it is clearer and because it will always choose the
5332@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5333
5334If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5335file in the Bison installation directory.
5336If it does, @var{file} is an absolute file name or a file name relative to the
5337directory of the grammar file.
5338This is similar to how most shells resolve commands.
0e021770
PE
5339@end deffn
5340
18b519c0 5341@deffn {Directive} %token-table
931c7513
RS
5342Generate an array of token names in the parser file. The name of the
5343array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5344token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5345three elements of @code{yytname} correspond to the predefined tokens
5346@code{"$end"},
88bce5a2
AD
5347@code{"error"}, and @code{"$undefined"}; after these come the symbols
5348defined in the grammar file.
931c7513 5349
9e0876fb
PE
5350The name in the table includes all the characters needed to represent
5351the token in Bison. For single-character literals and literal
5352strings, this includes the surrounding quoting characters and any
5353escape sequences. For example, the Bison single-character literal
5354@code{'+'} corresponds to a three-character name, represented in C as
5355@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5356corresponds to a five-character name, represented in C as
5357@code{"\"\\\\/\""}.
931c7513 5358
8c9a50be 5359When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5360definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5361@code{YYNRULES}, and @code{YYNSTATES}:
5362
5363@table @code
5364@item YYNTOKENS
5365The highest token number, plus one.
5366@item YYNNTS
9ecbd125 5367The number of nonterminal symbols.
931c7513
RS
5368@item YYNRULES
5369The number of grammar rules,
5370@item YYNSTATES
5371The number of parser states (@pxref{Parser States}).
5372@end table
18b519c0 5373@end deffn
d8988b2f 5374
18b519c0 5375@deffn {Directive} %verbose
d8988b2f 5376Write an extra output file containing verbose descriptions of the
742e4900 5377parser states and what is done for each type of lookahead token in
72d2299c 5378that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5379information.
18b519c0 5380@end deffn
d8988b2f 5381
18b519c0 5382@deffn {Directive} %yacc
d8988b2f
AD
5383Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5384including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5385@end deffn
d8988b2f
AD
5386
5387
342b8b6e 5388@node Multiple Parsers
bfa74976
RS
5389@section Multiple Parsers in the Same Program
5390
5391Most programs that use Bison parse only one language and therefore contain
5392only one Bison parser. But what if you want to parse more than one
5393language with the same program? Then you need to avoid a name conflict
5394between different definitions of @code{yyparse}, @code{yylval}, and so on.
5395
5396The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5397(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5398functions and variables of the Bison parser to start with @var{prefix}
5399instead of @samp{yy}. You can use this to give each parser distinct
5400names that do not conflict.
bfa74976
RS
5401
5402The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5403@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5404@code{yychar} and @code{yydebug}. If you use a push parser,
5405@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5406@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5407For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5408@code{clex}, and so on.
bfa74976
RS
5409
5410@strong{All the other variables and macros associated with Bison are not
5411renamed.} These others are not global; there is no conflict if the same
5412name is used in different parsers. For example, @code{YYSTYPE} is not
5413renamed, but defining this in different ways in different parsers causes
5414no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5415
5416The @samp{-p} option works by adding macro definitions to the beginning
5417of the parser source file, defining @code{yyparse} as
5418@code{@var{prefix}parse}, and so on. This effectively substitutes one
5419name for the other in the entire parser file.
5420
342b8b6e 5421@node Interface
bfa74976
RS
5422@chapter Parser C-Language Interface
5423@cindex C-language interface
5424@cindex interface
5425
5426The Bison parser is actually a C function named @code{yyparse}. Here we
5427describe the interface conventions of @code{yyparse} and the other
5428functions that it needs to use.
5429
5430Keep in mind that the parser uses many C identifiers starting with
5431@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5432identifier (aside from those in this manual) in an action or in epilogue
5433in the grammar file, you are likely to run into trouble.
bfa74976
RS
5434
5435@menu
f5f419de
DJ
5436* Parser Function:: How to call @code{yyparse} and what it returns.
5437* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5438* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5439* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5440* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5441* Lexical:: You must supply a function @code{yylex}
5442 which reads tokens.
5443* Error Reporting:: You must supply a function @code{yyerror}.
5444* Action Features:: Special features for use in actions.
5445* Internationalization:: How to let the parser speak in the user's
5446 native language.
bfa74976
RS
5447@end menu
5448
342b8b6e 5449@node Parser Function
bfa74976
RS
5450@section The Parser Function @code{yyparse}
5451@findex yyparse
5452
5453You call the function @code{yyparse} to cause parsing to occur. This
5454function reads tokens, executes actions, and ultimately returns when it
5455encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5456write an action which directs @code{yyparse} to return immediately
5457without reading further.
bfa74976 5458
2a8d363a
AD
5459
5460@deftypefun int yyparse (void)
bfa74976
RS
5461The value returned by @code{yyparse} is 0 if parsing was successful (return
5462is due to end-of-input).
5463
b47dbebe
PE
5464The value is 1 if parsing failed because of invalid input, i.e., input
5465that contains a syntax error or that causes @code{YYABORT} to be
5466invoked.
5467
5468The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5469@end deftypefun
bfa74976
RS
5470
5471In an action, you can cause immediate return from @code{yyparse} by using
5472these macros:
5473
2a8d363a 5474@defmac YYACCEPT
bfa74976
RS
5475@findex YYACCEPT
5476Return immediately with value 0 (to report success).
2a8d363a 5477@end defmac
bfa74976 5478
2a8d363a 5479@defmac YYABORT
bfa74976
RS
5480@findex YYABORT
5481Return immediately with value 1 (to report failure).
2a8d363a
AD
5482@end defmac
5483
5484If you use a reentrant parser, you can optionally pass additional
5485parameter information to it in a reentrant way. To do so, use the
5486declaration @code{%parse-param}:
5487
feeb0eda 5488@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5489@findex %parse-param
287c78f6
PE
5490Declare that an argument declared by the braced-code
5491@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5492The @var{argument-declaration} is used when declaring
feeb0eda
PE
5493functions or prototypes. The last identifier in
5494@var{argument-declaration} must be the argument name.
2a8d363a
AD
5495@end deffn
5496
5497Here's an example. Write this in the parser:
5498
5499@example
feeb0eda
PE
5500%parse-param @{int *nastiness@}
5501%parse-param @{int *randomness@}
2a8d363a
AD
5502@end example
5503
5504@noindent
5505Then call the parser like this:
5506
5507@example
5508@{
5509 int nastiness, randomness;
5510 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5511 value = yyparse (&nastiness, &randomness);
5512 @dots{}
5513@}
5514@end example
5515
5516@noindent
5517In the grammar actions, use expressions like this to refer to the data:
5518
5519@example
5520exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5521@end example
5522
9987d1b3
JD
5523@node Push Parser Function
5524@section The Push Parser Function @code{yypush_parse}
5525@findex yypush_parse
5526
59da312b
JD
5527(The current push parsing interface is experimental and may evolve.
5528More user feedback will help to stabilize it.)
5529
f4101aa6
AD
5530You call the function @code{yypush_parse} to parse a single token. This
5531function is available if either the @code{%define api.push_pull "push"} or
5532@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5533@xref{Push Decl, ,A Push Parser}.
5534
5535@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5536The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5537following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5538is required to finish parsing the grammar.
5539@end deftypefun
5540
5541@node Pull Parser Function
5542@section The Pull Parser Function @code{yypull_parse}
5543@findex yypull_parse
5544
59da312b
JD
5545(The current push parsing interface is experimental and may evolve.
5546More user feedback will help to stabilize it.)
5547
f4101aa6
AD
5548You call the function @code{yypull_parse} to parse the rest of the input
5549stream. This function is available if the @code{%define api.push_pull "both"}
5550declaration is used.
9987d1b3
JD
5551@xref{Push Decl, ,A Push Parser}.
5552
5553@deftypefun int yypull_parse (yypstate *yyps)
5554The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5555@end deftypefun
5556
5557@node Parser Create Function
5558@section The Parser Create Function @code{yystate_new}
5559@findex yypstate_new
5560
59da312b
JD
5561(The current push parsing interface is experimental and may evolve.
5562More user feedback will help to stabilize it.)
5563
f4101aa6
AD
5564You call the function @code{yypstate_new} to create a new parser instance.
5565This function is available if either the @code{%define api.push_pull "push"} or
5566@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5567@xref{Push Decl, ,A Push Parser}.
5568
5569@deftypefun yypstate *yypstate_new (void)
5570The fuction will return a valid parser instance if there was memory available
333e670c
JD
5571or 0 if no memory was available.
5572In impure mode, it will also return 0 if a parser instance is currently
5573allocated.
9987d1b3
JD
5574@end deftypefun
5575
5576@node Parser Delete Function
5577@section The Parser Delete Function @code{yystate_delete}
5578@findex yypstate_delete
5579
59da312b
JD
5580(The current push parsing interface is experimental and may evolve.
5581More user feedback will help to stabilize it.)
5582
9987d1b3 5583You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5584function is available if either the @code{%define api.push_pull "push"} or
5585@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5586@xref{Push Decl, ,A Push Parser}.
5587
5588@deftypefun void yypstate_delete (yypstate *yyps)
5589This function will reclaim the memory associated with a parser instance.
5590After this call, you should no longer attempt to use the parser instance.
5591@end deftypefun
bfa74976 5592
342b8b6e 5593@node Lexical
bfa74976
RS
5594@section The Lexical Analyzer Function @code{yylex}
5595@findex yylex
5596@cindex lexical analyzer
5597
5598The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5599the input stream and returns them to the parser. Bison does not create
5600this function automatically; you must write it so that @code{yyparse} can
5601call it. The function is sometimes referred to as a lexical scanner.
5602
5603In simple programs, @code{yylex} is often defined at the end of the Bison
5604grammar file. If @code{yylex} is defined in a separate source file, you
5605need to arrange for the token-type macro definitions to be available there.
5606To do this, use the @samp{-d} option when you run Bison, so that it will
5607write these macro definitions into a separate header file
5608@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5609that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5610
5611@menu
5612* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5613* Token Values:: How @code{yylex} must return the semantic value
5614 of the token it has read.
5615* Token Locations:: How @code{yylex} must return the text location
5616 (line number, etc.) of the token, if the
5617 actions want that.
5618* Pure Calling:: How the calling convention differs in a pure parser
5619 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5620@end menu
5621
342b8b6e 5622@node Calling Convention
bfa74976
RS
5623@subsection Calling Convention for @code{yylex}
5624
72d2299c
PE
5625The value that @code{yylex} returns must be the positive numeric code
5626for the type of token it has just found; a zero or negative value
5627signifies end-of-input.
bfa74976
RS
5628
5629When a token is referred to in the grammar rules by a name, that name
5630in the parser file becomes a C macro whose definition is the proper
5631numeric code for that token type. So @code{yylex} can use the name
5632to indicate that type. @xref{Symbols}.
5633
5634When a token is referred to in the grammar rules by a character literal,
5635the numeric code for that character is also the code for the token type.
72d2299c
PE
5636So @code{yylex} can simply return that character code, possibly converted
5637to @code{unsigned char} to avoid sign-extension. The null character
5638must not be used this way, because its code is zero and that
bfa74976
RS
5639signifies end-of-input.
5640
5641Here is an example showing these things:
5642
5643@example
13863333
AD
5644int
5645yylex (void)
bfa74976
RS
5646@{
5647 @dots{}
72d2299c 5648 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5649 return 0;
5650 @dots{}
5651 if (c == '+' || c == '-')
72d2299c 5652 return c; /* Assume token type for `+' is '+'. */
bfa74976 5653 @dots{}
72d2299c 5654 return INT; /* Return the type of the token. */
bfa74976
RS
5655 @dots{}
5656@}
5657@end example
5658
5659@noindent
5660This interface has been designed so that the output from the @code{lex}
5661utility can be used without change as the definition of @code{yylex}.
5662
931c7513
RS
5663If the grammar uses literal string tokens, there are two ways that
5664@code{yylex} can determine the token type codes for them:
5665
5666@itemize @bullet
5667@item
5668If the grammar defines symbolic token names as aliases for the
5669literal string tokens, @code{yylex} can use these symbolic names like
5670all others. In this case, the use of the literal string tokens in
5671the grammar file has no effect on @code{yylex}.
5672
5673@item
9ecbd125 5674@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5675table. The index of the token in the table is the token type's code.
9ecbd125 5676The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5677double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5678token's characters are escaped as necessary to be suitable as input
5679to Bison.
931c7513 5680
9e0876fb
PE
5681Here's code for looking up a multicharacter token in @code{yytname},
5682assuming that the characters of the token are stored in
5683@code{token_buffer}, and assuming that the token does not contain any
5684characters like @samp{"} that require escaping.
931c7513
RS
5685
5686@smallexample
5687for (i = 0; i < YYNTOKENS; i++)
5688 @{
5689 if (yytname[i] != 0
5690 && yytname[i][0] == '"'
68449b3a
PE
5691 && ! strncmp (yytname[i] + 1, token_buffer,
5692 strlen (token_buffer))
931c7513
RS
5693 && yytname[i][strlen (token_buffer) + 1] == '"'
5694 && yytname[i][strlen (token_buffer) + 2] == 0)
5695 break;
5696 @}
5697@end smallexample
5698
5699The @code{yytname} table is generated only if you use the
8c9a50be 5700@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5701@end itemize
5702
342b8b6e 5703@node Token Values
bfa74976
RS
5704@subsection Semantic Values of Tokens
5705
5706@vindex yylval
9d9b8b70 5707In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5708be stored into the global variable @code{yylval}. When you are using
5709just one data type for semantic values, @code{yylval} has that type.
5710Thus, if the type is @code{int} (the default), you might write this in
5711@code{yylex}:
5712
5713@example
5714@group
5715 @dots{}
72d2299c
PE
5716 yylval = value; /* Put value onto Bison stack. */
5717 return INT; /* Return the type of the token. */
bfa74976
RS
5718 @dots{}
5719@end group
5720@end example
5721
5722When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5723made from the @code{%union} declaration (@pxref{Union Decl, ,The
5724Collection of Value Types}). So when you store a token's value, you
5725must use the proper member of the union. If the @code{%union}
5726declaration looks like this:
bfa74976
RS
5727
5728@example
5729@group
5730%union @{
5731 int intval;
5732 double val;
5733 symrec *tptr;
5734@}
5735@end group
5736@end example
5737
5738@noindent
5739then the code in @code{yylex} might look like this:
5740
5741@example
5742@group
5743 @dots{}
72d2299c
PE
5744 yylval.intval = value; /* Put value onto Bison stack. */
5745 return INT; /* Return the type of the token. */
bfa74976
RS
5746 @dots{}
5747@end group
5748@end example
5749
95923bd6
AD
5750@node Token Locations
5751@subsection Textual Locations of Tokens
bfa74976
RS
5752
5753@vindex yylloc
847bf1f5 5754If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5755Tracking Locations}) in actions to keep track of the textual locations
5756of tokens and groupings, then you must provide this information in
5757@code{yylex}. The function @code{yyparse} expects to find the textual
5758location of a token just parsed in the global variable @code{yylloc}.
5759So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5760
5761By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5762initialize the members that are going to be used by the actions. The
5763four members are called @code{first_line}, @code{first_column},
5764@code{last_line} and @code{last_column}. Note that the use of this
5765feature makes the parser noticeably slower.
bfa74976
RS
5766
5767@tindex YYLTYPE
5768The data type of @code{yylloc} has the name @code{YYLTYPE}.
5769
342b8b6e 5770@node Pure Calling
c656404a 5771@subsection Calling Conventions for Pure Parsers
bfa74976 5772
d9df47b6 5773When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5774pure, reentrant parser, the global communication variables @code{yylval}
5775and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5776Parser}.) In such parsers the two global variables are replaced by
5777pointers passed as arguments to @code{yylex}. You must declare them as
5778shown here, and pass the information back by storing it through those
5779pointers.
bfa74976
RS
5780
5781@example
13863333
AD
5782int
5783yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5784@{
5785 @dots{}
5786 *lvalp = value; /* Put value onto Bison stack. */
5787 return INT; /* Return the type of the token. */
5788 @dots{}
5789@}
5790@end example
5791
5792If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5793textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5794this case, omit the second argument; @code{yylex} will be called with
5795only one argument.
5796
e425e872 5797
2a8d363a
AD
5798If you wish to pass the additional parameter data to @code{yylex}, use
5799@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5800Function}).
e425e872 5801
feeb0eda 5802@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5803@findex %lex-param
287c78f6
PE
5804Declare that the braced-code @var{argument-declaration} is an
5805additional @code{yylex} argument declaration.
2a8d363a 5806@end deffn
e425e872 5807
2a8d363a 5808For instance:
e425e872
RS
5809
5810@example
feeb0eda
PE
5811%parse-param @{int *nastiness@}
5812%lex-param @{int *nastiness@}
5813%parse-param @{int *randomness@}
e425e872
RS
5814@end example
5815
5816@noindent
2a8d363a 5817results in the following signature:
e425e872
RS
5818
5819@example
2a8d363a
AD
5820int yylex (int *nastiness);
5821int yyparse (int *nastiness, int *randomness);
e425e872
RS
5822@end example
5823
d9df47b6 5824If @code{%define api.pure} is added:
c656404a
RS
5825
5826@example
2a8d363a
AD
5827int yylex (YYSTYPE *lvalp, int *nastiness);
5828int yyparse (int *nastiness, int *randomness);
c656404a
RS
5829@end example
5830
2a8d363a 5831@noindent
d9df47b6 5832and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5833
2a8d363a
AD
5834@example
5835int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5836int yyparse (int *nastiness, int *randomness);
5837@end example
931c7513 5838
342b8b6e 5839@node Error Reporting
bfa74976
RS
5840@section The Error Reporting Function @code{yyerror}
5841@cindex error reporting function
5842@findex yyerror
5843@cindex parse error
5844@cindex syntax error
5845
6e649e65 5846The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5847whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5848action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5849macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5850in Actions}).
bfa74976
RS
5851
5852The Bison parser expects to report the error by calling an error
5853reporting function named @code{yyerror}, which you must supply. It is
5854called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5855receives one argument. For a syntax error, the string is normally
5856@w{@code{"syntax error"}}.
bfa74976 5857
71b00ed8
AD
5858@findex %define error-verbose
5859If you invoke the directive @code{%define error-verbose} in the Bison
2a8d363a
AD
5860declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5861Section}), then Bison provides a more verbose and specific error message
6e649e65 5862string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5863
1a059451
PE
5864The parser can detect one other kind of error: memory exhaustion. This
5865can happen when the input contains constructions that are very deeply
bfa74976 5866nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5867parser normally extends its stack automatically up to a very large limit. But
5868if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5869fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5870
5871In some cases diagnostics like @w{@code{"syntax error"}} are
5872translated automatically from English to some other language before
5873they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5874
5875The following definition suffices in simple programs:
5876
5877@example
5878@group
13863333 5879void
38a92d50 5880yyerror (char const *s)
bfa74976
RS
5881@{
5882@end group
5883@group
5884 fprintf (stderr, "%s\n", s);
5885@}
5886@end group
5887@end example
5888
5889After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5890error recovery if you have written suitable error recovery grammar rules
5891(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5892immediately return 1.
5893
93724f13 5894Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5895an access to the current location.
5896This is indeed the case for the @acronym{GLR}
2a8d363a 5897parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5898@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5899@code{yyerror} are:
5900
5901@example
38a92d50
PE
5902void yyerror (char const *msg); /* Yacc parsers. */
5903void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5904@end example
5905
feeb0eda 5906If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5907
5908@example
b317297e
PE
5909void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5910void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5911@end example
5912
fa7e68c3 5913Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5914convention for absolutely pure parsers, i.e., when the calling
5915convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5916@code{%define api.pure} are pure.
5917I.e.:
2a8d363a
AD
5918
5919@example
5920/* Location tracking. */
5921%locations
5922/* Pure yylex. */
d9df47b6 5923%define api.pure
feeb0eda 5924%lex-param @{int *nastiness@}
2a8d363a 5925/* Pure yyparse. */
feeb0eda
PE
5926%parse-param @{int *nastiness@}
5927%parse-param @{int *randomness@}
2a8d363a
AD
5928@end example
5929
5930@noindent
5931results in the following signatures for all the parser kinds:
5932
5933@example
5934int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5935int yyparse (int *nastiness, int *randomness);
93724f13
AD
5936void yyerror (YYLTYPE *locp,
5937 int *nastiness, int *randomness,
38a92d50 5938 char const *msg);
2a8d363a
AD
5939@end example
5940
1c0c3e95 5941@noindent
38a92d50
PE
5942The prototypes are only indications of how the code produced by Bison
5943uses @code{yyerror}. Bison-generated code always ignores the returned
5944value, so @code{yyerror} can return any type, including @code{void}.
5945Also, @code{yyerror} can be a variadic function; that is why the
5946message is always passed last.
5947
5948Traditionally @code{yyerror} returns an @code{int} that is always
5949ignored, but this is purely for historical reasons, and @code{void} is
5950preferable since it more accurately describes the return type for
5951@code{yyerror}.
93724f13 5952
bfa74976
RS
5953@vindex yynerrs
5954The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5955reported so far. Normally this variable is global; but if you
704a47c4
AD
5956request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5957then it is a local variable which only the actions can access.
bfa74976 5958
342b8b6e 5959@node Action Features
bfa74976
RS
5960@section Special Features for Use in Actions
5961@cindex summary, action features
5962@cindex action features summary
5963
5964Here is a table of Bison constructs, variables and macros that
5965are useful in actions.
5966
18b519c0 5967@deffn {Variable} $$
bfa74976
RS
5968Acts like a variable that contains the semantic value for the
5969grouping made by the current rule. @xref{Actions}.
18b519c0 5970@end deffn
bfa74976 5971
18b519c0 5972@deffn {Variable} $@var{n}
bfa74976
RS
5973Acts like a variable that contains the semantic value for the
5974@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5975@end deffn
bfa74976 5976
18b519c0 5977@deffn {Variable} $<@var{typealt}>$
bfa74976 5978Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5979specified by the @code{%union} declaration. @xref{Action Types, ,Data
5980Types of Values in Actions}.
18b519c0 5981@end deffn
bfa74976 5982
18b519c0 5983@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5984Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5985union specified by the @code{%union} declaration.
e0c471a9 5986@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5987@end deffn
bfa74976 5988
18b519c0 5989@deffn {Macro} YYABORT;
bfa74976
RS
5990Return immediately from @code{yyparse}, indicating failure.
5991@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5992@end deffn
bfa74976 5993
18b519c0 5994@deffn {Macro} YYACCEPT;
bfa74976
RS
5995Return immediately from @code{yyparse}, indicating success.
5996@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5997@end deffn
bfa74976 5998
18b519c0 5999@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6000@findex YYBACKUP
6001Unshift a token. This macro is allowed only for rules that reduce
742e4900 6002a single value, and only when there is no lookahead token.
c827f760 6003It is also disallowed in @acronym{GLR} parsers.
742e4900 6004It installs a lookahead token with token type @var{token} and
bfa74976
RS
6005semantic value @var{value}; then it discards the value that was
6006going to be reduced by this rule.
6007
6008If the macro is used when it is not valid, such as when there is
742e4900 6009a lookahead token already, then it reports a syntax error with
bfa74976
RS
6010a message @samp{cannot back up} and performs ordinary error
6011recovery.
6012
6013In either case, the rest of the action is not executed.
18b519c0 6014@end deffn
bfa74976 6015
18b519c0 6016@deffn {Macro} YYEMPTY
bfa74976 6017@vindex YYEMPTY
742e4900 6018Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6019@end deffn
bfa74976 6020
32c29292
JD
6021@deffn {Macro} YYEOF
6022@vindex YYEOF
742e4900 6023Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6024stream.
6025@end deffn
6026
18b519c0 6027@deffn {Macro} YYERROR;
bfa74976
RS
6028@findex YYERROR
6029Cause an immediate syntax error. This statement initiates error
6030recovery just as if the parser itself had detected an error; however, it
6031does not call @code{yyerror}, and does not print any message. If you
6032want to print an error message, call @code{yyerror} explicitly before
6033the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6034@end deffn
bfa74976 6035
18b519c0 6036@deffn {Macro} YYRECOVERING
02103984
PE
6037@findex YYRECOVERING
6038The expression @code{YYRECOVERING ()} yields 1 when the parser
6039is recovering from a syntax error, and 0 otherwise.
bfa74976 6040@xref{Error Recovery}.
18b519c0 6041@end deffn
bfa74976 6042
18b519c0 6043@deffn {Variable} yychar
742e4900
JD
6044Variable containing either the lookahead token, or @code{YYEOF} when the
6045lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6046has been performed so the next token is not yet known.
6047Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6048Actions}).
742e4900 6049@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6050@end deffn
bfa74976 6051
18b519c0 6052@deffn {Macro} yyclearin;
742e4900 6053Discard the current lookahead token. This is useful primarily in
32c29292
JD
6054error rules.
6055Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6056Semantic Actions}).
6057@xref{Error Recovery}.
18b519c0 6058@end deffn
bfa74976 6059
18b519c0 6060@deffn {Macro} yyerrok;
bfa74976 6061Resume generating error messages immediately for subsequent syntax
13863333 6062errors. This is useful primarily in error rules.
bfa74976 6063@xref{Error Recovery}.
18b519c0 6064@end deffn
bfa74976 6065
32c29292 6066@deffn {Variable} yylloc
742e4900 6067Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6068to @code{YYEMPTY} or @code{YYEOF}.
6069Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6070Actions}).
6071@xref{Actions and Locations, ,Actions and Locations}.
6072@end deffn
6073
6074@deffn {Variable} yylval
742e4900 6075Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6076not set to @code{YYEMPTY} or @code{YYEOF}.
6077Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6078Actions}).
6079@xref{Actions, ,Actions}.
6080@end deffn
6081
18b519c0 6082@deffn {Value} @@$
847bf1f5 6083@findex @@$
95923bd6 6084Acts like a structure variable containing information on the textual location
847bf1f5
AD
6085of the grouping made by the current rule. @xref{Locations, ,
6086Tracking Locations}.
bfa74976 6087
847bf1f5
AD
6088@c Check if those paragraphs are still useful or not.
6089
6090@c @example
6091@c struct @{
6092@c int first_line, last_line;
6093@c int first_column, last_column;
6094@c @};
6095@c @end example
6096
6097@c Thus, to get the starting line number of the third component, you would
6098@c use @samp{@@3.first_line}.
bfa74976 6099
847bf1f5
AD
6100@c In order for the members of this structure to contain valid information,
6101@c you must make @code{yylex} supply this information about each token.
6102@c If you need only certain members, then @code{yylex} need only fill in
6103@c those members.
bfa74976 6104
847bf1f5 6105@c The use of this feature makes the parser noticeably slower.
18b519c0 6106@end deffn
847bf1f5 6107
18b519c0 6108@deffn {Value} @@@var{n}
847bf1f5 6109@findex @@@var{n}
95923bd6 6110Acts like a structure variable containing information on the textual location
847bf1f5
AD
6111of the @var{n}th component of the current rule. @xref{Locations, ,
6112Tracking Locations}.
18b519c0 6113@end deffn
bfa74976 6114
f7ab6a50
PE
6115@node Internationalization
6116@section Parser Internationalization
6117@cindex internationalization
6118@cindex i18n
6119@cindex NLS
6120@cindex gettext
6121@cindex bison-po
6122
6123A Bison-generated parser can print diagnostics, including error and
6124tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6125also supports outputting diagnostics in the user's native language. To
6126make this work, the user should set the usual environment variables.
6127@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6128For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6129set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6130encoding. The exact set of available locales depends on the user's
6131installation.
6132
6133The maintainer of a package that uses a Bison-generated parser enables
6134the internationalization of the parser's output through the following
6135steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6136@acronym{GNU} Automake.
6137
6138@enumerate
6139@item
30757c8c 6140@cindex bison-i18n.m4
f7ab6a50
PE
6141Into the directory containing the @acronym{GNU} Autoconf macros used
6142by the package---often called @file{m4}---copy the
6143@file{bison-i18n.m4} file installed by Bison under
6144@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6145For example:
6146
6147@example
6148cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6149@end example
6150
6151@item
30757c8c
PE
6152@findex BISON_I18N
6153@vindex BISON_LOCALEDIR
6154@vindex YYENABLE_NLS
f7ab6a50
PE
6155In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6156invocation, add an invocation of @code{BISON_I18N}. This macro is
6157defined in the file @file{bison-i18n.m4} that you copied earlier. It
6158causes @samp{configure} to find the value of the
30757c8c
PE
6159@code{BISON_LOCALEDIR} variable, and it defines the source-language
6160symbol @code{YYENABLE_NLS} to enable translations in the
6161Bison-generated parser.
f7ab6a50
PE
6162
6163@item
6164In the @code{main} function of your program, designate the directory
6165containing Bison's runtime message catalog, through a call to
6166@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6167For example:
6168
6169@example
6170bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6171@end example
6172
6173Typically this appears after any other call @code{bindtextdomain
6174(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6175@samp{BISON_LOCALEDIR} to be defined as a string through the
6176@file{Makefile}.
6177
6178@item
6179In the @file{Makefile.am} that controls the compilation of the @code{main}
6180function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6181either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6182
6183@example
6184DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6185@end example
6186
6187or:
6188
6189@example
6190AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6191@end example
6192
6193@item
6194Finally, invoke the command @command{autoreconf} to generate the build
6195infrastructure.
6196@end enumerate
6197
bfa74976 6198
342b8b6e 6199@node Algorithm
13863333
AD
6200@chapter The Bison Parser Algorithm
6201@cindex Bison parser algorithm
bfa74976
RS
6202@cindex algorithm of parser
6203@cindex shifting
6204@cindex reduction
6205@cindex parser stack
6206@cindex stack, parser
6207
6208As Bison reads tokens, it pushes them onto a stack along with their
6209semantic values. The stack is called the @dfn{parser stack}. Pushing a
6210token is traditionally called @dfn{shifting}.
6211
6212For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6213@samp{3} to come. The stack will have four elements, one for each token
6214that was shifted.
6215
6216But the stack does not always have an element for each token read. When
6217the last @var{n} tokens and groupings shifted match the components of a
6218grammar rule, they can be combined according to that rule. This is called
6219@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6220single grouping whose symbol is the result (left hand side) of that rule.
6221Running the rule's action is part of the process of reduction, because this
6222is what computes the semantic value of the resulting grouping.
6223
6224For example, if the infix calculator's parser stack contains this:
6225
6226@example
62271 + 5 * 3
6228@end example
6229
6230@noindent
6231and the next input token is a newline character, then the last three
6232elements can be reduced to 15 via the rule:
6233
6234@example
6235expr: expr '*' expr;
6236@end example
6237
6238@noindent
6239Then the stack contains just these three elements:
6240
6241@example
62421 + 15
6243@end example
6244
6245@noindent
6246At this point, another reduction can be made, resulting in the single value
624716. Then the newline token can be shifted.
6248
6249The parser tries, by shifts and reductions, to reduce the entire input down
6250to a single grouping whose symbol is the grammar's start-symbol
6251(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6252
6253This kind of parser is known in the literature as a bottom-up parser.
6254
6255@menu
742e4900 6256* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6257* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6258* Precedence:: Operator precedence works by resolving conflicts.
6259* Contextual Precedence:: When an operator's precedence depends on context.
6260* Parser States:: The parser is a finite-state-machine with stack.
6261* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6262* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6263* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6264* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6265@end menu
6266
742e4900
JD
6267@node Lookahead
6268@section Lookahead Tokens
6269@cindex lookahead token
bfa74976
RS
6270
6271The Bison parser does @emph{not} always reduce immediately as soon as the
6272last @var{n} tokens and groupings match a rule. This is because such a
6273simple strategy is inadequate to handle most languages. Instead, when a
6274reduction is possible, the parser sometimes ``looks ahead'' at the next
6275token in order to decide what to do.
6276
6277When a token is read, it is not immediately shifted; first it becomes the
742e4900 6278@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6279perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6280the lookahead token remains off to the side. When no more reductions
6281should take place, the lookahead token is shifted onto the stack. This
bfa74976 6282does not mean that all possible reductions have been done; depending on the
742e4900 6283token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6284application.
6285
742e4900 6286Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6287expressions which contain binary addition operators and postfix unary
6288factorial operators (@samp{!}), and allow parentheses for grouping.
6289
6290@example
6291@group
6292expr: term '+' expr
6293 | term
6294 ;
6295@end group
6296
6297@group
6298term: '(' expr ')'
6299 | term '!'
6300 | NUMBER
6301 ;
6302@end group
6303@end example
6304
6305Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6306should be done? If the following token is @samp{)}, then the first three
6307tokens must be reduced to form an @code{expr}. This is the only valid
6308course, because shifting the @samp{)} would produce a sequence of symbols
6309@w{@code{term ')'}}, and no rule allows this.
6310
6311If the following token is @samp{!}, then it must be shifted immediately so
6312that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6313parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6314@code{expr}. It would then be impossible to shift the @samp{!} because
6315doing so would produce on the stack the sequence of symbols @code{expr
6316'!'}. No rule allows that sequence.
6317
6318@vindex yychar
32c29292
JD
6319@vindex yylval
6320@vindex yylloc
742e4900 6321The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6322Its semantic value and location, if any, are stored in the variables
6323@code{yylval} and @code{yylloc}.
bfa74976
RS
6324@xref{Action Features, ,Special Features for Use in Actions}.
6325
342b8b6e 6326@node Shift/Reduce
bfa74976
RS
6327@section Shift/Reduce Conflicts
6328@cindex conflicts
6329@cindex shift/reduce conflicts
6330@cindex dangling @code{else}
6331@cindex @code{else}, dangling
6332
6333Suppose we are parsing a language which has if-then and if-then-else
6334statements, with a pair of rules like this:
6335
6336@example
6337@group
6338if_stmt:
6339 IF expr THEN stmt
6340 | IF expr THEN stmt ELSE stmt
6341 ;
6342@end group
6343@end example
6344
6345@noindent
6346Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6347terminal symbols for specific keyword tokens.
6348
742e4900 6349When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6350contents of the stack (assuming the input is valid) are just right for
6351reduction by the first rule. But it is also legitimate to shift the
6352@code{ELSE}, because that would lead to eventual reduction by the second
6353rule.
6354
6355This situation, where either a shift or a reduction would be valid, is
6356called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6357these conflicts by choosing to shift, unless otherwise directed by
6358operator precedence declarations. To see the reason for this, let's
6359contrast it with the other alternative.
6360
6361Since the parser prefers to shift the @code{ELSE}, the result is to attach
6362the else-clause to the innermost if-statement, making these two inputs
6363equivalent:
6364
6365@example
6366if x then if y then win (); else lose;
6367
6368if x then do; if y then win (); else lose; end;
6369@end example
6370
6371But if the parser chose to reduce when possible rather than shift, the
6372result would be to attach the else-clause to the outermost if-statement,
6373making these two inputs equivalent:
6374
6375@example
6376if x then if y then win (); else lose;
6377
6378if x then do; if y then win (); end; else lose;
6379@end example
6380
6381The conflict exists because the grammar as written is ambiguous: either
6382parsing of the simple nested if-statement is legitimate. The established
6383convention is that these ambiguities are resolved by attaching the
6384else-clause to the innermost if-statement; this is what Bison accomplishes
6385by choosing to shift rather than reduce. (It would ideally be cleaner to
6386write an unambiguous grammar, but that is very hard to do in this case.)
6387This particular ambiguity was first encountered in the specifications of
6388Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6389
6390To avoid warnings from Bison about predictable, legitimate shift/reduce
6391conflicts, use the @code{%expect @var{n}} declaration. There will be no
6392warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6393@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6394
6395The definition of @code{if_stmt} above is solely to blame for the
6396conflict, but the conflict does not actually appear without additional
6397rules. Here is a complete Bison input file that actually manifests the
6398conflict:
6399
6400@example
6401@group
6402%token IF THEN ELSE variable
6403%%
6404@end group
6405@group
6406stmt: expr
6407 | if_stmt
6408 ;
6409@end group
6410
6411@group
6412if_stmt:
6413 IF expr THEN stmt
6414 | IF expr THEN stmt ELSE stmt
6415 ;
6416@end group
6417
6418expr: variable
6419 ;
6420@end example
6421
342b8b6e 6422@node Precedence
bfa74976
RS
6423@section Operator Precedence
6424@cindex operator precedence
6425@cindex precedence of operators
6426
6427Another situation where shift/reduce conflicts appear is in arithmetic
6428expressions. Here shifting is not always the preferred resolution; the
6429Bison declarations for operator precedence allow you to specify when to
6430shift and when to reduce.
6431
6432@menu
6433* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6434* Using Precedence:: How to specify precedence and associativity.
6435* Precedence Only:: How to specify precedence only.
bfa74976
RS
6436* Precedence Examples:: How these features are used in the previous example.
6437* How Precedence:: How they work.
6438@end menu
6439
342b8b6e 6440@node Why Precedence
bfa74976
RS
6441@subsection When Precedence is Needed
6442
6443Consider the following ambiguous grammar fragment (ambiguous because the
6444input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6445
6446@example
6447@group
6448expr: expr '-' expr
6449 | expr '*' expr
6450 | expr '<' expr
6451 | '(' expr ')'
6452 @dots{}
6453 ;
6454@end group
6455@end example
6456
6457@noindent
6458Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6459should it reduce them via the rule for the subtraction operator? It
6460depends on the next token. Of course, if the next token is @samp{)}, we
6461must reduce; shifting is invalid because no single rule can reduce the
6462token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6463the next token is @samp{*} or @samp{<}, we have a choice: either
6464shifting or reduction would allow the parse to complete, but with
6465different results.
6466
6467To decide which one Bison should do, we must consider the results. If
6468the next operator token @var{op} is shifted, then it must be reduced
6469first in order to permit another opportunity to reduce the difference.
6470The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6471hand, if the subtraction is reduced before shifting @var{op}, the result
6472is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6473reduce should depend on the relative precedence of the operators
6474@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6475@samp{<}.
bfa74976
RS
6476
6477@cindex associativity
6478What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6479@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6480operators we prefer the former, which is called @dfn{left association}.
6481The latter alternative, @dfn{right association}, is desirable for
6482assignment operators. The choice of left or right association is a
6483matter of whether the parser chooses to shift or reduce when the stack
742e4900 6484contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6485makes right-associativity.
bfa74976 6486
342b8b6e 6487@node Using Precedence
bfa74976
RS
6488@subsection Specifying Operator Precedence
6489@findex %left
bfa74976 6490@findex %nonassoc
d78f0ac9
AD
6491@findex %precedence
6492@findex %right
bfa74976
RS
6493
6494Bison allows you to specify these choices with the operator precedence
6495declarations @code{%left} and @code{%right}. Each such declaration
6496contains a list of tokens, which are operators whose precedence and
6497associativity is being declared. The @code{%left} declaration makes all
6498those operators left-associative and the @code{%right} declaration makes
6499them right-associative. A third alternative is @code{%nonassoc}, which
6500declares that it is a syntax error to find the same operator twice ``in a
6501row''.
d78f0ac9
AD
6502The last alternative, @code{%precedence}, allows to define only
6503precedence and no associativity at all. As a result, any
6504associativity-related conflict that remains will be reported as an
6505compile-time error. The directive @code{%nonassoc} creates run-time
6506error: using the operator in a associative way is a syntax error. The
6507directive @code{%precedence} creates compile-time errors: an operator
6508@emph{can} be involved in an associativity-related conflict, contrary to
6509what expected the grammar author.
bfa74976
RS
6510
6511The relative precedence of different operators is controlled by the
d78f0ac9
AD
6512order in which they are declared. The first precedence/associativity
6513declaration in the file declares the operators whose
bfa74976
RS
6514precedence is lowest, the next such declaration declares the operators
6515whose precedence is a little higher, and so on.
6516
d78f0ac9
AD
6517@node Precedence Only
6518@subsection Specifying Precedence Only
6519@findex %precedence
6520
6521Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6522@code{%nonassoc}, which all defines precedence and associativity, little
6523attention is paid to the fact that precedence cannot be defined without
6524defining associativity. Yet, sometimes, when trying to solve a
6525conflict, precedence suffices. In such a case, using @code{%left},
6526@code{%right}, or @code{%nonassoc} might hide future (associativity
6527related) conflicts that would remain hidden.
6528
6529The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6530Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6531in the following situation, where the period denotes the current parsing
6532state:
6533
6534@example
6535if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6536@end example
6537
6538The conflict involves the reduction of the rule @samp{IF expr THEN
6539stmt}, which precedence is by default that of its last token
6540(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6541disambiguation (attach the @code{else} to the closest @code{if}),
6542shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6543higher than that of @code{THEN}. But neither is expected to be involved
6544in an associativity related conflict, which can be specified as follows.
6545
6546@example
6547%precedence THEN
6548%precedence ELSE
6549@end example
6550
6551The unary-minus is another typical example where associativity is
6552usually over-specified, see @ref{Infix Calc, , Infix Notation
6553Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6554used to declare the precedence of @code{NEG}, which is more than needed
6555since it also defines its associativity. While this is harmless in the
6556traditional example, who knows how @code{NEG} might be used in future
6557evolutions of the grammar@dots{}
6558
342b8b6e 6559@node Precedence Examples
bfa74976
RS
6560@subsection Precedence Examples
6561
6562In our example, we would want the following declarations:
6563
6564@example
6565%left '<'
6566%left '-'
6567%left '*'
6568@end example
6569
6570In a more complete example, which supports other operators as well, we
6571would declare them in groups of equal precedence. For example, @code{'+'} is
6572declared with @code{'-'}:
6573
6574@example
6575%left '<' '>' '=' NE LE GE
6576%left '+' '-'
6577%left '*' '/'
6578@end example
6579
6580@noindent
6581(Here @code{NE} and so on stand for the operators for ``not equal''
6582and so on. We assume that these tokens are more than one character long
6583and therefore are represented by names, not character literals.)
6584
342b8b6e 6585@node How Precedence
bfa74976
RS
6586@subsection How Precedence Works
6587
6588The first effect of the precedence declarations is to assign precedence
6589levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6590precedence levels to certain rules: each rule gets its precedence from
6591the last terminal symbol mentioned in the components. (You can also
6592specify explicitly the precedence of a rule. @xref{Contextual
6593Precedence, ,Context-Dependent Precedence}.)
6594
6595Finally, the resolution of conflicts works by comparing the precedence
742e4900 6596of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6597token's precedence is higher, the choice is to shift. If the rule's
6598precedence is higher, the choice is to reduce. If they have equal
6599precedence, the choice is made based on the associativity of that
6600precedence level. The verbose output file made by @samp{-v}
6601(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6602resolved.
bfa74976
RS
6603
6604Not all rules and not all tokens have precedence. If either the rule or
742e4900 6605the lookahead token has no precedence, then the default is to shift.
bfa74976 6606
342b8b6e 6607@node Contextual Precedence
bfa74976
RS
6608@section Context-Dependent Precedence
6609@cindex context-dependent precedence
6610@cindex unary operator precedence
6611@cindex precedence, context-dependent
6612@cindex precedence, unary operator
6613@findex %prec
6614
6615Often the precedence of an operator depends on the context. This sounds
6616outlandish at first, but it is really very common. For example, a minus
6617sign typically has a very high precedence as a unary operator, and a
6618somewhat lower precedence (lower than multiplication) as a binary operator.
6619
d78f0ac9
AD
6620The Bison precedence declarations
6621can only be used once for a given token; so a token has
bfa74976
RS
6622only one precedence declared in this way. For context-dependent
6623precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6624modifier for rules.
bfa74976
RS
6625
6626The @code{%prec} modifier declares the precedence of a particular rule by
6627specifying a terminal symbol whose precedence should be used for that rule.
6628It's not necessary for that symbol to appear otherwise in the rule. The
6629modifier's syntax is:
6630
6631@example
6632%prec @var{terminal-symbol}
6633@end example
6634
6635@noindent
6636and it is written after the components of the rule. Its effect is to
6637assign the rule the precedence of @var{terminal-symbol}, overriding
6638the precedence that would be deduced for it in the ordinary way. The
6639altered rule precedence then affects how conflicts involving that rule
6640are resolved (@pxref{Precedence, ,Operator Precedence}).
6641
6642Here is how @code{%prec} solves the problem of unary minus. First, declare
6643a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6644are no tokens of this type, but the symbol serves to stand for its
6645precedence:
6646
6647@example
6648@dots{}
6649%left '+' '-'
6650%left '*'
6651%left UMINUS
6652@end example
6653
6654Now the precedence of @code{UMINUS} can be used in specific rules:
6655
6656@example
6657@group
6658exp: @dots{}
6659 | exp '-' exp
6660 @dots{}
6661 | '-' exp %prec UMINUS
6662@end group
6663@end example
6664
91d2c560 6665@ifset defaultprec
39a06c25
PE
6666If you forget to append @code{%prec UMINUS} to the rule for unary
6667minus, Bison silently assumes that minus has its usual precedence.
6668This kind of problem can be tricky to debug, since one typically
6669discovers the mistake only by testing the code.
6670
22fccf95 6671The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6672this kind of problem systematically. It causes rules that lack a
6673@code{%prec} modifier to have no precedence, even if the last terminal
6674symbol mentioned in their components has a declared precedence.
6675
22fccf95 6676If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6677for all rules that participate in precedence conflict resolution.
6678Then you will see any shift/reduce conflict until you tell Bison how
6679to resolve it, either by changing your grammar or by adding an
6680explicit precedence. This will probably add declarations to the
6681grammar, but it helps to protect against incorrect rule precedences.
6682
22fccf95
PE
6683The effect of @code{%no-default-prec;} can be reversed by giving
6684@code{%default-prec;}, which is the default.
91d2c560 6685@end ifset
39a06c25 6686
342b8b6e 6687@node Parser States
bfa74976
RS
6688@section Parser States
6689@cindex finite-state machine
6690@cindex parser state
6691@cindex state (of parser)
6692
6693The function @code{yyparse} is implemented using a finite-state machine.
6694The values pushed on the parser stack are not simply token type codes; they
6695represent the entire sequence of terminal and nonterminal symbols at or
6696near the top of the stack. The current state collects all the information
6697about previous input which is relevant to deciding what to do next.
6698
742e4900
JD
6699Each time a lookahead token is read, the current parser state together
6700with the type of lookahead token are looked up in a table. This table
6701entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6702specifies the new parser state, which is pushed onto the top of the
6703parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6704This means that a certain number of tokens or groupings are taken off
6705the top of the stack, and replaced by one grouping. In other words,
6706that number of states are popped from the stack, and one new state is
6707pushed.
6708
742e4900 6709There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6710is erroneous in the current state. This causes error processing to begin
6711(@pxref{Error Recovery}).
6712
342b8b6e 6713@node Reduce/Reduce
bfa74976
RS
6714@section Reduce/Reduce Conflicts
6715@cindex reduce/reduce conflict
6716@cindex conflicts, reduce/reduce
6717
6718A reduce/reduce conflict occurs if there are two or more rules that apply
6719to the same sequence of input. This usually indicates a serious error
6720in the grammar.
6721
6722For example, here is an erroneous attempt to define a sequence
6723of zero or more @code{word} groupings.
6724
6725@example
6726sequence: /* empty */
6727 @{ printf ("empty sequence\n"); @}
6728 | maybeword
6729 | sequence word
6730 @{ printf ("added word %s\n", $2); @}
6731 ;
6732
6733maybeword: /* empty */
6734 @{ printf ("empty maybeword\n"); @}
6735 | word
6736 @{ printf ("single word %s\n", $1); @}
6737 ;
6738@end example
6739
6740@noindent
6741The error is an ambiguity: there is more than one way to parse a single
6742@code{word} into a @code{sequence}. It could be reduced to a
6743@code{maybeword} and then into a @code{sequence} via the second rule.
6744Alternatively, nothing-at-all could be reduced into a @code{sequence}
6745via the first rule, and this could be combined with the @code{word}
6746using the third rule for @code{sequence}.
6747
6748There is also more than one way to reduce nothing-at-all into a
6749@code{sequence}. This can be done directly via the first rule,
6750or indirectly via @code{maybeword} and then the second rule.
6751
6752You might think that this is a distinction without a difference, because it
6753does not change whether any particular input is valid or not. But it does
6754affect which actions are run. One parsing order runs the second rule's
6755action; the other runs the first rule's action and the third rule's action.
6756In this example, the output of the program changes.
6757
6758Bison resolves a reduce/reduce conflict by choosing to use the rule that
6759appears first in the grammar, but it is very risky to rely on this. Every
6760reduce/reduce conflict must be studied and usually eliminated. Here is the
6761proper way to define @code{sequence}:
6762
6763@example
6764sequence: /* empty */
6765 @{ printf ("empty sequence\n"); @}
6766 | sequence word
6767 @{ printf ("added word %s\n", $2); @}
6768 ;
6769@end example
6770
6771Here is another common error that yields a reduce/reduce conflict:
6772
6773@example
6774sequence: /* empty */
6775 | sequence words
6776 | sequence redirects
6777 ;
6778
6779words: /* empty */
6780 | words word
6781 ;
6782
6783redirects:/* empty */
6784 | redirects redirect
6785 ;
6786@end example
6787
6788@noindent
6789The intention here is to define a sequence which can contain either
6790@code{word} or @code{redirect} groupings. The individual definitions of
6791@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6792three together make a subtle ambiguity: even an empty input can be parsed
6793in infinitely many ways!
6794
6795Consider: nothing-at-all could be a @code{words}. Or it could be two
6796@code{words} in a row, or three, or any number. It could equally well be a
6797@code{redirects}, or two, or any number. Or it could be a @code{words}
6798followed by three @code{redirects} and another @code{words}. And so on.
6799
6800Here are two ways to correct these rules. First, to make it a single level
6801of sequence:
6802
6803@example
6804sequence: /* empty */
6805 | sequence word
6806 | sequence redirect
6807 ;
6808@end example
6809
6810Second, to prevent either a @code{words} or a @code{redirects}
6811from being empty:
6812
6813@example
6814sequence: /* empty */
6815 | sequence words
6816 | sequence redirects
6817 ;
6818
6819words: word
6820 | words word
6821 ;
6822
6823redirects:redirect
6824 | redirects redirect
6825 ;
6826@end example
6827
342b8b6e 6828@node Mystery Conflicts
bfa74976
RS
6829@section Mysterious Reduce/Reduce Conflicts
6830
6831Sometimes reduce/reduce conflicts can occur that don't look warranted.
6832Here is an example:
6833
6834@example
6835@group
6836%token ID
6837
6838%%
6839def: param_spec return_spec ','
6840 ;
6841param_spec:
6842 type
6843 | name_list ':' type
6844 ;
6845@end group
6846@group
6847return_spec:
6848 type
6849 | name ':' type
6850 ;
6851@end group
6852@group
6853type: ID
6854 ;
6855@end group
6856@group
6857name: ID
6858 ;
6859name_list:
6860 name
6861 | name ',' name_list
6862 ;
6863@end group
6864@end example
6865
6866It would seem that this grammar can be parsed with only a single token
742e4900 6867of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6868a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6869@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6870
c827f760
PE
6871@cindex @acronym{LR}(1)
6872@cindex @acronym{LALR}(1)
eb45ef3b
JD
6873However, for historical reasons, Bison cannot by default handle all
6874@acronym{LR}(1) grammars.
6875In this grammar, two contexts, that after an @code{ID} at the beginning
6876of a @code{param_spec} and likewise at the beginning of a
6877@code{return_spec}, are similar enough that Bison assumes they are the
6878same.
6879They appear similar because the same set of rules would be
bfa74976
RS
6880active---the rule for reducing to a @code{name} and that for reducing to
6881a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6882that the rules would require different lookahead tokens in the two
bfa74976
RS
6883contexts, so it makes a single parser state for them both. Combining
6884the two contexts causes a conflict later. In parser terminology, this
c827f760 6885occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6886
eb45ef3b
JD
6887For many practical grammars (specifically those that fall into the
6888non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6889difficulties beyond just mysterious reduce/reduce conflicts.
6890The best way to fix all these problems is to select a different parser
6891table generation algorithm.
6892Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6893the former is more efficient and easier to debug during development.
6894@xref{Decl Summary,,lr.type}, for details.
6895(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6896are experimental.
6897More user feedback will help to stabilize them.)
6898
6899If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6900can often fix a mysterious conflict by identifying the two parser states
6901that are being confused, and adding something to make them look
6902distinct. In the above example, adding one rule to
bfa74976
RS
6903@code{return_spec} as follows makes the problem go away:
6904
6905@example
6906@group
6907%token BOGUS
6908@dots{}
6909%%
6910@dots{}
6911return_spec:
6912 type
6913 | name ':' type
6914 /* This rule is never used. */
6915 | ID BOGUS
6916 ;
6917@end group
6918@end example
6919
6920This corrects the problem because it introduces the possibility of an
6921additional active rule in the context after the @code{ID} at the beginning of
6922@code{return_spec}. This rule is not active in the corresponding context
6923in a @code{param_spec}, so the two contexts receive distinct parser states.
6924As long as the token @code{BOGUS} is never generated by @code{yylex},
6925the added rule cannot alter the way actual input is parsed.
6926
6927In this particular example, there is another way to solve the problem:
6928rewrite the rule for @code{return_spec} to use @code{ID} directly
6929instead of via @code{name}. This also causes the two confusing
6930contexts to have different sets of active rules, because the one for
6931@code{return_spec} activates the altered rule for @code{return_spec}
6932rather than the one for @code{name}.
6933
6934@example
6935param_spec:
6936 type
6937 | name_list ':' type
6938 ;
6939return_spec:
6940 type
6941 | ID ':' type
6942 ;
6943@end example
6944
e054b190
PE
6945For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6946generators, please see:
6947Frank DeRemer and Thomas Pennello, Efficient Computation of
6948@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6949Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6950pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6951
fae437e8 6952@node Generalized LR Parsing
c827f760
PE
6953@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6954@cindex @acronym{GLR} parsing
6955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6956@cindex ambiguous grammars
9d9b8b70 6957@cindex nondeterministic parsing
676385e2 6958
fae437e8
AD
6959Bison produces @emph{deterministic} parsers that choose uniquely
6960when to reduce and which reduction to apply
742e4900 6961based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6962As a result, normal Bison handles a proper subset of the family of
6963context-free languages.
fae437e8 6964Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6965sequence of reductions cannot have deterministic parsers in this sense.
6966The same is true of languages that require more than one symbol of
742e4900 6967lookahead, since the parser lacks the information necessary to make a
676385e2 6968decision at the point it must be made in a shift-reduce parser.
fae437e8 6969Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 6970there are languages where Bison's default choice of how to
676385e2
PH
6971summarize the input seen so far loses necessary information.
6972
6973When you use the @samp{%glr-parser} declaration in your grammar file,
6974Bison generates a parser that uses a different algorithm, called
c827f760
PE
6975Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6976parser uses the same basic
676385e2
PH
6977algorithm for parsing as an ordinary Bison parser, but behaves
6978differently in cases where there is a shift-reduce conflict that has not
fae437e8 6979been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6980reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6981situation, it
fae437e8 6982effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6983shift or reduction. These parsers then proceed as usual, consuming
6984tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6985and split further, with the result that instead of a sequence of states,
c827f760 6986a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6987
6988In effect, each stack represents a guess as to what the proper parse
6989is. Additional input may indicate that a guess was wrong, in which case
6990the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6991actions generated in each stack are saved, rather than being executed
676385e2 6992immediately. When a stack disappears, its saved semantic actions never
fae437e8 6993get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6994their sets of semantic actions are both saved with the state that
6995results from the reduction. We say that two stacks are equivalent
fae437e8 6996when they both represent the same sequence of states,
676385e2
PH
6997and each pair of corresponding states represents a
6998grammar symbol that produces the same segment of the input token
6999stream.
7000
7001Whenever the parser makes a transition from having multiple
eb45ef3b 7002states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7003algorithm, after resolving and executing the saved-up actions.
7004At this transition, some of the states on the stack will have semantic
7005values that are sets (actually multisets) of possible actions. The
7006parser tries to pick one of the actions by first finding one whose rule
7007has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7008declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7009precedence, but there the same merging function is declared for both
fae437e8 7010rules by the @samp{%merge} declaration,
676385e2
PH
7011Bison resolves and evaluates both and then calls the merge function on
7012the result. Otherwise, it reports an ambiguity.
7013
c827f760 7014It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7015permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7016size of the input), any unambiguous (not necessarily
eb45ef3b 7017@acronym{LR}(1)) grammar in
fae437e8 7018quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7019context-free grammar in cubic worst-case time. However, Bison currently
7020uses a simpler data structure that requires time proportional to the
7021length of the input times the maximum number of stacks required for any
9d9b8b70 7022prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7023grammars can require exponential time and space to process. Such badly
7024behaving examples, however, are not generally of practical interest.
9d9b8b70 7025Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7026doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7027structure should generally be adequate. On @acronym{LR}(1) portions of a
7028grammar, in particular, it is only slightly slower than with the
7029deterministic @acronym{LR}(1) Bison parser.
676385e2 7030
fa7e68c3 7031For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7032Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7033Generalised @acronym{LR} Parsers, Royal Holloway, University of
7034London, Department of Computer Science, TR-00-12,
7035@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7036(2000-12-24).
7037
1a059451
PE
7038@node Memory Management
7039@section Memory Management, and How to Avoid Memory Exhaustion
7040@cindex memory exhaustion
7041@cindex memory management
bfa74976
RS
7042@cindex stack overflow
7043@cindex parser stack overflow
7044@cindex overflow of parser stack
7045
1a059451 7046The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7047not reduced. When this happens, the parser function @code{yyparse}
1a059451 7048calls @code{yyerror} and then returns 2.
bfa74976 7049
c827f760 7050Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7051usually results from using a right recursion instead of a left
7052recursion, @xref{Recursion, ,Recursive Rules}.
7053
bfa74976
RS
7054@vindex YYMAXDEPTH
7055By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7056parser stack can become before memory is exhausted. Define the
bfa74976
RS
7057macro with a value that is an integer. This value is the maximum number
7058of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7059
7060The stack space allowed is not necessarily allocated. If you specify a
1a059451 7061large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7062stack at first, and then makes it bigger by stages as needed. This
7063increasing allocation happens automatically and silently. Therefore,
7064you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7065space for ordinary inputs that do not need much stack.
7066
d7e14fc0
PE
7067However, do not allow @code{YYMAXDEPTH} to be a value so large that
7068arithmetic overflow could occur when calculating the size of the stack
7069space. Also, do not allow @code{YYMAXDEPTH} to be less than
7070@code{YYINITDEPTH}.
7071
bfa74976
RS
7072@cindex default stack limit
7073The default value of @code{YYMAXDEPTH}, if you do not define it, is
707410000.
7075
7076@vindex YYINITDEPTH
7077You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7078macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7079parser in C, this value must be a compile-time constant
d7e14fc0
PE
7080unless you are assuming C99 or some other target language or compiler
7081that allows variable-length arrays. The default is 200.
7082
1a059451 7083Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7084
d1a1114f 7085@c FIXME: C++ output.
eb45ef3b
JD
7086Because of semantical differences between C and C++, the deterministic
7087parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7088by C++ compilers. In this precise case (compiling a C parser as C++) you are
7089suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7090this deficiency in a future release.
d1a1114f 7091
342b8b6e 7092@node Error Recovery
bfa74976
RS
7093@chapter Error Recovery
7094@cindex error recovery
7095@cindex recovery from errors
7096
6e649e65 7097It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7098error. For example, a compiler should recover sufficiently to parse the
7099rest of the input file and check it for errors; a calculator should accept
7100another expression.
7101
7102In a simple interactive command parser where each input is one line, it may
7103be sufficient to allow @code{yyparse} to return 1 on error and have the
7104caller ignore the rest of the input line when that happens (and then call
7105@code{yyparse} again). But this is inadequate for a compiler, because it
7106forgets all the syntactic context leading up to the error. A syntax error
7107deep within a function in the compiler input should not cause the compiler
7108to treat the following line like the beginning of a source file.
7109
7110@findex error
7111You can define how to recover from a syntax error by writing rules to
7112recognize the special token @code{error}. This is a terminal symbol that
7113is always defined (you need not declare it) and reserved for error
7114handling. The Bison parser generates an @code{error} token whenever a
7115syntax error happens; if you have provided a rule to recognize this token
13863333 7116in the current context, the parse can continue.
bfa74976
RS
7117
7118For example:
7119
7120@example
7121stmnts: /* empty string */
7122 | stmnts '\n'
7123 | stmnts exp '\n'
7124 | stmnts error '\n'
7125@end example
7126
7127The fourth rule in this example says that an error followed by a newline
7128makes a valid addition to any @code{stmnts}.
7129
7130What happens if a syntax error occurs in the middle of an @code{exp}? The
7131error recovery rule, interpreted strictly, applies to the precise sequence
7132of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7133the middle of an @code{exp}, there will probably be some additional tokens
7134and subexpressions on the stack after the last @code{stmnts}, and there
7135will be tokens to read before the next newline. So the rule is not
7136applicable in the ordinary way.
7137
7138But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7139the semantic context and part of the input. First it discards states
7140and objects from the stack until it gets back to a state in which the
bfa74976 7141@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7142already parsed are discarded, back to the last complete @code{stmnts}.)
7143At this point the @code{error} token can be shifted. Then, if the old
742e4900 7144lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7145tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7146this example, Bison reads and discards input until the next newline so
7147that the fourth rule can apply. Note that discarded symbols are
7148possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7149Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7150
7151The choice of error rules in the grammar is a choice of strategies for
7152error recovery. A simple and useful strategy is simply to skip the rest of
7153the current input line or current statement if an error is detected:
7154
7155@example
72d2299c 7156stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7157@end example
7158
7159It is also useful to recover to the matching close-delimiter of an
7160opening-delimiter that has already been parsed. Otherwise the
7161close-delimiter will probably appear to be unmatched, and generate another,
7162spurious error message:
7163
7164@example
7165primary: '(' expr ')'
7166 | '(' error ')'
7167 @dots{}
7168 ;
7169@end example
7170
7171Error recovery strategies are necessarily guesses. When they guess wrong,
7172one syntax error often leads to another. In the above example, the error
7173recovery rule guesses that an error is due to bad input within one
7174@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7175middle of a valid @code{stmnt}. After the error recovery rule recovers
7176from the first error, another syntax error will be found straightaway,
7177since the text following the spurious semicolon is also an invalid
7178@code{stmnt}.
7179
7180To prevent an outpouring of error messages, the parser will output no error
7181message for another syntax error that happens shortly after the first; only
7182after three consecutive input tokens have been successfully shifted will
7183error messages resume.
7184
7185Note that rules which accept the @code{error} token may have actions, just
7186as any other rules can.
7187
7188@findex yyerrok
7189You can make error messages resume immediately by using the macro
7190@code{yyerrok} in an action. If you do this in the error rule's action, no
7191error messages will be suppressed. This macro requires no arguments;
7192@samp{yyerrok;} is a valid C statement.
7193
7194@findex yyclearin
742e4900 7195The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7196this is unacceptable, then the macro @code{yyclearin} may be used to clear
7197this token. Write the statement @samp{yyclearin;} in the error rule's
7198action.
32c29292 7199@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7200
6e649e65 7201For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7202called that advances the input stream to some point where parsing should
7203once again commence. The next symbol returned by the lexical scanner is
742e4900 7204probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7205with @samp{yyclearin;}.
7206
7207@vindex YYRECOVERING
02103984
PE
7208The expression @code{YYRECOVERING ()} yields 1 when the parser
7209is recovering from a syntax error, and 0 otherwise.
7210Syntax error diagnostics are suppressed while recovering from a syntax
7211error.
bfa74976 7212
342b8b6e 7213@node Context Dependency
bfa74976
RS
7214@chapter Handling Context Dependencies
7215
7216The Bison paradigm is to parse tokens first, then group them into larger
7217syntactic units. In many languages, the meaning of a token is affected by
7218its context. Although this violates the Bison paradigm, certain techniques
7219(known as @dfn{kludges}) may enable you to write Bison parsers for such
7220languages.
7221
7222@menu
7223* Semantic Tokens:: Token parsing can depend on the semantic context.
7224* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7225* Tie-in Recovery:: Lexical tie-ins have implications for how
7226 error recovery rules must be written.
7227@end menu
7228
7229(Actually, ``kludge'' means any technique that gets its job done but is
7230neither clean nor robust.)
7231
342b8b6e 7232@node Semantic Tokens
bfa74976
RS
7233@section Semantic Info in Token Types
7234
7235The C language has a context dependency: the way an identifier is used
7236depends on what its current meaning is. For example, consider this:
7237
7238@example
7239foo (x);
7240@end example
7241
7242This looks like a function call statement, but if @code{foo} is a typedef
7243name, then this is actually a declaration of @code{x}. How can a Bison
7244parser for C decide how to parse this input?
7245
c827f760 7246The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7247@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7248identifier, it looks up the current declaration of the identifier in order
7249to decide which token type to return: @code{TYPENAME} if the identifier is
7250declared as a typedef, @code{IDENTIFIER} otherwise.
7251
7252The grammar rules can then express the context dependency by the choice of
7253token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7254but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7255@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7256is @emph{not} significant, such as in declarations that can shadow a
7257typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7258accepted---there is one rule for each of the two token types.
7259
7260This technique is simple to use if the decision of which kinds of
7261identifiers to allow is made at a place close to where the identifier is
7262parsed. But in C this is not always so: C allows a declaration to
7263redeclare a typedef name provided an explicit type has been specified
7264earlier:
7265
7266@example
3a4f411f
PE
7267typedef int foo, bar;
7268int baz (void)
7269@{
7270 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7271 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7272 return foo (bar);
7273@}
bfa74976
RS
7274@end example
7275
7276Unfortunately, the name being declared is separated from the declaration
7277construct itself by a complicated syntactic structure---the ``declarator''.
7278
9ecbd125 7279As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7280all the nonterminal names changed: once for parsing a declaration in
7281which a typedef name can be redefined, and once for parsing a
7282declaration in which that can't be done. Here is a part of the
7283duplication, with actions omitted for brevity:
bfa74976
RS
7284
7285@example
7286initdcl:
7287 declarator maybeasm '='
7288 init
7289 | declarator maybeasm
7290 ;
7291
7292notype_initdcl:
7293 notype_declarator maybeasm '='
7294 init
7295 | notype_declarator maybeasm
7296 ;
7297@end example
7298
7299@noindent
7300Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7301cannot. The distinction between @code{declarator} and
7302@code{notype_declarator} is the same sort of thing.
7303
7304There is some similarity between this technique and a lexical tie-in
7305(described next), in that information which alters the lexical analysis is
7306changed during parsing by other parts of the program. The difference is
7307here the information is global, and is used for other purposes in the
7308program. A true lexical tie-in has a special-purpose flag controlled by
7309the syntactic context.
7310
342b8b6e 7311@node Lexical Tie-ins
bfa74976
RS
7312@section Lexical Tie-ins
7313@cindex lexical tie-in
7314
7315One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7316which is set by Bison actions, whose purpose is to alter the way tokens are
7317parsed.
7318
7319For example, suppose we have a language vaguely like C, but with a special
7320construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7321an expression in parentheses in which all integers are hexadecimal. In
7322particular, the token @samp{a1b} must be treated as an integer rather than
7323as an identifier if it appears in that context. Here is how you can do it:
7324
7325@example
7326@group
7327%@{
38a92d50
PE
7328 int hexflag;
7329 int yylex (void);
7330 void yyerror (char const *);
bfa74976
RS
7331%@}
7332%%
7333@dots{}
7334@end group
7335@group
7336expr: IDENTIFIER
7337 | constant
7338 | HEX '('
7339 @{ hexflag = 1; @}
7340 expr ')'
7341 @{ hexflag = 0;
7342 $$ = $4; @}
7343 | expr '+' expr
7344 @{ $$ = make_sum ($1, $3); @}
7345 @dots{}
7346 ;
7347@end group
7348
7349@group
7350constant:
7351 INTEGER
7352 | STRING
7353 ;
7354@end group
7355@end example
7356
7357@noindent
7358Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7359it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7360with letters are parsed as integers if possible.
7361
342b8b6e
AD
7362The declaration of @code{hexflag} shown in the prologue of the parser file
7363is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7364You must also write the code in @code{yylex} to obey the flag.
bfa74976 7365
342b8b6e 7366@node Tie-in Recovery
bfa74976
RS
7367@section Lexical Tie-ins and Error Recovery
7368
7369Lexical tie-ins make strict demands on any error recovery rules you have.
7370@xref{Error Recovery}.
7371
7372The reason for this is that the purpose of an error recovery rule is to
7373abort the parsing of one construct and resume in some larger construct.
7374For example, in C-like languages, a typical error recovery rule is to skip
7375tokens until the next semicolon, and then start a new statement, like this:
7376
7377@example
7378stmt: expr ';'
7379 | IF '(' expr ')' stmt @{ @dots{} @}
7380 @dots{}
7381 error ';'
7382 @{ hexflag = 0; @}
7383 ;
7384@end example
7385
7386If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7387construct, this error rule will apply, and then the action for the
7388completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7389remain set for the entire rest of the input, or until the next @code{hex}
7390keyword, causing identifiers to be misinterpreted as integers.
7391
7392To avoid this problem the error recovery rule itself clears @code{hexflag}.
7393
7394There may also be an error recovery rule that works within expressions.
7395For example, there could be a rule which applies within parentheses
7396and skips to the close-parenthesis:
7397
7398@example
7399@group
7400expr: @dots{}
7401 | '(' expr ')'
7402 @{ $$ = $2; @}
7403 | '(' error ')'
7404 @dots{}
7405@end group
7406@end example
7407
7408If this rule acts within the @code{hex} construct, it is not going to abort
7409that construct (since it applies to an inner level of parentheses within
7410the construct). Therefore, it should not clear the flag: the rest of
7411the @code{hex} construct should be parsed with the flag still in effect.
7412
7413What if there is an error recovery rule which might abort out of the
7414@code{hex} construct or might not, depending on circumstances? There is no
7415way you can write the action to determine whether a @code{hex} construct is
7416being aborted or not. So if you are using a lexical tie-in, you had better
7417make sure your error recovery rules are not of this kind. Each rule must
7418be such that you can be sure that it always will, or always won't, have to
7419clear the flag.
7420
ec3bc396
AD
7421@c ================================================== Debugging Your Parser
7422
342b8b6e 7423@node Debugging
bfa74976 7424@chapter Debugging Your Parser
ec3bc396
AD
7425
7426Developing a parser can be a challenge, especially if you don't
7427understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7428Algorithm}). Even so, sometimes a detailed description of the automaton
7429can help (@pxref{Understanding, , Understanding Your Parser}), or
7430tracing the execution of the parser can give some insight on why it
7431behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7432
7433@menu
7434* Understanding:: Understanding the structure of your parser.
7435* Tracing:: Tracing the execution of your parser.
7436@end menu
7437
7438@node Understanding
7439@section Understanding Your Parser
7440
7441As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7442Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7443frequent than one would hope), looking at this automaton is required to
7444tune or simply fix a parser. Bison provides two different
35fe0834 7445representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7446
7447The textual file is generated when the options @option{--report} or
7448@option{--verbose} are specified, see @xref{Invocation, , Invoking
7449Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7450the parser output file name, and adding @samp{.output} instead.
7451Therefore, if the input file is @file{foo.y}, then the parser file is
7452called @file{foo.tab.c} by default. As a consequence, the verbose
7453output file is called @file{foo.output}.
7454
7455The following grammar file, @file{calc.y}, will be used in the sequel:
7456
7457@example
7458%token NUM STR
7459%left '+' '-'
7460%left '*'
7461%%
7462exp: exp '+' exp
7463 | exp '-' exp
7464 | exp '*' exp
7465 | exp '/' exp
7466 | NUM
7467 ;
7468useless: STR;
7469%%
7470@end example
7471
88bce5a2
AD
7472@command{bison} reports:
7473
7474@example
eb45ef3b
JD
7475tmp.y: warning: 1 nonterminal useless in grammar
7476tmp.y: warning: 1 rule useless in grammar
cff03fb2
JD
7477calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7478calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7479calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7480@end example
7481
7482When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7483creates a file @file{calc.output} with contents detailed below. The
7484order of the output and the exact presentation might vary, but the
7485interpretation is the same.
ec3bc396
AD
7486
7487The first section includes details on conflicts that were solved thanks
7488to precedence and/or associativity:
7489
7490@example
7491Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7492Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7493Conflict in state 8 between rule 2 and token '*' resolved as shift.
7494@exdent @dots{}
7495@end example
7496
7497@noindent
7498The next section lists states that still have conflicts.
7499
7500@example
5a99098d
PE
7501State 8 conflicts: 1 shift/reduce
7502State 9 conflicts: 1 shift/reduce
7503State 10 conflicts: 1 shift/reduce
7504State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7505@end example
7506
7507@noindent
7508@cindex token, useless
7509@cindex useless token
7510@cindex nonterminal, useless
7511@cindex useless nonterminal
7512@cindex rule, useless
7513@cindex useless rule
7514The next section reports useless tokens, nonterminal and rules. Useless
7515nonterminals and rules are removed in order to produce a smaller parser,
7516but useless tokens are preserved, since they might be used by the
d80fb37a 7517scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7518below):
7519
7520@example
d80fb37a 7521Nonterminals useless in grammar:
ec3bc396
AD
7522 useless
7523
d80fb37a 7524Terminals unused in grammar:
ec3bc396
AD
7525 STR
7526
cff03fb2 7527Rules useless in grammar:
ec3bc396
AD
7528#6 useless: STR;
7529@end example
7530
7531@noindent
7532The next section reproduces the exact grammar that Bison used:
7533
7534@example
7535Grammar
7536
7537 Number, Line, Rule
88bce5a2 7538 0 5 $accept -> exp $end
ec3bc396
AD
7539 1 5 exp -> exp '+' exp
7540 2 6 exp -> exp '-' exp
7541 3 7 exp -> exp '*' exp
7542 4 8 exp -> exp '/' exp
7543 5 9 exp -> NUM
7544@end example
7545
7546@noindent
7547and reports the uses of the symbols:
7548
7549@example
7550Terminals, with rules where they appear
7551
88bce5a2 7552$end (0) 0
ec3bc396
AD
7553'*' (42) 3
7554'+' (43) 1
7555'-' (45) 2
7556'/' (47) 4
7557error (256)
7558NUM (258) 5
7559
7560Nonterminals, with rules where they appear
7561
88bce5a2 7562$accept (8)
ec3bc396
AD
7563 on left: 0
7564exp (9)
7565 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7566@end example
7567
7568@noindent
7569@cindex item
7570@cindex pointed rule
7571@cindex rule, pointed
7572Bison then proceeds onto the automaton itself, describing each state
7573with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7574item is a production rule together with a point (marked by @samp{.})
7575that the input cursor.
7576
7577@example
7578state 0
7579
88bce5a2 7580 $accept -> . exp $ (rule 0)
ec3bc396 7581
2a8d363a 7582 NUM shift, and go to state 1
ec3bc396 7583
2a8d363a 7584 exp go to state 2
ec3bc396
AD
7585@end example
7586
7587This reads as follows: ``state 0 corresponds to being at the very
7588beginning of the parsing, in the initial rule, right before the start
7589symbol (here, @code{exp}). When the parser returns to this state right
7590after having reduced a rule that produced an @code{exp}, the control
7591flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7592symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7593the parse stack, and the control flow jumps to state 1. Any other
742e4900 7594lookahead triggers a syntax error.''
ec3bc396
AD
7595
7596@cindex core, item set
7597@cindex item set core
7598@cindex kernel, item set
7599@cindex item set core
7600Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7601report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7602at the beginning of any rule deriving an @code{exp}. By default Bison
7603reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7604you want to see more detail you can invoke @command{bison} with
7605@option{--report=itemset} to list all the items, include those that can
7606be derived:
7607
7608@example
7609state 0
7610
88bce5a2 7611 $accept -> . exp $ (rule 0)
ec3bc396
AD
7612 exp -> . exp '+' exp (rule 1)
7613 exp -> . exp '-' exp (rule 2)
7614 exp -> . exp '*' exp (rule 3)
7615 exp -> . exp '/' exp (rule 4)
7616 exp -> . NUM (rule 5)
7617
7618 NUM shift, and go to state 1
7619
7620 exp go to state 2
7621@end example
7622
7623@noindent
7624In the state 1...
7625
7626@example
7627state 1
7628
7629 exp -> NUM . (rule 5)
7630
2a8d363a 7631 $default reduce using rule 5 (exp)
ec3bc396
AD
7632@end example
7633
7634@noindent
742e4900 7635the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7636(@samp{$default}), the parser will reduce it. If it was coming from
7637state 0, then, after this reduction it will return to state 0, and will
7638jump to state 2 (@samp{exp: go to state 2}).
7639
7640@example
7641state 2
7642
88bce5a2 7643 $accept -> exp . $ (rule 0)
ec3bc396
AD
7644 exp -> exp . '+' exp (rule 1)
7645 exp -> exp . '-' exp (rule 2)
7646 exp -> exp . '*' exp (rule 3)
7647 exp -> exp . '/' exp (rule 4)
7648
2a8d363a
AD
7649 $ shift, and go to state 3
7650 '+' shift, and go to state 4
7651 '-' shift, and go to state 5
7652 '*' shift, and go to state 6
7653 '/' shift, and go to state 7
ec3bc396
AD
7654@end example
7655
7656@noindent
7657In state 2, the automaton can only shift a symbol. For instance,
742e4900 7658because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7659@samp{+}, it will be shifted on the parse stack, and the automaton
7660control will jump to state 4, corresponding to the item @samp{exp -> exp
7661'+' . exp}. Since there is no default action, any other token than
6e649e65 7662those listed above will trigger a syntax error.
ec3bc396 7663
eb45ef3b 7664@cindex accepting state
ec3bc396
AD
7665The state 3 is named the @dfn{final state}, or the @dfn{accepting
7666state}:
7667
7668@example
7669state 3
7670
88bce5a2 7671 $accept -> exp $ . (rule 0)
ec3bc396 7672
2a8d363a 7673 $default accept
ec3bc396
AD
7674@end example
7675
7676@noindent
7677the initial rule is completed (the start symbol and the end
7678of input were read), the parsing exits successfully.
7679
7680The interpretation of states 4 to 7 is straightforward, and is left to
7681the reader.
7682
7683@example
7684state 4
7685
7686 exp -> exp '+' . exp (rule 1)
7687
2a8d363a 7688 NUM shift, and go to state 1
ec3bc396 7689
2a8d363a 7690 exp go to state 8
ec3bc396
AD
7691
7692state 5
7693
7694 exp -> exp '-' . exp (rule 2)
7695
2a8d363a 7696 NUM shift, and go to state 1
ec3bc396 7697
2a8d363a 7698 exp go to state 9
ec3bc396
AD
7699
7700state 6
7701
7702 exp -> exp '*' . exp (rule 3)
7703
2a8d363a 7704 NUM shift, and go to state 1
ec3bc396 7705
2a8d363a 7706 exp go to state 10
ec3bc396
AD
7707
7708state 7
7709
7710 exp -> exp '/' . exp (rule 4)
7711
2a8d363a 7712 NUM shift, and go to state 1
ec3bc396 7713
2a8d363a 7714 exp go to state 11
ec3bc396
AD
7715@end example
7716
5a99098d
PE
7717As was announced in beginning of the report, @samp{State 8 conflicts:
77181 shift/reduce}:
ec3bc396
AD
7719
7720@example
7721state 8
7722
7723 exp -> exp . '+' exp (rule 1)
7724 exp -> exp '+' exp . (rule 1)
7725 exp -> exp . '-' exp (rule 2)
7726 exp -> exp . '*' exp (rule 3)
7727 exp -> exp . '/' exp (rule 4)
7728
2a8d363a
AD
7729 '*' shift, and go to state 6
7730 '/' shift, and go to state 7
ec3bc396 7731
2a8d363a
AD
7732 '/' [reduce using rule 1 (exp)]
7733 $default reduce using rule 1 (exp)
ec3bc396
AD
7734@end example
7735
742e4900 7736Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7737either shifting (and going to state 7), or reducing rule 1. The
7738conflict means that either the grammar is ambiguous, or the parser lacks
7739information to make the right decision. Indeed the grammar is
7740ambiguous, as, since we did not specify the precedence of @samp{/}, the
7741sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7742NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7743NUM}, which corresponds to reducing rule 1.
7744
eb45ef3b 7745Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7746arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7747Shift/Reduce Conflicts}. Discarded actions are reported in between
7748square brackets.
7749
7750Note that all the previous states had a single possible action: either
7751shifting the next token and going to the corresponding state, or
7752reducing a single rule. In the other cases, i.e., when shifting
7753@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7754possible, the lookahead is required to select the action. State 8 is
7755one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7756is shifting, otherwise the action is reducing rule 1. In other words,
7757the first two items, corresponding to rule 1, are not eligible when the
742e4900 7758lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7759precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7760with some set of possible lookahead tokens. When run with
7761@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7762
7763@example
7764state 8
7765
88c78747 7766 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7767 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7768 exp -> exp . '-' exp (rule 2)
7769 exp -> exp . '*' exp (rule 3)
7770 exp -> exp . '/' exp (rule 4)
7771
7772 '*' shift, and go to state 6
7773 '/' shift, and go to state 7
7774
7775 '/' [reduce using rule 1 (exp)]
7776 $default reduce using rule 1 (exp)
7777@end example
7778
7779The remaining states are similar:
7780
7781@example
7782state 9
7783
7784 exp -> exp . '+' exp (rule 1)
7785 exp -> exp . '-' exp (rule 2)
7786 exp -> exp '-' exp . (rule 2)
7787 exp -> exp . '*' exp (rule 3)
7788 exp -> exp . '/' exp (rule 4)
7789
2a8d363a
AD
7790 '*' shift, and go to state 6
7791 '/' shift, and go to state 7
ec3bc396 7792
2a8d363a
AD
7793 '/' [reduce using rule 2 (exp)]
7794 $default reduce using rule 2 (exp)
ec3bc396
AD
7795
7796state 10
7797
7798 exp -> exp . '+' exp (rule 1)
7799 exp -> exp . '-' exp (rule 2)
7800 exp -> exp . '*' exp (rule 3)
7801 exp -> exp '*' exp . (rule 3)
7802 exp -> exp . '/' exp (rule 4)
7803
2a8d363a 7804 '/' shift, and go to state 7
ec3bc396 7805
2a8d363a
AD
7806 '/' [reduce using rule 3 (exp)]
7807 $default reduce using rule 3 (exp)
ec3bc396
AD
7808
7809state 11
7810
7811 exp -> exp . '+' exp (rule 1)
7812 exp -> exp . '-' exp (rule 2)
7813 exp -> exp . '*' exp (rule 3)
7814 exp -> exp . '/' exp (rule 4)
7815 exp -> exp '/' exp . (rule 4)
7816
2a8d363a
AD
7817 '+' shift, and go to state 4
7818 '-' shift, and go to state 5
7819 '*' shift, and go to state 6
7820 '/' shift, and go to state 7
ec3bc396 7821
2a8d363a
AD
7822 '+' [reduce using rule 4 (exp)]
7823 '-' [reduce using rule 4 (exp)]
7824 '*' [reduce using rule 4 (exp)]
7825 '/' [reduce using rule 4 (exp)]
7826 $default reduce using rule 4 (exp)
ec3bc396
AD
7827@end example
7828
7829@noindent
fa7e68c3
PE
7830Observe that state 11 contains conflicts not only due to the lack of
7831precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7832@samp{*}, but also because the
ec3bc396
AD
7833associativity of @samp{/} is not specified.
7834
7835
7836@node Tracing
7837@section Tracing Your Parser
bfa74976
RS
7838@findex yydebug
7839@cindex debugging
7840@cindex tracing the parser
7841
7842If a Bison grammar compiles properly but doesn't do what you want when it
7843runs, the @code{yydebug} parser-trace feature can help you figure out why.
7844
3ded9a63
AD
7845There are several means to enable compilation of trace facilities:
7846
7847@table @asis
7848@item the macro @code{YYDEBUG}
7849@findex YYDEBUG
7850Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7851parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7852@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7853YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7854Prologue}).
7855
7856@item the option @option{-t}, @option{--debug}
7857Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7858,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7859
7860@item the directive @samp{%debug}
7861@findex %debug
fa819509
AD
7862Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
7863Summary}). This Bison extension is maintained for backward
7864compatibility with previous versions of Bison.
7865
7866@item the variable @samp{parse.trace}
7867@findex %define parse.trace
7868Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
7869,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
7870(@pxref{Bison Options}). This is a Bison extension, which is especially
7871useful for languages that don't use a preprocessor. Unless
7872@acronym{POSIX} and Yacc portability matter to you, this is the
7873preferred solution.
3ded9a63
AD
7874@end table
7875
fa819509 7876We suggest that you always enable the trace option so that debugging is
3ded9a63 7877always possible.
bfa74976 7878
02a81e05 7879The trace facility outputs messages with macro calls of the form
e2742e46 7880@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7881@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7882arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7883define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7884and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7885
7886Once you have compiled the program with trace facilities, the way to
7887request a trace is to store a nonzero value in the variable @code{yydebug}.
7888You can do this by making the C code do it (in @code{main}, perhaps), or
7889you can alter the value with a C debugger.
7890
7891Each step taken by the parser when @code{yydebug} is nonzero produces a
7892line or two of trace information, written on @code{stderr}. The trace
7893messages tell you these things:
7894
7895@itemize @bullet
7896@item
7897Each time the parser calls @code{yylex}, what kind of token was read.
7898
7899@item
7900Each time a token is shifted, the depth and complete contents of the
7901state stack (@pxref{Parser States}).
7902
7903@item
7904Each time a rule is reduced, which rule it is, and the complete contents
7905of the state stack afterward.
7906@end itemize
7907
7908To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7909produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7910Bison}). This file shows the meaning of each state in terms of
7911positions in various rules, and also what each state will do with each
7912possible input token. As you read the successive trace messages, you
7913can see that the parser is functioning according to its specification in
7914the listing file. Eventually you will arrive at the place where
7915something undesirable happens, and you will see which parts of the
7916grammar are to blame.
bfa74976
RS
7917
7918The parser file is a C program and you can use C debuggers on it, but it's
7919not easy to interpret what it is doing. The parser function is a
7920finite-state machine interpreter, and aside from the actions it executes
7921the same code over and over. Only the values of variables show where in
7922the grammar it is working.
7923
7924@findex YYPRINT
7925The debugging information normally gives the token type of each token
7926read, but not its semantic value. You can optionally define a macro
7927named @code{YYPRINT} to provide a way to print the value. If you define
7928@code{YYPRINT}, it should take three arguments. The parser will pass a
7929standard I/O stream, the numeric code for the token type, and the token
7930value (from @code{yylval}).
7931
7932Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 7933calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7934
7935@smallexample
38a92d50
PE
7936%@{
7937 static void print_token_value (FILE *, int, YYSTYPE);
7938 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7939%@}
7940
7941@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7942
7943static void
831d3c99 7944print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7945@{
7946 if (type == VAR)
d3c4e709 7947 fprintf (file, "%s", value.tptr->name);
bfa74976 7948 else if (type == NUM)
d3c4e709 7949 fprintf (file, "%d", value.val);
bfa74976
RS
7950@}
7951@end smallexample
7952
ec3bc396
AD
7953@c ================================================= Invoking Bison
7954
342b8b6e 7955@node Invocation
bfa74976
RS
7956@chapter Invoking Bison
7957@cindex invoking Bison
7958@cindex Bison invocation
7959@cindex options for invoking Bison
7960
7961The usual way to invoke Bison is as follows:
7962
7963@example
7964bison @var{infile}
7965@end example
7966
7967Here @var{infile} is the grammar file name, which usually ends in
7968@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7969with @samp{.tab.c} and removing any leading directory. Thus, the
7970@samp{bison foo.y} file name yields
7971@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7972@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7973C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7974or @file{foo.y++}. Then, the output files will take an extension like
7975the given one as input (respectively @file{foo.tab.cpp} and
7976@file{foo.tab.c++}).
fa4d969f 7977This feature takes effect with all options that manipulate file names like
234a3be3
AD
7978@samp{-o} or @samp{-d}.
7979
7980For example :
7981
7982@example
7983bison -d @var{infile.yxx}
7984@end example
84163231 7985@noindent
72d2299c 7986will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7987
7988@example
b56471a6 7989bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7990@end example
84163231 7991@noindent
234a3be3
AD
7992will produce @file{output.c++} and @file{outfile.h++}.
7993
397ec073
PE
7994For compatibility with @acronym{POSIX}, the standard Bison
7995distribution also contains a shell script called @command{yacc} that
7996invokes Bison with the @option{-y} option.
7997
bfa74976 7998@menu
13863333 7999* Bison Options:: All the options described in detail,
c827f760 8000 in alphabetical order by short options.
bfa74976 8001* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8002* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8003@end menu
8004
342b8b6e 8005@node Bison Options
bfa74976
RS
8006@section Bison Options
8007
8008Bison supports both traditional single-letter options and mnemonic long
8009option names. Long option names are indicated with @samp{--} instead of
8010@samp{-}. Abbreviations for option names are allowed as long as they
8011are unique. When a long option takes an argument, like
8012@samp{--file-prefix}, connect the option name and the argument with
8013@samp{=}.
8014
8015Here is a list of options that can be used with Bison, alphabetized by
8016short option. It is followed by a cross key alphabetized by long
8017option.
8018
89cab50d
AD
8019@c Please, keep this ordered as in `bison --help'.
8020@noindent
8021Operations modes:
8022@table @option
8023@item -h
8024@itemx --help
8025Print a summary of the command-line options to Bison and exit.
bfa74976 8026
89cab50d
AD
8027@item -V
8028@itemx --version
8029Print the version number of Bison and exit.
bfa74976 8030
f7ab6a50
PE
8031@item --print-localedir
8032Print the name of the directory containing locale-dependent data.
8033
a0de5091
JD
8034@item --print-datadir
8035Print the name of the directory containing skeletons and XSLT.
8036
89cab50d
AD
8037@item -y
8038@itemx --yacc
54662697
PE
8039Act more like the traditional Yacc command. This can cause
8040different diagnostics to be generated, and may change behavior in
8041other minor ways. Most importantly, imitate Yacc's output
8042file name conventions, so that the parser output file is called
89cab50d 8043@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8044@file{y.tab.h}.
eb45ef3b 8045Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8046statements in addition to an @code{enum} to associate token numbers with token
8047names.
8048Thus, the following shell script can substitute for Yacc, and the Bison
8049distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8050
89cab50d 8051@example
397ec073 8052#! /bin/sh
26e06a21 8053bison -y "$@@"
89cab50d 8054@end example
54662697
PE
8055
8056The @option{-y}/@option{--yacc} option is intended for use with
8057traditional Yacc grammars. If your grammar uses a Bison extension
8058like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8059this option is specified.
8060
1d5b3c08
JD
8061@item -W [@var{category}]
8062@itemx --warnings[=@var{category}]
118d4978
AD
8063Output warnings falling in @var{category}. @var{category} can be one
8064of:
8065@table @code
8066@item midrule-values
8e55b3aa
JD
8067Warn about mid-rule values that are set but not used within any of the actions
8068of the parent rule.
8069For example, warn about unused @code{$2} in:
118d4978
AD
8070
8071@example
8072exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8073@end example
8074
8e55b3aa
JD
8075Also warn about mid-rule values that are used but not set.
8076For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8077
8078@example
8079 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8080@end example
8081
8082These warnings are not enabled by default since they sometimes prove to
8083be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8084@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8085
8086
8087@item yacc
8088Incompatibilities with @acronym{POSIX} Yacc.
8089
8090@item all
8e55b3aa 8091All the warnings.
118d4978 8092@item none
8e55b3aa 8093Turn off all the warnings.
118d4978 8094@item error
8e55b3aa 8095Treat warnings as errors.
118d4978
AD
8096@end table
8097
8098A category can be turned off by prefixing its name with @samp{no-}. For
8099instance, @option{-Wno-syntax} will hide the warnings about unused
8100variables.
89cab50d
AD
8101@end table
8102
8103@noindent
8104Tuning the parser:
8105
8106@table @option
8107@item -t
8108@itemx --debug
4947ebdb
PE
8109In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8110already defined, so that the debugging facilities are compiled.
ec3bc396 8111@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8112
58697c6d
AD
8113@item -D @var{name}[=@var{value}]
8114@itemx --define=@var{name}[=@var{value}]
8115Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
8116Summary, ,%define}).
8117
0e021770
PE
8118@item -L @var{language}
8119@itemx --language=@var{language}
8120Specify the programming language for the generated parser, as if
8121@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8122Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8123@var{language} is case-insensitive.
0e021770 8124
ed4d67dc
JD
8125This option is experimental and its effect may be modified in future
8126releases.
8127
89cab50d 8128@item --locations
d8988b2f 8129Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8130
8131@item -p @var{prefix}
8132@itemx --name-prefix=@var{prefix}
02975b9a 8133Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8134@xref{Decl Summary}.
bfa74976
RS
8135
8136@item -l
8137@itemx --no-lines
8138Don't put any @code{#line} preprocessor commands in the parser file.
8139Ordinarily Bison puts them in the parser file so that the C compiler
8140and debuggers will associate errors with your source file, the
8141grammar file. This option causes them to associate errors with the
95e742f7 8142parser file, treating it as an independent source file in its own right.
bfa74976 8143
e6e704dc
JD
8144@item -S @var{file}
8145@itemx --skeleton=@var{file}
a7867f53 8146Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8147(@pxref{Decl Summary, , Bison Declaration Summary}).
8148
ed4d67dc
JD
8149@c You probably don't need this option unless you are developing Bison.
8150@c You should use @option{--language} if you want to specify the skeleton for a
8151@c different language, because it is clearer and because it will always
8152@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8153
a7867f53
JD
8154If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8155file in the Bison installation directory.
8156If it does, @var{file} is an absolute file name or a file name relative to the
8157current working directory.
8158This is similar to how most shells resolve commands.
8159
89cab50d
AD
8160@item -k
8161@itemx --token-table
d8988b2f 8162Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8163@end table
bfa74976 8164
89cab50d
AD
8165@noindent
8166Adjust the output:
bfa74976 8167
89cab50d 8168@table @option
8e55b3aa 8169@item --defines[=@var{file}]
d8988b2f 8170Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8171file containing macro definitions for the token type names defined in
4bfd5e4e 8172the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8173
8e55b3aa
JD
8174@item -d
8175This is the same as @code{--defines} except @code{-d} does not accept a
8176@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8177with other short options.
342b8b6e 8178
89cab50d
AD
8179@item -b @var{file-prefix}
8180@itemx --file-prefix=@var{prefix}
9c437126 8181Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8182for all Bison output file names. @xref{Decl Summary}.
bfa74976 8183
ec3bc396
AD
8184@item -r @var{things}
8185@itemx --report=@var{things}
8186Write an extra output file containing verbose description of the comma
8187separated list of @var{things} among:
8188
8189@table @code
8190@item state
8191Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8192parser's automaton.
ec3bc396 8193
742e4900 8194@item lookahead
ec3bc396 8195Implies @code{state} and augments the description of the automaton with
742e4900 8196each rule's lookahead set.
ec3bc396
AD
8197
8198@item itemset
8199Implies @code{state} and augments the description of the automaton with
8200the full set of items for each state, instead of its core only.
8201@end table
8202
1bb2bd75
JD
8203@item --report-file=@var{file}
8204Specify the @var{file} for the verbose description.
8205
bfa74976
RS
8206@item -v
8207@itemx --verbose
9c437126 8208Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8209file containing verbose descriptions of the grammar and
72d2299c 8210parser. @xref{Decl Summary}.
bfa74976 8211
fa4d969f
PE
8212@item -o @var{file}
8213@itemx --output=@var{file}
8214Specify the @var{file} for the parser file.
bfa74976 8215
fa4d969f 8216The other output files' names are constructed from @var{file} as
d8988b2f 8217described under the @samp{-v} and @samp{-d} options.
342b8b6e 8218
a7c09cba 8219@item -g [@var{file}]
8e55b3aa 8220@itemx --graph[=@var{file}]
eb45ef3b 8221Output a graphical representation of the parser's
35fe0834
PE
8222automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8223@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8224@code{@var{file}} is optional.
8225If omitted and the grammar file is @file{foo.y}, the output file will be
8226@file{foo.dot}.
59da312b 8227
a7c09cba 8228@item -x [@var{file}]
8e55b3aa 8229@itemx --xml[=@var{file}]
eb45ef3b 8230Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8231@code{@var{file}} is optional.
59da312b
JD
8232If omitted and the grammar file is @file{foo.y}, the output file will be
8233@file{foo.xml}.
8234(The current XML schema is experimental and may evolve.
8235More user feedback will help to stabilize it.)
bfa74976
RS
8236@end table
8237
342b8b6e 8238@node Option Cross Key
bfa74976
RS
8239@section Option Cross Key
8240
8241Here is a list of options, alphabetized by long option, to help you find
8242the corresponding short option.
8243
a7c09cba
DJ
8244@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
8245@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8246@include cross-options.texi
aa08666d 8247@end multitable
bfa74976 8248
93dd49ab
PE
8249@node Yacc Library
8250@section Yacc Library
8251
8252The Yacc library contains default implementations of the
8253@code{yyerror} and @code{main} functions. These default
8254implementations are normally not useful, but @acronym{POSIX} requires
8255them. To use the Yacc library, link your program with the
8256@option{-ly} option. Note that Bison's implementation of the Yacc
8257library is distributed under the terms of the @acronym{GNU} General
8258Public License (@pxref{Copying}).
8259
8260If you use the Yacc library's @code{yyerror} function, you should
8261declare @code{yyerror} as follows:
8262
8263@example
8264int yyerror (char const *);
8265@end example
8266
8267Bison ignores the @code{int} value returned by this @code{yyerror}.
8268If you use the Yacc library's @code{main} function, your
8269@code{yyparse} function should have the following type signature:
8270
8271@example
8272int yyparse (void);
8273@end example
8274
12545799
AD
8275@c ================================================= C++ Bison
8276
8405b70c
PB
8277@node Other Languages
8278@chapter Parsers Written In Other Languages
12545799
AD
8279
8280@menu
8281* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8282* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8283@end menu
8284
8285@node C++ Parsers
8286@section C++ Parsers
8287
8288@menu
8289* C++ Bison Interface:: Asking for C++ parser generation
8290* C++ Semantic Values:: %union vs. C++
8291* C++ Location Values:: The position and location classes
8292* C++ Parser Interface:: Instantiating and running the parser
8293* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8294* A Complete C++ Example:: Demonstrating their use
12545799
AD
8295@end menu
8296
8297@node C++ Bison Interface
8298@subsection C++ Bison Interface
ed4d67dc 8299@c - %skeleton "lalr1.cc"
12545799
AD
8300@c - Always pure
8301@c - initial action
8302
eb45ef3b 8303The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8304@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8305@option{--skeleton=lalr1.c}.
e6e704dc 8306@xref{Decl Summary}.
0e021770 8307
793fbca5
JD
8308When run, @command{bison} will create several entities in the @samp{yy}
8309namespace.
8310@findex %define namespace
8311Use the @samp{%define namespace} directive to change the namespace name, see
8312@ref{Decl Summary}.
8313The various classes are generated in the following files:
aa08666d 8314
12545799
AD
8315@table @file
8316@item position.hh
8317@itemx location.hh
8318The definition of the classes @code{position} and @code{location},
8319used for location tracking. @xref{C++ Location Values}.
8320
8321@item stack.hh
8322An auxiliary class @code{stack} used by the parser.
8323
fa4d969f
PE
8324@item @var{file}.hh
8325@itemx @var{file}.cc
cd8b5791
AD
8326(Assuming the extension of the input file was @samp{.yy}.) The
8327declaration and implementation of the C++ parser class. The basename
8328and extension of these two files follow the same rules as with regular C
8329parsers (@pxref{Invocation}).
12545799 8330
cd8b5791
AD
8331The header is @emph{mandatory}; you must either pass
8332@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8333@samp{%defines} directive.
8334@end table
8335
8336All these files are documented using Doxygen; run @command{doxygen}
8337for a complete and accurate documentation.
8338
8339@node C++ Semantic Values
8340@subsection C++ Semantic Values
8341@c - No objects in unions
178e123e 8342@c - YYSTYPE
12545799
AD
8343@c - Printer and destructor
8344
8345The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8346Collection of Value Types}. In particular it produces a genuine
8347@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8348within pseudo-unions (similar to Boost variants) might be implemented to
8349alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8350@itemize @minus
8351@item
fb9712a9
AD
8352The type @code{YYSTYPE} is defined but its use is discouraged: rather
8353you should refer to the parser's encapsulated type
8354@code{yy::parser::semantic_type}.
12545799
AD
8355@item
8356Non POD (Plain Old Data) types cannot be used. C++ forbids any
8357instance of classes with constructors in unions: only @emph{pointers}
8358to such objects are allowed.
8359@end itemize
8360
8361Because objects have to be stored via pointers, memory is not
8362reclaimed automatically: using the @code{%destructor} directive is the
8363only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8364Symbols}.
8365
8366
8367@node C++ Location Values
8368@subsection C++ Location Values
8369@c - %locations
8370@c - class Position
8371@c - class Location
16dc6a9e 8372@c - %define filename_type "const symbol::Symbol"
12545799
AD
8373
8374When the directive @code{%locations} is used, the C++ parser supports
8375location tracking, see @ref{Locations, , Locations Overview}. Two
8376auxiliary classes define a @code{position}, a single point in a file,
8377and a @code{location}, a range composed of a pair of
8378@code{position}s (possibly spanning several files).
8379
fa4d969f 8380@deftypemethod {position} {std::string*} file
12545799
AD
8381The name of the file. It will always be handled as a pointer, the
8382parser will never duplicate nor deallocate it. As an experimental
8383feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8384filename_type "@var{type}"}.
12545799
AD
8385@end deftypemethod
8386
8387@deftypemethod {position} {unsigned int} line
8388The line, starting at 1.
8389@end deftypemethod
8390
8391@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8392Advance by @var{height} lines, resetting the column number.
8393@end deftypemethod
8394
8395@deftypemethod {position} {unsigned int} column
8396The column, starting at 0.
8397@end deftypemethod
8398
8399@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8400Advance by @var{width} columns, without changing the line number.
8401@end deftypemethod
8402
8403@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8404@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8405@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8406@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8407Various forms of syntactic sugar for @code{columns}.
8408@end deftypemethod
8409
8410@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8411Report @var{p} on @var{o} like this:
fa4d969f
PE
8412@samp{@var{file}:@var{line}.@var{column}}, or
8413@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8414@end deftypemethod
8415
8416@deftypemethod {location} {position} begin
8417@deftypemethodx {location} {position} end
8418The first, inclusive, position of the range, and the first beyond.
8419@end deftypemethod
8420
8421@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8422@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8423Advance the @code{end} position.
8424@end deftypemethod
8425
8426@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8427@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8428@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8429Various forms of syntactic sugar.
8430@end deftypemethod
8431
8432@deftypemethod {location} {void} step ()
8433Move @code{begin} onto @code{end}.
8434@end deftypemethod
8435
8436
8437@node C++ Parser Interface
8438@subsection C++ Parser Interface
8439@c - define parser_class_name
8440@c - Ctor
8441@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8442@c debug_stream.
8443@c - Reporting errors
8444
8445The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8446declare and define the parser class in the namespace @code{yy}. The
8447class name defaults to @code{parser}, but may be changed using
16dc6a9e 8448@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8449this class is detailed below. It can be extended using the
12545799
AD
8450@code{%parse-param} feature: its semantics is slightly changed since
8451it describes an additional member of the parser class, and an
8452additional argument for its constructor.
8453
8a0adb01
AD
8454@defcv {Type} {parser} {semantic_value_type}
8455@defcvx {Type} {parser} {location_value_type}
12545799 8456The types for semantics value and locations.
8a0adb01 8457@end defcv
12545799
AD
8458
8459@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8460Build a new parser object. There are no arguments by default, unless
8461@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8462@end deftypemethod
8463
8464@deftypemethod {parser} {int} parse ()
8465Run the syntactic analysis, and return 0 on success, 1 otherwise.
8466@end deftypemethod
8467
8468@deftypemethod {parser} {std::ostream&} debug_stream ()
8469@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8470Get or set the stream used for tracing the parsing. It defaults to
8471@code{std::cerr}.
8472@end deftypemethod
8473
8474@deftypemethod {parser} {debug_level_type} debug_level ()
8475@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8476Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8477or nonzero, full tracing.
12545799
AD
8478@end deftypemethod
8479
8480@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8481The definition for this member function must be supplied by the user:
8482the parser uses it to report a parser error occurring at @var{l},
8483described by @var{m}.
8484@end deftypemethod
8485
8486
8487@node C++ Scanner Interface
8488@subsection C++ Scanner Interface
8489@c - prefix for yylex.
8490@c - Pure interface to yylex
8491@c - %lex-param
8492
8493The parser invokes the scanner by calling @code{yylex}. Contrary to C
8494parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8495@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8496
8497@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8498Return the next token. Its type is the return value, its semantic
8499value and location being @var{yylval} and @var{yylloc}. Invocations of
8500@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8501@end deftypemethod
8502
8503
8504@node A Complete C++ Example
8405b70c 8505@subsection A Complete C++ Example
12545799
AD
8506
8507This section demonstrates the use of a C++ parser with a simple but
8508complete example. This example should be available on your system,
8509ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8510focuses on the use of Bison, therefore the design of the various C++
8511classes is very naive: no accessors, no encapsulation of members etc.
8512We will use a Lex scanner, and more precisely, a Flex scanner, to
8513demonstrate the various interaction. A hand written scanner is
8514actually easier to interface with.
8515
8516@menu
8517* Calc++ --- C++ Calculator:: The specifications
8518* Calc++ Parsing Driver:: An active parsing context
8519* Calc++ Parser:: A parser class
8520* Calc++ Scanner:: A pure C++ Flex scanner
8521* Calc++ Top Level:: Conducting the band
8522@end menu
8523
8524@node Calc++ --- C++ Calculator
8405b70c 8525@subsubsection Calc++ --- C++ Calculator
12545799
AD
8526
8527Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8528expression, possibly preceded by variable assignments. An
12545799
AD
8529environment containing possibly predefined variables such as
8530@code{one} and @code{two}, is exchanged with the parser. An example
8531of valid input follows.
8532
8533@example
8534three := 3
8535seven := one + two * three
8536seven * seven
8537@end example
8538
8539@node Calc++ Parsing Driver
8405b70c 8540@subsubsection Calc++ Parsing Driver
12545799
AD
8541@c - An env
8542@c - A place to store error messages
8543@c - A place for the result
8544
8545To support a pure interface with the parser (and the scanner) the
8546technique of the ``parsing context'' is convenient: a structure
8547containing all the data to exchange. Since, in addition to simply
8548launch the parsing, there are several auxiliary tasks to execute (open
8549the file for parsing, instantiate the parser etc.), we recommend
8550transforming the simple parsing context structure into a fully blown
8551@dfn{parsing driver} class.
8552
8553The declaration of this driver class, @file{calc++-driver.hh}, is as
8554follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8555required standard library components, and the declaration of the parser
8556class.
12545799 8557
1c59e0a1 8558@comment file: calc++-driver.hh
12545799
AD
8559@example
8560#ifndef CALCXX_DRIVER_HH
8561# define CALCXX_DRIVER_HH
8562# include <string>
8563# include <map>
fb9712a9 8564# include "calc++-parser.hh"
12545799
AD
8565@end example
8566
12545799
AD
8567
8568@noindent
8569Then comes the declaration of the scanning function. Flex expects
8570the signature of @code{yylex} to be defined in the macro
8571@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8572factor both as follows.
1c59e0a1
AD
8573
8574@comment file: calc++-driver.hh
12545799 8575@example
3dc5e96b
PE
8576// Tell Flex the lexer's prototype ...
8577# define YY_DECL \
c095d689
AD
8578 yy::calcxx_parser::token_type \
8579 yylex (yy::calcxx_parser::semantic_type* yylval, \
8580 yy::calcxx_parser::location_type* yylloc, \
8581 calcxx_driver& driver)
12545799
AD
8582// ... and declare it for the parser's sake.
8583YY_DECL;
8584@end example
8585
8586@noindent
8587The @code{calcxx_driver} class is then declared with its most obvious
8588members.
8589
1c59e0a1 8590@comment file: calc++-driver.hh
12545799
AD
8591@example
8592// Conducting the whole scanning and parsing of Calc++.
8593class calcxx_driver
8594@{
8595public:
8596 calcxx_driver ();
8597 virtual ~calcxx_driver ();
8598
8599 std::map<std::string, int> variables;
8600
8601 int result;
8602@end example
8603
8604@noindent
8605To encapsulate the coordination with the Flex scanner, it is useful to
8606have two members function to open and close the scanning phase.
12545799 8607
1c59e0a1 8608@comment file: calc++-driver.hh
12545799
AD
8609@example
8610 // Handling the scanner.
8611 void scan_begin ();
8612 void scan_end ();
8613 bool trace_scanning;
8614@end example
8615
8616@noindent
8617Similarly for the parser itself.
8618
1c59e0a1 8619@comment file: calc++-driver.hh
12545799 8620@example
bb32f4f2
AD
8621 // Run the parser. Return 0 on success.
8622 int parse (const std::string& f);
12545799
AD
8623 std::string file;
8624 bool trace_parsing;
8625@end example
8626
8627@noindent
8628To demonstrate pure handling of parse errors, instead of simply
8629dumping them on the standard error output, we will pass them to the
8630compiler driver using the following two member functions. Finally, we
8631close the class declaration and CPP guard.
8632
1c59e0a1 8633@comment file: calc++-driver.hh
12545799
AD
8634@example
8635 // Error handling.
8636 void error (const yy::location& l, const std::string& m);
8637 void error (const std::string& m);
8638@};
8639#endif // ! CALCXX_DRIVER_HH
8640@end example
8641
8642The implementation of the driver is straightforward. The @code{parse}
8643member function deserves some attention. The @code{error} functions
8644are simple stubs, they should actually register the located error
8645messages and set error state.
8646
1c59e0a1 8647@comment file: calc++-driver.cc
12545799
AD
8648@example
8649#include "calc++-driver.hh"
8650#include "calc++-parser.hh"
8651
8652calcxx_driver::calcxx_driver ()
8653 : trace_scanning (false), trace_parsing (false)
8654@{
8655 variables["one"] = 1;
8656 variables["two"] = 2;
8657@}
8658
8659calcxx_driver::~calcxx_driver ()
8660@{
8661@}
8662
bb32f4f2 8663int
12545799
AD
8664calcxx_driver::parse (const std::string &f)
8665@{
8666 file = f;
8667 scan_begin ();
8668 yy::calcxx_parser parser (*this);
8669 parser.set_debug_level (trace_parsing);
bb32f4f2 8670 int res = parser.parse ();
12545799 8671 scan_end ();
bb32f4f2 8672 return res;
12545799
AD
8673@}
8674
8675void
8676calcxx_driver::error (const yy::location& l, const std::string& m)
8677@{
8678 std::cerr << l << ": " << m << std::endl;
8679@}
8680
8681void
8682calcxx_driver::error (const std::string& m)
8683@{
8684 std::cerr << m << std::endl;
8685@}
8686@end example
8687
8688@node Calc++ Parser
8405b70c 8689@subsubsection Calc++ Parser
12545799 8690
b50d2359 8691The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
8692the C++ deterministic parser skeleton, the creation of the parser header
8693file, and specifies the name of the parser class.
8694Because the C++ skeleton changed several times, it is safer to require
8695the version you designed the grammar for.
1c59e0a1
AD
8696
8697@comment file: calc++-parser.yy
12545799 8698@example
ed4d67dc 8699%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8700%require "@value{VERSION}"
12545799 8701%defines
16dc6a9e 8702%define parser_class_name "calcxx_parser"
fb9712a9
AD
8703@end example
8704
8705@noindent
16dc6a9e 8706@findex %code requires
fb9712a9
AD
8707Then come the declarations/inclusions needed to define the
8708@code{%union}. Because the parser uses the parsing driver and
8709reciprocally, both cannot include the header of the other. Because the
8710driver's header needs detailed knowledge about the parser class (in
8711particular its inner types), it is the parser's header which will simply
8712use a forward declaration of the driver.
148d66d8 8713@xref{Decl Summary, ,%code}.
fb9712a9
AD
8714
8715@comment file: calc++-parser.yy
8716@example
16dc6a9e 8717%code requires @{
12545799 8718# include <string>
fb9712a9 8719class calcxx_driver;
9bc0dd67 8720@}
12545799
AD
8721@end example
8722
8723@noindent
8724The driver is passed by reference to the parser and to the scanner.
8725This provides a simple but effective pure interface, not relying on
8726global variables.
8727
1c59e0a1 8728@comment file: calc++-parser.yy
12545799
AD
8729@example
8730// The parsing context.
8731%parse-param @{ calcxx_driver& driver @}
8732%lex-param @{ calcxx_driver& driver @}
8733@end example
8734
8735@noindent
8736Then we request the location tracking feature, and initialize the
8737first location's file name. Afterwards new locations are computed
8738relatively to the previous locations: the file name will be
8739automatically propagated.
8740
1c59e0a1 8741@comment file: calc++-parser.yy
12545799
AD
8742@example
8743%locations
8744%initial-action
8745@{
8746 // Initialize the initial location.
b47dbebe 8747 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8748@};
8749@end example
8750
8751@noindent
8752Use the two following directives to enable parser tracing and verbose
8753error messages.
8754
1c59e0a1 8755@comment file: calc++-parser.yy
12545799 8756@example
fa819509 8757%define parse.trace
71b00ed8 8758%define error-verbose
12545799
AD
8759@end example
8760
8761@noindent
8762Semantic values cannot use ``real'' objects, but only pointers to
8763them.
8764
1c59e0a1 8765@comment file: calc++-parser.yy
12545799
AD
8766@example
8767// Symbols.
8768%union
8769@{
8770 int ival;
8771 std::string *sval;
8772@};
8773@end example
8774
fb9712a9 8775@noindent
136a0f76
PB
8776@findex %code
8777The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8778@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8779
8780@comment file: calc++-parser.yy
8781@example
136a0f76 8782%code @{
fb9712a9 8783# include "calc++-driver.hh"
34f98f46 8784@}
fb9712a9
AD
8785@end example
8786
8787
12545799
AD
8788@noindent
8789The token numbered as 0 corresponds to end of file; the following line
8790allows for nicer error messages referring to ``end of file'' instead
8791of ``$end''. Similarly user friendly named are provided for each
8792symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8793avoid name clashes.
8794
1c59e0a1 8795@comment file: calc++-parser.yy
12545799 8796@example
fb9712a9
AD
8797%token END 0 "end of file"
8798%token ASSIGN ":="
8799%token <sval> IDENTIFIER "identifier"
8800%token <ival> NUMBER "number"
a8c2e813 8801%type <ival> exp
12545799
AD
8802@end example
8803
8804@noindent
8805To enable memory deallocation during error recovery, use
8806@code{%destructor}.
8807
287c78f6 8808@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8809@comment file: calc++-parser.yy
12545799
AD
8810@example
8811%printer @{ debug_stream () << *$$; @} "identifier"
8812%destructor @{ delete $$; @} "identifier"
8813
a8c2e813 8814%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8815@end example
8816
8817@noindent
8818The grammar itself is straightforward.
8819
1c59e0a1 8820@comment file: calc++-parser.yy
12545799
AD
8821@example
8822%%
8823%start unit;
8824unit: assignments exp @{ driver.result = $2; @};
8825
8826assignments: assignments assignment @{@}
9d9b8b70 8827 | /* Nothing. */ @{@};
12545799 8828
3dc5e96b
PE
8829assignment:
8830 "identifier" ":=" exp
8831 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8832
8833%left '+' '-';
8834%left '*' '/';
8835exp: exp '+' exp @{ $$ = $1 + $3; @}
8836 | exp '-' exp @{ $$ = $1 - $3; @}
8837 | exp '*' exp @{ $$ = $1 * $3; @}
8838 | exp '/' exp @{ $$ = $1 / $3; @}
1a7a65f9 8839 | '(' exp ')' @{ $$ = $2; @}
3dc5e96b 8840 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8841 | "number" @{ $$ = $1; @};
12545799
AD
8842%%
8843@end example
8844
8845@noindent
8846Finally the @code{error} member function registers the errors to the
8847driver.
8848
1c59e0a1 8849@comment file: calc++-parser.yy
12545799
AD
8850@example
8851void
1c59e0a1
AD
8852yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8853 const std::string& m)
12545799
AD
8854@{
8855 driver.error (l, m);
8856@}
8857@end example
8858
8859@node Calc++ Scanner
8405b70c 8860@subsubsection Calc++ Scanner
12545799
AD
8861
8862The Flex scanner first includes the driver declaration, then the
8863parser's to get the set of defined tokens.
8864
1c59e0a1 8865@comment file: calc++-scanner.ll
12545799
AD
8866@example
8867%@{ /* -*- C++ -*- */
04098407
PE
8868# include <cstdlib>
8869# include <errno.h>
8870# include <limits.h>
12545799
AD
8871# include <string>
8872# include "calc++-driver.hh"
8873# include "calc++-parser.hh"
eaea13f5
PE
8874
8875/* Work around an incompatibility in flex (at least versions
8876 2.5.31 through 2.5.33): it generates code that does
8877 not conform to C89. See Debian bug 333231
8878 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8879# undef yywrap
8880# define yywrap() 1
eaea13f5 8881
c095d689
AD
8882/* By default yylex returns int, we use token_type.
8883 Unfortunately yyterminate by default returns 0, which is
8884 not of token_type. */
8c5b881d 8885#define yyterminate() return token::END
12545799
AD
8886%@}
8887@end example
8888
8889@noindent
8890Because there is no @code{#include}-like feature we don't need
8891@code{yywrap}, we don't need @code{unput} either, and we parse an
8892actual file, this is not an interactive session with the user.
8893Finally we enable the scanner tracing features.
8894
1c59e0a1 8895@comment file: calc++-scanner.ll
12545799
AD
8896@example
8897%option noyywrap nounput batch debug
8898@end example
8899
8900@noindent
8901Abbreviations allow for more readable rules.
8902
1c59e0a1 8903@comment file: calc++-scanner.ll
12545799
AD
8904@example
8905id [a-zA-Z][a-zA-Z_0-9]*
8906int [0-9]+
8907blank [ \t]
8908@end example
8909
8910@noindent
9d9b8b70 8911The following paragraph suffices to track locations accurately. Each
12545799
AD
8912time @code{yylex} is invoked, the begin position is moved onto the end
8913position. Then when a pattern is matched, the end position is
8914advanced of its width. In case it matched ends of lines, the end
8915cursor is adjusted, and each time blanks are matched, the begin cursor
8916is moved onto the end cursor to effectively ignore the blanks
8917preceding tokens. Comments would be treated equally.
8918
1c59e0a1 8919@comment file: calc++-scanner.ll
12545799 8920@example
828c373b
AD
8921%@{
8922# define YY_USER_ACTION yylloc->columns (yyleng);
8923%@}
12545799
AD
8924%%
8925%@{
8926 yylloc->step ();
12545799
AD
8927%@}
8928@{blank@}+ yylloc->step ();
8929[\n]+ yylloc->lines (yyleng); yylloc->step ();
8930@end example
8931
8932@noindent
fb9712a9
AD
8933The rules are simple, just note the use of the driver to report errors.
8934It is convenient to use a typedef to shorten
8935@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8936@code{token::identifier} for instance.
12545799 8937
1c59e0a1 8938@comment file: calc++-scanner.ll
12545799 8939@example
fb9712a9
AD
8940%@{
8941 typedef yy::calcxx_parser::token token;
8942%@}
8c5b881d 8943 /* Convert ints to the actual type of tokens. */
1a7a65f9 8944[-+*/()] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8945":=" return token::ASSIGN;
04098407
PE
8946@{int@} @{
8947 errno = 0;
8948 long n = strtol (yytext, NULL, 10);
8949 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8950 driver.error (*yylloc, "integer is out of range");
8951 yylval->ival = n;
fb9712a9 8952 return token::NUMBER;
04098407 8953@}
fb9712a9 8954@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8955. driver.error (*yylloc, "invalid character");
8956%%
8957@end example
8958
8959@noindent
8960Finally, because the scanner related driver's member function depend
8961on the scanner's data, it is simpler to implement them in this file.
8962
1c59e0a1 8963@comment file: calc++-scanner.ll
12545799
AD
8964@example
8965void
8966calcxx_driver::scan_begin ()
8967@{
8968 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8969 if (file == "-")
8970 yyin = stdin;
8971 else if (!(yyin = fopen (file.c_str (), "r")))
8972 @{
8973 error (std::string ("cannot open ") + file);
8974 exit (1);
8975 @}
12545799
AD
8976@}
8977
8978void
8979calcxx_driver::scan_end ()
8980@{
8981 fclose (yyin);
8982@}
8983@end example
8984
8985@node Calc++ Top Level
8405b70c 8986@subsubsection Calc++ Top Level
12545799
AD
8987
8988The top level file, @file{calc++.cc}, poses no problem.
8989
1c59e0a1 8990@comment file: calc++.cc
12545799
AD
8991@example
8992#include <iostream>
8993#include "calc++-driver.hh"
8994
8995int
fa4d969f 8996main (int argc, char *argv[])
12545799 8997@{
414c76a4 8998 int res = 0;
12545799
AD
8999 calcxx_driver driver;
9000 for (++argv; argv[0]; ++argv)
9001 if (*argv == std::string ("-p"))
9002 driver.trace_parsing = true;
9003 else if (*argv == std::string ("-s"))
9004 driver.trace_scanning = true;
bb32f4f2
AD
9005 else if (!driver.parse (*argv))
9006 std::cout << driver.result << std::endl;
414c76a4
AD
9007 else
9008 res = 1;
9009 return res;
12545799
AD
9010@}
9011@end example
9012
8405b70c
PB
9013@node Java Parsers
9014@section Java Parsers
9015
9016@menu
f5f419de
DJ
9017* Java Bison Interface:: Asking for Java parser generation
9018* Java Semantic Values:: %type and %token vs. Java
9019* Java Location Values:: The position and location classes
9020* Java Parser Interface:: Instantiating and running the parser
9021* Java Scanner Interface:: Specifying the scanner for the parser
9022* Java Action Features:: Special features for use in actions
9023* Java Differences:: Differences between C/C++ and Java Grammars
9024* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9025@end menu
9026
9027@node Java Bison Interface
9028@subsection Java Bison Interface
9029@c - %language "Java"
8405b70c 9030
59da312b
JD
9031(The current Java interface is experimental and may evolve.
9032More user feedback will help to stabilize it.)
9033
e254a580
DJ
9034The Java parser skeletons are selected using the @code{%language "Java"}
9035directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9036
e254a580
DJ
9037@c FIXME: Documented bug.
9038When generating a Java parser, @code{bison @var{basename}.y} will create
9039a single Java source file named @file{@var{basename}.java}. Using an
9040input file without a @file{.y} suffix is currently broken. The basename
9041of the output file can be changed by the @code{%file-prefix} directive
9042or the @option{-p}/@option{--name-prefix} option. The entire output file
9043name can be changed by the @code{%output} directive or the
9044@option{-o}/@option{--output} option. The output file contains a single
9045class for the parser.
8405b70c 9046
e254a580 9047You can create documentation for generated parsers using Javadoc.
8405b70c 9048
e254a580
DJ
9049Contrary to C parsers, Java parsers do not use global variables; the
9050state of the parser is always local to an instance of the parser class.
9051Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9052and @code{%define api.pure} directives does not do anything when used in
9053Java.
8405b70c 9054
e254a580
DJ
9055Push parsers are currently unsupported in Java and @code{%define
9056api.push_pull} have no effect.
01b477c6 9057
e254a580
DJ
9058@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9059@code{glr-parser} directive.
9060
9061No header file can be generated for Java parsers. Do not use the
9062@code{%defines} directive or the @option{-d}/@option{--defines} options.
9063
9064@c FIXME: Possible code change.
fa819509
AD
9065Currently, support for tracing is always compiled
9066in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9067directives and the
e254a580
DJ
9068@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9069options have no effect. This may change in the future to eliminate
fa819509
AD
9070unused code in the generated parser, so use @samp{%define parse.trace}
9071explicitly
1979121c 9072if needed. Also, in the future the
e254a580
DJ
9073@code{%token-table} directive might enable a public interface to
9074access the token names and codes.
8405b70c 9075
09ccae9b
DJ
9076Getting a ``code too large'' error from the Java compiler means the code
9077hit the 64KB bytecode per method limination of the Java class file.
9078Try reducing the amount of code in actions and static initializers;
9079otherwise, report a bug so that the parser skeleton will be improved.
9080
9081
8405b70c
PB
9082@node Java Semantic Values
9083@subsection Java Semantic Values
9084@c - No %union, specify type in %type/%token.
9085@c - YYSTYPE
9086@c - Printer and destructor
9087
9088There is no @code{%union} directive in Java parsers. Instead, the
9089semantic values' types (class names) should be specified in the
9090@code{%type} or @code{%token} directive:
9091
9092@example
9093%type <Expression> expr assignment_expr term factor
9094%type <Integer> number
9095@end example
9096
9097By default, the semantic stack is declared to have @code{Object} members,
9098which means that the class types you specify can be of any class.
9099To improve the type safety of the parser, you can declare the common
e254a580
DJ
9100superclass of all the semantic values using the @code{%define stype}
9101directive. For example, after the following declaration:
8405b70c
PB
9102
9103@example
e254a580 9104%define stype "ASTNode"
8405b70c
PB
9105@end example
9106
9107@noindent
9108any @code{%type} or @code{%token} specifying a semantic type which
9109is not a subclass of ASTNode, will cause a compile-time error.
9110
e254a580 9111@c FIXME: Documented bug.
8405b70c
PB
9112Types used in the directives may be qualified with a package name.
9113Primitive data types are accepted for Java version 1.5 or later. Note
9114that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9115Generic types may not be used; this is due to a limitation in the
9116implementation of Bison, and may change in future releases.
8405b70c
PB
9117
9118Java parsers do not support @code{%destructor}, since the language
9119adopts garbage collection. The parser will try to hold references
9120to semantic values for as little time as needed.
9121
9122Java parsers do not support @code{%printer}, as @code{toString()}
9123can be used to print the semantic values. This however may change
9124(in a backwards-compatible way) in future versions of Bison.
9125
9126
9127@node Java Location Values
9128@subsection Java Location Values
9129@c - %locations
9130@c - class Position
9131@c - class Location
9132
9133When the directive @code{%locations} is used, the Java parser
9134supports location tracking, see @ref{Locations, , Locations Overview}.
9135An auxiliary user-defined class defines a @dfn{position}, a single point
9136in a file; Bison itself defines a class representing a @dfn{location},
9137a range composed of a pair of positions (possibly spanning several
9138files). The location class is an inner class of the parser; the name
e254a580
DJ
9139is @code{Location} by default, and may also be renamed using
9140@code{%define location_type "@var{class-name}}.
8405b70c
PB
9141
9142The location class treats the position as a completely opaque value.
9143By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9144with @code{%define position_type "@var{class-name}"}. This class must
9145be supplied by the user.
8405b70c
PB
9146
9147
e254a580
DJ
9148@deftypeivar {Location} {Position} begin
9149@deftypeivarx {Location} {Position} end
8405b70c 9150The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9151@end deftypeivar
9152
9153@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9154Create a @code{Location} denoting an empty range located at a given point.
e254a580 9155@end deftypeop
8405b70c 9156
e254a580
DJ
9157@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9158Create a @code{Location} from the endpoints of the range.
9159@end deftypeop
9160
9161@deftypemethod {Location} {String} toString ()
8405b70c
PB
9162Prints the range represented by the location. For this to work
9163properly, the position class should override the @code{equals} and
9164@code{toString} methods appropriately.
9165@end deftypemethod
9166
9167
9168@node Java Parser Interface
9169@subsection Java Parser Interface
9170@c - define parser_class_name
9171@c - Ctor
9172@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9173@c debug_stream.
9174@c - Reporting errors
9175
e254a580
DJ
9176The name of the generated parser class defaults to @code{YYParser}. The
9177@code{YY} prefix may be changed using the @code{%name-prefix} directive
9178or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9179@code{%define parser_class_name "@var{name}"} to give a custom name to
9180the class. The interface of this class is detailed below.
8405b70c 9181
e254a580
DJ
9182By default, the parser class has package visibility. A declaration
9183@code{%define public} will change to public visibility. Remember that,
9184according to the Java language specification, the name of the @file{.java}
9185file should match the name of the class in this case. Similarly, you can
9186use @code{abstract}, @code{final} and @code{strictfp} with the
9187@code{%define} declaration to add other modifiers to the parser class.
1979121c
DJ
9188A single @code{%define annotations "@var{annotations}"} directive can
9189be used to add any number of annotations to the parser class.
e254a580
DJ
9190
9191The Java package name of the parser class can be specified using the
9192@code{%define package} directive. The superclass and the implemented
9193interfaces of the parser class can be specified with the @code{%define
9194extends} and @code{%define implements} directives.
9195
9196The parser class defines an inner class, @code{Location}, that is used
9197for location tracking (see @ref{Java Location Values}), and a inner
9198interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9199these inner class/interface, and the members described in the interface
9200below, all the other members and fields are preceded with a @code{yy} or
9201@code{YY} prefix to avoid clashes with user code.
9202
e254a580
DJ
9203The parser class can be extended using the @code{%parse-param}
9204directive. Each occurrence of the directive will add a @code{protected
9205final} field to the parser class, and an argument to its constructor,
9206which initialize them automatically.
9207
e254a580
DJ
9208@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9209Build a new parser object with embedded @code{%code lexer}. There are
9210no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9211used.
1979121c
DJ
9212
9213Use @code{%code init} for code added to the start of the constructor
9214body. This is especially useful to initialize superclasses. Use
9215@code{%define init_throws} to specify any uncatch exceptions.
e254a580
DJ
9216@end deftypeop
9217
9218@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9219Build a new parser object using the specified scanner. There are no
9220additional parameters unless @code{%parse-param}s are used.
9221
9222If the scanner is defined by @code{%code lexer}, this constructor is
9223declared @code{protected} and is called automatically with a scanner
9224created with the correct @code{%lex-param}s.
1979121c
DJ
9225
9226Use @code{%code init} for code added to the start of the constructor
9227body. This is especially useful to initialize superclasses. Use
9228@code{%define init_throws} to specify any uncatch exceptions.
e254a580 9229@end deftypeop
8405b70c
PB
9230
9231@deftypemethod {YYParser} {boolean} parse ()
9232Run the syntactic analysis, and return @code{true} on success,
9233@code{false} otherwise.
9234@end deftypemethod
9235
1979121c
DJ
9236@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9237@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9238Get or set the option to produce verbose error messages. These are only
71b00ed8 9239available with the @code{%define error-verbose} directive, which also turn on
1979121c
DJ
9240verbose error messages.
9241@end deftypemethod
9242
9243@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9244@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9245@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9246Print an error message using the @code{yyerror} method of the scanner
9247instance in use. The @code{Location} and @code{Position} parameters are
9248available only if location tracking is active.
9249@end deftypemethod
9250
01b477c6 9251@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9252During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9253from a syntax error.
9254@xref{Error Recovery}.
8405b70c
PB
9255@end deftypemethod
9256
9257@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9258@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9259Get or set the stream used for tracing the parsing. It defaults to
9260@code{System.err}.
9261@end deftypemethod
9262
9263@deftypemethod {YYParser} {int} getDebugLevel ()
9264@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9265Get or set the tracing level. Currently its value is either 0, no trace,
9266or nonzero, full tracing.
9267@end deftypemethod
9268
1979121c
DJ
9269@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9270@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9271Identify the Bison version and skeleton used to generate this parser.
9272@end deftypecv
9273
8405b70c
PB
9274
9275@node Java Scanner Interface
9276@subsection Java Scanner Interface
01b477c6 9277@c - %code lexer
8405b70c 9278@c - %lex-param
01b477c6 9279@c - Lexer interface
8405b70c 9280
e254a580
DJ
9281There are two possible ways to interface a Bison-generated Java parser
9282with a scanner: the scanner may be defined by @code{%code lexer}, or
9283defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9284@code{Lexer} inner interface of the parser class. This interface also
9285contain constants for all user-defined token names and the predefined
9286@code{EOF} token.
e254a580
DJ
9287
9288In the first case, the body of the scanner class is placed in
9289@code{%code lexer} blocks. If you want to pass parameters from the
9290parser constructor to the scanner constructor, specify them with
9291@code{%lex-param}; they are passed before @code{%parse-param}s to the
9292constructor.
01b477c6 9293
59c5ac72 9294In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9295which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9296The constructor of the parser object will then accept an object
9297implementing the interface; @code{%lex-param} is not used in this
9298case.
9299
9300In both cases, the scanner has to implement the following methods.
9301
e254a580
DJ
9302@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9303This method is defined by the user to emit an error message. The first
9304parameter is omitted if location tracking is not active. Its type can be
9305changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9306@end deftypemethod
9307
e254a580 9308@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9309Return the next token. Its type is the return value, its semantic
9310value and location are saved and returned by the ther methods in the
e254a580
DJ
9311interface.
9312
9313Use @code{%define lex_throws} to specify any uncaught exceptions.
9314Default is @code{java.io.IOException}.
8405b70c
PB
9315@end deftypemethod
9316
9317@deftypemethod {Lexer} {Position} getStartPos ()
9318@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9319Return respectively the first position of the last token that
9320@code{yylex} returned, and the first position beyond it. These
9321methods are not needed unless location tracking is active.
8405b70c 9322
e254a580 9323The return type can be changed using @code{%define position_type
8405b70c
PB
9324"@var{class-name}".}
9325@end deftypemethod
9326
9327@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9328Return the semantical value of the last token that yylex returned.
8405b70c 9329
e254a580 9330The return type can be changed using @code{%define stype
8405b70c
PB
9331"@var{class-name}".}
9332@end deftypemethod
9333
9334
e254a580
DJ
9335@node Java Action Features
9336@subsection Special Features for Use in Java Actions
9337
9338The following special constructs can be uses in Java actions.
9339Other analogous C action features are currently unavailable for Java.
9340
9341Use @code{%define throws} to specify any uncaught exceptions from parser
9342actions, and initial actions specified by @code{%initial-action}.
9343
9344@defvar $@var{n}
9345The semantic value for the @var{n}th component of the current rule.
9346This may not be assigned to.
9347@xref{Java Semantic Values}.
9348@end defvar
9349
9350@defvar $<@var{typealt}>@var{n}
9351Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9352@xref{Java Semantic Values}.
9353@end defvar
9354
9355@defvar $$
9356The semantic value for the grouping made by the current rule. As a
9357value, this is in the base type (@code{Object} or as specified by
9358@code{%define stype}) as in not cast to the declared subtype because
9359casts are not allowed on the left-hand side of Java assignments.
9360Use an explicit Java cast if the correct subtype is needed.
9361@xref{Java Semantic Values}.
9362@end defvar
9363
9364@defvar $<@var{typealt}>$
9365Same as @code{$$} since Java always allow assigning to the base type.
9366Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9367for setting the value but there is currently no easy way to distinguish
9368these constructs.
9369@xref{Java Semantic Values}.
9370@end defvar
9371
9372@defvar @@@var{n}
9373The location information of the @var{n}th component of the current rule.
9374This may not be assigned to.
9375@xref{Java Location Values}.
9376@end defvar
9377
9378@defvar @@$
9379The location information of the grouping made by the current rule.
9380@xref{Java Location Values}.
9381@end defvar
9382
9383@deffn {Statement} {return YYABORT;}
9384Return immediately from the parser, indicating failure.
9385@xref{Java Parser Interface}.
9386@end deffn
8405b70c 9387
e254a580
DJ
9388@deffn {Statement} {return YYACCEPT;}
9389Return immediately from the parser, indicating success.
9390@xref{Java Parser Interface}.
9391@end deffn
8405b70c 9392
e254a580 9393@deffn {Statement} {return YYERROR;}
c265fd6b 9394Start error recovery without printing an error message.
e254a580
DJ
9395@xref{Error Recovery}.
9396@end deffn
8405b70c 9397
e254a580 9398@deffn {Statement} {return YYFAIL;}
c265fd6b 9399Print an error message and start error recovery.
e254a580
DJ
9400@xref{Error Recovery}.
9401@end deffn
8405b70c 9402
e254a580
DJ
9403@deftypefn {Function} {boolean} recovering ()
9404Return whether error recovery is being done. In this state, the parser
9405reads token until it reaches a known state, and then restarts normal
9406operation.
9407@xref{Error Recovery}.
9408@end deftypefn
8405b70c 9409
1979121c
DJ
9410@deftypefn {Function} {void} yyerror (String @var{msg})
9411@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
9412@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 9413Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
9414instance in use. The @code{Location} and @code{Position} parameters are
9415available only if location tracking is active.
e254a580 9416@end deftypefn
8405b70c 9417
8405b70c 9418
8405b70c
PB
9419@node Java Differences
9420@subsection Differences between C/C++ and Java Grammars
9421
9422The different structure of the Java language forces several differences
9423between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9424section summarizes these differences.
8405b70c
PB
9425
9426@itemize
9427@item
01b477c6 9428Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9429@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9430macros. Instead, they should be preceded by @code{return} when they
9431appear in an action. The actual definition of these symbols is
8405b70c
PB
9432opaque to the Bison grammar, and it might change in the future. The
9433only meaningful operation that you can do, is to return them.
e254a580 9434See @pxref{Java Action Features}.
8405b70c
PB
9435
9436Note that of these three symbols, only @code{YYACCEPT} and
9437@code{YYABORT} will cause a return from the @code{yyparse}
9438method@footnote{Java parsers include the actions in a separate
9439method than @code{yyparse} in order to have an intuitive syntax that
9440corresponds to these C macros.}.
9441
e254a580
DJ
9442@item
9443Java lacks unions, so @code{%union} has no effect. Instead, semantic
9444values have a common base type: @code{Object} or as specified by
9445@code{%define stype}. Angle backets on @code{%token}, @code{type},
9446@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9447an union. The type of @code{$$}, even with angle brackets, is the base
9448type since Java casts are not allow on the left-hand side of assignments.
9449Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9450left-hand side of assignments. See @pxref{Java Semantic Values} and
9451@pxref{Java Action Features}.
9452
8405b70c
PB
9453@item
9454The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9455@table @asis
9456@item @code{%code imports}
9457blocks are placed at the beginning of the Java source code. They may
9458include copyright notices. For a @code{package} declarations, it is
9459suggested to use @code{%define package} instead.
8405b70c 9460
01b477c6
PB
9461@item unqualified @code{%code}
9462blocks are placed inside the parser class.
9463
9464@item @code{%code lexer}
9465blocks, if specified, should include the implementation of the
9466scanner. If there is no such block, the scanner can be any class
9467that implements the appropriate interface (see @pxref{Java Scanner
9468Interface}).
29553547 9469@end table
8405b70c
PB
9470
9471Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9472In particular, @code{%@{ @dots{} %@}} blocks should not be used
9473and may give an error in future versions of Bison.
9474
01b477c6 9475The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9476be used to define other classes used by the parser @emph{outside}
9477the parser class.
8405b70c
PB
9478@end itemize
9479
e254a580
DJ
9480
9481@node Java Declarations Summary
9482@subsection Java Declarations Summary
9483
9484This summary only include declarations specific to Java or have special
9485meaning when used in a Java parser.
9486
9487@deffn {Directive} {%language "Java"}
9488Generate a Java class for the parser.
9489@end deffn
9490
9491@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9492A parameter for the lexer class defined by @code{%code lexer}
9493@emph{only}, added as parameters to the lexer constructor and the parser
9494constructor that @emph{creates} a lexer. Default is none.
9495@xref{Java Scanner Interface}.
9496@end deffn
9497
9498@deffn {Directive} %name-prefix "@var{prefix}"
9499The prefix of the parser class name @code{@var{prefix}Parser} if
9500@code{%define parser_class_name} is not used. Default is @code{YY}.
9501@xref{Java Bison Interface}.
9502@end deffn
9503
9504@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9505A parameter for the parser class added as parameters to constructor(s)
9506and as fields initialized by the constructor(s). Default is none.
9507@xref{Java Parser Interface}.
9508@end deffn
9509
9510@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9511Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9512@xref{Java Semantic Values}.
9513@end deffn
9514
9515@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9516Declare the type of nonterminals. Note that the angle brackets enclose
9517a Java @emph{type}.
9518@xref{Java Semantic Values}.
9519@end deffn
9520
9521@deffn {Directive} %code @{ @var{code} @dots{} @}
9522Code appended to the inside of the parser class.
9523@xref{Java Differences}.
9524@end deffn
9525
9526@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9527Code inserted just after the @code{package} declaration.
9528@xref{Java Differences}.
9529@end deffn
9530
1979121c
DJ
9531@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
9532Code inserted at the beginning of the parser constructor body.
9533@xref{Java Parser Interface}.
9534@end deffn
9535
e254a580
DJ
9536@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9537Code added to the body of a inner lexer class within the parser class.
9538@xref{Java Scanner Interface}.
9539@end deffn
9540
9541@deffn {Directive} %% @var{code} @dots{}
9542Code (after the second @code{%%}) appended to the end of the file,
9543@emph{outside} the parser class.
9544@xref{Java Differences}.
9545@end deffn
9546
9547@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 9548Not supported. Use @code{%code imports} instead.
e254a580
DJ
9549@xref{Java Differences}.
9550@end deffn
9551
9552@deffn {Directive} {%define abstract}
9553Whether the parser class is declared @code{abstract}. Default is false.
9554@xref{Java Bison Interface}.
9555@end deffn
9556
1979121c
DJ
9557@deffn {Directive} {%define annotations} "@var{annotations}"
9558The Java annotations for the parser class. Default is none.
9559@xref{Java Bison Interface}.
9560@end deffn
9561
e254a580
DJ
9562@deffn {Directive} {%define extends} "@var{superclass}"
9563The superclass of the parser class. Default is none.
9564@xref{Java Bison Interface}.
9565@end deffn
9566
9567@deffn {Directive} {%define final}
9568Whether the parser class is declared @code{final}. Default is false.
9569@xref{Java Bison Interface}.
9570@end deffn
9571
9572@deffn {Directive} {%define implements} "@var{interfaces}"
9573The implemented interfaces of the parser class, a comma-separated list.
9574Default is none.
9575@xref{Java Bison Interface}.
9576@end deffn
9577
1979121c
DJ
9578@deffn {Directive} {%define init_throws} "@var{exceptions}"
9579The exceptions thrown by @code{%code init} from the parser class
9580constructor. Default is none.
9581@xref{Java Parser Interface}.
9582@end deffn
9583
e254a580
DJ
9584@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9585The exceptions thrown by the @code{yylex} method of the lexer, a
9586comma-separated list. Default is @code{java.io.IOException}.
9587@xref{Java Scanner Interface}.
9588@end deffn
9589
9590@deffn {Directive} {%define location_type} "@var{class}"
9591The name of the class used for locations (a range between two
9592positions). This class is generated as an inner class of the parser
9593class by @command{bison}. Default is @code{Location}.
9594@xref{Java Location Values}.
9595@end deffn
9596
9597@deffn {Directive} {%define package} "@var{package}"
9598The package to put the parser class in. Default is none.
9599@xref{Java Bison Interface}.
9600@end deffn
9601
9602@deffn {Directive} {%define parser_class_name} "@var{name}"
9603The name of the parser class. Default is @code{YYParser} or
9604@code{@var{name-prefix}Parser}.
9605@xref{Java Bison Interface}.
9606@end deffn
9607
9608@deffn {Directive} {%define position_type} "@var{class}"
9609The name of the class used for positions. This class must be supplied by
9610the user. Default is @code{Position}.
9611@xref{Java Location Values}.
9612@end deffn
9613
9614@deffn {Directive} {%define public}
9615Whether the parser class is declared @code{public}. Default is false.
9616@xref{Java Bison Interface}.
9617@end deffn
9618
9619@deffn {Directive} {%define stype} "@var{class}"
9620The base type of semantic values. Default is @code{Object}.
9621@xref{Java Semantic Values}.
9622@end deffn
9623
9624@deffn {Directive} {%define strictfp}
9625Whether the parser class is declared @code{strictfp}. Default is false.
9626@xref{Java Bison Interface}.
9627@end deffn
9628
9629@deffn {Directive} {%define throws} "@var{exceptions}"
9630The exceptions thrown by user-supplied parser actions and
9631@code{%initial-action}, a comma-separated list. Default is none.
9632@xref{Java Parser Interface}.
9633@end deffn
9634
9635
12545799 9636@c ================================================= FAQ
d1a1114f
AD
9637
9638@node FAQ
9639@chapter Frequently Asked Questions
9640@cindex frequently asked questions
9641@cindex questions
9642
9643Several questions about Bison come up occasionally. Here some of them
9644are addressed.
9645
9646@menu
55ba27be
AD
9647* Memory Exhausted:: Breaking the Stack Limits
9648* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9649* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9650* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9651* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9652* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9653* I can't build Bison:: Troubleshooting
9654* Where can I find help?:: Troubleshouting
9655* Bug Reports:: Troublereporting
8405b70c 9656* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9657* Beta Testing:: Experimenting development versions
9658* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9659@end menu
9660
1a059451
PE
9661@node Memory Exhausted
9662@section Memory Exhausted
d1a1114f
AD
9663
9664@display
1a059451 9665My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9666message. What can I do?
9667@end display
9668
9669This question is already addressed elsewhere, @xref{Recursion,
9670,Recursive Rules}.
9671
e64fec0a
PE
9672@node How Can I Reset the Parser
9673@section How Can I Reset the Parser
5b066063 9674
0e14ad77
PE
9675The following phenomenon has several symptoms, resulting in the
9676following typical questions:
5b066063
AD
9677
9678@display
9679I invoke @code{yyparse} several times, and on correct input it works
9680properly; but when a parse error is found, all the other calls fail
0e14ad77 9681too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9682@end display
9683
9684@noindent
9685or
9686
9687@display
0e14ad77 9688My parser includes support for an @samp{#include}-like feature, in
5b066063 9689which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9690although I did specify @code{%define api.pure}.
5b066063
AD
9691@end display
9692
0e14ad77
PE
9693These problems typically come not from Bison itself, but from
9694Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9695speed, they might not notice a change of input file. As a
9696demonstration, consider the following source file,
9697@file{first-line.l}:
9698
9699@verbatim
9700%{
9701#include <stdio.h>
9702#include <stdlib.h>
9703%}
9704%%
9705.*\n ECHO; return 1;
9706%%
9707int
0e14ad77 9708yyparse (char const *file)
5b066063
AD
9709{
9710 yyin = fopen (file, "r");
9711 if (!yyin)
9712 exit (2);
fa7e68c3 9713 /* One token only. */
5b066063 9714 yylex ();
0e14ad77 9715 if (fclose (yyin) != 0)
5b066063
AD
9716 exit (3);
9717 return 0;
9718}
9719
9720int
0e14ad77 9721main (void)
5b066063
AD
9722{
9723 yyparse ("input");
9724 yyparse ("input");
9725 return 0;
9726}
9727@end verbatim
9728
9729@noindent
9730If the file @file{input} contains
9731
9732@verbatim
9733input:1: Hello,
9734input:2: World!
9735@end verbatim
9736
9737@noindent
0e14ad77 9738then instead of getting the first line twice, you get:
5b066063
AD
9739
9740@example
9741$ @kbd{flex -ofirst-line.c first-line.l}
9742$ @kbd{gcc -ofirst-line first-line.c -ll}
9743$ @kbd{./first-line}
9744input:1: Hello,
9745input:2: World!
9746@end example
9747
0e14ad77
PE
9748Therefore, whenever you change @code{yyin}, you must tell the
9749Lex-generated scanner to discard its current buffer and switch to the
9750new one. This depends upon your implementation of Lex; see its
9751documentation for more. For Flex, it suffices to call
9752@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9753Flex-generated scanner needs to read from several input streams to
9754handle features like include files, you might consider using Flex
9755functions like @samp{yy_switch_to_buffer} that manipulate multiple
9756input buffers.
5b066063 9757
b165c324
AD
9758If your Flex-generated scanner uses start conditions (@pxref{Start
9759conditions, , Start conditions, flex, The Flex Manual}), you might
9760also want to reset the scanner's state, i.e., go back to the initial
9761start condition, through a call to @samp{BEGIN (0)}.
9762
fef4cb51
AD
9763@node Strings are Destroyed
9764@section Strings are Destroyed
9765
9766@display
c7e441b4 9767My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9768them. Instead of reporting @samp{"foo", "bar"}, it reports
9769@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9770@end display
9771
9772This error is probably the single most frequent ``bug report'' sent to
9773Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9774of the scanner. Consider the following Lex code:
fef4cb51
AD
9775
9776@verbatim
9777%{
9778#include <stdio.h>
9779char *yylval = NULL;
9780%}
9781%%
9782.* yylval = yytext; return 1;
9783\n /* IGNORE */
9784%%
9785int
9786main ()
9787{
fa7e68c3 9788 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9789 char *fst = (yylex (), yylval);
9790 char *snd = (yylex (), yylval);
9791 printf ("\"%s\", \"%s\"\n", fst, snd);
9792 return 0;
9793}
9794@end verbatim
9795
9796If you compile and run this code, you get:
9797
9798@example
9799$ @kbd{flex -osplit-lines.c split-lines.l}
9800$ @kbd{gcc -osplit-lines split-lines.c -ll}
9801$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9802"one
9803two", "two"
9804@end example
9805
9806@noindent
9807this is because @code{yytext} is a buffer provided for @emph{reading}
9808in the action, but if you want to keep it, you have to duplicate it
9809(e.g., using @code{strdup}). Note that the output may depend on how
9810your implementation of Lex handles @code{yytext}. For instance, when
9811given the Lex compatibility option @option{-l} (which triggers the
9812option @samp{%array}) Flex generates a different behavior:
9813
9814@example
9815$ @kbd{flex -l -osplit-lines.c split-lines.l}
9816$ @kbd{gcc -osplit-lines split-lines.c -ll}
9817$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9818"two", "two"
9819@end example
9820
9821
2fa09258
AD
9822@node Implementing Gotos/Loops
9823@section Implementing Gotos/Loops
a06ea4aa
AD
9824
9825@display
9826My simple calculator supports variables, assignments, and functions,
2fa09258 9827but how can I implement gotos, or loops?
a06ea4aa
AD
9828@end display
9829
9830Although very pedagogical, the examples included in the document blur
a1c84f45 9831the distinction to make between the parser---whose job is to recover
a06ea4aa 9832the structure of a text and to transmit it to subsequent modules of
a1c84f45 9833the program---and the processing (such as the execution) of this
a06ea4aa
AD
9834structure. This works well with so called straight line programs,
9835i.e., precisely those that have a straightforward execution model:
9836execute simple instructions one after the others.
9837
9838@cindex abstract syntax tree
9839@cindex @acronym{AST}
9840If you want a richer model, you will probably need to use the parser
9841to construct a tree that does represent the structure it has
9842recovered; this tree is usually called the @dfn{abstract syntax tree},
9843or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9844traversing it in various ways, will enable treatments such as its
9845execution or its translation, which will result in an interpreter or a
9846compiler.
9847
9848This topic is way beyond the scope of this manual, and the reader is
9849invited to consult the dedicated literature.
9850
9851
ed2e6384
AD
9852@node Multiple start-symbols
9853@section Multiple start-symbols
9854
9855@display
9856I have several closely related grammars, and I would like to share their
9857implementations. In fact, I could use a single grammar but with
9858multiple entry points.
9859@end display
9860
9861Bison does not support multiple start-symbols, but there is a very
9862simple means to simulate them. If @code{foo} and @code{bar} are the two
9863pseudo start-symbols, then introduce two new tokens, say
9864@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9865real start-symbol:
9866
9867@example
9868%token START_FOO START_BAR;
9869%start start;
9870start: START_FOO foo
9871 | START_BAR bar;
9872@end example
9873
9874These tokens prevents the introduction of new conflicts. As far as the
9875parser goes, that is all that is needed.
9876
9877Now the difficult part is ensuring that the scanner will send these
9878tokens first. If your scanner is hand-written, that should be
9879straightforward. If your scanner is generated by Lex, them there is
9880simple means to do it: recall that anything between @samp{%@{ ... %@}}
9881after the first @code{%%} is copied verbatim in the top of the generated
9882@code{yylex} function. Make sure a variable @code{start_token} is
9883available in the scanner (e.g., a global variable or using
9884@code{%lex-param} etc.), and use the following:
9885
9886@example
9887 /* @r{Prologue.} */
9888%%
9889%@{
9890 if (start_token)
9891 @{
9892 int t = start_token;
9893 start_token = 0;
9894 return t;
9895 @}
9896%@}
9897 /* @r{The rules.} */
9898@end example
9899
9900
55ba27be
AD
9901@node Secure? Conform?
9902@section Secure? Conform?
9903
9904@display
9905Is Bison secure? Does it conform to POSIX?
9906@end display
9907
9908If you're looking for a guarantee or certification, we don't provide it.
9909However, Bison is intended to be a reliable program that conforms to the
9910@acronym{POSIX} specification for Yacc. If you run into problems,
9911please send us a bug report.
9912
9913@node I can't build Bison
9914@section I can't build Bison
9915
9916@display
8c5b881d
PE
9917I can't build Bison because @command{make} complains that
9918@code{msgfmt} is not found.
55ba27be
AD
9919What should I do?
9920@end display
9921
9922Like most GNU packages with internationalization support, that feature
9923is turned on by default. If you have problems building in the @file{po}
9924subdirectory, it indicates that your system's internationalization
9925support is lacking. You can re-configure Bison with
9926@option{--disable-nls} to turn off this support, or you can install GNU
9927gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9928Bison. See the file @file{ABOUT-NLS} for more information.
9929
9930
9931@node Where can I find help?
9932@section Where can I find help?
9933
9934@display
9935I'm having trouble using Bison. Where can I find help?
9936@end display
9937
9938First, read this fine manual. Beyond that, you can send mail to
9939@email{help-bison@@gnu.org}. This mailing list is intended to be
9940populated with people who are willing to answer questions about using
9941and installing Bison. Please keep in mind that (most of) the people on
9942the list have aspects of their lives which are not related to Bison (!),
9943so you may not receive an answer to your question right away. This can
9944be frustrating, but please try not to honk them off; remember that any
9945help they provide is purely voluntary and out of the kindness of their
9946hearts.
9947
9948@node Bug Reports
9949@section Bug Reports
9950
9951@display
9952I found a bug. What should I include in the bug report?
9953@end display
9954
9955Before you send a bug report, make sure you are using the latest
9956version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9957mirrors. Be sure to include the version number in your bug report. If
9958the bug is present in the latest version but not in a previous version,
9959try to determine the most recent version which did not contain the bug.
9960
9961If the bug is parser-related, you should include the smallest grammar
9962you can which demonstrates the bug. The grammar file should also be
9963complete (i.e., I should be able to run it through Bison without having
9964to edit or add anything). The smaller and simpler the grammar, the
9965easier it will be to fix the bug.
9966
9967Include information about your compilation environment, including your
9968operating system's name and version and your compiler's name and
9969version. If you have trouble compiling, you should also include a
9970transcript of the build session, starting with the invocation of
9971`configure'. Depending on the nature of the bug, you may be asked to
9972send additional files as well (such as `config.h' or `config.cache').
9973
9974Patches are most welcome, but not required. That is, do not hesitate to
9975send a bug report just because you can not provide a fix.
9976
9977Send bug reports to @email{bug-bison@@gnu.org}.
9978
8405b70c
PB
9979@node More Languages
9980@section More Languages
55ba27be
AD
9981
9982@display
8405b70c 9983Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9984favorite language here}?
9985@end display
9986
8405b70c 9987C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9988languages; contributions are welcome.
9989
9990@node Beta Testing
9991@section Beta Testing
9992
9993@display
9994What is involved in being a beta tester?
9995@end display
9996
9997It's not terribly involved. Basically, you would download a test
9998release, compile it, and use it to build and run a parser or two. After
9999that, you would submit either a bug report or a message saying that
10000everything is okay. It is important to report successes as well as
10001failures because test releases eventually become mainstream releases,
10002but only if they are adequately tested. If no one tests, development is
10003essentially halted.
10004
10005Beta testers are particularly needed for operating systems to which the
10006developers do not have easy access. They currently have easy access to
10007recent GNU/Linux and Solaris versions. Reports about other operating
10008systems are especially welcome.
10009
10010@node Mailing Lists
10011@section Mailing Lists
10012
10013@display
10014How do I join the help-bison and bug-bison mailing lists?
10015@end display
10016
10017See @url{http://lists.gnu.org/}.
a06ea4aa 10018
d1a1114f
AD
10019@c ================================================= Table of Symbols
10020
342b8b6e 10021@node Table of Symbols
bfa74976
RS
10022@appendix Bison Symbols
10023@cindex Bison symbols, table of
10024@cindex symbols in Bison, table of
10025
18b519c0 10026@deffn {Variable} @@$
3ded9a63 10027In an action, the location of the left-hand side of the rule.
88bce5a2 10028@xref{Locations, , Locations Overview}.
18b519c0 10029@end deffn
3ded9a63 10030
18b519c0 10031@deffn {Variable} @@@var{n}
3ded9a63
AD
10032In an action, the location of the @var{n}-th symbol of the right-hand
10033side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10034@end deffn
3ded9a63 10035
18b519c0 10036@deffn {Variable} $$
3ded9a63
AD
10037In an action, the semantic value of the left-hand side of the rule.
10038@xref{Actions}.
18b519c0 10039@end deffn
3ded9a63 10040
18b519c0 10041@deffn {Variable} $@var{n}
3ded9a63
AD
10042In an action, the semantic value of the @var{n}-th symbol of the
10043right-hand side of the rule. @xref{Actions}.
18b519c0 10044@end deffn
3ded9a63 10045
dd8d9022
AD
10046@deffn {Delimiter} %%
10047Delimiter used to separate the grammar rule section from the
10048Bison declarations section or the epilogue.
10049@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10050@end deffn
bfa74976 10051
dd8d9022
AD
10052@c Don't insert spaces, or check the DVI output.
10053@deffn {Delimiter} %@{@var{code}%@}
10054All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10055the output file uninterpreted. Such code forms the prologue of the input
10056file. @xref{Grammar Outline, ,Outline of a Bison
10057Grammar}.
18b519c0 10058@end deffn
bfa74976 10059
dd8d9022
AD
10060@deffn {Construct} /*@dots{}*/
10061Comment delimiters, as in C.
18b519c0 10062@end deffn
bfa74976 10063
dd8d9022
AD
10064@deffn {Delimiter} :
10065Separates a rule's result from its components. @xref{Rules, ,Syntax of
10066Grammar Rules}.
18b519c0 10067@end deffn
bfa74976 10068
dd8d9022
AD
10069@deffn {Delimiter} ;
10070Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10071@end deffn
bfa74976 10072
dd8d9022
AD
10073@deffn {Delimiter} |
10074Separates alternate rules for the same result nonterminal.
10075@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10076@end deffn
bfa74976 10077
12e35840
JD
10078@deffn {Directive} <*>
10079Used to define a default tagged @code{%destructor} or default tagged
10080@code{%printer}.
85894313
JD
10081
10082This feature is experimental.
10083More user feedback will help to determine whether it should become a permanent
10084feature.
10085
12e35840
JD
10086@xref{Destructor Decl, , Freeing Discarded Symbols}.
10087@end deffn
10088
3ebecc24 10089@deffn {Directive} <>
12e35840
JD
10090Used to define a default tagless @code{%destructor} or default tagless
10091@code{%printer}.
85894313
JD
10092
10093This feature is experimental.
10094More user feedback will help to determine whether it should become a permanent
10095feature.
10096
12e35840
JD
10097@xref{Destructor Decl, , Freeing Discarded Symbols}.
10098@end deffn
10099
dd8d9022
AD
10100@deffn {Symbol} $accept
10101The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10102$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10103Start-Symbol}. It cannot be used in the grammar.
18b519c0 10104@end deffn
bfa74976 10105
136a0f76 10106@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10107@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10108Insert @var{code} verbatim into output parser source.
10109@xref{Decl Summary,,%code}.
9bc0dd67
JD
10110@end deffn
10111
10112@deffn {Directive} %debug
10113Equip the parser for debugging. @xref{Decl Summary}.
10114@end deffn
10115
91d2c560 10116@ifset defaultprec
22fccf95
PE
10117@deffn {Directive} %default-prec
10118Assign a precedence to rules that lack an explicit @samp{%prec}
10119modifier. @xref{Contextual Precedence, ,Context-Dependent
10120Precedence}.
39a06c25 10121@end deffn
91d2c560 10122@end ifset
39a06c25 10123
148d66d8
JD
10124@deffn {Directive} %define @var{define-variable}
10125@deffnx {Directive} %define @var{define-variable} @var{value}
10126Define a variable to adjust Bison's behavior.
10127@xref{Decl Summary,,%define}.
10128@end deffn
10129
18b519c0 10130@deffn {Directive} %defines
6deb4447
AD
10131Bison declaration to create a header file meant for the scanner.
10132@xref{Decl Summary}.
18b519c0 10133@end deffn
6deb4447 10134
02975b9a
JD
10135@deffn {Directive} %defines @var{defines-file}
10136Same as above, but save in the file @var{defines-file}.
10137@xref{Decl Summary}.
10138@end deffn
10139
18b519c0 10140@deffn {Directive} %destructor
258b75ca 10141Specify how the parser should reclaim the memory associated to
fa7e68c3 10142discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10143@end deffn
72f889cc 10144
18b519c0 10145@deffn {Directive} %dprec
676385e2 10146Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10147time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10148@acronym{GLR} Parsers}.
18b519c0 10149@end deffn
676385e2 10150
dd8d9022
AD
10151@deffn {Symbol} $end
10152The predefined token marking the end of the token stream. It cannot be
10153used in the grammar.
10154@end deffn
10155
10156@deffn {Symbol} error
10157A token name reserved for error recovery. This token may be used in
10158grammar rules so as to allow the Bison parser to recognize an error in
10159the grammar without halting the process. In effect, a sentence
10160containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10161token @code{error} becomes the current lookahead token. Actions
10162corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10163token is reset to the token that originally caused the violation.
10164@xref{Error Recovery}.
18d192f0
AD
10165@end deffn
10166
18b519c0 10167@deffn {Directive} %error-verbose
71b00ed8 10168An obsolete directive standing for @samp{%define error-verbose}.
18b519c0 10169@end deffn
2a8d363a 10170
02975b9a 10171@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10172Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10173Summary}.
18b519c0 10174@end deffn
d8988b2f 10175
18b519c0 10176@deffn {Directive} %glr-parser
c827f760
PE
10177Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10178Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10179@end deffn
676385e2 10180
dd8d9022
AD
10181@deffn {Directive} %initial-action
10182Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10183@end deffn
10184
e6e704dc
JD
10185@deffn {Directive} %language
10186Specify the programming language for the generated parser.
10187@xref{Decl Summary}.
10188@end deffn
10189
18b519c0 10190@deffn {Directive} %left
d78f0ac9 10191Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10192@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10193@end deffn
bfa74976 10194
feeb0eda 10195@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10196Bison declaration to specifying an additional parameter that
10197@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10198for Pure Parsers}.
18b519c0 10199@end deffn
2a8d363a 10200
18b519c0 10201@deffn {Directive} %merge
676385e2 10202Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10203reduce/reduce conflict with a rule having the same merging function, the
676385e2 10204function is applied to the two semantic values to get a single result.
c827f760 10205@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10206@end deffn
676385e2 10207
02975b9a 10208@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10209Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10210@end deffn
d8988b2f 10211
91d2c560 10212@ifset defaultprec
22fccf95
PE
10213@deffn {Directive} %no-default-prec
10214Do not assign a precedence to rules that lack an explicit @samp{%prec}
10215modifier. @xref{Contextual Precedence, ,Context-Dependent
10216Precedence}.
10217@end deffn
91d2c560 10218@end ifset
22fccf95 10219
18b519c0 10220@deffn {Directive} %no-lines
931c7513
RS
10221Bison declaration to avoid generating @code{#line} directives in the
10222parser file. @xref{Decl Summary}.
18b519c0 10223@end deffn
931c7513 10224
18b519c0 10225@deffn {Directive} %nonassoc
d78f0ac9 10226Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10227@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10228@end deffn
bfa74976 10229
02975b9a 10230@deffn {Directive} %output "@var{file}"
72d2299c 10231Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10232Summary}.
18b519c0 10233@end deffn
d8988b2f 10234
feeb0eda 10235@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10236Bison declaration to specifying an additional parameter that
10237@code{yyparse} should accept. @xref{Parser Function,, The Parser
10238Function @code{yyparse}}.
18b519c0 10239@end deffn
2a8d363a 10240
18b519c0 10241@deffn {Directive} %prec
bfa74976
RS
10242Bison declaration to assign a precedence to a specific rule.
10243@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10244@end deffn
bfa74976 10245
d78f0ac9
AD
10246@deffn {Directive} %precedence
10247Bison declaration to assign precedence to token(s), but no associativity
10248@xref{Precedence Decl, ,Operator Precedence}.
10249@end deffn
10250
18b519c0 10251@deffn {Directive} %pure-parser
d9df47b6
JD
10252Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10253for which Bison is more careful to warn about unreasonable usage.
18b519c0 10254@end deffn
bfa74976 10255
b50d2359 10256@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10257Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10258Require a Version of Bison}.
b50d2359
AD
10259@end deffn
10260
18b519c0 10261@deffn {Directive} %right
d78f0ac9 10262Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10263@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10264@end deffn
bfa74976 10265
e6e704dc
JD
10266@deffn {Directive} %skeleton
10267Specify the skeleton to use; usually for development.
10268@xref{Decl Summary}.
10269@end deffn
10270
18b519c0 10271@deffn {Directive} %start
704a47c4
AD
10272Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10273Start-Symbol}.
18b519c0 10274@end deffn
bfa74976 10275
18b519c0 10276@deffn {Directive} %token
bfa74976
RS
10277Bison declaration to declare token(s) without specifying precedence.
10278@xref{Token Decl, ,Token Type Names}.
18b519c0 10279@end deffn
bfa74976 10280
18b519c0 10281@deffn {Directive} %token-table
931c7513
RS
10282Bison declaration to include a token name table in the parser file.
10283@xref{Decl Summary}.
18b519c0 10284@end deffn
931c7513 10285
18b519c0 10286@deffn {Directive} %type
704a47c4
AD
10287Bison declaration to declare nonterminals. @xref{Type Decl,
10288,Nonterminal Symbols}.
18b519c0 10289@end deffn
bfa74976 10290
dd8d9022
AD
10291@deffn {Symbol} $undefined
10292The predefined token onto which all undefined values returned by
10293@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10294@code{error}.
10295@end deffn
10296
18b519c0 10297@deffn {Directive} %union
bfa74976
RS
10298Bison declaration to specify several possible data types for semantic
10299values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10300@end deffn
bfa74976 10301
dd8d9022
AD
10302@deffn {Macro} YYABORT
10303Macro to pretend that an unrecoverable syntax error has occurred, by
10304making @code{yyparse} return 1 immediately. The error reporting
10305function @code{yyerror} is not called. @xref{Parser Function, ,The
10306Parser Function @code{yyparse}}.
8405b70c
PB
10307
10308For Java parsers, this functionality is invoked using @code{return YYABORT;}
10309instead.
dd8d9022 10310@end deffn
3ded9a63 10311
dd8d9022
AD
10312@deffn {Macro} YYACCEPT
10313Macro to pretend that a complete utterance of the language has been
10314read, by making @code{yyparse} return 0 immediately.
10315@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10316
10317For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10318instead.
dd8d9022 10319@end deffn
bfa74976 10320
dd8d9022 10321@deffn {Macro} YYBACKUP
742e4900 10322Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10323token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10324@end deffn
bfa74976 10325
dd8d9022 10326@deffn {Variable} yychar
32c29292 10327External integer variable that contains the integer value of the
742e4900 10328lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10329@code{yyparse}.) Error-recovery rule actions may examine this variable.
10330@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10331@end deffn
bfa74976 10332
dd8d9022
AD
10333@deffn {Variable} yyclearin
10334Macro used in error-recovery rule actions. It clears the previous
742e4900 10335lookahead token. @xref{Error Recovery}.
18b519c0 10336@end deffn
bfa74976 10337
dd8d9022
AD
10338@deffn {Macro} YYDEBUG
10339Macro to define to equip the parser with tracing code. @xref{Tracing,
10340,Tracing Your Parser}.
18b519c0 10341@end deffn
bfa74976 10342
dd8d9022
AD
10343@deffn {Variable} yydebug
10344External integer variable set to zero by default. If @code{yydebug}
10345is given a nonzero value, the parser will output information on input
10346symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10347@end deffn
bfa74976 10348
dd8d9022
AD
10349@deffn {Macro} yyerrok
10350Macro to cause parser to recover immediately to its normal mode
10351after a syntax error. @xref{Error Recovery}.
10352@end deffn
10353
10354@deffn {Macro} YYERROR
10355Macro to pretend that a syntax error has just been detected: call
10356@code{yyerror} and then perform normal error recovery if possible
10357(@pxref{Error Recovery}), or (if recovery is impossible) make
10358@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10359
10360For Java parsers, this functionality is invoked using @code{return YYERROR;}
10361instead.
dd8d9022
AD
10362@end deffn
10363
10364@deffn {Function} yyerror
10365User-supplied function to be called by @code{yyparse} on error.
71b00ed8 10366@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
10367@end deffn
10368
10369@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
10370An obsolete macro used in the @file{yacc.c} skeleton, that you define
10371with @code{#define} in the prologue to request verbose, specific error
10372message strings when @code{yyerror} is called. It doesn't matter what
10373definition you use for @code{YYERROR_VERBOSE}, just whether you define
10374it. Using @code{%define error-verbose} is preferred (@pxref{Error
10375Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
10376@end deffn
10377
10378@deffn {Macro} YYINITDEPTH
10379Macro for specifying the initial size of the parser stack.
1a059451 10380@xref{Memory Management}.
dd8d9022
AD
10381@end deffn
10382
10383@deffn {Function} yylex
10384User-supplied lexical analyzer function, called with no arguments to get
10385the next token. @xref{Lexical, ,The Lexical Analyzer Function
10386@code{yylex}}.
10387@end deffn
10388
10389@deffn {Macro} YYLEX_PARAM
10390An obsolete macro for specifying an extra argument (or list of extra
32c29292 10391arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10392macro is deprecated, and is supported only for Yacc like parsers.
10393@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10394@end deffn
10395
10396@deffn {Variable} yylloc
10397External variable in which @code{yylex} should place the line and column
10398numbers associated with a token. (In a pure parser, it is a local
10399variable within @code{yyparse}, and its address is passed to
32c29292
JD
10400@code{yylex}.)
10401You can ignore this variable if you don't use the @samp{@@} feature in the
10402grammar actions.
10403@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10404In semantic actions, it stores the location of the lookahead token.
32c29292 10405@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10406@end deffn
10407
10408@deffn {Type} YYLTYPE
10409Data type of @code{yylloc}; by default, a structure with four
10410members. @xref{Location Type, , Data Types of Locations}.
10411@end deffn
10412
10413@deffn {Variable} yylval
10414External variable in which @code{yylex} should place the semantic
10415value associated with a token. (In a pure parser, it is a local
10416variable within @code{yyparse}, and its address is passed to
32c29292
JD
10417@code{yylex}.)
10418@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10419In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10420@xref{Actions, ,Actions}.
dd8d9022
AD
10421@end deffn
10422
10423@deffn {Macro} YYMAXDEPTH
1a059451
PE
10424Macro for specifying the maximum size of the parser stack. @xref{Memory
10425Management}.
dd8d9022
AD
10426@end deffn
10427
10428@deffn {Variable} yynerrs
8a2800e7 10429Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10430(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10431pure push parser, it is a member of yypstate.)
dd8d9022
AD
10432@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10433@end deffn
10434
10435@deffn {Function} yyparse
10436The parser function produced by Bison; call this function to start
10437parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10438@end deffn
10439
9987d1b3 10440@deffn {Function} yypstate_delete
f4101aa6 10441The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10442call this function to delete the memory associated with a parser.
f4101aa6 10443@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10444@code{yypstate_delete}}.
59da312b
JD
10445(The current push parsing interface is experimental and may evolve.
10446More user feedback will help to stabilize it.)
9987d1b3
JD
10447@end deffn
10448
10449@deffn {Function} yypstate_new
f4101aa6 10450The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10451call this function to create a new parser.
f4101aa6 10452@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10453@code{yypstate_new}}.
59da312b
JD
10454(The current push parsing interface is experimental and may evolve.
10455More user feedback will help to stabilize it.)
9987d1b3
JD
10456@end deffn
10457
10458@deffn {Function} yypull_parse
f4101aa6
AD
10459The parser function produced by Bison in push mode; call this function to
10460parse the rest of the input stream.
10461@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10462@code{yypull_parse}}.
59da312b
JD
10463(The current push parsing interface is experimental and may evolve.
10464More user feedback will help to stabilize it.)
9987d1b3
JD
10465@end deffn
10466
10467@deffn {Function} yypush_parse
f4101aa6
AD
10468The parser function produced by Bison in push mode; call this function to
10469parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10470@code{yypush_parse}}.
59da312b
JD
10471(The current push parsing interface is experimental and may evolve.
10472More user feedback will help to stabilize it.)
9987d1b3
JD
10473@end deffn
10474
dd8d9022
AD
10475@deffn {Macro} YYPARSE_PARAM
10476An obsolete macro for specifying the name of a parameter that
10477@code{yyparse} should accept. The use of this macro is deprecated, and
10478is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10479Conventions for Pure Parsers}.
10480@end deffn
10481
10482@deffn {Macro} YYRECOVERING
02103984
PE
10483The expression @code{YYRECOVERING ()} yields 1 when the parser
10484is recovering from a syntax error, and 0 otherwise.
10485@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10486@end deffn
10487
10488@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
10489Macro used to control the use of @code{alloca} when the
10490deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10491the parser will use @code{malloc} to extend its stacks. If defined to
104921, the parser will use @code{alloca}. Values other than 0 and 1 are
10493reserved for future Bison extensions. If not defined,
10494@code{YYSTACK_USE_ALLOCA} defaults to 0.
10495
55289366 10496In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10497limited stack and with unreliable stack-overflow checking, you should
10498set @code{YYMAXDEPTH} to a value that cannot possibly result in
10499unchecked stack overflow on any of your target hosts when
10500@code{alloca} is called. You can inspect the code that Bison
10501generates in order to determine the proper numeric values. This will
10502require some expertise in low-level implementation details.
dd8d9022
AD
10503@end deffn
10504
10505@deffn {Type} YYSTYPE
10506Data type of semantic values; @code{int} by default.
10507@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10508@end deffn
bfa74976 10509
342b8b6e 10510@node Glossary
bfa74976
RS
10511@appendix Glossary
10512@cindex glossary
10513
10514@table @asis
eb45ef3b
JD
10515@item Accepting State
10516A state whose only action is the accept action.
10517The accepting state is thus a consistent state.
10518@xref{Understanding,,}.
10519
c827f760
PE
10520@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10521Formal method of specifying context-free grammars originally proposed
10522by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10523committee document contributing to what became the Algol 60 report.
10524@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10525
eb45ef3b
JD
10526@item Consistent State
10527A state containing only one possible action.
10528@xref{Decl Summary,,lr.default_rules}.
10529
bfa74976
RS
10530@item Context-free grammars
10531Grammars specified as rules that can be applied regardless of context.
10532Thus, if there is a rule which says that an integer can be used as an
10533expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10534permitted. @xref{Language and Grammar, ,Languages and Context-Free
10535Grammars}.
bfa74976 10536
eb45ef3b
JD
10537@item Default Rule
10538The rule by which a parser should reduce if the current parser state
10539contains no other action for the lookahead token.
10540In permitted parser states, Bison declares the rule with the largest
10541lookahead set to be the default rule and removes that lookahead set.
10542@xref{Decl Summary,,lr.default_rules}.
10543
bfa74976
RS
10544@item Dynamic allocation
10545Allocation of memory that occurs during execution, rather than at
10546compile time or on entry to a function.
10547
10548@item Empty string
10549Analogous to the empty set in set theory, the empty string is a
10550character string of length zero.
10551
10552@item Finite-state stack machine
10553A ``machine'' that has discrete states in which it is said to exist at
10554each instant in time. As input to the machine is processed, the
10555machine moves from state to state as specified by the logic of the
10556machine. In the case of the parser, the input is the language being
10557parsed, and the states correspond to various stages in the grammar
c827f760 10558rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10559
c827f760 10560@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10561A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
10562that are not @acronym{LR}(1). It resolves situations that Bison's
10563deterministic parsing
676385e2
PH
10564algorithm cannot by effectively splitting off multiple parsers, trying all
10565possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10566right context. @xref{Generalized LR Parsing, ,Generalized
10567@acronym{LR} Parsing}.
676385e2 10568
bfa74976
RS
10569@item Grouping
10570A language construct that is (in general) grammatically divisible;
c827f760 10571for example, `expression' or `declaration' in C@.
bfa74976
RS
10572@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10573
eb45ef3b
JD
10574@item @acronym{IELR}(1)
10575A minimal @acronym{LR}(1) parser table generation algorithm.
10576That is, given any context-free grammar, @acronym{IELR}(1) generates
10577parser tables with the full language recognition power of canonical
10578@acronym{LR}(1) but with nearly the same number of parser states as
10579@acronym{LALR}(1).
10580This reduction in parser states is often an order of magnitude.
10581More importantly, because canonical @acronym{LR}(1)'s extra parser
10582states may contain duplicate conflicts in the case of
10583non-@acronym{LR}(1) grammars, the number of conflicts for
10584@acronym{IELR}(1) is often an order of magnitude less as well.
10585This can significantly reduce the complexity of developing of a grammar.
10586@xref{Decl Summary,,lr.type}.
10587
bfa74976
RS
10588@item Infix operator
10589An arithmetic operator that is placed between the operands on which it
10590performs some operation.
10591
10592@item Input stream
10593A continuous flow of data between devices or programs.
10594
10595@item Language construct
10596One of the typical usage schemas of the language. For example, one of
10597the constructs of the C language is the @code{if} statement.
10598@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10599
10600@item Left associativity
10601Operators having left associativity are analyzed from left to right:
10602@samp{a+b+c} first computes @samp{a+b} and then combines with
10603@samp{c}. @xref{Precedence, ,Operator Precedence}.
10604
10605@item Left recursion
89cab50d
AD
10606A rule whose result symbol is also its first component symbol; for
10607example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10608Rules}.
bfa74976
RS
10609
10610@item Left-to-right parsing
10611Parsing a sentence of a language by analyzing it token by token from
c827f760 10612left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10613
10614@item Lexical analyzer (scanner)
10615A function that reads an input stream and returns tokens one by one.
10616@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10617
10618@item Lexical tie-in
10619A flag, set by actions in the grammar rules, which alters the way
10620tokens are parsed. @xref{Lexical Tie-ins}.
10621
931c7513 10622@item Literal string token
14ded682 10623A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10624
742e4900
JD
10625@item Lookahead token
10626A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10627Tokens}.
bfa74976 10628
c827f760 10629@item @acronym{LALR}(1)
bfa74976 10630The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
10631generators) can handle by default; a subset of @acronym{LR}(1).
10632@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10633
c827f760 10634@item @acronym{LR}(1)
bfa74976 10635The class of context-free grammars in which at most one token of
742e4900 10636lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10637
10638@item Nonterminal symbol
10639A grammar symbol standing for a grammatical construct that can
10640be expressed through rules in terms of smaller constructs; in other
10641words, a construct that is not a token. @xref{Symbols}.
10642
bfa74976
RS
10643@item Parser
10644A function that recognizes valid sentences of a language by analyzing
10645the syntax structure of a set of tokens passed to it from a lexical
10646analyzer.
10647
10648@item Postfix operator
10649An arithmetic operator that is placed after the operands upon which it
10650performs some operation.
10651
10652@item Reduction
10653Replacing a string of nonterminals and/or terminals with a single
89cab50d 10654nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10655Parser Algorithm}.
bfa74976
RS
10656
10657@item Reentrant
10658A reentrant subprogram is a subprogram which can be in invoked any
10659number of times in parallel, without interference between the various
10660invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10661
10662@item Reverse polish notation
10663A language in which all operators are postfix operators.
10664
10665@item Right recursion
89cab50d
AD
10666A rule whose result symbol is also its last component symbol; for
10667example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10668Rules}.
bfa74976
RS
10669
10670@item Semantics
10671In computer languages, the semantics are specified by the actions
10672taken for each instance of the language, i.e., the meaning of
10673each statement. @xref{Semantics, ,Defining Language Semantics}.
10674
10675@item Shift
10676A parser is said to shift when it makes the choice of analyzing
10677further input from the stream rather than reducing immediately some
c827f760 10678already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10679
10680@item Single-character literal
10681A single character that is recognized and interpreted as is.
10682@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10683
10684@item Start symbol
10685The nonterminal symbol that stands for a complete valid utterance in
10686the language being parsed. The start symbol is usually listed as the
13863333 10687first nonterminal symbol in a language specification.
bfa74976
RS
10688@xref{Start Decl, ,The Start-Symbol}.
10689
10690@item Symbol table
10691A data structure where symbol names and associated data are stored
10692during parsing to allow for recognition and use of existing
10693information in repeated uses of a symbol. @xref{Multi-function Calc}.
10694
6e649e65
PE
10695@item Syntax error
10696An error encountered during parsing of an input stream due to invalid
10697syntax. @xref{Error Recovery}.
10698
bfa74976
RS
10699@item Token
10700A basic, grammatically indivisible unit of a language. The symbol
10701that describes a token in the grammar is a terminal symbol.
10702The input of the Bison parser is a stream of tokens which comes from
10703the lexical analyzer. @xref{Symbols}.
10704
10705@item Terminal symbol
89cab50d
AD
10706A grammar symbol that has no rules in the grammar and therefore is
10707grammatically indivisible. The piece of text it represents is a token.
10708@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10709@end table
10710
342b8b6e 10711@node Copying This Manual
f2b5126e 10712@appendix Copying This Manual
f2b5126e
PB
10713@include fdl.texi
10714
342b8b6e 10715@node Index
bfa74976
RS
10716@unnumbered Index
10717
10718@printindex cp
10719
bfa74976 10720@bye
a06ea4aa
AD
10721
10722@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10723@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10724@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10725@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10726@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f5f419de 10727@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10728@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10729@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10730@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10731@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10732@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10733@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10734@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10735@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10736@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10737@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10738@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10739@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10740@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10741@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10742@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10743@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10744@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10745@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10746@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10747@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10748@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10749@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
eb45ef3b 10750@c LocalWords: YYSTACK DVI fdl printindex IELR