]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
variables: rename namespace as api.namespace.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1d5b3c08
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f5f419de
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
271* Using Precedence:: How to specify precedence and associativity.
272* Precedence Only:: How to specify precedence only.
bfa74976
RS
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f5f419de
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f5f419de
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f5f419de 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
eb45ef3b
JD
355annotated context-free grammar into a deterministic or @acronym{GLR}
356parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
357@acronym{LR}(1) parser tables.
358Once you are proficient with Bison, you can use it to develop a wide
359range of language parsers, from those used in simple desk calculators to
360complex programming languages.
bfa74976
RS
361
362Bison is upward compatible with Yacc: all properly-written Yacc grammars
363ought to work with Bison with no change. Anyone familiar with Yacc
364should be able to use Bison with little trouble. You need to be fluent in
1e137b71 365C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
366
367We begin with tutorial chapters that explain the basic concepts of using
368Bison and show three explained examples, each building on the last. If you
369don't know Bison or Yacc, start by reading these chapters. Reference
370chapters follow which describe specific aspects of Bison in detail.
371
931c7513
RS
372Bison was written primarily by Robert Corbett; Richard Stallman made it
373Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 374multi-character string literals and other features.
931c7513 375
df1af54c 376This edition corresponds to version @value{VERSION} of Bison.
bfa74976 377
342b8b6e 378@node Conditions
bfa74976
RS
379@unnumbered Conditions for Using Bison
380
193d7c70
PE
381The distribution terms for Bison-generated parsers permit using the
382parsers in nonfree programs. Before Bison version 2.2, these extra
383permissions applied only when Bison was generating @acronym{LALR}(1)
384parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 385parsers could be used only in programs that were free software.
a31239f1 386
c827f760
PE
387The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
388compiler, have never
9ecbd125 389had such a requirement. They could always be used for nonfree
a31239f1
RS
390software. The reason Bison was different was not due to a special
391policy decision; it resulted from applying the usual General Public
392License to all of the Bison source code.
393
394The output of the Bison utility---the Bison parser file---contains a
395verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
396parser's implementation. (The actions from your grammar are inserted
397into this implementation at one point, but most of the rest of the
398implementation is not changed.) When we applied the @acronym{GPL}
399terms to the skeleton code for the parser's implementation,
a31239f1
RS
400the effect was to restrict the use of Bison output to free software.
401
402We didn't change the terms because of sympathy for people who want to
403make software proprietary. @strong{Software should be free.} But we
404concluded that limiting Bison's use to free software was doing little to
405encourage people to make other software free. So we decided to make the
406practical conditions for using Bison match the practical conditions for
c827f760 407using the other @acronym{GNU} tools.
bfa74976 408
193d7c70
PE
409This exception applies when Bison is generating code for a parser.
410You can tell whether the exception applies to a Bison output file by
411inspecting the file for text beginning with ``As a special
412exception@dots{}''. The text spells out the exact terms of the
413exception.
262aa8dd 414
f16b0819
PE
415@node Copying
416@unnumbered GNU GENERAL PUBLIC LICENSE
417@include gpl-3.0.texi
bfa74976 418
342b8b6e 419@node Concepts
bfa74976
RS
420@chapter The Concepts of Bison
421
422This chapter introduces many of the basic concepts without which the
423details of Bison will not make sense. If you do not already know how to
424use Bison or Yacc, we suggest you start by reading this chapter carefully.
425
426@menu
f5f419de
DJ
427* Language and Grammar:: Languages and context-free grammars,
428 as mathematical ideas.
429* Grammar in Bison:: How we represent grammars for Bison's sake.
430* Semantic Values:: Each token or syntactic grouping can have
431 a semantic value (the value of an integer,
432 the name of an identifier, etc.).
433* Semantic Actions:: Each rule can have an action containing C code.
434* GLR Parsers:: Writing parsers for general context-free languages.
435* Locations Overview:: Tracking Locations.
436* Bison Parser:: What are Bison's input and output,
437 how is the output used?
438* Stages:: Stages in writing and running Bison grammars.
439* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
440@end menu
441
342b8b6e 442@node Language and Grammar
bfa74976
RS
443@section Languages and Context-Free Grammars
444
bfa74976
RS
445@cindex context-free grammar
446@cindex grammar, context-free
447In order for Bison to parse a language, it must be described by a
448@dfn{context-free grammar}. This means that you specify one or more
449@dfn{syntactic groupings} and give rules for constructing them from their
450parts. For example, in the C language, one kind of grouping is called an
451`expression'. One rule for making an expression might be, ``An expression
452can be made of a minus sign and another expression''. Another would be,
453``An expression can be an integer''. As you can see, rules are often
454recursive, but there must be at least one rule which leads out of the
455recursion.
456
c827f760 457@cindex @acronym{BNF}
bfa74976
RS
458@cindex Backus-Naur form
459The most common formal system for presenting such rules for humans to read
c827f760
PE
460is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
461order to specify the language Algol 60. Any grammar expressed in
462@acronym{BNF} is a context-free grammar. The input to Bison is
463essentially machine-readable @acronym{BNF}.
bfa74976 464
c827f760 465@cindex @acronym{LALR}(1) grammars
eb45ef3b 466@cindex @acronym{IELR}(1) grammars
c827f760 467@cindex @acronym{LR}(1) grammars
eb45ef3b
JD
468There are various important subclasses of context-free grammars.
469Although it can handle almost all context-free grammars, Bison is
470optimized for what are called @acronym{LR}(1) grammars.
471In brief, in these grammars, it must be possible to tell how to parse
472any portion of an input string with just a single token of lookahead.
473For historical reasons, Bison by default is limited by the additional
474restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
eb45ef3b
JD
477To escape these additional restrictions, you can request
478@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
479@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 480
c827f760
PE
481@cindex @acronym{GLR} parsing
482@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 483@cindex ambiguous grammars
9d9b8b70 484@cindex nondeterministic parsing
9501dc6e 485
eb45ef3b 486Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
487roughly that the next grammar rule to apply at any point in the input is
488uniquely determined by the preceding input and a fixed, finite portion
742e4900 489(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 490grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 491apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 492grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 493lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
494With the proper declarations, Bison is also able to parse these more
495general context-free grammars, using a technique known as @acronym{GLR}
496parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
497are able to handle any context-free grammar for which the number of
498possible parses of any given string is finite.
676385e2 499
bfa74976
RS
500@cindex symbols (abstract)
501@cindex token
502@cindex syntactic grouping
503@cindex grouping, syntactic
9501dc6e
AD
504In the formal grammatical rules for a language, each kind of syntactic
505unit or grouping is named by a @dfn{symbol}. Those which are built by
506grouping smaller constructs according to grammatical rules are called
bfa74976
RS
507@dfn{nonterminal symbols}; those which can't be subdivided are called
508@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
509corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 510corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
511
512We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
513nonterminal, mean. The tokens of C are identifiers, constants (numeric
514and string), and the various keywords, arithmetic operators and
515punctuation marks. So the terminal symbols of a grammar for C include
516`identifier', `number', `string', plus one symbol for each keyword,
517operator or punctuation mark: `if', `return', `const', `static', `int',
518`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
519(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
520lexicography, not grammar.)
521
522Here is a simple C function subdivided into tokens:
523
9edcd895
AD
524@ifinfo
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
528 @r{identifier, close-paren} */
529@{ /* @r{open-brace} */
aa08666d
AD
530 return x * x; /* @r{keyword `return', identifier, asterisk,}
531 @r{identifier, semicolon} */
9edcd895
AD
532@} /* @r{close-brace} */
533@end example
534@end ifinfo
535@ifnotinfo
bfa74976
RS
536@example
537int /* @r{keyword `int'} */
14d4662b 538square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 539@{ /* @r{open-brace} */
9edcd895 540 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
541@} /* @r{close-brace} */
542@end example
9edcd895 543@end ifnotinfo
bfa74976
RS
544
545The syntactic groupings of C include the expression, the statement, the
546declaration, and the function definition. These are represented in the
547grammar of C by nonterminal symbols `expression', `statement',
548`declaration' and `function definition'. The full grammar uses dozens of
549additional language constructs, each with its own nonterminal symbol, in
550order to express the meanings of these four. The example above is a
551function definition; it contains one declaration, and one statement. In
552the statement, each @samp{x} is an expression and so is @samp{x * x}.
553
554Each nonterminal symbol must have grammatical rules showing how it is made
555out of simpler constructs. For example, one kind of C statement is the
556@code{return} statement; this would be described with a grammar rule which
557reads informally as follows:
558
559@quotation
560A `statement' can be made of a `return' keyword, an `expression' and a
561`semicolon'.
562@end quotation
563
564@noindent
565There would be many other rules for `statement', one for each kind of
566statement in C.
567
568@cindex start symbol
569One nonterminal symbol must be distinguished as the special one which
570defines a complete utterance in the language. It is called the @dfn{start
571symbol}. In a compiler, this means a complete input program. In the C
572language, the nonterminal symbol `sequence of definitions and declarations'
573plays this role.
574
575For example, @samp{1 + 2} is a valid C expression---a valid part of a C
576program---but it is not valid as an @emph{entire} C program. In the
577context-free grammar of C, this follows from the fact that `expression' is
578not the start symbol.
579
580The Bison parser reads a sequence of tokens as its input, and groups the
581tokens using the grammar rules. If the input is valid, the end result is
582that the entire token sequence reduces to a single grouping whose symbol is
583the grammar's start symbol. If we use a grammar for C, the entire input
584must be a `sequence of definitions and declarations'. If not, the parser
585reports a syntax error.
586
342b8b6e 587@node Grammar in Bison
bfa74976
RS
588@section From Formal Rules to Bison Input
589@cindex Bison grammar
590@cindex grammar, Bison
591@cindex formal grammar
592
593A formal grammar is a mathematical construct. To define the language
594for Bison, you must write a file expressing the grammar in Bison syntax:
595a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
596
597A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 598as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
599in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
600
601The Bison representation for a terminal symbol is also called a @dfn{token
602type}. Token types as well can be represented as C-like identifiers. By
603convention, these identifiers should be upper case to distinguish them from
604nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
605@code{RETURN}. A terminal symbol that stands for a particular keyword in
606the language should be named after that keyword converted to upper case.
607The terminal symbol @code{error} is reserved for error recovery.
931c7513 608@xref{Symbols}.
bfa74976
RS
609
610A terminal symbol can also be represented as a character literal, just like
611a C character constant. You should do this whenever a token is just a
612single character (parenthesis, plus-sign, etc.): use that same character in
613a literal as the terminal symbol for that token.
614
931c7513
RS
615A third way to represent a terminal symbol is with a C string constant
616containing several characters. @xref{Symbols}, for more information.
617
bfa74976
RS
618The grammar rules also have an expression in Bison syntax. For example,
619here is the Bison rule for a C @code{return} statement. The semicolon in
620quotes is a literal character token, representing part of the C syntax for
621the statement; the naked semicolon, and the colon, are Bison punctuation
622used in every rule.
623
624@example
625stmt: RETURN expr ';'
626 ;
627@end example
628
629@noindent
630@xref{Rules, ,Syntax of Grammar Rules}.
631
342b8b6e 632@node Semantic Values
bfa74976
RS
633@section Semantic Values
634@cindex semantic value
635@cindex value, semantic
636
637A formal grammar selects tokens only by their classifications: for example,
638if a rule mentions the terminal symbol `integer constant', it means that
639@emph{any} integer constant is grammatically valid in that position. The
640precise value of the constant is irrelevant to how to parse the input: if
641@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 642grammatical.
bfa74976
RS
643
644But the precise value is very important for what the input means once it is
645parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6463989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
647has both a token type and a @dfn{semantic value}. @xref{Semantics,
648,Defining Language Semantics},
bfa74976
RS
649for details.
650
651The token type is a terminal symbol defined in the grammar, such as
652@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
653you need to know to decide where the token may validly appear and how to
654group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 655except their types.
bfa74976
RS
656
657The semantic value has all the rest of the information about the
658meaning of the token, such as the value of an integer, or the name of an
659identifier. (A token such as @code{','} which is just punctuation doesn't
660need to have any semantic value.)
661
662For example, an input token might be classified as token type
663@code{INTEGER} and have the semantic value 4. Another input token might
664have the same token type @code{INTEGER} but value 3989. When a grammar
665rule says that @code{INTEGER} is allowed, either of these tokens is
666acceptable because each is an @code{INTEGER}. When the parser accepts the
667token, it keeps track of the token's semantic value.
668
669Each grouping can also have a semantic value as well as its nonterminal
670symbol. For example, in a calculator, an expression typically has a
671semantic value that is a number. In a compiler for a programming
672language, an expression typically has a semantic value that is a tree
673structure describing the meaning of the expression.
674
342b8b6e 675@node Semantic Actions
bfa74976
RS
676@section Semantic Actions
677@cindex semantic actions
678@cindex actions, semantic
679
680In order to be useful, a program must do more than parse input; it must
681also produce some output based on the input. In a Bison grammar, a grammar
682rule can have an @dfn{action} made up of C statements. Each time the
683parser recognizes a match for that rule, the action is executed.
684@xref{Actions}.
13863333 685
bfa74976
RS
686Most of the time, the purpose of an action is to compute the semantic value
687of the whole construct from the semantic values of its parts. For example,
688suppose we have a rule which says an expression can be the sum of two
689expressions. When the parser recognizes such a sum, each of the
690subexpressions has a semantic value which describes how it was built up.
691The action for this rule should create a similar sort of value for the
692newly recognized larger expression.
693
694For example, here is a rule that says an expression can be the sum of
695two subexpressions:
696
697@example
698expr: expr '+' expr @{ $$ = $1 + $3; @}
699 ;
700@end example
701
702@noindent
703The action says how to produce the semantic value of the sum expression
704from the values of the two subexpressions.
705
676385e2 706@node GLR Parsers
c827f760
PE
707@section Writing @acronym{GLR} Parsers
708@cindex @acronym{GLR} parsing
709@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
710@findex %glr-parser
711@cindex conflicts
712@cindex shift/reduce conflicts
fa7e68c3 713@cindex reduce/reduce conflicts
676385e2 714
eb45ef3b
JD
715In some grammars, Bison's deterministic
716@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
717certain grammar rule at a given point. That is, it may not be able to
718decide (on the basis of the input read so far) which of two possible
719reductions (applications of a grammar rule) applies, or whether to apply
720a reduction or read more of the input and apply a reduction later in the
721input. These are known respectively as @dfn{reduce/reduce} conflicts
722(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
723(@pxref{Shift/Reduce}).
724
eb45ef3b 725To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 726more general parsing algorithm is sometimes necessary. If you include
676385e2 727@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 728(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
729(@acronym{GLR}) parser. These parsers handle Bison grammars that
730contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 731declarations) identically to deterministic parsers. However, when
9501dc6e
AD
732faced with unresolved shift/reduce and reduce/reduce conflicts,
733@acronym{GLR} parsers use the simple expedient of doing both,
734effectively cloning the parser to follow both possibilities. Each of
735the resulting parsers can again split, so that at any given time, there
736can be any number of possible parses being explored. The parsers
676385e2
PH
737proceed in lockstep; that is, all of them consume (shift) a given input
738symbol before any of them proceed to the next. Each of the cloned
739parsers eventually meets one of two possible fates: either it runs into
740a parsing error, in which case it simply vanishes, or it merges with
741another parser, because the two of them have reduced the input to an
742identical set of symbols.
743
744During the time that there are multiple parsers, semantic actions are
745recorded, but not performed. When a parser disappears, its recorded
746semantic actions disappear as well, and are never performed. When a
747reduction makes two parsers identical, causing them to merge, Bison
748records both sets of semantic actions. Whenever the last two parsers
749merge, reverting to the single-parser case, Bison resolves all the
750outstanding actions either by precedences given to the grammar rules
751involved, or by performing both actions, and then calling a designated
752user-defined function on the resulting values to produce an arbitrary
753merged result.
754
fa7e68c3 755@menu
f5f419de
DJ
756* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
757* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
758* GLR Semantic Actions:: Deferred semantic actions have special concerns.
759* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
760@end menu
761
762@node Simple GLR Parsers
763@subsection Using @acronym{GLR} on Unambiguous Grammars
764@cindex @acronym{GLR} parsing, unambiguous grammars
765@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
766@findex %glr-parser
767@findex %expect-rr
768@cindex conflicts
769@cindex reduce/reduce conflicts
770@cindex shift/reduce conflicts
771
772In the simplest cases, you can use the @acronym{GLR} algorithm
eb45ef3b
JD
773to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
774Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
788and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
eb45ef3b 811With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
fa7e68c3
PE
834use the @acronym{GLR} algorithm.
835When the @acronym{GLR} parser reaches the critical state, it
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
eb45ef3b
JD
850lookahead than the underlying @acronym{LR}(1) algorithm actually allows
851for. In this example, @acronym{LR}(2) would suffice, but also some cases
852that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
853
854In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
eb45ef3b 905When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
915The parser can be turned into a @acronym{GLR} parser, while also telling Bison
916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
f8e1c9e5
AD
931So here we have a case where we can use the benefits of @acronym{GLR},
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
934analyze the conflicts reported by Bison to make sure that @acronym{GLR}
935splitting is only done where it is intended. A @acronym{GLR} parser
936splitting inadvertently may cause problems less obvious than an
eb45ef3b 937@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
942eliminated by using @acronym{GLR} to shift the complications from the
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
954@subsection Using @acronym{GLR} to Resolve Ambiguities
955@cindex @acronym{GLR} parsing, ambiguous grammars
956@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1021time it encounters @code{x} in the example above. Since this is a
1022@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1030
1031At this point, the @acronym{GLR} parser requires a specification in the
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
e757bb10 1051This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
1122action in a @acronym{GLR} parser.
1123
1124@vindex yychar
1125@cindex @acronym{GLR} parsers and @code{yychar}
1126@vindex yylval
1127@cindex @acronym{GLR} parsers and @code{yylval}
1128@vindex yylloc
1129@cindex @acronym{GLR} parsers and @code{yylloc}
1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
1140@cindex @acronym{GLR} parsers and @code{yyclearin}
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
1152@cindex @acronym{GLR} parsers and @code{YYERROR}
1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1155initiate error recovery.
1156During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
eb45ef3b 1157the same as its effect in a deterministic parser.
32c29292
JD
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41
JD
1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1162describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1163
fa7e68c3
PE
1164@node Compiler Requirements
1165@subsection Considerations when Compiling @acronym{GLR} Parsers
1166@cindex @code{inline}
9501dc6e 1167@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1168
38a92d50
PE
1169The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
55289366 1272headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f5f419de
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f5f419de
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f5f419de 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
c827f760
PE
1650Only a simple lexical analyzer is needed for the @acronym{RPN}
1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f5f419de 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
d78f0ac9
AD
1866%precedence NEG /* negation--unary minus */
1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
d78f0ac9 1900associativity/precedence. (These tokens are single-character literals, which
bfa74976 1901ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1902the associativity/precedence.)
bfa74976
RS
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1908by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1909only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f5f419de
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f5f419de 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
d78f0ac9 2012%precedence NEG
342b8b6e
AD
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f5f419de
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f5f419de 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
d78f0ac9
AD
2260%precedence NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f5f419de 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f5f419de 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313 2709
2cbe6b7f
JD
2710The functionality of @var{Prologue} sections can often be subtle and
2711inflexible.
8e0a5e9e
JD
2712As an alternative, Bison provides a %code directive with an explicit qualifier
2713field, which identifies the purpose of the code and thus the location(s) where
2714Bison should generate it.
2715For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2716one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2717@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2718
2719Look again at the example of the previous section:
2720
2721@smallexample
2722%@{
2723 #define _GNU_SOURCE
2724 #include <stdio.h>
2725 #include "ptypes.h"
2726%@}
2727
2728%union @{
2729 long int n;
2730 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2731@}
2732
2733%@{
2734 static void print_token_value (FILE *, int, YYSTYPE);
2735 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2736%@}
2737
2738@dots{}
2739@end smallexample
2740
2741@noindent
2742Notice that there are two @var{Prologue} sections here, but there's a subtle
2743distinction between their functionality.
2744For example, if you decide to override Bison's default definition for
2745@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2746definition?
2747You should write it in the first since Bison will insert that code into the
8e0a5e9e 2748parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2749In which @var{Prologue} section should you prototype an internal function,
2750@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2751arguments?
2752You should prototype it in the second since Bison will insert that code
2753@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2754
2755This distinction in functionality between the two @var{Prologue} sections is
2756established by the appearance of the @code{%union} between them.
a501eca9 2757This behavior raises a few questions.
2cbe6b7f
JD
2758First, why should the position of a @code{%union} affect definitions related to
2759@code{YYLTYPE} and @code{yytokentype}?
2760Second, what if there is no @code{%union}?
2761In that case, the second kind of @var{Prologue} section is not available.
2762This behavior is not intuitive.
2763
8e0a5e9e 2764To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2765@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2766Let's go ahead and add the new @code{YYLTYPE} definition and the
2767@code{trace_token} prototype at the same time:
2768
2769@smallexample
16dc6a9e 2770%code top @{
2cbe6b7f
JD
2771 #define _GNU_SOURCE
2772 #include <stdio.h>
8e0a5e9e
JD
2773
2774 /* WARNING: The following code really belongs
16dc6a9e 2775 * in a `%code requires'; see below. */
8e0a5e9e 2776
2cbe6b7f
JD
2777 #include "ptypes.h"
2778 #define YYLTYPE YYLTYPE
2779 typedef struct YYLTYPE
2780 @{
2781 int first_line;
2782 int first_column;
2783 int last_line;
2784 int last_column;
2785 char *filename;
2786 @} YYLTYPE;
2787@}
2788
2789%union @{
2790 long int n;
2791 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2792@}
2793
2794%code @{
2795 static void print_token_value (FILE *, int, YYSTYPE);
2796 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2797 static void trace_token (enum yytokentype token, YYLTYPE loc);
2798@}
2799
2800@dots{}
2801@end smallexample
2802
2803@noindent
16dc6a9e
JD
2804In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2805functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2806explicit which kind you intend.
2cbe6b7f
JD
2807Moreover, both kinds are always available even in the absence of @code{%union}.
2808
16dc6a9e 2809The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2810The first two lines before the warning need to appear near the top of the
2811parser source code file.
2812The first line after the warning is required by @code{YYSTYPE} and thus also
2813needs to appear in the parser source code file.
2cbe6b7f 2814However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2815(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2816the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2817The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2818override the default @code{YYLTYPE} definition there.
2819
16dc6a9e 2820In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2821lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2822definitions.
16dc6a9e 2823Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2824
2825@smallexample
16dc6a9e 2826%code top @{
2cbe6b7f
JD
2827 #define _GNU_SOURCE
2828 #include <stdio.h>
2829@}
2830
16dc6a9e 2831%code requires @{
9bc0dd67
JD
2832 #include "ptypes.h"
2833@}
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
16dc6a9e 2839%code requires @{
2cbe6b7f
JD
2840 #define YYLTYPE YYLTYPE
2841 typedef struct YYLTYPE
2842 @{
2843 int first_line;
2844 int first_column;
2845 int last_line;
2846 int last_column;
2847 char *filename;
2848 @} YYLTYPE;
2849@}
2850
136a0f76 2851%code @{
2cbe6b7f
JD
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2854 static void trace_token (enum yytokentype token, YYLTYPE loc);
2855@}
2856
2857@dots{}
2858@end smallexample
2859
2860@noindent
2861Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2862definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2863definitions in both the parser source code file and the parser header file.
16dc6a9e 2864(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2865place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2866
a501eca9 2867When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2868should prefer @code{%code requires} over @code{%code top} regardless of whether
2869you instruct Bison to generate a parser header file.
a501eca9 2870When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2871source code file and that has no special need to appear at the top of that
16dc6a9e 2872file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2873These practices will make the purpose of each block of your code explicit to
2874Bison and to other developers reading your grammar file.
8e0a5e9e 2875Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2876@code{%code requires} to be the most important of the four @var{Prologue}
2877alternatives.
a501eca9 2878
2cbe6b7f
JD
2879At some point while developing your parser, you might decide to provide
2880@code{trace_token} to modules that are external to your parser.
2881Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2882header file and the parser source code file.
2883Since this function is not a dependency required by @code{YYSTYPE} or
2884@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2885@code{%code requires}.
2cbe6b7f 2886More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2887@code{%code requires} is not sufficient.
8e0a5e9e 2888Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2889@code{%code provides}:
2cbe6b7f
JD
2890
2891@smallexample
16dc6a9e 2892%code top @{
2cbe6b7f 2893 #define _GNU_SOURCE
136a0f76 2894 #include <stdio.h>
2cbe6b7f 2895@}
136a0f76 2896
16dc6a9e 2897%code requires @{
2cbe6b7f
JD
2898 #include "ptypes.h"
2899@}
2900%union @{
2901 long int n;
2902 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2903@}
2904
16dc6a9e 2905%code requires @{
2cbe6b7f
JD
2906 #define YYLTYPE YYLTYPE
2907 typedef struct YYLTYPE
2908 @{
2909 int first_line;
2910 int first_column;
2911 int last_line;
2912 int last_column;
2913 char *filename;
2914 @} YYLTYPE;
2915@}
2916
16dc6a9e 2917%code provides @{
2cbe6b7f
JD
2918 void trace_token (enum yytokentype token, YYLTYPE loc);
2919@}
2920
2921%code @{
9bc0dd67
JD
2922 static void print_token_value (FILE *, int, YYSTYPE);
2923 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2924@}
9bc0dd67
JD
2925
2926@dots{}
2927@end smallexample
2928
2cbe6b7f
JD
2929@noindent
2930Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2931file and the parser source code file after the definitions for
2932@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2933
2934The above examples are careful to write directives in an order that reflects
8e0a5e9e 2935the layout of the generated parser source code and header files:
16dc6a9e 2936@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2937@code{%code}.
a501eca9 2938While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2939this order, Bison does not require it.
2940Instead, Bison lets you choose an organization that makes sense to you.
2941
a501eca9 2942You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2943In that case, Bison concatenates the contained code in declaration order.
2944This is the only way in which the position of one of these directives within
2945the grammar file affects its functionality.
2946
2947The result of the previous two properties is greater flexibility in how you may
2948organize your grammar file.
2949For example, you may organize semantic-type-related directives by semantic
2950type:
2951
2952@smallexample
16dc6a9e 2953%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2954%union @{ type1 field1; @}
2955%destructor @{ type1_free ($$); @} <field1>
2956%printer @{ type1_print ($$); @} <field1>
2957
16dc6a9e 2958%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2959%union @{ type2 field2; @}
2960%destructor @{ type2_free ($$); @} <field2>
2961%printer @{ type2_print ($$); @} <field2>
2962@end smallexample
2963
2964@noindent
2965You could even place each of the above directive groups in the rules section of
2966the grammar file next to the set of rules that uses the associated semantic
2967type.
61fee93e
JD
2968(In the rules section, you must terminate each of those directives with a
2969semicolon.)
2cbe6b7f
JD
2970And you don't have to worry that some directive (like a @code{%union}) in the
2971definitions section is going to adversely affect their functionality in some
2972counter-intuitive manner just because it comes first.
2973Such an organization is not possible using @var{Prologue} sections.
2974
a501eca9 2975This section has been concerned with explaining the advantages of the four
8e0a5e9e 2976@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2977However, in most cases when using these directives, you shouldn't need to
2978think about all the low-level ordering issues discussed here.
2979Instead, you should simply use these directives to label each block of your
2980code according to its purpose and let Bison handle the ordering.
2981@code{%code} is the most generic label.
16dc6a9e
JD
2982Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2983as needed.
a501eca9 2984
342b8b6e 2985@node Bison Declarations
bfa74976
RS
2986@subsection The Bison Declarations Section
2987@cindex Bison declarations (introduction)
2988@cindex declarations, Bison (introduction)
2989
2990The @var{Bison declarations} section contains declarations that define
2991terminal and nonterminal symbols, specify precedence, and so on.
2992In some simple grammars you may not need any declarations.
2993@xref{Declarations, ,Bison Declarations}.
2994
342b8b6e 2995@node Grammar Rules
bfa74976
RS
2996@subsection The Grammar Rules Section
2997@cindex grammar rules section
2998@cindex rules section for grammar
2999
3000The @dfn{grammar rules} section contains one or more Bison grammar
3001rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3002
3003There must always be at least one grammar rule, and the first
3004@samp{%%} (which precedes the grammar rules) may never be omitted even
3005if it is the first thing in the file.
3006
38a92d50 3007@node Epilogue
75f5aaea 3008@subsection The epilogue
bfa74976 3009@cindex additional C code section
75f5aaea 3010@cindex epilogue
bfa74976
RS
3011@cindex C code, section for additional
3012
08e49d20
PE
3013The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3014the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3015place to put anything that you want to have in the parser file but which need
3016not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3017definitions of @code{yylex} and @code{yyerror} often go here. Because
3018C requires functions to be declared before being used, you often need
3019to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3020even if you define them in the Epilogue.
75f5aaea 3021@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3022
3023If the last section is empty, you may omit the @samp{%%} that separates it
3024from the grammar rules.
3025
f8e1c9e5
AD
3026The Bison parser itself contains many macros and identifiers whose names
3027start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3028any such names (except those documented in this manual) in the epilogue
3029of the grammar file.
bfa74976 3030
342b8b6e 3031@node Symbols
bfa74976
RS
3032@section Symbols, Terminal and Nonterminal
3033@cindex nonterminal symbol
3034@cindex terminal symbol
3035@cindex token type
3036@cindex symbol
3037
3038@dfn{Symbols} in Bison grammars represent the grammatical classifications
3039of the language.
3040
3041A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3042class of syntactically equivalent tokens. You use the symbol in grammar
3043rules to mean that a token in that class is allowed. The symbol is
3044represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3045function returns a token type code to indicate what kind of token has
3046been read. You don't need to know what the code value is; you can use
3047the symbol to stand for it.
bfa74976 3048
f8e1c9e5
AD
3049A @dfn{nonterminal symbol} stands for a class of syntactically
3050equivalent groupings. The symbol name is used in writing grammar rules.
3051By convention, it should be all lower case.
bfa74976 3052
cdf3f113
AD
3053Symbol names can contain letters, underscores, periods, dashes, and (not
3054at the beginning) digits. Dashes in symbol names are a GNU
4f646c37
AD
3055extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3056that contain periods or dashes make little sense: since they are not
3057valid symbols (in most programming languages) they are not exported as
3058token names.
bfa74976 3059
931c7513 3060There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3061
3062@itemize @bullet
3063@item
3064A @dfn{named token type} is written with an identifier, like an
c827f760 3065identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3066such name must be defined with a Bison declaration such as
3067@code{%token}. @xref{Token Decl, ,Token Type Names}.
3068
3069@item
3070@cindex character token
3071@cindex literal token
3072@cindex single-character literal
931c7513
RS
3073A @dfn{character token type} (or @dfn{literal character token}) is
3074written in the grammar using the same syntax used in C for character
3075constants; for example, @code{'+'} is a character token type. A
3076character token type doesn't need to be declared unless you need to
3077specify its semantic value data type (@pxref{Value Type, ,Data Types of
3078Semantic Values}), associativity, or precedence (@pxref{Precedence,
3079,Operator Precedence}).
bfa74976
RS
3080
3081By convention, a character token type is used only to represent a
3082token that consists of that particular character. Thus, the token
3083type @code{'+'} is used to represent the character @samp{+} as a
3084token. Nothing enforces this convention, but if you depart from it,
3085your program will confuse other readers.
3086
3087All the usual escape sequences used in character literals in C can be
3088used in Bison as well, but you must not use the null character as a
72d2299c
PE
3089character literal because its numeric code, zero, signifies
3090end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3091for @code{yylex}}). Also, unlike standard C, trigraphs have no
3092special meaning in Bison character literals, nor is backslash-newline
3093allowed.
931c7513
RS
3094
3095@item
3096@cindex string token
3097@cindex literal string token
9ecbd125 3098@cindex multicharacter literal
931c7513
RS
3099A @dfn{literal string token} is written like a C string constant; for
3100example, @code{"<="} is a literal string token. A literal string token
3101doesn't need to be declared unless you need to specify its semantic
14ded682 3102value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3103(@pxref{Precedence}).
3104
3105You can associate the literal string token with a symbolic name as an
3106alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3107Declarations}). If you don't do that, the lexical analyzer has to
3108retrieve the token number for the literal string token from the
3109@code{yytname} table (@pxref{Calling Convention}).
3110
c827f760 3111@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3112
3113By convention, a literal string token is used only to represent a token
3114that consists of that particular string. Thus, you should use the token
3115type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3116does not enforce this convention, but if you depart from it, people who
931c7513
RS
3117read your program will be confused.
3118
3119All the escape sequences used in string literals in C can be used in
92ac3705
PE
3120Bison as well, except that you must not use a null character within a
3121string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3122meaning in Bison string literals, nor is backslash-newline allowed. A
3123literal string token must contain two or more characters; for a token
3124containing just one character, use a character token (see above).
bfa74976
RS
3125@end itemize
3126
3127How you choose to write a terminal symbol has no effect on its
3128grammatical meaning. That depends only on where it appears in rules and
3129on when the parser function returns that symbol.
3130
72d2299c
PE
3131The value returned by @code{yylex} is always one of the terminal
3132symbols, except that a zero or negative value signifies end-of-input.
3133Whichever way you write the token type in the grammar rules, you write
3134it the same way in the definition of @code{yylex}. The numeric code
3135for a character token type is simply the positive numeric code of the
3136character, so @code{yylex} can use the identical value to generate the
3137requisite code, though you may need to convert it to @code{unsigned
3138char} to avoid sign-extension on hosts where @code{char} is signed.
3139Each named token type becomes a C macro in
bfa74976 3140the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3141(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3142@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3143
3144If @code{yylex} is defined in a separate file, you need to arrange for the
3145token-type macro definitions to be available there. Use the @samp{-d}
3146option when you run Bison, so that it will write these macro definitions
3147into a separate header file @file{@var{name}.tab.h} which you can include
3148in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3149
72d2299c 3150If you want to write a grammar that is portable to any Standard C
9d9b8b70 3151host, you must use only nonnull character tokens taken from the basic
c827f760 3152execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3153digits, the 52 lower- and upper-case English letters, and the
3154characters in the following C-language string:
3155
3156@example
3157"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3158@end example
3159
f8e1c9e5
AD
3160The @code{yylex} function and Bison must use a consistent character set
3161and encoding for character tokens. For example, if you run Bison in an
3162@acronym{ASCII} environment, but then compile and run the resulting
3163program in an environment that uses an incompatible character set like
3164@acronym{EBCDIC}, the resulting program may not work because the tables
3165generated by Bison will assume @acronym{ASCII} numeric values for
3166character tokens. It is standard practice for software distributions to
3167contain C source files that were generated by Bison in an
3168@acronym{ASCII} environment, so installers on platforms that are
3169incompatible with @acronym{ASCII} must rebuild those files before
3170compiling them.
e966383b 3171
bfa74976
RS
3172The symbol @code{error} is a terminal symbol reserved for error recovery
3173(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3174In particular, @code{yylex} should never return this value. The default
3175value of the error token is 256, unless you explicitly assigned 256 to
3176one of your tokens with a @code{%token} declaration.
bfa74976 3177
342b8b6e 3178@node Rules
bfa74976
RS
3179@section Syntax of Grammar Rules
3180@cindex rule syntax
3181@cindex grammar rule syntax
3182@cindex syntax of grammar rules
3183
3184A Bison grammar rule has the following general form:
3185
3186@example
e425e872 3187@group
bfa74976
RS
3188@var{result}: @var{components}@dots{}
3189 ;
e425e872 3190@end group
bfa74976
RS
3191@end example
3192
3193@noindent
9ecbd125 3194where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3195and @var{components} are various terminal and nonterminal symbols that
13863333 3196are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3197
3198For example,
3199
3200@example
3201@group
3202exp: exp '+' exp
3203 ;
3204@end group
3205@end example
3206
3207@noindent
3208says that two groupings of type @code{exp}, with a @samp{+} token in between,
3209can be combined into a larger grouping of type @code{exp}.
3210
72d2299c
PE
3211White space in rules is significant only to separate symbols. You can add
3212extra white space as you wish.
bfa74976
RS
3213
3214Scattered among the components can be @var{actions} that determine
3215the semantics of the rule. An action looks like this:
3216
3217@example
3218@{@var{C statements}@}
3219@end example
3220
3221@noindent
287c78f6
PE
3222@cindex braced code
3223This is an example of @dfn{braced code}, that is, C code surrounded by
3224braces, much like a compound statement in C@. Braced code can contain
3225any sequence of C tokens, so long as its braces are balanced. Bison
3226does not check the braced code for correctness directly; it merely
3227copies the code to the output file, where the C compiler can check it.
3228
3229Within braced code, the balanced-brace count is not affected by braces
3230within comments, string literals, or character constants, but it is
3231affected by the C digraphs @samp{<%} and @samp{%>} that represent
3232braces. At the top level braced code must be terminated by @samp{@}}
3233and not by a digraph. Bison does not look for trigraphs, so if braced
3234code uses trigraphs you should ensure that they do not affect the
3235nesting of braces or the boundaries of comments, string literals, or
3236character constants.
3237
bfa74976
RS
3238Usually there is only one action and it follows the components.
3239@xref{Actions}.
3240
3241@findex |
3242Multiple rules for the same @var{result} can be written separately or can
3243be joined with the vertical-bar character @samp{|} as follows:
3244
bfa74976
RS
3245@example
3246@group
3247@var{result}: @var{rule1-components}@dots{}
3248 | @var{rule2-components}@dots{}
3249 @dots{}
3250 ;
3251@end group
3252@end example
bfa74976
RS
3253
3254@noindent
3255They are still considered distinct rules even when joined in this way.
3256
3257If @var{components} in a rule is empty, it means that @var{result} can
3258match the empty string. For example, here is how to define a
3259comma-separated sequence of zero or more @code{exp} groupings:
3260
3261@example
3262@group
3263expseq: /* empty */
3264 | expseq1
3265 ;
3266@end group
3267
3268@group
3269expseq1: exp
3270 | expseq1 ',' exp
3271 ;
3272@end group
3273@end example
3274
3275@noindent
3276It is customary to write a comment @samp{/* empty */} in each rule
3277with no components.
3278
342b8b6e 3279@node Recursion
bfa74976
RS
3280@section Recursive Rules
3281@cindex recursive rule
3282
f8e1c9e5
AD
3283A rule is called @dfn{recursive} when its @var{result} nonterminal
3284appears also on its right hand side. Nearly all Bison grammars need to
3285use recursion, because that is the only way to define a sequence of any
3286number of a particular thing. Consider this recursive definition of a
9ecbd125 3287comma-separated sequence of one or more expressions:
bfa74976
RS
3288
3289@example
3290@group
3291expseq1: exp
3292 | expseq1 ',' exp
3293 ;
3294@end group
3295@end example
3296
3297@cindex left recursion
3298@cindex right recursion
3299@noindent
3300Since the recursive use of @code{expseq1} is the leftmost symbol in the
3301right hand side, we call this @dfn{left recursion}. By contrast, here
3302the same construct is defined using @dfn{right recursion}:
3303
3304@example
3305@group
3306expseq1: exp
3307 | exp ',' expseq1
3308 ;
3309@end group
3310@end example
3311
3312@noindent
ec3bc396
AD
3313Any kind of sequence can be defined using either left recursion or right
3314recursion, but you should always use left recursion, because it can
3315parse a sequence of any number of elements with bounded stack space.
3316Right recursion uses up space on the Bison stack in proportion to the
3317number of elements in the sequence, because all the elements must be
3318shifted onto the stack before the rule can be applied even once.
3319@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3320of this.
bfa74976
RS
3321
3322@cindex mutual recursion
3323@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3324rule does not appear directly on its right hand side, but does appear
3325in rules for other nonterminals which do appear on its right hand
13863333 3326side.
bfa74976
RS
3327
3328For example:
3329
3330@example
3331@group
3332expr: primary
3333 | primary '+' primary
3334 ;
3335@end group
3336
3337@group
3338primary: constant
3339 | '(' expr ')'
3340 ;
3341@end group
3342@end example
3343
3344@noindent
3345defines two mutually-recursive nonterminals, since each refers to the
3346other.
3347
342b8b6e 3348@node Semantics
bfa74976
RS
3349@section Defining Language Semantics
3350@cindex defining language semantics
13863333 3351@cindex language semantics, defining
bfa74976
RS
3352
3353The grammar rules for a language determine only the syntax. The semantics
3354are determined by the semantic values associated with various tokens and
3355groupings, and by the actions taken when various groupings are recognized.
3356
3357For example, the calculator calculates properly because the value
3358associated with each expression is the proper number; it adds properly
3359because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3360the numbers associated with @var{x} and @var{y}.
3361
3362@menu
3363* Value Type:: Specifying one data type for all semantic values.
3364* Multiple Types:: Specifying several alternative data types.
3365* Actions:: An action is the semantic definition of a grammar rule.
3366* Action Types:: Specifying data types for actions to operate on.
3367* Mid-Rule Actions:: Most actions go at the end of a rule.
3368 This says when, why and how to use the exceptional
3369 action in the middle of a rule.
3370@end menu
3371
342b8b6e 3372@node Value Type
bfa74976
RS
3373@subsection Data Types of Semantic Values
3374@cindex semantic value type
3375@cindex value type, semantic
3376@cindex data types of semantic values
3377@cindex default data type
3378
3379In a simple program it may be sufficient to use the same data type for
3380the semantic values of all language constructs. This was true in the
c827f760 3381@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3382Notation Calculator}).
bfa74976 3383
ddc8ede1
PE
3384Bison normally uses the type @code{int} for semantic values if your
3385program uses the same data type for all language constructs. To
bfa74976
RS
3386specify some other type, define @code{YYSTYPE} as a macro, like this:
3387
3388@example
3389#define YYSTYPE double
3390@end example
3391
3392@noindent
50cce58e
PE
3393@code{YYSTYPE}'s replacement list should be a type name
3394that does not contain parentheses or square brackets.
342b8b6e 3395This macro definition must go in the prologue of the grammar file
75f5aaea 3396(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3397
342b8b6e 3398@node Multiple Types
bfa74976
RS
3399@subsection More Than One Value Type
3400
3401In most programs, you will need different data types for different kinds
3402of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3403@code{int} or @code{long int}, while a string constant needs type
3404@code{char *}, and an identifier might need a pointer to an entry in the
3405symbol table.
bfa74976
RS
3406
3407To use more than one data type for semantic values in one parser, Bison
3408requires you to do two things:
3409
3410@itemize @bullet
3411@item
ddc8ede1 3412Specify the entire collection of possible data types, either by using the
704a47c4 3413@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3414Value Types}), or by using a @code{typedef} or a @code{#define} to
3415define @code{YYSTYPE} to be a union type whose member names are
3416the type tags.
bfa74976
RS
3417
3418@item
14ded682
AD
3419Choose one of those types for each symbol (terminal or nonterminal) for
3420which semantic values are used. This is done for tokens with the
3421@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3422and for groupings with the @code{%type} Bison declaration (@pxref{Type
3423Decl, ,Nonterminal Symbols}).
bfa74976
RS
3424@end itemize
3425
342b8b6e 3426@node Actions
bfa74976
RS
3427@subsection Actions
3428@cindex action
3429@vindex $$
3430@vindex $@var{n}
3431
3432An action accompanies a syntactic rule and contains C code to be executed
3433each time an instance of that rule is recognized. The task of most actions
3434is to compute a semantic value for the grouping built by the rule from the
3435semantic values associated with tokens or smaller groupings.
3436
287c78f6
PE
3437An action consists of braced code containing C statements, and can be
3438placed at any position in the rule;
704a47c4
AD
3439it is executed at that position. Most rules have just one action at the
3440end of the rule, following all the components. Actions in the middle of
3441a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3442Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3443
3444The C code in an action can refer to the semantic values of the components
3445matched by the rule with the construct @code{$@var{n}}, which stands for
3446the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3447being constructed is @code{$$}. Bison translates both of these
3448constructs into expressions of the appropriate type when it copies the
3449actions into the parser file. @code{$$} is translated to a modifiable
3450lvalue, so it can be assigned to.
bfa74976
RS
3451
3452Here is a typical example:
3453
3454@example
3455@group
3456exp: @dots{}
3457 | exp '+' exp
3458 @{ $$ = $1 + $3; @}
3459@end group
3460@end example
3461
3462@noindent
3463This rule constructs an @code{exp} from two smaller @code{exp} groupings
3464connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3465refer to the semantic values of the two component @code{exp} groupings,
3466which are the first and third symbols on the right hand side of the rule.
3467The sum is stored into @code{$$} so that it becomes the semantic value of
3468the addition-expression just recognized by the rule. If there were a
3469useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3470referred to as @code{$2}.
bfa74976 3471
3ded9a63
AD
3472Note that the vertical-bar character @samp{|} is really a rule
3473separator, and actions are attached to a single rule. This is a
3474difference with tools like Flex, for which @samp{|} stands for either
3475``or'', or ``the same action as that of the next rule''. In the
3476following example, the action is triggered only when @samp{b} is found:
3477
3478@example
3479@group
3480a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3481@end group
3482@end example
3483
bfa74976
RS
3484@cindex default action
3485If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3486@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3487becomes the value of the whole rule. Of course, the default action is
3488valid only if the two data types match. There is no meaningful default
3489action for an empty rule; every empty rule must have an explicit action
3490unless the rule's value does not matter.
bfa74976
RS
3491
3492@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3493to tokens and groupings on the stack @emph{before} those that match the
3494current rule. This is a very risky practice, and to use it reliably
3495you must be certain of the context in which the rule is applied. Here
3496is a case in which you can use this reliably:
3497
3498@example
3499@group
3500foo: expr bar '+' expr @{ @dots{} @}
3501 | expr bar '-' expr @{ @dots{} @}
3502 ;
3503@end group
3504
3505@group
3506bar: /* empty */
3507 @{ previous_expr = $0; @}
3508 ;
3509@end group
3510@end example
3511
3512As long as @code{bar} is used only in the fashion shown here, @code{$0}
3513always refers to the @code{expr} which precedes @code{bar} in the
3514definition of @code{foo}.
3515
32c29292 3516@vindex yylval
742e4900 3517It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3518any, from a semantic action.
3519This semantic value is stored in @code{yylval}.
3520@xref{Action Features, ,Special Features for Use in Actions}.
3521
342b8b6e 3522@node Action Types
bfa74976
RS
3523@subsection Data Types of Values in Actions
3524@cindex action data types
3525@cindex data types in actions
3526
3527If you have chosen a single data type for semantic values, the @code{$$}
3528and @code{$@var{n}} constructs always have that data type.
3529
3530If you have used @code{%union} to specify a variety of data types, then you
3531must declare a choice among these types for each terminal or nonterminal
3532symbol that can have a semantic value. Then each time you use @code{$$} or
3533@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3534in the rule. In this example,
bfa74976
RS
3535
3536@example
3537@group
3538exp: @dots{}
3539 | exp '+' exp
3540 @{ $$ = $1 + $3; @}
3541@end group
3542@end example
3543
3544@noindent
3545@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3546have the data type declared for the nonterminal symbol @code{exp}. If
3547@code{$2} were used, it would have the data type declared for the
e0c471a9 3548terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3549
3550Alternatively, you can specify the data type when you refer to the value,
3551by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3552reference. For example, if you have defined types as shown here:
3553
3554@example
3555@group
3556%union @{
3557 int itype;
3558 double dtype;
3559@}
3560@end group
3561@end example
3562
3563@noindent
3564then you can write @code{$<itype>1} to refer to the first subunit of the
3565rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3566
342b8b6e 3567@node Mid-Rule Actions
bfa74976
RS
3568@subsection Actions in Mid-Rule
3569@cindex actions in mid-rule
3570@cindex mid-rule actions
3571
3572Occasionally it is useful to put an action in the middle of a rule.
3573These actions are written just like usual end-of-rule actions, but they
3574are executed before the parser even recognizes the following components.
3575
3576A mid-rule action may refer to the components preceding it using
3577@code{$@var{n}}, but it may not refer to subsequent components because
3578it is run before they are parsed.
3579
3580The mid-rule action itself counts as one of the components of the rule.
3581This makes a difference when there is another action later in the same rule
3582(and usually there is another at the end): you have to count the actions
3583along with the symbols when working out which number @var{n} to use in
3584@code{$@var{n}}.
3585
3586The mid-rule action can also have a semantic value. The action can set
3587its value with an assignment to @code{$$}, and actions later in the rule
3588can refer to the value using @code{$@var{n}}. Since there is no symbol
3589to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3590in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3591specify a data type each time you refer to this value.
bfa74976
RS
3592
3593There is no way to set the value of the entire rule with a mid-rule
3594action, because assignments to @code{$$} do not have that effect. The
3595only way to set the value for the entire rule is with an ordinary action
3596at the end of the rule.
3597
3598Here is an example from a hypothetical compiler, handling a @code{let}
3599statement that looks like @samp{let (@var{variable}) @var{statement}} and
3600serves to create a variable named @var{variable} temporarily for the
3601duration of @var{statement}. To parse this construct, we must put
3602@var{variable} into the symbol table while @var{statement} is parsed, then
3603remove it afterward. Here is how it is done:
3604
3605@example
3606@group
3607stmt: LET '(' var ')'
3608 @{ $<context>$ = push_context ();
3609 declare_variable ($3); @}
3610 stmt @{ $$ = $6;
3611 pop_context ($<context>5); @}
3612@end group
3613@end example
3614
3615@noindent
3616As soon as @samp{let (@var{variable})} has been recognized, the first
3617action is run. It saves a copy of the current semantic context (the
3618list of accessible variables) as its semantic value, using alternative
3619@code{context} in the data-type union. Then it calls
3620@code{declare_variable} to add the new variable to that list. Once the
3621first action is finished, the embedded statement @code{stmt} can be
3622parsed. Note that the mid-rule action is component number 5, so the
3623@samp{stmt} is component number 6.
3624
3625After the embedded statement is parsed, its semantic value becomes the
3626value of the entire @code{let}-statement. Then the semantic value from the
3627earlier action is used to restore the prior list of variables. This
3628removes the temporary @code{let}-variable from the list so that it won't
3629appear to exist while the rest of the program is parsed.
3630
841a7737
JD
3631@findex %destructor
3632@cindex discarded symbols, mid-rule actions
3633@cindex error recovery, mid-rule actions
3634In the above example, if the parser initiates error recovery (@pxref{Error
3635Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3636it might discard the previous semantic context @code{$<context>5} without
3637restoring it.
3638Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3639Discarded Symbols}).
ec5479ce
JD
3640However, Bison currently provides no means to declare a destructor specific to
3641a particular mid-rule action's semantic value.
841a7737
JD
3642
3643One solution is to bury the mid-rule action inside a nonterminal symbol and to
3644declare a destructor for that symbol:
3645
3646@example
3647@group
3648%type <context> let
3649%destructor @{ pop_context ($$); @} let
3650
3651%%
3652
3653stmt: let stmt
3654 @{ $$ = $2;
3655 pop_context ($1); @}
3656 ;
3657
3658let: LET '(' var ')'
3659 @{ $$ = push_context ();
3660 declare_variable ($3); @}
3661 ;
3662
3663@end group
3664@end example
3665
3666@noindent
3667Note that the action is now at the end of its rule.
3668Any mid-rule action can be converted to an end-of-rule action in this way, and
3669this is what Bison actually does to implement mid-rule actions.
3670
bfa74976
RS
3671Taking action before a rule is completely recognized often leads to
3672conflicts since the parser must commit to a parse in order to execute the
3673action. For example, the following two rules, without mid-rule actions,
3674can coexist in a working parser because the parser can shift the open-brace
3675token and look at what follows before deciding whether there is a
3676declaration or not:
3677
3678@example
3679@group
3680compound: '@{' declarations statements '@}'
3681 | '@{' statements '@}'
3682 ;
3683@end group
3684@end example
3685
3686@noindent
3687But when we add a mid-rule action as follows, the rules become nonfunctional:
3688
3689@example
3690@group
3691compound: @{ prepare_for_local_variables (); @}
3692 '@{' declarations statements '@}'
3693@end group
3694@group
3695 | '@{' statements '@}'
3696 ;
3697@end group
3698@end example
3699
3700@noindent
3701Now the parser is forced to decide whether to run the mid-rule action
3702when it has read no farther than the open-brace. In other words, it
3703must commit to using one rule or the other, without sufficient
3704information to do it correctly. (The open-brace token is what is called
742e4900
JD
3705the @dfn{lookahead} token at this time, since the parser is still
3706deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3707
3708You might think that you could correct the problem by putting identical
3709actions into the two rules, like this:
3710
3711@example
3712@group
3713compound: @{ prepare_for_local_variables (); @}
3714 '@{' declarations statements '@}'
3715 | @{ prepare_for_local_variables (); @}
3716 '@{' statements '@}'
3717 ;
3718@end group
3719@end example
3720
3721@noindent
3722But this does not help, because Bison does not realize that the two actions
3723are identical. (Bison never tries to understand the C code in an action.)
3724
3725If the grammar is such that a declaration can be distinguished from a
3726statement by the first token (which is true in C), then one solution which
3727does work is to put the action after the open-brace, like this:
3728
3729@example
3730@group
3731compound: '@{' @{ prepare_for_local_variables (); @}
3732 declarations statements '@}'
3733 | '@{' statements '@}'
3734 ;
3735@end group
3736@end example
3737
3738@noindent
3739Now the first token of the following declaration or statement,
3740which would in any case tell Bison which rule to use, can still do so.
3741
3742Another solution is to bury the action inside a nonterminal symbol which
3743serves as a subroutine:
3744
3745@example
3746@group
3747subroutine: /* empty */
3748 @{ prepare_for_local_variables (); @}
3749 ;
3750
3751@end group
3752
3753@group
3754compound: subroutine
3755 '@{' declarations statements '@}'
3756 | subroutine
3757 '@{' statements '@}'
3758 ;
3759@end group
3760@end example
3761
3762@noindent
3763Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3764deciding which rule for @code{compound} it will eventually use.
bfa74976 3765
342b8b6e 3766@node Locations
847bf1f5
AD
3767@section Tracking Locations
3768@cindex location
95923bd6
AD
3769@cindex textual location
3770@cindex location, textual
847bf1f5
AD
3771
3772Though grammar rules and semantic actions are enough to write a fully
72d2299c 3773functional parser, it can be useful to process some additional information,
3e259915
MA
3774especially symbol locations.
3775
704a47c4
AD
3776The way locations are handled is defined by providing a data type, and
3777actions to take when rules are matched.
847bf1f5
AD
3778
3779@menu
3780* Location Type:: Specifying a data type for locations.
3781* Actions and Locations:: Using locations in actions.
3782* Location Default Action:: Defining a general way to compute locations.
3783@end menu
3784
342b8b6e 3785@node Location Type
847bf1f5
AD
3786@subsection Data Type of Locations
3787@cindex data type of locations
3788@cindex default location type
3789
3790Defining a data type for locations is much simpler than for semantic values,
3791since all tokens and groupings always use the same type.
3792
50cce58e
PE
3793You can specify the type of locations by defining a macro called
3794@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3795defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3796When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3797four members:
3798
3799@example
6273355b 3800typedef struct YYLTYPE
847bf1f5
AD
3801@{
3802 int first_line;
3803 int first_column;
3804 int last_line;
3805 int last_column;
6273355b 3806@} YYLTYPE;
847bf1f5
AD
3807@end example
3808
cd48d21d
AD
3809At the beginning of the parsing, Bison initializes all these fields to 1
3810for @code{yylloc}.
3811
342b8b6e 3812@node Actions and Locations
847bf1f5
AD
3813@subsection Actions and Locations
3814@cindex location actions
3815@cindex actions, location
3816@vindex @@$
3817@vindex @@@var{n}
3818
3819Actions are not only useful for defining language semantics, but also for
3820describing the behavior of the output parser with locations.
3821
3822The most obvious way for building locations of syntactic groupings is very
72d2299c 3823similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3824constructs can be used to access the locations of the elements being matched.
3825The location of the @var{n}th component of the right hand side is
3826@code{@@@var{n}}, while the location of the left hand side grouping is
3827@code{@@$}.
3828
3e259915 3829Here is a basic example using the default data type for locations:
847bf1f5
AD
3830
3831@example
3832@group
3833exp: @dots{}
3e259915 3834 | exp '/' exp
847bf1f5 3835 @{
3e259915
MA
3836 @@$.first_column = @@1.first_column;
3837 @@$.first_line = @@1.first_line;
847bf1f5
AD
3838 @@$.last_column = @@3.last_column;
3839 @@$.last_line = @@3.last_line;
3e259915
MA
3840 if ($3)
3841 $$ = $1 / $3;
3842 else
3843 @{
3844 $$ = 1;
4e03e201
AD
3845 fprintf (stderr,
3846 "Division by zero, l%d,c%d-l%d,c%d",
3847 @@3.first_line, @@3.first_column,
3848 @@3.last_line, @@3.last_column);
3e259915 3849 @}
847bf1f5
AD
3850 @}
3851@end group
3852@end example
3853
3e259915 3854As for semantic values, there is a default action for locations that is
72d2299c 3855run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3856beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3857last symbol.
3e259915 3858
72d2299c 3859With this default action, the location tracking can be fully automatic. The
3e259915
MA
3860example above simply rewrites this way:
3861
3862@example
3863@group
3864exp: @dots{}
3865 | exp '/' exp
3866 @{
3867 if ($3)
3868 $$ = $1 / $3;
3869 else
3870 @{
3871 $$ = 1;
4e03e201
AD
3872 fprintf (stderr,
3873 "Division by zero, l%d,c%d-l%d,c%d",
3874 @@3.first_line, @@3.first_column,
3875 @@3.last_line, @@3.last_column);
3e259915
MA
3876 @}
3877 @}
3878@end group
3879@end example
847bf1f5 3880
32c29292 3881@vindex yylloc
742e4900 3882It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3883from a semantic action.
3884This location is stored in @code{yylloc}.
3885@xref{Action Features, ,Special Features for Use in Actions}.
3886
342b8b6e 3887@node Location Default Action
847bf1f5
AD
3888@subsection Default Action for Locations
3889@vindex YYLLOC_DEFAULT
8710fc41 3890@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3891
72d2299c 3892Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3893locations are much more general than semantic values, there is room in
3894the output parser to redefine the default action to take for each
72d2299c 3895rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3896matched, before the associated action is run. It is also invoked
3897while processing a syntax error, to compute the error's location.
8710fc41
JD
3898Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3899parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3900of that ambiguity.
847bf1f5 3901
3e259915 3902Most of the time, this macro is general enough to suppress location
79282c6c 3903dedicated code from semantic actions.
847bf1f5 3904
72d2299c 3905The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3906the location of the grouping (the result of the computation). When a
766de5eb 3907rule is matched, the second parameter identifies locations of
96b93a3d 3908all right hand side elements of the rule being matched, and the third
8710fc41
JD
3909parameter is the size of the rule's right hand side.
3910When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3911right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3912When processing a syntax error, the second parameter identifies locations
3913of the symbols that were discarded during error processing, and the third
96b93a3d 3914parameter is the number of discarded symbols.
847bf1f5 3915
766de5eb 3916By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3917
766de5eb 3918@smallexample
847bf1f5 3919@group
766de5eb
PE
3920# define YYLLOC_DEFAULT(Current, Rhs, N) \
3921 do \
3922 if (N) \
3923 @{ \
3924 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3925 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3926 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3927 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3928 @} \
3929 else \
3930 @{ \
3931 (Current).first_line = (Current).last_line = \
3932 YYRHSLOC(Rhs, 0).last_line; \
3933 (Current).first_column = (Current).last_column = \
3934 YYRHSLOC(Rhs, 0).last_column; \
3935 @} \
3936 while (0)
847bf1f5 3937@end group
766de5eb 3938@end smallexample
676385e2 3939
766de5eb
PE
3940where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3941in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3942just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3943
3e259915 3944When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3945
3e259915 3946@itemize @bullet
79282c6c 3947@item
72d2299c 3948All arguments are free of side-effects. However, only the first one (the
3e259915 3949result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3950
3e259915 3951@item
766de5eb
PE
3952For consistency with semantic actions, valid indexes within the
3953right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3954valid index, and it refers to the symbol just before the reduction.
3955During error processing @var{n} is always positive.
0ae99356
PE
3956
3957@item
3958Your macro should parenthesize its arguments, if need be, since the
3959actual arguments may not be surrounded by parentheses. Also, your
3960macro should expand to something that can be used as a single
3961statement when it is followed by a semicolon.
3e259915 3962@end itemize
847bf1f5 3963
342b8b6e 3964@node Declarations
bfa74976
RS
3965@section Bison Declarations
3966@cindex declarations, Bison
3967@cindex Bison declarations
3968
3969The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3970used in formulating the grammar and the data types of semantic values.
3971@xref{Symbols}.
3972
3973All token type names (but not single-character literal tokens such as
3974@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3975declared if you need to specify which data type to use for the semantic
3976value (@pxref{Multiple Types, ,More Than One Value Type}).
3977
3978The first rule in the file also specifies the start symbol, by default.
3979If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3980it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3981Grammars}).
bfa74976
RS
3982
3983@menu
b50d2359 3984* Require Decl:: Requiring a Bison version.
bfa74976
RS
3985* Token Decl:: Declaring terminal symbols.
3986* Precedence Decl:: Declaring terminals with precedence and associativity.
3987* Union Decl:: Declaring the set of all semantic value types.
3988* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3989* Initial Action Decl:: Code run before parsing starts.
72f889cc 3990* Destructor Decl:: Declaring how symbols are freed.
d6328241 3991* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3992* Start Decl:: Specifying the start symbol.
3993* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3994* Push Decl:: Requesting a push parser.
bfa74976
RS
3995* Decl Summary:: Table of all Bison declarations.
3996@end menu
3997
b50d2359
AD
3998@node Require Decl
3999@subsection Require a Version of Bison
4000@cindex version requirement
4001@cindex requiring a version of Bison
4002@findex %require
4003
4004You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4005the requirement is not met, @command{bison} exits with an error (exit
4006status 63).
b50d2359
AD
4007
4008@example
4009%require "@var{version}"
4010@end example
4011
342b8b6e 4012@node Token Decl
bfa74976
RS
4013@subsection Token Type Names
4014@cindex declaring token type names
4015@cindex token type names, declaring
931c7513 4016@cindex declaring literal string tokens
bfa74976
RS
4017@findex %token
4018
4019The basic way to declare a token type name (terminal symbol) is as follows:
4020
4021@example
4022%token @var{name}
4023@end example
4024
4025Bison will convert this into a @code{#define} directive in
4026the parser, so that the function @code{yylex} (if it is in this file)
4027can use the name @var{name} to stand for this token type's code.
4028
d78f0ac9
AD
4029Alternatively, you can use @code{%left}, @code{%right},
4030@code{%precedence}, or
14ded682
AD
4031@code{%nonassoc} instead of @code{%token}, if you wish to specify
4032associativity and precedence. @xref{Precedence Decl, ,Operator
4033Precedence}.
bfa74976
RS
4034
4035You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4036a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4037following the token name:
bfa74976
RS
4038
4039@example
4040%token NUM 300
1452af69 4041%token XNUM 0x12d // a GNU extension
bfa74976
RS
4042@end example
4043
4044@noindent
4045It is generally best, however, to let Bison choose the numeric codes for
4046all token types. Bison will automatically select codes that don't conflict
e966383b 4047with each other or with normal characters.
bfa74976
RS
4048
4049In the event that the stack type is a union, you must augment the
4050@code{%token} or other token declaration to include the data type
704a47c4
AD
4051alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4052Than One Value Type}).
bfa74976
RS
4053
4054For example:
4055
4056@example
4057@group
4058%union @{ /* define stack type */
4059 double val;
4060 symrec *tptr;
4061@}
4062%token <val> NUM /* define token NUM and its type */
4063@end group
4064@end example
4065
931c7513
RS
4066You can associate a literal string token with a token type name by
4067writing the literal string at the end of a @code{%token}
4068declaration which declares the name. For example:
4069
4070@example
4071%token arrow "=>"
4072@end example
4073
4074@noindent
4075For example, a grammar for the C language might specify these names with
4076equivalent literal string tokens:
4077
4078@example
4079%token <operator> OR "||"
4080%token <operator> LE 134 "<="
4081%left OR "<="
4082@end example
4083
4084@noindent
4085Once you equate the literal string and the token name, you can use them
4086interchangeably in further declarations or the grammar rules. The
4087@code{yylex} function can use the token name or the literal string to
4088obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4089Syntax error messages passed to @code{yyerror} from the parser will reference
4090the literal string instead of the token name.
4091
4092The token numbered as 0 corresponds to end of file; the following line
4093allows for nicer error messages referring to ``end of file'' instead
4094of ``$end'':
4095
4096@example
4097%token END 0 "end of file"
4098@end example
931c7513 4099
342b8b6e 4100@node Precedence Decl
bfa74976
RS
4101@subsection Operator Precedence
4102@cindex precedence declarations
4103@cindex declaring operator precedence
4104@cindex operator precedence, declaring
4105
d78f0ac9
AD
4106Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4107@code{%precedence} declaration to
bfa74976
RS
4108declare a token and specify its precedence and associativity, all at
4109once. These are called @dfn{precedence declarations}.
704a47c4
AD
4110@xref{Precedence, ,Operator Precedence}, for general information on
4111operator precedence.
bfa74976 4112
ab7f29f8 4113The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4114@code{%token}: either
4115
4116@example
4117%left @var{symbols}@dots{}
4118@end example
4119
4120@noindent
4121or
4122
4123@example
4124%left <@var{type}> @var{symbols}@dots{}
4125@end example
4126
4127And indeed any of these declarations serves the purposes of @code{%token}.
4128But in addition, they specify the associativity and relative precedence for
4129all the @var{symbols}:
4130
4131@itemize @bullet
4132@item
4133The associativity of an operator @var{op} determines how repeated uses
4134of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4135@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4136grouping @var{y} with @var{z} first. @code{%left} specifies
4137left-associativity (grouping @var{x} with @var{y} first) and
4138@code{%right} specifies right-associativity (grouping @var{y} with
4139@var{z} first). @code{%nonassoc} specifies no associativity, which
4140means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4141considered a syntax error.
4142
d78f0ac9
AD
4143@code{%precedence} gives only precedence to the @var{symbols}, and
4144defines no associativity at all. Use this to define precedence only,
4145and leave any potential conflict due to associativity enabled.
4146
bfa74976
RS
4147@item
4148The precedence of an operator determines how it nests with other operators.
4149All the tokens declared in a single precedence declaration have equal
4150precedence and nest together according to their associativity.
4151When two tokens declared in different precedence declarations associate,
4152the one declared later has the higher precedence and is grouped first.
4153@end itemize
4154
ab7f29f8
JD
4155For backward compatibility, there is a confusing difference between the
4156argument lists of @code{%token} and precedence declarations.
4157Only a @code{%token} can associate a literal string with a token type name.
4158A precedence declaration always interprets a literal string as a reference to a
4159separate token.
4160For example:
4161
4162@example
4163%left OR "<=" // Does not declare an alias.
4164%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4165@end example
4166
342b8b6e 4167@node Union Decl
bfa74976
RS
4168@subsection The Collection of Value Types
4169@cindex declaring value types
4170@cindex value types, declaring
4171@findex %union
4172
287c78f6
PE
4173The @code{%union} declaration specifies the entire collection of
4174possible data types for semantic values. The keyword @code{%union} is
4175followed by braced code containing the same thing that goes inside a
4176@code{union} in C@.
bfa74976
RS
4177
4178For example:
4179
4180@example
4181@group
4182%union @{
4183 double val;
4184 symrec *tptr;
4185@}
4186@end group
4187@end example
4188
4189@noindent
4190This says that the two alternative types are @code{double} and @code{symrec
4191*}. They are given names @code{val} and @code{tptr}; these names are used
4192in the @code{%token} and @code{%type} declarations to pick one of the types
4193for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4194
6273355b
PE
4195As an extension to @acronym{POSIX}, a tag is allowed after the
4196@code{union}. For example:
4197
4198@example
4199@group
4200%union value @{
4201 double val;
4202 symrec *tptr;
4203@}
4204@end group
4205@end example
4206
d6ca7905 4207@noindent
6273355b
PE
4208specifies the union tag @code{value}, so the corresponding C type is
4209@code{union value}. If you do not specify a tag, it defaults to
4210@code{YYSTYPE}.
4211
d6ca7905
PE
4212As another extension to @acronym{POSIX}, you may specify multiple
4213@code{%union} declarations; their contents are concatenated. However,
4214only the first @code{%union} declaration can specify a tag.
4215
6273355b 4216Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4217a semicolon after the closing brace.
4218
ddc8ede1
PE
4219Instead of @code{%union}, you can define and use your own union type
4220@code{YYSTYPE} if your grammar contains at least one
4221@samp{<@var{type}>} tag. For example, you can put the following into
4222a header file @file{parser.h}:
4223
4224@example
4225@group
4226union YYSTYPE @{
4227 double val;
4228 symrec *tptr;
4229@};
4230typedef union YYSTYPE YYSTYPE;
4231@end group
4232@end example
4233
4234@noindent
4235and then your grammar can use the following
4236instead of @code{%union}:
4237
4238@example
4239@group
4240%@{
4241#include "parser.h"
4242%@}
4243%type <val> expr
4244%token <tptr> ID
4245@end group
4246@end example
4247
342b8b6e 4248@node Type Decl
bfa74976
RS
4249@subsection Nonterminal Symbols
4250@cindex declaring value types, nonterminals
4251@cindex value types, nonterminals, declaring
4252@findex %type
4253
4254@noindent
4255When you use @code{%union} to specify multiple value types, you must
4256declare the value type of each nonterminal symbol for which values are
4257used. This is done with a @code{%type} declaration, like this:
4258
4259@example
4260%type <@var{type}> @var{nonterminal}@dots{}
4261@end example
4262
4263@noindent
704a47c4
AD
4264Here @var{nonterminal} is the name of a nonterminal symbol, and
4265@var{type} is the name given in the @code{%union} to the alternative
4266that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4267can give any number of nonterminal symbols in the same @code{%type}
4268declaration, if they have the same value type. Use spaces to separate
4269the symbol names.
bfa74976 4270
931c7513
RS
4271You can also declare the value type of a terminal symbol. To do this,
4272use the same @code{<@var{type}>} construction in a declaration for the
4273terminal symbol. All kinds of token declarations allow
4274@code{<@var{type}>}.
4275
18d192f0
AD
4276@node Initial Action Decl
4277@subsection Performing Actions before Parsing
4278@findex %initial-action
4279
4280Sometimes your parser needs to perform some initializations before
4281parsing. The @code{%initial-action} directive allows for such arbitrary
4282code.
4283
4284@deffn {Directive} %initial-action @{ @var{code} @}
4285@findex %initial-action
287c78f6 4286Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4287@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4288@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4289@code{%parse-param}.
18d192f0
AD
4290@end deffn
4291
451364ed
AD
4292For instance, if your locations use a file name, you may use
4293
4294@example
48b16bbc 4295%parse-param @{ char const *file_name @};
451364ed
AD
4296%initial-action
4297@{
4626a15d 4298 @@$.initialize (file_name);
451364ed
AD
4299@};
4300@end example
4301
18d192f0 4302
72f889cc
AD
4303@node Destructor Decl
4304@subsection Freeing Discarded Symbols
4305@cindex freeing discarded symbols
4306@findex %destructor
12e35840 4307@findex <*>
3ebecc24 4308@findex <>
a85284cf
AD
4309During error recovery (@pxref{Error Recovery}), symbols already pushed
4310on the stack and tokens coming from the rest of the file are discarded
4311until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4312or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4313symbols on the stack must be discarded. Even if the parser succeeds, it
4314must discard the start symbol.
258b75ca
PE
4315
4316When discarded symbols convey heap based information, this memory is
4317lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4318in traditional compilers, it is unacceptable for programs like shells or
4319protocol implementations that may parse and execute indefinitely.
258b75ca 4320
a85284cf
AD
4321The @code{%destructor} directive defines code that is called when a
4322symbol is automatically discarded.
72f889cc
AD
4323
4324@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4325@findex %destructor
287c78f6
PE
4326Invoke the braced @var{code} whenever the parser discards one of the
4327@var{symbols}.
4b367315 4328Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4329with the discarded symbol, and @code{@@$} designates its location.
4330The additional parser parameters are also available (@pxref{Parser Function, ,
4331The Parser Function @code{yyparse}}).
ec5479ce 4332
b2a0b7ca
JD
4333When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4334per-symbol @code{%destructor}.
4335You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4336tag among @var{symbols}.
b2a0b7ca 4337In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4338grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4339per-symbol @code{%destructor}.
4340
12e35840 4341Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4342(These default forms are experimental.
4343More user feedback will help to determine whether they should become permanent
4344features.)
3ebecc24 4345You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4346exactly one @code{%destructor} declaration in your grammar file.
4347The parser will invoke the @var{code} associated with one of these whenever it
4348discards any user-defined grammar symbol that has no per-symbol and no per-type
4349@code{%destructor}.
4350The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4351symbol for which you have formally declared a semantic type tag (@code{%type}
4352counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4353The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4354symbol that has no declared semantic type tag.
72f889cc
AD
4355@end deffn
4356
b2a0b7ca 4357@noindent
12e35840 4358For example:
72f889cc
AD
4359
4360@smallexample
ec5479ce
JD
4361%union @{ char *string; @}
4362%token <string> STRING1
4363%token <string> STRING2
4364%type <string> string1
4365%type <string> string2
b2a0b7ca
JD
4366%union @{ char character; @}
4367%token <character> CHR
4368%type <character> chr
12e35840
JD
4369%token TAGLESS
4370
b2a0b7ca 4371%destructor @{ @} <character>
12e35840
JD
4372%destructor @{ free ($$); @} <*>
4373%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4374%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4375@end smallexample
4376
4377@noindent
b2a0b7ca
JD
4378guarantees that, when the parser discards any user-defined symbol that has a
4379semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4380to @code{free} by default.
ec5479ce
JD
4381However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4382prints its line number to @code{stdout}.
4383It performs only the second @code{%destructor} in this case, so it invokes
4384@code{free} only once.
12e35840
JD
4385Finally, the parser merely prints a message whenever it discards any symbol,
4386such as @code{TAGLESS}, that has no semantic type tag.
4387
4388A Bison-generated parser invokes the default @code{%destructor}s only for
4389user-defined as opposed to Bison-defined symbols.
4390For example, the parser will not invoke either kind of default
4391@code{%destructor} for the special Bison-defined symbols @code{$accept},
4392@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4393none of which you can reference in your grammar.
4394It also will not invoke either for the @code{error} token (@pxref{Table of
4395Symbols, ,error}), which is always defined by Bison regardless of whether you
4396reference it in your grammar.
4397However, it may invoke one of them for the end token (token 0) if you
4398redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4399
4400@smallexample
4401%token END 0
4402@end smallexample
4403
12e35840
JD
4404@cindex actions in mid-rule
4405@cindex mid-rule actions
4406Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4407mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4408That is, Bison does not consider a mid-rule to have a semantic value if you do
4409not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4410@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4411rule.
4412However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4413@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4414
3508ce36
JD
4415@ignore
4416@noindent
4417In the future, it may be possible to redefine the @code{error} token as a
4418nonterminal that captures the discarded symbols.
4419In that case, the parser will invoke the default destructor for it as well.
4420@end ignore
4421
e757bb10
AD
4422@sp 1
4423
4424@cindex discarded symbols
4425@dfn{Discarded symbols} are the following:
4426
4427@itemize
4428@item
4429stacked symbols popped during the first phase of error recovery,
4430@item
4431incoming terminals during the second phase of error recovery,
4432@item
742e4900 4433the current lookahead and the entire stack (except the current
9d9b8b70 4434right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4435@item
4436the start symbol, when the parser succeeds.
e757bb10
AD
4437@end itemize
4438
9d9b8b70
PE
4439The parser can @dfn{return immediately} because of an explicit call to
4440@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4441exhaustion.
4442
29553547 4443Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4444error via @code{YYERROR} are not discarded automatically. As a rule
4445of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4446the memory.
e757bb10 4447
342b8b6e 4448@node Expect Decl
bfa74976
RS
4449@subsection Suppressing Conflict Warnings
4450@cindex suppressing conflict warnings
4451@cindex preventing warnings about conflicts
4452@cindex warnings, preventing
4453@cindex conflicts, suppressing warnings of
4454@findex %expect
d6328241 4455@findex %expect-rr
bfa74976
RS
4456
4457Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4458(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4459have harmless shift/reduce conflicts which are resolved in a predictable
4460way and would be difficult to eliminate. It is desirable to suppress
4461the warning about these conflicts unless the number of conflicts
4462changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4463
4464The declaration looks like this:
4465
4466@example
4467%expect @var{n}
4468@end example
4469
035aa4a0
PE
4470Here @var{n} is a decimal integer. The declaration says there should
4471be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4472Bison reports an error if the number of shift/reduce conflicts differs
4473from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4474
eb45ef3b 4475For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4476serious, and should be eliminated entirely. Bison will always report
4477reduce/reduce conflicts for these parsers. With @acronym{GLR}
4478parsers, however, both kinds of conflicts are routine; otherwise,
4479there would be no need to use @acronym{GLR} parsing. Therefore, it is
4480also possible to specify an expected number of reduce/reduce conflicts
4481in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4482
4483@example
4484%expect-rr @var{n}
4485@end example
4486
bfa74976
RS
4487In general, using @code{%expect} involves these steps:
4488
4489@itemize @bullet
4490@item
4491Compile your grammar without @code{%expect}. Use the @samp{-v} option
4492to get a verbose list of where the conflicts occur. Bison will also
4493print the number of conflicts.
4494
4495@item
4496Check each of the conflicts to make sure that Bison's default
4497resolution is what you really want. If not, rewrite the grammar and
4498go back to the beginning.
4499
4500@item
4501Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4502number which Bison printed. With @acronym{GLR} parsers, add an
4503@code{%expect-rr} declaration as well.
bfa74976
RS
4504@end itemize
4505
035aa4a0
PE
4506Now Bison will warn you if you introduce an unexpected conflict, but
4507will keep silent otherwise.
bfa74976 4508
342b8b6e 4509@node Start Decl
bfa74976
RS
4510@subsection The Start-Symbol
4511@cindex declaring the start symbol
4512@cindex start symbol, declaring
4513@cindex default start symbol
4514@findex %start
4515
4516Bison assumes by default that the start symbol for the grammar is the first
4517nonterminal specified in the grammar specification section. The programmer
4518may override this restriction with the @code{%start} declaration as follows:
4519
4520@example
4521%start @var{symbol}
4522@end example
4523
342b8b6e 4524@node Pure Decl
bfa74976
RS
4525@subsection A Pure (Reentrant) Parser
4526@cindex reentrant parser
4527@cindex pure parser
d9df47b6 4528@findex %define api.pure
bfa74976
RS
4529
4530A @dfn{reentrant} program is one which does not alter in the course of
4531execution; in other words, it consists entirely of @dfn{pure} (read-only)
4532code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4533for example, a nonreentrant program may not be safe to call from a signal
4534handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4535program must be called only within interlocks.
4536
70811b85 4537Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4538suitable for most uses, and it permits compatibility with Yacc. (The
4539standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4540statically allocated variables for communication with @code{yylex},
4541including @code{yylval} and @code{yylloc}.)
bfa74976 4542
70811b85 4543Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4544declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4545reentrant. It looks like this:
bfa74976
RS
4546
4547@example
d9df47b6 4548%define api.pure
bfa74976
RS
4549@end example
4550
70811b85
RS
4551The result is that the communication variables @code{yylval} and
4552@code{yylloc} become local variables in @code{yyparse}, and a different
4553calling convention is used for the lexical analyzer function
4554@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4555Parsers}, for the details of this. The variable @code{yynerrs}
4556becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4557of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4558Reporting Function @code{yyerror}}). The convention for calling
4559@code{yyparse} itself is unchanged.
4560
4561Whether the parser is pure has nothing to do with the grammar rules.
4562You can generate either a pure parser or a nonreentrant parser from any
4563valid grammar.
bfa74976 4564
9987d1b3
JD
4565@node Push Decl
4566@subsection A Push Parser
4567@cindex push parser
4568@cindex push parser
67212941 4569@findex %define api.push-pull
9987d1b3 4570
59da312b
JD
4571(The current push parsing interface is experimental and may evolve.
4572More user feedback will help to stabilize it.)
4573
f4101aa6
AD
4574A pull parser is called once and it takes control until all its input
4575is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4576each time a new token is made available.
4577
f4101aa6 4578A push parser is typically useful when the parser is part of a
9987d1b3 4579main event loop in the client's application. This is typically
f4101aa6
AD
4580a requirement of a GUI, when the main event loop needs to be triggered
4581within a certain time period.
9987d1b3 4582
d782395d
JD
4583Normally, Bison generates a pull parser.
4584The following Bison declaration says that you want the parser to be a push
67212941 4585parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4586
4587@example
67212941 4588%define api.push-pull "push"
9987d1b3
JD
4589@end example
4590
4591In almost all cases, you want to ensure that your push parser is also
4592a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4593time you should create an impure push parser is to have backwards
9987d1b3
JD
4594compatibility with the impure Yacc pull mode interface. Unless you know
4595what you are doing, your declarations should look like this:
4596
4597@example
d9df47b6 4598%define api.pure
67212941 4599%define api.push-pull "push"
9987d1b3
JD
4600@end example
4601
f4101aa6
AD
4602There is a major notable functional difference between the pure push parser
4603and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4604many parser instances, of the same type of parser, in memory at the same time.
4605An impure push parser should only use one parser at a time.
4606
4607When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4608the generated parser. @code{yypstate} is a structure that the generated
4609parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4610function that will create a new parser instance. @code{yypstate_delete}
4611will free the resources associated with the corresponding parser instance.
f4101aa6 4612Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4613token is available to provide the parser. A trivial example
4614of using a pure push parser would look like this:
4615
4616@example
4617int status;
4618yypstate *ps = yypstate_new ();
4619do @{
4620 status = yypush_parse (ps, yylex (), NULL);
4621@} while (status == YYPUSH_MORE);
4622yypstate_delete (ps);
4623@end example
4624
4625If the user decided to use an impure push parser, a few things about
f4101aa6 4626the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4627a global variable instead of a variable in the @code{yypush_parse} function.
4628For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4629changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4630example would thus look like this:
4631
4632@example
4633extern int yychar;
4634int status;
4635yypstate *ps = yypstate_new ();
4636do @{
4637 yychar = yylex ();
4638 status = yypush_parse (ps);
4639@} while (status == YYPUSH_MORE);
4640yypstate_delete (ps);
4641@end example
4642
f4101aa6 4643That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4644for use by the next invocation of the @code{yypush_parse} function.
4645
f4101aa6 4646Bison also supports both the push parser interface along with the pull parser
9987d1b3 4647interface in the same generated parser. In order to get this functionality,
67501061
AD
4648you should replace the @samp{%define api.push-pull "push"} declaration with the
4649@samp{%define api.push-pull "both"} declaration. Doing this will create all of
c373bf8b 4650the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4651and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4652would be used. However, the user should note that it is implemented in the
d782395d
JD
4653generated parser by calling @code{yypull_parse}.
4654This makes the @code{yyparse} function that is generated with the
67501061 4655@samp{%define api.push-pull "both"} declaration slower than the normal
d782395d
JD
4656@code{yyparse} function. If the user
4657calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4658stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4659and then @code{yypull_parse} the rest of the input stream. If you would like
4660to switch back and forth between between parsing styles, you would have to
4661write your own @code{yypull_parse} function that knows when to quit looking
4662for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4663like this:
4664
4665@example
4666yypstate *ps = yypstate_new ();
4667yypull_parse (ps); /* Will call the lexer */
4668yypstate_delete (ps);
4669@end example
4670
67501061
AD
4671Adding the @samp{%define api.pure} declaration does exactly the same thing to
4672the generated parser with @samp{%define api.push-pull "both"} as it did for
4673@samp{%define api.push-pull "push"}.
9987d1b3 4674
342b8b6e 4675@node Decl Summary
bfa74976
RS
4676@subsection Bison Declaration Summary
4677@cindex Bison declaration summary
4678@cindex declaration summary
4679@cindex summary, Bison declaration
4680
d8988b2f 4681Here is a summary of the declarations used to define a grammar:
bfa74976 4682
18b519c0 4683@deffn {Directive} %union
bfa74976
RS
4684Declare the collection of data types that semantic values may have
4685(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %token
bfa74976
RS
4689Declare a terminal symbol (token type name) with no precedence
4690or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %right
bfa74976
RS
4694Declare a terminal symbol (token type name) that is right-associative
4695(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4696@end deffn
bfa74976 4697
18b519c0 4698@deffn {Directive} %left
bfa74976
RS
4699Declare a terminal symbol (token type name) that is left-associative
4700(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4701@end deffn
bfa74976 4702
18b519c0 4703@deffn {Directive} %nonassoc
bfa74976 4704Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4705(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4706Using it in a way that would be associative is a syntax error.
4707@end deffn
4708
91d2c560 4709@ifset defaultprec
39a06c25 4710@deffn {Directive} %default-prec
22fccf95 4711Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4712(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4713@end deffn
91d2c560 4714@end ifset
bfa74976 4715
18b519c0 4716@deffn {Directive} %type
bfa74976
RS
4717Declare the type of semantic values for a nonterminal symbol
4718(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Directive} %start
89cab50d
AD
4722Specify the grammar's start symbol (@pxref{Start Decl, ,The
4723Start-Symbol}).
18b519c0 4724@end deffn
bfa74976 4725
18b519c0 4726@deffn {Directive} %expect
bfa74976
RS
4727Declare the expected number of shift-reduce conflicts
4728(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4729@end deffn
4730
bfa74976 4731
d8988b2f
AD
4732@sp 1
4733@noindent
4734In order to change the behavior of @command{bison}, use the following
4735directives:
4736
148d66d8
JD
4737@deffn {Directive} %code @{@var{code}@}
4738@findex %code
4739This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4740It inserts @var{code} verbatim at a language-dependent default location in the
4741output@footnote{The default location is actually skeleton-dependent;
4742 writers of non-standard skeletons however should choose the default location
4743 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4744
4745@cindex Prologue
8405b70c 4746For C/C++, the default location is the parser source code
148d66d8
JD
4747file after the usual contents of the parser header file.
4748Thus, @code{%code} replaces the traditional Yacc prologue,
4749@code{%@{@var{code}%@}}, for most purposes.
4750For a detailed discussion, see @ref{Prologue Alternatives}.
4751
8405b70c 4752For Java, the default location is inside the parser class.
148d66d8
JD
4753@end deffn
4754
4755@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4756This is the qualified form of the @code{%code} directive.
4757If you need to specify location-sensitive verbatim @var{code} that does not
4758belong at the default location selected by the unqualified @code{%code} form,
4759use this form instead.
4760
4761@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4762where Bison should generate it.
4763Not all values of @var{qualifier} are available for all target languages:
4764
4765@itemize @bullet
148d66d8 4766@item requires
793fbca5 4767@findex %code requires
148d66d8
JD
4768
4769@itemize @bullet
4770@item Language(s): C, C++
4771
4772@item Purpose: This is the best place to write dependency code required for
4773@code{YYSTYPE} and @code{YYLTYPE}.
4774In other words, it's the best place to define types referenced in @code{%union}
4775directives, and it's the best place to override Bison's default @code{YYSTYPE}
4776and @code{YYLTYPE} definitions.
4777
4778@item Location(s): The parser header file and the parser source code file
4779before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4780@end itemize
4781
4782@item provides
4783@findex %code provides
4784
4785@itemize @bullet
4786@item Language(s): C, C++
4787
4788@item Purpose: This is the best place to write additional definitions and
4789declarations that should be provided to other modules.
4790
4791@item Location(s): The parser header file and the parser source code file after
4792the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4793@end itemize
4794
4795@item top
4796@findex %code top
4797
4798@itemize @bullet
4799@item Language(s): C, C++
4800
4801@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4802usually be more appropriate than @code{%code top}.
4803However, occasionally it is necessary to insert code much nearer the top of the
4804parser source code file.
4805For example:
4806
4807@smallexample
4808%code top @{
4809 #define _GNU_SOURCE
4810 #include <stdio.h>
4811@}
4812@end smallexample
4813
4814@item Location(s): Near the top of the parser source code file.
4815@end itemize
8405b70c 4816
148d66d8
JD
4817@item imports
4818@findex %code imports
4819
4820@itemize @bullet
4821@item Language(s): Java
4822
4823@item Purpose: This is the best place to write Java import directives.
4824
4825@item Location(s): The parser Java file after any Java package directive and
4826before any class definitions.
4827@end itemize
148d66d8
JD
4828@end itemize
4829
148d66d8
JD
4830@cindex Prologue
4831For a detailed discussion of how to use @code{%code} in place of the
4832traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4833@end deffn
4834
18b519c0 4835@deffn {Directive} %debug
fa819509
AD
4836Instrument the output parser for traces. Obsoleted by @samp{%define
4837parse.trace}.
ec3bc396 4838@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4839@end deffn
d8988b2f 4840
c1d19e10
PB
4841@deffn {Directive} %define @var{variable}
4842@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4843Define a variable to adjust Bison's behavior.
4844The possible choices for @var{variable}, as well as their meanings, depend on
4845the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4846Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2 4847
0b6d43c5
JD
4848It is an error if a @var{variable} is defined by @code{%define} multiple
4849times, but @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2
JD
4850
4851Omitting @code{"@var{value}"} is always equivalent to specifying it as
4852@code{""}.
4853
922bdd7f 4854Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4855In this case, Bison will complain if the variable definition does not meet one
4856of the following four conditions:
4857
4858@enumerate
4859@item @code{"@var{value}"} is @code{"true"}
4860
4861@item @code{"@var{value}"} is omitted (or is @code{""}).
4862This is equivalent to @code{"true"}.
4863
4864@item @code{"@var{value}"} is @code{"false"}.
4865
4866@item @var{variable} is never defined.
4867In this case, Bison selects a default value, which may depend on the selected
4868target language and/or parser skeleton.
4869@end enumerate
148d66d8 4870
793fbca5
JD
4871Some of the accepted @var{variable}s are:
4872
fa819509 4873@table @code
67501061
AD
4874@c ================================================== namespace
4875@item api.namespace
4876@findex %define api.namespace
4877@itemize
4878@item Languages(s): C++
4879
4880@item Purpose: Specifies the namespace for the parser class.
4881For example, if you specify:
4882
4883@smallexample
4884%define api.namespace "foo::bar"
4885@end smallexample
4886
4887Bison uses @code{foo::bar} verbatim in references such as:
4888
4889@smallexample
4890foo::bar::parser::semantic_type
4891@end smallexample
4892
4893However, to open a namespace, Bison removes any leading @code{::} and then
4894splits on any remaining occurrences:
4895
4896@smallexample
4897namespace foo @{ namespace bar @{
4898 class position;
4899 class location;
4900@} @}
4901@end smallexample
4902
4903@item Accepted Values:
4904Any absolute or relative C++ namespace reference without a trailing
4905@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
4906
4907@item Default Value:
4908The value specified by @code{%name-prefix}, which defaults to @code{yy}.
4909This usage of @code{%name-prefix} is for backward compatibility and can
4910be confusing since @code{%name-prefix} also specifies the textual prefix
4911for the lexical analyzer function. Thus, if you specify
4912@code{%name-prefix}, it is best to also specify @samp{%define
4913api.namespace} so that @code{%name-prefix} @emph{only} affects the
4914lexical analyzer function. For example, if you specify:
4915
4916@smallexample
4917%define api.namespace "foo"
4918%name-prefix "bar::"
4919@end smallexample
4920
4921The parser namespace is @code{foo} and @code{yylex} is referenced as
4922@code{bar::lex}.
4923@end itemize
4924@c namespace
4925
4926
4927
4928@c ================================================== api.pure
d9df47b6
JD
4929@item api.pure
4930@findex %define api.pure
4931
4932@itemize @bullet
4933@item Language(s): C
4934
4935@item Purpose: Request a pure (reentrant) parser program.
4936@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4937
4938@item Accepted Values: Boolean
4939
4940@item Default Value: @code{"false"}
4941@end itemize
71b00ed8 4942@c api.pure
d9df47b6 4943
67501061
AD
4944
4945
4946@c ================================================== api.push-pull
67212941
JD
4947@item api.push-pull
4948@findex %define api.push-pull
793fbca5
JD
4949
4950@itemize @bullet
eb45ef3b 4951@item Language(s): C (deterministic parsers only)
793fbca5
JD
4952
4953@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4954@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4955(The current push parsing interface is experimental and may evolve.
4956More user feedback will help to stabilize it.)
793fbca5
JD
4957
4958@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4959
4960@item Default Value: @code{"pull"}
4961@end itemize
67212941 4962@c api.push-pull
71b00ed8 4963
4c6622c2
AD
4964@item api.tokens.prefix
4965@findex %define api.tokens.prefix
4966
4967@itemize
4968@item Languages(s): all
4969
4970@item Purpose:
4971Add a prefix to the token names when generating their definition in the
4972target language. For instance
4973
4974@example
4975%token FILE for ERROR
4976%define api.tokens.prefix "TOK_"
4977%%
4978start: FILE for ERROR;
4979@end example
4980
4981@noindent
4982generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
4983and @code{TOK_ERROR} in the generated source files. In particular, the
4984scanner must use these prefixed token names, while the grammar itself
4985may still use the short names (as in the sample rule given above). The
4986generated informational files (@file{*.output}, @file{*.xml},
4987@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
4988and @ref{Calc++ Scanner}, for a complete example.
4989
4990@item Accepted Values:
4991Any string. Should be a valid identifier prefix in the target language,
4992in other words, it should typically be an identifier itself (sequence of
4993letters, underscores, and ---not at the beginning--- digits).
4994
4995@item Default Value:
4996empty
4997@end itemize
4998@c api.tokens.prefix
4999
5000
71b00ed8
AD
5001@item error-verbose
5002@findex %define error-verbose
5003@itemize
5004@item Languages(s):
5005all.
5006@item Purpose:
5007Enable the generation of more verbose error messages than a instead of
5008just plain @w{@code{"syntax error"}}. @xref{Error Reporting, ,The Error
5009Reporting Function @code{yyerror}}.
5010@item Accepted Values:
5011Boolean
5012@item Default Value:
5013@code{false}
5014@end itemize
5015@c error-verbose
5016
793fbca5 5017
5bab9d08 5018@item lr.default-reductions
110ef36a 5019@cindex default reductions
5bab9d08 5020@findex %define lr.default-reductions
eb45ef3b
JD
5021@cindex delayed syntax errors
5022@cindex syntax errors delayed
5023
5024@itemize @bullet
5025@item Language(s): all
5026
5027@item Purpose: Specifies the kind of states that are permitted to
110ef36a
JD
5028contain default reductions.
5029That is, in such a state, Bison declares the reduction with the largest
5030lookahead set to be the default reduction and then removes that
5031lookahead set.
5032The advantages of default reductions are discussed below.
eb45ef3b
JD
5033The disadvantage is that, when the generated parser encounters a
5034syntactically unacceptable token, the parser might then perform
110ef36a 5035unnecessary default reductions before it can detect the syntax error.
eb45ef3b
JD
5036
5037(This feature is experimental.
5038More user feedback will help to stabilize it.)
5039
5040@item Accepted Values:
5041@itemize
5042@item @code{"all"}.
5043For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
5044Summary,,lr.type}) by default, all states are permitted to contain
110ef36a 5045default reductions.
eb45ef3b
JD
5046The advantage is that parser table sizes can be significantly reduced.
5047The reason Bison does not by default attempt to address the disadvantage
5048of delayed syntax error detection is that this disadvantage is already
5049inherent in @acronym{LALR} and @acronym{IELR} parser tables.
110ef36a
JD
5050That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
5051reductions in an @acronym{LALR} or @acronym{IELR} state can contain
5052tokens that are syntactically incorrect for some left contexts.
eb45ef3b
JD
5053
5054@item @code{"consistent"}.
5055@cindex consistent states
5056A consistent state is a state that has only one possible action.
5057If that action is a reduction, then the parser does not need to request
5058a lookahead token from the scanner before performing that action.
5059However, the parser only recognizes the ability to ignore the lookahead
110ef36a
JD
5060token when such a reduction is encoded as a default reduction.
5061Thus, if default reductions are permitted in and only in consistent
5062states, then a canonical @acronym{LR} parser reports a syntax error as
5063soon as it @emph{needs} the syntactically unacceptable token from the
5064scanner.
eb45ef3b
JD
5065
5066@item @code{"accepting"}.
5067@cindex accepting state
110ef36a
JD
5068By default, the only default reduction permitted in a canonical
5069@acronym{LR} parser is the accept action in the accepting state, which
5070the parser reaches only after reading all tokens from the input.
eb45ef3b
JD
5071Thus, the default canonical @acronym{LR} parser reports a syntax error
5072as soon as it @emph{reaches} the syntactically unacceptable token
5073without performing any extra reductions.
5074@end itemize
5075
5076@item Default Value:
5077@itemize
5078@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
5079@item @code{"all"} otherwise.
5080@end itemize
5081@end itemize
5082
67212941
JD
5083@item lr.keep-unreachable-states
5084@findex %define lr.keep-unreachable-states
31984206
JD
5085
5086@itemize @bullet
5087@item Language(s): all
5088
5089@item Purpose: Requests that Bison allow unreachable parser states to remain in
5090the parser tables.
5091Bison considers a state to be unreachable if there exists no sequence of
5092transitions from the start state to that state.
5093A state can become unreachable during conflict resolution if Bison disables a
5094shift action leading to it from a predecessor state.
5095Keeping unreachable states is sometimes useful for analysis purposes, but they
5096are useless in the generated parser.
5097
5098@item Accepted Values: Boolean
5099
5100@item Default Value: @code{"false"}
5101
5102@item Caveats:
5103
5104@itemize @bullet
cff03fb2
JD
5105
5106@item Unreachable states may contain conflicts and may use rules not used in
5107any other state.
31984206
JD
5108Thus, keeping unreachable states may induce warnings that are irrelevant to
5109your parser's behavior, and it may eliminate warnings that are relevant.
5110Of course, the change in warnings may actually be relevant to a parser table
5111analysis that wants to keep unreachable states, so this behavior will likely
5112remain in future Bison releases.
5113
5114@item While Bison is able to remove unreachable states, it is not guaranteed to
5115remove other kinds of useless states.
5116Specifically, when Bison disables reduce actions during conflict resolution,
5117some goto actions may become useless, and thus some additional states may
5118become useless.
5119If Bison were to compute which goto actions were useless and then disable those
5120actions, it could identify such states as unreachable and then remove those
5121states.
5122However, Bison does not compute which goto actions are useless.
5123@end itemize
5124@end itemize
67212941 5125@c lr.keep-unreachable-states
31984206 5126
eb45ef3b
JD
5127@item lr.type
5128@findex %define lr.type
5129@cindex @acronym{LALR}
5130@cindex @acronym{IELR}
5131@cindex @acronym{LR}
5132
5133@itemize @bullet
5134@item Language(s): all
5135
5136@item Purpose: Specifies the type of parser tables within the
5137@acronym{LR}(1) family.
5138(This feature is experimental.
5139More user feedback will help to stabilize it.)
5140
5141@item Accepted Values:
5142@itemize
5143@item @code{"LALR"}.
5144While Bison generates @acronym{LALR} parser tables by default for
5145historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5146always preferable for deterministic parsers.
5147The trouble is that @acronym{LALR} parser tables can suffer from
110ef36a
JD
5148mysterious conflicts and thus may not accept the full set of sentences
5149that @acronym{IELR} and canonical @acronym{LR} accept.
eb45ef3b
JD
5150@xref{Mystery Conflicts}, for details.
5151However, there are at least two scenarios where @acronym{LALR} may be
5152worthwhile:
5153@itemize
5154@cindex @acronym{GLR} with @acronym{LALR}
5155@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5156do not resolve any conflicts statically (for example, with @code{%left}
5157or @code{%prec}), then the parser explores all potential parses of any
5158given input.
110ef36a
JD
5159In this case, the use of @acronym{LALR} parser tables is guaranteed not
5160to alter the language accepted by the parser.
eb45ef3b
JD
5161@acronym{LALR} parser tables are the smallest parser tables Bison can
5162currently generate, so they may be preferable.
5163
5164@item Occasionally during development, an especially malformed grammar
5165with a major recurring flaw may severely impede the @acronym{IELR} or
5166canonical @acronym{LR} parser table generation algorithm.
5167@acronym{LALR} can be a quick way to generate parser tables in order to
5168investigate such problems while ignoring the more subtle differences
5169from @acronym{IELR} and canonical @acronym{LR}.
5170@end itemize
5171
5172@item @code{"IELR"}.
5173@acronym{IELR} is a minimal @acronym{LR} algorithm.
5174That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5175@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5176set of sentences.
5177However, as for @acronym{LALR}, the number of parser states is often an
5178order of magnitude less for @acronym{IELR} than for canonical
5179@acronym{LR}.
5180More importantly, because canonical @acronym{LR}'s extra parser states
5181may contain duplicate conflicts in the case of non-@acronym{LR}
5182grammars, the number of conflicts for @acronym{IELR} is often an order
5183of magnitude less as well.
5184This can significantly reduce the complexity of developing of a grammar.
5185
5186@item @code{"canonical LR"}.
5187@cindex delayed syntax errors
5188@cindex syntax errors delayed
110ef36a
JD
5189The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5190that, for every left context of every canonical @acronym{LR} state, the
5191set of tokens accepted by that state is the exact set of tokens that is
5192syntactically acceptable in that left context.
5193Thus, the only difference in parsing behavior is that the canonical
eb45ef3b
JD
5194@acronym{LR} parser can report a syntax error as soon as possible
5195without performing any unnecessary reductions.
5bab9d08 5196@xref{Decl Summary,,lr.default-reductions}, for further details.
eb45ef3b
JD
5197Even when canonical @acronym{LR} behavior is ultimately desired,
5198@acronym{IELR}'s elimination of duplicate conflicts should still
5199facilitate the development of a grammar.
5200@end itemize
5201
5202@item Default Value: @code{"LALR"}
5203@end itemize
5204
67501061
AD
5205
5206@c ================================================== namespace
793fbca5
JD
5207@item namespace
5208@findex %define namespace
67501061 5209Obsoleted by @code{api.namespace}
fa819509
AD
5210@c namespace
5211
0c90a1f5
AD
5212@item parse.assert
5213@findex %define parse.assert
5214
5215@itemize
5216@item Languages(s): C++
5217
5218@item Purpose: Issue runtime assertions to catch invalid uses.
5219In C++, when variants are used, symbols must be constructed and
5220destroyed properly. This option checks these constraints.
5221
5222@item Accepted Values: Boolean
5223
5224@item Default Value: @code{false}
5225@end itemize
5226@c parse.assert
5227
fa819509
AD
5228@item parse.trace
5229@findex %define parse.trace
5230
5231@itemize
5232@item Languages(s): C, C++
5233
5234@item Purpose: Require parser instrumentation for tracing.
5235In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5236is not already defined, so that the debugging facilities are compiled.
5237@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5238
fa819509
AD
5239@item Accepted Values: Boolean
5240
5241@item Default Value: @code{false}
5242@end itemize
fa819509 5243@c parse.trace
99c08fb6 5244
99c08fb6 5245@end table
d782395d 5246@end deffn
99c08fb6 5247@c ---------------------------------------------------------- %define
d782395d 5248
18b519c0 5249@deffn {Directive} %defines
4bfd5e4e
PE
5250Write a header file containing macro definitions for the token type
5251names defined in the grammar as well as a few other declarations.
d8988b2f 5252If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5253is named @file{@var{name}.h}.
d8988b2f 5254
b321737f 5255For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5256@code{YYSTYPE} is already defined as a macro or you have used a
5257@code{<@var{type}>} tag without using @code{%union}.
5258Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5259(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5260require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5261or type definition
f8e1c9e5
AD
5262(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5263arrange for these definitions to be propagated to all modules, e.g., by
5264putting them in a prerequisite header that is included both by your
5265parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5266
5267Unless your parser is pure, the output header declares @code{yylval}
5268as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5269Parser}.
5270
5271If you have also used locations, the output header declares
5272@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5273the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5274Locations}.
5275
f8e1c9e5
AD
5276This output file is normally essential if you wish to put the definition
5277of @code{yylex} in a separate source file, because @code{yylex}
5278typically needs to be able to refer to the above-mentioned declarations
5279and to the token type codes. @xref{Token Values, ,Semantic Values of
5280Tokens}.
9bc0dd67 5281
16dc6a9e
JD
5282@findex %code requires
5283@findex %code provides
5284If you have declared @code{%code requires} or @code{%code provides}, the output
5285header also contains their code.
148d66d8 5286@xref{Decl Summary, ,%code}.
592d0b1e
PB
5287@end deffn
5288
02975b9a
JD
5289@deffn {Directive} %defines @var{defines-file}
5290Same as above, but save in the file @var{defines-file}.
5291@end deffn
5292
18b519c0 5293@deffn {Directive} %destructor
258b75ca 5294Specify how the parser should reclaim the memory associated to
fa7e68c3 5295discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5296@end deffn
72f889cc 5297
02975b9a 5298@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5299Specify a prefix to use for all Bison output file names. The names are
5300chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5301@end deffn
d8988b2f 5302
e6e704dc 5303@deffn {Directive} %language "@var{language}"
0e021770 5304Specify the programming language for the generated parser. Currently
59da312b 5305supported languages include C, C++, and Java.
e6e704dc 5306@var{language} is case-insensitive.
ed4d67dc
JD
5307
5308This directive is experimental and its effect may be modified in future
5309releases.
0e021770
PE
5310@end deffn
5311
18b519c0 5312@deffn {Directive} %locations
89cab50d
AD
5313Generate the code processing the locations (@pxref{Action Features,
5314,Special Features for Use in Actions}). This mode is enabled as soon as
5315the grammar uses the special @samp{@@@var{n}} tokens, but if your
5316grammar does not use it, using @samp{%locations} allows for more
6e649e65 5317accurate syntax error messages.
18b519c0 5318@end deffn
89cab50d 5319
02975b9a 5320@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5321Rename the external symbols used in the parser so that they start with
5322@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5323in C parsers
d8988b2f 5324is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5325@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5326(if locations are used) @code{yylloc}. If you use a push parser,
5327@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5328@code{yypstate_new} and @code{yypstate_delete} will
5329also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5330names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5331For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5332section.
aa08666d 5333@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5334@end deffn
931c7513 5335
91d2c560 5336@ifset defaultprec
22fccf95
PE
5337@deffn {Directive} %no-default-prec
5338Do not assign a precedence to rules lacking an explicit @code{%prec}
5339modifier (@pxref{Contextual Precedence, ,Context-Dependent
5340Precedence}).
5341@end deffn
91d2c560 5342@end ifset
22fccf95 5343
18b519c0 5344@deffn {Directive} %no-lines
931c7513
RS
5345Don't generate any @code{#line} preprocessor commands in the parser
5346file. Ordinarily Bison writes these commands in the parser file so that
5347the C compiler and debuggers will associate errors and object code with
5348your source file (the grammar file). This directive causes them to
5349associate errors with the parser file, treating it an independent source
5350file in its own right.
18b519c0 5351@end deffn
931c7513 5352
02975b9a 5353@deffn {Directive} %output "@var{file}"
fa4d969f 5354Specify @var{file} for the parser file.
18b519c0 5355@end deffn
6deb4447 5356
18b519c0 5357@deffn {Directive} %pure-parser
67501061 5358Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5359for which Bison is more careful to warn about unreasonable usage.
18b519c0 5360@end deffn
6deb4447 5361
b50d2359 5362@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5363Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5364Require a Version of Bison}.
b50d2359
AD
5365@end deffn
5366
0e021770 5367@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5368Specify the skeleton to use.
5369
ed4d67dc
JD
5370@c You probably don't need this option unless you are developing Bison.
5371@c You should use @code{%language} if you want to specify the skeleton for a
5372@c different language, because it is clearer and because it will always choose the
5373@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5374
5375If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5376file in the Bison installation directory.
5377If it does, @var{file} is an absolute file name or a file name relative to the
5378directory of the grammar file.
5379This is similar to how most shells resolve commands.
0e021770
PE
5380@end deffn
5381
18b519c0 5382@deffn {Directive} %token-table
931c7513
RS
5383Generate an array of token names in the parser file. The name of the
5384array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5385token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5386three elements of @code{yytname} correspond to the predefined tokens
5387@code{"$end"},
88bce5a2
AD
5388@code{"error"}, and @code{"$undefined"}; after these come the symbols
5389defined in the grammar file.
931c7513 5390
9e0876fb
PE
5391The name in the table includes all the characters needed to represent
5392the token in Bison. For single-character literals and literal
5393strings, this includes the surrounding quoting characters and any
5394escape sequences. For example, the Bison single-character literal
5395@code{'+'} corresponds to a three-character name, represented in C as
5396@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5397corresponds to a five-character name, represented in C as
5398@code{"\"\\\\/\""}.
931c7513 5399
8c9a50be 5400When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5401definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5402@code{YYNRULES}, and @code{YYNSTATES}:
5403
5404@table @code
5405@item YYNTOKENS
5406The highest token number, plus one.
5407@item YYNNTS
9ecbd125 5408The number of nonterminal symbols.
931c7513
RS
5409@item YYNRULES
5410The number of grammar rules,
5411@item YYNSTATES
5412The number of parser states (@pxref{Parser States}).
5413@end table
18b519c0 5414@end deffn
d8988b2f 5415
18b519c0 5416@deffn {Directive} %verbose
d8988b2f 5417Write an extra output file containing verbose descriptions of the
742e4900 5418parser states and what is done for each type of lookahead token in
72d2299c 5419that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5420information.
18b519c0 5421@end deffn
d8988b2f 5422
18b519c0 5423@deffn {Directive} %yacc
d8988b2f
AD
5424Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5425including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5426@end deffn
d8988b2f
AD
5427
5428
342b8b6e 5429@node Multiple Parsers
bfa74976
RS
5430@section Multiple Parsers in the Same Program
5431
5432Most programs that use Bison parse only one language and therefore contain
5433only one Bison parser. But what if you want to parse more than one
5434language with the same program? Then you need to avoid a name conflict
5435between different definitions of @code{yyparse}, @code{yylval}, and so on.
5436
5437The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5438(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5439functions and variables of the Bison parser to start with @var{prefix}
5440instead of @samp{yy}. You can use this to give each parser distinct
5441names that do not conflict.
bfa74976
RS
5442
5443The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5444@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5445@code{yychar} and @code{yydebug}. If you use a push parser,
5446@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5447@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5448For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5449@code{clex}, and so on.
bfa74976
RS
5450
5451@strong{All the other variables and macros associated with Bison are not
5452renamed.} These others are not global; there is no conflict if the same
5453name is used in different parsers. For example, @code{YYSTYPE} is not
5454renamed, but defining this in different ways in different parsers causes
5455no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5456
5457The @samp{-p} option works by adding macro definitions to the beginning
5458of the parser source file, defining @code{yyparse} as
5459@code{@var{prefix}parse}, and so on. This effectively substitutes one
5460name for the other in the entire parser file.
5461
342b8b6e 5462@node Interface
bfa74976
RS
5463@chapter Parser C-Language Interface
5464@cindex C-language interface
5465@cindex interface
5466
5467The Bison parser is actually a C function named @code{yyparse}. Here we
5468describe the interface conventions of @code{yyparse} and the other
5469functions that it needs to use.
5470
5471Keep in mind that the parser uses many C identifiers starting with
5472@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5473identifier (aside from those in this manual) in an action or in epilogue
5474in the grammar file, you are likely to run into trouble.
bfa74976
RS
5475
5476@menu
f5f419de
DJ
5477* Parser Function:: How to call @code{yyparse} and what it returns.
5478* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5479* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5480* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5481* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5482* Lexical:: You must supply a function @code{yylex}
5483 which reads tokens.
5484* Error Reporting:: You must supply a function @code{yyerror}.
5485* Action Features:: Special features for use in actions.
5486* Internationalization:: How to let the parser speak in the user's
5487 native language.
bfa74976
RS
5488@end menu
5489
342b8b6e 5490@node Parser Function
bfa74976
RS
5491@section The Parser Function @code{yyparse}
5492@findex yyparse
5493
5494You call the function @code{yyparse} to cause parsing to occur. This
5495function reads tokens, executes actions, and ultimately returns when it
5496encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5497write an action which directs @code{yyparse} to return immediately
5498without reading further.
bfa74976 5499
2a8d363a
AD
5500
5501@deftypefun int yyparse (void)
bfa74976
RS
5502The value returned by @code{yyparse} is 0 if parsing was successful (return
5503is due to end-of-input).
5504
b47dbebe
PE
5505The value is 1 if parsing failed because of invalid input, i.e., input
5506that contains a syntax error or that causes @code{YYABORT} to be
5507invoked.
5508
5509The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5510@end deftypefun
bfa74976
RS
5511
5512In an action, you can cause immediate return from @code{yyparse} by using
5513these macros:
5514
2a8d363a 5515@defmac YYACCEPT
bfa74976
RS
5516@findex YYACCEPT
5517Return immediately with value 0 (to report success).
2a8d363a 5518@end defmac
bfa74976 5519
2a8d363a 5520@defmac YYABORT
bfa74976
RS
5521@findex YYABORT
5522Return immediately with value 1 (to report failure).
2a8d363a
AD
5523@end defmac
5524
5525If you use a reentrant parser, you can optionally pass additional
5526parameter information to it in a reentrant way. To do so, use the
5527declaration @code{%parse-param}:
5528
feeb0eda 5529@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5530@findex %parse-param
287c78f6
PE
5531Declare that an argument declared by the braced-code
5532@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5533The @var{argument-declaration} is used when declaring
feeb0eda
PE
5534functions or prototypes. The last identifier in
5535@var{argument-declaration} must be the argument name.
2a8d363a
AD
5536@end deffn
5537
5538Here's an example. Write this in the parser:
5539
5540@example
feeb0eda
PE
5541%parse-param @{int *nastiness@}
5542%parse-param @{int *randomness@}
2a8d363a
AD
5543@end example
5544
5545@noindent
5546Then call the parser like this:
5547
5548@example
5549@{
5550 int nastiness, randomness;
5551 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5552 value = yyparse (&nastiness, &randomness);
5553 @dots{}
5554@}
5555@end example
5556
5557@noindent
5558In the grammar actions, use expressions like this to refer to the data:
5559
5560@example
5561exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5562@end example
5563
9987d1b3
JD
5564@node Push Parser Function
5565@section The Push Parser Function @code{yypush_parse}
5566@findex yypush_parse
5567
59da312b
JD
5568(The current push parsing interface is experimental and may evolve.
5569More user feedback will help to stabilize it.)
5570
f4101aa6 5571You call the function @code{yypush_parse} to parse a single token. This
67501061
AD
5572function is available if either the @samp{%define api.push-pull "push"} or
5573@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5574@xref{Push Decl, ,A Push Parser}.
5575
5576@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5577The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5578following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5579is required to finish parsing the grammar.
5580@end deftypefun
5581
5582@node Pull Parser Function
5583@section The Pull Parser Function @code{yypull_parse}
5584@findex yypull_parse
5585
59da312b
JD
5586(The current push parsing interface is experimental and may evolve.
5587More user feedback will help to stabilize it.)
5588
f4101aa6 5589You call the function @code{yypull_parse} to parse the rest of the input
67501061 5590stream. This function is available if the @samp{%define api.push-pull "both"}
f4101aa6 5591declaration is used.
9987d1b3
JD
5592@xref{Push Decl, ,A Push Parser}.
5593
5594@deftypefun int yypull_parse (yypstate *yyps)
5595The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5596@end deftypefun
5597
5598@node Parser Create Function
5599@section The Parser Create Function @code{yystate_new}
5600@findex yypstate_new
5601
59da312b
JD
5602(The current push parsing interface is experimental and may evolve.
5603More user feedback will help to stabilize it.)
5604
f4101aa6 5605You call the function @code{yypstate_new} to create a new parser instance.
67501061
AD
5606This function is available if either the @samp{%define api.push-pull "push"} or
5607@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5608@xref{Push Decl, ,A Push Parser}.
5609
5610@deftypefun yypstate *yypstate_new (void)
5611The fuction will return a valid parser instance if there was memory available
333e670c
JD
5612or 0 if no memory was available.
5613In impure mode, it will also return 0 if a parser instance is currently
5614allocated.
9987d1b3
JD
5615@end deftypefun
5616
5617@node Parser Delete Function
5618@section The Parser Delete Function @code{yystate_delete}
5619@findex yypstate_delete
5620
59da312b
JD
5621(The current push parsing interface is experimental and may evolve.
5622More user feedback will help to stabilize it.)
5623
9987d1b3 5624You call the function @code{yypstate_delete} to delete a parser instance.
67501061
AD
5625function is available if either the @samp{%define api.push-pull "push"} or
5626@samp{%define api.push-pull "both"} declaration is used.
9987d1b3
JD
5627@xref{Push Decl, ,A Push Parser}.
5628
5629@deftypefun void yypstate_delete (yypstate *yyps)
5630This function will reclaim the memory associated with a parser instance.
5631After this call, you should no longer attempt to use the parser instance.
5632@end deftypefun
bfa74976 5633
342b8b6e 5634@node Lexical
bfa74976
RS
5635@section The Lexical Analyzer Function @code{yylex}
5636@findex yylex
5637@cindex lexical analyzer
5638
5639The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5640the input stream and returns them to the parser. Bison does not create
5641this function automatically; you must write it so that @code{yyparse} can
5642call it. The function is sometimes referred to as a lexical scanner.
5643
5644In simple programs, @code{yylex} is often defined at the end of the Bison
5645grammar file. If @code{yylex} is defined in a separate source file, you
5646need to arrange for the token-type macro definitions to be available there.
5647To do this, use the @samp{-d} option when you run Bison, so that it will
5648write these macro definitions into a separate header file
5649@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5650that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5651
5652@menu
5653* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5654* Token Values:: How @code{yylex} must return the semantic value
5655 of the token it has read.
5656* Token Locations:: How @code{yylex} must return the text location
5657 (line number, etc.) of the token, if the
5658 actions want that.
5659* Pure Calling:: How the calling convention differs in a pure parser
5660 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5661@end menu
5662
342b8b6e 5663@node Calling Convention
bfa74976
RS
5664@subsection Calling Convention for @code{yylex}
5665
72d2299c
PE
5666The value that @code{yylex} returns must be the positive numeric code
5667for the type of token it has just found; a zero or negative value
5668signifies end-of-input.
bfa74976
RS
5669
5670When a token is referred to in the grammar rules by a name, that name
5671in the parser file becomes a C macro whose definition is the proper
5672numeric code for that token type. So @code{yylex} can use the name
5673to indicate that type. @xref{Symbols}.
5674
5675When a token is referred to in the grammar rules by a character literal,
5676the numeric code for that character is also the code for the token type.
72d2299c
PE
5677So @code{yylex} can simply return that character code, possibly converted
5678to @code{unsigned char} to avoid sign-extension. The null character
5679must not be used this way, because its code is zero and that
bfa74976
RS
5680signifies end-of-input.
5681
5682Here is an example showing these things:
5683
5684@example
13863333
AD
5685int
5686yylex (void)
bfa74976
RS
5687@{
5688 @dots{}
72d2299c 5689 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5690 return 0;
5691 @dots{}
5692 if (c == '+' || c == '-')
72d2299c 5693 return c; /* Assume token type for `+' is '+'. */
bfa74976 5694 @dots{}
72d2299c 5695 return INT; /* Return the type of the token. */
bfa74976
RS
5696 @dots{}
5697@}
5698@end example
5699
5700@noindent
5701This interface has been designed so that the output from the @code{lex}
5702utility can be used without change as the definition of @code{yylex}.
5703
931c7513
RS
5704If the grammar uses literal string tokens, there are two ways that
5705@code{yylex} can determine the token type codes for them:
5706
5707@itemize @bullet
5708@item
5709If the grammar defines symbolic token names as aliases for the
5710literal string tokens, @code{yylex} can use these symbolic names like
5711all others. In this case, the use of the literal string tokens in
5712the grammar file has no effect on @code{yylex}.
5713
5714@item
9ecbd125 5715@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5716table. The index of the token in the table is the token type's code.
9ecbd125 5717The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5718double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5719token's characters are escaped as necessary to be suitable as input
5720to Bison.
931c7513 5721
9e0876fb
PE
5722Here's code for looking up a multicharacter token in @code{yytname},
5723assuming that the characters of the token are stored in
5724@code{token_buffer}, and assuming that the token does not contain any
5725characters like @samp{"} that require escaping.
931c7513
RS
5726
5727@smallexample
5728for (i = 0; i < YYNTOKENS; i++)
5729 @{
5730 if (yytname[i] != 0
5731 && yytname[i][0] == '"'
68449b3a
PE
5732 && ! strncmp (yytname[i] + 1, token_buffer,
5733 strlen (token_buffer))
931c7513
RS
5734 && yytname[i][strlen (token_buffer) + 1] == '"'
5735 && yytname[i][strlen (token_buffer) + 2] == 0)
5736 break;
5737 @}
5738@end smallexample
5739
5740The @code{yytname} table is generated only if you use the
8c9a50be 5741@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5742@end itemize
5743
342b8b6e 5744@node Token Values
bfa74976
RS
5745@subsection Semantic Values of Tokens
5746
5747@vindex yylval
9d9b8b70 5748In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5749be stored into the global variable @code{yylval}. When you are using
5750just one data type for semantic values, @code{yylval} has that type.
5751Thus, if the type is @code{int} (the default), you might write this in
5752@code{yylex}:
5753
5754@example
5755@group
5756 @dots{}
72d2299c
PE
5757 yylval = value; /* Put value onto Bison stack. */
5758 return INT; /* Return the type of the token. */
bfa74976
RS
5759 @dots{}
5760@end group
5761@end example
5762
5763When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5764made from the @code{%union} declaration (@pxref{Union Decl, ,The
5765Collection of Value Types}). So when you store a token's value, you
5766must use the proper member of the union. If the @code{%union}
5767declaration looks like this:
bfa74976
RS
5768
5769@example
5770@group
5771%union @{
5772 int intval;
5773 double val;
5774 symrec *tptr;
5775@}
5776@end group
5777@end example
5778
5779@noindent
5780then the code in @code{yylex} might look like this:
5781
5782@example
5783@group
5784 @dots{}
72d2299c
PE
5785 yylval.intval = value; /* Put value onto Bison stack. */
5786 return INT; /* Return the type of the token. */
bfa74976
RS
5787 @dots{}
5788@end group
5789@end example
5790
95923bd6
AD
5791@node Token Locations
5792@subsection Textual Locations of Tokens
bfa74976
RS
5793
5794@vindex yylloc
847bf1f5 5795If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5796Tracking Locations}) in actions to keep track of the textual locations
5797of tokens and groupings, then you must provide this information in
5798@code{yylex}. The function @code{yyparse} expects to find the textual
5799location of a token just parsed in the global variable @code{yylloc}.
5800So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5801
5802By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5803initialize the members that are going to be used by the actions. The
5804four members are called @code{first_line}, @code{first_column},
5805@code{last_line} and @code{last_column}. Note that the use of this
5806feature makes the parser noticeably slower.
bfa74976
RS
5807
5808@tindex YYLTYPE
5809The data type of @code{yylloc} has the name @code{YYLTYPE}.
5810
342b8b6e 5811@node Pure Calling
c656404a 5812@subsection Calling Conventions for Pure Parsers
bfa74976 5813
67501061 5814When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
5815pure, reentrant parser, the global communication variables @code{yylval}
5816and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5817Parser}.) In such parsers the two global variables are replaced by
5818pointers passed as arguments to @code{yylex}. You must declare them as
5819shown here, and pass the information back by storing it through those
5820pointers.
bfa74976
RS
5821
5822@example
13863333
AD
5823int
5824yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5825@{
5826 @dots{}
5827 *lvalp = value; /* Put value onto Bison stack. */
5828 return INT; /* Return the type of the token. */
5829 @dots{}
5830@}
5831@end example
5832
5833If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5834textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5835this case, omit the second argument; @code{yylex} will be called with
5836only one argument.
5837
e425e872 5838
2a8d363a
AD
5839If you wish to pass the additional parameter data to @code{yylex}, use
5840@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5841Function}).
e425e872 5842
feeb0eda 5843@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5844@findex %lex-param
287c78f6
PE
5845Declare that the braced-code @var{argument-declaration} is an
5846additional @code{yylex} argument declaration.
2a8d363a 5847@end deffn
e425e872 5848
2a8d363a 5849For instance:
e425e872
RS
5850
5851@example
feeb0eda
PE
5852%parse-param @{int *nastiness@}
5853%lex-param @{int *nastiness@}
5854%parse-param @{int *randomness@}
e425e872
RS
5855@end example
5856
5857@noindent
2a8d363a 5858results in the following signature:
e425e872
RS
5859
5860@example
2a8d363a
AD
5861int yylex (int *nastiness);
5862int yyparse (int *nastiness, int *randomness);
e425e872
RS
5863@end example
5864
67501061 5865If @samp{%define api.pure} is added:
c656404a
RS
5866
5867@example
2a8d363a
AD
5868int yylex (YYSTYPE *lvalp, int *nastiness);
5869int yyparse (int *nastiness, int *randomness);
c656404a
RS
5870@end example
5871
2a8d363a 5872@noindent
67501061 5873and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 5874
2a8d363a
AD
5875@example
5876int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5877int yyparse (int *nastiness, int *randomness);
5878@end example
931c7513 5879
342b8b6e 5880@node Error Reporting
bfa74976
RS
5881@section The Error Reporting Function @code{yyerror}
5882@cindex error reporting function
5883@findex yyerror
5884@cindex parse error
5885@cindex syntax error
5886
6e649e65 5887The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5888whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5889action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5890macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5891in Actions}).
bfa74976
RS
5892
5893The Bison parser expects to report the error by calling an error
5894reporting function named @code{yyerror}, which you must supply. It is
5895called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5896receives one argument. For a syntax error, the string is normally
5897@w{@code{"syntax error"}}.
bfa74976 5898
71b00ed8 5899@findex %define error-verbose
67501061 5900If you invoke the directive @samp{%define error-verbose} in the Bison
2a8d363a
AD
5901declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5902Section}), then Bison provides a more verbose and specific error message
6e649e65 5903string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5904
1a059451
PE
5905The parser can detect one other kind of error: memory exhaustion. This
5906can happen when the input contains constructions that are very deeply
bfa74976 5907nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5908parser normally extends its stack automatically up to a very large limit. But
5909if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5910fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5911
5912In some cases diagnostics like @w{@code{"syntax error"}} are
5913translated automatically from English to some other language before
5914they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5915
5916The following definition suffices in simple programs:
5917
5918@example
5919@group
13863333 5920void
38a92d50 5921yyerror (char const *s)
bfa74976
RS
5922@{
5923@end group
5924@group
5925 fprintf (stderr, "%s\n", s);
5926@}
5927@end group
5928@end example
5929
5930After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5931error recovery if you have written suitable error recovery grammar rules
5932(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5933immediately return 1.
5934
93724f13 5935Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5936an access to the current location.
5937This is indeed the case for the @acronym{GLR}
2a8d363a 5938parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5939@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5940@code{yyerror} are:
5941
5942@example
38a92d50
PE
5943void yyerror (char const *msg); /* Yacc parsers. */
5944void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5945@end example
5946
feeb0eda 5947If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5948
5949@example
b317297e
PE
5950void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5951void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5952@end example
5953
fa7e68c3 5954Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5955convention for absolutely pure parsers, i.e., when the calling
5956convention of @code{yylex} @emph{and} the calling convention of
67501061 5957@samp{%define api.pure} are pure.
d9df47b6 5958I.e.:
2a8d363a
AD
5959
5960@example
5961/* Location tracking. */
5962%locations
5963/* Pure yylex. */
d9df47b6 5964%define api.pure
feeb0eda 5965%lex-param @{int *nastiness@}
2a8d363a 5966/* Pure yyparse. */
feeb0eda
PE
5967%parse-param @{int *nastiness@}
5968%parse-param @{int *randomness@}
2a8d363a
AD
5969@end example
5970
5971@noindent
5972results in the following signatures for all the parser kinds:
5973
5974@example
5975int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5976int yyparse (int *nastiness, int *randomness);
93724f13
AD
5977void yyerror (YYLTYPE *locp,
5978 int *nastiness, int *randomness,
38a92d50 5979 char const *msg);
2a8d363a
AD
5980@end example
5981
1c0c3e95 5982@noindent
38a92d50
PE
5983The prototypes are only indications of how the code produced by Bison
5984uses @code{yyerror}. Bison-generated code always ignores the returned
5985value, so @code{yyerror} can return any type, including @code{void}.
5986Also, @code{yyerror} can be a variadic function; that is why the
5987message is always passed last.
5988
5989Traditionally @code{yyerror} returns an @code{int} that is always
5990ignored, but this is purely for historical reasons, and @code{void} is
5991preferable since it more accurately describes the return type for
5992@code{yyerror}.
93724f13 5993
bfa74976
RS
5994@vindex yynerrs
5995The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5996reported so far. Normally this variable is global; but if you
704a47c4
AD
5997request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5998then it is a local variable which only the actions can access.
bfa74976 5999
342b8b6e 6000@node Action Features
bfa74976
RS
6001@section Special Features for Use in Actions
6002@cindex summary, action features
6003@cindex action features summary
6004
6005Here is a table of Bison constructs, variables and macros that
6006are useful in actions.
6007
18b519c0 6008@deffn {Variable} $$
bfa74976
RS
6009Acts like a variable that contains the semantic value for the
6010grouping made by the current rule. @xref{Actions}.
18b519c0 6011@end deffn
bfa74976 6012
18b519c0 6013@deffn {Variable} $@var{n}
bfa74976
RS
6014Acts like a variable that contains the semantic value for the
6015@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6016@end deffn
bfa74976 6017
18b519c0 6018@deffn {Variable} $<@var{typealt}>$
bfa74976 6019Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6020specified by the @code{%union} declaration. @xref{Action Types, ,Data
6021Types of Values in Actions}.
18b519c0 6022@end deffn
bfa74976 6023
18b519c0 6024@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6025Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6026union specified by the @code{%union} declaration.
e0c471a9 6027@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6028@end deffn
bfa74976 6029
18b519c0 6030@deffn {Macro} YYABORT;
bfa74976
RS
6031Return immediately from @code{yyparse}, indicating failure.
6032@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6033@end deffn
bfa74976 6034
18b519c0 6035@deffn {Macro} YYACCEPT;
bfa74976
RS
6036Return immediately from @code{yyparse}, indicating success.
6037@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6038@end deffn
bfa74976 6039
18b519c0 6040@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6041@findex YYBACKUP
6042Unshift a token. This macro is allowed only for rules that reduce
742e4900 6043a single value, and only when there is no lookahead token.
c827f760 6044It is also disallowed in @acronym{GLR} parsers.
742e4900 6045It installs a lookahead token with token type @var{token} and
bfa74976
RS
6046semantic value @var{value}; then it discards the value that was
6047going to be reduced by this rule.
6048
6049If the macro is used when it is not valid, such as when there is
742e4900 6050a lookahead token already, then it reports a syntax error with
bfa74976
RS
6051a message @samp{cannot back up} and performs ordinary error
6052recovery.
6053
6054In either case, the rest of the action is not executed.
18b519c0 6055@end deffn
bfa74976 6056
18b519c0 6057@deffn {Macro} YYEMPTY
bfa74976 6058@vindex YYEMPTY
742e4900 6059Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6060@end deffn
bfa74976 6061
32c29292
JD
6062@deffn {Macro} YYEOF
6063@vindex YYEOF
742e4900 6064Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6065stream.
6066@end deffn
6067
18b519c0 6068@deffn {Macro} YYERROR;
bfa74976
RS
6069@findex YYERROR
6070Cause an immediate syntax error. This statement initiates error
6071recovery just as if the parser itself had detected an error; however, it
6072does not call @code{yyerror}, and does not print any message. If you
6073want to print an error message, call @code{yyerror} explicitly before
6074the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6075@end deffn
bfa74976 6076
18b519c0 6077@deffn {Macro} YYRECOVERING
02103984
PE
6078@findex YYRECOVERING
6079The expression @code{YYRECOVERING ()} yields 1 when the parser
6080is recovering from a syntax error, and 0 otherwise.
bfa74976 6081@xref{Error Recovery}.
18b519c0 6082@end deffn
bfa74976 6083
18b519c0 6084@deffn {Variable} yychar
742e4900
JD
6085Variable containing either the lookahead token, or @code{YYEOF} when the
6086lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6087has been performed so the next token is not yet known.
6088Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6089Actions}).
742e4900 6090@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6091@end deffn
bfa74976 6092
18b519c0 6093@deffn {Macro} yyclearin;
742e4900 6094Discard the current lookahead token. This is useful primarily in
32c29292
JD
6095error rules.
6096Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6097Semantic Actions}).
6098@xref{Error Recovery}.
18b519c0 6099@end deffn
bfa74976 6100
18b519c0 6101@deffn {Macro} yyerrok;
bfa74976 6102Resume generating error messages immediately for subsequent syntax
13863333 6103errors. This is useful primarily in error rules.
bfa74976 6104@xref{Error Recovery}.
18b519c0 6105@end deffn
bfa74976 6106
32c29292 6107@deffn {Variable} yylloc
742e4900 6108Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6109to @code{YYEMPTY} or @code{YYEOF}.
6110Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6111Actions}).
6112@xref{Actions and Locations, ,Actions and Locations}.
6113@end deffn
6114
6115@deffn {Variable} yylval
742e4900 6116Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6117not set to @code{YYEMPTY} or @code{YYEOF}.
6118Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6119Actions}).
6120@xref{Actions, ,Actions}.
6121@end deffn
6122
18b519c0 6123@deffn {Value} @@$
847bf1f5 6124@findex @@$
95923bd6 6125Acts like a structure variable containing information on the textual location
847bf1f5
AD
6126of the grouping made by the current rule. @xref{Locations, ,
6127Tracking Locations}.
bfa74976 6128
847bf1f5
AD
6129@c Check if those paragraphs are still useful or not.
6130
6131@c @example
6132@c struct @{
6133@c int first_line, last_line;
6134@c int first_column, last_column;
6135@c @};
6136@c @end example
6137
6138@c Thus, to get the starting line number of the third component, you would
6139@c use @samp{@@3.first_line}.
bfa74976 6140
847bf1f5
AD
6141@c In order for the members of this structure to contain valid information,
6142@c you must make @code{yylex} supply this information about each token.
6143@c If you need only certain members, then @code{yylex} need only fill in
6144@c those members.
bfa74976 6145
847bf1f5 6146@c The use of this feature makes the parser noticeably slower.
18b519c0 6147@end deffn
847bf1f5 6148
18b519c0 6149@deffn {Value} @@@var{n}
847bf1f5 6150@findex @@@var{n}
95923bd6 6151Acts like a structure variable containing information on the textual location
847bf1f5
AD
6152of the @var{n}th component of the current rule. @xref{Locations, ,
6153Tracking Locations}.
18b519c0 6154@end deffn
bfa74976 6155
f7ab6a50
PE
6156@node Internationalization
6157@section Parser Internationalization
6158@cindex internationalization
6159@cindex i18n
6160@cindex NLS
6161@cindex gettext
6162@cindex bison-po
6163
6164A Bison-generated parser can print diagnostics, including error and
6165tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6166also supports outputting diagnostics in the user's native language. To
6167make this work, the user should set the usual environment variables.
6168@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6169For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6170set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6171encoding. The exact set of available locales depends on the user's
6172installation.
6173
6174The maintainer of a package that uses a Bison-generated parser enables
6175the internationalization of the parser's output through the following
6176steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6177@acronym{GNU} Automake.
6178
6179@enumerate
6180@item
30757c8c 6181@cindex bison-i18n.m4
f7ab6a50
PE
6182Into the directory containing the @acronym{GNU} Autoconf macros used
6183by the package---often called @file{m4}---copy the
6184@file{bison-i18n.m4} file installed by Bison under
6185@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6186For example:
6187
6188@example
6189cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6190@end example
6191
6192@item
30757c8c
PE
6193@findex BISON_I18N
6194@vindex BISON_LOCALEDIR
6195@vindex YYENABLE_NLS
f7ab6a50
PE
6196In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6197invocation, add an invocation of @code{BISON_I18N}. This macro is
6198defined in the file @file{bison-i18n.m4} that you copied earlier. It
6199causes @samp{configure} to find the value of the
30757c8c
PE
6200@code{BISON_LOCALEDIR} variable, and it defines the source-language
6201symbol @code{YYENABLE_NLS} to enable translations in the
6202Bison-generated parser.
f7ab6a50
PE
6203
6204@item
6205In the @code{main} function of your program, designate the directory
6206containing Bison's runtime message catalog, through a call to
6207@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6208For example:
6209
6210@example
6211bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6212@end example
6213
6214Typically this appears after any other call @code{bindtextdomain
6215(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6216@samp{BISON_LOCALEDIR} to be defined as a string through the
6217@file{Makefile}.
6218
6219@item
6220In the @file{Makefile.am} that controls the compilation of the @code{main}
6221function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6222either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6223
6224@example
6225DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6226@end example
6227
6228or:
6229
6230@example
6231AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6232@end example
6233
6234@item
6235Finally, invoke the command @command{autoreconf} to generate the build
6236infrastructure.
6237@end enumerate
6238
bfa74976 6239
342b8b6e 6240@node Algorithm
13863333
AD
6241@chapter The Bison Parser Algorithm
6242@cindex Bison parser algorithm
bfa74976
RS
6243@cindex algorithm of parser
6244@cindex shifting
6245@cindex reduction
6246@cindex parser stack
6247@cindex stack, parser
6248
6249As Bison reads tokens, it pushes them onto a stack along with their
6250semantic values. The stack is called the @dfn{parser stack}. Pushing a
6251token is traditionally called @dfn{shifting}.
6252
6253For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6254@samp{3} to come. The stack will have four elements, one for each token
6255that was shifted.
6256
6257But the stack does not always have an element for each token read. When
6258the last @var{n} tokens and groupings shifted match the components of a
6259grammar rule, they can be combined according to that rule. This is called
6260@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6261single grouping whose symbol is the result (left hand side) of that rule.
6262Running the rule's action is part of the process of reduction, because this
6263is what computes the semantic value of the resulting grouping.
6264
6265For example, if the infix calculator's parser stack contains this:
6266
6267@example
62681 + 5 * 3
6269@end example
6270
6271@noindent
6272and the next input token is a newline character, then the last three
6273elements can be reduced to 15 via the rule:
6274
6275@example
6276expr: expr '*' expr;
6277@end example
6278
6279@noindent
6280Then the stack contains just these three elements:
6281
6282@example
62831 + 15
6284@end example
6285
6286@noindent
6287At this point, another reduction can be made, resulting in the single value
628816. Then the newline token can be shifted.
6289
6290The parser tries, by shifts and reductions, to reduce the entire input down
6291to a single grouping whose symbol is the grammar's start-symbol
6292(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6293
6294This kind of parser is known in the literature as a bottom-up parser.
6295
6296@menu
742e4900 6297* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6298* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6299* Precedence:: Operator precedence works by resolving conflicts.
6300* Contextual Precedence:: When an operator's precedence depends on context.
6301* Parser States:: The parser is a finite-state-machine with stack.
6302* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6303* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6304* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6305* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6306@end menu
6307
742e4900
JD
6308@node Lookahead
6309@section Lookahead Tokens
6310@cindex lookahead token
bfa74976
RS
6311
6312The Bison parser does @emph{not} always reduce immediately as soon as the
6313last @var{n} tokens and groupings match a rule. This is because such a
6314simple strategy is inadequate to handle most languages. Instead, when a
6315reduction is possible, the parser sometimes ``looks ahead'' at the next
6316token in order to decide what to do.
6317
6318When a token is read, it is not immediately shifted; first it becomes the
742e4900 6319@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6320perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6321the lookahead token remains off to the side. When no more reductions
6322should take place, the lookahead token is shifted onto the stack. This
bfa74976 6323does not mean that all possible reductions have been done; depending on the
742e4900 6324token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6325application.
6326
742e4900 6327Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6328expressions which contain binary addition operators and postfix unary
6329factorial operators (@samp{!}), and allow parentheses for grouping.
6330
6331@example
6332@group
6333expr: term '+' expr
6334 | term
6335 ;
6336@end group
6337
6338@group
6339term: '(' expr ')'
6340 | term '!'
6341 | NUMBER
6342 ;
6343@end group
6344@end example
6345
6346Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6347should be done? If the following token is @samp{)}, then the first three
6348tokens must be reduced to form an @code{expr}. This is the only valid
6349course, because shifting the @samp{)} would produce a sequence of symbols
6350@w{@code{term ')'}}, and no rule allows this.
6351
6352If the following token is @samp{!}, then it must be shifted immediately so
6353that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6354parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6355@code{expr}. It would then be impossible to shift the @samp{!} because
6356doing so would produce on the stack the sequence of symbols @code{expr
6357'!'}. No rule allows that sequence.
6358
6359@vindex yychar
32c29292
JD
6360@vindex yylval
6361@vindex yylloc
742e4900 6362The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6363Its semantic value and location, if any, are stored in the variables
6364@code{yylval} and @code{yylloc}.
bfa74976
RS
6365@xref{Action Features, ,Special Features for Use in Actions}.
6366
342b8b6e 6367@node Shift/Reduce
bfa74976
RS
6368@section Shift/Reduce Conflicts
6369@cindex conflicts
6370@cindex shift/reduce conflicts
6371@cindex dangling @code{else}
6372@cindex @code{else}, dangling
6373
6374Suppose we are parsing a language which has if-then and if-then-else
6375statements, with a pair of rules like this:
6376
6377@example
6378@group
6379if_stmt:
6380 IF expr THEN stmt
6381 | IF expr THEN stmt ELSE stmt
6382 ;
6383@end group
6384@end example
6385
6386@noindent
6387Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6388terminal symbols for specific keyword tokens.
6389
742e4900 6390When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6391contents of the stack (assuming the input is valid) are just right for
6392reduction by the first rule. But it is also legitimate to shift the
6393@code{ELSE}, because that would lead to eventual reduction by the second
6394rule.
6395
6396This situation, where either a shift or a reduction would be valid, is
6397called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6398these conflicts by choosing to shift, unless otherwise directed by
6399operator precedence declarations. To see the reason for this, let's
6400contrast it with the other alternative.
6401
6402Since the parser prefers to shift the @code{ELSE}, the result is to attach
6403the else-clause to the innermost if-statement, making these two inputs
6404equivalent:
6405
6406@example
6407if x then if y then win (); else lose;
6408
6409if x then do; if y then win (); else lose; end;
6410@end example
6411
6412But if the parser chose to reduce when possible rather than shift, the
6413result would be to attach the else-clause to the outermost if-statement,
6414making these two inputs equivalent:
6415
6416@example
6417if x then if y then win (); else lose;
6418
6419if x then do; if y then win (); end; else lose;
6420@end example
6421
6422The conflict exists because the grammar as written is ambiguous: either
6423parsing of the simple nested if-statement is legitimate. The established
6424convention is that these ambiguities are resolved by attaching the
6425else-clause to the innermost if-statement; this is what Bison accomplishes
6426by choosing to shift rather than reduce. (It would ideally be cleaner to
6427write an unambiguous grammar, but that is very hard to do in this case.)
6428This particular ambiguity was first encountered in the specifications of
6429Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6430
6431To avoid warnings from Bison about predictable, legitimate shift/reduce
6432conflicts, use the @code{%expect @var{n}} declaration. There will be no
6433warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6434@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6435
6436The definition of @code{if_stmt} above is solely to blame for the
6437conflict, but the conflict does not actually appear without additional
6438rules. Here is a complete Bison input file that actually manifests the
6439conflict:
6440
6441@example
6442@group
6443%token IF THEN ELSE variable
6444%%
6445@end group
6446@group
6447stmt: expr
6448 | if_stmt
6449 ;
6450@end group
6451
6452@group
6453if_stmt:
6454 IF expr THEN stmt
6455 | IF expr THEN stmt ELSE stmt
6456 ;
6457@end group
6458
6459expr: variable
6460 ;
6461@end example
6462
342b8b6e 6463@node Precedence
bfa74976
RS
6464@section Operator Precedence
6465@cindex operator precedence
6466@cindex precedence of operators
6467
6468Another situation where shift/reduce conflicts appear is in arithmetic
6469expressions. Here shifting is not always the preferred resolution; the
6470Bison declarations for operator precedence allow you to specify when to
6471shift and when to reduce.
6472
6473@menu
6474* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6475* Using Precedence:: How to specify precedence and associativity.
6476* Precedence Only:: How to specify precedence only.
bfa74976
RS
6477* Precedence Examples:: How these features are used in the previous example.
6478* How Precedence:: How they work.
6479@end menu
6480
342b8b6e 6481@node Why Precedence
bfa74976
RS
6482@subsection When Precedence is Needed
6483
6484Consider the following ambiguous grammar fragment (ambiguous because the
6485input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6486
6487@example
6488@group
6489expr: expr '-' expr
6490 | expr '*' expr
6491 | expr '<' expr
6492 | '(' expr ')'
6493 @dots{}
6494 ;
6495@end group
6496@end example
6497
6498@noindent
6499Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6500should it reduce them via the rule for the subtraction operator? It
6501depends on the next token. Of course, if the next token is @samp{)}, we
6502must reduce; shifting is invalid because no single rule can reduce the
6503token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6504the next token is @samp{*} or @samp{<}, we have a choice: either
6505shifting or reduction would allow the parse to complete, but with
6506different results.
6507
6508To decide which one Bison should do, we must consider the results. If
6509the next operator token @var{op} is shifted, then it must be reduced
6510first in order to permit another opportunity to reduce the difference.
6511The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6512hand, if the subtraction is reduced before shifting @var{op}, the result
6513is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6514reduce should depend on the relative precedence of the operators
6515@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6516@samp{<}.
bfa74976
RS
6517
6518@cindex associativity
6519What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6520@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6521operators we prefer the former, which is called @dfn{left association}.
6522The latter alternative, @dfn{right association}, is desirable for
6523assignment operators. The choice of left or right association is a
6524matter of whether the parser chooses to shift or reduce when the stack
742e4900 6525contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6526makes right-associativity.
bfa74976 6527
342b8b6e 6528@node Using Precedence
bfa74976
RS
6529@subsection Specifying Operator Precedence
6530@findex %left
bfa74976 6531@findex %nonassoc
d78f0ac9
AD
6532@findex %precedence
6533@findex %right
bfa74976
RS
6534
6535Bison allows you to specify these choices with the operator precedence
6536declarations @code{%left} and @code{%right}. Each such declaration
6537contains a list of tokens, which are operators whose precedence and
6538associativity is being declared. The @code{%left} declaration makes all
6539those operators left-associative and the @code{%right} declaration makes
6540them right-associative. A third alternative is @code{%nonassoc}, which
6541declares that it is a syntax error to find the same operator twice ``in a
6542row''.
d78f0ac9
AD
6543The last alternative, @code{%precedence}, allows to define only
6544precedence and no associativity at all. As a result, any
6545associativity-related conflict that remains will be reported as an
6546compile-time error. The directive @code{%nonassoc} creates run-time
6547error: using the operator in a associative way is a syntax error. The
6548directive @code{%precedence} creates compile-time errors: an operator
6549@emph{can} be involved in an associativity-related conflict, contrary to
6550what expected the grammar author.
bfa74976
RS
6551
6552The relative precedence of different operators is controlled by the
d78f0ac9
AD
6553order in which they are declared. The first precedence/associativity
6554declaration in the file declares the operators whose
bfa74976
RS
6555precedence is lowest, the next such declaration declares the operators
6556whose precedence is a little higher, and so on.
6557
d78f0ac9
AD
6558@node Precedence Only
6559@subsection Specifying Precedence Only
6560@findex %precedence
6561
6562Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6563@code{%nonassoc}, which all defines precedence and associativity, little
6564attention is paid to the fact that precedence cannot be defined without
6565defining associativity. Yet, sometimes, when trying to solve a
6566conflict, precedence suffices. In such a case, using @code{%left},
6567@code{%right}, or @code{%nonassoc} might hide future (associativity
6568related) conflicts that would remain hidden.
6569
6570The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6571Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6572in the following situation, where the period denotes the current parsing
6573state:
6574
6575@example
6576if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6577@end example
6578
6579The conflict involves the reduction of the rule @samp{IF expr THEN
6580stmt}, which precedence is by default that of its last token
6581(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6582disambiguation (attach the @code{else} to the closest @code{if}),
6583shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6584higher than that of @code{THEN}. But neither is expected to be involved
6585in an associativity related conflict, which can be specified as follows.
6586
6587@example
6588%precedence THEN
6589%precedence ELSE
6590@end example
6591
6592The unary-minus is another typical example where associativity is
6593usually over-specified, see @ref{Infix Calc, , Infix Notation
6594Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6595used to declare the precedence of @code{NEG}, which is more than needed
6596since it also defines its associativity. While this is harmless in the
6597traditional example, who knows how @code{NEG} might be used in future
6598evolutions of the grammar@dots{}
6599
342b8b6e 6600@node Precedence Examples
bfa74976
RS
6601@subsection Precedence Examples
6602
6603In our example, we would want the following declarations:
6604
6605@example
6606%left '<'
6607%left '-'
6608%left '*'
6609@end example
6610
6611In a more complete example, which supports other operators as well, we
6612would declare them in groups of equal precedence. For example, @code{'+'} is
6613declared with @code{'-'}:
6614
6615@example
6616%left '<' '>' '=' NE LE GE
6617%left '+' '-'
6618%left '*' '/'
6619@end example
6620
6621@noindent
6622(Here @code{NE} and so on stand for the operators for ``not equal''
6623and so on. We assume that these tokens are more than one character long
6624and therefore are represented by names, not character literals.)
6625
342b8b6e 6626@node How Precedence
bfa74976
RS
6627@subsection How Precedence Works
6628
6629The first effect of the precedence declarations is to assign precedence
6630levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6631precedence levels to certain rules: each rule gets its precedence from
6632the last terminal symbol mentioned in the components. (You can also
6633specify explicitly the precedence of a rule. @xref{Contextual
6634Precedence, ,Context-Dependent Precedence}.)
6635
6636Finally, the resolution of conflicts works by comparing the precedence
742e4900 6637of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6638token's precedence is higher, the choice is to shift. If the rule's
6639precedence is higher, the choice is to reduce. If they have equal
6640precedence, the choice is made based on the associativity of that
6641precedence level. The verbose output file made by @samp{-v}
6642(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6643resolved.
bfa74976
RS
6644
6645Not all rules and not all tokens have precedence. If either the rule or
742e4900 6646the lookahead token has no precedence, then the default is to shift.
bfa74976 6647
342b8b6e 6648@node Contextual Precedence
bfa74976
RS
6649@section Context-Dependent Precedence
6650@cindex context-dependent precedence
6651@cindex unary operator precedence
6652@cindex precedence, context-dependent
6653@cindex precedence, unary operator
6654@findex %prec
6655
6656Often the precedence of an operator depends on the context. This sounds
6657outlandish at first, but it is really very common. For example, a minus
6658sign typically has a very high precedence as a unary operator, and a
6659somewhat lower precedence (lower than multiplication) as a binary operator.
6660
d78f0ac9
AD
6661The Bison precedence declarations
6662can only be used once for a given token; so a token has
bfa74976
RS
6663only one precedence declared in this way. For context-dependent
6664precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6665modifier for rules.
bfa74976
RS
6666
6667The @code{%prec} modifier declares the precedence of a particular rule by
6668specifying a terminal symbol whose precedence should be used for that rule.
6669It's not necessary for that symbol to appear otherwise in the rule. The
6670modifier's syntax is:
6671
6672@example
6673%prec @var{terminal-symbol}
6674@end example
6675
6676@noindent
6677and it is written after the components of the rule. Its effect is to
6678assign the rule the precedence of @var{terminal-symbol}, overriding
6679the precedence that would be deduced for it in the ordinary way. The
6680altered rule precedence then affects how conflicts involving that rule
6681are resolved (@pxref{Precedence, ,Operator Precedence}).
6682
6683Here is how @code{%prec} solves the problem of unary minus. First, declare
6684a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6685are no tokens of this type, but the symbol serves to stand for its
6686precedence:
6687
6688@example
6689@dots{}
6690%left '+' '-'
6691%left '*'
6692%left UMINUS
6693@end example
6694
6695Now the precedence of @code{UMINUS} can be used in specific rules:
6696
6697@example
6698@group
6699exp: @dots{}
6700 | exp '-' exp
6701 @dots{}
6702 | '-' exp %prec UMINUS
6703@end group
6704@end example
6705
91d2c560 6706@ifset defaultprec
39a06c25
PE
6707If you forget to append @code{%prec UMINUS} to the rule for unary
6708minus, Bison silently assumes that minus has its usual precedence.
6709This kind of problem can be tricky to debug, since one typically
6710discovers the mistake only by testing the code.
6711
22fccf95 6712The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6713this kind of problem systematically. It causes rules that lack a
6714@code{%prec} modifier to have no precedence, even if the last terminal
6715symbol mentioned in their components has a declared precedence.
6716
22fccf95 6717If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6718for all rules that participate in precedence conflict resolution.
6719Then you will see any shift/reduce conflict until you tell Bison how
6720to resolve it, either by changing your grammar or by adding an
6721explicit precedence. This will probably add declarations to the
6722grammar, but it helps to protect against incorrect rule precedences.
6723
22fccf95
PE
6724The effect of @code{%no-default-prec;} can be reversed by giving
6725@code{%default-prec;}, which is the default.
91d2c560 6726@end ifset
39a06c25 6727
342b8b6e 6728@node Parser States
bfa74976
RS
6729@section Parser States
6730@cindex finite-state machine
6731@cindex parser state
6732@cindex state (of parser)
6733
6734The function @code{yyparse} is implemented using a finite-state machine.
6735The values pushed on the parser stack are not simply token type codes; they
6736represent the entire sequence of terminal and nonterminal symbols at or
6737near the top of the stack. The current state collects all the information
6738about previous input which is relevant to deciding what to do next.
6739
742e4900
JD
6740Each time a lookahead token is read, the current parser state together
6741with the type of lookahead token are looked up in a table. This table
6742entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6743specifies the new parser state, which is pushed onto the top of the
6744parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6745This means that a certain number of tokens or groupings are taken off
6746the top of the stack, and replaced by one grouping. In other words,
6747that number of states are popped from the stack, and one new state is
6748pushed.
6749
742e4900 6750There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6751is erroneous in the current state. This causes error processing to begin
6752(@pxref{Error Recovery}).
6753
342b8b6e 6754@node Reduce/Reduce
bfa74976
RS
6755@section Reduce/Reduce Conflicts
6756@cindex reduce/reduce conflict
6757@cindex conflicts, reduce/reduce
6758
6759A reduce/reduce conflict occurs if there are two or more rules that apply
6760to the same sequence of input. This usually indicates a serious error
6761in the grammar.
6762
6763For example, here is an erroneous attempt to define a sequence
6764of zero or more @code{word} groupings.
6765
6766@example
6767sequence: /* empty */
6768 @{ printf ("empty sequence\n"); @}
6769 | maybeword
6770 | sequence word
6771 @{ printf ("added word %s\n", $2); @}
6772 ;
6773
6774maybeword: /* empty */
6775 @{ printf ("empty maybeword\n"); @}
6776 | word
6777 @{ printf ("single word %s\n", $1); @}
6778 ;
6779@end example
6780
6781@noindent
6782The error is an ambiguity: there is more than one way to parse a single
6783@code{word} into a @code{sequence}. It could be reduced to a
6784@code{maybeword} and then into a @code{sequence} via the second rule.
6785Alternatively, nothing-at-all could be reduced into a @code{sequence}
6786via the first rule, and this could be combined with the @code{word}
6787using the third rule for @code{sequence}.
6788
6789There is also more than one way to reduce nothing-at-all into a
6790@code{sequence}. This can be done directly via the first rule,
6791or indirectly via @code{maybeword} and then the second rule.
6792
6793You might think that this is a distinction without a difference, because it
6794does not change whether any particular input is valid or not. But it does
6795affect which actions are run. One parsing order runs the second rule's
6796action; the other runs the first rule's action and the third rule's action.
6797In this example, the output of the program changes.
6798
6799Bison resolves a reduce/reduce conflict by choosing to use the rule that
6800appears first in the grammar, but it is very risky to rely on this. Every
6801reduce/reduce conflict must be studied and usually eliminated. Here is the
6802proper way to define @code{sequence}:
6803
6804@example
6805sequence: /* empty */
6806 @{ printf ("empty sequence\n"); @}
6807 | sequence word
6808 @{ printf ("added word %s\n", $2); @}
6809 ;
6810@end example
6811
6812Here is another common error that yields a reduce/reduce conflict:
6813
6814@example
6815sequence: /* empty */
6816 | sequence words
6817 | sequence redirects
6818 ;
6819
6820words: /* empty */
6821 | words word
6822 ;
6823
6824redirects:/* empty */
6825 | redirects redirect
6826 ;
6827@end example
6828
6829@noindent
6830The intention here is to define a sequence which can contain either
6831@code{word} or @code{redirect} groupings. The individual definitions of
6832@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6833three together make a subtle ambiguity: even an empty input can be parsed
6834in infinitely many ways!
6835
6836Consider: nothing-at-all could be a @code{words}. Or it could be two
6837@code{words} in a row, or three, or any number. It could equally well be a
6838@code{redirects}, or two, or any number. Or it could be a @code{words}
6839followed by three @code{redirects} and another @code{words}. And so on.
6840
6841Here are two ways to correct these rules. First, to make it a single level
6842of sequence:
6843
6844@example
6845sequence: /* empty */
6846 | sequence word
6847 | sequence redirect
6848 ;
6849@end example
6850
6851Second, to prevent either a @code{words} or a @code{redirects}
6852from being empty:
6853
6854@example
6855sequence: /* empty */
6856 | sequence words
6857 | sequence redirects
6858 ;
6859
6860words: word
6861 | words word
6862 ;
6863
6864redirects:redirect
6865 | redirects redirect
6866 ;
6867@end example
6868
342b8b6e 6869@node Mystery Conflicts
bfa74976
RS
6870@section Mysterious Reduce/Reduce Conflicts
6871
6872Sometimes reduce/reduce conflicts can occur that don't look warranted.
6873Here is an example:
6874
6875@example
6876@group
6877%token ID
6878
6879%%
6880def: param_spec return_spec ','
6881 ;
6882param_spec:
6883 type
6884 | name_list ':' type
6885 ;
6886@end group
6887@group
6888return_spec:
6889 type
6890 | name ':' type
6891 ;
6892@end group
6893@group
6894type: ID
6895 ;
6896@end group
6897@group
6898name: ID
6899 ;
6900name_list:
6901 name
6902 | name ',' name_list
6903 ;
6904@end group
6905@end example
6906
6907It would seem that this grammar can be parsed with only a single token
742e4900 6908of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6909a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6910@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6911
c827f760
PE
6912@cindex @acronym{LR}(1)
6913@cindex @acronym{LALR}(1)
eb45ef3b
JD
6914However, for historical reasons, Bison cannot by default handle all
6915@acronym{LR}(1) grammars.
6916In this grammar, two contexts, that after an @code{ID} at the beginning
6917of a @code{param_spec} and likewise at the beginning of a
6918@code{return_spec}, are similar enough that Bison assumes they are the
6919same.
6920They appear similar because the same set of rules would be
bfa74976
RS
6921active---the rule for reducing to a @code{name} and that for reducing to
6922a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6923that the rules would require different lookahead tokens in the two
bfa74976
RS
6924contexts, so it makes a single parser state for them both. Combining
6925the two contexts causes a conflict later. In parser terminology, this
c827f760 6926occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6927
eb45ef3b
JD
6928For many practical grammars (specifically those that fall into the
6929non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6930difficulties beyond just mysterious reduce/reduce conflicts.
6931The best way to fix all these problems is to select a different parser
6932table generation algorithm.
6933Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6934the former is more efficient and easier to debug during development.
6935@xref{Decl Summary,,lr.type}, for details.
6936(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6937are experimental.
6938More user feedback will help to stabilize them.)
6939
6940If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6941can often fix a mysterious conflict by identifying the two parser states
6942that are being confused, and adding something to make them look
6943distinct. In the above example, adding one rule to
bfa74976
RS
6944@code{return_spec} as follows makes the problem go away:
6945
6946@example
6947@group
6948%token BOGUS
6949@dots{}
6950%%
6951@dots{}
6952return_spec:
6953 type
6954 | name ':' type
6955 /* This rule is never used. */
6956 | ID BOGUS
6957 ;
6958@end group
6959@end example
6960
6961This corrects the problem because it introduces the possibility of an
6962additional active rule in the context after the @code{ID} at the beginning of
6963@code{return_spec}. This rule is not active in the corresponding context
6964in a @code{param_spec}, so the two contexts receive distinct parser states.
6965As long as the token @code{BOGUS} is never generated by @code{yylex},
6966the added rule cannot alter the way actual input is parsed.
6967
6968In this particular example, there is another way to solve the problem:
6969rewrite the rule for @code{return_spec} to use @code{ID} directly
6970instead of via @code{name}. This also causes the two confusing
6971contexts to have different sets of active rules, because the one for
6972@code{return_spec} activates the altered rule for @code{return_spec}
6973rather than the one for @code{name}.
6974
6975@example
6976param_spec:
6977 type
6978 | name_list ':' type
6979 ;
6980return_spec:
6981 type
6982 | ID ':' type
6983 ;
6984@end example
6985
e054b190
PE
6986For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6987generators, please see:
6988Frank DeRemer and Thomas Pennello, Efficient Computation of
6989@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6990Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6991pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6992
fae437e8 6993@node Generalized LR Parsing
c827f760
PE
6994@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6995@cindex @acronym{GLR} parsing
6996@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6997@cindex ambiguous grammars
9d9b8b70 6998@cindex nondeterministic parsing
676385e2 6999
fae437e8
AD
7000Bison produces @emph{deterministic} parsers that choose uniquely
7001when to reduce and which reduction to apply
742e4900 7002based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7003As a result, normal Bison handles a proper subset of the family of
7004context-free languages.
fae437e8 7005Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7006sequence of reductions cannot have deterministic parsers in this sense.
7007The same is true of languages that require more than one symbol of
742e4900 7008lookahead, since the parser lacks the information necessary to make a
676385e2 7009decision at the point it must be made in a shift-reduce parser.
fae437e8 7010Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7011there are languages where Bison's default choice of how to
676385e2
PH
7012summarize the input seen so far loses necessary information.
7013
7014When you use the @samp{%glr-parser} declaration in your grammar file,
7015Bison generates a parser that uses a different algorithm, called
c827f760
PE
7016Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7017parser uses the same basic
676385e2
PH
7018algorithm for parsing as an ordinary Bison parser, but behaves
7019differently in cases where there is a shift-reduce conflict that has not
fae437e8 7020been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7021reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7022situation, it
fae437e8 7023effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7024shift or reduction. These parsers then proceed as usual, consuming
7025tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7026and split further, with the result that instead of a sequence of states,
c827f760 7027a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7028
7029In effect, each stack represents a guess as to what the proper parse
7030is. Additional input may indicate that a guess was wrong, in which case
7031the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7032actions generated in each stack are saved, rather than being executed
676385e2 7033immediately. When a stack disappears, its saved semantic actions never
fae437e8 7034get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7035their sets of semantic actions are both saved with the state that
7036results from the reduction. We say that two stacks are equivalent
fae437e8 7037when they both represent the same sequence of states,
676385e2
PH
7038and each pair of corresponding states represents a
7039grammar symbol that produces the same segment of the input token
7040stream.
7041
7042Whenever the parser makes a transition from having multiple
eb45ef3b 7043states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7044algorithm, after resolving and executing the saved-up actions.
7045At this transition, some of the states on the stack will have semantic
7046values that are sets (actually multisets) of possible actions. The
7047parser tries to pick one of the actions by first finding one whose rule
7048has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7049declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7050precedence, but there the same merging function is declared for both
fae437e8 7051rules by the @samp{%merge} declaration,
676385e2
PH
7052Bison resolves and evaluates both and then calls the merge function on
7053the result. Otherwise, it reports an ambiguity.
7054
c827f760 7055It is possible to use a data structure for the @acronym{GLR} parsing tree that
eb45ef3b 7056permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7057size of the input), any unambiguous (not necessarily
eb45ef3b 7058@acronym{LR}(1)) grammar in
fae437e8 7059quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7060context-free grammar in cubic worst-case time. However, Bison currently
7061uses a simpler data structure that requires time proportional to the
7062length of the input times the maximum number of stacks required for any
9d9b8b70 7063prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7064grammars can require exponential time and space to process. Such badly
7065behaving examples, however, are not generally of practical interest.
9d9b8b70 7066Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7067doubt'' only for a few tokens at a time. Therefore, the current data
eb45ef3b
JD
7068structure should generally be adequate. On @acronym{LR}(1) portions of a
7069grammar, in particular, it is only slightly slower than with the
7070deterministic @acronym{LR}(1) Bison parser.
676385e2 7071
fa7e68c3 7072For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7073Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7074Generalised @acronym{LR} Parsers, Royal Holloway, University of
7075London, Department of Computer Science, TR-00-12,
7076@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7077(2000-12-24).
7078
1a059451
PE
7079@node Memory Management
7080@section Memory Management, and How to Avoid Memory Exhaustion
7081@cindex memory exhaustion
7082@cindex memory management
bfa74976
RS
7083@cindex stack overflow
7084@cindex parser stack overflow
7085@cindex overflow of parser stack
7086
1a059451 7087The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7088not reduced. When this happens, the parser function @code{yyparse}
1a059451 7089calls @code{yyerror} and then returns 2.
bfa74976 7090
c827f760 7091Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7092usually results from using a right recursion instead of a left
7093recursion, @xref{Recursion, ,Recursive Rules}.
7094
bfa74976
RS
7095@vindex YYMAXDEPTH
7096By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7097parser stack can become before memory is exhausted. Define the
bfa74976
RS
7098macro with a value that is an integer. This value is the maximum number
7099of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7100
7101The stack space allowed is not necessarily allocated. If you specify a
1a059451 7102large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7103stack at first, and then makes it bigger by stages as needed. This
7104increasing allocation happens automatically and silently. Therefore,
7105you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7106space for ordinary inputs that do not need much stack.
7107
d7e14fc0
PE
7108However, do not allow @code{YYMAXDEPTH} to be a value so large that
7109arithmetic overflow could occur when calculating the size of the stack
7110space. Also, do not allow @code{YYMAXDEPTH} to be less than
7111@code{YYINITDEPTH}.
7112
bfa74976
RS
7113@cindex default stack limit
7114The default value of @code{YYMAXDEPTH}, if you do not define it, is
711510000.
7116
7117@vindex YYINITDEPTH
7118You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7119macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7120parser in C, this value must be a compile-time constant
d7e14fc0
PE
7121unless you are assuming C99 or some other target language or compiler
7122that allows variable-length arrays. The default is 200.
7123
1a059451 7124Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7125
d1a1114f 7126@c FIXME: C++ output.
eb45ef3b
JD
7127Because of semantical differences between C and C++, the deterministic
7128parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7129by C++ compilers. In this precise case (compiling a C parser as C++) you are
7130suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7131this deficiency in a future release.
d1a1114f 7132
342b8b6e 7133@node Error Recovery
bfa74976
RS
7134@chapter Error Recovery
7135@cindex error recovery
7136@cindex recovery from errors
7137
6e649e65 7138It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7139error. For example, a compiler should recover sufficiently to parse the
7140rest of the input file and check it for errors; a calculator should accept
7141another expression.
7142
7143In a simple interactive command parser where each input is one line, it may
7144be sufficient to allow @code{yyparse} to return 1 on error and have the
7145caller ignore the rest of the input line when that happens (and then call
7146@code{yyparse} again). But this is inadequate for a compiler, because it
7147forgets all the syntactic context leading up to the error. A syntax error
7148deep within a function in the compiler input should not cause the compiler
7149to treat the following line like the beginning of a source file.
7150
7151@findex error
7152You can define how to recover from a syntax error by writing rules to
7153recognize the special token @code{error}. This is a terminal symbol that
7154is always defined (you need not declare it) and reserved for error
7155handling. The Bison parser generates an @code{error} token whenever a
7156syntax error happens; if you have provided a rule to recognize this token
13863333 7157in the current context, the parse can continue.
bfa74976
RS
7158
7159For example:
7160
7161@example
7162stmnts: /* empty string */
7163 | stmnts '\n'
7164 | stmnts exp '\n'
7165 | stmnts error '\n'
7166@end example
7167
7168The fourth rule in this example says that an error followed by a newline
7169makes a valid addition to any @code{stmnts}.
7170
7171What happens if a syntax error occurs in the middle of an @code{exp}? The
7172error recovery rule, interpreted strictly, applies to the precise sequence
7173of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7174the middle of an @code{exp}, there will probably be some additional tokens
7175and subexpressions on the stack after the last @code{stmnts}, and there
7176will be tokens to read before the next newline. So the rule is not
7177applicable in the ordinary way.
7178
7179But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7180the semantic context and part of the input. First it discards states
7181and objects from the stack until it gets back to a state in which the
bfa74976 7182@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7183already parsed are discarded, back to the last complete @code{stmnts}.)
7184At this point the @code{error} token can be shifted. Then, if the old
742e4900 7185lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7186tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7187this example, Bison reads and discards input until the next newline so
7188that the fourth rule can apply. Note that discarded symbols are
7189possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7190Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7191
7192The choice of error rules in the grammar is a choice of strategies for
7193error recovery. A simple and useful strategy is simply to skip the rest of
7194the current input line or current statement if an error is detected:
7195
7196@example
72d2299c 7197stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7198@end example
7199
7200It is also useful to recover to the matching close-delimiter of an
7201opening-delimiter that has already been parsed. Otherwise the
7202close-delimiter will probably appear to be unmatched, and generate another,
7203spurious error message:
7204
7205@example
7206primary: '(' expr ')'
7207 | '(' error ')'
7208 @dots{}
7209 ;
7210@end example
7211
7212Error recovery strategies are necessarily guesses. When they guess wrong,
7213one syntax error often leads to another. In the above example, the error
7214recovery rule guesses that an error is due to bad input within one
7215@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7216middle of a valid @code{stmnt}. After the error recovery rule recovers
7217from the first error, another syntax error will be found straightaway,
7218since the text following the spurious semicolon is also an invalid
7219@code{stmnt}.
7220
7221To prevent an outpouring of error messages, the parser will output no error
7222message for another syntax error that happens shortly after the first; only
7223after three consecutive input tokens have been successfully shifted will
7224error messages resume.
7225
7226Note that rules which accept the @code{error} token may have actions, just
7227as any other rules can.
7228
7229@findex yyerrok
7230You can make error messages resume immediately by using the macro
7231@code{yyerrok} in an action. If you do this in the error rule's action, no
7232error messages will be suppressed. This macro requires no arguments;
7233@samp{yyerrok;} is a valid C statement.
7234
7235@findex yyclearin
742e4900 7236The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7237this is unacceptable, then the macro @code{yyclearin} may be used to clear
7238this token. Write the statement @samp{yyclearin;} in the error rule's
7239action.
32c29292 7240@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7241
6e649e65 7242For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7243called that advances the input stream to some point where parsing should
7244once again commence. The next symbol returned by the lexical scanner is
742e4900 7245probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7246with @samp{yyclearin;}.
7247
7248@vindex YYRECOVERING
02103984
PE
7249The expression @code{YYRECOVERING ()} yields 1 when the parser
7250is recovering from a syntax error, and 0 otherwise.
7251Syntax error diagnostics are suppressed while recovering from a syntax
7252error.
bfa74976 7253
342b8b6e 7254@node Context Dependency
bfa74976
RS
7255@chapter Handling Context Dependencies
7256
7257The Bison paradigm is to parse tokens first, then group them into larger
7258syntactic units. In many languages, the meaning of a token is affected by
7259its context. Although this violates the Bison paradigm, certain techniques
7260(known as @dfn{kludges}) may enable you to write Bison parsers for such
7261languages.
7262
7263@menu
7264* Semantic Tokens:: Token parsing can depend on the semantic context.
7265* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7266* Tie-in Recovery:: Lexical tie-ins have implications for how
7267 error recovery rules must be written.
7268@end menu
7269
7270(Actually, ``kludge'' means any technique that gets its job done but is
7271neither clean nor robust.)
7272
342b8b6e 7273@node Semantic Tokens
bfa74976
RS
7274@section Semantic Info in Token Types
7275
7276The C language has a context dependency: the way an identifier is used
7277depends on what its current meaning is. For example, consider this:
7278
7279@example
7280foo (x);
7281@end example
7282
7283This looks like a function call statement, but if @code{foo} is a typedef
7284name, then this is actually a declaration of @code{x}. How can a Bison
7285parser for C decide how to parse this input?
7286
c827f760 7287The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7288@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7289identifier, it looks up the current declaration of the identifier in order
7290to decide which token type to return: @code{TYPENAME} if the identifier is
7291declared as a typedef, @code{IDENTIFIER} otherwise.
7292
7293The grammar rules can then express the context dependency by the choice of
7294token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7295but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7296@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7297is @emph{not} significant, such as in declarations that can shadow a
7298typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7299accepted---there is one rule for each of the two token types.
7300
7301This technique is simple to use if the decision of which kinds of
7302identifiers to allow is made at a place close to where the identifier is
7303parsed. But in C this is not always so: C allows a declaration to
7304redeclare a typedef name provided an explicit type has been specified
7305earlier:
7306
7307@example
3a4f411f
PE
7308typedef int foo, bar;
7309int baz (void)
7310@{
7311 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7312 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7313 return foo (bar);
7314@}
bfa74976
RS
7315@end example
7316
7317Unfortunately, the name being declared is separated from the declaration
7318construct itself by a complicated syntactic structure---the ``declarator''.
7319
9ecbd125 7320As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7321all the nonterminal names changed: once for parsing a declaration in
7322which a typedef name can be redefined, and once for parsing a
7323declaration in which that can't be done. Here is a part of the
7324duplication, with actions omitted for brevity:
bfa74976
RS
7325
7326@example
7327initdcl:
7328 declarator maybeasm '='
7329 init
7330 | declarator maybeasm
7331 ;
7332
7333notype_initdcl:
7334 notype_declarator maybeasm '='
7335 init
7336 | notype_declarator maybeasm
7337 ;
7338@end example
7339
7340@noindent
7341Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7342cannot. The distinction between @code{declarator} and
7343@code{notype_declarator} is the same sort of thing.
7344
7345There is some similarity between this technique and a lexical tie-in
7346(described next), in that information which alters the lexical analysis is
7347changed during parsing by other parts of the program. The difference is
7348here the information is global, and is used for other purposes in the
7349program. A true lexical tie-in has a special-purpose flag controlled by
7350the syntactic context.
7351
342b8b6e 7352@node Lexical Tie-ins
bfa74976
RS
7353@section Lexical Tie-ins
7354@cindex lexical tie-in
7355
7356One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7357which is set by Bison actions, whose purpose is to alter the way tokens are
7358parsed.
7359
7360For example, suppose we have a language vaguely like C, but with a special
7361construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7362an expression in parentheses in which all integers are hexadecimal. In
7363particular, the token @samp{a1b} must be treated as an integer rather than
7364as an identifier if it appears in that context. Here is how you can do it:
7365
7366@example
7367@group
7368%@{
38a92d50
PE
7369 int hexflag;
7370 int yylex (void);
7371 void yyerror (char const *);
bfa74976
RS
7372%@}
7373%%
7374@dots{}
7375@end group
7376@group
7377expr: IDENTIFIER
7378 | constant
7379 | HEX '('
7380 @{ hexflag = 1; @}
7381 expr ')'
7382 @{ hexflag = 0;
7383 $$ = $4; @}
7384 | expr '+' expr
7385 @{ $$ = make_sum ($1, $3); @}
7386 @dots{}
7387 ;
7388@end group
7389
7390@group
7391constant:
7392 INTEGER
7393 | STRING
7394 ;
7395@end group
7396@end example
7397
7398@noindent
7399Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7400it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7401with letters are parsed as integers if possible.
7402
342b8b6e
AD
7403The declaration of @code{hexflag} shown in the prologue of the parser file
7404is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7405You must also write the code in @code{yylex} to obey the flag.
bfa74976 7406
342b8b6e 7407@node Tie-in Recovery
bfa74976
RS
7408@section Lexical Tie-ins and Error Recovery
7409
7410Lexical tie-ins make strict demands on any error recovery rules you have.
7411@xref{Error Recovery}.
7412
7413The reason for this is that the purpose of an error recovery rule is to
7414abort the parsing of one construct and resume in some larger construct.
7415For example, in C-like languages, a typical error recovery rule is to skip
7416tokens until the next semicolon, and then start a new statement, like this:
7417
7418@example
7419stmt: expr ';'
7420 | IF '(' expr ')' stmt @{ @dots{} @}
7421 @dots{}
7422 error ';'
7423 @{ hexflag = 0; @}
7424 ;
7425@end example
7426
7427If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7428construct, this error rule will apply, and then the action for the
7429completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7430remain set for the entire rest of the input, or until the next @code{hex}
7431keyword, causing identifiers to be misinterpreted as integers.
7432
7433To avoid this problem the error recovery rule itself clears @code{hexflag}.
7434
7435There may also be an error recovery rule that works within expressions.
7436For example, there could be a rule which applies within parentheses
7437and skips to the close-parenthesis:
7438
7439@example
7440@group
7441expr: @dots{}
7442 | '(' expr ')'
7443 @{ $$ = $2; @}
7444 | '(' error ')'
7445 @dots{}
7446@end group
7447@end example
7448
7449If this rule acts within the @code{hex} construct, it is not going to abort
7450that construct (since it applies to an inner level of parentheses within
7451the construct). Therefore, it should not clear the flag: the rest of
7452the @code{hex} construct should be parsed with the flag still in effect.
7453
7454What if there is an error recovery rule which might abort out of the
7455@code{hex} construct or might not, depending on circumstances? There is no
7456way you can write the action to determine whether a @code{hex} construct is
7457being aborted or not. So if you are using a lexical tie-in, you had better
7458make sure your error recovery rules are not of this kind. Each rule must
7459be such that you can be sure that it always will, or always won't, have to
7460clear the flag.
7461
ec3bc396
AD
7462@c ================================================== Debugging Your Parser
7463
342b8b6e 7464@node Debugging
bfa74976 7465@chapter Debugging Your Parser
ec3bc396
AD
7466
7467Developing a parser can be a challenge, especially if you don't
7468understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7469Algorithm}). Even so, sometimes a detailed description of the automaton
7470can help (@pxref{Understanding, , Understanding Your Parser}), or
7471tracing the execution of the parser can give some insight on why it
7472behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7473
7474@menu
7475* Understanding:: Understanding the structure of your parser.
7476* Tracing:: Tracing the execution of your parser.
7477@end menu
7478
7479@node Understanding
7480@section Understanding Your Parser
7481
7482As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7483Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7484frequent than one would hope), looking at this automaton is required to
7485tune or simply fix a parser. Bison provides two different
35fe0834 7486representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7487
7488The textual file is generated when the options @option{--report} or
7489@option{--verbose} are specified, see @xref{Invocation, , Invoking
7490Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7491the parser output file name, and adding @samp{.output} instead.
7492Therefore, if the input file is @file{foo.y}, then the parser file is
7493called @file{foo.tab.c} by default. As a consequence, the verbose
7494output file is called @file{foo.output}.
7495
7496The following grammar file, @file{calc.y}, will be used in the sequel:
7497
7498@example
7499%token NUM STR
7500%left '+' '-'
7501%left '*'
7502%%
7503exp: exp '+' exp
7504 | exp '-' exp
7505 | exp '*' exp
7506 | exp '/' exp
7507 | NUM
7508 ;
7509useless: STR;
7510%%
7511@end example
7512
88bce5a2
AD
7513@command{bison} reports:
7514
7515@example
8f0d265e
JD
7516calc.y: warning: 1 nonterminal useless in grammar
7517calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7518calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7519calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7520calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7521@end example
7522
7523When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7524creates a file @file{calc.output} with contents detailed below. The
7525order of the output and the exact presentation might vary, but the
7526interpretation is the same.
ec3bc396
AD
7527
7528The first section includes details on conflicts that were solved thanks
7529to precedence and/or associativity:
7530
7531@example
7532Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7533Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7534Conflict in state 8 between rule 2 and token '*' resolved as shift.
7535@exdent @dots{}
7536@end example
7537
7538@noindent
7539The next section lists states that still have conflicts.
7540
7541@example
5a99098d
PE
7542State 8 conflicts: 1 shift/reduce
7543State 9 conflicts: 1 shift/reduce
7544State 10 conflicts: 1 shift/reduce
7545State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7546@end example
7547
7548@noindent
7549@cindex token, useless
7550@cindex useless token
7551@cindex nonterminal, useless
7552@cindex useless nonterminal
7553@cindex rule, useless
7554@cindex useless rule
7555The next section reports useless tokens, nonterminal and rules. Useless
7556nonterminals and rules are removed in order to produce a smaller parser,
7557but useless tokens are preserved, since they might be used by the
d80fb37a 7558scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7559below):
7560
7561@example
d80fb37a 7562Nonterminals useless in grammar:
ec3bc396
AD
7563 useless
7564
d80fb37a 7565Terminals unused in grammar:
ec3bc396
AD
7566 STR
7567
cff03fb2 7568Rules useless in grammar:
ec3bc396
AD
7569#6 useless: STR;
7570@end example
7571
7572@noindent
7573The next section reproduces the exact grammar that Bison used:
7574
7575@example
7576Grammar
7577
7578 Number, Line, Rule
88bce5a2 7579 0 5 $accept -> exp $end
ec3bc396
AD
7580 1 5 exp -> exp '+' exp
7581 2 6 exp -> exp '-' exp
7582 3 7 exp -> exp '*' exp
7583 4 8 exp -> exp '/' exp
7584 5 9 exp -> NUM
7585@end example
7586
7587@noindent
7588and reports the uses of the symbols:
7589
7590@example
7591Terminals, with rules where they appear
7592
88bce5a2 7593$end (0) 0
ec3bc396
AD
7594'*' (42) 3
7595'+' (43) 1
7596'-' (45) 2
7597'/' (47) 4
7598error (256)
7599NUM (258) 5
7600
7601Nonterminals, with rules where they appear
7602
88bce5a2 7603$accept (8)
ec3bc396
AD
7604 on left: 0
7605exp (9)
7606 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7607@end example
7608
7609@noindent
7610@cindex item
7611@cindex pointed rule
7612@cindex rule, pointed
7613Bison then proceeds onto the automaton itself, describing each state
7614with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7615item is a production rule together with a point (marked by @samp{.})
7616that the input cursor.
7617
7618@example
7619state 0
7620
88bce5a2 7621 $accept -> . exp $ (rule 0)
ec3bc396 7622
2a8d363a 7623 NUM shift, and go to state 1
ec3bc396 7624
2a8d363a 7625 exp go to state 2
ec3bc396
AD
7626@end example
7627
7628This reads as follows: ``state 0 corresponds to being at the very
7629beginning of the parsing, in the initial rule, right before the start
7630symbol (here, @code{exp}). When the parser returns to this state right
7631after having reduced a rule that produced an @code{exp}, the control
7632flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7633symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7634the parse stack, and the control flow jumps to state 1. Any other
742e4900 7635lookahead triggers a syntax error.''
ec3bc396
AD
7636
7637@cindex core, item set
7638@cindex item set core
7639@cindex kernel, item set
7640@cindex item set core
7641Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7642report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7643at the beginning of any rule deriving an @code{exp}. By default Bison
7644reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7645you want to see more detail you can invoke @command{bison} with
7646@option{--report=itemset} to list all the items, include those that can
7647be derived:
7648
7649@example
7650state 0
7651
88bce5a2 7652 $accept -> . exp $ (rule 0)
ec3bc396
AD
7653 exp -> . exp '+' exp (rule 1)
7654 exp -> . exp '-' exp (rule 2)
7655 exp -> . exp '*' exp (rule 3)
7656 exp -> . exp '/' exp (rule 4)
7657 exp -> . NUM (rule 5)
7658
7659 NUM shift, and go to state 1
7660
7661 exp go to state 2
7662@end example
7663
7664@noindent
7665In the state 1...
7666
7667@example
7668state 1
7669
7670 exp -> NUM . (rule 5)
7671
2a8d363a 7672 $default reduce using rule 5 (exp)
ec3bc396
AD
7673@end example
7674
7675@noindent
742e4900 7676the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7677(@samp{$default}), the parser will reduce it. If it was coming from
7678state 0, then, after this reduction it will return to state 0, and will
7679jump to state 2 (@samp{exp: go to state 2}).
7680
7681@example
7682state 2
7683
88bce5a2 7684 $accept -> exp . $ (rule 0)
ec3bc396
AD
7685 exp -> exp . '+' exp (rule 1)
7686 exp -> exp . '-' exp (rule 2)
7687 exp -> exp . '*' exp (rule 3)
7688 exp -> exp . '/' exp (rule 4)
7689
2a8d363a
AD
7690 $ shift, and go to state 3
7691 '+' shift, and go to state 4
7692 '-' shift, and go to state 5
7693 '*' shift, and go to state 6
7694 '/' shift, and go to state 7
ec3bc396
AD
7695@end example
7696
7697@noindent
7698In state 2, the automaton can only shift a symbol. For instance,
742e4900 7699because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7700@samp{+}, it will be shifted on the parse stack, and the automaton
7701control will jump to state 4, corresponding to the item @samp{exp -> exp
7702'+' . exp}. Since there is no default action, any other token than
6e649e65 7703those listed above will trigger a syntax error.
ec3bc396 7704
eb45ef3b 7705@cindex accepting state
ec3bc396
AD
7706The state 3 is named the @dfn{final state}, or the @dfn{accepting
7707state}:
7708
7709@example
7710state 3
7711
88bce5a2 7712 $accept -> exp $ . (rule 0)
ec3bc396 7713
2a8d363a 7714 $default accept
ec3bc396
AD
7715@end example
7716
7717@noindent
7718the initial rule is completed (the start symbol and the end
7719of input were read), the parsing exits successfully.
7720
7721The interpretation of states 4 to 7 is straightforward, and is left to
7722the reader.
7723
7724@example
7725state 4
7726
7727 exp -> exp '+' . exp (rule 1)
7728
2a8d363a 7729 NUM shift, and go to state 1
ec3bc396 7730
2a8d363a 7731 exp go to state 8
ec3bc396
AD
7732
7733state 5
7734
7735 exp -> exp '-' . exp (rule 2)
7736
2a8d363a 7737 NUM shift, and go to state 1
ec3bc396 7738
2a8d363a 7739 exp go to state 9
ec3bc396
AD
7740
7741state 6
7742
7743 exp -> exp '*' . exp (rule 3)
7744
2a8d363a 7745 NUM shift, and go to state 1
ec3bc396 7746
2a8d363a 7747 exp go to state 10
ec3bc396
AD
7748
7749state 7
7750
7751 exp -> exp '/' . exp (rule 4)
7752
2a8d363a 7753 NUM shift, and go to state 1
ec3bc396 7754
2a8d363a 7755 exp go to state 11
ec3bc396
AD
7756@end example
7757
5a99098d
PE
7758As was announced in beginning of the report, @samp{State 8 conflicts:
77591 shift/reduce}:
ec3bc396
AD
7760
7761@example
7762state 8
7763
7764 exp -> exp . '+' exp (rule 1)
7765 exp -> exp '+' exp . (rule 1)
7766 exp -> exp . '-' exp (rule 2)
7767 exp -> exp . '*' exp (rule 3)
7768 exp -> exp . '/' exp (rule 4)
7769
2a8d363a
AD
7770 '*' shift, and go to state 6
7771 '/' shift, and go to state 7
ec3bc396 7772
2a8d363a
AD
7773 '/' [reduce using rule 1 (exp)]
7774 $default reduce using rule 1 (exp)
ec3bc396
AD
7775@end example
7776
742e4900 7777Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7778either shifting (and going to state 7), or reducing rule 1. The
7779conflict means that either the grammar is ambiguous, or the parser lacks
7780information to make the right decision. Indeed the grammar is
7781ambiguous, as, since we did not specify the precedence of @samp{/}, the
7782sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7783NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7784NUM}, which corresponds to reducing rule 1.
7785
eb45ef3b 7786Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7787arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7788Shift/Reduce Conflicts}. Discarded actions are reported in between
7789square brackets.
7790
7791Note that all the previous states had a single possible action: either
7792shifting the next token and going to the corresponding state, or
7793reducing a single rule. In the other cases, i.e., when shifting
7794@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7795possible, the lookahead is required to select the action. State 8 is
7796one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7797is shifting, otherwise the action is reducing rule 1. In other words,
7798the first two items, corresponding to rule 1, are not eligible when the
742e4900 7799lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7800precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7801with some set of possible lookahead tokens. When run with
7802@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7803
7804@example
7805state 8
7806
88c78747 7807 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7808 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7809 exp -> exp . '-' exp (rule 2)
7810 exp -> exp . '*' exp (rule 3)
7811 exp -> exp . '/' exp (rule 4)
7812
7813 '*' shift, and go to state 6
7814 '/' shift, and go to state 7
7815
7816 '/' [reduce using rule 1 (exp)]
7817 $default reduce using rule 1 (exp)
7818@end example
7819
7820The remaining states are similar:
7821
7822@example
7823state 9
7824
7825 exp -> exp . '+' exp (rule 1)
7826 exp -> exp . '-' exp (rule 2)
7827 exp -> exp '-' exp . (rule 2)
7828 exp -> exp . '*' exp (rule 3)
7829 exp -> exp . '/' exp (rule 4)
7830
2a8d363a
AD
7831 '*' shift, and go to state 6
7832 '/' shift, and go to state 7
ec3bc396 7833
2a8d363a
AD
7834 '/' [reduce using rule 2 (exp)]
7835 $default reduce using rule 2 (exp)
ec3bc396
AD
7836
7837state 10
7838
7839 exp -> exp . '+' exp (rule 1)
7840 exp -> exp . '-' exp (rule 2)
7841 exp -> exp . '*' exp (rule 3)
7842 exp -> exp '*' exp . (rule 3)
7843 exp -> exp . '/' exp (rule 4)
7844
2a8d363a 7845 '/' shift, and go to state 7
ec3bc396 7846
2a8d363a
AD
7847 '/' [reduce using rule 3 (exp)]
7848 $default reduce using rule 3 (exp)
ec3bc396
AD
7849
7850state 11
7851
7852 exp -> exp . '+' exp (rule 1)
7853 exp -> exp . '-' exp (rule 2)
7854 exp -> exp . '*' exp (rule 3)
7855 exp -> exp . '/' exp (rule 4)
7856 exp -> exp '/' exp . (rule 4)
7857
2a8d363a
AD
7858 '+' shift, and go to state 4
7859 '-' shift, and go to state 5
7860 '*' shift, and go to state 6
7861 '/' shift, and go to state 7
ec3bc396 7862
2a8d363a
AD
7863 '+' [reduce using rule 4 (exp)]
7864 '-' [reduce using rule 4 (exp)]
7865 '*' [reduce using rule 4 (exp)]
7866 '/' [reduce using rule 4 (exp)]
7867 $default reduce using rule 4 (exp)
ec3bc396
AD
7868@end example
7869
7870@noindent
fa7e68c3
PE
7871Observe that state 11 contains conflicts not only due to the lack of
7872precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7873@samp{*}, but also because the
ec3bc396
AD
7874associativity of @samp{/} is not specified.
7875
7876
7877@node Tracing
7878@section Tracing Your Parser
bfa74976
RS
7879@findex yydebug
7880@cindex debugging
7881@cindex tracing the parser
7882
7883If a Bison grammar compiles properly but doesn't do what you want when it
7884runs, the @code{yydebug} parser-trace feature can help you figure out why.
7885
3ded9a63
AD
7886There are several means to enable compilation of trace facilities:
7887
7888@table @asis
7889@item the macro @code{YYDEBUG}
7890@findex YYDEBUG
7891Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7892parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7893@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7894YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7895Prologue}).
7896
7897@item the option @option{-t}, @option{--debug}
7898Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7899,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7900
7901@item the directive @samp{%debug}
7902@findex %debug
fa819509
AD
7903Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
7904Summary}). This Bison extension is maintained for backward
7905compatibility with previous versions of Bison.
7906
7907@item the variable @samp{parse.trace}
7908@findex %define parse.trace
7909Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
7910,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
7911(@pxref{Bison Options}). This is a Bison extension, which is especially
7912useful for languages that don't use a preprocessor. Unless
7913@acronym{POSIX} and Yacc portability matter to you, this is the
7914preferred solution.
3ded9a63
AD
7915@end table
7916
fa819509 7917We suggest that you always enable the trace option so that debugging is
3ded9a63 7918always possible.
bfa74976 7919
02a81e05 7920The trace facility outputs messages with macro calls of the form
e2742e46 7921@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7922@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7923arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7924define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7925and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7926
7927Once you have compiled the program with trace facilities, the way to
7928request a trace is to store a nonzero value in the variable @code{yydebug}.
7929You can do this by making the C code do it (in @code{main}, perhaps), or
7930you can alter the value with a C debugger.
7931
7932Each step taken by the parser when @code{yydebug} is nonzero produces a
7933line or two of trace information, written on @code{stderr}. The trace
7934messages tell you these things:
7935
7936@itemize @bullet
7937@item
7938Each time the parser calls @code{yylex}, what kind of token was read.
7939
7940@item
7941Each time a token is shifted, the depth and complete contents of the
7942state stack (@pxref{Parser States}).
7943
7944@item
7945Each time a rule is reduced, which rule it is, and the complete contents
7946of the state stack afterward.
7947@end itemize
7948
7949To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7950produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7951Bison}). This file shows the meaning of each state in terms of
7952positions in various rules, and also what each state will do with each
7953possible input token. As you read the successive trace messages, you
7954can see that the parser is functioning according to its specification in
7955the listing file. Eventually you will arrive at the place where
7956something undesirable happens, and you will see which parts of the
7957grammar are to blame.
bfa74976
RS
7958
7959The parser file is a C program and you can use C debuggers on it, but it's
7960not easy to interpret what it is doing. The parser function is a
7961finite-state machine interpreter, and aside from the actions it executes
7962the same code over and over. Only the values of variables show where in
7963the grammar it is working.
7964
7965@findex YYPRINT
7966The debugging information normally gives the token type of each token
7967read, but not its semantic value. You can optionally define a macro
7968named @code{YYPRINT} to provide a way to print the value. If you define
7969@code{YYPRINT}, it should take three arguments. The parser will pass a
7970standard I/O stream, the numeric code for the token type, and the token
7971value (from @code{yylval}).
7972
7973Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 7974calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7975
7976@smallexample
38a92d50
PE
7977%@{
7978 static void print_token_value (FILE *, int, YYSTYPE);
7979 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7980%@}
7981
7982@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7983
7984static void
831d3c99 7985print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7986@{
7987 if (type == VAR)
d3c4e709 7988 fprintf (file, "%s", value.tptr->name);
bfa74976 7989 else if (type == NUM)
d3c4e709 7990 fprintf (file, "%d", value.val);
bfa74976
RS
7991@}
7992@end smallexample
7993
ec3bc396
AD
7994@c ================================================= Invoking Bison
7995
342b8b6e 7996@node Invocation
bfa74976
RS
7997@chapter Invoking Bison
7998@cindex invoking Bison
7999@cindex Bison invocation
8000@cindex options for invoking Bison
8001
8002The usual way to invoke Bison is as follows:
8003
8004@example
8005bison @var{infile}
8006@end example
8007
8008Here @var{infile} is the grammar file name, which usually ends in
8009@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8010with @samp{.tab.c} and removing any leading directory. Thus, the
8011@samp{bison foo.y} file name yields
8012@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8013@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8014C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8015or @file{foo.y++}. Then, the output files will take an extension like
8016the given one as input (respectively @file{foo.tab.cpp} and
8017@file{foo.tab.c++}).
fa4d969f 8018This feature takes effect with all options that manipulate file names like
234a3be3
AD
8019@samp{-o} or @samp{-d}.
8020
8021For example :
8022
8023@example
8024bison -d @var{infile.yxx}
8025@end example
84163231 8026@noindent
72d2299c 8027will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8028
8029@example
b56471a6 8030bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8031@end example
84163231 8032@noindent
234a3be3
AD
8033will produce @file{output.c++} and @file{outfile.h++}.
8034
397ec073
PE
8035For compatibility with @acronym{POSIX}, the standard Bison
8036distribution also contains a shell script called @command{yacc} that
8037invokes Bison with the @option{-y} option.
8038
bfa74976 8039@menu
13863333 8040* Bison Options:: All the options described in detail,
c827f760 8041 in alphabetical order by short options.
bfa74976 8042* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8043* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8044@end menu
8045
342b8b6e 8046@node Bison Options
bfa74976
RS
8047@section Bison Options
8048
8049Bison supports both traditional single-letter options and mnemonic long
8050option names. Long option names are indicated with @samp{--} instead of
8051@samp{-}. Abbreviations for option names are allowed as long as they
8052are unique. When a long option takes an argument, like
8053@samp{--file-prefix}, connect the option name and the argument with
8054@samp{=}.
8055
8056Here is a list of options that can be used with Bison, alphabetized by
8057short option. It is followed by a cross key alphabetized by long
8058option.
8059
89cab50d
AD
8060@c Please, keep this ordered as in `bison --help'.
8061@noindent
8062Operations modes:
8063@table @option
8064@item -h
8065@itemx --help
8066Print a summary of the command-line options to Bison and exit.
bfa74976 8067
89cab50d
AD
8068@item -V
8069@itemx --version
8070Print the version number of Bison and exit.
bfa74976 8071
f7ab6a50
PE
8072@item --print-localedir
8073Print the name of the directory containing locale-dependent data.
8074
a0de5091
JD
8075@item --print-datadir
8076Print the name of the directory containing skeletons and XSLT.
8077
89cab50d
AD
8078@item -y
8079@itemx --yacc
54662697
PE
8080Act more like the traditional Yacc command. This can cause
8081different diagnostics to be generated, and may change behavior in
8082other minor ways. Most importantly, imitate Yacc's output
8083file name conventions, so that the parser output file is called
89cab50d 8084@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8085@file{y.tab.h}.
eb45ef3b 8086Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8087statements in addition to an @code{enum} to associate token numbers with token
8088names.
8089Thus, the following shell script can substitute for Yacc, and the Bison
8090distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8091
89cab50d 8092@example
397ec073 8093#! /bin/sh
26e06a21 8094bison -y "$@@"
89cab50d 8095@end example
54662697
PE
8096
8097The @option{-y}/@option{--yacc} option is intended for use with
8098traditional Yacc grammars. If your grammar uses a Bison extension
8099like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8100this option is specified.
8101
1d5b3c08
JD
8102@item -W [@var{category}]
8103@itemx --warnings[=@var{category}]
118d4978
AD
8104Output warnings falling in @var{category}. @var{category} can be one
8105of:
8106@table @code
8107@item midrule-values
8e55b3aa
JD
8108Warn about mid-rule values that are set but not used within any of the actions
8109of the parent rule.
8110For example, warn about unused @code{$2} in:
118d4978
AD
8111
8112@example
8113exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8114@end example
8115
8e55b3aa
JD
8116Also warn about mid-rule values that are used but not set.
8117For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8118
8119@example
8120 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8121@end example
8122
8123These warnings are not enabled by default since they sometimes prove to
8124be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8125@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8126
8127
8128@item yacc
8129Incompatibilities with @acronym{POSIX} Yacc.
8130
8131@item all
8e55b3aa 8132All the warnings.
118d4978 8133@item none
8e55b3aa 8134Turn off all the warnings.
118d4978 8135@item error
8e55b3aa 8136Treat warnings as errors.
118d4978
AD
8137@end table
8138
8139A category can be turned off by prefixing its name with @samp{no-}. For
8140instance, @option{-Wno-syntax} will hide the warnings about unused
8141variables.
89cab50d
AD
8142@end table
8143
8144@noindent
8145Tuning the parser:
8146
8147@table @option
8148@item -t
8149@itemx --debug
4947ebdb
PE
8150In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8151already defined, so that the debugging facilities are compiled.
ec3bc396 8152@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8153
58697c6d
AD
8154@item -D @var{name}[=@var{value}]
8155@itemx --define=@var{name}[=@var{value}]
de5ab940
JD
8156@item -F @var{name}[=@var{value}]
8157@itemx --force-define=@var{name}[=@var{value}]
8158Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8159(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8160definitions for the same @var{name} as follows:
8161
8162@itemize
8163@item
0b6d43c5
JD
8164Bison quietly ignores all command-line definitions for @var{name} except
8165the last.
de5ab940 8166@item
0b6d43c5
JD
8167If that command-line definition is specified by a @code{-D} or
8168@code{--define}, Bison reports an error for any @code{%define}
8169definition for @var{name}.
de5ab940 8170@item
0b6d43c5
JD
8171If that command-line definition is specified by a @code{-F} or
8172@code{--force-define} instead, Bison quietly ignores all @code{%define}
8173definitions for @var{name}.
8174@item
8175Otherwise, Bison reports an error if there are multiple @code{%define}
8176definitions for @var{name}.
de5ab940
JD
8177@end itemize
8178
8179You should avoid using @code{-F} and @code{--force-define} in your
8180makefiles unless you are confident that it is safe to quietly ignore any
8181conflicting @code{%define} that may be added to the grammar file.
58697c6d 8182
0e021770
PE
8183@item -L @var{language}
8184@itemx --language=@var{language}
8185Specify the programming language for the generated parser, as if
8186@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8187Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8188@var{language} is case-insensitive.
0e021770 8189
ed4d67dc
JD
8190This option is experimental and its effect may be modified in future
8191releases.
8192
89cab50d 8193@item --locations
d8988b2f 8194Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8195
8196@item -p @var{prefix}
8197@itemx --name-prefix=@var{prefix}
02975b9a 8198Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8199@xref{Decl Summary}.
bfa74976
RS
8200
8201@item -l
8202@itemx --no-lines
8203Don't put any @code{#line} preprocessor commands in the parser file.
8204Ordinarily Bison puts them in the parser file so that the C compiler
8205and debuggers will associate errors with your source file, the
8206grammar file. This option causes them to associate errors with the
95e742f7 8207parser file, treating it as an independent source file in its own right.
bfa74976 8208
e6e704dc
JD
8209@item -S @var{file}
8210@itemx --skeleton=@var{file}
a7867f53 8211Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8212(@pxref{Decl Summary, , Bison Declaration Summary}).
8213
ed4d67dc
JD
8214@c You probably don't need this option unless you are developing Bison.
8215@c You should use @option{--language} if you want to specify the skeleton for a
8216@c different language, because it is clearer and because it will always
8217@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8218
a7867f53
JD
8219If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8220file in the Bison installation directory.
8221If it does, @var{file} is an absolute file name or a file name relative to the
8222current working directory.
8223This is similar to how most shells resolve commands.
8224
89cab50d
AD
8225@item -k
8226@itemx --token-table
d8988b2f 8227Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8228@end table
bfa74976 8229
89cab50d
AD
8230@noindent
8231Adjust the output:
bfa74976 8232
89cab50d 8233@table @option
8e55b3aa 8234@item --defines[=@var{file}]
d8988b2f 8235Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8236file containing macro definitions for the token type names defined in
4bfd5e4e 8237the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8238
8e55b3aa
JD
8239@item -d
8240This is the same as @code{--defines} except @code{-d} does not accept a
8241@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8242with other short options.
342b8b6e 8243
89cab50d
AD
8244@item -b @var{file-prefix}
8245@itemx --file-prefix=@var{prefix}
9c437126 8246Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8247for all Bison output file names. @xref{Decl Summary}.
bfa74976 8248
ec3bc396
AD
8249@item -r @var{things}
8250@itemx --report=@var{things}
8251Write an extra output file containing verbose description of the comma
8252separated list of @var{things} among:
8253
8254@table @code
8255@item state
8256Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8257parser's automaton.
ec3bc396 8258
742e4900 8259@item lookahead
ec3bc396 8260Implies @code{state} and augments the description of the automaton with
742e4900 8261each rule's lookahead set.
ec3bc396
AD
8262
8263@item itemset
8264Implies @code{state} and augments the description of the automaton with
8265the full set of items for each state, instead of its core only.
8266@end table
8267
1bb2bd75
JD
8268@item --report-file=@var{file}
8269Specify the @var{file} for the verbose description.
8270
bfa74976
RS
8271@item -v
8272@itemx --verbose
9c437126 8273Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8274file containing verbose descriptions of the grammar and
72d2299c 8275parser. @xref{Decl Summary}.
bfa74976 8276
fa4d969f
PE
8277@item -o @var{file}
8278@itemx --output=@var{file}
8279Specify the @var{file} for the parser file.
bfa74976 8280
fa4d969f 8281The other output files' names are constructed from @var{file} as
d8988b2f 8282described under the @samp{-v} and @samp{-d} options.
342b8b6e 8283
a7c09cba 8284@item -g [@var{file}]
8e55b3aa 8285@itemx --graph[=@var{file}]
eb45ef3b 8286Output a graphical representation of the parser's
35fe0834
PE
8287automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8288@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8289@code{@var{file}} is optional.
8290If omitted and the grammar file is @file{foo.y}, the output file will be
8291@file{foo.dot}.
59da312b 8292
a7c09cba 8293@item -x [@var{file}]
8e55b3aa 8294@itemx --xml[=@var{file}]
eb45ef3b 8295Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8296@code{@var{file}} is optional.
59da312b
JD
8297If omitted and the grammar file is @file{foo.y}, the output file will be
8298@file{foo.xml}.
8299(The current XML schema is experimental and may evolve.
8300More user feedback will help to stabilize it.)
bfa74976
RS
8301@end table
8302
342b8b6e 8303@node Option Cross Key
bfa74976
RS
8304@section Option Cross Key
8305
8306Here is a list of options, alphabetized by long option, to help you find
de5ab940 8307the corresponding short option and directive.
bfa74976 8308
de5ab940 8309@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8310@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8311@include cross-options.texi
aa08666d 8312@end multitable
bfa74976 8313
93dd49ab
PE
8314@node Yacc Library
8315@section Yacc Library
8316
8317The Yacc library contains default implementations of the
8318@code{yyerror} and @code{main} functions. These default
8319implementations are normally not useful, but @acronym{POSIX} requires
8320them. To use the Yacc library, link your program with the
8321@option{-ly} option. Note that Bison's implementation of the Yacc
8322library is distributed under the terms of the @acronym{GNU} General
8323Public License (@pxref{Copying}).
8324
8325If you use the Yacc library's @code{yyerror} function, you should
8326declare @code{yyerror} as follows:
8327
8328@example
8329int yyerror (char const *);
8330@end example
8331
8332Bison ignores the @code{int} value returned by this @code{yyerror}.
8333If you use the Yacc library's @code{main} function, your
8334@code{yyparse} function should have the following type signature:
8335
8336@example
8337int yyparse (void);
8338@end example
8339
12545799
AD
8340@c ================================================= C++ Bison
8341
8405b70c
PB
8342@node Other Languages
8343@chapter Parsers Written In Other Languages
12545799
AD
8344
8345@menu
8346* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8347* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8348@end menu
8349
8350@node C++ Parsers
8351@section C++ Parsers
8352
8353@menu
8354* C++ Bison Interface:: Asking for C++ parser generation
8355* C++ Semantic Values:: %union vs. C++
8356* C++ Location Values:: The position and location classes
8357* C++ Parser Interface:: Instantiating and running the parser
8358* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8359* A Complete C++ Example:: Demonstrating their use
12545799
AD
8360@end menu
8361
8362@node C++ Bison Interface
8363@subsection C++ Bison Interface
ed4d67dc 8364@c - %skeleton "lalr1.cc"
12545799
AD
8365@c - Always pure
8366@c - initial action
8367
eb45ef3b 8368The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8369@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8370@option{--skeleton=lalr1.c}.
e6e704dc 8371@xref{Decl Summary}.
0e021770 8372
793fbca5
JD
8373When run, @command{bison} will create several entities in the @samp{yy}
8374namespace.
67501061
AD
8375@findex %define api.namespace
8376Use the @samp{%define api.namespace} directive to change the namespace
8377name, see
793fbca5
JD
8378@ref{Decl Summary}.
8379The various classes are generated in the following files:
aa08666d 8380
12545799
AD
8381@table @file
8382@item position.hh
8383@itemx location.hh
8384The definition of the classes @code{position} and @code{location},
8385used for location tracking. @xref{C++ Location Values}.
8386
8387@item stack.hh
8388An auxiliary class @code{stack} used by the parser.
8389
fa4d969f
PE
8390@item @var{file}.hh
8391@itemx @var{file}.cc
cd8b5791
AD
8392(Assuming the extension of the input file was @samp{.yy}.) The
8393declaration and implementation of the C++ parser class. The basename
8394and extension of these two files follow the same rules as with regular C
8395parsers (@pxref{Invocation}).
12545799 8396
cd8b5791
AD
8397The header is @emph{mandatory}; you must either pass
8398@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8399@samp{%defines} directive.
8400@end table
8401
8402All these files are documented using Doxygen; run @command{doxygen}
8403for a complete and accurate documentation.
8404
8405@node C++ Semantic Values
8406@subsection C++ Semantic Values
8407@c - No objects in unions
178e123e 8408@c - YYSTYPE
12545799
AD
8409@c - Printer and destructor
8410
8411The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8412Collection of Value Types}. In particular it produces a genuine
8413@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8414within pseudo-unions (similar to Boost variants) might be implemented to
8415alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8416@itemize @minus
8417@item
fb9712a9
AD
8418The type @code{YYSTYPE} is defined but its use is discouraged: rather
8419you should refer to the parser's encapsulated type
8420@code{yy::parser::semantic_type}.
12545799
AD
8421@item
8422Non POD (Plain Old Data) types cannot be used. C++ forbids any
8423instance of classes with constructors in unions: only @emph{pointers}
8424to such objects are allowed.
8425@end itemize
8426
8427Because objects have to be stored via pointers, memory is not
8428reclaimed automatically: using the @code{%destructor} directive is the
8429only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8430Symbols}.
8431
8432
8433@node C++ Location Values
8434@subsection C++ Location Values
8435@c - %locations
8436@c - class Position
8437@c - class Location
16dc6a9e 8438@c - %define filename_type "const symbol::Symbol"
12545799
AD
8439
8440When the directive @code{%locations} is used, the C++ parser supports
8441location tracking, see @ref{Locations, , Locations Overview}. Two
8442auxiliary classes define a @code{position}, a single point in a file,
8443and a @code{location}, a range composed of a pair of
8444@code{position}s (possibly spanning several files).
8445
fa4d969f 8446@deftypemethod {position} {std::string*} file
12545799
AD
8447The name of the file. It will always be handled as a pointer, the
8448parser will never duplicate nor deallocate it. As an experimental
8449feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8450filename_type "@var{type}"}.
12545799
AD
8451@end deftypemethod
8452
8453@deftypemethod {position} {unsigned int} line
8454The line, starting at 1.
8455@end deftypemethod
8456
8457@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8458Advance by @var{height} lines, resetting the column number.
8459@end deftypemethod
8460
8461@deftypemethod {position} {unsigned int} column
8462The column, starting at 0.
8463@end deftypemethod
8464
8465@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8466Advance by @var{width} columns, without changing the line number.
8467@end deftypemethod
8468
8469@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8470@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8471@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8472@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8473Various forms of syntactic sugar for @code{columns}.
8474@end deftypemethod
8475
8476@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8477Report @var{p} on @var{o} like this:
fa4d969f
PE
8478@samp{@var{file}:@var{line}.@var{column}}, or
8479@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8480@end deftypemethod
8481
8482@deftypemethod {location} {position} begin
8483@deftypemethodx {location} {position} end
8484The first, inclusive, position of the range, and the first beyond.
8485@end deftypemethod
8486
8487@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8488@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8489Advance the @code{end} position.
8490@end deftypemethod
8491
8492@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8493@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8494@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8495Various forms of syntactic sugar.
8496@end deftypemethod
8497
8498@deftypemethod {location} {void} step ()
8499Move @code{begin} onto @code{end}.
8500@end deftypemethod
8501
8502
8503@node C++ Parser Interface
8504@subsection C++ Parser Interface
8505@c - define parser_class_name
8506@c - Ctor
8507@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8508@c debug_stream.
8509@c - Reporting errors
8510
8511The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8512declare and define the parser class in the namespace @code{yy}. The
8513class name defaults to @code{parser}, but may be changed using
16dc6a9e 8514@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8515this class is detailed below. It can be extended using the
12545799
AD
8516@code{%parse-param} feature: its semantics is slightly changed since
8517it describes an additional member of the parser class, and an
8518additional argument for its constructor.
8519
8a0adb01
AD
8520@defcv {Type} {parser} {semantic_value_type}
8521@defcvx {Type} {parser} {location_value_type}
12545799 8522The types for semantics value and locations.
8a0adb01 8523@end defcv
12545799
AD
8524
8525@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8526Build a new parser object. There are no arguments by default, unless
8527@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8528@end deftypemethod
8529
8530@deftypemethod {parser} {int} parse ()
8531Run the syntactic analysis, and return 0 on success, 1 otherwise.
8532@end deftypemethod
8533
8534@deftypemethod {parser} {std::ostream&} debug_stream ()
8535@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8536Get or set the stream used for tracing the parsing. It defaults to
8537@code{std::cerr}.
8538@end deftypemethod
8539
8540@deftypemethod {parser} {debug_level_type} debug_level ()
8541@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8542Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8543or nonzero, full tracing.
12545799
AD
8544@end deftypemethod
8545
8546@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8547The definition for this member function must be supplied by the user:
8548the parser uses it to report a parser error occurring at @var{l},
8549described by @var{m}.
8550@end deftypemethod
8551
8552
8553@node C++ Scanner Interface
8554@subsection C++ Scanner Interface
8555@c - prefix for yylex.
8556@c - Pure interface to yylex
8557@c - %lex-param
8558
8559The parser invokes the scanner by calling @code{yylex}. Contrary to C
8560parsers, C++ parsers are always pure: there is no point in using the
67501061 8561@samp{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8562
8563@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8564Return the next token. Its type is the return value, its semantic
8565value and location being @var{yylval} and @var{yylloc}. Invocations of
8566@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8567@end deftypemethod
8568
8569
8570@node A Complete C++ Example
8405b70c 8571@subsection A Complete C++ Example
12545799
AD
8572
8573This section demonstrates the use of a C++ parser with a simple but
8574complete example. This example should be available on your system,
8575ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8576focuses on the use of Bison, therefore the design of the various C++
8577classes is very naive: no accessors, no encapsulation of members etc.
8578We will use a Lex scanner, and more precisely, a Flex scanner, to
8579demonstrate the various interaction. A hand written scanner is
8580actually easier to interface with.
8581
8582@menu
8583* Calc++ --- C++ Calculator:: The specifications
8584* Calc++ Parsing Driver:: An active parsing context
8585* Calc++ Parser:: A parser class
8586* Calc++ Scanner:: A pure C++ Flex scanner
8587* Calc++ Top Level:: Conducting the band
8588@end menu
8589
8590@node Calc++ --- C++ Calculator
8405b70c 8591@subsubsection Calc++ --- C++ Calculator
12545799
AD
8592
8593Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8594expression, possibly preceded by variable assignments. An
12545799
AD
8595environment containing possibly predefined variables such as
8596@code{one} and @code{two}, is exchanged with the parser. An example
8597of valid input follows.
8598
8599@example
8600three := 3
8601seven := one + two * three
8602seven * seven
8603@end example
8604
8605@node Calc++ Parsing Driver
8405b70c 8606@subsubsection Calc++ Parsing Driver
12545799
AD
8607@c - An env
8608@c - A place to store error messages
8609@c - A place for the result
8610
8611To support a pure interface with the parser (and the scanner) the
8612technique of the ``parsing context'' is convenient: a structure
8613containing all the data to exchange. Since, in addition to simply
8614launch the parsing, there are several auxiliary tasks to execute (open
8615the file for parsing, instantiate the parser etc.), we recommend
8616transforming the simple parsing context structure into a fully blown
8617@dfn{parsing driver} class.
8618
8619The declaration of this driver class, @file{calc++-driver.hh}, is as
8620follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8621required standard library components, and the declaration of the parser
8622class.
12545799 8623
1c59e0a1 8624@comment file: calc++-driver.hh
12545799
AD
8625@example
8626#ifndef CALCXX_DRIVER_HH
8627# define CALCXX_DRIVER_HH
8628# include <string>
8629# include <map>
fb9712a9 8630# include "calc++-parser.hh"
12545799
AD
8631@end example
8632
12545799
AD
8633
8634@noindent
8635Then comes the declaration of the scanning function. Flex expects
8636the signature of @code{yylex} to be defined in the macro
8637@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8638factor both as follows.
1c59e0a1
AD
8639
8640@comment file: calc++-driver.hh
12545799 8641@example
3dc5e96b
PE
8642// Tell Flex the lexer's prototype ...
8643# define YY_DECL \
c095d689
AD
8644 yy::calcxx_parser::token_type \
8645 yylex (yy::calcxx_parser::semantic_type* yylval, \
8646 yy::calcxx_parser::location_type* yylloc, \
8647 calcxx_driver& driver)
12545799
AD
8648// ... and declare it for the parser's sake.
8649YY_DECL;
8650@end example
8651
8652@noindent
8653The @code{calcxx_driver} class is then declared with its most obvious
8654members.
8655
1c59e0a1 8656@comment file: calc++-driver.hh
12545799
AD
8657@example
8658// Conducting the whole scanning and parsing of Calc++.
8659class calcxx_driver
8660@{
8661public:
8662 calcxx_driver ();
8663 virtual ~calcxx_driver ();
8664
8665 std::map<std::string, int> variables;
8666
8667 int result;
8668@end example
8669
8670@noindent
8671To encapsulate the coordination with the Flex scanner, it is useful to
8672have two members function to open and close the scanning phase.
12545799 8673
1c59e0a1 8674@comment file: calc++-driver.hh
12545799
AD
8675@example
8676 // Handling the scanner.
8677 void scan_begin ();
8678 void scan_end ();
8679 bool trace_scanning;
8680@end example
8681
8682@noindent
8683Similarly for the parser itself.
8684
1c59e0a1 8685@comment file: calc++-driver.hh
12545799 8686@example
bb32f4f2
AD
8687 // Run the parser. Return 0 on success.
8688 int parse (const std::string& f);
12545799
AD
8689 std::string file;
8690 bool trace_parsing;
8691@end example
8692
8693@noindent
8694To demonstrate pure handling of parse errors, instead of simply
8695dumping them on the standard error output, we will pass them to the
8696compiler driver using the following two member functions. Finally, we
8697close the class declaration and CPP guard.
8698
1c59e0a1 8699@comment file: calc++-driver.hh
12545799
AD
8700@example
8701 // Error handling.
8702 void error (const yy::location& l, const std::string& m);
8703 void error (const std::string& m);
8704@};
8705#endif // ! CALCXX_DRIVER_HH
8706@end example
8707
8708The implementation of the driver is straightforward. The @code{parse}
8709member function deserves some attention. The @code{error} functions
8710are simple stubs, they should actually register the located error
8711messages and set error state.
8712
1c59e0a1 8713@comment file: calc++-driver.cc
12545799
AD
8714@example
8715#include "calc++-driver.hh"
8716#include "calc++-parser.hh"
8717
8718calcxx_driver::calcxx_driver ()
8719 : trace_scanning (false), trace_parsing (false)
8720@{
8721 variables["one"] = 1;
8722 variables["two"] = 2;
8723@}
8724
8725calcxx_driver::~calcxx_driver ()
8726@{
8727@}
8728
bb32f4f2 8729int
12545799
AD
8730calcxx_driver::parse (const std::string &f)
8731@{
8732 file = f;
8733 scan_begin ();
8734 yy::calcxx_parser parser (*this);
8735 parser.set_debug_level (trace_parsing);
bb32f4f2 8736 int res = parser.parse ();
12545799 8737 scan_end ();
bb32f4f2 8738 return res;
12545799
AD
8739@}
8740
8741void
8742calcxx_driver::error (const yy::location& l, const std::string& m)
8743@{
8744 std::cerr << l << ": " << m << std::endl;
8745@}
8746
8747void
8748calcxx_driver::error (const std::string& m)
8749@{
8750 std::cerr << m << std::endl;
8751@}
8752@end example
8753
8754@node Calc++ Parser
8405b70c 8755@subsubsection Calc++ Parser
12545799 8756
b50d2359 8757The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
8758the C++ deterministic parser skeleton, the creation of the parser header
8759file, and specifies the name of the parser class.
8760Because the C++ skeleton changed several times, it is safer to require
8761the version you designed the grammar for.
1c59e0a1
AD
8762
8763@comment file: calc++-parser.yy
12545799 8764@example
ed4d67dc 8765%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8766%require "@value{VERSION}"
12545799 8767%defines
16dc6a9e 8768%define parser_class_name "calcxx_parser"
fb9712a9
AD
8769@end example
8770
8771@noindent
16dc6a9e 8772@findex %code requires
fb9712a9
AD
8773Then come the declarations/inclusions needed to define the
8774@code{%union}. Because the parser uses the parsing driver and
8775reciprocally, both cannot include the header of the other. Because the
8776driver's header needs detailed knowledge about the parser class (in
8777particular its inner types), it is the parser's header which will simply
8778use a forward declaration of the driver.
148d66d8 8779@xref{Decl Summary, ,%code}.
fb9712a9
AD
8780
8781@comment file: calc++-parser.yy
8782@example
16dc6a9e 8783%code requires @{
12545799 8784# include <string>
fb9712a9 8785class calcxx_driver;
9bc0dd67 8786@}
12545799
AD
8787@end example
8788
8789@noindent
8790The driver is passed by reference to the parser and to the scanner.
8791This provides a simple but effective pure interface, not relying on
8792global variables.
8793
1c59e0a1 8794@comment file: calc++-parser.yy
12545799
AD
8795@example
8796// The parsing context.
8797%parse-param @{ calcxx_driver& driver @}
8798%lex-param @{ calcxx_driver& driver @}
8799@end example
8800
8801@noindent
8802Then we request the location tracking feature, and initialize the
8803first location's file name. Afterwards new locations are computed
8804relatively to the previous locations: the file name will be
8805automatically propagated.
8806
1c59e0a1 8807@comment file: calc++-parser.yy
12545799
AD
8808@example
8809%locations
8810%initial-action
8811@{
8812 // Initialize the initial location.
b47dbebe 8813 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8814@};
8815@end example
8816
8817@noindent
8818Use the two following directives to enable parser tracing and verbose
8819error messages.
8820
1c59e0a1 8821@comment file: calc++-parser.yy
12545799 8822@example
fa819509 8823%define parse.trace
71b00ed8 8824%define error-verbose
12545799
AD
8825@end example
8826
8827@noindent
8828Semantic values cannot use ``real'' objects, but only pointers to
8829them.
8830
1c59e0a1 8831@comment file: calc++-parser.yy
12545799
AD
8832@example
8833// Symbols.
8834%union
8835@{
8836 int ival;
8837 std::string *sval;
8838@};
8839@end example
8840
fb9712a9 8841@noindent
136a0f76
PB
8842@findex %code
8843The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8844@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8845
8846@comment file: calc++-parser.yy
8847@example
136a0f76 8848%code @{
fb9712a9 8849# include "calc++-driver.hh"
34f98f46 8850@}
fb9712a9
AD
8851@end example
8852
8853
12545799
AD
8854@noindent
8855The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
8856allows for nicer error messages referring to ``end of file'' instead of
8857``$end''. Similarly user friendly names are provided for each symbol.
8858To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 8859prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 8860
1c59e0a1 8861@comment file: calc++-parser.yy
12545799 8862@example
4c6622c2 8863%define api.tokens.prefix "TOK_"
fb9712a9
AD
8864%token END 0 "end of file"
8865%token ASSIGN ":="
8866%token <sval> IDENTIFIER "identifier"
8867%token <ival> NUMBER "number"
a8c2e813 8868%type <ival> exp
12545799
AD
8869@end example
8870
8871@noindent
8872To enable memory deallocation during error recovery, use
8873@code{%destructor}.
8874
287c78f6 8875@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8876@comment file: calc++-parser.yy
12545799
AD
8877@example
8878%printer @{ debug_stream () << *$$; @} "identifier"
8879%destructor @{ delete $$; @} "identifier"
8880
a8c2e813 8881%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8882@end example
8883
8884@noindent
8885The grammar itself is straightforward.
8886
1c59e0a1 8887@comment file: calc++-parser.yy
12545799
AD
8888@example
8889%%
8890%start unit;
8891unit: assignments exp @{ driver.result = $2; @};
8892
99c08fb6
AD
8893assignments:
8894 assignments assignment @{@}
8895| /* Nothing. */ @{@};
12545799 8896
3dc5e96b 8897assignment:
99c08fb6 8898 "identifier" ":=" exp
3dc5e96b 8899 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8900
8901%left '+' '-';
8902%left '*' '/';
99c08fb6
AD
8903exp:
8904 exp '+' exp @{ $$ = $1 + $3; @}
8905| exp '-' exp @{ $$ = $1 - $3; @}
8906| exp '*' exp @{ $$ = $1 * $3; @}
8907| exp '/' exp @{ $$ = $1 / $3; @}
8908| '(' exp ')' @{ $$ = $2; @}
8909| "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
8910| "number" @{ $$ = $1; @};
12545799
AD
8911%%
8912@end example
8913
8914@noindent
8915Finally the @code{error} member function registers the errors to the
8916driver.
8917
1c59e0a1 8918@comment file: calc++-parser.yy
12545799
AD
8919@example
8920void
1c59e0a1
AD
8921yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8922 const std::string& m)
12545799
AD
8923@{
8924 driver.error (l, m);
8925@}
8926@end example
8927
8928@node Calc++ Scanner
8405b70c 8929@subsubsection Calc++ Scanner
12545799
AD
8930
8931The Flex scanner first includes the driver declaration, then the
8932parser's to get the set of defined tokens.
8933
1c59e0a1 8934@comment file: calc++-scanner.ll
12545799
AD
8935@example
8936%@{ /* -*- C++ -*- */
04098407 8937# include <cstdlib>
3c248d70
AD
8938# include <cerrno>
8939# include <climits>
12545799
AD
8940# include <string>
8941# include "calc++-driver.hh"
8942# include "calc++-parser.hh"
eaea13f5
PE
8943
8944/* Work around an incompatibility in flex (at least versions
8945 2.5.31 through 2.5.33): it generates code that does
8946 not conform to C89. See Debian bug 333231
8947 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8948# undef yywrap
8949# define yywrap() 1
eaea13f5 8950
99c08fb6
AD
8951/* By default yylex returns an int; we use token_type.
8952 The default yyterminate implementation returns 0, which is
c095d689 8953 not of token_type. */
99c08fb6 8954#define yyterminate() return TOKEN(END)
12545799
AD
8955%@}
8956@end example
8957
8958@noindent
8959Because there is no @code{#include}-like feature we don't need
8960@code{yywrap}, we don't need @code{unput} either, and we parse an
8961actual file, this is not an interactive session with the user.
8962Finally we enable the scanner tracing features.
8963
1c59e0a1 8964@comment file: calc++-scanner.ll
12545799
AD
8965@example
8966%option noyywrap nounput batch debug
8967@end example
8968
8969@noindent
8970Abbreviations allow for more readable rules.
8971
1c59e0a1 8972@comment file: calc++-scanner.ll
12545799
AD
8973@example
8974id [a-zA-Z][a-zA-Z_0-9]*
8975int [0-9]+
8976blank [ \t]
8977@end example
8978
8979@noindent
9d9b8b70 8980The following paragraph suffices to track locations accurately. Each
12545799
AD
8981time @code{yylex} is invoked, the begin position is moved onto the end
8982position. Then when a pattern is matched, the end position is
8983advanced of its width. In case it matched ends of lines, the end
8984cursor is adjusted, and each time blanks are matched, the begin cursor
8985is moved onto the end cursor to effectively ignore the blanks
8986preceding tokens. Comments would be treated equally.
8987
1c59e0a1 8988@comment file: calc++-scanner.ll
12545799 8989@example
828c373b
AD
8990%@{
8991# define YY_USER_ACTION yylloc->columns (yyleng);
8992%@}
12545799
AD
8993%%
8994%@{
8995 yylloc->step ();
12545799
AD
8996%@}
8997@{blank@}+ yylloc->step ();
8998[\n]+ yylloc->lines (yyleng); yylloc->step ();
8999@end example
9000
9001@noindent
99c08fb6
AD
9002The rules are simple. The driver is used to report errors. It is
9003convenient to use a macro to shorten
9004@code{yy::calcxx_parser::token::TOK_@var{Name}} into
9005@code{TOKEN(@var{Name})}; note the token prefix, @code{TOK_}.
12545799 9006
1c59e0a1 9007@comment file: calc++-scanner.ll
12545799 9008@example
fb9712a9 9009%@{
99c08fb6
AD
9010# define TOKEN(Name) \
9011 yy::calcxx_parser::token::TOK_ ## Name
fb9712a9 9012%@}
8c5b881d 9013 /* Convert ints to the actual type of tokens. */
1a7a65f9 9014[-+*/()] return yy::calcxx_parser::token_type (yytext[0]);
99c08fb6 9015":=" return TOKEN(ASSIGN);
04098407
PE
9016@{int@} @{
9017 errno = 0;
9018 long n = strtol (yytext, NULL, 10);
9019 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9020 driver.error (*yylloc, "integer is out of range");
9021 yylval->ival = n;
99c08fb6
AD
9022 return TOKEN(NUMBER);
9023@}
9024@{id@} @{
9025 yylval->sval = new std::string (yytext);
9026 return TOKEN(IDENTIFIER);
04098407 9027@}
12545799
AD
9028. driver.error (*yylloc, "invalid character");
9029%%
9030@end example
9031
9032@noindent
9033Finally, because the scanner related driver's member function depend
9034on the scanner's data, it is simpler to implement them in this file.
9035
1c59e0a1 9036@comment file: calc++-scanner.ll
12545799
AD
9037@example
9038void
9039calcxx_driver::scan_begin ()
9040@{
9041 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9042 if (file == "-")
9043 yyin = stdin;
9044 else if (!(yyin = fopen (file.c_str (), "r")))
9045 @{
9046 error (std::string ("cannot open ") + file);
9047 exit (1);
9048 @}
12545799
AD
9049@}
9050
9051void
9052calcxx_driver::scan_end ()
9053@{
9054 fclose (yyin);
9055@}
9056@end example
9057
9058@node Calc++ Top Level
8405b70c 9059@subsubsection Calc++ Top Level
12545799
AD
9060
9061The top level file, @file{calc++.cc}, poses no problem.
9062
1c59e0a1 9063@comment file: calc++.cc
12545799
AD
9064@example
9065#include <iostream>
9066#include "calc++-driver.hh"
9067
9068int
fa4d969f 9069main (int argc, char *argv[])
12545799 9070@{
414c76a4 9071 int res = 0;
12545799
AD
9072 calcxx_driver driver;
9073 for (++argv; argv[0]; ++argv)
9074 if (*argv == std::string ("-p"))
9075 driver.trace_parsing = true;
9076 else if (*argv == std::string ("-s"))
9077 driver.trace_scanning = true;
bb32f4f2
AD
9078 else if (!driver.parse (*argv))
9079 std::cout << driver.result << std::endl;
414c76a4
AD
9080 else
9081 res = 1;
9082 return res;
12545799
AD
9083@}
9084@end example
9085
8405b70c
PB
9086@node Java Parsers
9087@section Java Parsers
9088
9089@menu
f5f419de
DJ
9090* Java Bison Interface:: Asking for Java parser generation
9091* Java Semantic Values:: %type and %token vs. Java
9092* Java Location Values:: The position and location classes
9093* Java Parser Interface:: Instantiating and running the parser
9094* Java Scanner Interface:: Specifying the scanner for the parser
9095* Java Action Features:: Special features for use in actions
9096* Java Differences:: Differences between C/C++ and Java Grammars
9097* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9098@end menu
9099
9100@node Java Bison Interface
9101@subsection Java Bison Interface
9102@c - %language "Java"
8405b70c 9103
59da312b
JD
9104(The current Java interface is experimental and may evolve.
9105More user feedback will help to stabilize it.)
9106
e254a580
DJ
9107The Java parser skeletons are selected using the @code{%language "Java"}
9108directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9109
e254a580
DJ
9110@c FIXME: Documented bug.
9111When generating a Java parser, @code{bison @var{basename}.y} will create
9112a single Java source file named @file{@var{basename}.java}. Using an
9113input file without a @file{.y} suffix is currently broken. The basename
9114of the output file can be changed by the @code{%file-prefix} directive
9115or the @option{-p}/@option{--name-prefix} option. The entire output file
9116name can be changed by the @code{%output} directive or the
9117@option{-o}/@option{--output} option. The output file contains a single
9118class for the parser.
8405b70c 9119
e254a580 9120You can create documentation for generated parsers using Javadoc.
8405b70c 9121
e254a580
DJ
9122Contrary to C parsers, Java parsers do not use global variables; the
9123state of the parser is always local to an instance of the parser class.
9124Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9125and @samp{%define api.pure} directives does not do anything when used in
e254a580 9126Java.
8405b70c 9127
e254a580 9128Push parsers are currently unsupported in Java and @code{%define
67212941 9129api.push-pull} have no effect.
01b477c6 9130
e254a580
DJ
9131@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9132@code{glr-parser} directive.
9133
9134No header file can be generated for Java parsers. Do not use the
9135@code{%defines} directive or the @option{-d}/@option{--defines} options.
9136
9137@c FIXME: Possible code change.
fa819509
AD
9138Currently, support for tracing is always compiled
9139in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9140directives and the
e254a580
DJ
9141@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9142options have no effect. This may change in the future to eliminate
fa819509
AD
9143unused code in the generated parser, so use @samp{%define parse.trace}
9144explicitly
1979121c 9145if needed. Also, in the future the
e254a580
DJ
9146@code{%token-table} directive might enable a public interface to
9147access the token names and codes.
8405b70c 9148
09ccae9b
DJ
9149Getting a ``code too large'' error from the Java compiler means the code
9150hit the 64KB bytecode per method limination of the Java class file.
9151Try reducing the amount of code in actions and static initializers;
9152otherwise, report a bug so that the parser skeleton will be improved.
9153
9154
8405b70c
PB
9155@node Java Semantic Values
9156@subsection Java Semantic Values
9157@c - No %union, specify type in %type/%token.
9158@c - YYSTYPE
9159@c - Printer and destructor
9160
9161There is no @code{%union} directive in Java parsers. Instead, the
9162semantic values' types (class names) should be specified in the
9163@code{%type} or @code{%token} directive:
9164
9165@example
9166%type <Expression> expr assignment_expr term factor
9167%type <Integer> number
9168@end example
9169
9170By default, the semantic stack is declared to have @code{Object} members,
9171which means that the class types you specify can be of any class.
9172To improve the type safety of the parser, you can declare the common
67501061 9173superclass of all the semantic values using the @samp{%define stype}
e254a580 9174directive. For example, after the following declaration:
8405b70c
PB
9175
9176@example
e254a580 9177%define stype "ASTNode"
8405b70c
PB
9178@end example
9179
9180@noindent
9181any @code{%type} or @code{%token} specifying a semantic type which
9182is not a subclass of ASTNode, will cause a compile-time error.
9183
e254a580 9184@c FIXME: Documented bug.
8405b70c
PB
9185Types used in the directives may be qualified with a package name.
9186Primitive data types are accepted for Java version 1.5 or later. Note
9187that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9188Generic types may not be used; this is due to a limitation in the
9189implementation of Bison, and may change in future releases.
8405b70c
PB
9190
9191Java parsers do not support @code{%destructor}, since the language
9192adopts garbage collection. The parser will try to hold references
9193to semantic values for as little time as needed.
9194
9195Java parsers do not support @code{%printer}, as @code{toString()}
9196can be used to print the semantic values. This however may change
9197(in a backwards-compatible way) in future versions of Bison.
9198
9199
9200@node Java Location Values
9201@subsection Java Location Values
9202@c - %locations
9203@c - class Position
9204@c - class Location
9205
9206When the directive @code{%locations} is used, the Java parser
9207supports location tracking, see @ref{Locations, , Locations Overview}.
9208An auxiliary user-defined class defines a @dfn{position}, a single point
9209in a file; Bison itself defines a class representing a @dfn{location},
9210a range composed of a pair of positions (possibly spanning several
9211files). The location class is an inner class of the parser; the name
e254a580 9212is @code{Location} by default, and may also be renamed using
67501061 9213@samp{%define location_type "@var{class-name}}.
8405b70c
PB
9214
9215The location class treats the position as a completely opaque value.
9216By default, the class name is @code{Position}, but this can be changed
67501061 9217with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9218be supplied by the user.
8405b70c
PB
9219
9220
e254a580
DJ
9221@deftypeivar {Location} {Position} begin
9222@deftypeivarx {Location} {Position} end
8405b70c 9223The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9224@end deftypeivar
9225
9226@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9227Create a @code{Location} denoting an empty range located at a given point.
e254a580 9228@end deftypeop
8405b70c 9229
e254a580
DJ
9230@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9231Create a @code{Location} from the endpoints of the range.
9232@end deftypeop
9233
9234@deftypemethod {Location} {String} toString ()
8405b70c
PB
9235Prints the range represented by the location. For this to work
9236properly, the position class should override the @code{equals} and
9237@code{toString} methods appropriately.
9238@end deftypemethod
9239
9240
9241@node Java Parser Interface
9242@subsection Java Parser Interface
9243@c - define parser_class_name
9244@c - Ctor
9245@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9246@c debug_stream.
9247@c - Reporting errors
9248
e254a580
DJ
9249The name of the generated parser class defaults to @code{YYParser}. The
9250@code{YY} prefix may be changed using the @code{%name-prefix} directive
9251or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9252@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9253the class. The interface of this class is detailed below.
8405b70c 9254
e254a580 9255By default, the parser class has package visibility. A declaration
67501061 9256@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9257according to the Java language specification, the name of the @file{.java}
9258file should match the name of the class in this case. Similarly, you can
9259use @code{abstract}, @code{final} and @code{strictfp} with the
9260@code{%define} declaration to add other modifiers to the parser class.
67501061 9261A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9262be used to add any number of annotations to the parser class.
e254a580
DJ
9263
9264The Java package name of the parser class can be specified using the
67501061 9265@samp{%define package} directive. The superclass and the implemented
e254a580 9266interfaces of the parser class can be specified with the @code{%define
67501061 9267extends} and @samp{%define implements} directives.
e254a580
DJ
9268
9269The parser class defines an inner class, @code{Location}, that is used
9270for location tracking (see @ref{Java Location Values}), and a inner
9271interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9272these inner class/interface, and the members described in the interface
9273below, all the other members and fields are preceded with a @code{yy} or
9274@code{YY} prefix to avoid clashes with user code.
9275
e254a580
DJ
9276The parser class can be extended using the @code{%parse-param}
9277directive. Each occurrence of the directive will add a @code{protected
9278final} field to the parser class, and an argument to its constructor,
9279which initialize them automatically.
9280
e254a580
DJ
9281@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9282Build a new parser object with embedded @code{%code lexer}. There are
9283no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9284used.
1979121c
DJ
9285
9286Use @code{%code init} for code added to the start of the constructor
9287body. This is especially useful to initialize superclasses. Use
67501061 9288@samp{%define init_throws} to specify any uncatch exceptions.
e254a580
DJ
9289@end deftypeop
9290
9291@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9292Build a new parser object using the specified scanner. There are no
9293additional parameters unless @code{%parse-param}s are used.
9294
9295If the scanner is defined by @code{%code lexer}, this constructor is
9296declared @code{protected} and is called automatically with a scanner
9297created with the correct @code{%lex-param}s.
1979121c
DJ
9298
9299Use @code{%code init} for code added to the start of the constructor
9300body. This is especially useful to initialize superclasses. Use
67501061 9301@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9302@end deftypeop
8405b70c
PB
9303
9304@deftypemethod {YYParser} {boolean} parse ()
9305Run the syntactic analysis, and return @code{true} on success,
9306@code{false} otherwise.
9307@end deftypemethod
9308
1979121c
DJ
9309@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9310@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9311Get or set the option to produce verbose error messages. These are only
67501061 9312available with the @samp{%define error-verbose} directive, which also turn on
1979121c
DJ
9313verbose error messages.
9314@end deftypemethod
9315
9316@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9317@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9318@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9319Print an error message using the @code{yyerror} method of the scanner
9320instance in use. The @code{Location} and @code{Position} parameters are
9321available only if location tracking is active.
9322@end deftypemethod
9323
01b477c6 9324@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9325During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9326from a syntax error.
9327@xref{Error Recovery}.
8405b70c
PB
9328@end deftypemethod
9329
9330@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9331@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9332Get or set the stream used for tracing the parsing. It defaults to
9333@code{System.err}.
9334@end deftypemethod
9335
9336@deftypemethod {YYParser} {int} getDebugLevel ()
9337@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9338Get or set the tracing level. Currently its value is either 0, no trace,
9339or nonzero, full tracing.
9340@end deftypemethod
9341
1979121c
DJ
9342@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9343@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9344Identify the Bison version and skeleton used to generate this parser.
9345@end deftypecv
9346
8405b70c
PB
9347
9348@node Java Scanner Interface
9349@subsection Java Scanner Interface
01b477c6 9350@c - %code lexer
8405b70c 9351@c - %lex-param
01b477c6 9352@c - Lexer interface
8405b70c 9353
e254a580
DJ
9354There are two possible ways to interface a Bison-generated Java parser
9355with a scanner: the scanner may be defined by @code{%code lexer}, or
9356defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9357@code{Lexer} inner interface of the parser class. This interface also
9358contain constants for all user-defined token names and the predefined
9359@code{EOF} token.
e254a580
DJ
9360
9361In the first case, the body of the scanner class is placed in
9362@code{%code lexer} blocks. If you want to pass parameters from the
9363parser constructor to the scanner constructor, specify them with
9364@code{%lex-param}; they are passed before @code{%parse-param}s to the
9365constructor.
01b477c6 9366
59c5ac72 9367In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9368which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9369The constructor of the parser object will then accept an object
9370implementing the interface; @code{%lex-param} is not used in this
9371case.
9372
9373In both cases, the scanner has to implement the following methods.
9374
e254a580
DJ
9375@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9376This method is defined by the user to emit an error message. The first
9377parameter is omitted if location tracking is not active. Its type can be
67501061 9378changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
9379@end deftypemethod
9380
e254a580 9381@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9382Return the next token. Its type is the return value, its semantic
9383value and location are saved and returned by the ther methods in the
e254a580
DJ
9384interface.
9385
67501061 9386Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 9387Default is @code{java.io.IOException}.
8405b70c
PB
9388@end deftypemethod
9389
9390@deftypemethod {Lexer} {Position} getStartPos ()
9391@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9392Return respectively the first position of the last token that
9393@code{yylex} returned, and the first position beyond it. These
9394methods are not needed unless location tracking is active.
8405b70c 9395
67501061 9396The return type can be changed using @samp{%define position_type
8405b70c
PB
9397"@var{class-name}".}
9398@end deftypemethod
9399
9400@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9401Return the semantical value of the last token that yylex returned.
8405b70c 9402
67501061 9403The return type can be changed using @samp{%define stype
8405b70c
PB
9404"@var{class-name}".}
9405@end deftypemethod
9406
9407
e254a580
DJ
9408@node Java Action Features
9409@subsection Special Features for Use in Java Actions
9410
9411The following special constructs can be uses in Java actions.
9412Other analogous C action features are currently unavailable for Java.
9413
67501061 9414Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
9415actions, and initial actions specified by @code{%initial-action}.
9416
9417@defvar $@var{n}
9418The semantic value for the @var{n}th component of the current rule.
9419This may not be assigned to.
9420@xref{Java Semantic Values}.
9421@end defvar
9422
9423@defvar $<@var{typealt}>@var{n}
9424Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9425@xref{Java Semantic Values}.
9426@end defvar
9427
9428@defvar $$
9429The semantic value for the grouping made by the current rule. As a
9430value, this is in the base type (@code{Object} or as specified by
67501061 9431@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
9432casts are not allowed on the left-hand side of Java assignments.
9433Use an explicit Java cast if the correct subtype is needed.
9434@xref{Java Semantic Values}.
9435@end defvar
9436
9437@defvar $<@var{typealt}>$
9438Same as @code{$$} since Java always allow assigning to the base type.
9439Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9440for setting the value but there is currently no easy way to distinguish
9441these constructs.
9442@xref{Java Semantic Values}.
9443@end defvar
9444
9445@defvar @@@var{n}
9446The location information of the @var{n}th component of the current rule.
9447This may not be assigned to.
9448@xref{Java Location Values}.
9449@end defvar
9450
9451@defvar @@$
9452The location information of the grouping made by the current rule.
9453@xref{Java Location Values}.
9454@end defvar
9455
9456@deffn {Statement} {return YYABORT;}
9457Return immediately from the parser, indicating failure.
9458@xref{Java Parser Interface}.
9459@end deffn
8405b70c 9460
e254a580
DJ
9461@deffn {Statement} {return YYACCEPT;}
9462Return immediately from the parser, indicating success.
9463@xref{Java Parser Interface}.
9464@end deffn
8405b70c 9465
e254a580 9466@deffn {Statement} {return YYERROR;}
c265fd6b 9467Start error recovery without printing an error message.
e254a580
DJ
9468@xref{Error Recovery}.
9469@end deffn
8405b70c 9470
e254a580 9471@deffn {Statement} {return YYFAIL;}
c265fd6b 9472Print an error message and start error recovery.
e254a580
DJ
9473@xref{Error Recovery}.
9474@end deffn
8405b70c 9475
e254a580
DJ
9476@deftypefn {Function} {boolean} recovering ()
9477Return whether error recovery is being done. In this state, the parser
9478reads token until it reaches a known state, and then restarts normal
9479operation.
9480@xref{Error Recovery}.
9481@end deftypefn
8405b70c 9482
1979121c
DJ
9483@deftypefn {Function} {void} yyerror (String @var{msg})
9484@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
9485@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 9486Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
9487instance in use. The @code{Location} and @code{Position} parameters are
9488available only if location tracking is active.
e254a580 9489@end deftypefn
8405b70c 9490
8405b70c 9491
8405b70c
PB
9492@node Java Differences
9493@subsection Differences between C/C++ and Java Grammars
9494
9495The different structure of the Java language forces several differences
9496between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9497section summarizes these differences.
8405b70c
PB
9498
9499@itemize
9500@item
01b477c6 9501Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9502@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9503macros. Instead, they should be preceded by @code{return} when they
9504appear in an action. The actual definition of these symbols is
8405b70c
PB
9505opaque to the Bison grammar, and it might change in the future. The
9506only meaningful operation that you can do, is to return them.
e254a580 9507See @pxref{Java Action Features}.
8405b70c
PB
9508
9509Note that of these three symbols, only @code{YYACCEPT} and
9510@code{YYABORT} will cause a return from the @code{yyparse}
9511method@footnote{Java parsers include the actions in a separate
9512method than @code{yyparse} in order to have an intuitive syntax that
9513corresponds to these C macros.}.
9514
e254a580
DJ
9515@item
9516Java lacks unions, so @code{%union} has no effect. Instead, semantic
9517values have a common base type: @code{Object} or as specified by
67501061 9518@samp{%define stype}. Angle backets on @code{%token}, @code{type},
e254a580
DJ
9519@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9520an union. The type of @code{$$}, even with angle brackets, is the base
9521type since Java casts are not allow on the left-hand side of assignments.
9522Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9523left-hand side of assignments. See @pxref{Java Semantic Values} and
9524@pxref{Java Action Features}.
9525
8405b70c
PB
9526@item
9527The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9528@table @asis
9529@item @code{%code imports}
9530blocks are placed at the beginning of the Java source code. They may
9531include copyright notices. For a @code{package} declarations, it is
67501061 9532suggested to use @samp{%define package} instead.
8405b70c 9533
01b477c6
PB
9534@item unqualified @code{%code}
9535blocks are placed inside the parser class.
9536
9537@item @code{%code lexer}
9538blocks, if specified, should include the implementation of the
9539scanner. If there is no such block, the scanner can be any class
9540that implements the appropriate interface (see @pxref{Java Scanner
9541Interface}).
29553547 9542@end table
8405b70c
PB
9543
9544Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9545In particular, @code{%@{ @dots{} %@}} blocks should not be used
9546and may give an error in future versions of Bison.
9547
01b477c6 9548The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9549be used to define other classes used by the parser @emph{outside}
9550the parser class.
8405b70c
PB
9551@end itemize
9552
e254a580
DJ
9553
9554@node Java Declarations Summary
9555@subsection Java Declarations Summary
9556
9557This summary only include declarations specific to Java or have special
9558meaning when used in a Java parser.
9559
9560@deffn {Directive} {%language "Java"}
9561Generate a Java class for the parser.
9562@end deffn
9563
9564@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9565A parameter for the lexer class defined by @code{%code lexer}
9566@emph{only}, added as parameters to the lexer constructor and the parser
9567constructor that @emph{creates} a lexer. Default is none.
9568@xref{Java Scanner Interface}.
9569@end deffn
9570
9571@deffn {Directive} %name-prefix "@var{prefix}"
9572The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 9573@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
9574@xref{Java Bison Interface}.
9575@end deffn
9576
9577@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9578A parameter for the parser class added as parameters to constructor(s)
9579and as fields initialized by the constructor(s). Default is none.
9580@xref{Java Parser Interface}.
9581@end deffn
9582
9583@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9584Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9585@xref{Java Semantic Values}.
9586@end deffn
9587
9588@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9589Declare the type of nonterminals. Note that the angle brackets enclose
9590a Java @emph{type}.
9591@xref{Java Semantic Values}.
9592@end deffn
9593
9594@deffn {Directive} %code @{ @var{code} @dots{} @}
9595Code appended to the inside of the parser class.
9596@xref{Java Differences}.
9597@end deffn
9598
9599@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9600Code inserted just after the @code{package} declaration.
9601@xref{Java Differences}.
9602@end deffn
9603
1979121c
DJ
9604@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
9605Code inserted at the beginning of the parser constructor body.
9606@xref{Java Parser Interface}.
9607@end deffn
9608
e254a580
DJ
9609@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9610Code added to the body of a inner lexer class within the parser class.
9611@xref{Java Scanner Interface}.
9612@end deffn
9613
9614@deffn {Directive} %% @var{code} @dots{}
9615Code (after the second @code{%%}) appended to the end of the file,
9616@emph{outside} the parser class.
9617@xref{Java Differences}.
9618@end deffn
9619
9620@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 9621Not supported. Use @code{%code imports} instead.
e254a580
DJ
9622@xref{Java Differences}.
9623@end deffn
9624
9625@deffn {Directive} {%define abstract}
9626Whether the parser class is declared @code{abstract}. Default is false.
9627@xref{Java Bison Interface}.
9628@end deffn
9629
1979121c
DJ
9630@deffn {Directive} {%define annotations} "@var{annotations}"
9631The Java annotations for the parser class. Default is none.
9632@xref{Java Bison Interface}.
9633@end deffn
9634
e254a580
DJ
9635@deffn {Directive} {%define extends} "@var{superclass}"
9636The superclass of the parser class. Default is none.
9637@xref{Java Bison Interface}.
9638@end deffn
9639
9640@deffn {Directive} {%define final}
9641Whether the parser class is declared @code{final}. Default is false.
9642@xref{Java Bison Interface}.
9643@end deffn
9644
9645@deffn {Directive} {%define implements} "@var{interfaces}"
9646The implemented interfaces of the parser class, a comma-separated list.
9647Default is none.
9648@xref{Java Bison Interface}.
9649@end deffn
9650
1979121c
DJ
9651@deffn {Directive} {%define init_throws} "@var{exceptions}"
9652The exceptions thrown by @code{%code init} from the parser class
9653constructor. Default is none.
9654@xref{Java Parser Interface}.
9655@end deffn
9656
e254a580
DJ
9657@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9658The exceptions thrown by the @code{yylex} method of the lexer, a
9659comma-separated list. Default is @code{java.io.IOException}.
9660@xref{Java Scanner Interface}.
9661@end deffn
9662
9663@deffn {Directive} {%define location_type} "@var{class}"
9664The name of the class used for locations (a range between two
9665positions). This class is generated as an inner class of the parser
9666class by @command{bison}. Default is @code{Location}.
9667@xref{Java Location Values}.
9668@end deffn
9669
9670@deffn {Directive} {%define package} "@var{package}"
9671The package to put the parser class in. Default is none.
9672@xref{Java Bison Interface}.
9673@end deffn
9674
9675@deffn {Directive} {%define parser_class_name} "@var{name}"
9676The name of the parser class. Default is @code{YYParser} or
9677@code{@var{name-prefix}Parser}.
9678@xref{Java Bison Interface}.
9679@end deffn
9680
9681@deffn {Directive} {%define position_type} "@var{class}"
9682The name of the class used for positions. This class must be supplied by
9683the user. Default is @code{Position}.
9684@xref{Java Location Values}.
9685@end deffn
9686
9687@deffn {Directive} {%define public}
9688Whether the parser class is declared @code{public}. Default is false.
9689@xref{Java Bison Interface}.
9690@end deffn
9691
9692@deffn {Directive} {%define stype} "@var{class}"
9693The base type of semantic values. Default is @code{Object}.
9694@xref{Java Semantic Values}.
9695@end deffn
9696
9697@deffn {Directive} {%define strictfp}
9698Whether the parser class is declared @code{strictfp}. Default is false.
9699@xref{Java Bison Interface}.
9700@end deffn
9701
9702@deffn {Directive} {%define throws} "@var{exceptions}"
9703The exceptions thrown by user-supplied parser actions and
9704@code{%initial-action}, a comma-separated list. Default is none.
9705@xref{Java Parser Interface}.
9706@end deffn
9707
9708
12545799 9709@c ================================================= FAQ
d1a1114f
AD
9710
9711@node FAQ
9712@chapter Frequently Asked Questions
9713@cindex frequently asked questions
9714@cindex questions
9715
9716Several questions about Bison come up occasionally. Here some of them
9717are addressed.
9718
9719@menu
55ba27be
AD
9720* Memory Exhausted:: Breaking the Stack Limits
9721* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9722* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9723* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9724* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9725* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9726* I can't build Bison:: Troubleshooting
9727* Where can I find help?:: Troubleshouting
9728* Bug Reports:: Troublereporting
8405b70c 9729* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9730* Beta Testing:: Experimenting development versions
9731* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9732@end menu
9733
1a059451
PE
9734@node Memory Exhausted
9735@section Memory Exhausted
d1a1114f
AD
9736
9737@display
1a059451 9738My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9739message. What can I do?
9740@end display
9741
9742This question is already addressed elsewhere, @xref{Recursion,
9743,Recursive Rules}.
9744
e64fec0a
PE
9745@node How Can I Reset the Parser
9746@section How Can I Reset the Parser
5b066063 9747
0e14ad77
PE
9748The following phenomenon has several symptoms, resulting in the
9749following typical questions:
5b066063
AD
9750
9751@display
9752I invoke @code{yyparse} several times, and on correct input it works
9753properly; but when a parse error is found, all the other calls fail
0e14ad77 9754too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9755@end display
9756
9757@noindent
9758or
9759
9760@display
0e14ad77 9761My parser includes support for an @samp{#include}-like feature, in
5b066063 9762which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 9763although I did specify @samp{%define api.pure}.
5b066063
AD
9764@end display
9765
0e14ad77
PE
9766These problems typically come not from Bison itself, but from
9767Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9768speed, they might not notice a change of input file. As a
9769demonstration, consider the following source file,
9770@file{first-line.l}:
9771
9772@verbatim
9773%{
9774#include <stdio.h>
9775#include <stdlib.h>
9776%}
9777%%
9778.*\n ECHO; return 1;
9779%%
9780int
0e14ad77 9781yyparse (char const *file)
5b066063
AD
9782{
9783 yyin = fopen (file, "r");
9784 if (!yyin)
9785 exit (2);
fa7e68c3 9786 /* One token only. */
5b066063 9787 yylex ();
0e14ad77 9788 if (fclose (yyin) != 0)
5b066063
AD
9789 exit (3);
9790 return 0;
9791}
9792
9793int
0e14ad77 9794main (void)
5b066063
AD
9795{
9796 yyparse ("input");
9797 yyparse ("input");
9798 return 0;
9799}
9800@end verbatim
9801
9802@noindent
9803If the file @file{input} contains
9804
9805@verbatim
9806input:1: Hello,
9807input:2: World!
9808@end verbatim
9809
9810@noindent
0e14ad77 9811then instead of getting the first line twice, you get:
5b066063
AD
9812
9813@example
9814$ @kbd{flex -ofirst-line.c first-line.l}
9815$ @kbd{gcc -ofirst-line first-line.c -ll}
9816$ @kbd{./first-line}
9817input:1: Hello,
9818input:2: World!
9819@end example
9820
0e14ad77
PE
9821Therefore, whenever you change @code{yyin}, you must tell the
9822Lex-generated scanner to discard its current buffer and switch to the
9823new one. This depends upon your implementation of Lex; see its
9824documentation for more. For Flex, it suffices to call
9825@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9826Flex-generated scanner needs to read from several input streams to
9827handle features like include files, you might consider using Flex
9828functions like @samp{yy_switch_to_buffer} that manipulate multiple
9829input buffers.
5b066063 9830
b165c324
AD
9831If your Flex-generated scanner uses start conditions (@pxref{Start
9832conditions, , Start conditions, flex, The Flex Manual}), you might
9833also want to reset the scanner's state, i.e., go back to the initial
9834start condition, through a call to @samp{BEGIN (0)}.
9835
fef4cb51
AD
9836@node Strings are Destroyed
9837@section Strings are Destroyed
9838
9839@display
c7e441b4 9840My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9841them. Instead of reporting @samp{"foo", "bar"}, it reports
9842@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9843@end display
9844
9845This error is probably the single most frequent ``bug report'' sent to
9846Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9847of the scanner. Consider the following Lex code:
fef4cb51
AD
9848
9849@verbatim
9850%{
9851#include <stdio.h>
9852char *yylval = NULL;
9853%}
9854%%
9855.* yylval = yytext; return 1;
9856\n /* IGNORE */
9857%%
9858int
9859main ()
9860{
fa7e68c3 9861 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9862 char *fst = (yylex (), yylval);
9863 char *snd = (yylex (), yylval);
9864 printf ("\"%s\", \"%s\"\n", fst, snd);
9865 return 0;
9866}
9867@end verbatim
9868
9869If you compile and run this code, you get:
9870
9871@example
9872$ @kbd{flex -osplit-lines.c split-lines.l}
9873$ @kbd{gcc -osplit-lines split-lines.c -ll}
9874$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9875"one
9876two", "two"
9877@end example
9878
9879@noindent
9880this is because @code{yytext} is a buffer provided for @emph{reading}
9881in the action, but if you want to keep it, you have to duplicate it
9882(e.g., using @code{strdup}). Note that the output may depend on how
9883your implementation of Lex handles @code{yytext}. For instance, when
9884given the Lex compatibility option @option{-l} (which triggers the
9885option @samp{%array}) Flex generates a different behavior:
9886
9887@example
9888$ @kbd{flex -l -osplit-lines.c split-lines.l}
9889$ @kbd{gcc -osplit-lines split-lines.c -ll}
9890$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9891"two", "two"
9892@end example
9893
9894
2fa09258
AD
9895@node Implementing Gotos/Loops
9896@section Implementing Gotos/Loops
a06ea4aa
AD
9897
9898@display
9899My simple calculator supports variables, assignments, and functions,
2fa09258 9900but how can I implement gotos, or loops?
a06ea4aa
AD
9901@end display
9902
9903Although very pedagogical, the examples included in the document blur
a1c84f45 9904the distinction to make between the parser---whose job is to recover
a06ea4aa 9905the structure of a text and to transmit it to subsequent modules of
a1c84f45 9906the program---and the processing (such as the execution) of this
a06ea4aa
AD
9907structure. This works well with so called straight line programs,
9908i.e., precisely those that have a straightforward execution model:
9909execute simple instructions one after the others.
9910
9911@cindex abstract syntax tree
9912@cindex @acronym{AST}
9913If you want a richer model, you will probably need to use the parser
9914to construct a tree that does represent the structure it has
9915recovered; this tree is usually called the @dfn{abstract syntax tree},
9916or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9917traversing it in various ways, will enable treatments such as its
9918execution or its translation, which will result in an interpreter or a
9919compiler.
9920
9921This topic is way beyond the scope of this manual, and the reader is
9922invited to consult the dedicated literature.
9923
9924
ed2e6384
AD
9925@node Multiple start-symbols
9926@section Multiple start-symbols
9927
9928@display
9929I have several closely related grammars, and I would like to share their
9930implementations. In fact, I could use a single grammar but with
9931multiple entry points.
9932@end display
9933
9934Bison does not support multiple start-symbols, but there is a very
9935simple means to simulate them. If @code{foo} and @code{bar} are the two
9936pseudo start-symbols, then introduce two new tokens, say
9937@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9938real start-symbol:
9939
9940@example
9941%token START_FOO START_BAR;
9942%start start;
9943start: START_FOO foo
9944 | START_BAR bar;
9945@end example
9946
9947These tokens prevents the introduction of new conflicts. As far as the
9948parser goes, that is all that is needed.
9949
9950Now the difficult part is ensuring that the scanner will send these
9951tokens first. If your scanner is hand-written, that should be
9952straightforward. If your scanner is generated by Lex, them there is
9953simple means to do it: recall that anything between @samp{%@{ ... %@}}
9954after the first @code{%%} is copied verbatim in the top of the generated
9955@code{yylex} function. Make sure a variable @code{start_token} is
9956available in the scanner (e.g., a global variable or using
9957@code{%lex-param} etc.), and use the following:
9958
9959@example
9960 /* @r{Prologue.} */
9961%%
9962%@{
9963 if (start_token)
9964 @{
9965 int t = start_token;
9966 start_token = 0;
9967 return t;
9968 @}
9969%@}
9970 /* @r{The rules.} */
9971@end example
9972
9973
55ba27be
AD
9974@node Secure? Conform?
9975@section Secure? Conform?
9976
9977@display
9978Is Bison secure? Does it conform to POSIX?
9979@end display
9980
9981If you're looking for a guarantee or certification, we don't provide it.
9982However, Bison is intended to be a reliable program that conforms to the
9983@acronym{POSIX} specification for Yacc. If you run into problems,
9984please send us a bug report.
9985
9986@node I can't build Bison
9987@section I can't build Bison
9988
9989@display
8c5b881d
PE
9990I can't build Bison because @command{make} complains that
9991@code{msgfmt} is not found.
55ba27be
AD
9992What should I do?
9993@end display
9994
9995Like most GNU packages with internationalization support, that feature
9996is turned on by default. If you have problems building in the @file{po}
9997subdirectory, it indicates that your system's internationalization
9998support is lacking. You can re-configure Bison with
9999@option{--disable-nls} to turn off this support, or you can install GNU
10000gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10001Bison. See the file @file{ABOUT-NLS} for more information.
10002
10003
10004@node Where can I find help?
10005@section Where can I find help?
10006
10007@display
10008I'm having trouble using Bison. Where can I find help?
10009@end display
10010
10011First, read this fine manual. Beyond that, you can send mail to
10012@email{help-bison@@gnu.org}. This mailing list is intended to be
10013populated with people who are willing to answer questions about using
10014and installing Bison. Please keep in mind that (most of) the people on
10015the list have aspects of their lives which are not related to Bison (!),
10016so you may not receive an answer to your question right away. This can
10017be frustrating, but please try not to honk them off; remember that any
10018help they provide is purely voluntary and out of the kindness of their
10019hearts.
10020
10021@node Bug Reports
10022@section Bug Reports
10023
10024@display
10025I found a bug. What should I include in the bug report?
10026@end display
10027
10028Before you send a bug report, make sure you are using the latest
10029version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10030mirrors. Be sure to include the version number in your bug report. If
10031the bug is present in the latest version but not in a previous version,
10032try to determine the most recent version which did not contain the bug.
10033
10034If the bug is parser-related, you should include the smallest grammar
10035you can which demonstrates the bug. The grammar file should also be
10036complete (i.e., I should be able to run it through Bison without having
10037to edit or add anything). The smaller and simpler the grammar, the
10038easier it will be to fix the bug.
10039
10040Include information about your compilation environment, including your
10041operating system's name and version and your compiler's name and
10042version. If you have trouble compiling, you should also include a
10043transcript of the build session, starting with the invocation of
10044`configure'. Depending on the nature of the bug, you may be asked to
10045send additional files as well (such as `config.h' or `config.cache').
10046
10047Patches are most welcome, but not required. That is, do not hesitate to
10048send a bug report just because you can not provide a fix.
10049
10050Send bug reports to @email{bug-bison@@gnu.org}.
10051
8405b70c
PB
10052@node More Languages
10053@section More Languages
55ba27be
AD
10054
10055@display
8405b70c 10056Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10057favorite language here}?
10058@end display
10059
8405b70c 10060C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10061languages; contributions are welcome.
10062
10063@node Beta Testing
10064@section Beta Testing
10065
10066@display
10067What is involved in being a beta tester?
10068@end display
10069
10070It's not terribly involved. Basically, you would download a test
10071release, compile it, and use it to build and run a parser or two. After
10072that, you would submit either a bug report or a message saying that
10073everything is okay. It is important to report successes as well as
10074failures because test releases eventually become mainstream releases,
10075but only if they are adequately tested. If no one tests, development is
10076essentially halted.
10077
10078Beta testers are particularly needed for operating systems to which the
10079developers do not have easy access. They currently have easy access to
10080recent GNU/Linux and Solaris versions. Reports about other operating
10081systems are especially welcome.
10082
10083@node Mailing Lists
10084@section Mailing Lists
10085
10086@display
10087How do I join the help-bison and bug-bison mailing lists?
10088@end display
10089
10090See @url{http://lists.gnu.org/}.
a06ea4aa 10091
d1a1114f
AD
10092@c ================================================= Table of Symbols
10093
342b8b6e 10094@node Table of Symbols
bfa74976
RS
10095@appendix Bison Symbols
10096@cindex Bison symbols, table of
10097@cindex symbols in Bison, table of
10098
18b519c0 10099@deffn {Variable} @@$
3ded9a63 10100In an action, the location of the left-hand side of the rule.
88bce5a2 10101@xref{Locations, , Locations Overview}.
18b519c0 10102@end deffn
3ded9a63 10103
18b519c0 10104@deffn {Variable} @@@var{n}
3ded9a63
AD
10105In an action, the location of the @var{n}-th symbol of the right-hand
10106side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10107@end deffn
3ded9a63 10108
18b519c0 10109@deffn {Variable} $$
3ded9a63
AD
10110In an action, the semantic value of the left-hand side of the rule.
10111@xref{Actions}.
18b519c0 10112@end deffn
3ded9a63 10113
18b519c0 10114@deffn {Variable} $@var{n}
3ded9a63
AD
10115In an action, the semantic value of the @var{n}-th symbol of the
10116right-hand side of the rule. @xref{Actions}.
18b519c0 10117@end deffn
3ded9a63 10118
dd8d9022
AD
10119@deffn {Delimiter} %%
10120Delimiter used to separate the grammar rule section from the
10121Bison declarations section or the epilogue.
10122@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10123@end deffn
bfa74976 10124
dd8d9022
AD
10125@c Don't insert spaces, or check the DVI output.
10126@deffn {Delimiter} %@{@var{code}%@}
10127All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10128the output file uninterpreted. Such code forms the prologue of the input
10129file. @xref{Grammar Outline, ,Outline of a Bison
10130Grammar}.
18b519c0 10131@end deffn
bfa74976 10132
dd8d9022
AD
10133@deffn {Construct} /*@dots{}*/
10134Comment delimiters, as in C.
18b519c0 10135@end deffn
bfa74976 10136
dd8d9022
AD
10137@deffn {Delimiter} :
10138Separates a rule's result from its components. @xref{Rules, ,Syntax of
10139Grammar Rules}.
18b519c0 10140@end deffn
bfa74976 10141
dd8d9022
AD
10142@deffn {Delimiter} ;
10143Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10144@end deffn
bfa74976 10145
dd8d9022
AD
10146@deffn {Delimiter} |
10147Separates alternate rules for the same result nonterminal.
10148@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10149@end deffn
bfa74976 10150
12e35840
JD
10151@deffn {Directive} <*>
10152Used to define a default tagged @code{%destructor} or default tagged
10153@code{%printer}.
85894313
JD
10154
10155This feature is experimental.
10156More user feedback will help to determine whether it should become a permanent
10157feature.
10158
12e35840
JD
10159@xref{Destructor Decl, , Freeing Discarded Symbols}.
10160@end deffn
10161
3ebecc24 10162@deffn {Directive} <>
12e35840
JD
10163Used to define a default tagless @code{%destructor} or default tagless
10164@code{%printer}.
85894313
JD
10165
10166This feature is experimental.
10167More user feedback will help to determine whether it should become a permanent
10168feature.
10169
12e35840
JD
10170@xref{Destructor Decl, , Freeing Discarded Symbols}.
10171@end deffn
10172
dd8d9022
AD
10173@deffn {Symbol} $accept
10174The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10175$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10176Start-Symbol}. It cannot be used in the grammar.
18b519c0 10177@end deffn
bfa74976 10178
136a0f76 10179@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10180@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10181Insert @var{code} verbatim into output parser source.
10182@xref{Decl Summary,,%code}.
9bc0dd67
JD
10183@end deffn
10184
10185@deffn {Directive} %debug
10186Equip the parser for debugging. @xref{Decl Summary}.
10187@end deffn
10188
91d2c560 10189@ifset defaultprec
22fccf95
PE
10190@deffn {Directive} %default-prec
10191Assign a precedence to rules that lack an explicit @samp{%prec}
10192modifier. @xref{Contextual Precedence, ,Context-Dependent
10193Precedence}.
39a06c25 10194@end deffn
91d2c560 10195@end ifset
39a06c25 10196
148d66d8
JD
10197@deffn {Directive} %define @var{define-variable}
10198@deffnx {Directive} %define @var{define-variable} @var{value}
10199Define a variable to adjust Bison's behavior.
10200@xref{Decl Summary,,%define}.
10201@end deffn
10202
18b519c0 10203@deffn {Directive} %defines
6deb4447
AD
10204Bison declaration to create a header file meant for the scanner.
10205@xref{Decl Summary}.
18b519c0 10206@end deffn
6deb4447 10207
02975b9a
JD
10208@deffn {Directive} %defines @var{defines-file}
10209Same as above, but save in the file @var{defines-file}.
10210@xref{Decl Summary}.
10211@end deffn
10212
18b519c0 10213@deffn {Directive} %destructor
258b75ca 10214Specify how the parser should reclaim the memory associated to
fa7e68c3 10215discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10216@end deffn
72f889cc 10217
18b519c0 10218@deffn {Directive} %dprec
676385e2 10219Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10220time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10221@acronym{GLR} Parsers}.
18b519c0 10222@end deffn
676385e2 10223
dd8d9022
AD
10224@deffn {Symbol} $end
10225The predefined token marking the end of the token stream. It cannot be
10226used in the grammar.
10227@end deffn
10228
10229@deffn {Symbol} error
10230A token name reserved for error recovery. This token may be used in
10231grammar rules so as to allow the Bison parser to recognize an error in
10232the grammar without halting the process. In effect, a sentence
10233containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10234token @code{error} becomes the current lookahead token. Actions
10235corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10236token is reset to the token that originally caused the violation.
10237@xref{Error Recovery}.
18d192f0
AD
10238@end deffn
10239
18b519c0 10240@deffn {Directive} %error-verbose
71b00ed8 10241An obsolete directive standing for @samp{%define error-verbose}.
18b519c0 10242@end deffn
2a8d363a 10243
02975b9a 10244@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10245Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10246Summary}.
18b519c0 10247@end deffn
d8988b2f 10248
18b519c0 10249@deffn {Directive} %glr-parser
c827f760
PE
10250Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10251Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10252@end deffn
676385e2 10253
dd8d9022
AD
10254@deffn {Directive} %initial-action
10255Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10256@end deffn
10257
e6e704dc
JD
10258@deffn {Directive} %language
10259Specify the programming language for the generated parser.
10260@xref{Decl Summary}.
10261@end deffn
10262
18b519c0 10263@deffn {Directive} %left
d78f0ac9 10264Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10265@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10266@end deffn
bfa74976 10267
feeb0eda 10268@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10269Bison declaration to specifying an additional parameter that
10270@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10271for Pure Parsers}.
18b519c0 10272@end deffn
2a8d363a 10273
18b519c0 10274@deffn {Directive} %merge
676385e2 10275Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10276reduce/reduce conflict with a rule having the same merging function, the
676385e2 10277function is applied to the two semantic values to get a single result.
c827f760 10278@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10279@end deffn
676385e2 10280
02975b9a 10281@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10282Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10283@end deffn
d8988b2f 10284
91d2c560 10285@ifset defaultprec
22fccf95
PE
10286@deffn {Directive} %no-default-prec
10287Do not assign a precedence to rules that lack an explicit @samp{%prec}
10288modifier. @xref{Contextual Precedence, ,Context-Dependent
10289Precedence}.
10290@end deffn
91d2c560 10291@end ifset
22fccf95 10292
18b519c0 10293@deffn {Directive} %no-lines
931c7513
RS
10294Bison declaration to avoid generating @code{#line} directives in the
10295parser file. @xref{Decl Summary}.
18b519c0 10296@end deffn
931c7513 10297
18b519c0 10298@deffn {Directive} %nonassoc
d78f0ac9 10299Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10300@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10301@end deffn
bfa74976 10302
02975b9a 10303@deffn {Directive} %output "@var{file}"
72d2299c 10304Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10305Summary}.
18b519c0 10306@end deffn
d8988b2f 10307
feeb0eda 10308@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10309Bison declaration to specifying an additional parameter that
10310@code{yyparse} should accept. @xref{Parser Function,, The Parser
10311Function @code{yyparse}}.
18b519c0 10312@end deffn
2a8d363a 10313
18b519c0 10314@deffn {Directive} %prec
bfa74976
RS
10315Bison declaration to assign a precedence to a specific rule.
10316@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10317@end deffn
bfa74976 10318
d78f0ac9
AD
10319@deffn {Directive} %precedence
10320Bison declaration to assign precedence to token(s), but no associativity
10321@xref{Precedence Decl, ,Operator Precedence}.
10322@end deffn
10323
18b519c0 10324@deffn {Directive} %pure-parser
67501061 10325Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 10326for which Bison is more careful to warn about unreasonable usage.
18b519c0 10327@end deffn
bfa74976 10328
b50d2359 10329@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10330Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10331Require a Version of Bison}.
b50d2359
AD
10332@end deffn
10333
18b519c0 10334@deffn {Directive} %right
d78f0ac9 10335Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10336@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10337@end deffn
bfa74976 10338
e6e704dc
JD
10339@deffn {Directive} %skeleton
10340Specify the skeleton to use; usually for development.
10341@xref{Decl Summary}.
10342@end deffn
10343
18b519c0 10344@deffn {Directive} %start
704a47c4
AD
10345Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10346Start-Symbol}.
18b519c0 10347@end deffn
bfa74976 10348
18b519c0 10349@deffn {Directive} %token
bfa74976
RS
10350Bison declaration to declare token(s) without specifying precedence.
10351@xref{Token Decl, ,Token Type Names}.
18b519c0 10352@end deffn
bfa74976 10353
18b519c0 10354@deffn {Directive} %token-table
931c7513
RS
10355Bison declaration to include a token name table in the parser file.
10356@xref{Decl Summary}.
18b519c0 10357@end deffn
931c7513 10358
18b519c0 10359@deffn {Directive} %type
704a47c4
AD
10360Bison declaration to declare nonterminals. @xref{Type Decl,
10361,Nonterminal Symbols}.
18b519c0 10362@end deffn
bfa74976 10363
dd8d9022
AD
10364@deffn {Symbol} $undefined
10365The predefined token onto which all undefined values returned by
10366@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10367@code{error}.
10368@end deffn
10369
18b519c0 10370@deffn {Directive} %union
bfa74976
RS
10371Bison declaration to specify several possible data types for semantic
10372values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10373@end deffn
bfa74976 10374
dd8d9022
AD
10375@deffn {Macro} YYABORT
10376Macro to pretend that an unrecoverable syntax error has occurred, by
10377making @code{yyparse} return 1 immediately. The error reporting
10378function @code{yyerror} is not called. @xref{Parser Function, ,The
10379Parser Function @code{yyparse}}.
8405b70c
PB
10380
10381For Java parsers, this functionality is invoked using @code{return YYABORT;}
10382instead.
dd8d9022 10383@end deffn
3ded9a63 10384
dd8d9022
AD
10385@deffn {Macro} YYACCEPT
10386Macro to pretend that a complete utterance of the language has been
10387read, by making @code{yyparse} return 0 immediately.
10388@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10389
10390For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10391instead.
dd8d9022 10392@end deffn
bfa74976 10393
dd8d9022 10394@deffn {Macro} YYBACKUP
742e4900 10395Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10396token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10397@end deffn
bfa74976 10398
dd8d9022 10399@deffn {Variable} yychar
32c29292 10400External integer variable that contains the integer value of the
742e4900 10401lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10402@code{yyparse}.) Error-recovery rule actions may examine this variable.
10403@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10404@end deffn
bfa74976 10405
dd8d9022
AD
10406@deffn {Variable} yyclearin
10407Macro used in error-recovery rule actions. It clears the previous
742e4900 10408lookahead token. @xref{Error Recovery}.
18b519c0 10409@end deffn
bfa74976 10410
dd8d9022
AD
10411@deffn {Macro} YYDEBUG
10412Macro to define to equip the parser with tracing code. @xref{Tracing,
10413,Tracing Your Parser}.
18b519c0 10414@end deffn
bfa74976 10415
dd8d9022
AD
10416@deffn {Variable} yydebug
10417External integer variable set to zero by default. If @code{yydebug}
10418is given a nonzero value, the parser will output information on input
10419symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10420@end deffn
bfa74976 10421
dd8d9022
AD
10422@deffn {Macro} yyerrok
10423Macro to cause parser to recover immediately to its normal mode
10424after a syntax error. @xref{Error Recovery}.
10425@end deffn
10426
10427@deffn {Macro} YYERROR
10428Macro to pretend that a syntax error has just been detected: call
10429@code{yyerror} and then perform normal error recovery if possible
10430(@pxref{Error Recovery}), or (if recovery is impossible) make
10431@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10432
10433For Java parsers, this functionality is invoked using @code{return YYERROR;}
10434instead.
dd8d9022
AD
10435@end deffn
10436
10437@deffn {Function} yyerror
10438User-supplied function to be called by @code{yyparse} on error.
71b00ed8 10439@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
10440@end deffn
10441
10442@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
10443An obsolete macro used in the @file{yacc.c} skeleton, that you define
10444with @code{#define} in the prologue to request verbose, specific error
10445message strings when @code{yyerror} is called. It doesn't matter what
10446definition you use for @code{YYERROR_VERBOSE}, just whether you define
67501061 10447it. Using @samp{%define error-verbose} is preferred (@pxref{Error
71b00ed8 10448Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
10449@end deffn
10450
10451@deffn {Macro} YYINITDEPTH
10452Macro for specifying the initial size of the parser stack.
1a059451 10453@xref{Memory Management}.
dd8d9022
AD
10454@end deffn
10455
10456@deffn {Function} yylex
10457User-supplied lexical analyzer function, called with no arguments to get
10458the next token. @xref{Lexical, ,The Lexical Analyzer Function
10459@code{yylex}}.
10460@end deffn
10461
10462@deffn {Macro} YYLEX_PARAM
10463An obsolete macro for specifying an extra argument (or list of extra
32c29292 10464arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10465macro is deprecated, and is supported only for Yacc like parsers.
10466@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10467@end deffn
10468
10469@deffn {Variable} yylloc
10470External variable in which @code{yylex} should place the line and column
10471numbers associated with a token. (In a pure parser, it is a local
10472variable within @code{yyparse}, and its address is passed to
32c29292
JD
10473@code{yylex}.)
10474You can ignore this variable if you don't use the @samp{@@} feature in the
10475grammar actions.
10476@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10477In semantic actions, it stores the location of the lookahead token.
32c29292 10478@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10479@end deffn
10480
10481@deffn {Type} YYLTYPE
10482Data type of @code{yylloc}; by default, a structure with four
10483members. @xref{Location Type, , Data Types of Locations}.
10484@end deffn
10485
10486@deffn {Variable} yylval
10487External variable in which @code{yylex} should place the semantic
10488value associated with a token. (In a pure parser, it is a local
10489variable within @code{yyparse}, and its address is passed to
32c29292
JD
10490@code{yylex}.)
10491@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10492In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10493@xref{Actions, ,Actions}.
dd8d9022
AD
10494@end deffn
10495
10496@deffn {Macro} YYMAXDEPTH
1a059451
PE
10497Macro for specifying the maximum size of the parser stack. @xref{Memory
10498Management}.
dd8d9022
AD
10499@end deffn
10500
10501@deffn {Variable} yynerrs
8a2800e7 10502Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10503(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10504pure push parser, it is a member of yypstate.)
dd8d9022
AD
10505@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10506@end deffn
10507
10508@deffn {Function} yyparse
10509The parser function produced by Bison; call this function to start
10510parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10511@end deffn
10512
9987d1b3 10513@deffn {Function} yypstate_delete
f4101aa6 10514The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10515call this function to delete the memory associated with a parser.
f4101aa6 10516@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10517@code{yypstate_delete}}.
59da312b
JD
10518(The current push parsing interface is experimental and may evolve.
10519More user feedback will help to stabilize it.)
9987d1b3
JD
10520@end deffn
10521
10522@deffn {Function} yypstate_new
f4101aa6 10523The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10524call this function to create a new parser.
f4101aa6 10525@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10526@code{yypstate_new}}.
59da312b
JD
10527(The current push parsing interface is experimental and may evolve.
10528More user feedback will help to stabilize it.)
9987d1b3
JD
10529@end deffn
10530
10531@deffn {Function} yypull_parse
f4101aa6
AD
10532The parser function produced by Bison in push mode; call this function to
10533parse the rest of the input stream.
10534@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10535@code{yypull_parse}}.
59da312b
JD
10536(The current push parsing interface is experimental and may evolve.
10537More user feedback will help to stabilize it.)
9987d1b3
JD
10538@end deffn
10539
10540@deffn {Function} yypush_parse
f4101aa6
AD
10541The parser function produced by Bison in push mode; call this function to
10542parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10543@code{yypush_parse}}.
59da312b
JD
10544(The current push parsing interface is experimental and may evolve.
10545More user feedback will help to stabilize it.)
9987d1b3
JD
10546@end deffn
10547
dd8d9022
AD
10548@deffn {Macro} YYPARSE_PARAM
10549An obsolete macro for specifying the name of a parameter that
10550@code{yyparse} should accept. The use of this macro is deprecated, and
10551is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10552Conventions for Pure Parsers}.
10553@end deffn
10554
10555@deffn {Macro} YYRECOVERING
02103984
PE
10556The expression @code{YYRECOVERING ()} yields 1 when the parser
10557is recovering from a syntax error, and 0 otherwise.
10558@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10559@end deffn
10560
10561@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
10562Macro used to control the use of @code{alloca} when the
10563deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10564the parser will use @code{malloc} to extend its stacks. If defined to
105651, the parser will use @code{alloca}. Values other than 0 and 1 are
10566reserved for future Bison extensions. If not defined,
10567@code{YYSTACK_USE_ALLOCA} defaults to 0.
10568
55289366 10569In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10570limited stack and with unreliable stack-overflow checking, you should
10571set @code{YYMAXDEPTH} to a value that cannot possibly result in
10572unchecked stack overflow on any of your target hosts when
10573@code{alloca} is called. You can inspect the code that Bison
10574generates in order to determine the proper numeric values. This will
10575require some expertise in low-level implementation details.
dd8d9022
AD
10576@end deffn
10577
10578@deffn {Type} YYSTYPE
10579Data type of semantic values; @code{int} by default.
10580@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10581@end deffn
bfa74976 10582
342b8b6e 10583@node Glossary
bfa74976
RS
10584@appendix Glossary
10585@cindex glossary
10586
10587@table @asis
eb45ef3b
JD
10588@item Accepting State
10589A state whose only action is the accept action.
10590The accepting state is thus a consistent state.
10591@xref{Understanding,,}.
10592
c827f760
PE
10593@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10594Formal method of specifying context-free grammars originally proposed
10595by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10596committee document contributing to what became the Algol 60 report.
10597@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10598
eb45ef3b
JD
10599@item Consistent State
10600A state containing only one possible action.
5bab9d08 10601@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 10602
bfa74976
RS
10603@item Context-free grammars
10604Grammars specified as rules that can be applied regardless of context.
10605Thus, if there is a rule which says that an integer can be used as an
10606expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10607permitted. @xref{Language and Grammar, ,Languages and Context-Free
10608Grammars}.
bfa74976 10609
110ef36a
JD
10610@item Default Reduction
10611The reduction that a parser should perform if the current parser state
eb45ef3b 10612contains no other action for the lookahead token.
110ef36a
JD
10613In permitted parser states, Bison declares the reduction with the
10614largest lookahead set to be the default reduction and removes that
10615lookahead set.
5bab9d08 10616@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 10617
bfa74976
RS
10618@item Dynamic allocation
10619Allocation of memory that occurs during execution, rather than at
10620compile time or on entry to a function.
10621
10622@item Empty string
10623Analogous to the empty set in set theory, the empty string is a
10624character string of length zero.
10625
10626@item Finite-state stack machine
10627A ``machine'' that has discrete states in which it is said to exist at
10628each instant in time. As input to the machine is processed, the
10629machine moves from state to state as specified by the logic of the
10630machine. In the case of the parser, the input is the language being
10631parsed, and the states correspond to various stages in the grammar
c827f760 10632rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10633
c827f760 10634@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10635A parsing algorithm that can handle all context-free grammars, including those
eb45ef3b
JD
10636that are not @acronym{LR}(1). It resolves situations that Bison's
10637deterministic parsing
676385e2
PH
10638algorithm cannot by effectively splitting off multiple parsers, trying all
10639possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10640right context. @xref{Generalized LR Parsing, ,Generalized
10641@acronym{LR} Parsing}.
676385e2 10642
bfa74976
RS
10643@item Grouping
10644A language construct that is (in general) grammatically divisible;
c827f760 10645for example, `expression' or `declaration' in C@.
bfa74976
RS
10646@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10647
eb45ef3b
JD
10648@item @acronym{IELR}(1)
10649A minimal @acronym{LR}(1) parser table generation algorithm.
10650That is, given any context-free grammar, @acronym{IELR}(1) generates
10651parser tables with the full language recognition power of canonical
10652@acronym{LR}(1) but with nearly the same number of parser states as
10653@acronym{LALR}(1).
10654This reduction in parser states is often an order of magnitude.
10655More importantly, because canonical @acronym{LR}(1)'s extra parser
10656states may contain duplicate conflicts in the case of
10657non-@acronym{LR}(1) grammars, the number of conflicts for
10658@acronym{IELR}(1) is often an order of magnitude less as well.
10659This can significantly reduce the complexity of developing of a grammar.
10660@xref{Decl Summary,,lr.type}.
10661
bfa74976
RS
10662@item Infix operator
10663An arithmetic operator that is placed between the operands on which it
10664performs some operation.
10665
10666@item Input stream
10667A continuous flow of data between devices or programs.
10668
10669@item Language construct
10670One of the typical usage schemas of the language. For example, one of
10671the constructs of the C language is the @code{if} statement.
10672@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10673
10674@item Left associativity
10675Operators having left associativity are analyzed from left to right:
10676@samp{a+b+c} first computes @samp{a+b} and then combines with
10677@samp{c}. @xref{Precedence, ,Operator Precedence}.
10678
10679@item Left recursion
89cab50d
AD
10680A rule whose result symbol is also its first component symbol; for
10681example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10682Rules}.
bfa74976
RS
10683
10684@item Left-to-right parsing
10685Parsing a sentence of a language by analyzing it token by token from
c827f760 10686left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10687
10688@item Lexical analyzer (scanner)
10689A function that reads an input stream and returns tokens one by one.
10690@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10691
10692@item Lexical tie-in
10693A flag, set by actions in the grammar rules, which alters the way
10694tokens are parsed. @xref{Lexical Tie-ins}.
10695
931c7513 10696@item Literal string token
14ded682 10697A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10698
742e4900
JD
10699@item Lookahead token
10700A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10701Tokens}.
bfa74976 10702
c827f760 10703@item @acronym{LALR}(1)
bfa74976 10704The class of context-free grammars that Bison (like most other parser
eb45ef3b
JD
10705generators) can handle by default; a subset of @acronym{LR}(1).
10706@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10707
c827f760 10708@item @acronym{LR}(1)
bfa74976 10709The class of context-free grammars in which at most one token of
742e4900 10710lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10711
10712@item Nonterminal symbol
10713A grammar symbol standing for a grammatical construct that can
10714be expressed through rules in terms of smaller constructs; in other
10715words, a construct that is not a token. @xref{Symbols}.
10716
bfa74976
RS
10717@item Parser
10718A function that recognizes valid sentences of a language by analyzing
10719the syntax structure of a set of tokens passed to it from a lexical
10720analyzer.
10721
10722@item Postfix operator
10723An arithmetic operator that is placed after the operands upon which it
10724performs some operation.
10725
10726@item Reduction
10727Replacing a string of nonterminals and/or terminals with a single
89cab50d 10728nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10729Parser Algorithm}.
bfa74976
RS
10730
10731@item Reentrant
10732A reentrant subprogram is a subprogram which can be in invoked any
10733number of times in parallel, without interference between the various
10734invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10735
10736@item Reverse polish notation
10737A language in which all operators are postfix operators.
10738
10739@item Right recursion
89cab50d
AD
10740A rule whose result symbol is also its last component symbol; for
10741example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10742Rules}.
bfa74976
RS
10743
10744@item Semantics
10745In computer languages, the semantics are specified by the actions
10746taken for each instance of the language, i.e., the meaning of
10747each statement. @xref{Semantics, ,Defining Language Semantics}.
10748
10749@item Shift
10750A parser is said to shift when it makes the choice of analyzing
10751further input from the stream rather than reducing immediately some
c827f760 10752already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10753
10754@item Single-character literal
10755A single character that is recognized and interpreted as is.
10756@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10757
10758@item Start symbol
10759The nonterminal symbol that stands for a complete valid utterance in
10760the language being parsed. The start symbol is usually listed as the
13863333 10761first nonterminal symbol in a language specification.
bfa74976
RS
10762@xref{Start Decl, ,The Start-Symbol}.
10763
10764@item Symbol table
10765A data structure where symbol names and associated data are stored
10766during parsing to allow for recognition and use of existing
10767information in repeated uses of a symbol. @xref{Multi-function Calc}.
10768
6e649e65
PE
10769@item Syntax error
10770An error encountered during parsing of an input stream due to invalid
10771syntax. @xref{Error Recovery}.
10772
bfa74976
RS
10773@item Token
10774A basic, grammatically indivisible unit of a language. The symbol
10775that describes a token in the grammar is a terminal symbol.
10776The input of the Bison parser is a stream of tokens which comes from
10777the lexical analyzer. @xref{Symbols}.
10778
10779@item Terminal symbol
89cab50d
AD
10780A grammar symbol that has no rules in the grammar and therefore is
10781grammatically indivisible. The piece of text it represents is a token.
10782@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10783@end table
10784
342b8b6e 10785@node Copying This Manual
f2b5126e 10786@appendix Copying This Manual
f2b5126e
PB
10787@include fdl.texi
10788
342b8b6e 10789@node Index
bfa74976
RS
10790@unnumbered Index
10791
10792@printindex cp
10793
bfa74976 10794@bye
a06ea4aa
AD
10795
10796@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10797@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10798@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10799@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10800@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f5f419de 10801@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10802@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10803@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10804@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10805@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10806@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10807@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10808@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10809@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10810@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10811@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10812@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10813@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10814@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10815@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10816@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10817@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10818@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10819@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10820@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10821@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10822@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10823@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
eb45ef3b 10824@c LocalWords: YYSTACK DVI fdl printindex IELR