]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Rename "default rule" to "default reduction".
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58 353@dfn{Bison} is a general-purpose parser generator that converts an
34a6c2d1
JD
354annotated context-free grammar into a deterministic or @acronym{GLR}
355parser employing @acronym{LALR}(1), @acronym{IELR}(1), or canonical
356@acronym{LR}(1) parser tables.
357Once you are proficient with Bison, you can use it to develop a wide
358range of language parsers, from those used in simple desk calculators to
359complex programming languages.
bfa74976
RS
360
361Bison is upward compatible with Yacc: all properly-written Yacc grammars
362ought to work with Bison with no change. Anyone familiar with Yacc
363should be able to use Bison with little trouble. You need to be fluent in
1e137b71 364C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
365
366We begin with tutorial chapters that explain the basic concepts of using
367Bison and show three explained examples, each building on the last. If you
368don't know Bison or Yacc, start by reading these chapters. Reference
369chapters follow which describe specific aspects of Bison in detail.
370
931c7513
RS
371Bison was written primarily by Robert Corbett; Richard Stallman made it
372Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 373multi-character string literals and other features.
931c7513 374
df1af54c 375This edition corresponds to version @value{VERSION} of Bison.
bfa74976 376
342b8b6e 377@node Conditions
bfa74976
RS
378@unnumbered Conditions for Using Bison
379
193d7c70
PE
380The distribution terms for Bison-generated parsers permit using the
381parsers in nonfree programs. Before Bison version 2.2, these extra
382permissions applied only when Bison was generating @acronym{LALR}(1)
383parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 384parsers could be used only in programs that were free software.
a31239f1 385
c827f760
PE
386The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
387compiler, have never
9ecbd125 388had such a requirement. They could always be used for nonfree
a31239f1
RS
389software. The reason Bison was different was not due to a special
390policy decision; it resulted from applying the usual General Public
391License to all of the Bison source code.
392
393The output of the Bison utility---the Bison parser file---contains a
394verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
395parser's implementation. (The actions from your grammar are inserted
396into this implementation at one point, but most of the rest of the
397implementation is not changed.) When we applied the @acronym{GPL}
398terms to the skeleton code for the parser's implementation,
a31239f1
RS
399the effect was to restrict the use of Bison output to free software.
400
401We didn't change the terms because of sympathy for people who want to
402make software proprietary. @strong{Software should be free.} But we
403concluded that limiting Bison's use to free software was doing little to
404encourage people to make other software free. So we decided to make the
405practical conditions for using Bison match the practical conditions for
c827f760 406using the other @acronym{GNU} tools.
bfa74976 407
193d7c70
PE
408This exception applies when Bison is generating code for a parser.
409You can tell whether the exception applies to a Bison output file by
410inspecting the file for text beginning with ``As a special
411exception@dots{}''. The text spells out the exact terms of the
412exception.
262aa8dd 413
f16b0819
PE
414@node Copying
415@unnumbered GNU GENERAL PUBLIC LICENSE
416@include gpl-3.0.texi
bfa74976 417
342b8b6e 418@node Concepts
bfa74976
RS
419@chapter The Concepts of Bison
420
421This chapter introduces many of the basic concepts without which the
422details of Bison will not make sense. If you do not already know how to
423use Bison or Yacc, we suggest you start by reading this chapter carefully.
424
425@menu
f56274a8
DJ
426* Language and Grammar:: Languages and context-free grammars,
427 as mathematical ideas.
428* Grammar in Bison:: How we represent grammars for Bison's sake.
429* Semantic Values:: Each token or syntactic grouping can have
430 a semantic value (the value of an integer,
431 the name of an identifier, etc.).
432* Semantic Actions:: Each rule can have an action containing C code.
433* GLR Parsers:: Writing parsers for general context-free languages.
434* Locations Overview:: Tracking Locations.
435* Bison Parser:: What are Bison's input and output,
436 how is the output used?
437* Stages:: Stages in writing and running Bison grammars.
438* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
439@end menu
440
342b8b6e 441@node Language and Grammar
bfa74976
RS
442@section Languages and Context-Free Grammars
443
bfa74976
RS
444@cindex context-free grammar
445@cindex grammar, context-free
446In order for Bison to parse a language, it must be described by a
447@dfn{context-free grammar}. This means that you specify one or more
448@dfn{syntactic groupings} and give rules for constructing them from their
449parts. For example, in the C language, one kind of grouping is called an
450`expression'. One rule for making an expression might be, ``An expression
451can be made of a minus sign and another expression''. Another would be,
452``An expression can be an integer''. As you can see, rules are often
453recursive, but there must be at least one rule which leads out of the
454recursion.
455
c827f760 456@cindex @acronym{BNF}
bfa74976
RS
457@cindex Backus-Naur form
458The most common formal system for presenting such rules for humans to read
c827f760
PE
459is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
460order to specify the language Algol 60. Any grammar expressed in
461@acronym{BNF} is a context-free grammar. The input to Bison is
462essentially machine-readable @acronym{BNF}.
bfa74976 463
c827f760 464@cindex @acronym{LALR}(1) grammars
34a6c2d1 465@cindex @acronym{IELR}(1) grammars
c827f760 466@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
467There are various important subclasses of context-free grammars.
468Although it can handle almost all context-free grammars, Bison is
469optimized for what are called @acronym{LR}(1) grammars.
470In brief, in these grammars, it must be possible to tell how to parse
471any portion of an input string with just a single token of lookahead.
472For historical reasons, Bison by default is limited by the additional
473restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
34a6c2d1
JD
476To escape these additional restrictions, you can request
477@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
478@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 479
c827f760
PE
480@cindex @acronym{GLR} parsing
481@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 482@cindex ambiguous grammars
9d9b8b70 483@cindex nondeterministic parsing
9501dc6e 484
34a6c2d1 485Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
486roughly that the next grammar rule to apply at any point in the input is
487uniquely determined by the preceding input and a fixed, finite portion
742e4900 488(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 489grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 490apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 491grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 492lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
493With the proper declarations, Bison is also able to parse these more
494general context-free grammars, using a technique known as @acronym{GLR}
495parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
496are able to handle any context-free grammar for which the number of
497possible parses of any given string is finite.
676385e2 498
bfa74976
RS
499@cindex symbols (abstract)
500@cindex token
501@cindex syntactic grouping
502@cindex grouping, syntactic
9501dc6e
AD
503In the formal grammatical rules for a language, each kind of syntactic
504unit or grouping is named by a @dfn{symbol}. Those which are built by
505grouping smaller constructs according to grammatical rules are called
bfa74976
RS
506@dfn{nonterminal symbols}; those which can't be subdivided are called
507@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
508corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 509corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
510
511We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
512nonterminal, mean. The tokens of C are identifiers, constants (numeric
513and string), and the various keywords, arithmetic operators and
514punctuation marks. So the terminal symbols of a grammar for C include
515`identifier', `number', `string', plus one symbol for each keyword,
516operator or punctuation mark: `if', `return', `const', `static', `int',
517`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
518(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
519lexicography, not grammar.)
520
521Here is a simple C function subdivided into tokens:
522
9edcd895
AD
523@ifinfo
524@example
525int /* @r{keyword `int'} */
14d4662b 526square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
527 @r{identifier, close-paren} */
528@{ /* @r{open-brace} */
aa08666d
AD
529 return x * x; /* @r{keyword `return', identifier, asterisk,}
530 @r{identifier, semicolon} */
9edcd895
AD
531@} /* @r{close-brace} */
532@end example
533@end ifinfo
534@ifnotinfo
bfa74976
RS
535@example
536int /* @r{keyword `int'} */
14d4662b 537square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 538@{ /* @r{open-brace} */
9edcd895 539 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
540@} /* @r{close-brace} */
541@end example
9edcd895 542@end ifnotinfo
bfa74976
RS
543
544The syntactic groupings of C include the expression, the statement, the
545declaration, and the function definition. These are represented in the
546grammar of C by nonterminal symbols `expression', `statement',
547`declaration' and `function definition'. The full grammar uses dozens of
548additional language constructs, each with its own nonterminal symbol, in
549order to express the meanings of these four. The example above is a
550function definition; it contains one declaration, and one statement. In
551the statement, each @samp{x} is an expression and so is @samp{x * x}.
552
553Each nonterminal symbol must have grammatical rules showing how it is made
554out of simpler constructs. For example, one kind of C statement is the
555@code{return} statement; this would be described with a grammar rule which
556reads informally as follows:
557
558@quotation
559A `statement' can be made of a `return' keyword, an `expression' and a
560`semicolon'.
561@end quotation
562
563@noindent
564There would be many other rules for `statement', one for each kind of
565statement in C.
566
567@cindex start symbol
568One nonterminal symbol must be distinguished as the special one which
569defines a complete utterance in the language. It is called the @dfn{start
570symbol}. In a compiler, this means a complete input program. In the C
571language, the nonterminal symbol `sequence of definitions and declarations'
572plays this role.
573
574For example, @samp{1 + 2} is a valid C expression---a valid part of a C
575program---but it is not valid as an @emph{entire} C program. In the
576context-free grammar of C, this follows from the fact that `expression' is
577not the start symbol.
578
579The Bison parser reads a sequence of tokens as its input, and groups the
580tokens using the grammar rules. If the input is valid, the end result is
581that the entire token sequence reduces to a single grouping whose symbol is
582the grammar's start symbol. If we use a grammar for C, the entire input
583must be a `sequence of definitions and declarations'. If not, the parser
584reports a syntax error.
585
342b8b6e 586@node Grammar in Bison
bfa74976
RS
587@section From Formal Rules to Bison Input
588@cindex Bison grammar
589@cindex grammar, Bison
590@cindex formal grammar
591
592A formal grammar is a mathematical construct. To define the language
593for Bison, you must write a file expressing the grammar in Bison syntax:
594a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
595
596A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 597as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
598in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
599
600The Bison representation for a terminal symbol is also called a @dfn{token
601type}. Token types as well can be represented as C-like identifiers. By
602convention, these identifiers should be upper case to distinguish them from
603nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
604@code{RETURN}. A terminal symbol that stands for a particular keyword in
605the language should be named after that keyword converted to upper case.
606The terminal symbol @code{error} is reserved for error recovery.
931c7513 607@xref{Symbols}.
bfa74976
RS
608
609A terminal symbol can also be represented as a character literal, just like
610a C character constant. You should do this whenever a token is just a
611single character (parenthesis, plus-sign, etc.): use that same character in
612a literal as the terminal symbol for that token.
613
931c7513
RS
614A third way to represent a terminal symbol is with a C string constant
615containing several characters. @xref{Symbols}, for more information.
616
bfa74976
RS
617The grammar rules also have an expression in Bison syntax. For example,
618here is the Bison rule for a C @code{return} statement. The semicolon in
619quotes is a literal character token, representing part of the C syntax for
620the statement; the naked semicolon, and the colon, are Bison punctuation
621used in every rule.
622
623@example
624stmt: RETURN expr ';'
625 ;
626@end example
627
628@noindent
629@xref{Rules, ,Syntax of Grammar Rules}.
630
342b8b6e 631@node Semantic Values
bfa74976
RS
632@section Semantic Values
633@cindex semantic value
634@cindex value, semantic
635
636A formal grammar selects tokens only by their classifications: for example,
637if a rule mentions the terminal symbol `integer constant', it means that
638@emph{any} integer constant is grammatically valid in that position. The
639precise value of the constant is irrelevant to how to parse the input: if
640@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 641grammatical.
bfa74976
RS
642
643But the precise value is very important for what the input means once it is
644parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6453989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
646has both a token type and a @dfn{semantic value}. @xref{Semantics,
647,Defining Language Semantics},
bfa74976
RS
648for details.
649
650The token type is a terminal symbol defined in the grammar, such as
651@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
652you need to know to decide where the token may validly appear and how to
653group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 654except their types.
bfa74976
RS
655
656The semantic value has all the rest of the information about the
657meaning of the token, such as the value of an integer, or the name of an
658identifier. (A token such as @code{','} which is just punctuation doesn't
659need to have any semantic value.)
660
661For example, an input token might be classified as token type
662@code{INTEGER} and have the semantic value 4. Another input token might
663have the same token type @code{INTEGER} but value 3989. When a grammar
664rule says that @code{INTEGER} is allowed, either of these tokens is
665acceptable because each is an @code{INTEGER}. When the parser accepts the
666token, it keeps track of the token's semantic value.
667
668Each grouping can also have a semantic value as well as its nonterminal
669symbol. For example, in a calculator, an expression typically has a
670semantic value that is a number. In a compiler for a programming
671language, an expression typically has a semantic value that is a tree
672structure describing the meaning of the expression.
673
342b8b6e 674@node Semantic Actions
bfa74976
RS
675@section Semantic Actions
676@cindex semantic actions
677@cindex actions, semantic
678
679In order to be useful, a program must do more than parse input; it must
680also produce some output based on the input. In a Bison grammar, a grammar
681rule can have an @dfn{action} made up of C statements. Each time the
682parser recognizes a match for that rule, the action is executed.
683@xref{Actions}.
13863333 684
bfa74976
RS
685Most of the time, the purpose of an action is to compute the semantic value
686of the whole construct from the semantic values of its parts. For example,
687suppose we have a rule which says an expression can be the sum of two
688expressions. When the parser recognizes such a sum, each of the
689subexpressions has a semantic value which describes how it was built up.
690The action for this rule should create a similar sort of value for the
691newly recognized larger expression.
692
693For example, here is a rule that says an expression can be the sum of
694two subexpressions:
695
696@example
697expr: expr '+' expr @{ $$ = $1 + $3; @}
698 ;
699@end example
700
701@noindent
702The action says how to produce the semantic value of the sum expression
703from the values of the two subexpressions.
704
676385e2 705@node GLR Parsers
c827f760
PE
706@section Writing @acronym{GLR} Parsers
707@cindex @acronym{GLR} parsing
708@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
709@findex %glr-parser
710@cindex conflicts
711@cindex shift/reduce conflicts
fa7e68c3 712@cindex reduce/reduce conflicts
676385e2 713
34a6c2d1
JD
714In some grammars, Bison's deterministic
715@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
716certain grammar rule at a given point. That is, it may not be able to
717decide (on the basis of the input read so far) which of two possible
718reductions (applications of a grammar rule) applies, or whether to apply
719a reduction or read more of the input and apply a reduction later in the
720input. These are known respectively as @dfn{reduce/reduce} conflicts
721(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
722(@pxref{Shift/Reduce}).
723
34a6c2d1 724To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 725more general parsing algorithm is sometimes necessary. If you include
676385e2 726@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 727(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
728(@acronym{GLR}) parser. These parsers handle Bison grammars that
729contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 730declarations) identically to deterministic parsers. However, when
9501dc6e
AD
731faced with unresolved shift/reduce and reduce/reduce conflicts,
732@acronym{GLR} parsers use the simple expedient of doing both,
733effectively cloning the parser to follow both possibilities. Each of
734the resulting parsers can again split, so that at any given time, there
735can be any number of possible parses being explored. The parsers
676385e2
PH
736proceed in lockstep; that is, all of them consume (shift) a given input
737symbol before any of them proceed to the next. Each of the cloned
738parsers eventually meets one of two possible fates: either it runs into
739a parsing error, in which case it simply vanishes, or it merges with
740another parser, because the two of them have reduced the input to an
741identical set of symbols.
742
743During the time that there are multiple parsers, semantic actions are
744recorded, but not performed. When a parser disappears, its recorded
745semantic actions disappear as well, and are never performed. When a
746reduction makes two parsers identical, causing them to merge, Bison
747records both sets of semantic actions. Whenever the last two parsers
748merge, reverting to the single-parser case, Bison resolves all the
749outstanding actions either by precedences given to the grammar rules
750involved, or by performing both actions, and then calling a designated
751user-defined function on the resulting values to produce an arbitrary
752merged result.
753
fa7e68c3 754@menu
f56274a8
DJ
755* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
756* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
757* GLR Semantic Actions:: Deferred semantic actions have special concerns.
758* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
759@end menu
760
761@node Simple GLR Parsers
762@subsection Using @acronym{GLR} on Unambiguous Grammars
763@cindex @acronym{GLR} parsing, unambiguous grammars
764@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
765@findex %glr-parser
766@findex %expect-rr
767@cindex conflicts
768@cindex reduce/reduce conflicts
769@cindex shift/reduce conflicts
770
771In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
772to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
773Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
34a6c2d1 810With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
849lookahead than the underlying @acronym{LR}(1) algorithm actually allows
850for. In this example, @acronym{LR}(2) would suffice, but also some cases
851that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
34a6c2d1 904When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
34a6c2d1 936@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1156the same as its effect in a deterministic parser.
32c29292
JD
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313
JD
2707(The prologue alternatives described here are experimental.
2708More user feedback will help to determine whether they should become permanent
2709features.)
2710
2cbe6b7f
JD
2711The functionality of @var{Prologue} sections can often be subtle and
2712inflexible.
8e0a5e9e
JD
2713As an alternative, Bison provides a %code directive with an explicit qualifier
2714field, which identifies the purpose of the code and thus the location(s) where
2715Bison should generate it.
2716For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2717one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2718@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2719
2720Look again at the example of the previous section:
2721
2722@smallexample
2723%@{
2724 #define _GNU_SOURCE
2725 #include <stdio.h>
2726 #include "ptypes.h"
2727%@}
2728
2729%union @{
2730 long int n;
2731 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2732@}
2733
2734%@{
2735 static void print_token_value (FILE *, int, YYSTYPE);
2736 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2737%@}
2738
2739@dots{}
2740@end smallexample
2741
2742@noindent
2743Notice that there are two @var{Prologue} sections here, but there's a subtle
2744distinction between their functionality.
2745For example, if you decide to override Bison's default definition for
2746@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2747definition?
2748You should write it in the first since Bison will insert that code into the
8e0a5e9e 2749parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2750In which @var{Prologue} section should you prototype an internal function,
2751@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2752arguments?
2753You should prototype it in the second since Bison will insert that code
2754@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2755
2756This distinction in functionality between the two @var{Prologue} sections is
2757established by the appearance of the @code{%union} between them.
a501eca9 2758This behavior raises a few questions.
2cbe6b7f
JD
2759First, why should the position of a @code{%union} affect definitions related to
2760@code{YYLTYPE} and @code{yytokentype}?
2761Second, what if there is no @code{%union}?
2762In that case, the second kind of @var{Prologue} section is not available.
2763This behavior is not intuitive.
2764
8e0a5e9e 2765To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2766@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2767Let's go ahead and add the new @code{YYLTYPE} definition and the
2768@code{trace_token} prototype at the same time:
2769
2770@smallexample
16dc6a9e 2771%code top @{
2cbe6b7f
JD
2772 #define _GNU_SOURCE
2773 #include <stdio.h>
8e0a5e9e
JD
2774
2775 /* WARNING: The following code really belongs
16dc6a9e 2776 * in a `%code requires'; see below. */
8e0a5e9e 2777
2cbe6b7f
JD
2778 #include "ptypes.h"
2779 #define YYLTYPE YYLTYPE
2780 typedef struct YYLTYPE
2781 @{
2782 int first_line;
2783 int first_column;
2784 int last_line;
2785 int last_column;
2786 char *filename;
2787 @} YYLTYPE;
2788@}
2789
2790%union @{
2791 long int n;
2792 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2793@}
2794
2795%code @{
2796 static void print_token_value (FILE *, int, YYSTYPE);
2797 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2798 static void trace_token (enum yytokentype token, YYLTYPE loc);
2799@}
2800
2801@dots{}
2802@end smallexample
2803
2804@noindent
16dc6a9e
JD
2805In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2806functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2807explicit which kind you intend.
2cbe6b7f
JD
2808Moreover, both kinds are always available even in the absence of @code{%union}.
2809
16dc6a9e 2810The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2811The first two lines before the warning need to appear near the top of the
2812parser source code file.
2813The first line after the warning is required by @code{YYSTYPE} and thus also
2814needs to appear in the parser source code file.
2cbe6b7f 2815However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2816(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2817the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2818The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2819override the default @code{YYLTYPE} definition there.
2820
16dc6a9e 2821In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2822lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2823definitions.
16dc6a9e 2824Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2825
2826@smallexample
16dc6a9e 2827%code top @{
2cbe6b7f
JD
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
2830@}
2831
16dc6a9e 2832%code requires @{
9bc0dd67
JD
2833 #include "ptypes.h"
2834@}
2835%union @{
2836 long int n;
2837 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2838@}
2839
16dc6a9e 2840%code requires @{
2cbe6b7f
JD
2841 #define YYLTYPE YYLTYPE
2842 typedef struct YYLTYPE
2843 @{
2844 int first_line;
2845 int first_column;
2846 int last_line;
2847 int last_column;
2848 char *filename;
2849 @} YYLTYPE;
2850@}
2851
136a0f76 2852%code @{
2cbe6b7f
JD
2853 static void print_token_value (FILE *, int, YYSTYPE);
2854 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2855 static void trace_token (enum yytokentype token, YYLTYPE loc);
2856@}
2857
2858@dots{}
2859@end smallexample
2860
2861@noindent
2862Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2863definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2864definitions in both the parser source code file and the parser header file.
16dc6a9e 2865(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2866place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2867
a501eca9 2868When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2869should prefer @code{%code requires} over @code{%code top} regardless of whether
2870you instruct Bison to generate a parser header file.
a501eca9 2871When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2872source code file and that has no special need to appear at the top of that
16dc6a9e 2873file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2874These practices will make the purpose of each block of your code explicit to
2875Bison and to other developers reading your grammar file.
8e0a5e9e 2876Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2877@code{%code requires} to be the most important of the four @var{Prologue}
2878alternatives.
a501eca9 2879
2cbe6b7f
JD
2880At some point while developing your parser, you might decide to provide
2881@code{trace_token} to modules that are external to your parser.
2882Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2883header file and the parser source code file.
2884Since this function is not a dependency required by @code{YYSTYPE} or
2885@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2886@code{%code requires}.
2cbe6b7f 2887More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2888@code{%code requires} is not sufficient.
8e0a5e9e 2889Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2890@code{%code provides}:
2cbe6b7f
JD
2891
2892@smallexample
16dc6a9e 2893%code top @{
2cbe6b7f 2894 #define _GNU_SOURCE
136a0f76 2895 #include <stdio.h>
2cbe6b7f 2896@}
136a0f76 2897
16dc6a9e 2898%code requires @{
2cbe6b7f
JD
2899 #include "ptypes.h"
2900@}
2901%union @{
2902 long int n;
2903 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2904@}
2905
16dc6a9e 2906%code requires @{
2cbe6b7f
JD
2907 #define YYLTYPE YYLTYPE
2908 typedef struct YYLTYPE
2909 @{
2910 int first_line;
2911 int first_column;
2912 int last_line;
2913 int last_column;
2914 char *filename;
2915 @} YYLTYPE;
2916@}
2917
16dc6a9e 2918%code provides @{
2cbe6b7f
JD
2919 void trace_token (enum yytokentype token, YYLTYPE loc);
2920@}
2921
2922%code @{
9bc0dd67
JD
2923 static void print_token_value (FILE *, int, YYSTYPE);
2924 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2925@}
9bc0dd67
JD
2926
2927@dots{}
2928@end smallexample
2929
2cbe6b7f
JD
2930@noindent
2931Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2932file and the parser source code file after the definitions for
2933@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2934
2935The above examples are careful to write directives in an order that reflects
8e0a5e9e 2936the layout of the generated parser source code and header files:
16dc6a9e 2937@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2938@code{%code}.
a501eca9 2939While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2940this order, Bison does not require it.
2941Instead, Bison lets you choose an organization that makes sense to you.
2942
a501eca9 2943You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2944In that case, Bison concatenates the contained code in declaration order.
2945This is the only way in which the position of one of these directives within
2946the grammar file affects its functionality.
2947
2948The result of the previous two properties is greater flexibility in how you may
2949organize your grammar file.
2950For example, you may organize semantic-type-related directives by semantic
2951type:
2952
2953@smallexample
16dc6a9e 2954%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2955%union @{ type1 field1; @}
2956%destructor @{ type1_free ($$); @} <field1>
2957%printer @{ type1_print ($$); @} <field1>
2958
16dc6a9e 2959%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2960%union @{ type2 field2; @}
2961%destructor @{ type2_free ($$); @} <field2>
2962%printer @{ type2_print ($$); @} <field2>
2963@end smallexample
2964
2965@noindent
2966You could even place each of the above directive groups in the rules section of
2967the grammar file next to the set of rules that uses the associated semantic
2968type.
61fee93e
JD
2969(In the rules section, you must terminate each of those directives with a
2970semicolon.)
2cbe6b7f
JD
2971And you don't have to worry that some directive (like a @code{%union}) in the
2972definitions section is going to adversely affect their functionality in some
2973counter-intuitive manner just because it comes first.
2974Such an organization is not possible using @var{Prologue} sections.
2975
a501eca9 2976This section has been concerned with explaining the advantages of the four
8e0a5e9e 2977@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2978However, in most cases when using these directives, you shouldn't need to
2979think about all the low-level ordering issues discussed here.
2980Instead, you should simply use these directives to label each block of your
2981code according to its purpose and let Bison handle the ordering.
2982@code{%code} is the most generic label.
16dc6a9e
JD
2983Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2984as needed.
a501eca9 2985
342b8b6e 2986@node Bison Declarations
bfa74976
RS
2987@subsection The Bison Declarations Section
2988@cindex Bison declarations (introduction)
2989@cindex declarations, Bison (introduction)
2990
2991The @var{Bison declarations} section contains declarations that define
2992terminal and nonterminal symbols, specify precedence, and so on.
2993In some simple grammars you may not need any declarations.
2994@xref{Declarations, ,Bison Declarations}.
2995
342b8b6e 2996@node Grammar Rules
bfa74976
RS
2997@subsection The Grammar Rules Section
2998@cindex grammar rules section
2999@cindex rules section for grammar
3000
3001The @dfn{grammar rules} section contains one or more Bison grammar
3002rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3003
3004There must always be at least one grammar rule, and the first
3005@samp{%%} (which precedes the grammar rules) may never be omitted even
3006if it is the first thing in the file.
3007
38a92d50 3008@node Epilogue
75f5aaea 3009@subsection The epilogue
bfa74976 3010@cindex additional C code section
75f5aaea 3011@cindex epilogue
bfa74976
RS
3012@cindex C code, section for additional
3013
08e49d20
PE
3014The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3015the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3016place to put anything that you want to have in the parser file but which need
3017not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3018definitions of @code{yylex} and @code{yyerror} often go here. Because
3019C requires functions to be declared before being used, you often need
3020to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3021even if you define them in the Epilogue.
75f5aaea 3022@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3023
3024If the last section is empty, you may omit the @samp{%%} that separates it
3025from the grammar rules.
3026
f8e1c9e5
AD
3027The Bison parser itself contains many macros and identifiers whose names
3028start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3029any such names (except those documented in this manual) in the epilogue
3030of the grammar file.
bfa74976 3031
342b8b6e 3032@node Symbols
bfa74976
RS
3033@section Symbols, Terminal and Nonterminal
3034@cindex nonterminal symbol
3035@cindex terminal symbol
3036@cindex token type
3037@cindex symbol
3038
3039@dfn{Symbols} in Bison grammars represent the grammatical classifications
3040of the language.
3041
3042A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3043class of syntactically equivalent tokens. You use the symbol in grammar
3044rules to mean that a token in that class is allowed. The symbol is
3045represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3046function returns a token type code to indicate what kind of token has
3047been read. You don't need to know what the code value is; you can use
3048the symbol to stand for it.
bfa74976 3049
f8e1c9e5
AD
3050A @dfn{nonterminal symbol} stands for a class of syntactically
3051equivalent groupings. The symbol name is used in writing grammar rules.
3052By convention, it should be all lower case.
bfa74976
RS
3053
3054Symbol names can contain letters, digits (not at the beginning),
3055underscores and periods. Periods make sense only in nonterminals.
3056
931c7513 3057There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3058
3059@itemize @bullet
3060@item
3061A @dfn{named token type} is written with an identifier, like an
c827f760 3062identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3063such name must be defined with a Bison declaration such as
3064@code{%token}. @xref{Token Decl, ,Token Type Names}.
3065
3066@item
3067@cindex character token
3068@cindex literal token
3069@cindex single-character literal
931c7513
RS
3070A @dfn{character token type} (or @dfn{literal character token}) is
3071written in the grammar using the same syntax used in C for character
3072constants; for example, @code{'+'} is a character token type. A
3073character token type doesn't need to be declared unless you need to
3074specify its semantic value data type (@pxref{Value Type, ,Data Types of
3075Semantic Values}), associativity, or precedence (@pxref{Precedence,
3076,Operator Precedence}).
bfa74976
RS
3077
3078By convention, a character token type is used only to represent a
3079token that consists of that particular character. Thus, the token
3080type @code{'+'} is used to represent the character @samp{+} as a
3081token. Nothing enforces this convention, but if you depart from it,
3082your program will confuse other readers.
3083
3084All the usual escape sequences used in character literals in C can be
3085used in Bison as well, but you must not use the null character as a
72d2299c
PE
3086character literal because its numeric code, zero, signifies
3087end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3088for @code{yylex}}). Also, unlike standard C, trigraphs have no
3089special meaning in Bison character literals, nor is backslash-newline
3090allowed.
931c7513
RS
3091
3092@item
3093@cindex string token
3094@cindex literal string token
9ecbd125 3095@cindex multicharacter literal
931c7513
RS
3096A @dfn{literal string token} is written like a C string constant; for
3097example, @code{"<="} is a literal string token. A literal string token
3098doesn't need to be declared unless you need to specify its semantic
14ded682 3099value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3100(@pxref{Precedence}).
3101
3102You can associate the literal string token with a symbolic name as an
3103alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3104Declarations}). If you don't do that, the lexical analyzer has to
3105retrieve the token number for the literal string token from the
3106@code{yytname} table (@pxref{Calling Convention}).
3107
c827f760 3108@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3109
3110By convention, a literal string token is used only to represent a token
3111that consists of that particular string. Thus, you should use the token
3112type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3113does not enforce this convention, but if you depart from it, people who
931c7513
RS
3114read your program will be confused.
3115
3116All the escape sequences used in string literals in C can be used in
92ac3705
PE
3117Bison as well, except that you must not use a null character within a
3118string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3119meaning in Bison string literals, nor is backslash-newline allowed. A
3120literal string token must contain two or more characters; for a token
3121containing just one character, use a character token (see above).
bfa74976
RS
3122@end itemize
3123
3124How you choose to write a terminal symbol has no effect on its
3125grammatical meaning. That depends only on where it appears in rules and
3126on when the parser function returns that symbol.
3127
72d2299c
PE
3128The value returned by @code{yylex} is always one of the terminal
3129symbols, except that a zero or negative value signifies end-of-input.
3130Whichever way you write the token type in the grammar rules, you write
3131it the same way in the definition of @code{yylex}. The numeric code
3132for a character token type is simply the positive numeric code of the
3133character, so @code{yylex} can use the identical value to generate the
3134requisite code, though you may need to convert it to @code{unsigned
3135char} to avoid sign-extension on hosts where @code{char} is signed.
3136Each named token type becomes a C macro in
bfa74976 3137the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3138(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3139@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3140
3141If @code{yylex} is defined in a separate file, you need to arrange for the
3142token-type macro definitions to be available there. Use the @samp{-d}
3143option when you run Bison, so that it will write these macro definitions
3144into a separate header file @file{@var{name}.tab.h} which you can include
3145in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3146
72d2299c 3147If you want to write a grammar that is portable to any Standard C
9d9b8b70 3148host, you must use only nonnull character tokens taken from the basic
c827f760 3149execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3150digits, the 52 lower- and upper-case English letters, and the
3151characters in the following C-language string:
3152
3153@example
3154"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3155@end example
3156
f8e1c9e5
AD
3157The @code{yylex} function and Bison must use a consistent character set
3158and encoding for character tokens. For example, if you run Bison in an
3159@acronym{ASCII} environment, but then compile and run the resulting
3160program in an environment that uses an incompatible character set like
3161@acronym{EBCDIC}, the resulting program may not work because the tables
3162generated by Bison will assume @acronym{ASCII} numeric values for
3163character tokens. It is standard practice for software distributions to
3164contain C source files that were generated by Bison in an
3165@acronym{ASCII} environment, so installers on platforms that are
3166incompatible with @acronym{ASCII} must rebuild those files before
3167compiling them.
e966383b 3168
bfa74976
RS
3169The symbol @code{error} is a terminal symbol reserved for error recovery
3170(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3171In particular, @code{yylex} should never return this value. The default
3172value of the error token is 256, unless you explicitly assigned 256 to
3173one of your tokens with a @code{%token} declaration.
bfa74976 3174
342b8b6e 3175@node Rules
bfa74976
RS
3176@section Syntax of Grammar Rules
3177@cindex rule syntax
3178@cindex grammar rule syntax
3179@cindex syntax of grammar rules
3180
3181A Bison grammar rule has the following general form:
3182
3183@example
e425e872 3184@group
bfa74976
RS
3185@var{result}: @var{components}@dots{}
3186 ;
e425e872 3187@end group
bfa74976
RS
3188@end example
3189
3190@noindent
9ecbd125 3191where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3192and @var{components} are various terminal and nonterminal symbols that
13863333 3193are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3194
3195For example,
3196
3197@example
3198@group
3199exp: exp '+' exp
3200 ;
3201@end group
3202@end example
3203
3204@noindent
3205says that two groupings of type @code{exp}, with a @samp{+} token in between,
3206can be combined into a larger grouping of type @code{exp}.
3207
72d2299c
PE
3208White space in rules is significant only to separate symbols. You can add
3209extra white space as you wish.
bfa74976
RS
3210
3211Scattered among the components can be @var{actions} that determine
3212the semantics of the rule. An action looks like this:
3213
3214@example
3215@{@var{C statements}@}
3216@end example
3217
3218@noindent
287c78f6
PE
3219@cindex braced code
3220This is an example of @dfn{braced code}, that is, C code surrounded by
3221braces, much like a compound statement in C@. Braced code can contain
3222any sequence of C tokens, so long as its braces are balanced. Bison
3223does not check the braced code for correctness directly; it merely
3224copies the code to the output file, where the C compiler can check it.
3225
3226Within braced code, the balanced-brace count is not affected by braces
3227within comments, string literals, or character constants, but it is
3228affected by the C digraphs @samp{<%} and @samp{%>} that represent
3229braces. At the top level braced code must be terminated by @samp{@}}
3230and not by a digraph. Bison does not look for trigraphs, so if braced
3231code uses trigraphs you should ensure that they do not affect the
3232nesting of braces or the boundaries of comments, string literals, or
3233character constants.
3234
bfa74976
RS
3235Usually there is only one action and it follows the components.
3236@xref{Actions}.
3237
3238@findex |
3239Multiple rules for the same @var{result} can be written separately or can
3240be joined with the vertical-bar character @samp{|} as follows:
3241
bfa74976
RS
3242@example
3243@group
3244@var{result}: @var{rule1-components}@dots{}
3245 | @var{rule2-components}@dots{}
3246 @dots{}
3247 ;
3248@end group
3249@end example
bfa74976
RS
3250
3251@noindent
3252They are still considered distinct rules even when joined in this way.
3253
3254If @var{components} in a rule is empty, it means that @var{result} can
3255match the empty string. For example, here is how to define a
3256comma-separated sequence of zero or more @code{exp} groupings:
3257
3258@example
3259@group
3260expseq: /* empty */
3261 | expseq1
3262 ;
3263@end group
3264
3265@group
3266expseq1: exp
3267 | expseq1 ',' exp
3268 ;
3269@end group
3270@end example
3271
3272@noindent
3273It is customary to write a comment @samp{/* empty */} in each rule
3274with no components.
3275
342b8b6e 3276@node Recursion
bfa74976
RS
3277@section Recursive Rules
3278@cindex recursive rule
3279
f8e1c9e5
AD
3280A rule is called @dfn{recursive} when its @var{result} nonterminal
3281appears also on its right hand side. Nearly all Bison grammars need to
3282use recursion, because that is the only way to define a sequence of any
3283number of a particular thing. Consider this recursive definition of a
9ecbd125 3284comma-separated sequence of one or more expressions:
bfa74976
RS
3285
3286@example
3287@group
3288expseq1: exp
3289 | expseq1 ',' exp
3290 ;
3291@end group
3292@end example
3293
3294@cindex left recursion
3295@cindex right recursion
3296@noindent
3297Since the recursive use of @code{expseq1} is the leftmost symbol in the
3298right hand side, we call this @dfn{left recursion}. By contrast, here
3299the same construct is defined using @dfn{right recursion}:
3300
3301@example
3302@group
3303expseq1: exp
3304 | exp ',' expseq1
3305 ;
3306@end group
3307@end example
3308
3309@noindent
ec3bc396
AD
3310Any kind of sequence can be defined using either left recursion or right
3311recursion, but you should always use left recursion, because it can
3312parse a sequence of any number of elements with bounded stack space.
3313Right recursion uses up space on the Bison stack in proportion to the
3314number of elements in the sequence, because all the elements must be
3315shifted onto the stack before the rule can be applied even once.
3316@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3317of this.
bfa74976
RS
3318
3319@cindex mutual recursion
3320@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3321rule does not appear directly on its right hand side, but does appear
3322in rules for other nonterminals which do appear on its right hand
13863333 3323side.
bfa74976
RS
3324
3325For example:
3326
3327@example
3328@group
3329expr: primary
3330 | primary '+' primary
3331 ;
3332@end group
3333
3334@group
3335primary: constant
3336 | '(' expr ')'
3337 ;
3338@end group
3339@end example
3340
3341@noindent
3342defines two mutually-recursive nonterminals, since each refers to the
3343other.
3344
342b8b6e 3345@node Semantics
bfa74976
RS
3346@section Defining Language Semantics
3347@cindex defining language semantics
13863333 3348@cindex language semantics, defining
bfa74976
RS
3349
3350The grammar rules for a language determine only the syntax. The semantics
3351are determined by the semantic values associated with various tokens and
3352groupings, and by the actions taken when various groupings are recognized.
3353
3354For example, the calculator calculates properly because the value
3355associated with each expression is the proper number; it adds properly
3356because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3357the numbers associated with @var{x} and @var{y}.
3358
3359@menu
3360* Value Type:: Specifying one data type for all semantic values.
3361* Multiple Types:: Specifying several alternative data types.
3362* Actions:: An action is the semantic definition of a grammar rule.
3363* Action Types:: Specifying data types for actions to operate on.
3364* Mid-Rule Actions:: Most actions go at the end of a rule.
3365 This says when, why and how to use the exceptional
3366 action in the middle of a rule.
3367@end menu
3368
342b8b6e 3369@node Value Type
bfa74976
RS
3370@subsection Data Types of Semantic Values
3371@cindex semantic value type
3372@cindex value type, semantic
3373@cindex data types of semantic values
3374@cindex default data type
3375
3376In a simple program it may be sufficient to use the same data type for
3377the semantic values of all language constructs. This was true in the
c827f760 3378@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3379Notation Calculator}).
bfa74976 3380
ddc8ede1
PE
3381Bison normally uses the type @code{int} for semantic values if your
3382program uses the same data type for all language constructs. To
bfa74976
RS
3383specify some other type, define @code{YYSTYPE} as a macro, like this:
3384
3385@example
3386#define YYSTYPE double
3387@end example
3388
3389@noindent
50cce58e
PE
3390@code{YYSTYPE}'s replacement list should be a type name
3391that does not contain parentheses or square brackets.
342b8b6e 3392This macro definition must go in the prologue of the grammar file
75f5aaea 3393(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3394
342b8b6e 3395@node Multiple Types
bfa74976
RS
3396@subsection More Than One Value Type
3397
3398In most programs, you will need different data types for different kinds
3399of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3400@code{int} or @code{long int}, while a string constant needs type
3401@code{char *}, and an identifier might need a pointer to an entry in the
3402symbol table.
bfa74976
RS
3403
3404To use more than one data type for semantic values in one parser, Bison
3405requires you to do two things:
3406
3407@itemize @bullet
3408@item
ddc8ede1 3409Specify the entire collection of possible data types, either by using the
704a47c4 3410@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3411Value Types}), or by using a @code{typedef} or a @code{#define} to
3412define @code{YYSTYPE} to be a union type whose member names are
3413the type tags.
bfa74976
RS
3414
3415@item
14ded682
AD
3416Choose one of those types for each symbol (terminal or nonterminal) for
3417which semantic values are used. This is done for tokens with the
3418@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3419and for groupings with the @code{%type} Bison declaration (@pxref{Type
3420Decl, ,Nonterminal Symbols}).
bfa74976
RS
3421@end itemize
3422
342b8b6e 3423@node Actions
bfa74976
RS
3424@subsection Actions
3425@cindex action
3426@vindex $$
3427@vindex $@var{n}
3428
3429An action accompanies a syntactic rule and contains C code to be executed
3430each time an instance of that rule is recognized. The task of most actions
3431is to compute a semantic value for the grouping built by the rule from the
3432semantic values associated with tokens or smaller groupings.
3433
287c78f6
PE
3434An action consists of braced code containing C statements, and can be
3435placed at any position in the rule;
704a47c4
AD
3436it is executed at that position. Most rules have just one action at the
3437end of the rule, following all the components. Actions in the middle of
3438a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3439Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3440
3441The C code in an action can refer to the semantic values of the components
3442matched by the rule with the construct @code{$@var{n}}, which stands for
3443the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3444being constructed is @code{$$}. Bison translates both of these
3445constructs into expressions of the appropriate type when it copies the
3446actions into the parser file. @code{$$} is translated to a modifiable
3447lvalue, so it can be assigned to.
bfa74976
RS
3448
3449Here is a typical example:
3450
3451@example
3452@group
3453exp: @dots{}
3454 | exp '+' exp
3455 @{ $$ = $1 + $3; @}
3456@end group
3457@end example
3458
3459@noindent
3460This rule constructs an @code{exp} from two smaller @code{exp} groupings
3461connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3462refer to the semantic values of the two component @code{exp} groupings,
3463which are the first and third symbols on the right hand side of the rule.
3464The sum is stored into @code{$$} so that it becomes the semantic value of
3465the addition-expression just recognized by the rule. If there were a
3466useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3467referred to as @code{$2}.
bfa74976 3468
3ded9a63
AD
3469Note that the vertical-bar character @samp{|} is really a rule
3470separator, and actions are attached to a single rule. This is a
3471difference with tools like Flex, for which @samp{|} stands for either
3472``or'', or ``the same action as that of the next rule''. In the
3473following example, the action is triggered only when @samp{b} is found:
3474
3475@example
3476@group
3477a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3478@end group
3479@end example
3480
bfa74976
RS
3481@cindex default action
3482If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3483@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3484becomes the value of the whole rule. Of course, the default action is
3485valid only if the two data types match. There is no meaningful default
3486action for an empty rule; every empty rule must have an explicit action
3487unless the rule's value does not matter.
bfa74976
RS
3488
3489@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3490to tokens and groupings on the stack @emph{before} those that match the
3491current rule. This is a very risky practice, and to use it reliably
3492you must be certain of the context in which the rule is applied. Here
3493is a case in which you can use this reliably:
3494
3495@example
3496@group
3497foo: expr bar '+' expr @{ @dots{} @}
3498 | expr bar '-' expr @{ @dots{} @}
3499 ;
3500@end group
3501
3502@group
3503bar: /* empty */
3504 @{ previous_expr = $0; @}
3505 ;
3506@end group
3507@end example
3508
3509As long as @code{bar} is used only in the fashion shown here, @code{$0}
3510always refers to the @code{expr} which precedes @code{bar} in the
3511definition of @code{foo}.
3512
32c29292 3513@vindex yylval
742e4900 3514It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3515any, from a semantic action.
3516This semantic value is stored in @code{yylval}.
3517@xref{Action Features, ,Special Features for Use in Actions}.
3518
342b8b6e 3519@node Action Types
bfa74976
RS
3520@subsection Data Types of Values in Actions
3521@cindex action data types
3522@cindex data types in actions
3523
3524If you have chosen a single data type for semantic values, the @code{$$}
3525and @code{$@var{n}} constructs always have that data type.
3526
3527If you have used @code{%union} to specify a variety of data types, then you
3528must declare a choice among these types for each terminal or nonterminal
3529symbol that can have a semantic value. Then each time you use @code{$$} or
3530@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3531in the rule. In this example,
bfa74976
RS
3532
3533@example
3534@group
3535exp: @dots{}
3536 | exp '+' exp
3537 @{ $$ = $1 + $3; @}
3538@end group
3539@end example
3540
3541@noindent
3542@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3543have the data type declared for the nonterminal symbol @code{exp}. If
3544@code{$2} were used, it would have the data type declared for the
e0c471a9 3545terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3546
3547Alternatively, you can specify the data type when you refer to the value,
3548by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3549reference. For example, if you have defined types as shown here:
3550
3551@example
3552@group
3553%union @{
3554 int itype;
3555 double dtype;
3556@}
3557@end group
3558@end example
3559
3560@noindent
3561then you can write @code{$<itype>1} to refer to the first subunit of the
3562rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3563
342b8b6e 3564@node Mid-Rule Actions
bfa74976
RS
3565@subsection Actions in Mid-Rule
3566@cindex actions in mid-rule
3567@cindex mid-rule actions
3568
3569Occasionally it is useful to put an action in the middle of a rule.
3570These actions are written just like usual end-of-rule actions, but they
3571are executed before the parser even recognizes the following components.
3572
3573A mid-rule action may refer to the components preceding it using
3574@code{$@var{n}}, but it may not refer to subsequent components because
3575it is run before they are parsed.
3576
3577The mid-rule action itself counts as one of the components of the rule.
3578This makes a difference when there is another action later in the same rule
3579(and usually there is another at the end): you have to count the actions
3580along with the symbols when working out which number @var{n} to use in
3581@code{$@var{n}}.
3582
3583The mid-rule action can also have a semantic value. The action can set
3584its value with an assignment to @code{$$}, and actions later in the rule
3585can refer to the value using @code{$@var{n}}. Since there is no symbol
3586to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3587in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3588specify a data type each time you refer to this value.
bfa74976
RS
3589
3590There is no way to set the value of the entire rule with a mid-rule
3591action, because assignments to @code{$$} do not have that effect. The
3592only way to set the value for the entire rule is with an ordinary action
3593at the end of the rule.
3594
3595Here is an example from a hypothetical compiler, handling a @code{let}
3596statement that looks like @samp{let (@var{variable}) @var{statement}} and
3597serves to create a variable named @var{variable} temporarily for the
3598duration of @var{statement}. To parse this construct, we must put
3599@var{variable} into the symbol table while @var{statement} is parsed, then
3600remove it afterward. Here is how it is done:
3601
3602@example
3603@group
3604stmt: LET '(' var ')'
3605 @{ $<context>$ = push_context ();
3606 declare_variable ($3); @}
3607 stmt @{ $$ = $6;
3608 pop_context ($<context>5); @}
3609@end group
3610@end example
3611
3612@noindent
3613As soon as @samp{let (@var{variable})} has been recognized, the first
3614action is run. It saves a copy of the current semantic context (the
3615list of accessible variables) as its semantic value, using alternative
3616@code{context} in the data-type union. Then it calls
3617@code{declare_variable} to add the new variable to that list. Once the
3618first action is finished, the embedded statement @code{stmt} can be
3619parsed. Note that the mid-rule action is component number 5, so the
3620@samp{stmt} is component number 6.
3621
3622After the embedded statement is parsed, its semantic value becomes the
3623value of the entire @code{let}-statement. Then the semantic value from the
3624earlier action is used to restore the prior list of variables. This
3625removes the temporary @code{let}-variable from the list so that it won't
3626appear to exist while the rest of the program is parsed.
3627
841a7737
JD
3628@findex %destructor
3629@cindex discarded symbols, mid-rule actions
3630@cindex error recovery, mid-rule actions
3631In the above example, if the parser initiates error recovery (@pxref{Error
3632Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3633it might discard the previous semantic context @code{$<context>5} without
3634restoring it.
3635Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3636Discarded Symbols}).
ec5479ce
JD
3637However, Bison currently provides no means to declare a destructor specific to
3638a particular mid-rule action's semantic value.
841a7737
JD
3639
3640One solution is to bury the mid-rule action inside a nonterminal symbol and to
3641declare a destructor for that symbol:
3642
3643@example
3644@group
3645%type <context> let
3646%destructor @{ pop_context ($$); @} let
3647
3648%%
3649
3650stmt: let stmt
3651 @{ $$ = $2;
3652 pop_context ($1); @}
3653 ;
3654
3655let: LET '(' var ')'
3656 @{ $$ = push_context ();
3657 declare_variable ($3); @}
3658 ;
3659
3660@end group
3661@end example
3662
3663@noindent
3664Note that the action is now at the end of its rule.
3665Any mid-rule action can be converted to an end-of-rule action in this way, and
3666this is what Bison actually does to implement mid-rule actions.
3667
bfa74976
RS
3668Taking action before a rule is completely recognized often leads to
3669conflicts since the parser must commit to a parse in order to execute the
3670action. For example, the following two rules, without mid-rule actions,
3671can coexist in a working parser because the parser can shift the open-brace
3672token and look at what follows before deciding whether there is a
3673declaration or not:
3674
3675@example
3676@group
3677compound: '@{' declarations statements '@}'
3678 | '@{' statements '@}'
3679 ;
3680@end group
3681@end example
3682
3683@noindent
3684But when we add a mid-rule action as follows, the rules become nonfunctional:
3685
3686@example
3687@group
3688compound: @{ prepare_for_local_variables (); @}
3689 '@{' declarations statements '@}'
3690@end group
3691@group
3692 | '@{' statements '@}'
3693 ;
3694@end group
3695@end example
3696
3697@noindent
3698Now the parser is forced to decide whether to run the mid-rule action
3699when it has read no farther than the open-brace. In other words, it
3700must commit to using one rule or the other, without sufficient
3701information to do it correctly. (The open-brace token is what is called
742e4900
JD
3702the @dfn{lookahead} token at this time, since the parser is still
3703deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3704
3705You might think that you could correct the problem by putting identical
3706actions into the two rules, like this:
3707
3708@example
3709@group
3710compound: @{ prepare_for_local_variables (); @}
3711 '@{' declarations statements '@}'
3712 | @{ prepare_for_local_variables (); @}
3713 '@{' statements '@}'
3714 ;
3715@end group
3716@end example
3717
3718@noindent
3719But this does not help, because Bison does not realize that the two actions
3720are identical. (Bison never tries to understand the C code in an action.)
3721
3722If the grammar is such that a declaration can be distinguished from a
3723statement by the first token (which is true in C), then one solution which
3724does work is to put the action after the open-brace, like this:
3725
3726@example
3727@group
3728compound: '@{' @{ prepare_for_local_variables (); @}
3729 declarations statements '@}'
3730 | '@{' statements '@}'
3731 ;
3732@end group
3733@end example
3734
3735@noindent
3736Now the first token of the following declaration or statement,
3737which would in any case tell Bison which rule to use, can still do so.
3738
3739Another solution is to bury the action inside a nonterminal symbol which
3740serves as a subroutine:
3741
3742@example
3743@group
3744subroutine: /* empty */
3745 @{ prepare_for_local_variables (); @}
3746 ;
3747
3748@end group
3749
3750@group
3751compound: subroutine
3752 '@{' declarations statements '@}'
3753 | subroutine
3754 '@{' statements '@}'
3755 ;
3756@end group
3757@end example
3758
3759@noindent
3760Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3761deciding which rule for @code{compound} it will eventually use.
bfa74976 3762
342b8b6e 3763@node Locations
847bf1f5
AD
3764@section Tracking Locations
3765@cindex location
95923bd6
AD
3766@cindex textual location
3767@cindex location, textual
847bf1f5
AD
3768
3769Though grammar rules and semantic actions are enough to write a fully
72d2299c 3770functional parser, it can be useful to process some additional information,
3e259915
MA
3771especially symbol locations.
3772
704a47c4
AD
3773The way locations are handled is defined by providing a data type, and
3774actions to take when rules are matched.
847bf1f5
AD
3775
3776@menu
3777* Location Type:: Specifying a data type for locations.
3778* Actions and Locations:: Using locations in actions.
3779* Location Default Action:: Defining a general way to compute locations.
3780@end menu
3781
342b8b6e 3782@node Location Type
847bf1f5
AD
3783@subsection Data Type of Locations
3784@cindex data type of locations
3785@cindex default location type
3786
3787Defining a data type for locations is much simpler than for semantic values,
3788since all tokens and groupings always use the same type.
3789
50cce58e
PE
3790You can specify the type of locations by defining a macro called
3791@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3792defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3793When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3794four members:
3795
3796@example
6273355b 3797typedef struct YYLTYPE
847bf1f5
AD
3798@{
3799 int first_line;
3800 int first_column;
3801 int last_line;
3802 int last_column;
6273355b 3803@} YYLTYPE;
847bf1f5
AD
3804@end example
3805
cd48d21d
AD
3806At the beginning of the parsing, Bison initializes all these fields to 1
3807for @code{yylloc}.
3808
342b8b6e 3809@node Actions and Locations
847bf1f5
AD
3810@subsection Actions and Locations
3811@cindex location actions
3812@cindex actions, location
3813@vindex @@$
3814@vindex @@@var{n}
3815
3816Actions are not only useful for defining language semantics, but also for
3817describing the behavior of the output parser with locations.
3818
3819The most obvious way for building locations of syntactic groupings is very
72d2299c 3820similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3821constructs can be used to access the locations of the elements being matched.
3822The location of the @var{n}th component of the right hand side is
3823@code{@@@var{n}}, while the location of the left hand side grouping is
3824@code{@@$}.
3825
3e259915 3826Here is a basic example using the default data type for locations:
847bf1f5
AD
3827
3828@example
3829@group
3830exp: @dots{}
3e259915 3831 | exp '/' exp
847bf1f5 3832 @{
3e259915
MA
3833 @@$.first_column = @@1.first_column;
3834 @@$.first_line = @@1.first_line;
847bf1f5
AD
3835 @@$.last_column = @@3.last_column;
3836 @@$.last_line = @@3.last_line;
3e259915
MA
3837 if ($3)
3838 $$ = $1 / $3;
3839 else
3840 @{
3841 $$ = 1;
4e03e201
AD
3842 fprintf (stderr,
3843 "Division by zero, l%d,c%d-l%d,c%d",
3844 @@3.first_line, @@3.first_column,
3845 @@3.last_line, @@3.last_column);
3e259915 3846 @}
847bf1f5
AD
3847 @}
3848@end group
3849@end example
3850
3e259915 3851As for semantic values, there is a default action for locations that is
72d2299c 3852run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3853beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3854last symbol.
3e259915 3855
72d2299c 3856With this default action, the location tracking can be fully automatic. The
3e259915
MA
3857example above simply rewrites this way:
3858
3859@example
3860@group
3861exp: @dots{}
3862 | exp '/' exp
3863 @{
3864 if ($3)
3865 $$ = $1 / $3;
3866 else
3867 @{
3868 $$ = 1;
4e03e201
AD
3869 fprintf (stderr,
3870 "Division by zero, l%d,c%d-l%d,c%d",
3871 @@3.first_line, @@3.first_column,
3872 @@3.last_line, @@3.last_column);
3e259915
MA
3873 @}
3874 @}
3875@end group
3876@end example
847bf1f5 3877
32c29292 3878@vindex yylloc
742e4900 3879It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3880from a semantic action.
3881This location is stored in @code{yylloc}.
3882@xref{Action Features, ,Special Features for Use in Actions}.
3883
342b8b6e 3884@node Location Default Action
847bf1f5
AD
3885@subsection Default Action for Locations
3886@vindex YYLLOC_DEFAULT
8710fc41 3887@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3888
72d2299c 3889Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3890locations are much more general than semantic values, there is room in
3891the output parser to redefine the default action to take for each
72d2299c 3892rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3893matched, before the associated action is run. It is also invoked
3894while processing a syntax error, to compute the error's location.
8710fc41
JD
3895Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3896parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3897of that ambiguity.
847bf1f5 3898
3e259915 3899Most of the time, this macro is general enough to suppress location
79282c6c 3900dedicated code from semantic actions.
847bf1f5 3901
72d2299c 3902The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3903the location of the grouping (the result of the computation). When a
766de5eb 3904rule is matched, the second parameter identifies locations of
96b93a3d 3905all right hand side elements of the rule being matched, and the third
8710fc41
JD
3906parameter is the size of the rule's right hand side.
3907When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3908right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3909When processing a syntax error, the second parameter identifies locations
3910of the symbols that were discarded during error processing, and the third
96b93a3d 3911parameter is the number of discarded symbols.
847bf1f5 3912
766de5eb 3913By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3914
766de5eb 3915@smallexample
847bf1f5 3916@group
766de5eb
PE
3917# define YYLLOC_DEFAULT(Current, Rhs, N) \
3918 do \
3919 if (N) \
3920 @{ \
3921 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3922 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3923 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3924 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3925 @} \
3926 else \
3927 @{ \
3928 (Current).first_line = (Current).last_line = \
3929 YYRHSLOC(Rhs, 0).last_line; \
3930 (Current).first_column = (Current).last_column = \
3931 YYRHSLOC(Rhs, 0).last_column; \
3932 @} \
3933 while (0)
847bf1f5 3934@end group
766de5eb 3935@end smallexample
676385e2 3936
766de5eb
PE
3937where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3938in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3939just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3940
3e259915 3941When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3942
3e259915 3943@itemize @bullet
79282c6c 3944@item
72d2299c 3945All arguments are free of side-effects. However, only the first one (the
3e259915 3946result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3947
3e259915 3948@item
766de5eb
PE
3949For consistency with semantic actions, valid indexes within the
3950right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3951valid index, and it refers to the symbol just before the reduction.
3952During error processing @var{n} is always positive.
0ae99356
PE
3953
3954@item
3955Your macro should parenthesize its arguments, if need be, since the
3956actual arguments may not be surrounded by parentheses. Also, your
3957macro should expand to something that can be used as a single
3958statement when it is followed by a semicolon.
3e259915 3959@end itemize
847bf1f5 3960
342b8b6e 3961@node Declarations
bfa74976
RS
3962@section Bison Declarations
3963@cindex declarations, Bison
3964@cindex Bison declarations
3965
3966The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3967used in formulating the grammar and the data types of semantic values.
3968@xref{Symbols}.
3969
3970All token type names (but not single-character literal tokens such as
3971@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3972declared if you need to specify which data type to use for the semantic
3973value (@pxref{Multiple Types, ,More Than One Value Type}).
3974
3975The first rule in the file also specifies the start symbol, by default.
3976If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3977it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3978Grammars}).
bfa74976
RS
3979
3980@menu
b50d2359 3981* Require Decl:: Requiring a Bison version.
bfa74976
RS
3982* Token Decl:: Declaring terminal symbols.
3983* Precedence Decl:: Declaring terminals with precedence and associativity.
3984* Union Decl:: Declaring the set of all semantic value types.
3985* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3986* Initial Action Decl:: Code run before parsing starts.
72f889cc 3987* Destructor Decl:: Declaring how symbols are freed.
d6328241 3988* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3989* Start Decl:: Specifying the start symbol.
3990* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3991* Push Decl:: Requesting a push parser.
bfa74976
RS
3992* Decl Summary:: Table of all Bison declarations.
3993@end menu
3994
b50d2359
AD
3995@node Require Decl
3996@subsection Require a Version of Bison
3997@cindex version requirement
3998@cindex requiring a version of Bison
3999@findex %require
4000
4001You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4002the requirement is not met, @command{bison} exits with an error (exit
4003status 63).
b50d2359
AD
4004
4005@example
4006%require "@var{version}"
4007@end example
4008
342b8b6e 4009@node Token Decl
bfa74976
RS
4010@subsection Token Type Names
4011@cindex declaring token type names
4012@cindex token type names, declaring
931c7513 4013@cindex declaring literal string tokens
bfa74976
RS
4014@findex %token
4015
4016The basic way to declare a token type name (terminal symbol) is as follows:
4017
4018@example
4019%token @var{name}
4020@end example
4021
4022Bison will convert this into a @code{#define} directive in
4023the parser, so that the function @code{yylex} (if it is in this file)
4024can use the name @var{name} to stand for this token type's code.
4025
14ded682
AD
4026Alternatively, you can use @code{%left}, @code{%right}, or
4027@code{%nonassoc} instead of @code{%token}, if you wish to specify
4028associativity and precedence. @xref{Precedence Decl, ,Operator
4029Precedence}.
bfa74976
RS
4030
4031You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4032a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4033following the token name:
bfa74976
RS
4034
4035@example
4036%token NUM 300
1452af69 4037%token XNUM 0x12d // a GNU extension
bfa74976
RS
4038@end example
4039
4040@noindent
4041It is generally best, however, to let Bison choose the numeric codes for
4042all token types. Bison will automatically select codes that don't conflict
e966383b 4043with each other or with normal characters.
bfa74976
RS
4044
4045In the event that the stack type is a union, you must augment the
4046@code{%token} or other token declaration to include the data type
704a47c4
AD
4047alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4048Than One Value Type}).
bfa74976
RS
4049
4050For example:
4051
4052@example
4053@group
4054%union @{ /* define stack type */
4055 double val;
4056 symrec *tptr;
4057@}
4058%token <val> NUM /* define token NUM and its type */
4059@end group
4060@end example
4061
931c7513
RS
4062You can associate a literal string token with a token type name by
4063writing the literal string at the end of a @code{%token}
4064declaration which declares the name. For example:
4065
4066@example
4067%token arrow "=>"
4068@end example
4069
4070@noindent
4071For example, a grammar for the C language might specify these names with
4072equivalent literal string tokens:
4073
4074@example
4075%token <operator> OR "||"
4076%token <operator> LE 134 "<="
4077%left OR "<="
4078@end example
4079
4080@noindent
4081Once you equate the literal string and the token name, you can use them
4082interchangeably in further declarations or the grammar rules. The
4083@code{yylex} function can use the token name or the literal string to
4084obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4085Syntax error messages passed to @code{yyerror} from the parser will reference
4086the literal string instead of the token name.
4087
4088The token numbered as 0 corresponds to end of file; the following line
4089allows for nicer error messages referring to ``end of file'' instead
4090of ``$end'':
4091
4092@example
4093%token END 0 "end of file"
4094@end example
931c7513 4095
342b8b6e 4096@node Precedence Decl
bfa74976
RS
4097@subsection Operator Precedence
4098@cindex precedence declarations
4099@cindex declaring operator precedence
4100@cindex operator precedence, declaring
4101
4102Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4103declare a token and specify its precedence and associativity, all at
4104once. These are called @dfn{precedence declarations}.
704a47c4
AD
4105@xref{Precedence, ,Operator Precedence}, for general information on
4106operator precedence.
bfa74976 4107
ab7f29f8 4108The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4109@code{%token}: either
4110
4111@example
4112%left @var{symbols}@dots{}
4113@end example
4114
4115@noindent
4116or
4117
4118@example
4119%left <@var{type}> @var{symbols}@dots{}
4120@end example
4121
4122And indeed any of these declarations serves the purposes of @code{%token}.
4123But in addition, they specify the associativity and relative precedence for
4124all the @var{symbols}:
4125
4126@itemize @bullet
4127@item
4128The associativity of an operator @var{op} determines how repeated uses
4129of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4130@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4131grouping @var{y} with @var{z} first. @code{%left} specifies
4132left-associativity (grouping @var{x} with @var{y} first) and
4133@code{%right} specifies right-associativity (grouping @var{y} with
4134@var{z} first). @code{%nonassoc} specifies no associativity, which
4135means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4136considered a syntax error.
4137
4138@item
4139The precedence of an operator determines how it nests with other operators.
4140All the tokens declared in a single precedence declaration have equal
4141precedence and nest together according to their associativity.
4142When two tokens declared in different precedence declarations associate,
4143the one declared later has the higher precedence and is grouped first.
4144@end itemize
4145
ab7f29f8
JD
4146For backward compatibility, there is a confusing difference between the
4147argument lists of @code{%token} and precedence declarations.
4148Only a @code{%token} can associate a literal string with a token type name.
4149A precedence declaration always interprets a literal string as a reference to a
4150separate token.
4151For example:
4152
4153@example
4154%left OR "<=" // Does not declare an alias.
4155%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4156@end example
4157
342b8b6e 4158@node Union Decl
bfa74976
RS
4159@subsection The Collection of Value Types
4160@cindex declaring value types
4161@cindex value types, declaring
4162@findex %union
4163
287c78f6
PE
4164The @code{%union} declaration specifies the entire collection of
4165possible data types for semantic values. The keyword @code{%union} is
4166followed by braced code containing the same thing that goes inside a
4167@code{union} in C@.
bfa74976
RS
4168
4169For example:
4170
4171@example
4172@group
4173%union @{
4174 double val;
4175 symrec *tptr;
4176@}
4177@end group
4178@end example
4179
4180@noindent
4181This says that the two alternative types are @code{double} and @code{symrec
4182*}. They are given names @code{val} and @code{tptr}; these names are used
4183in the @code{%token} and @code{%type} declarations to pick one of the types
4184for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4185
6273355b
PE
4186As an extension to @acronym{POSIX}, a tag is allowed after the
4187@code{union}. For example:
4188
4189@example
4190@group
4191%union value @{
4192 double val;
4193 symrec *tptr;
4194@}
4195@end group
4196@end example
4197
d6ca7905 4198@noindent
6273355b
PE
4199specifies the union tag @code{value}, so the corresponding C type is
4200@code{union value}. If you do not specify a tag, it defaults to
4201@code{YYSTYPE}.
4202
d6ca7905
PE
4203As another extension to @acronym{POSIX}, you may specify multiple
4204@code{%union} declarations; their contents are concatenated. However,
4205only the first @code{%union} declaration can specify a tag.
4206
6273355b 4207Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4208a semicolon after the closing brace.
4209
ddc8ede1
PE
4210Instead of @code{%union}, you can define and use your own union type
4211@code{YYSTYPE} if your grammar contains at least one
4212@samp{<@var{type}>} tag. For example, you can put the following into
4213a header file @file{parser.h}:
4214
4215@example
4216@group
4217union YYSTYPE @{
4218 double val;
4219 symrec *tptr;
4220@};
4221typedef union YYSTYPE YYSTYPE;
4222@end group
4223@end example
4224
4225@noindent
4226and then your grammar can use the following
4227instead of @code{%union}:
4228
4229@example
4230@group
4231%@{
4232#include "parser.h"
4233%@}
4234%type <val> expr
4235%token <tptr> ID
4236@end group
4237@end example
4238
342b8b6e 4239@node Type Decl
bfa74976
RS
4240@subsection Nonterminal Symbols
4241@cindex declaring value types, nonterminals
4242@cindex value types, nonterminals, declaring
4243@findex %type
4244
4245@noindent
4246When you use @code{%union} to specify multiple value types, you must
4247declare the value type of each nonterminal symbol for which values are
4248used. This is done with a @code{%type} declaration, like this:
4249
4250@example
4251%type <@var{type}> @var{nonterminal}@dots{}
4252@end example
4253
4254@noindent
704a47c4
AD
4255Here @var{nonterminal} is the name of a nonterminal symbol, and
4256@var{type} is the name given in the @code{%union} to the alternative
4257that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4258can give any number of nonterminal symbols in the same @code{%type}
4259declaration, if they have the same value type. Use spaces to separate
4260the symbol names.
bfa74976 4261
931c7513
RS
4262You can also declare the value type of a terminal symbol. To do this,
4263use the same @code{<@var{type}>} construction in a declaration for the
4264terminal symbol. All kinds of token declarations allow
4265@code{<@var{type}>}.
4266
18d192f0
AD
4267@node Initial Action Decl
4268@subsection Performing Actions before Parsing
4269@findex %initial-action
4270
4271Sometimes your parser needs to perform some initializations before
4272parsing. The @code{%initial-action} directive allows for such arbitrary
4273code.
4274
4275@deffn {Directive} %initial-action @{ @var{code} @}
4276@findex %initial-action
287c78f6 4277Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4278@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4279@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4280@code{%parse-param}.
18d192f0
AD
4281@end deffn
4282
451364ed
AD
4283For instance, if your locations use a file name, you may use
4284
4285@example
48b16bbc 4286%parse-param @{ char const *file_name @};
451364ed
AD
4287%initial-action
4288@{
4626a15d 4289 @@$.initialize (file_name);
451364ed
AD
4290@};
4291@end example
4292
18d192f0 4293
72f889cc
AD
4294@node Destructor Decl
4295@subsection Freeing Discarded Symbols
4296@cindex freeing discarded symbols
4297@findex %destructor
12e35840 4298@findex <*>
3ebecc24 4299@findex <>
a85284cf
AD
4300During error recovery (@pxref{Error Recovery}), symbols already pushed
4301on the stack and tokens coming from the rest of the file are discarded
4302until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4303or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4304symbols on the stack must be discarded. Even if the parser succeeds, it
4305must discard the start symbol.
258b75ca
PE
4306
4307When discarded symbols convey heap based information, this memory is
4308lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4309in traditional compilers, it is unacceptable for programs like shells or
4310protocol implementations that may parse and execute indefinitely.
258b75ca 4311
a85284cf
AD
4312The @code{%destructor} directive defines code that is called when a
4313symbol is automatically discarded.
72f889cc
AD
4314
4315@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4316@findex %destructor
287c78f6
PE
4317Invoke the braced @var{code} whenever the parser discards one of the
4318@var{symbols}.
4b367315 4319Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4320with the discarded symbol, and @code{@@$} designates its location.
4321The additional parser parameters are also available (@pxref{Parser Function, ,
4322The Parser Function @code{yyparse}}).
ec5479ce 4323
b2a0b7ca
JD
4324When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4325per-symbol @code{%destructor}.
4326You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4327tag among @var{symbols}.
b2a0b7ca 4328In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4329grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4330per-symbol @code{%destructor}.
4331
12e35840 4332Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4333(These default forms are experimental.
4334More user feedback will help to determine whether they should become permanent
4335features.)
3ebecc24 4336You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4337exactly one @code{%destructor} declaration in your grammar file.
4338The parser will invoke the @var{code} associated with one of these whenever it
4339discards any user-defined grammar symbol that has no per-symbol and no per-type
4340@code{%destructor}.
4341The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4342symbol for which you have formally declared a semantic type tag (@code{%type}
4343counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4344The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4345symbol that has no declared semantic type tag.
72f889cc
AD
4346@end deffn
4347
b2a0b7ca 4348@noindent
12e35840 4349For example:
72f889cc
AD
4350
4351@smallexample
ec5479ce
JD
4352%union @{ char *string; @}
4353%token <string> STRING1
4354%token <string> STRING2
4355%type <string> string1
4356%type <string> string2
b2a0b7ca
JD
4357%union @{ char character; @}
4358%token <character> CHR
4359%type <character> chr
12e35840
JD
4360%token TAGLESS
4361
b2a0b7ca 4362%destructor @{ @} <character>
12e35840
JD
4363%destructor @{ free ($$); @} <*>
4364%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4365%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4366@end smallexample
4367
4368@noindent
b2a0b7ca
JD
4369guarantees that, when the parser discards any user-defined symbol that has a
4370semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4371to @code{free} by default.
ec5479ce
JD
4372However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4373prints its line number to @code{stdout}.
4374It performs only the second @code{%destructor} in this case, so it invokes
4375@code{free} only once.
12e35840
JD
4376Finally, the parser merely prints a message whenever it discards any symbol,
4377such as @code{TAGLESS}, that has no semantic type tag.
4378
4379A Bison-generated parser invokes the default @code{%destructor}s only for
4380user-defined as opposed to Bison-defined symbols.
4381For example, the parser will not invoke either kind of default
4382@code{%destructor} for the special Bison-defined symbols @code{$accept},
4383@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4384none of which you can reference in your grammar.
4385It also will not invoke either for the @code{error} token (@pxref{Table of
4386Symbols, ,error}), which is always defined by Bison regardless of whether you
4387reference it in your grammar.
4388However, it may invoke one of them for the end token (token 0) if you
4389redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4390
4391@smallexample
4392%token END 0
4393@end smallexample
4394
12e35840
JD
4395@cindex actions in mid-rule
4396@cindex mid-rule actions
4397Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4398mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4399That is, Bison does not consider a mid-rule to have a semantic value if you do
4400not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4401@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4402rule.
4403However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4404@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4405
3508ce36
JD
4406@ignore
4407@noindent
4408In the future, it may be possible to redefine the @code{error} token as a
4409nonterminal that captures the discarded symbols.
4410In that case, the parser will invoke the default destructor for it as well.
4411@end ignore
4412
e757bb10
AD
4413@sp 1
4414
4415@cindex discarded symbols
4416@dfn{Discarded symbols} are the following:
4417
4418@itemize
4419@item
4420stacked symbols popped during the first phase of error recovery,
4421@item
4422incoming terminals during the second phase of error recovery,
4423@item
742e4900 4424the current lookahead and the entire stack (except the current
9d9b8b70 4425right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4426@item
4427the start symbol, when the parser succeeds.
e757bb10
AD
4428@end itemize
4429
9d9b8b70
PE
4430The parser can @dfn{return immediately} because of an explicit call to
4431@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4432exhaustion.
4433
29553547 4434Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4435error via @code{YYERROR} are not discarded automatically. As a rule
4436of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4437the memory.
e757bb10 4438
342b8b6e 4439@node Expect Decl
bfa74976
RS
4440@subsection Suppressing Conflict Warnings
4441@cindex suppressing conflict warnings
4442@cindex preventing warnings about conflicts
4443@cindex warnings, preventing
4444@cindex conflicts, suppressing warnings of
4445@findex %expect
d6328241 4446@findex %expect-rr
bfa74976
RS
4447
4448Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4449(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4450have harmless shift/reduce conflicts which are resolved in a predictable
4451way and would be difficult to eliminate. It is desirable to suppress
4452the warning about these conflicts unless the number of conflicts
4453changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4454
4455The declaration looks like this:
4456
4457@example
4458%expect @var{n}
4459@end example
4460
035aa4a0
PE
4461Here @var{n} is a decimal integer. The declaration says there should
4462be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4463Bison reports an error if the number of shift/reduce conflicts differs
4464from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4465
34a6c2d1 4466For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4467serious, and should be eliminated entirely. Bison will always report
4468reduce/reduce conflicts for these parsers. With @acronym{GLR}
4469parsers, however, both kinds of conflicts are routine; otherwise,
4470there would be no need to use @acronym{GLR} parsing. Therefore, it is
4471also possible to specify an expected number of reduce/reduce conflicts
4472in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4473
4474@example
4475%expect-rr @var{n}
4476@end example
4477
bfa74976
RS
4478In general, using @code{%expect} involves these steps:
4479
4480@itemize @bullet
4481@item
4482Compile your grammar without @code{%expect}. Use the @samp{-v} option
4483to get a verbose list of where the conflicts occur. Bison will also
4484print the number of conflicts.
4485
4486@item
4487Check each of the conflicts to make sure that Bison's default
4488resolution is what you really want. If not, rewrite the grammar and
4489go back to the beginning.
4490
4491@item
4492Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4493number which Bison printed. With @acronym{GLR} parsers, add an
4494@code{%expect-rr} declaration as well.
bfa74976
RS
4495@end itemize
4496
035aa4a0
PE
4497Now Bison will warn you if you introduce an unexpected conflict, but
4498will keep silent otherwise.
bfa74976 4499
342b8b6e 4500@node Start Decl
bfa74976
RS
4501@subsection The Start-Symbol
4502@cindex declaring the start symbol
4503@cindex start symbol, declaring
4504@cindex default start symbol
4505@findex %start
4506
4507Bison assumes by default that the start symbol for the grammar is the first
4508nonterminal specified in the grammar specification section. The programmer
4509may override this restriction with the @code{%start} declaration as follows:
4510
4511@example
4512%start @var{symbol}
4513@end example
4514
342b8b6e 4515@node Pure Decl
bfa74976
RS
4516@subsection A Pure (Reentrant) Parser
4517@cindex reentrant parser
4518@cindex pure parser
d9df47b6 4519@findex %define api.pure
bfa74976
RS
4520
4521A @dfn{reentrant} program is one which does not alter in the course of
4522execution; in other words, it consists entirely of @dfn{pure} (read-only)
4523code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4524for example, a nonreentrant program may not be safe to call from a signal
4525handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4526program must be called only within interlocks.
4527
70811b85 4528Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4529suitable for most uses, and it permits compatibility with Yacc. (The
4530standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4531statically allocated variables for communication with @code{yylex},
4532including @code{yylval} and @code{yylloc}.)
bfa74976 4533
70811b85 4534Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4535declaration @code{%define api.pure} says that you want the parser to be
70811b85 4536reentrant. It looks like this:
bfa74976
RS
4537
4538@example
d9df47b6 4539%define api.pure
bfa74976
RS
4540@end example
4541
70811b85
RS
4542The result is that the communication variables @code{yylval} and
4543@code{yylloc} become local variables in @code{yyparse}, and a different
4544calling convention is used for the lexical analyzer function
4545@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4546Parsers}, for the details of this. The variable @code{yynerrs}
4547becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4548of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4549Reporting Function @code{yyerror}}). The convention for calling
4550@code{yyparse} itself is unchanged.
4551
4552Whether the parser is pure has nothing to do with the grammar rules.
4553You can generate either a pure parser or a nonreentrant parser from any
4554valid grammar.
bfa74976 4555
9987d1b3
JD
4556@node Push Decl
4557@subsection A Push Parser
4558@cindex push parser
4559@cindex push parser
c373bf8b 4560@findex %define api.push_pull
9987d1b3 4561
59da312b
JD
4562(The current push parsing interface is experimental and may evolve.
4563More user feedback will help to stabilize it.)
4564
f4101aa6
AD
4565A pull parser is called once and it takes control until all its input
4566is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4567each time a new token is made available.
4568
f4101aa6 4569A push parser is typically useful when the parser is part of a
9987d1b3 4570main event loop in the client's application. This is typically
f4101aa6
AD
4571a requirement of a GUI, when the main event loop needs to be triggered
4572within a certain time period.
9987d1b3 4573
d782395d
JD
4574Normally, Bison generates a pull parser.
4575The following Bison declaration says that you want the parser to be a push
c373bf8b 4576parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4577
4578@example
c373bf8b 4579%define api.push_pull "push"
9987d1b3
JD
4580@end example
4581
4582In almost all cases, you want to ensure that your push parser is also
4583a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4584time you should create an impure push parser is to have backwards
9987d1b3
JD
4585compatibility with the impure Yacc pull mode interface. Unless you know
4586what you are doing, your declarations should look like this:
4587
4588@example
d9df47b6 4589%define api.pure
c373bf8b 4590%define api.push_pull "push"
9987d1b3
JD
4591@end example
4592
f4101aa6
AD
4593There is a major notable functional difference between the pure push parser
4594and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4595many parser instances, of the same type of parser, in memory at the same time.
4596An impure push parser should only use one parser at a time.
4597
4598When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4599the generated parser. @code{yypstate} is a structure that the generated
4600parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4601function that will create a new parser instance. @code{yypstate_delete}
4602will free the resources associated with the corresponding parser instance.
f4101aa6 4603Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4604token is available to provide the parser. A trivial example
4605of using a pure push parser would look like this:
4606
4607@example
4608int status;
4609yypstate *ps = yypstate_new ();
4610do @{
4611 status = yypush_parse (ps, yylex (), NULL);
4612@} while (status == YYPUSH_MORE);
4613yypstate_delete (ps);
4614@end example
4615
4616If the user decided to use an impure push parser, a few things about
f4101aa6 4617the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4618a global variable instead of a variable in the @code{yypush_parse} function.
4619For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4620changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4621example would thus look like this:
4622
4623@example
4624extern int yychar;
4625int status;
4626yypstate *ps = yypstate_new ();
4627do @{
4628 yychar = yylex ();
4629 status = yypush_parse (ps);
4630@} while (status == YYPUSH_MORE);
4631yypstate_delete (ps);
4632@end example
4633
f4101aa6 4634That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4635for use by the next invocation of the @code{yypush_parse} function.
4636
f4101aa6 4637Bison also supports both the push parser interface along with the pull parser
9987d1b3 4638interface in the same generated parser. In order to get this functionality,
f4101aa6 4639you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4640@code{%define api.push_pull "both"} declaration. Doing this will create all of
4641the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4642and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4643would be used. However, the user should note that it is implemented in the
d782395d
JD
4644generated parser by calling @code{yypull_parse}.
4645This makes the @code{yyparse} function that is generated with the
c373bf8b 4646@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4647@code{yyparse} function. If the user
4648calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4649stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4650and then @code{yypull_parse} the rest of the input stream. If you would like
4651to switch back and forth between between parsing styles, you would have to
4652write your own @code{yypull_parse} function that knows when to quit looking
4653for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4654like this:
4655
4656@example
4657yypstate *ps = yypstate_new ();
4658yypull_parse (ps); /* Will call the lexer */
4659yypstate_delete (ps);
4660@end example
4661
d9df47b6 4662Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4663the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4664@code{%define api.push_pull "push"}.
9987d1b3 4665
342b8b6e 4666@node Decl Summary
bfa74976
RS
4667@subsection Bison Declaration Summary
4668@cindex Bison declaration summary
4669@cindex declaration summary
4670@cindex summary, Bison declaration
4671
d8988b2f 4672Here is a summary of the declarations used to define a grammar:
bfa74976 4673
18b519c0 4674@deffn {Directive} %union
bfa74976
RS
4675Declare the collection of data types that semantic values may have
4676(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4677@end deffn
bfa74976 4678
18b519c0 4679@deffn {Directive} %token
bfa74976
RS
4680Declare a terminal symbol (token type name) with no precedence
4681or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4682@end deffn
bfa74976 4683
18b519c0 4684@deffn {Directive} %right
bfa74976
RS
4685Declare a terminal symbol (token type name) that is right-associative
4686(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4687@end deffn
bfa74976 4688
18b519c0 4689@deffn {Directive} %left
bfa74976
RS
4690Declare a terminal symbol (token type name) that is left-associative
4691(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4692@end deffn
bfa74976 4693
18b519c0 4694@deffn {Directive} %nonassoc
bfa74976 4695Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4696(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4697Using it in a way that would be associative is a syntax error.
4698@end deffn
4699
91d2c560 4700@ifset defaultprec
39a06c25 4701@deffn {Directive} %default-prec
22fccf95 4702Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4703(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4704@end deffn
91d2c560 4705@end ifset
bfa74976 4706
18b519c0 4707@deffn {Directive} %type
bfa74976
RS
4708Declare the type of semantic values for a nonterminal symbol
4709(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4710@end deffn
bfa74976 4711
18b519c0 4712@deffn {Directive} %start
89cab50d
AD
4713Specify the grammar's start symbol (@pxref{Start Decl, ,The
4714Start-Symbol}).
18b519c0 4715@end deffn
bfa74976 4716
18b519c0 4717@deffn {Directive} %expect
bfa74976
RS
4718Declare the expected number of shift-reduce conflicts
4719(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4720@end deffn
4721
bfa74976 4722
d8988b2f
AD
4723@sp 1
4724@noindent
4725In order to change the behavior of @command{bison}, use the following
4726directives:
4727
148d66d8
JD
4728@deffn {Directive} %code @{@var{code}@}
4729@findex %code
4730This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4731It inserts @var{code} verbatim at a language-dependent default location in the
4732output@footnote{The default location is actually skeleton-dependent;
4733 writers of non-standard skeletons however should choose the default location
4734 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4735
4736@cindex Prologue
8405b70c 4737For C/C++, the default location is the parser source code
148d66d8
JD
4738file after the usual contents of the parser header file.
4739Thus, @code{%code} replaces the traditional Yacc prologue,
4740@code{%@{@var{code}%@}}, for most purposes.
4741For a detailed discussion, see @ref{Prologue Alternatives}.
4742
8405b70c 4743For Java, the default location is inside the parser class.
148d66d8
JD
4744
4745(Like all the Yacc prologue alternatives, this directive is experimental.
4746More user feedback will help to determine whether it should become a permanent
4747feature.)
4748@end deffn
4749
4750@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4751This is the qualified form of the @code{%code} directive.
4752If you need to specify location-sensitive verbatim @var{code} that does not
4753belong at the default location selected by the unqualified @code{%code} form,
4754use this form instead.
4755
4756@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4757where Bison should generate it.
4758Not all values of @var{qualifier} are available for all target languages:
4759
4760@itemize @bullet
148d66d8 4761@item requires
793fbca5 4762@findex %code requires
148d66d8
JD
4763
4764@itemize @bullet
4765@item Language(s): C, C++
4766
4767@item Purpose: This is the best place to write dependency code required for
4768@code{YYSTYPE} and @code{YYLTYPE}.
4769In other words, it's the best place to define types referenced in @code{%union}
4770directives, and it's the best place to override Bison's default @code{YYSTYPE}
4771and @code{YYLTYPE} definitions.
4772
4773@item Location(s): The parser header file and the parser source code file
4774before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4775@end itemize
4776
4777@item provides
4778@findex %code provides
4779
4780@itemize @bullet
4781@item Language(s): C, C++
4782
4783@item Purpose: This is the best place to write additional definitions and
4784declarations that should be provided to other modules.
4785
4786@item Location(s): The parser header file and the parser source code file after
4787the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4788@end itemize
4789
4790@item top
4791@findex %code top
4792
4793@itemize @bullet
4794@item Language(s): C, C++
4795
4796@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4797usually be more appropriate than @code{%code top}.
4798However, occasionally it is necessary to insert code much nearer the top of the
4799parser source code file.
4800For example:
4801
4802@smallexample
4803%code top @{
4804 #define _GNU_SOURCE
4805 #include <stdio.h>
4806@}
4807@end smallexample
4808
4809@item Location(s): Near the top of the parser source code file.
4810@end itemize
8405b70c 4811
148d66d8
JD
4812@item imports
4813@findex %code imports
4814
4815@itemize @bullet
4816@item Language(s): Java
4817
4818@item Purpose: This is the best place to write Java import directives.
4819
4820@item Location(s): The parser Java file after any Java package directive and
4821before any class definitions.
4822@end itemize
148d66d8
JD
4823@end itemize
4824
4825(Like all the Yacc prologue alternatives, this directive is experimental.
4826More user feedback will help to determine whether it should become a permanent
4827feature.)
4828
4829@cindex Prologue
4830For a detailed discussion of how to use @code{%code} in place of the
4831traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4832@end deffn
4833
18b519c0 4834@deffn {Directive} %debug
4947ebdb
PE
4835In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4836already defined, so that the debugging facilities are compiled.
ec3bc396 4837@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4838@end deffn
d8988b2f 4839
c1d19e10
PB
4840@deffn {Directive} %define @var{variable}
4841@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4842Define a variable to adjust Bison's behavior.
4843The possible choices for @var{variable}, as well as their meanings, depend on
4844the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4845Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4846
4847Bison will warn if a @var{variable} is defined multiple times.
4848
4849Omitting @code{"@var{value}"} is always equivalent to specifying it as
4850@code{""}.
4851
922bdd7f 4852Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4853In this case, Bison will complain if the variable definition does not meet one
4854of the following four conditions:
4855
4856@enumerate
4857@item @code{"@var{value}"} is @code{"true"}
4858
4859@item @code{"@var{value}"} is omitted (or is @code{""}).
4860This is equivalent to @code{"true"}.
4861
4862@item @code{"@var{value}"} is @code{"false"}.
4863
4864@item @var{variable} is never defined.
4865In this case, Bison selects a default value, which may depend on the selected
4866target language and/or parser skeleton.
4867@end enumerate
148d66d8 4868
793fbca5
JD
4869Some of the accepted @var{variable}s are:
4870
4871@itemize @bullet
d9df47b6
JD
4872@item api.pure
4873@findex %define api.pure
4874
4875@itemize @bullet
4876@item Language(s): C
4877
4878@item Purpose: Request a pure (reentrant) parser program.
4879@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4880
4881@item Accepted Values: Boolean
4882
4883@item Default Value: @code{"false"}
4884@end itemize
4885
c373bf8b
JD
4886@item api.push_pull
4887@findex %define api.push_pull
793fbca5
JD
4888
4889@itemize @bullet
34a6c2d1 4890@item Language(s): C (deterministic parsers only)
793fbca5
JD
4891
4892@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4893@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4894(The current push parsing interface is experimental and may evolve.
4895More user feedback will help to stabilize it.)
793fbca5
JD
4896
4897@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4898
4899@item Default Value: @code{"pull"}
4900@end itemize
4901
620b5727
JD
4902@item lr.default_reductions
4903@cindex default reductions
4904@findex %define lr.default_reductions
34a6c2d1
JD
4905@cindex delayed syntax errors
4906@cindex syntax errors delayed
4907
4908@itemize @bullet
4909@item Language(s): all
4910
4911@item Purpose: Specifies the kind of states that are permitted to
620b5727
JD
4912contain default reductions.
4913That is, in such a state, Bison declares the reduction with the largest
4914lookahead set to be the default reduction and then removes that
4915lookahead set.
4916The advantages of default reductions are discussed below.
34a6c2d1
JD
4917The disadvantage is that, when the generated parser encounters a
4918syntactically unacceptable token, the parser might then perform
620b5727 4919unnecessary default reductions before it can detect the syntax error.
34a6c2d1
JD
4920
4921(This feature is experimental.
4922More user feedback will help to stabilize it.)
4923
4924@item Accepted Values:
4925@itemize
4926@item @code{"all"}.
4927For @acronym{LALR} and @acronym{IELR} parsers (@pxref{Decl
4928Summary,,lr.type}) by default, all states are permitted to contain
620b5727 4929default reductions.
34a6c2d1
JD
4930The advantage is that parser table sizes can be significantly reduced.
4931The reason Bison does not by default attempt to address the disadvantage
4932of delayed syntax error detection is that this disadvantage is already
4933inherent in @acronym{LALR} and @acronym{IELR} parser tables.
620b5727
JD
4934That is, unlike in a canonical @acronym{LR} state, the lookahead sets of
4935reductions in an @acronym{LALR} or @acronym{IELR} state can contain
4936tokens that are syntactically incorrect for some left contexts.
34a6c2d1
JD
4937
4938@item @code{"consistent"}.
4939@cindex consistent states
4940A consistent state is a state that has only one possible action.
4941If that action is a reduction, then the parser does not need to request
4942a lookahead token from the scanner before performing that action.
4943However, the parser only recognizes the ability to ignore the lookahead
620b5727
JD
4944token when such a reduction is encoded as a default reduction.
4945Thus, if default reductions are permitted in and only in consistent
4946states, then a canonical @acronym{LR} parser reports a syntax error as
4947soon as it @emph{needs} the syntactically unacceptable token from the
4948scanner.
34a6c2d1
JD
4949
4950@item @code{"accepting"}.
4951@cindex accepting state
620b5727
JD
4952By default, the only default reduction permitted in a canonical
4953@acronym{LR} parser is the accept action in the accepting state, which
4954the parser reaches only after reading all tokens from the input.
34a6c2d1
JD
4955Thus, the default canonical @acronym{LR} parser reports a syntax error
4956as soon as it @emph{reaches} the syntactically unacceptable token
4957without performing any extra reductions.
4958@end itemize
4959
4960@item Default Value:
4961@itemize
4962@item @code{"accepting"} if @code{lr.type} is @code{"canonical LR"}.
4963@item @code{"all"} otherwise.
4964@end itemize
4965@end itemize
4966
31984206
JD
4967@item lr.keep_unreachable_states
4968@findex %define lr.keep_unreachable_states
4969
4970@itemize @bullet
4971@item Language(s): all
4972
4973@item Purpose: Requests that Bison allow unreachable parser states to remain in
4974the parser tables.
4975Bison considers a state to be unreachable if there exists no sequence of
4976transitions from the start state to that state.
4977A state can become unreachable during conflict resolution if Bison disables a
4978shift action leading to it from a predecessor state.
4979Keeping unreachable states is sometimes useful for analysis purposes, but they
4980are useless in the generated parser.
4981
4982@item Accepted Values: Boolean
4983
4984@item Default Value: @code{"false"}
4985
4986@item Caveats:
4987
4988@itemize @bullet
cff03fb2
JD
4989
4990@item Unreachable states may contain conflicts and may use rules not used in
4991any other state.
31984206
JD
4992Thus, keeping unreachable states may induce warnings that are irrelevant to
4993your parser's behavior, and it may eliminate warnings that are relevant.
4994Of course, the change in warnings may actually be relevant to a parser table
4995analysis that wants to keep unreachable states, so this behavior will likely
4996remain in future Bison releases.
4997
4998@item While Bison is able to remove unreachable states, it is not guaranteed to
4999remove other kinds of useless states.
5000Specifically, when Bison disables reduce actions during conflict resolution,
5001some goto actions may become useless, and thus some additional states may
5002become useless.
5003If Bison were to compute which goto actions were useless and then disable those
5004actions, it could identify such states as unreachable and then remove those
5005states.
5006However, Bison does not compute which goto actions are useless.
5007@end itemize
5008@end itemize
5009
34a6c2d1
JD
5010@item lr.type
5011@findex %define lr.type
5012@cindex @acronym{LALR}
5013@cindex @acronym{IELR}
5014@cindex @acronym{LR}
5015
5016@itemize @bullet
5017@item Language(s): all
5018
5019@item Purpose: Specifies the type of parser tables within the
5020@acronym{LR}(1) family.
5021(This feature is experimental.
5022More user feedback will help to stabilize it.)
5023
5024@item Accepted Values:
5025@itemize
5026@item @code{"LALR"}.
5027While Bison generates @acronym{LALR} parser tables by default for
5028historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5029always preferable for deterministic parsers.
5030The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5031mysterious conflicts and thus may not accept the full set of sentences
5032that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5033@xref{Mystery Conflicts}, for details.
5034However, there are at least two scenarios where @acronym{LALR} may be
5035worthwhile:
5036@itemize
5037@cindex @acronym{GLR} with @acronym{LALR}
5038@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5039do not resolve any conflicts statically (for example, with @code{%left}
5040or @code{%prec}), then the parser explores all potential parses of any
5041given input.
620b5727
JD
5042In this case, the use of @acronym{LALR} parser tables is guaranteed not
5043to alter the language accepted by the parser.
34a6c2d1
JD
5044@acronym{LALR} parser tables are the smallest parser tables Bison can
5045currently generate, so they may be preferable.
5046
5047@item Occasionally during development, an especially malformed grammar
5048with a major recurring flaw may severely impede the @acronym{IELR} or
5049canonical @acronym{LR} parser table generation algorithm.
5050@acronym{LALR} can be a quick way to generate parser tables in order to
5051investigate such problems while ignoring the more subtle differences
5052from @acronym{IELR} and canonical @acronym{LR}.
5053@end itemize
5054
5055@item @code{"IELR"}.
5056@acronym{IELR} is a minimal @acronym{LR} algorithm.
5057That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5058@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5059set of sentences.
5060However, as for @acronym{LALR}, the number of parser states is often an
5061order of magnitude less for @acronym{IELR} than for canonical
5062@acronym{LR}.
5063More importantly, because canonical @acronym{LR}'s extra parser states
5064may contain duplicate conflicts in the case of non-@acronym{LR}
5065grammars, the number of conflicts for @acronym{IELR} is often an order
5066of magnitude less as well.
5067This can significantly reduce the complexity of developing of a grammar.
5068
5069@item @code{"canonical LR"}.
5070@cindex delayed syntax errors
5071@cindex syntax errors delayed
620b5727
JD
5072The only advantage of canonical @acronym{LR} over @acronym{IELR} is
5073that, for every left context of every canonical @acronym{LR} state, the
5074set of tokens accepted by that state is the exact set of tokens that is
5075syntactically acceptable in that left context.
5076Thus, the only difference in parsing behavior is that the canonical
34a6c2d1
JD
5077@acronym{LR} parser can report a syntax error as soon as possible
5078without performing any unnecessary reductions.
620b5727 5079@xref{Decl Summary,,lr.default_reductions}, for further details.
34a6c2d1
JD
5080Even when canonical @acronym{LR} behavior is ultimately desired,
5081@acronym{IELR}'s elimination of duplicate conflicts should still
5082facilitate the development of a grammar.
5083@end itemize
5084
5085@item Default Value: @code{"LALR"}
5086@end itemize
5087
793fbca5
JD
5088@item namespace
5089@findex %define namespace
5090
5091@itemize
5092@item Languages(s): C++
5093
5094@item Purpose: Specifies the namespace for the parser class.
5095For example, if you specify:
5096
5097@smallexample
5098%define namespace "foo::bar"
5099@end smallexample
5100
5101Bison uses @code{foo::bar} verbatim in references such as:
5102
5103@smallexample
5104foo::bar::parser::semantic_type
5105@end smallexample
5106
5107However, to open a namespace, Bison removes any leading @code{::} and then
5108splits on any remaining occurrences:
5109
5110@smallexample
5111namespace foo @{ namespace bar @{
5112 class position;
5113 class location;
5114@} @}
5115@end smallexample
5116
5117@item Accepted Values: Any absolute or relative C++ namespace reference without
5118a trailing @code{"::"}.
5119For example, @code{"foo"} or @code{"::foo::bar"}.
5120
5121@item Default Value: The value specified by @code{%name-prefix}, which defaults
5122to @code{yy}.
5123This usage of @code{%name-prefix} is for backward compatibility and can be
5124confusing since @code{%name-prefix} also specifies the textual prefix for the
5125lexical analyzer function.
5126Thus, if you specify @code{%name-prefix}, it is best to also specify
5127@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5128lexical analyzer function.
5129For example, if you specify:
5130
5131@smallexample
5132%define namespace "foo"
5133%name-prefix "bar::"
5134@end smallexample
5135
5136The parser namespace is @code{foo} and @code{yylex} is referenced as
5137@code{bar::lex}.
5138@end itemize
5139@end itemize
5140
d782395d
JD
5141@end deffn
5142
18b519c0 5143@deffn {Directive} %defines
4bfd5e4e
PE
5144Write a header file containing macro definitions for the token type
5145names defined in the grammar as well as a few other declarations.
d8988b2f 5146If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5147is named @file{@var{name}.h}.
d8988b2f 5148
b321737f 5149For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5150@code{YYSTYPE} is already defined as a macro or you have used a
5151@code{<@var{type}>} tag without using @code{%union}.
5152Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5153(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5154require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5155or type definition
f8e1c9e5
AD
5156(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5157arrange for these definitions to be propagated to all modules, e.g., by
5158putting them in a prerequisite header that is included both by your
5159parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5160
5161Unless your parser is pure, the output header declares @code{yylval}
5162as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5163Parser}.
5164
5165If you have also used locations, the output header declares
5166@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5167the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5168Locations}.
5169
f8e1c9e5
AD
5170This output file is normally essential if you wish to put the definition
5171of @code{yylex} in a separate source file, because @code{yylex}
5172typically needs to be able to refer to the above-mentioned declarations
5173and to the token type codes. @xref{Token Values, ,Semantic Values of
5174Tokens}.
9bc0dd67 5175
16dc6a9e
JD
5176@findex %code requires
5177@findex %code provides
5178If you have declared @code{%code requires} or @code{%code provides}, the output
5179header also contains their code.
148d66d8 5180@xref{Decl Summary, ,%code}.
592d0b1e
PB
5181@end deffn
5182
02975b9a
JD
5183@deffn {Directive} %defines @var{defines-file}
5184Same as above, but save in the file @var{defines-file}.
5185@end deffn
5186
18b519c0 5187@deffn {Directive} %destructor
258b75ca 5188Specify how the parser should reclaim the memory associated to
fa7e68c3 5189discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5190@end deffn
72f889cc 5191
02975b9a 5192@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5193Specify a prefix to use for all Bison output file names. The names are
5194chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5195@end deffn
d8988b2f 5196
e6e704dc 5197@deffn {Directive} %language "@var{language}"
0e021770 5198Specify the programming language for the generated parser. Currently
59da312b 5199supported languages include C, C++, and Java.
e6e704dc 5200@var{language} is case-insensitive.
ed4d67dc
JD
5201
5202This directive is experimental and its effect may be modified in future
5203releases.
0e021770
PE
5204@end deffn
5205
18b519c0 5206@deffn {Directive} %locations
89cab50d
AD
5207Generate the code processing the locations (@pxref{Action Features,
5208,Special Features for Use in Actions}). This mode is enabled as soon as
5209the grammar uses the special @samp{@@@var{n}} tokens, but if your
5210grammar does not use it, using @samp{%locations} allows for more
6e649e65 5211accurate syntax error messages.
18b519c0 5212@end deffn
89cab50d 5213
02975b9a 5214@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5215Rename the external symbols used in the parser so that they start with
5216@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5217in C parsers
d8988b2f 5218is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5219@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5220(if locations are used) @code{yylloc}. If you use a push parser,
5221@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5222@code{yypstate_new} and @code{yypstate_delete} will
5223also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5224names become @code{c_parse}, @code{c_lex}, and so on.
5225For C++ parsers, see the @code{%define namespace} documentation in this
5226section.
aa08666d 5227@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5228@end deffn
931c7513 5229
91d2c560 5230@ifset defaultprec
22fccf95
PE
5231@deffn {Directive} %no-default-prec
5232Do not assign a precedence to rules lacking an explicit @code{%prec}
5233modifier (@pxref{Contextual Precedence, ,Context-Dependent
5234Precedence}).
5235@end deffn
91d2c560 5236@end ifset
22fccf95 5237
18b519c0 5238@deffn {Directive} %no-lines
931c7513
RS
5239Don't generate any @code{#line} preprocessor commands in the parser
5240file. Ordinarily Bison writes these commands in the parser file so that
5241the C compiler and debuggers will associate errors and object code with
5242your source file (the grammar file). This directive causes them to
5243associate errors with the parser file, treating it an independent source
5244file in its own right.
18b519c0 5245@end deffn
931c7513 5246
02975b9a 5247@deffn {Directive} %output "@var{file}"
fa4d969f 5248Specify @var{file} for the parser file.
18b519c0 5249@end deffn
6deb4447 5250
18b519c0 5251@deffn {Directive} %pure-parser
d9df47b6
JD
5252Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5253for which Bison is more careful to warn about unreasonable usage.
18b519c0 5254@end deffn
6deb4447 5255
b50d2359 5256@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5257Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5258Require a Version of Bison}.
b50d2359
AD
5259@end deffn
5260
0e021770 5261@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5262Specify the skeleton to use.
5263
ed4d67dc
JD
5264@c You probably don't need this option unless you are developing Bison.
5265@c You should use @code{%language} if you want to specify the skeleton for a
5266@c different language, because it is clearer and because it will always choose the
5267@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5268
5269If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5270file in the Bison installation directory.
5271If it does, @var{file} is an absolute file name or a file name relative to the
5272directory of the grammar file.
5273This is similar to how most shells resolve commands.
0e021770
PE
5274@end deffn
5275
18b519c0 5276@deffn {Directive} %token-table
931c7513
RS
5277Generate an array of token names in the parser file. The name of the
5278array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5279token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5280three elements of @code{yytname} correspond to the predefined tokens
5281@code{"$end"},
88bce5a2
AD
5282@code{"error"}, and @code{"$undefined"}; after these come the symbols
5283defined in the grammar file.
931c7513 5284
9e0876fb
PE
5285The name in the table includes all the characters needed to represent
5286the token in Bison. For single-character literals and literal
5287strings, this includes the surrounding quoting characters and any
5288escape sequences. For example, the Bison single-character literal
5289@code{'+'} corresponds to a three-character name, represented in C as
5290@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5291corresponds to a five-character name, represented in C as
5292@code{"\"\\\\/\""}.
931c7513 5293
8c9a50be 5294When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5295definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5296@code{YYNRULES}, and @code{YYNSTATES}:
5297
5298@table @code
5299@item YYNTOKENS
5300The highest token number, plus one.
5301@item YYNNTS
9ecbd125 5302The number of nonterminal symbols.
931c7513
RS
5303@item YYNRULES
5304The number of grammar rules,
5305@item YYNSTATES
5306The number of parser states (@pxref{Parser States}).
5307@end table
18b519c0 5308@end deffn
d8988b2f 5309
18b519c0 5310@deffn {Directive} %verbose
d8988b2f 5311Write an extra output file containing verbose descriptions of the
742e4900 5312parser states and what is done for each type of lookahead token in
72d2299c 5313that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5314information.
18b519c0 5315@end deffn
d8988b2f 5316
18b519c0 5317@deffn {Directive} %yacc
d8988b2f
AD
5318Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5319including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5320@end deffn
d8988b2f
AD
5321
5322
342b8b6e 5323@node Multiple Parsers
bfa74976
RS
5324@section Multiple Parsers in the Same Program
5325
5326Most programs that use Bison parse only one language and therefore contain
5327only one Bison parser. But what if you want to parse more than one
5328language with the same program? Then you need to avoid a name conflict
5329between different definitions of @code{yyparse}, @code{yylval}, and so on.
5330
5331The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5332(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5333functions and variables of the Bison parser to start with @var{prefix}
5334instead of @samp{yy}. You can use this to give each parser distinct
5335names that do not conflict.
bfa74976
RS
5336
5337The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5338@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5339@code{yychar} and @code{yydebug}. If you use a push parser,
5340@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5341@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5342For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5343@code{clex}, and so on.
bfa74976
RS
5344
5345@strong{All the other variables and macros associated with Bison are not
5346renamed.} These others are not global; there is no conflict if the same
5347name is used in different parsers. For example, @code{YYSTYPE} is not
5348renamed, but defining this in different ways in different parsers causes
5349no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5350
5351The @samp{-p} option works by adding macro definitions to the beginning
5352of the parser source file, defining @code{yyparse} as
5353@code{@var{prefix}parse}, and so on. This effectively substitutes one
5354name for the other in the entire parser file.
5355
342b8b6e 5356@node Interface
bfa74976
RS
5357@chapter Parser C-Language Interface
5358@cindex C-language interface
5359@cindex interface
5360
5361The Bison parser is actually a C function named @code{yyparse}. Here we
5362describe the interface conventions of @code{yyparse} and the other
5363functions that it needs to use.
5364
5365Keep in mind that the parser uses many C identifiers starting with
5366@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5367identifier (aside from those in this manual) in an action or in epilogue
5368in the grammar file, you are likely to run into trouble.
bfa74976
RS
5369
5370@menu
f56274a8
DJ
5371* Parser Function:: How to call @code{yyparse} and what it returns.
5372* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5373* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5374* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5375* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5376* Lexical:: You must supply a function @code{yylex}
5377 which reads tokens.
5378* Error Reporting:: You must supply a function @code{yyerror}.
5379* Action Features:: Special features for use in actions.
5380* Internationalization:: How to let the parser speak in the user's
5381 native language.
bfa74976
RS
5382@end menu
5383
342b8b6e 5384@node Parser Function
bfa74976
RS
5385@section The Parser Function @code{yyparse}
5386@findex yyparse
5387
5388You call the function @code{yyparse} to cause parsing to occur. This
5389function reads tokens, executes actions, and ultimately returns when it
5390encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5391write an action which directs @code{yyparse} to return immediately
5392without reading further.
bfa74976 5393
2a8d363a
AD
5394
5395@deftypefun int yyparse (void)
bfa74976
RS
5396The value returned by @code{yyparse} is 0 if parsing was successful (return
5397is due to end-of-input).
5398
b47dbebe
PE
5399The value is 1 if parsing failed because of invalid input, i.e., input
5400that contains a syntax error or that causes @code{YYABORT} to be
5401invoked.
5402
5403The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5404@end deftypefun
bfa74976
RS
5405
5406In an action, you can cause immediate return from @code{yyparse} by using
5407these macros:
5408
2a8d363a 5409@defmac YYACCEPT
bfa74976
RS
5410@findex YYACCEPT
5411Return immediately with value 0 (to report success).
2a8d363a 5412@end defmac
bfa74976 5413
2a8d363a 5414@defmac YYABORT
bfa74976
RS
5415@findex YYABORT
5416Return immediately with value 1 (to report failure).
2a8d363a
AD
5417@end defmac
5418
5419If you use a reentrant parser, you can optionally pass additional
5420parameter information to it in a reentrant way. To do so, use the
5421declaration @code{%parse-param}:
5422
feeb0eda 5423@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5424@findex %parse-param
287c78f6
PE
5425Declare that an argument declared by the braced-code
5426@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5427The @var{argument-declaration} is used when declaring
feeb0eda
PE
5428functions or prototypes. The last identifier in
5429@var{argument-declaration} must be the argument name.
2a8d363a
AD
5430@end deffn
5431
5432Here's an example. Write this in the parser:
5433
5434@example
feeb0eda
PE
5435%parse-param @{int *nastiness@}
5436%parse-param @{int *randomness@}
2a8d363a
AD
5437@end example
5438
5439@noindent
5440Then call the parser like this:
5441
5442@example
5443@{
5444 int nastiness, randomness;
5445 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5446 value = yyparse (&nastiness, &randomness);
5447 @dots{}
5448@}
5449@end example
5450
5451@noindent
5452In the grammar actions, use expressions like this to refer to the data:
5453
5454@example
5455exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5456@end example
5457
9987d1b3
JD
5458@node Push Parser Function
5459@section The Push Parser Function @code{yypush_parse}
5460@findex yypush_parse
5461
59da312b
JD
5462(The current push parsing interface is experimental and may evolve.
5463More user feedback will help to stabilize it.)
5464
f4101aa6
AD
5465You call the function @code{yypush_parse} to parse a single token. This
5466function is available if either the @code{%define api.push_pull "push"} or
5467@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5468@xref{Push Decl, ,A Push Parser}.
5469
5470@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5471The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5472following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5473is required to finish parsing the grammar.
5474@end deftypefun
5475
5476@node Pull Parser Function
5477@section The Pull Parser Function @code{yypull_parse}
5478@findex yypull_parse
5479
59da312b
JD
5480(The current push parsing interface is experimental and may evolve.
5481More user feedback will help to stabilize it.)
5482
f4101aa6
AD
5483You call the function @code{yypull_parse} to parse the rest of the input
5484stream. This function is available if the @code{%define api.push_pull "both"}
5485declaration is used.
9987d1b3
JD
5486@xref{Push Decl, ,A Push Parser}.
5487
5488@deftypefun int yypull_parse (yypstate *yyps)
5489The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5490@end deftypefun
5491
5492@node Parser Create Function
5493@section The Parser Create Function @code{yystate_new}
5494@findex yypstate_new
5495
59da312b
JD
5496(The current push parsing interface is experimental and may evolve.
5497More user feedback will help to stabilize it.)
5498
f4101aa6
AD
5499You call the function @code{yypstate_new} to create a new parser instance.
5500This function is available if either the @code{%define api.push_pull "push"} or
5501@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5502@xref{Push Decl, ,A Push Parser}.
5503
5504@deftypefun yypstate *yypstate_new (void)
5505The fuction will return a valid parser instance if there was memory available
333e670c
JD
5506or 0 if no memory was available.
5507In impure mode, it will also return 0 if a parser instance is currently
5508allocated.
9987d1b3
JD
5509@end deftypefun
5510
5511@node Parser Delete Function
5512@section The Parser Delete Function @code{yystate_delete}
5513@findex yypstate_delete
5514
59da312b
JD
5515(The current push parsing interface is experimental and may evolve.
5516More user feedback will help to stabilize it.)
5517
9987d1b3 5518You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5519function is available if either the @code{%define api.push_pull "push"} or
5520@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5521@xref{Push Decl, ,A Push Parser}.
5522
5523@deftypefun void yypstate_delete (yypstate *yyps)
5524This function will reclaim the memory associated with a parser instance.
5525After this call, you should no longer attempt to use the parser instance.
5526@end deftypefun
bfa74976 5527
342b8b6e 5528@node Lexical
bfa74976
RS
5529@section The Lexical Analyzer Function @code{yylex}
5530@findex yylex
5531@cindex lexical analyzer
5532
5533The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5534the input stream and returns them to the parser. Bison does not create
5535this function automatically; you must write it so that @code{yyparse} can
5536call it. The function is sometimes referred to as a lexical scanner.
5537
5538In simple programs, @code{yylex} is often defined at the end of the Bison
5539grammar file. If @code{yylex} is defined in a separate source file, you
5540need to arrange for the token-type macro definitions to be available there.
5541To do this, use the @samp{-d} option when you run Bison, so that it will
5542write these macro definitions into a separate header file
5543@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5544that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5545
5546@menu
5547* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5548* Token Values:: How @code{yylex} must return the semantic value
5549 of the token it has read.
5550* Token Locations:: How @code{yylex} must return the text location
5551 (line number, etc.) of the token, if the
5552 actions want that.
5553* Pure Calling:: How the calling convention differs in a pure parser
5554 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5555@end menu
5556
342b8b6e 5557@node Calling Convention
bfa74976
RS
5558@subsection Calling Convention for @code{yylex}
5559
72d2299c
PE
5560The value that @code{yylex} returns must be the positive numeric code
5561for the type of token it has just found; a zero or negative value
5562signifies end-of-input.
bfa74976
RS
5563
5564When a token is referred to in the grammar rules by a name, that name
5565in the parser file becomes a C macro whose definition is the proper
5566numeric code for that token type. So @code{yylex} can use the name
5567to indicate that type. @xref{Symbols}.
5568
5569When a token is referred to in the grammar rules by a character literal,
5570the numeric code for that character is also the code for the token type.
72d2299c
PE
5571So @code{yylex} can simply return that character code, possibly converted
5572to @code{unsigned char} to avoid sign-extension. The null character
5573must not be used this way, because its code is zero and that
bfa74976
RS
5574signifies end-of-input.
5575
5576Here is an example showing these things:
5577
5578@example
13863333
AD
5579int
5580yylex (void)
bfa74976
RS
5581@{
5582 @dots{}
72d2299c 5583 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5584 return 0;
5585 @dots{}
5586 if (c == '+' || c == '-')
72d2299c 5587 return c; /* Assume token type for `+' is '+'. */
bfa74976 5588 @dots{}
72d2299c 5589 return INT; /* Return the type of the token. */
bfa74976
RS
5590 @dots{}
5591@}
5592@end example
5593
5594@noindent
5595This interface has been designed so that the output from the @code{lex}
5596utility can be used without change as the definition of @code{yylex}.
5597
931c7513
RS
5598If the grammar uses literal string tokens, there are two ways that
5599@code{yylex} can determine the token type codes for them:
5600
5601@itemize @bullet
5602@item
5603If the grammar defines symbolic token names as aliases for the
5604literal string tokens, @code{yylex} can use these symbolic names like
5605all others. In this case, the use of the literal string tokens in
5606the grammar file has no effect on @code{yylex}.
5607
5608@item
9ecbd125 5609@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5610table. The index of the token in the table is the token type's code.
9ecbd125 5611The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5612double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5613token's characters are escaped as necessary to be suitable as input
5614to Bison.
931c7513 5615
9e0876fb
PE
5616Here's code for looking up a multicharacter token in @code{yytname},
5617assuming that the characters of the token are stored in
5618@code{token_buffer}, and assuming that the token does not contain any
5619characters like @samp{"} that require escaping.
931c7513
RS
5620
5621@smallexample
5622for (i = 0; i < YYNTOKENS; i++)
5623 @{
5624 if (yytname[i] != 0
5625 && yytname[i][0] == '"'
68449b3a
PE
5626 && ! strncmp (yytname[i] + 1, token_buffer,
5627 strlen (token_buffer))
931c7513
RS
5628 && yytname[i][strlen (token_buffer) + 1] == '"'
5629 && yytname[i][strlen (token_buffer) + 2] == 0)
5630 break;
5631 @}
5632@end smallexample
5633
5634The @code{yytname} table is generated only if you use the
8c9a50be 5635@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5636@end itemize
5637
342b8b6e 5638@node Token Values
bfa74976
RS
5639@subsection Semantic Values of Tokens
5640
5641@vindex yylval
9d9b8b70 5642In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5643be stored into the global variable @code{yylval}. When you are using
5644just one data type for semantic values, @code{yylval} has that type.
5645Thus, if the type is @code{int} (the default), you might write this in
5646@code{yylex}:
5647
5648@example
5649@group
5650 @dots{}
72d2299c
PE
5651 yylval = value; /* Put value onto Bison stack. */
5652 return INT; /* Return the type of the token. */
bfa74976
RS
5653 @dots{}
5654@end group
5655@end example
5656
5657When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5658made from the @code{%union} declaration (@pxref{Union Decl, ,The
5659Collection of Value Types}). So when you store a token's value, you
5660must use the proper member of the union. If the @code{%union}
5661declaration looks like this:
bfa74976
RS
5662
5663@example
5664@group
5665%union @{
5666 int intval;
5667 double val;
5668 symrec *tptr;
5669@}
5670@end group
5671@end example
5672
5673@noindent
5674then the code in @code{yylex} might look like this:
5675
5676@example
5677@group
5678 @dots{}
72d2299c
PE
5679 yylval.intval = value; /* Put value onto Bison stack. */
5680 return INT; /* Return the type of the token. */
bfa74976
RS
5681 @dots{}
5682@end group
5683@end example
5684
95923bd6
AD
5685@node Token Locations
5686@subsection Textual Locations of Tokens
bfa74976
RS
5687
5688@vindex yylloc
847bf1f5 5689If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5690Tracking Locations}) in actions to keep track of the textual locations
5691of tokens and groupings, then you must provide this information in
5692@code{yylex}. The function @code{yyparse} expects to find the textual
5693location of a token just parsed in the global variable @code{yylloc}.
5694So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5695
5696By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5697initialize the members that are going to be used by the actions. The
5698four members are called @code{first_line}, @code{first_column},
5699@code{last_line} and @code{last_column}. Note that the use of this
5700feature makes the parser noticeably slower.
bfa74976
RS
5701
5702@tindex YYLTYPE
5703The data type of @code{yylloc} has the name @code{YYLTYPE}.
5704
342b8b6e 5705@node Pure Calling
c656404a 5706@subsection Calling Conventions for Pure Parsers
bfa74976 5707
d9df47b6 5708When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5709pure, reentrant parser, the global communication variables @code{yylval}
5710and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5711Parser}.) In such parsers the two global variables are replaced by
5712pointers passed as arguments to @code{yylex}. You must declare them as
5713shown here, and pass the information back by storing it through those
5714pointers.
bfa74976
RS
5715
5716@example
13863333
AD
5717int
5718yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5719@{
5720 @dots{}
5721 *lvalp = value; /* Put value onto Bison stack. */
5722 return INT; /* Return the type of the token. */
5723 @dots{}
5724@}
5725@end example
5726
5727If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5728textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5729this case, omit the second argument; @code{yylex} will be called with
5730only one argument.
5731
e425e872 5732
2a8d363a
AD
5733If you wish to pass the additional parameter data to @code{yylex}, use
5734@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5735Function}).
e425e872 5736
feeb0eda 5737@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5738@findex %lex-param
287c78f6
PE
5739Declare that the braced-code @var{argument-declaration} is an
5740additional @code{yylex} argument declaration.
2a8d363a 5741@end deffn
e425e872 5742
2a8d363a 5743For instance:
e425e872
RS
5744
5745@example
feeb0eda
PE
5746%parse-param @{int *nastiness@}
5747%lex-param @{int *nastiness@}
5748%parse-param @{int *randomness@}
e425e872
RS
5749@end example
5750
5751@noindent
2a8d363a 5752results in the following signature:
e425e872
RS
5753
5754@example
2a8d363a
AD
5755int yylex (int *nastiness);
5756int yyparse (int *nastiness, int *randomness);
e425e872
RS
5757@end example
5758
d9df47b6 5759If @code{%define api.pure} is added:
c656404a
RS
5760
5761@example
2a8d363a
AD
5762int yylex (YYSTYPE *lvalp, int *nastiness);
5763int yyparse (int *nastiness, int *randomness);
c656404a
RS
5764@end example
5765
2a8d363a 5766@noindent
d9df47b6 5767and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5768
2a8d363a
AD
5769@example
5770int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5771int yyparse (int *nastiness, int *randomness);
5772@end example
931c7513 5773
342b8b6e 5774@node Error Reporting
bfa74976
RS
5775@section The Error Reporting Function @code{yyerror}
5776@cindex error reporting function
5777@findex yyerror
5778@cindex parse error
5779@cindex syntax error
5780
6e649e65 5781The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5782whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5783action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5784macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5785in Actions}).
bfa74976
RS
5786
5787The Bison parser expects to report the error by calling an error
5788reporting function named @code{yyerror}, which you must supply. It is
5789called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5790receives one argument. For a syntax error, the string is normally
5791@w{@code{"syntax error"}}.
bfa74976 5792
2a8d363a
AD
5793@findex %error-verbose
5794If you invoke the directive @code{%error-verbose} in the Bison
5795declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5796Section}), then Bison provides a more verbose and specific error message
6e649e65 5797string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5798
1a059451
PE
5799The parser can detect one other kind of error: memory exhaustion. This
5800can happen when the input contains constructions that are very deeply
bfa74976 5801nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5802parser normally extends its stack automatically up to a very large limit. But
5803if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5804fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5805
5806In some cases diagnostics like @w{@code{"syntax error"}} are
5807translated automatically from English to some other language before
5808they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5809
5810The following definition suffices in simple programs:
5811
5812@example
5813@group
13863333 5814void
38a92d50 5815yyerror (char const *s)
bfa74976
RS
5816@{
5817@end group
5818@group
5819 fprintf (stderr, "%s\n", s);
5820@}
5821@end group
5822@end example
5823
5824After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5825error recovery if you have written suitable error recovery grammar rules
5826(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5827immediately return 1.
5828
93724f13 5829Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5830an access to the current location.
5831This is indeed the case for the @acronym{GLR}
2a8d363a 5832parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5833@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5834@code{yyerror} are:
5835
5836@example
38a92d50
PE
5837void yyerror (char const *msg); /* Yacc parsers. */
5838void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5839@end example
5840
feeb0eda 5841If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5842
5843@example
b317297e
PE
5844void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5845void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5846@end example
5847
fa7e68c3 5848Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5849convention for absolutely pure parsers, i.e., when the calling
5850convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5851@code{%define api.pure} are pure.
5852I.e.:
2a8d363a
AD
5853
5854@example
5855/* Location tracking. */
5856%locations
5857/* Pure yylex. */
d9df47b6 5858%define api.pure
feeb0eda 5859%lex-param @{int *nastiness@}
2a8d363a 5860/* Pure yyparse. */
feeb0eda
PE
5861%parse-param @{int *nastiness@}
5862%parse-param @{int *randomness@}
2a8d363a
AD
5863@end example
5864
5865@noindent
5866results in the following signatures for all the parser kinds:
5867
5868@example
5869int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5870int yyparse (int *nastiness, int *randomness);
93724f13
AD
5871void yyerror (YYLTYPE *locp,
5872 int *nastiness, int *randomness,
38a92d50 5873 char const *msg);
2a8d363a
AD
5874@end example
5875
1c0c3e95 5876@noindent
38a92d50
PE
5877The prototypes are only indications of how the code produced by Bison
5878uses @code{yyerror}. Bison-generated code always ignores the returned
5879value, so @code{yyerror} can return any type, including @code{void}.
5880Also, @code{yyerror} can be a variadic function; that is why the
5881message is always passed last.
5882
5883Traditionally @code{yyerror} returns an @code{int} that is always
5884ignored, but this is purely for historical reasons, and @code{void} is
5885preferable since it more accurately describes the return type for
5886@code{yyerror}.
93724f13 5887
bfa74976
RS
5888@vindex yynerrs
5889The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5890reported so far. Normally this variable is global; but if you
704a47c4
AD
5891request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5892then it is a local variable which only the actions can access.
bfa74976 5893
342b8b6e 5894@node Action Features
bfa74976
RS
5895@section Special Features for Use in Actions
5896@cindex summary, action features
5897@cindex action features summary
5898
5899Here is a table of Bison constructs, variables and macros that
5900are useful in actions.
5901
18b519c0 5902@deffn {Variable} $$
bfa74976
RS
5903Acts like a variable that contains the semantic value for the
5904grouping made by the current rule. @xref{Actions}.
18b519c0 5905@end deffn
bfa74976 5906
18b519c0 5907@deffn {Variable} $@var{n}
bfa74976
RS
5908Acts like a variable that contains the semantic value for the
5909@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5910@end deffn
bfa74976 5911
18b519c0 5912@deffn {Variable} $<@var{typealt}>$
bfa74976 5913Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5914specified by the @code{%union} declaration. @xref{Action Types, ,Data
5915Types of Values in Actions}.
18b519c0 5916@end deffn
bfa74976 5917
18b519c0 5918@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5919Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5920union specified by the @code{%union} declaration.
e0c471a9 5921@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5922@end deffn
bfa74976 5923
18b519c0 5924@deffn {Macro} YYABORT;
bfa74976
RS
5925Return immediately from @code{yyparse}, indicating failure.
5926@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5927@end deffn
bfa74976 5928
18b519c0 5929@deffn {Macro} YYACCEPT;
bfa74976
RS
5930Return immediately from @code{yyparse}, indicating success.
5931@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5932@end deffn
bfa74976 5933
18b519c0 5934@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5935@findex YYBACKUP
5936Unshift a token. This macro is allowed only for rules that reduce
742e4900 5937a single value, and only when there is no lookahead token.
c827f760 5938It is also disallowed in @acronym{GLR} parsers.
742e4900 5939It installs a lookahead token with token type @var{token} and
bfa74976
RS
5940semantic value @var{value}; then it discards the value that was
5941going to be reduced by this rule.
5942
5943If the macro is used when it is not valid, such as when there is
742e4900 5944a lookahead token already, then it reports a syntax error with
bfa74976
RS
5945a message @samp{cannot back up} and performs ordinary error
5946recovery.
5947
5948In either case, the rest of the action is not executed.
18b519c0 5949@end deffn
bfa74976 5950
18b519c0 5951@deffn {Macro} YYEMPTY
bfa74976 5952@vindex YYEMPTY
742e4900 5953Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5954@end deffn
bfa74976 5955
32c29292
JD
5956@deffn {Macro} YYEOF
5957@vindex YYEOF
742e4900 5958Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5959stream.
5960@end deffn
5961
18b519c0 5962@deffn {Macro} YYERROR;
bfa74976
RS
5963@findex YYERROR
5964Cause an immediate syntax error. This statement initiates error
5965recovery just as if the parser itself had detected an error; however, it
5966does not call @code{yyerror}, and does not print any message. If you
5967want to print an error message, call @code{yyerror} explicitly before
5968the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5969@end deffn
bfa74976 5970
18b519c0 5971@deffn {Macro} YYRECOVERING
02103984
PE
5972@findex YYRECOVERING
5973The expression @code{YYRECOVERING ()} yields 1 when the parser
5974is recovering from a syntax error, and 0 otherwise.
bfa74976 5975@xref{Error Recovery}.
18b519c0 5976@end deffn
bfa74976 5977
18b519c0 5978@deffn {Variable} yychar
742e4900
JD
5979Variable containing either the lookahead token, or @code{YYEOF} when the
5980lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5981has been performed so the next token is not yet known.
5982Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5983Actions}).
742e4900 5984@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5985@end deffn
bfa74976 5986
18b519c0 5987@deffn {Macro} yyclearin;
742e4900 5988Discard the current lookahead token. This is useful primarily in
32c29292
JD
5989error rules.
5990Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5991Semantic Actions}).
5992@xref{Error Recovery}.
18b519c0 5993@end deffn
bfa74976 5994
18b519c0 5995@deffn {Macro} yyerrok;
bfa74976 5996Resume generating error messages immediately for subsequent syntax
13863333 5997errors. This is useful primarily in error rules.
bfa74976 5998@xref{Error Recovery}.
18b519c0 5999@end deffn
bfa74976 6000
32c29292 6001@deffn {Variable} yylloc
742e4900 6002Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6003to @code{YYEMPTY} or @code{YYEOF}.
6004Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6005Actions}).
6006@xref{Actions and Locations, ,Actions and Locations}.
6007@end deffn
6008
6009@deffn {Variable} yylval
742e4900 6010Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6011not set to @code{YYEMPTY} or @code{YYEOF}.
6012Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6013Actions}).
6014@xref{Actions, ,Actions}.
6015@end deffn
6016
18b519c0 6017@deffn {Value} @@$
847bf1f5 6018@findex @@$
95923bd6 6019Acts like a structure variable containing information on the textual location
847bf1f5
AD
6020of the grouping made by the current rule. @xref{Locations, ,
6021Tracking Locations}.
bfa74976 6022
847bf1f5
AD
6023@c Check if those paragraphs are still useful or not.
6024
6025@c @example
6026@c struct @{
6027@c int first_line, last_line;
6028@c int first_column, last_column;
6029@c @};
6030@c @end example
6031
6032@c Thus, to get the starting line number of the third component, you would
6033@c use @samp{@@3.first_line}.
bfa74976 6034
847bf1f5
AD
6035@c In order for the members of this structure to contain valid information,
6036@c you must make @code{yylex} supply this information about each token.
6037@c If you need only certain members, then @code{yylex} need only fill in
6038@c those members.
bfa74976 6039
847bf1f5 6040@c The use of this feature makes the parser noticeably slower.
18b519c0 6041@end deffn
847bf1f5 6042
18b519c0 6043@deffn {Value} @@@var{n}
847bf1f5 6044@findex @@@var{n}
95923bd6 6045Acts like a structure variable containing information on the textual location
847bf1f5
AD
6046of the @var{n}th component of the current rule. @xref{Locations, ,
6047Tracking Locations}.
18b519c0 6048@end deffn
bfa74976 6049
f7ab6a50
PE
6050@node Internationalization
6051@section Parser Internationalization
6052@cindex internationalization
6053@cindex i18n
6054@cindex NLS
6055@cindex gettext
6056@cindex bison-po
6057
6058A Bison-generated parser can print diagnostics, including error and
6059tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6060also supports outputting diagnostics in the user's native language. To
6061make this work, the user should set the usual environment variables.
6062@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6063For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6064set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6065encoding. The exact set of available locales depends on the user's
6066installation.
6067
6068The maintainer of a package that uses a Bison-generated parser enables
6069the internationalization of the parser's output through the following
6070steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6071@acronym{GNU} Automake.
6072
6073@enumerate
6074@item
30757c8c 6075@cindex bison-i18n.m4
f7ab6a50
PE
6076Into the directory containing the @acronym{GNU} Autoconf macros used
6077by the package---often called @file{m4}---copy the
6078@file{bison-i18n.m4} file installed by Bison under
6079@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6080For example:
6081
6082@example
6083cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6084@end example
6085
6086@item
30757c8c
PE
6087@findex BISON_I18N
6088@vindex BISON_LOCALEDIR
6089@vindex YYENABLE_NLS
f7ab6a50
PE
6090In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6091invocation, add an invocation of @code{BISON_I18N}. This macro is
6092defined in the file @file{bison-i18n.m4} that you copied earlier. It
6093causes @samp{configure} to find the value of the
30757c8c
PE
6094@code{BISON_LOCALEDIR} variable, and it defines the source-language
6095symbol @code{YYENABLE_NLS} to enable translations in the
6096Bison-generated parser.
f7ab6a50
PE
6097
6098@item
6099In the @code{main} function of your program, designate the directory
6100containing Bison's runtime message catalog, through a call to
6101@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6102For example:
6103
6104@example
6105bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6106@end example
6107
6108Typically this appears after any other call @code{bindtextdomain
6109(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6110@samp{BISON_LOCALEDIR} to be defined as a string through the
6111@file{Makefile}.
6112
6113@item
6114In the @file{Makefile.am} that controls the compilation of the @code{main}
6115function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6116either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6117
6118@example
6119DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6120@end example
6121
6122or:
6123
6124@example
6125AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6126@end example
6127
6128@item
6129Finally, invoke the command @command{autoreconf} to generate the build
6130infrastructure.
6131@end enumerate
6132
bfa74976 6133
342b8b6e 6134@node Algorithm
13863333
AD
6135@chapter The Bison Parser Algorithm
6136@cindex Bison parser algorithm
bfa74976
RS
6137@cindex algorithm of parser
6138@cindex shifting
6139@cindex reduction
6140@cindex parser stack
6141@cindex stack, parser
6142
6143As Bison reads tokens, it pushes them onto a stack along with their
6144semantic values. The stack is called the @dfn{parser stack}. Pushing a
6145token is traditionally called @dfn{shifting}.
6146
6147For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6148@samp{3} to come. The stack will have four elements, one for each token
6149that was shifted.
6150
6151But the stack does not always have an element for each token read. When
6152the last @var{n} tokens and groupings shifted match the components of a
6153grammar rule, they can be combined according to that rule. This is called
6154@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6155single grouping whose symbol is the result (left hand side) of that rule.
6156Running the rule's action is part of the process of reduction, because this
6157is what computes the semantic value of the resulting grouping.
6158
6159For example, if the infix calculator's parser stack contains this:
6160
6161@example
61621 + 5 * 3
6163@end example
6164
6165@noindent
6166and the next input token is a newline character, then the last three
6167elements can be reduced to 15 via the rule:
6168
6169@example
6170expr: expr '*' expr;
6171@end example
6172
6173@noindent
6174Then the stack contains just these three elements:
6175
6176@example
61771 + 15
6178@end example
6179
6180@noindent
6181At this point, another reduction can be made, resulting in the single value
618216. Then the newline token can be shifted.
6183
6184The parser tries, by shifts and reductions, to reduce the entire input down
6185to a single grouping whose symbol is the grammar's start-symbol
6186(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6187
6188This kind of parser is known in the literature as a bottom-up parser.
6189
6190@menu
742e4900 6191* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6192* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6193* Precedence:: Operator precedence works by resolving conflicts.
6194* Contextual Precedence:: When an operator's precedence depends on context.
6195* Parser States:: The parser is a finite-state-machine with stack.
6196* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6197* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6198* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6199* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6200@end menu
6201
742e4900
JD
6202@node Lookahead
6203@section Lookahead Tokens
6204@cindex lookahead token
bfa74976
RS
6205
6206The Bison parser does @emph{not} always reduce immediately as soon as the
6207last @var{n} tokens and groupings match a rule. This is because such a
6208simple strategy is inadequate to handle most languages. Instead, when a
6209reduction is possible, the parser sometimes ``looks ahead'' at the next
6210token in order to decide what to do.
6211
6212When a token is read, it is not immediately shifted; first it becomes the
742e4900 6213@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6214perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6215the lookahead token remains off to the side. When no more reductions
6216should take place, the lookahead token is shifted onto the stack. This
bfa74976 6217does not mean that all possible reductions have been done; depending on the
742e4900 6218token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6219application.
6220
742e4900 6221Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6222expressions which contain binary addition operators and postfix unary
6223factorial operators (@samp{!}), and allow parentheses for grouping.
6224
6225@example
6226@group
6227expr: term '+' expr
6228 | term
6229 ;
6230@end group
6231
6232@group
6233term: '(' expr ')'
6234 | term '!'
6235 | NUMBER
6236 ;
6237@end group
6238@end example
6239
6240Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6241should be done? If the following token is @samp{)}, then the first three
6242tokens must be reduced to form an @code{expr}. This is the only valid
6243course, because shifting the @samp{)} would produce a sequence of symbols
6244@w{@code{term ')'}}, and no rule allows this.
6245
6246If the following token is @samp{!}, then it must be shifted immediately so
6247that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6248parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6249@code{expr}. It would then be impossible to shift the @samp{!} because
6250doing so would produce on the stack the sequence of symbols @code{expr
6251'!'}. No rule allows that sequence.
6252
6253@vindex yychar
32c29292
JD
6254@vindex yylval
6255@vindex yylloc
742e4900 6256The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6257Its semantic value and location, if any, are stored in the variables
6258@code{yylval} and @code{yylloc}.
bfa74976
RS
6259@xref{Action Features, ,Special Features for Use in Actions}.
6260
342b8b6e 6261@node Shift/Reduce
bfa74976
RS
6262@section Shift/Reduce Conflicts
6263@cindex conflicts
6264@cindex shift/reduce conflicts
6265@cindex dangling @code{else}
6266@cindex @code{else}, dangling
6267
6268Suppose we are parsing a language which has if-then and if-then-else
6269statements, with a pair of rules like this:
6270
6271@example
6272@group
6273if_stmt:
6274 IF expr THEN stmt
6275 | IF expr THEN stmt ELSE stmt
6276 ;
6277@end group
6278@end example
6279
6280@noindent
6281Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6282terminal symbols for specific keyword tokens.
6283
742e4900 6284When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6285contents of the stack (assuming the input is valid) are just right for
6286reduction by the first rule. But it is also legitimate to shift the
6287@code{ELSE}, because that would lead to eventual reduction by the second
6288rule.
6289
6290This situation, where either a shift or a reduction would be valid, is
6291called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6292these conflicts by choosing to shift, unless otherwise directed by
6293operator precedence declarations. To see the reason for this, let's
6294contrast it with the other alternative.
6295
6296Since the parser prefers to shift the @code{ELSE}, the result is to attach
6297the else-clause to the innermost if-statement, making these two inputs
6298equivalent:
6299
6300@example
6301if x then if y then win (); else lose;
6302
6303if x then do; if y then win (); else lose; end;
6304@end example
6305
6306But if the parser chose to reduce when possible rather than shift, the
6307result would be to attach the else-clause to the outermost if-statement,
6308making these two inputs equivalent:
6309
6310@example
6311if x then if y then win (); else lose;
6312
6313if x then do; if y then win (); end; else lose;
6314@end example
6315
6316The conflict exists because the grammar as written is ambiguous: either
6317parsing of the simple nested if-statement is legitimate. The established
6318convention is that these ambiguities are resolved by attaching the
6319else-clause to the innermost if-statement; this is what Bison accomplishes
6320by choosing to shift rather than reduce. (It would ideally be cleaner to
6321write an unambiguous grammar, but that is very hard to do in this case.)
6322This particular ambiguity was first encountered in the specifications of
6323Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6324
6325To avoid warnings from Bison about predictable, legitimate shift/reduce
6326conflicts, use the @code{%expect @var{n}} declaration. There will be no
6327warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6328@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6329
6330The definition of @code{if_stmt} above is solely to blame for the
6331conflict, but the conflict does not actually appear without additional
6332rules. Here is a complete Bison input file that actually manifests the
6333conflict:
6334
6335@example
6336@group
6337%token IF THEN ELSE variable
6338%%
6339@end group
6340@group
6341stmt: expr
6342 | if_stmt
6343 ;
6344@end group
6345
6346@group
6347if_stmt:
6348 IF expr THEN stmt
6349 | IF expr THEN stmt ELSE stmt
6350 ;
6351@end group
6352
6353expr: variable
6354 ;
6355@end example
6356
342b8b6e 6357@node Precedence
bfa74976
RS
6358@section Operator Precedence
6359@cindex operator precedence
6360@cindex precedence of operators
6361
6362Another situation where shift/reduce conflicts appear is in arithmetic
6363expressions. Here shifting is not always the preferred resolution; the
6364Bison declarations for operator precedence allow you to specify when to
6365shift and when to reduce.
6366
6367@menu
6368* Why Precedence:: An example showing why precedence is needed.
6369* Using Precedence:: How to specify precedence in Bison grammars.
6370* Precedence Examples:: How these features are used in the previous example.
6371* How Precedence:: How they work.
6372@end menu
6373
342b8b6e 6374@node Why Precedence
bfa74976
RS
6375@subsection When Precedence is Needed
6376
6377Consider the following ambiguous grammar fragment (ambiguous because the
6378input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6379
6380@example
6381@group
6382expr: expr '-' expr
6383 | expr '*' expr
6384 | expr '<' expr
6385 | '(' expr ')'
6386 @dots{}
6387 ;
6388@end group
6389@end example
6390
6391@noindent
6392Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6393should it reduce them via the rule for the subtraction operator? It
6394depends on the next token. Of course, if the next token is @samp{)}, we
6395must reduce; shifting is invalid because no single rule can reduce the
6396token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6397the next token is @samp{*} or @samp{<}, we have a choice: either
6398shifting or reduction would allow the parse to complete, but with
6399different results.
6400
6401To decide which one Bison should do, we must consider the results. If
6402the next operator token @var{op} is shifted, then it must be reduced
6403first in order to permit another opportunity to reduce the difference.
6404The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6405hand, if the subtraction is reduced before shifting @var{op}, the result
6406is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6407reduce should depend on the relative precedence of the operators
6408@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6409@samp{<}.
bfa74976
RS
6410
6411@cindex associativity
6412What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6413@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6414operators we prefer the former, which is called @dfn{left association}.
6415The latter alternative, @dfn{right association}, is desirable for
6416assignment operators. The choice of left or right association is a
6417matter of whether the parser chooses to shift or reduce when the stack
742e4900 6418contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6419makes right-associativity.
bfa74976 6420
342b8b6e 6421@node Using Precedence
bfa74976
RS
6422@subsection Specifying Operator Precedence
6423@findex %left
6424@findex %right
6425@findex %nonassoc
6426
6427Bison allows you to specify these choices with the operator precedence
6428declarations @code{%left} and @code{%right}. Each such declaration
6429contains a list of tokens, which are operators whose precedence and
6430associativity is being declared. The @code{%left} declaration makes all
6431those operators left-associative and the @code{%right} declaration makes
6432them right-associative. A third alternative is @code{%nonassoc}, which
6433declares that it is a syntax error to find the same operator twice ``in a
6434row''.
6435
6436The relative precedence of different operators is controlled by the
6437order in which they are declared. The first @code{%left} or
6438@code{%right} declaration in the file declares the operators whose
6439precedence is lowest, the next such declaration declares the operators
6440whose precedence is a little higher, and so on.
6441
342b8b6e 6442@node Precedence Examples
bfa74976
RS
6443@subsection Precedence Examples
6444
6445In our example, we would want the following declarations:
6446
6447@example
6448%left '<'
6449%left '-'
6450%left '*'
6451@end example
6452
6453In a more complete example, which supports other operators as well, we
6454would declare them in groups of equal precedence. For example, @code{'+'} is
6455declared with @code{'-'}:
6456
6457@example
6458%left '<' '>' '=' NE LE GE
6459%left '+' '-'
6460%left '*' '/'
6461@end example
6462
6463@noindent
6464(Here @code{NE} and so on stand for the operators for ``not equal''
6465and so on. We assume that these tokens are more than one character long
6466and therefore are represented by names, not character literals.)
6467
342b8b6e 6468@node How Precedence
bfa74976
RS
6469@subsection How Precedence Works
6470
6471The first effect of the precedence declarations is to assign precedence
6472levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6473precedence levels to certain rules: each rule gets its precedence from
6474the last terminal symbol mentioned in the components. (You can also
6475specify explicitly the precedence of a rule. @xref{Contextual
6476Precedence, ,Context-Dependent Precedence}.)
6477
6478Finally, the resolution of conflicts works by comparing the precedence
742e4900 6479of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6480token's precedence is higher, the choice is to shift. If the rule's
6481precedence is higher, the choice is to reduce. If they have equal
6482precedence, the choice is made based on the associativity of that
6483precedence level. The verbose output file made by @samp{-v}
6484(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6485resolved.
bfa74976
RS
6486
6487Not all rules and not all tokens have precedence. If either the rule or
742e4900 6488the lookahead token has no precedence, then the default is to shift.
bfa74976 6489
342b8b6e 6490@node Contextual Precedence
bfa74976
RS
6491@section Context-Dependent Precedence
6492@cindex context-dependent precedence
6493@cindex unary operator precedence
6494@cindex precedence, context-dependent
6495@cindex precedence, unary operator
6496@findex %prec
6497
6498Often the precedence of an operator depends on the context. This sounds
6499outlandish at first, but it is really very common. For example, a minus
6500sign typically has a very high precedence as a unary operator, and a
6501somewhat lower precedence (lower than multiplication) as a binary operator.
6502
6503The Bison precedence declarations, @code{%left}, @code{%right} and
6504@code{%nonassoc}, can only be used once for a given token; so a token has
6505only one precedence declared in this way. For context-dependent
6506precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6507modifier for rules.
bfa74976
RS
6508
6509The @code{%prec} modifier declares the precedence of a particular rule by
6510specifying a terminal symbol whose precedence should be used for that rule.
6511It's not necessary for that symbol to appear otherwise in the rule. The
6512modifier's syntax is:
6513
6514@example
6515%prec @var{terminal-symbol}
6516@end example
6517
6518@noindent
6519and it is written after the components of the rule. Its effect is to
6520assign the rule the precedence of @var{terminal-symbol}, overriding
6521the precedence that would be deduced for it in the ordinary way. The
6522altered rule precedence then affects how conflicts involving that rule
6523are resolved (@pxref{Precedence, ,Operator Precedence}).
6524
6525Here is how @code{%prec} solves the problem of unary minus. First, declare
6526a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6527are no tokens of this type, but the symbol serves to stand for its
6528precedence:
6529
6530@example
6531@dots{}
6532%left '+' '-'
6533%left '*'
6534%left UMINUS
6535@end example
6536
6537Now the precedence of @code{UMINUS} can be used in specific rules:
6538
6539@example
6540@group
6541exp: @dots{}
6542 | exp '-' exp
6543 @dots{}
6544 | '-' exp %prec UMINUS
6545@end group
6546@end example
6547
91d2c560 6548@ifset defaultprec
39a06c25
PE
6549If you forget to append @code{%prec UMINUS} to the rule for unary
6550minus, Bison silently assumes that minus has its usual precedence.
6551This kind of problem can be tricky to debug, since one typically
6552discovers the mistake only by testing the code.
6553
22fccf95 6554The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6555this kind of problem systematically. It causes rules that lack a
6556@code{%prec} modifier to have no precedence, even if the last terminal
6557symbol mentioned in their components has a declared precedence.
6558
22fccf95 6559If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6560for all rules that participate in precedence conflict resolution.
6561Then you will see any shift/reduce conflict until you tell Bison how
6562to resolve it, either by changing your grammar or by adding an
6563explicit precedence. This will probably add declarations to the
6564grammar, but it helps to protect against incorrect rule precedences.
6565
22fccf95
PE
6566The effect of @code{%no-default-prec;} can be reversed by giving
6567@code{%default-prec;}, which is the default.
91d2c560 6568@end ifset
39a06c25 6569
342b8b6e 6570@node Parser States
bfa74976
RS
6571@section Parser States
6572@cindex finite-state machine
6573@cindex parser state
6574@cindex state (of parser)
6575
6576The function @code{yyparse} is implemented using a finite-state machine.
6577The values pushed on the parser stack are not simply token type codes; they
6578represent the entire sequence of terminal and nonterminal symbols at or
6579near the top of the stack. The current state collects all the information
6580about previous input which is relevant to deciding what to do next.
6581
742e4900
JD
6582Each time a lookahead token is read, the current parser state together
6583with the type of lookahead token are looked up in a table. This table
6584entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6585specifies the new parser state, which is pushed onto the top of the
6586parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6587This means that a certain number of tokens or groupings are taken off
6588the top of the stack, and replaced by one grouping. In other words,
6589that number of states are popped from the stack, and one new state is
6590pushed.
6591
742e4900 6592There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6593is erroneous in the current state. This causes error processing to begin
6594(@pxref{Error Recovery}).
6595
342b8b6e 6596@node Reduce/Reduce
bfa74976
RS
6597@section Reduce/Reduce Conflicts
6598@cindex reduce/reduce conflict
6599@cindex conflicts, reduce/reduce
6600
6601A reduce/reduce conflict occurs if there are two or more rules that apply
6602to the same sequence of input. This usually indicates a serious error
6603in the grammar.
6604
6605For example, here is an erroneous attempt to define a sequence
6606of zero or more @code{word} groupings.
6607
6608@example
6609sequence: /* empty */
6610 @{ printf ("empty sequence\n"); @}
6611 | maybeword
6612 | sequence word
6613 @{ printf ("added word %s\n", $2); @}
6614 ;
6615
6616maybeword: /* empty */
6617 @{ printf ("empty maybeword\n"); @}
6618 | word
6619 @{ printf ("single word %s\n", $1); @}
6620 ;
6621@end example
6622
6623@noindent
6624The error is an ambiguity: there is more than one way to parse a single
6625@code{word} into a @code{sequence}. It could be reduced to a
6626@code{maybeword} and then into a @code{sequence} via the second rule.
6627Alternatively, nothing-at-all could be reduced into a @code{sequence}
6628via the first rule, and this could be combined with the @code{word}
6629using the third rule for @code{sequence}.
6630
6631There is also more than one way to reduce nothing-at-all into a
6632@code{sequence}. This can be done directly via the first rule,
6633or indirectly via @code{maybeword} and then the second rule.
6634
6635You might think that this is a distinction without a difference, because it
6636does not change whether any particular input is valid or not. But it does
6637affect which actions are run. One parsing order runs the second rule's
6638action; the other runs the first rule's action and the third rule's action.
6639In this example, the output of the program changes.
6640
6641Bison resolves a reduce/reduce conflict by choosing to use the rule that
6642appears first in the grammar, but it is very risky to rely on this. Every
6643reduce/reduce conflict must be studied and usually eliminated. Here is the
6644proper way to define @code{sequence}:
6645
6646@example
6647sequence: /* empty */
6648 @{ printf ("empty sequence\n"); @}
6649 | sequence word
6650 @{ printf ("added word %s\n", $2); @}
6651 ;
6652@end example
6653
6654Here is another common error that yields a reduce/reduce conflict:
6655
6656@example
6657sequence: /* empty */
6658 | sequence words
6659 | sequence redirects
6660 ;
6661
6662words: /* empty */
6663 | words word
6664 ;
6665
6666redirects:/* empty */
6667 | redirects redirect
6668 ;
6669@end example
6670
6671@noindent
6672The intention here is to define a sequence which can contain either
6673@code{word} or @code{redirect} groupings. The individual definitions of
6674@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6675three together make a subtle ambiguity: even an empty input can be parsed
6676in infinitely many ways!
6677
6678Consider: nothing-at-all could be a @code{words}. Or it could be two
6679@code{words} in a row, or three, or any number. It could equally well be a
6680@code{redirects}, or two, or any number. Or it could be a @code{words}
6681followed by three @code{redirects} and another @code{words}. And so on.
6682
6683Here are two ways to correct these rules. First, to make it a single level
6684of sequence:
6685
6686@example
6687sequence: /* empty */
6688 | sequence word
6689 | sequence redirect
6690 ;
6691@end example
6692
6693Second, to prevent either a @code{words} or a @code{redirects}
6694from being empty:
6695
6696@example
6697sequence: /* empty */
6698 | sequence words
6699 | sequence redirects
6700 ;
6701
6702words: word
6703 | words word
6704 ;
6705
6706redirects:redirect
6707 | redirects redirect
6708 ;
6709@end example
6710
342b8b6e 6711@node Mystery Conflicts
bfa74976
RS
6712@section Mysterious Reduce/Reduce Conflicts
6713
6714Sometimes reduce/reduce conflicts can occur that don't look warranted.
6715Here is an example:
6716
6717@example
6718@group
6719%token ID
6720
6721%%
6722def: param_spec return_spec ','
6723 ;
6724param_spec:
6725 type
6726 | name_list ':' type
6727 ;
6728@end group
6729@group
6730return_spec:
6731 type
6732 | name ':' type
6733 ;
6734@end group
6735@group
6736type: ID
6737 ;
6738@end group
6739@group
6740name: ID
6741 ;
6742name_list:
6743 name
6744 | name ',' name_list
6745 ;
6746@end group
6747@end example
6748
6749It would seem that this grammar can be parsed with only a single token
742e4900 6750of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6751a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6752@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6753
c827f760
PE
6754@cindex @acronym{LR}(1)
6755@cindex @acronym{LALR}(1)
34a6c2d1
JD
6756However, for historical reasons, Bison cannot by default handle all
6757@acronym{LR}(1) grammars.
6758In this grammar, two contexts, that after an @code{ID} at the beginning
6759of a @code{param_spec} and likewise at the beginning of a
6760@code{return_spec}, are similar enough that Bison assumes they are the
6761same.
6762They appear similar because the same set of rules would be
bfa74976
RS
6763active---the rule for reducing to a @code{name} and that for reducing to
6764a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6765that the rules would require different lookahead tokens in the two
bfa74976
RS
6766contexts, so it makes a single parser state for them both. Combining
6767the two contexts causes a conflict later. In parser terminology, this
c827f760 6768occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6769
34a6c2d1
JD
6770For many practical grammars (specifically those that fall into the
6771non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6772difficulties beyond just mysterious reduce/reduce conflicts.
6773The best way to fix all these problems is to select a different parser
6774table generation algorithm.
6775Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6776the former is more efficient and easier to debug during development.
6777@xref{Decl Summary,,lr.type}, for details.
6778(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
6779are experimental.
6780More user feedback will help to stabilize them.)
6781
6782If you instead wish to work around @acronym{LALR}(1)'s limitations, you
6783can often fix a mysterious conflict by identifying the two parser states
6784that are being confused, and adding something to make them look
6785distinct. In the above example, adding one rule to
bfa74976
RS
6786@code{return_spec} as follows makes the problem go away:
6787
6788@example
6789@group
6790%token BOGUS
6791@dots{}
6792%%
6793@dots{}
6794return_spec:
6795 type
6796 | name ':' type
6797 /* This rule is never used. */
6798 | ID BOGUS
6799 ;
6800@end group
6801@end example
6802
6803This corrects the problem because it introduces the possibility of an
6804additional active rule in the context after the @code{ID} at the beginning of
6805@code{return_spec}. This rule is not active in the corresponding context
6806in a @code{param_spec}, so the two contexts receive distinct parser states.
6807As long as the token @code{BOGUS} is never generated by @code{yylex},
6808the added rule cannot alter the way actual input is parsed.
6809
6810In this particular example, there is another way to solve the problem:
6811rewrite the rule for @code{return_spec} to use @code{ID} directly
6812instead of via @code{name}. This also causes the two confusing
6813contexts to have different sets of active rules, because the one for
6814@code{return_spec} activates the altered rule for @code{return_spec}
6815rather than the one for @code{name}.
6816
6817@example
6818param_spec:
6819 type
6820 | name_list ':' type
6821 ;
6822return_spec:
6823 type
6824 | ID ':' type
6825 ;
6826@end example
6827
e054b190
PE
6828For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6829generators, please see:
6830Frank DeRemer and Thomas Pennello, Efficient Computation of
6831@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6832Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6833pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6834
fae437e8 6835@node Generalized LR Parsing
c827f760
PE
6836@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6837@cindex @acronym{GLR} parsing
6838@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6839@cindex ambiguous grammars
9d9b8b70 6840@cindex nondeterministic parsing
676385e2 6841
fae437e8
AD
6842Bison produces @emph{deterministic} parsers that choose uniquely
6843when to reduce and which reduction to apply
742e4900 6844based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6845As a result, normal Bison handles a proper subset of the family of
6846context-free languages.
fae437e8 6847Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6848sequence of reductions cannot have deterministic parsers in this sense.
6849The same is true of languages that require more than one symbol of
742e4900 6850lookahead, since the parser lacks the information necessary to make a
676385e2 6851decision at the point it must be made in a shift-reduce parser.
fae437e8 6852Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 6853there are languages where Bison's default choice of how to
676385e2
PH
6854summarize the input seen so far loses necessary information.
6855
6856When you use the @samp{%glr-parser} declaration in your grammar file,
6857Bison generates a parser that uses a different algorithm, called
c827f760
PE
6858Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6859parser uses the same basic
676385e2
PH
6860algorithm for parsing as an ordinary Bison parser, but behaves
6861differently in cases where there is a shift-reduce conflict that has not
fae437e8 6862been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6863reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6864situation, it
fae437e8 6865effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6866shift or reduction. These parsers then proceed as usual, consuming
6867tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6868and split further, with the result that instead of a sequence of states,
c827f760 6869a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6870
6871In effect, each stack represents a guess as to what the proper parse
6872is. Additional input may indicate that a guess was wrong, in which case
6873the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6874actions generated in each stack are saved, rather than being executed
676385e2 6875immediately. When a stack disappears, its saved semantic actions never
fae437e8 6876get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6877their sets of semantic actions are both saved with the state that
6878results from the reduction. We say that two stacks are equivalent
fae437e8 6879when they both represent the same sequence of states,
676385e2
PH
6880and each pair of corresponding states represents a
6881grammar symbol that produces the same segment of the input token
6882stream.
6883
6884Whenever the parser makes a transition from having multiple
34a6c2d1 6885states to having one, it reverts to the normal deterministic parsing
676385e2
PH
6886algorithm, after resolving and executing the saved-up actions.
6887At this transition, some of the states on the stack will have semantic
6888values that are sets (actually multisets) of possible actions. The
6889parser tries to pick one of the actions by first finding one whose rule
6890has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6891declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6892precedence, but there the same merging function is declared for both
fae437e8 6893rules by the @samp{%merge} declaration,
676385e2
PH
6894Bison resolves and evaluates both and then calls the merge function on
6895the result. Otherwise, it reports an ambiguity.
6896
c827f760 6897It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 6898permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 6899size of the input), any unambiguous (not necessarily
34a6c2d1 6900@acronym{LR}(1)) grammar in
fae437e8 6901quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6902context-free grammar in cubic worst-case time. However, Bison currently
6903uses a simpler data structure that requires time proportional to the
6904length of the input times the maximum number of stacks required for any
9d9b8b70 6905prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6906grammars can require exponential time and space to process. Such badly
6907behaving examples, however, are not generally of practical interest.
9d9b8b70 6908Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6909doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
6910structure should generally be adequate. On @acronym{LR}(1) portions of a
6911grammar, in particular, it is only slightly slower than with the
6912deterministic @acronym{LR}(1) Bison parser.
676385e2 6913
fa7e68c3 6914For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6915Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6916Generalised @acronym{LR} Parsers, Royal Holloway, University of
6917London, Department of Computer Science, TR-00-12,
6918@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6919(2000-12-24).
6920
1a059451
PE
6921@node Memory Management
6922@section Memory Management, and How to Avoid Memory Exhaustion
6923@cindex memory exhaustion
6924@cindex memory management
bfa74976
RS
6925@cindex stack overflow
6926@cindex parser stack overflow
6927@cindex overflow of parser stack
6928
1a059451 6929The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6930not reduced. When this happens, the parser function @code{yyparse}
1a059451 6931calls @code{yyerror} and then returns 2.
bfa74976 6932
c827f760 6933Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6934usually results from using a right recursion instead of a left
6935recursion, @xref{Recursion, ,Recursive Rules}.
6936
bfa74976
RS
6937@vindex YYMAXDEPTH
6938By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6939parser stack can become before memory is exhausted. Define the
bfa74976
RS
6940macro with a value that is an integer. This value is the maximum number
6941of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6942
6943The stack space allowed is not necessarily allocated. If you specify a
1a059451 6944large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6945stack at first, and then makes it bigger by stages as needed. This
6946increasing allocation happens automatically and silently. Therefore,
6947you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6948space for ordinary inputs that do not need much stack.
6949
d7e14fc0
PE
6950However, do not allow @code{YYMAXDEPTH} to be a value so large that
6951arithmetic overflow could occur when calculating the size of the stack
6952space. Also, do not allow @code{YYMAXDEPTH} to be less than
6953@code{YYINITDEPTH}.
6954
bfa74976
RS
6955@cindex default stack limit
6956The default value of @code{YYMAXDEPTH}, if you do not define it, is
695710000.
6958
6959@vindex YYINITDEPTH
6960You can control how much stack is allocated initially by defining the
34a6c2d1
JD
6961macro @code{YYINITDEPTH} to a positive integer. For the deterministic
6962parser in C, this value must be a compile-time constant
d7e14fc0
PE
6963unless you are assuming C99 or some other target language or compiler
6964that allows variable-length arrays. The default is 200.
6965
1a059451 6966Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6967
d1a1114f 6968@c FIXME: C++ output.
34a6c2d1
JD
6969Because of semantical differences between C and C++, the deterministic
6970parsers in C produced by Bison cannot grow when compiled
1a059451
PE
6971by C++ compilers. In this precise case (compiling a C parser as C++) you are
6972suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6973this deficiency in a future release.
d1a1114f 6974
342b8b6e 6975@node Error Recovery
bfa74976
RS
6976@chapter Error Recovery
6977@cindex error recovery
6978@cindex recovery from errors
6979
6e649e65 6980It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6981error. For example, a compiler should recover sufficiently to parse the
6982rest of the input file and check it for errors; a calculator should accept
6983another expression.
6984
6985In a simple interactive command parser where each input is one line, it may
6986be sufficient to allow @code{yyparse} to return 1 on error and have the
6987caller ignore the rest of the input line when that happens (and then call
6988@code{yyparse} again). But this is inadequate for a compiler, because it
6989forgets all the syntactic context leading up to the error. A syntax error
6990deep within a function in the compiler input should not cause the compiler
6991to treat the following line like the beginning of a source file.
6992
6993@findex error
6994You can define how to recover from a syntax error by writing rules to
6995recognize the special token @code{error}. This is a terminal symbol that
6996is always defined (you need not declare it) and reserved for error
6997handling. The Bison parser generates an @code{error} token whenever a
6998syntax error happens; if you have provided a rule to recognize this token
13863333 6999in the current context, the parse can continue.
bfa74976
RS
7000
7001For example:
7002
7003@example
7004stmnts: /* empty string */
7005 | stmnts '\n'
7006 | stmnts exp '\n'
7007 | stmnts error '\n'
7008@end example
7009
7010The fourth rule in this example says that an error followed by a newline
7011makes a valid addition to any @code{stmnts}.
7012
7013What happens if a syntax error occurs in the middle of an @code{exp}? The
7014error recovery rule, interpreted strictly, applies to the precise sequence
7015of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7016the middle of an @code{exp}, there will probably be some additional tokens
7017and subexpressions on the stack after the last @code{stmnts}, and there
7018will be tokens to read before the next newline. So the rule is not
7019applicable in the ordinary way.
7020
7021But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7022the semantic context and part of the input. First it discards states
7023and objects from the stack until it gets back to a state in which the
bfa74976 7024@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7025already parsed are discarded, back to the last complete @code{stmnts}.)
7026At this point the @code{error} token can be shifted. Then, if the old
742e4900 7027lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7028tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7029this example, Bison reads and discards input until the next newline so
7030that the fourth rule can apply. Note that discarded symbols are
7031possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7032Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7033
7034The choice of error rules in the grammar is a choice of strategies for
7035error recovery. A simple and useful strategy is simply to skip the rest of
7036the current input line or current statement if an error is detected:
7037
7038@example
72d2299c 7039stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7040@end example
7041
7042It is also useful to recover to the matching close-delimiter of an
7043opening-delimiter that has already been parsed. Otherwise the
7044close-delimiter will probably appear to be unmatched, and generate another,
7045spurious error message:
7046
7047@example
7048primary: '(' expr ')'
7049 | '(' error ')'
7050 @dots{}
7051 ;
7052@end example
7053
7054Error recovery strategies are necessarily guesses. When they guess wrong,
7055one syntax error often leads to another. In the above example, the error
7056recovery rule guesses that an error is due to bad input within one
7057@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7058middle of a valid @code{stmnt}. After the error recovery rule recovers
7059from the first error, another syntax error will be found straightaway,
7060since the text following the spurious semicolon is also an invalid
7061@code{stmnt}.
7062
7063To prevent an outpouring of error messages, the parser will output no error
7064message for another syntax error that happens shortly after the first; only
7065after three consecutive input tokens have been successfully shifted will
7066error messages resume.
7067
7068Note that rules which accept the @code{error} token may have actions, just
7069as any other rules can.
7070
7071@findex yyerrok
7072You can make error messages resume immediately by using the macro
7073@code{yyerrok} in an action. If you do this in the error rule's action, no
7074error messages will be suppressed. This macro requires no arguments;
7075@samp{yyerrok;} is a valid C statement.
7076
7077@findex yyclearin
742e4900 7078The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7079this is unacceptable, then the macro @code{yyclearin} may be used to clear
7080this token. Write the statement @samp{yyclearin;} in the error rule's
7081action.
32c29292 7082@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7083
6e649e65 7084For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7085called that advances the input stream to some point where parsing should
7086once again commence. The next symbol returned by the lexical scanner is
742e4900 7087probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7088with @samp{yyclearin;}.
7089
7090@vindex YYRECOVERING
02103984
PE
7091The expression @code{YYRECOVERING ()} yields 1 when the parser
7092is recovering from a syntax error, and 0 otherwise.
7093Syntax error diagnostics are suppressed while recovering from a syntax
7094error.
bfa74976 7095
342b8b6e 7096@node Context Dependency
bfa74976
RS
7097@chapter Handling Context Dependencies
7098
7099The Bison paradigm is to parse tokens first, then group them into larger
7100syntactic units. In many languages, the meaning of a token is affected by
7101its context. Although this violates the Bison paradigm, certain techniques
7102(known as @dfn{kludges}) may enable you to write Bison parsers for such
7103languages.
7104
7105@menu
7106* Semantic Tokens:: Token parsing can depend on the semantic context.
7107* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7108* Tie-in Recovery:: Lexical tie-ins have implications for how
7109 error recovery rules must be written.
7110@end menu
7111
7112(Actually, ``kludge'' means any technique that gets its job done but is
7113neither clean nor robust.)
7114
342b8b6e 7115@node Semantic Tokens
bfa74976
RS
7116@section Semantic Info in Token Types
7117
7118The C language has a context dependency: the way an identifier is used
7119depends on what its current meaning is. For example, consider this:
7120
7121@example
7122foo (x);
7123@end example
7124
7125This looks like a function call statement, but if @code{foo} is a typedef
7126name, then this is actually a declaration of @code{x}. How can a Bison
7127parser for C decide how to parse this input?
7128
c827f760 7129The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7130@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7131identifier, it looks up the current declaration of the identifier in order
7132to decide which token type to return: @code{TYPENAME} if the identifier is
7133declared as a typedef, @code{IDENTIFIER} otherwise.
7134
7135The grammar rules can then express the context dependency by the choice of
7136token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7137but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7138@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7139is @emph{not} significant, such as in declarations that can shadow a
7140typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7141accepted---there is one rule for each of the two token types.
7142
7143This technique is simple to use if the decision of which kinds of
7144identifiers to allow is made at a place close to where the identifier is
7145parsed. But in C this is not always so: C allows a declaration to
7146redeclare a typedef name provided an explicit type has been specified
7147earlier:
7148
7149@example
3a4f411f
PE
7150typedef int foo, bar;
7151int baz (void)
7152@{
7153 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7154 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7155 return foo (bar);
7156@}
bfa74976
RS
7157@end example
7158
7159Unfortunately, the name being declared is separated from the declaration
7160construct itself by a complicated syntactic structure---the ``declarator''.
7161
9ecbd125 7162As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7163all the nonterminal names changed: once for parsing a declaration in
7164which a typedef name can be redefined, and once for parsing a
7165declaration in which that can't be done. Here is a part of the
7166duplication, with actions omitted for brevity:
bfa74976
RS
7167
7168@example
7169initdcl:
7170 declarator maybeasm '='
7171 init
7172 | declarator maybeasm
7173 ;
7174
7175notype_initdcl:
7176 notype_declarator maybeasm '='
7177 init
7178 | notype_declarator maybeasm
7179 ;
7180@end example
7181
7182@noindent
7183Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7184cannot. The distinction between @code{declarator} and
7185@code{notype_declarator} is the same sort of thing.
7186
7187There is some similarity between this technique and a lexical tie-in
7188(described next), in that information which alters the lexical analysis is
7189changed during parsing by other parts of the program. The difference is
7190here the information is global, and is used for other purposes in the
7191program. A true lexical tie-in has a special-purpose flag controlled by
7192the syntactic context.
7193
342b8b6e 7194@node Lexical Tie-ins
bfa74976
RS
7195@section Lexical Tie-ins
7196@cindex lexical tie-in
7197
7198One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7199which is set by Bison actions, whose purpose is to alter the way tokens are
7200parsed.
7201
7202For example, suppose we have a language vaguely like C, but with a special
7203construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7204an expression in parentheses in which all integers are hexadecimal. In
7205particular, the token @samp{a1b} must be treated as an integer rather than
7206as an identifier if it appears in that context. Here is how you can do it:
7207
7208@example
7209@group
7210%@{
38a92d50
PE
7211 int hexflag;
7212 int yylex (void);
7213 void yyerror (char const *);
bfa74976
RS
7214%@}
7215%%
7216@dots{}
7217@end group
7218@group
7219expr: IDENTIFIER
7220 | constant
7221 | HEX '('
7222 @{ hexflag = 1; @}
7223 expr ')'
7224 @{ hexflag = 0;
7225 $$ = $4; @}
7226 | expr '+' expr
7227 @{ $$ = make_sum ($1, $3); @}
7228 @dots{}
7229 ;
7230@end group
7231
7232@group
7233constant:
7234 INTEGER
7235 | STRING
7236 ;
7237@end group
7238@end example
7239
7240@noindent
7241Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7242it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7243with letters are parsed as integers if possible.
7244
342b8b6e
AD
7245The declaration of @code{hexflag} shown in the prologue of the parser file
7246is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7247You must also write the code in @code{yylex} to obey the flag.
bfa74976 7248
342b8b6e 7249@node Tie-in Recovery
bfa74976
RS
7250@section Lexical Tie-ins and Error Recovery
7251
7252Lexical tie-ins make strict demands on any error recovery rules you have.
7253@xref{Error Recovery}.
7254
7255The reason for this is that the purpose of an error recovery rule is to
7256abort the parsing of one construct and resume in some larger construct.
7257For example, in C-like languages, a typical error recovery rule is to skip
7258tokens until the next semicolon, and then start a new statement, like this:
7259
7260@example
7261stmt: expr ';'
7262 | IF '(' expr ')' stmt @{ @dots{} @}
7263 @dots{}
7264 error ';'
7265 @{ hexflag = 0; @}
7266 ;
7267@end example
7268
7269If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7270construct, this error rule will apply, and then the action for the
7271completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7272remain set for the entire rest of the input, or until the next @code{hex}
7273keyword, causing identifiers to be misinterpreted as integers.
7274
7275To avoid this problem the error recovery rule itself clears @code{hexflag}.
7276
7277There may also be an error recovery rule that works within expressions.
7278For example, there could be a rule which applies within parentheses
7279and skips to the close-parenthesis:
7280
7281@example
7282@group
7283expr: @dots{}
7284 | '(' expr ')'
7285 @{ $$ = $2; @}
7286 | '(' error ')'
7287 @dots{}
7288@end group
7289@end example
7290
7291If this rule acts within the @code{hex} construct, it is not going to abort
7292that construct (since it applies to an inner level of parentheses within
7293the construct). Therefore, it should not clear the flag: the rest of
7294the @code{hex} construct should be parsed with the flag still in effect.
7295
7296What if there is an error recovery rule which might abort out of the
7297@code{hex} construct or might not, depending on circumstances? There is no
7298way you can write the action to determine whether a @code{hex} construct is
7299being aborted or not. So if you are using a lexical tie-in, you had better
7300make sure your error recovery rules are not of this kind. Each rule must
7301be such that you can be sure that it always will, or always won't, have to
7302clear the flag.
7303
ec3bc396
AD
7304@c ================================================== Debugging Your Parser
7305
342b8b6e 7306@node Debugging
bfa74976 7307@chapter Debugging Your Parser
ec3bc396
AD
7308
7309Developing a parser can be a challenge, especially if you don't
7310understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7311Algorithm}). Even so, sometimes a detailed description of the automaton
7312can help (@pxref{Understanding, , Understanding Your Parser}), or
7313tracing the execution of the parser can give some insight on why it
7314behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7315
7316@menu
7317* Understanding:: Understanding the structure of your parser.
7318* Tracing:: Tracing the execution of your parser.
7319@end menu
7320
7321@node Understanding
7322@section Understanding Your Parser
7323
7324As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7325Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7326frequent than one would hope), looking at this automaton is required to
7327tune or simply fix a parser. Bison provides two different
35fe0834 7328representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7329
7330The textual file is generated when the options @option{--report} or
7331@option{--verbose} are specified, see @xref{Invocation, , Invoking
7332Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7333the parser output file name, and adding @samp{.output} instead.
7334Therefore, if the input file is @file{foo.y}, then the parser file is
7335called @file{foo.tab.c} by default. As a consequence, the verbose
7336output file is called @file{foo.output}.
7337
7338The following grammar file, @file{calc.y}, will be used in the sequel:
7339
7340@example
7341%token NUM STR
7342%left '+' '-'
7343%left '*'
7344%%
7345exp: exp '+' exp
7346 | exp '-' exp
7347 | exp '*' exp
7348 | exp '/' exp
7349 | NUM
7350 ;
7351useless: STR;
7352%%
7353@end example
7354
88bce5a2
AD
7355@command{bison} reports:
7356
7357@example
34a6c2d1
JD
7358tmp.y: warning: 1 nonterminal useless in grammar
7359tmp.y: warning: 1 rule useless in grammar
cff03fb2
JD
7360calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7361calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7362calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7363@end example
7364
7365When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7366creates a file @file{calc.output} with contents detailed below. The
7367order of the output and the exact presentation might vary, but the
7368interpretation is the same.
ec3bc396
AD
7369
7370The first section includes details on conflicts that were solved thanks
7371to precedence and/or associativity:
7372
7373@example
7374Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7375Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7376Conflict in state 8 between rule 2 and token '*' resolved as shift.
7377@exdent @dots{}
7378@end example
7379
7380@noindent
7381The next section lists states that still have conflicts.
7382
7383@example
5a99098d
PE
7384State 8 conflicts: 1 shift/reduce
7385State 9 conflicts: 1 shift/reduce
7386State 10 conflicts: 1 shift/reduce
7387State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7388@end example
7389
7390@noindent
7391@cindex token, useless
7392@cindex useless token
7393@cindex nonterminal, useless
7394@cindex useless nonterminal
7395@cindex rule, useless
7396@cindex useless rule
7397The next section reports useless tokens, nonterminal and rules. Useless
7398nonterminals and rules are removed in order to produce a smaller parser,
7399but useless tokens are preserved, since they might be used by the
d80fb37a 7400scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7401below):
7402
7403@example
d80fb37a 7404Nonterminals useless in grammar:
ec3bc396
AD
7405 useless
7406
d80fb37a 7407Terminals unused in grammar:
ec3bc396
AD
7408 STR
7409
cff03fb2 7410Rules useless in grammar:
ec3bc396
AD
7411#6 useless: STR;
7412@end example
7413
7414@noindent
7415The next section reproduces the exact grammar that Bison used:
7416
7417@example
7418Grammar
7419
7420 Number, Line, Rule
88bce5a2 7421 0 5 $accept -> exp $end
ec3bc396
AD
7422 1 5 exp -> exp '+' exp
7423 2 6 exp -> exp '-' exp
7424 3 7 exp -> exp '*' exp
7425 4 8 exp -> exp '/' exp
7426 5 9 exp -> NUM
7427@end example
7428
7429@noindent
7430and reports the uses of the symbols:
7431
7432@example
7433Terminals, with rules where they appear
7434
88bce5a2 7435$end (0) 0
ec3bc396
AD
7436'*' (42) 3
7437'+' (43) 1
7438'-' (45) 2
7439'/' (47) 4
7440error (256)
7441NUM (258) 5
7442
7443Nonterminals, with rules where they appear
7444
88bce5a2 7445$accept (8)
ec3bc396
AD
7446 on left: 0
7447exp (9)
7448 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7449@end example
7450
7451@noindent
7452@cindex item
7453@cindex pointed rule
7454@cindex rule, pointed
7455Bison then proceeds onto the automaton itself, describing each state
7456with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7457item is a production rule together with a point (marked by @samp{.})
7458that the input cursor.
7459
7460@example
7461state 0
7462
88bce5a2 7463 $accept -> . exp $ (rule 0)
ec3bc396 7464
2a8d363a 7465 NUM shift, and go to state 1
ec3bc396 7466
2a8d363a 7467 exp go to state 2
ec3bc396
AD
7468@end example
7469
7470This reads as follows: ``state 0 corresponds to being at the very
7471beginning of the parsing, in the initial rule, right before the start
7472symbol (here, @code{exp}). When the parser returns to this state right
7473after having reduced a rule that produced an @code{exp}, the control
7474flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7475symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7476the parse stack, and the control flow jumps to state 1. Any other
742e4900 7477lookahead triggers a syntax error.''
ec3bc396
AD
7478
7479@cindex core, item set
7480@cindex item set core
7481@cindex kernel, item set
7482@cindex item set core
7483Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7484report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7485at the beginning of any rule deriving an @code{exp}. By default Bison
7486reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7487you want to see more detail you can invoke @command{bison} with
7488@option{--report=itemset} to list all the items, include those that can
7489be derived:
7490
7491@example
7492state 0
7493
88bce5a2 7494 $accept -> . exp $ (rule 0)
ec3bc396
AD
7495 exp -> . exp '+' exp (rule 1)
7496 exp -> . exp '-' exp (rule 2)
7497 exp -> . exp '*' exp (rule 3)
7498 exp -> . exp '/' exp (rule 4)
7499 exp -> . NUM (rule 5)
7500
7501 NUM shift, and go to state 1
7502
7503 exp go to state 2
7504@end example
7505
7506@noindent
7507In the state 1...
7508
7509@example
7510state 1
7511
7512 exp -> NUM . (rule 5)
7513
2a8d363a 7514 $default reduce using rule 5 (exp)
ec3bc396
AD
7515@end example
7516
7517@noindent
742e4900 7518the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7519(@samp{$default}), the parser will reduce it. If it was coming from
7520state 0, then, after this reduction it will return to state 0, and will
7521jump to state 2 (@samp{exp: go to state 2}).
7522
7523@example
7524state 2
7525
88bce5a2 7526 $accept -> exp . $ (rule 0)
ec3bc396
AD
7527 exp -> exp . '+' exp (rule 1)
7528 exp -> exp . '-' exp (rule 2)
7529 exp -> exp . '*' exp (rule 3)
7530 exp -> exp . '/' exp (rule 4)
7531
2a8d363a
AD
7532 $ shift, and go to state 3
7533 '+' shift, and go to state 4
7534 '-' shift, and go to state 5
7535 '*' shift, and go to state 6
7536 '/' shift, and go to state 7
ec3bc396
AD
7537@end example
7538
7539@noindent
7540In state 2, the automaton can only shift a symbol. For instance,
742e4900 7541because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7542@samp{+}, it will be shifted on the parse stack, and the automaton
7543control will jump to state 4, corresponding to the item @samp{exp -> exp
7544'+' . exp}. Since there is no default action, any other token than
6e649e65 7545those listed above will trigger a syntax error.
ec3bc396 7546
34a6c2d1 7547@cindex accepting state
ec3bc396
AD
7548The state 3 is named the @dfn{final state}, or the @dfn{accepting
7549state}:
7550
7551@example
7552state 3
7553
88bce5a2 7554 $accept -> exp $ . (rule 0)
ec3bc396 7555
2a8d363a 7556 $default accept
ec3bc396
AD
7557@end example
7558
7559@noindent
7560the initial rule is completed (the start symbol and the end
7561of input were read), the parsing exits successfully.
7562
7563The interpretation of states 4 to 7 is straightforward, and is left to
7564the reader.
7565
7566@example
7567state 4
7568
7569 exp -> exp '+' . exp (rule 1)
7570
2a8d363a 7571 NUM shift, and go to state 1
ec3bc396 7572
2a8d363a 7573 exp go to state 8
ec3bc396
AD
7574
7575state 5
7576
7577 exp -> exp '-' . exp (rule 2)
7578
2a8d363a 7579 NUM shift, and go to state 1
ec3bc396 7580
2a8d363a 7581 exp go to state 9
ec3bc396
AD
7582
7583state 6
7584
7585 exp -> exp '*' . exp (rule 3)
7586
2a8d363a 7587 NUM shift, and go to state 1
ec3bc396 7588
2a8d363a 7589 exp go to state 10
ec3bc396
AD
7590
7591state 7
7592
7593 exp -> exp '/' . exp (rule 4)
7594
2a8d363a 7595 NUM shift, and go to state 1
ec3bc396 7596
2a8d363a 7597 exp go to state 11
ec3bc396
AD
7598@end example
7599
5a99098d
PE
7600As was announced in beginning of the report, @samp{State 8 conflicts:
76011 shift/reduce}:
ec3bc396
AD
7602
7603@example
7604state 8
7605
7606 exp -> exp . '+' exp (rule 1)
7607 exp -> exp '+' exp . (rule 1)
7608 exp -> exp . '-' exp (rule 2)
7609 exp -> exp . '*' exp (rule 3)
7610 exp -> exp . '/' exp (rule 4)
7611
2a8d363a
AD
7612 '*' shift, and go to state 6
7613 '/' shift, and go to state 7
ec3bc396 7614
2a8d363a
AD
7615 '/' [reduce using rule 1 (exp)]
7616 $default reduce using rule 1 (exp)
ec3bc396
AD
7617@end example
7618
742e4900 7619Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7620either shifting (and going to state 7), or reducing rule 1. The
7621conflict means that either the grammar is ambiguous, or the parser lacks
7622information to make the right decision. Indeed the grammar is
7623ambiguous, as, since we did not specify the precedence of @samp{/}, the
7624sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7625NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7626NUM}, which corresponds to reducing rule 1.
7627
34a6c2d1 7628Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7629arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7630Shift/Reduce Conflicts}. Discarded actions are reported in between
7631square brackets.
7632
7633Note that all the previous states had a single possible action: either
7634shifting the next token and going to the corresponding state, or
7635reducing a single rule. In the other cases, i.e., when shifting
7636@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7637possible, the lookahead is required to select the action. State 8 is
7638one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7639is shifting, otherwise the action is reducing rule 1. In other words,
7640the first two items, corresponding to rule 1, are not eligible when the
742e4900 7641lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7642precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7643with some set of possible lookahead tokens. When run with
7644@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7645
7646@example
7647state 8
7648
88c78747 7649 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7650 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7651 exp -> exp . '-' exp (rule 2)
7652 exp -> exp . '*' exp (rule 3)
7653 exp -> exp . '/' exp (rule 4)
7654
7655 '*' shift, and go to state 6
7656 '/' shift, and go to state 7
7657
7658 '/' [reduce using rule 1 (exp)]
7659 $default reduce using rule 1 (exp)
7660@end example
7661
7662The remaining states are similar:
7663
7664@example
7665state 9
7666
7667 exp -> exp . '+' exp (rule 1)
7668 exp -> exp . '-' exp (rule 2)
7669 exp -> exp '-' exp . (rule 2)
7670 exp -> exp . '*' exp (rule 3)
7671 exp -> exp . '/' exp (rule 4)
7672
2a8d363a
AD
7673 '*' shift, and go to state 6
7674 '/' shift, and go to state 7
ec3bc396 7675
2a8d363a
AD
7676 '/' [reduce using rule 2 (exp)]
7677 $default reduce using rule 2 (exp)
ec3bc396
AD
7678
7679state 10
7680
7681 exp -> exp . '+' exp (rule 1)
7682 exp -> exp . '-' exp (rule 2)
7683 exp -> exp . '*' exp (rule 3)
7684 exp -> exp '*' exp . (rule 3)
7685 exp -> exp . '/' exp (rule 4)
7686
2a8d363a 7687 '/' shift, and go to state 7
ec3bc396 7688
2a8d363a
AD
7689 '/' [reduce using rule 3 (exp)]
7690 $default reduce using rule 3 (exp)
ec3bc396
AD
7691
7692state 11
7693
7694 exp -> exp . '+' exp (rule 1)
7695 exp -> exp . '-' exp (rule 2)
7696 exp -> exp . '*' exp (rule 3)
7697 exp -> exp . '/' exp (rule 4)
7698 exp -> exp '/' exp . (rule 4)
7699
2a8d363a
AD
7700 '+' shift, and go to state 4
7701 '-' shift, and go to state 5
7702 '*' shift, and go to state 6
7703 '/' shift, and go to state 7
ec3bc396 7704
2a8d363a
AD
7705 '+' [reduce using rule 4 (exp)]
7706 '-' [reduce using rule 4 (exp)]
7707 '*' [reduce using rule 4 (exp)]
7708 '/' [reduce using rule 4 (exp)]
7709 $default reduce using rule 4 (exp)
ec3bc396
AD
7710@end example
7711
7712@noindent
fa7e68c3
PE
7713Observe that state 11 contains conflicts not only due to the lack of
7714precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7715@samp{*}, but also because the
ec3bc396
AD
7716associativity of @samp{/} is not specified.
7717
7718
7719@node Tracing
7720@section Tracing Your Parser
bfa74976
RS
7721@findex yydebug
7722@cindex debugging
7723@cindex tracing the parser
7724
7725If a Bison grammar compiles properly but doesn't do what you want when it
7726runs, the @code{yydebug} parser-trace feature can help you figure out why.
7727
3ded9a63
AD
7728There are several means to enable compilation of trace facilities:
7729
7730@table @asis
7731@item the macro @code{YYDEBUG}
7732@findex YYDEBUG
7733Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7734parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7735@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7736YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7737Prologue}).
7738
7739@item the option @option{-t}, @option{--debug}
7740Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7741,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7742
7743@item the directive @samp{%debug}
7744@findex %debug
7745Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7746Declaration Summary}). This is a Bison extension, which will prove
7747useful when Bison will output parsers for languages that don't use a
c827f760
PE
7748preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7749you, this is
3ded9a63
AD
7750the preferred solution.
7751@end table
7752
7753We suggest that you always enable the debug option so that debugging is
7754always possible.
bfa74976 7755
02a81e05 7756The trace facility outputs messages with macro calls of the form
e2742e46 7757@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7758@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7759arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7760define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7761and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7762
7763Once you have compiled the program with trace facilities, the way to
7764request a trace is to store a nonzero value in the variable @code{yydebug}.
7765You can do this by making the C code do it (in @code{main}, perhaps), or
7766you can alter the value with a C debugger.
7767
7768Each step taken by the parser when @code{yydebug} is nonzero produces a
7769line or two of trace information, written on @code{stderr}. The trace
7770messages tell you these things:
7771
7772@itemize @bullet
7773@item
7774Each time the parser calls @code{yylex}, what kind of token was read.
7775
7776@item
7777Each time a token is shifted, the depth and complete contents of the
7778state stack (@pxref{Parser States}).
7779
7780@item
7781Each time a rule is reduced, which rule it is, and the complete contents
7782of the state stack afterward.
7783@end itemize
7784
7785To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7786produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7787Bison}). This file shows the meaning of each state in terms of
7788positions in various rules, and also what each state will do with each
7789possible input token. As you read the successive trace messages, you
7790can see that the parser is functioning according to its specification in
7791the listing file. Eventually you will arrive at the place where
7792something undesirable happens, and you will see which parts of the
7793grammar are to blame.
bfa74976
RS
7794
7795The parser file is a C program and you can use C debuggers on it, but it's
7796not easy to interpret what it is doing. The parser function is a
7797finite-state machine interpreter, and aside from the actions it executes
7798the same code over and over. Only the values of variables show where in
7799the grammar it is working.
7800
7801@findex YYPRINT
7802The debugging information normally gives the token type of each token
7803read, but not its semantic value. You can optionally define a macro
7804named @code{YYPRINT} to provide a way to print the value. If you define
7805@code{YYPRINT}, it should take three arguments. The parser will pass a
7806standard I/O stream, the numeric code for the token type, and the token
7807value (from @code{yylval}).
7808
7809Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7810calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7811
7812@smallexample
38a92d50
PE
7813%@{
7814 static void print_token_value (FILE *, int, YYSTYPE);
7815 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7816%@}
7817
7818@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7819
7820static void
831d3c99 7821print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7822@{
7823 if (type == VAR)
d3c4e709 7824 fprintf (file, "%s", value.tptr->name);
bfa74976 7825 else if (type == NUM)
d3c4e709 7826 fprintf (file, "%d", value.val);
bfa74976
RS
7827@}
7828@end smallexample
7829
ec3bc396
AD
7830@c ================================================= Invoking Bison
7831
342b8b6e 7832@node Invocation
bfa74976
RS
7833@chapter Invoking Bison
7834@cindex invoking Bison
7835@cindex Bison invocation
7836@cindex options for invoking Bison
7837
7838The usual way to invoke Bison is as follows:
7839
7840@example
7841bison @var{infile}
7842@end example
7843
7844Here @var{infile} is the grammar file name, which usually ends in
7845@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7846with @samp{.tab.c} and removing any leading directory. Thus, the
7847@samp{bison foo.y} file name yields
7848@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7849@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7850C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7851or @file{foo.y++}. Then, the output files will take an extension like
7852the given one as input (respectively @file{foo.tab.cpp} and
7853@file{foo.tab.c++}).
fa4d969f 7854This feature takes effect with all options that manipulate file names like
234a3be3
AD
7855@samp{-o} or @samp{-d}.
7856
7857For example :
7858
7859@example
7860bison -d @var{infile.yxx}
7861@end example
84163231 7862@noindent
72d2299c 7863will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7864
7865@example
b56471a6 7866bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7867@end example
84163231 7868@noindent
234a3be3
AD
7869will produce @file{output.c++} and @file{outfile.h++}.
7870
397ec073
PE
7871For compatibility with @acronym{POSIX}, the standard Bison
7872distribution also contains a shell script called @command{yacc} that
7873invokes Bison with the @option{-y} option.
7874
bfa74976 7875@menu
13863333 7876* Bison Options:: All the options described in detail,
c827f760 7877 in alphabetical order by short options.
bfa74976 7878* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7879* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7880@end menu
7881
342b8b6e 7882@node Bison Options
bfa74976
RS
7883@section Bison Options
7884
7885Bison supports both traditional single-letter options and mnemonic long
7886option names. Long option names are indicated with @samp{--} instead of
7887@samp{-}. Abbreviations for option names are allowed as long as they
7888are unique. When a long option takes an argument, like
7889@samp{--file-prefix}, connect the option name and the argument with
7890@samp{=}.
7891
7892Here is a list of options that can be used with Bison, alphabetized by
7893short option. It is followed by a cross key alphabetized by long
7894option.
7895
89cab50d
AD
7896@c Please, keep this ordered as in `bison --help'.
7897@noindent
7898Operations modes:
7899@table @option
7900@item -h
7901@itemx --help
7902Print a summary of the command-line options to Bison and exit.
bfa74976 7903
89cab50d
AD
7904@item -V
7905@itemx --version
7906Print the version number of Bison and exit.
bfa74976 7907
f7ab6a50
PE
7908@item --print-localedir
7909Print the name of the directory containing locale-dependent data.
7910
a0de5091
JD
7911@item --print-datadir
7912Print the name of the directory containing skeletons and XSLT.
7913
89cab50d
AD
7914@item -y
7915@itemx --yacc
54662697
PE
7916Act more like the traditional Yacc command. This can cause
7917different diagnostics to be generated, and may change behavior in
7918other minor ways. Most importantly, imitate Yacc's output
7919file name conventions, so that the parser output file is called
89cab50d 7920@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 7921@file{y.tab.h}.
34a6c2d1 7922Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
7923statements in addition to an @code{enum} to associate token numbers with token
7924names.
7925Thus, the following shell script can substitute for Yacc, and the Bison
7926distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7927
89cab50d 7928@example
397ec073 7929#! /bin/sh
26e06a21 7930bison -y "$@@"
89cab50d 7931@end example
54662697
PE
7932
7933The @option{-y}/@option{--yacc} option is intended for use with
7934traditional Yacc grammars. If your grammar uses a Bison extension
7935like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7936this option is specified.
7937
ecd1b61c
JD
7938@item -W [@var{category}]
7939@itemx --warnings[=@var{category}]
118d4978
AD
7940Output warnings falling in @var{category}. @var{category} can be one
7941of:
7942@table @code
7943@item midrule-values
8e55b3aa
JD
7944Warn about mid-rule values that are set but not used within any of the actions
7945of the parent rule.
7946For example, warn about unused @code{$2} in:
118d4978
AD
7947
7948@example
7949exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7950@end example
7951
8e55b3aa
JD
7952Also warn about mid-rule values that are used but not set.
7953For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7954
7955@example
7956 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7957@end example
7958
7959These warnings are not enabled by default since they sometimes prove to
7960be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7961@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7962
7963
7964@item yacc
7965Incompatibilities with @acronym{POSIX} Yacc.
7966
7967@item all
8e55b3aa 7968All the warnings.
118d4978 7969@item none
8e55b3aa 7970Turn off all the warnings.
118d4978 7971@item error
8e55b3aa 7972Treat warnings as errors.
118d4978
AD
7973@end table
7974
7975A category can be turned off by prefixing its name with @samp{no-}. For
7976instance, @option{-Wno-syntax} will hide the warnings about unused
7977variables.
89cab50d
AD
7978@end table
7979
7980@noindent
7981Tuning the parser:
7982
7983@table @option
7984@item -t
7985@itemx --debug
4947ebdb
PE
7986In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7987already defined, so that the debugging facilities are compiled.
ec3bc396 7988@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7989
e14c6831
AD
7990@item -D @var{name}[=@var{value}]
7991@itemx --define=@var{name}[=@var{value}]
7992Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7993Summary, ,%define}).
7994
0e021770
PE
7995@item -L @var{language}
7996@itemx --language=@var{language}
7997Specify the programming language for the generated parser, as if
7998@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7999Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8000@var{language} is case-insensitive.
0e021770 8001
ed4d67dc
JD
8002This option is experimental and its effect may be modified in future
8003releases.
8004
89cab50d 8005@item --locations
d8988b2f 8006Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8007
8008@item -p @var{prefix}
8009@itemx --name-prefix=@var{prefix}
02975b9a 8010Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8011@xref{Decl Summary}.
bfa74976
RS
8012
8013@item -l
8014@itemx --no-lines
8015Don't put any @code{#line} preprocessor commands in the parser file.
8016Ordinarily Bison puts them in the parser file so that the C compiler
8017and debuggers will associate errors with your source file, the
8018grammar file. This option causes them to associate errors with the
95e742f7 8019parser file, treating it as an independent source file in its own right.
bfa74976 8020
e6e704dc
JD
8021@item -S @var{file}
8022@itemx --skeleton=@var{file}
a7867f53 8023Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8024(@pxref{Decl Summary, , Bison Declaration Summary}).
8025
ed4d67dc
JD
8026@c You probably don't need this option unless you are developing Bison.
8027@c You should use @option{--language} if you want to specify the skeleton for a
8028@c different language, because it is clearer and because it will always
8029@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8030
a7867f53
JD
8031If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8032file in the Bison installation directory.
8033If it does, @var{file} is an absolute file name or a file name relative to the
8034current working directory.
8035This is similar to how most shells resolve commands.
8036
89cab50d
AD
8037@item -k
8038@itemx --token-table
d8988b2f 8039Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8040@end table
bfa74976 8041
89cab50d
AD
8042@noindent
8043Adjust the output:
bfa74976 8044
89cab50d 8045@table @option
8e55b3aa 8046@item --defines[=@var{file}]
d8988b2f 8047Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8048file containing macro definitions for the token type names defined in
4bfd5e4e 8049the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8050
8e55b3aa
JD
8051@item -d
8052This is the same as @code{--defines} except @code{-d} does not accept a
8053@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8054with other short options.
342b8b6e 8055
89cab50d
AD
8056@item -b @var{file-prefix}
8057@itemx --file-prefix=@var{prefix}
9c437126 8058Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8059for all Bison output file names. @xref{Decl Summary}.
bfa74976 8060
ec3bc396
AD
8061@item -r @var{things}
8062@itemx --report=@var{things}
8063Write an extra output file containing verbose description of the comma
8064separated list of @var{things} among:
8065
8066@table @code
8067@item state
8068Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8069parser's automaton.
ec3bc396 8070
742e4900 8071@item lookahead
ec3bc396 8072Implies @code{state} and augments the description of the automaton with
742e4900 8073each rule's lookahead set.
ec3bc396
AD
8074
8075@item itemset
8076Implies @code{state} and augments the description of the automaton with
8077the full set of items for each state, instead of its core only.
8078@end table
8079
1bb2bd75
JD
8080@item --report-file=@var{file}
8081Specify the @var{file} for the verbose description.
8082
bfa74976
RS
8083@item -v
8084@itemx --verbose
9c437126 8085Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8086file containing verbose descriptions of the grammar and
72d2299c 8087parser. @xref{Decl Summary}.
bfa74976 8088
fa4d969f
PE
8089@item -o @var{file}
8090@itemx --output=@var{file}
8091Specify the @var{file} for the parser file.
bfa74976 8092
fa4d969f 8093The other output files' names are constructed from @var{file} as
d8988b2f 8094described under the @samp{-v} and @samp{-d} options.
342b8b6e 8095
72183df4 8096@item -g [@var{file}]
8e55b3aa 8097@itemx --graph[=@var{file}]
34a6c2d1 8098Output a graphical representation of the parser's
35fe0834
PE
8099automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8100@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8101@code{@var{file}} is optional.
8102If omitted and the grammar file is @file{foo.y}, the output file will be
8103@file{foo.dot}.
59da312b 8104
72183df4 8105@item -x [@var{file}]
8e55b3aa 8106@itemx --xml[=@var{file}]
34a6c2d1 8107Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8108@code{@var{file}} is optional.
59da312b
JD
8109If omitted and the grammar file is @file{foo.y}, the output file will be
8110@file{foo.xml}.
8111(The current XML schema is experimental and may evolve.
8112More user feedback will help to stabilize it.)
bfa74976
RS
8113@end table
8114
342b8b6e 8115@node Option Cross Key
bfa74976
RS
8116@section Option Cross Key
8117
8118Here is a list of options, alphabetized by long option, to help you find
8119the corresponding short option.
8120
72183df4
DJ
8121@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
8122@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8123@include cross-options.texi
aa08666d 8124@end multitable
bfa74976 8125
93dd49ab
PE
8126@node Yacc Library
8127@section Yacc Library
8128
8129The Yacc library contains default implementations of the
8130@code{yyerror} and @code{main} functions. These default
8131implementations are normally not useful, but @acronym{POSIX} requires
8132them. To use the Yacc library, link your program with the
8133@option{-ly} option. Note that Bison's implementation of the Yacc
8134library is distributed under the terms of the @acronym{GNU} General
8135Public License (@pxref{Copying}).
8136
8137If you use the Yacc library's @code{yyerror} function, you should
8138declare @code{yyerror} as follows:
8139
8140@example
8141int yyerror (char const *);
8142@end example
8143
8144Bison ignores the @code{int} value returned by this @code{yyerror}.
8145If you use the Yacc library's @code{main} function, your
8146@code{yyparse} function should have the following type signature:
8147
8148@example
8149int yyparse (void);
8150@end example
8151
12545799
AD
8152@c ================================================= C++ Bison
8153
8405b70c
PB
8154@node Other Languages
8155@chapter Parsers Written In Other Languages
12545799
AD
8156
8157@menu
8158* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8159* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8160@end menu
8161
8162@node C++ Parsers
8163@section C++ Parsers
8164
8165@menu
8166* C++ Bison Interface:: Asking for C++ parser generation
8167* C++ Semantic Values:: %union vs. C++
8168* C++ Location Values:: The position and location classes
8169* C++ Parser Interface:: Instantiating and running the parser
8170* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8171* A Complete C++ Example:: Demonstrating their use
12545799
AD
8172@end menu
8173
8174@node C++ Bison Interface
8175@subsection C++ Bison Interface
ed4d67dc 8176@c - %skeleton "lalr1.cc"
12545799
AD
8177@c - Always pure
8178@c - initial action
8179
34a6c2d1 8180The C++ deterministic parser is selected using the skeleton directive,
ed4d67dc
JD
8181@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8182@option{--skeleton=lalr1.c}.
e6e704dc 8183@xref{Decl Summary}.
0e021770 8184
793fbca5
JD
8185When run, @command{bison} will create several entities in the @samp{yy}
8186namespace.
8187@findex %define namespace
8188Use the @samp{%define namespace} directive to change the namespace name, see
8189@ref{Decl Summary}.
8190The various classes are generated in the following files:
aa08666d 8191
12545799
AD
8192@table @file
8193@item position.hh
8194@itemx location.hh
8195The definition of the classes @code{position} and @code{location},
8196used for location tracking. @xref{C++ Location Values}.
8197
8198@item stack.hh
8199An auxiliary class @code{stack} used by the parser.
8200
fa4d969f
PE
8201@item @var{file}.hh
8202@itemx @var{file}.cc
cd8b5791
AD
8203(Assuming the extension of the input file was @samp{.yy}.) The
8204declaration and implementation of the C++ parser class. The basename
8205and extension of these two files follow the same rules as with regular C
8206parsers (@pxref{Invocation}).
12545799 8207
cd8b5791
AD
8208The header is @emph{mandatory}; you must either pass
8209@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8210@samp{%defines} directive.
8211@end table
8212
8213All these files are documented using Doxygen; run @command{doxygen}
8214for a complete and accurate documentation.
8215
8216@node C++ Semantic Values
8217@subsection C++ Semantic Values
8218@c - No objects in unions
178e123e 8219@c - YYSTYPE
12545799
AD
8220@c - Printer and destructor
8221
8222The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8223Collection of Value Types}. In particular it produces a genuine
8224@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8225within pseudo-unions (similar to Boost variants) might be implemented to
8226alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8227@itemize @minus
8228@item
fb9712a9
AD
8229The type @code{YYSTYPE} is defined but its use is discouraged: rather
8230you should refer to the parser's encapsulated type
8231@code{yy::parser::semantic_type}.
12545799
AD
8232@item
8233Non POD (Plain Old Data) types cannot be used. C++ forbids any
8234instance of classes with constructors in unions: only @emph{pointers}
8235to such objects are allowed.
8236@end itemize
8237
8238Because objects have to be stored via pointers, memory is not
8239reclaimed automatically: using the @code{%destructor} directive is the
8240only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8241Symbols}.
8242
8243
8244@node C++ Location Values
8245@subsection C++ Location Values
8246@c - %locations
8247@c - class Position
8248@c - class Location
16dc6a9e 8249@c - %define filename_type "const symbol::Symbol"
12545799
AD
8250
8251When the directive @code{%locations} is used, the C++ parser supports
8252location tracking, see @ref{Locations, , Locations Overview}. Two
8253auxiliary classes define a @code{position}, a single point in a file,
8254and a @code{location}, a range composed of a pair of
8255@code{position}s (possibly spanning several files).
8256
fa4d969f 8257@deftypemethod {position} {std::string*} file
12545799
AD
8258The name of the file. It will always be handled as a pointer, the
8259parser will never duplicate nor deallocate it. As an experimental
8260feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8261filename_type "@var{type}"}.
12545799
AD
8262@end deftypemethod
8263
8264@deftypemethod {position} {unsigned int} line
8265The line, starting at 1.
8266@end deftypemethod
8267
8268@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8269Advance by @var{height} lines, resetting the column number.
8270@end deftypemethod
8271
8272@deftypemethod {position} {unsigned int} column
8273The column, starting at 0.
8274@end deftypemethod
8275
8276@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8277Advance by @var{width} columns, without changing the line number.
8278@end deftypemethod
8279
8280@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8281@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8282@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8283@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8284Various forms of syntactic sugar for @code{columns}.
8285@end deftypemethod
8286
8287@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8288Report @var{p} on @var{o} like this:
fa4d969f
PE
8289@samp{@var{file}:@var{line}.@var{column}}, or
8290@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8291@end deftypemethod
8292
8293@deftypemethod {location} {position} begin
8294@deftypemethodx {location} {position} end
8295The first, inclusive, position of the range, and the first beyond.
8296@end deftypemethod
8297
8298@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8299@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8300Advance the @code{end} position.
8301@end deftypemethod
8302
8303@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8304@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8305@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8306Various forms of syntactic sugar.
8307@end deftypemethod
8308
8309@deftypemethod {location} {void} step ()
8310Move @code{begin} onto @code{end}.
8311@end deftypemethod
8312
8313
8314@node C++ Parser Interface
8315@subsection C++ Parser Interface
8316@c - define parser_class_name
8317@c - Ctor
8318@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8319@c debug_stream.
8320@c - Reporting errors
8321
8322The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8323declare and define the parser class in the namespace @code{yy}. The
8324class name defaults to @code{parser}, but may be changed using
16dc6a9e 8325@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8326this class is detailed below. It can be extended using the
12545799
AD
8327@code{%parse-param} feature: its semantics is slightly changed since
8328it describes an additional member of the parser class, and an
8329additional argument for its constructor.
8330
8a0adb01
AD
8331@defcv {Type} {parser} {semantic_value_type}
8332@defcvx {Type} {parser} {location_value_type}
12545799 8333The types for semantics value and locations.
8a0adb01 8334@end defcv
12545799
AD
8335
8336@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8337Build a new parser object. There are no arguments by default, unless
8338@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8339@end deftypemethod
8340
8341@deftypemethod {parser} {int} parse ()
8342Run the syntactic analysis, and return 0 on success, 1 otherwise.
8343@end deftypemethod
8344
8345@deftypemethod {parser} {std::ostream&} debug_stream ()
8346@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8347Get or set the stream used for tracing the parsing. It defaults to
8348@code{std::cerr}.
8349@end deftypemethod
8350
8351@deftypemethod {parser} {debug_level_type} debug_level ()
8352@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8353Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8354or nonzero, full tracing.
12545799
AD
8355@end deftypemethod
8356
8357@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8358The definition for this member function must be supplied by the user:
8359the parser uses it to report a parser error occurring at @var{l},
8360described by @var{m}.
8361@end deftypemethod
8362
8363
8364@node C++ Scanner Interface
8365@subsection C++ Scanner Interface
8366@c - prefix for yylex.
8367@c - Pure interface to yylex
8368@c - %lex-param
8369
8370The parser invokes the scanner by calling @code{yylex}. Contrary to C
8371parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8372@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8373
8374@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8375Return the next token. Its type is the return value, its semantic
8376value and location being @var{yylval} and @var{yylloc}. Invocations of
8377@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8378@end deftypemethod
8379
8380
8381@node A Complete C++ Example
8405b70c 8382@subsection A Complete C++ Example
12545799
AD
8383
8384This section demonstrates the use of a C++ parser with a simple but
8385complete example. This example should be available on your system,
8386ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8387focuses on the use of Bison, therefore the design of the various C++
8388classes is very naive: no accessors, no encapsulation of members etc.
8389We will use a Lex scanner, and more precisely, a Flex scanner, to
8390demonstrate the various interaction. A hand written scanner is
8391actually easier to interface with.
8392
8393@menu
8394* Calc++ --- C++ Calculator:: The specifications
8395* Calc++ Parsing Driver:: An active parsing context
8396* Calc++ Parser:: A parser class
8397* Calc++ Scanner:: A pure C++ Flex scanner
8398* Calc++ Top Level:: Conducting the band
8399@end menu
8400
8401@node Calc++ --- C++ Calculator
8405b70c 8402@subsubsection Calc++ --- C++ Calculator
12545799
AD
8403
8404Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8405expression, possibly preceded by variable assignments. An
12545799
AD
8406environment containing possibly predefined variables such as
8407@code{one} and @code{two}, is exchanged with the parser. An example
8408of valid input follows.
8409
8410@example
8411three := 3
8412seven := one + two * three
8413seven * seven
8414@end example
8415
8416@node Calc++ Parsing Driver
8405b70c 8417@subsubsection Calc++ Parsing Driver
12545799
AD
8418@c - An env
8419@c - A place to store error messages
8420@c - A place for the result
8421
8422To support a pure interface with the parser (and the scanner) the
8423technique of the ``parsing context'' is convenient: a structure
8424containing all the data to exchange. Since, in addition to simply
8425launch the parsing, there are several auxiliary tasks to execute (open
8426the file for parsing, instantiate the parser etc.), we recommend
8427transforming the simple parsing context structure into a fully blown
8428@dfn{parsing driver} class.
8429
8430The declaration of this driver class, @file{calc++-driver.hh}, is as
8431follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8432required standard library components, and the declaration of the parser
8433class.
12545799 8434
1c59e0a1 8435@comment file: calc++-driver.hh
12545799
AD
8436@example
8437#ifndef CALCXX_DRIVER_HH
8438# define CALCXX_DRIVER_HH
8439# include <string>
8440# include <map>
fb9712a9 8441# include "calc++-parser.hh"
12545799
AD
8442@end example
8443
12545799
AD
8444
8445@noindent
8446Then comes the declaration of the scanning function. Flex expects
8447the signature of @code{yylex} to be defined in the macro
8448@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8449factor both as follows.
1c59e0a1
AD
8450
8451@comment file: calc++-driver.hh
12545799 8452@example
3dc5e96b
PE
8453// Tell Flex the lexer's prototype ...
8454# define YY_DECL \
c095d689
AD
8455 yy::calcxx_parser::token_type \
8456 yylex (yy::calcxx_parser::semantic_type* yylval, \
8457 yy::calcxx_parser::location_type* yylloc, \
8458 calcxx_driver& driver)
12545799
AD
8459// ... and declare it for the parser's sake.
8460YY_DECL;
8461@end example
8462
8463@noindent
8464The @code{calcxx_driver} class is then declared with its most obvious
8465members.
8466
1c59e0a1 8467@comment file: calc++-driver.hh
12545799
AD
8468@example
8469// Conducting the whole scanning and parsing of Calc++.
8470class calcxx_driver
8471@{
8472public:
8473 calcxx_driver ();
8474 virtual ~calcxx_driver ();
8475
8476 std::map<std::string, int> variables;
8477
8478 int result;
8479@end example
8480
8481@noindent
8482To encapsulate the coordination with the Flex scanner, it is useful to
8483have two members function to open and close the scanning phase.
12545799 8484
1c59e0a1 8485@comment file: calc++-driver.hh
12545799
AD
8486@example
8487 // Handling the scanner.
8488 void scan_begin ();
8489 void scan_end ();
8490 bool trace_scanning;
8491@end example
8492
8493@noindent
8494Similarly for the parser itself.
8495
1c59e0a1 8496@comment file: calc++-driver.hh
12545799 8497@example
bb32f4f2
AD
8498 // Run the parser. Return 0 on success.
8499 int parse (const std::string& f);
12545799
AD
8500 std::string file;
8501 bool trace_parsing;
8502@end example
8503
8504@noindent
8505To demonstrate pure handling of parse errors, instead of simply
8506dumping them on the standard error output, we will pass them to the
8507compiler driver using the following two member functions. Finally, we
8508close the class declaration and CPP guard.
8509
1c59e0a1 8510@comment file: calc++-driver.hh
12545799
AD
8511@example
8512 // Error handling.
8513 void error (const yy::location& l, const std::string& m);
8514 void error (const std::string& m);
8515@};
8516#endif // ! CALCXX_DRIVER_HH
8517@end example
8518
8519The implementation of the driver is straightforward. The @code{parse}
8520member function deserves some attention. The @code{error} functions
8521are simple stubs, they should actually register the located error
8522messages and set error state.
8523
1c59e0a1 8524@comment file: calc++-driver.cc
12545799
AD
8525@example
8526#include "calc++-driver.hh"
8527#include "calc++-parser.hh"
8528
8529calcxx_driver::calcxx_driver ()
8530 : trace_scanning (false), trace_parsing (false)
8531@{
8532 variables["one"] = 1;
8533 variables["two"] = 2;
8534@}
8535
8536calcxx_driver::~calcxx_driver ()
8537@{
8538@}
8539
bb32f4f2 8540int
12545799
AD
8541calcxx_driver::parse (const std::string &f)
8542@{
8543 file = f;
8544 scan_begin ();
8545 yy::calcxx_parser parser (*this);
8546 parser.set_debug_level (trace_parsing);
bb32f4f2 8547 int res = parser.parse ();
12545799 8548 scan_end ();
bb32f4f2 8549 return res;
12545799
AD
8550@}
8551
8552void
8553calcxx_driver::error (const yy::location& l, const std::string& m)
8554@{
8555 std::cerr << l << ": " << m << std::endl;
8556@}
8557
8558void
8559calcxx_driver::error (const std::string& m)
8560@{
8561 std::cerr << m << std::endl;
8562@}
8563@end example
8564
8565@node Calc++ Parser
8405b70c 8566@subsubsection Calc++ Parser
12545799 8567
b50d2359 8568The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8569the C++ deterministic parser skeleton, the creation of the parser header
8570file, and specifies the name of the parser class.
8571Because the C++ skeleton changed several times, it is safer to require
8572the version you designed the grammar for.
1c59e0a1
AD
8573
8574@comment file: calc++-parser.yy
12545799 8575@example
ed4d67dc 8576%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8577%require "@value{VERSION}"
12545799 8578%defines
16dc6a9e 8579%define parser_class_name "calcxx_parser"
fb9712a9
AD
8580@end example
8581
8582@noindent
16dc6a9e 8583@findex %code requires
fb9712a9
AD
8584Then come the declarations/inclusions needed to define the
8585@code{%union}. Because the parser uses the parsing driver and
8586reciprocally, both cannot include the header of the other. Because the
8587driver's header needs detailed knowledge about the parser class (in
8588particular its inner types), it is the parser's header which will simply
8589use a forward declaration of the driver.
148d66d8 8590@xref{Decl Summary, ,%code}.
fb9712a9
AD
8591
8592@comment file: calc++-parser.yy
8593@example
16dc6a9e 8594%code requires @{
12545799 8595# include <string>
fb9712a9 8596class calcxx_driver;
9bc0dd67 8597@}
12545799
AD
8598@end example
8599
8600@noindent
8601The driver is passed by reference to the parser and to the scanner.
8602This provides a simple but effective pure interface, not relying on
8603global variables.
8604
1c59e0a1 8605@comment file: calc++-parser.yy
12545799
AD
8606@example
8607// The parsing context.
8608%parse-param @{ calcxx_driver& driver @}
8609%lex-param @{ calcxx_driver& driver @}
8610@end example
8611
8612@noindent
8613Then we request the location tracking feature, and initialize the
8614first location's file name. Afterwards new locations are computed
8615relatively to the previous locations: the file name will be
8616automatically propagated.
8617
1c59e0a1 8618@comment file: calc++-parser.yy
12545799
AD
8619@example
8620%locations
8621%initial-action
8622@{
8623 // Initialize the initial location.
b47dbebe 8624 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8625@};
8626@end example
8627
8628@noindent
8629Use the two following directives to enable parser tracing and verbose
8630error messages.
8631
1c59e0a1 8632@comment file: calc++-parser.yy
12545799
AD
8633@example
8634%debug
8635%error-verbose
8636@end example
8637
8638@noindent
8639Semantic values cannot use ``real'' objects, but only pointers to
8640them.
8641
1c59e0a1 8642@comment file: calc++-parser.yy
12545799
AD
8643@example
8644// Symbols.
8645%union
8646@{
8647 int ival;
8648 std::string *sval;
8649@};
8650@end example
8651
fb9712a9 8652@noindent
136a0f76
PB
8653@findex %code
8654The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8655@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8656
8657@comment file: calc++-parser.yy
8658@example
136a0f76 8659%code @{
fb9712a9 8660# include "calc++-driver.hh"
34f98f46 8661@}
fb9712a9
AD
8662@end example
8663
8664
12545799
AD
8665@noindent
8666The token numbered as 0 corresponds to end of file; the following line
8667allows for nicer error messages referring to ``end of file'' instead
8668of ``$end''. Similarly user friendly named are provided for each
8669symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8670avoid name clashes.
8671
1c59e0a1 8672@comment file: calc++-parser.yy
12545799 8673@example
fb9712a9
AD
8674%token END 0 "end of file"
8675%token ASSIGN ":="
8676%token <sval> IDENTIFIER "identifier"
8677%token <ival> NUMBER "number"
a8c2e813 8678%type <ival> exp
12545799
AD
8679@end example
8680
8681@noindent
8682To enable memory deallocation during error recovery, use
8683@code{%destructor}.
8684
287c78f6 8685@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8686@comment file: calc++-parser.yy
12545799
AD
8687@example
8688%printer @{ debug_stream () << *$$; @} "identifier"
8689%destructor @{ delete $$; @} "identifier"
8690
a8c2e813 8691%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8692@end example
8693
8694@noindent
8695The grammar itself is straightforward.
8696
1c59e0a1 8697@comment file: calc++-parser.yy
12545799
AD
8698@example
8699%%
8700%start unit;
8701unit: assignments exp @{ driver.result = $2; @};
8702
8703assignments: assignments assignment @{@}
9d9b8b70 8704 | /* Nothing. */ @{@};
12545799 8705
3dc5e96b
PE
8706assignment:
8707 "identifier" ":=" exp
8708 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8709
8710%left '+' '-';
8711%left '*' '/';
8712exp: exp '+' exp @{ $$ = $1 + $3; @}
8713 | exp '-' exp @{ $$ = $1 - $3; @}
8714 | exp '*' exp @{ $$ = $1 * $3; @}
8715 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8716 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8717 | "number" @{ $$ = $1; @};
12545799
AD
8718%%
8719@end example
8720
8721@noindent
8722Finally the @code{error} member function registers the errors to the
8723driver.
8724
1c59e0a1 8725@comment file: calc++-parser.yy
12545799
AD
8726@example
8727void
1c59e0a1
AD
8728yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8729 const std::string& m)
12545799
AD
8730@{
8731 driver.error (l, m);
8732@}
8733@end example
8734
8735@node Calc++ Scanner
8405b70c 8736@subsubsection Calc++ Scanner
12545799
AD
8737
8738The Flex scanner first includes the driver declaration, then the
8739parser's to get the set of defined tokens.
8740
1c59e0a1 8741@comment file: calc++-scanner.ll
12545799
AD
8742@example
8743%@{ /* -*- C++ -*- */
04098407
PE
8744# include <cstdlib>
8745# include <errno.h>
8746# include <limits.h>
12545799
AD
8747# include <string>
8748# include "calc++-driver.hh"
8749# include "calc++-parser.hh"
eaea13f5
PE
8750
8751/* Work around an incompatibility in flex (at least versions
8752 2.5.31 through 2.5.33): it generates code that does
8753 not conform to C89. See Debian bug 333231
8754 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8755# undef yywrap
8756# define yywrap() 1
eaea13f5 8757
c095d689
AD
8758/* By default yylex returns int, we use token_type.
8759 Unfortunately yyterminate by default returns 0, which is
8760 not of token_type. */
8c5b881d 8761#define yyterminate() return token::END
12545799
AD
8762%@}
8763@end example
8764
8765@noindent
8766Because there is no @code{#include}-like feature we don't need
8767@code{yywrap}, we don't need @code{unput} either, and we parse an
8768actual file, this is not an interactive session with the user.
8769Finally we enable the scanner tracing features.
8770
1c59e0a1 8771@comment file: calc++-scanner.ll
12545799
AD
8772@example
8773%option noyywrap nounput batch debug
8774@end example
8775
8776@noindent
8777Abbreviations allow for more readable rules.
8778
1c59e0a1 8779@comment file: calc++-scanner.ll
12545799
AD
8780@example
8781id [a-zA-Z][a-zA-Z_0-9]*
8782int [0-9]+
8783blank [ \t]
8784@end example
8785
8786@noindent
9d9b8b70 8787The following paragraph suffices to track locations accurately. Each
12545799
AD
8788time @code{yylex} is invoked, the begin position is moved onto the end
8789position. Then when a pattern is matched, the end position is
8790advanced of its width. In case it matched ends of lines, the end
8791cursor is adjusted, and each time blanks are matched, the begin cursor
8792is moved onto the end cursor to effectively ignore the blanks
8793preceding tokens. Comments would be treated equally.
8794
1c59e0a1 8795@comment file: calc++-scanner.ll
12545799 8796@example
828c373b
AD
8797%@{
8798# define YY_USER_ACTION yylloc->columns (yyleng);
8799%@}
12545799
AD
8800%%
8801%@{
8802 yylloc->step ();
12545799
AD
8803%@}
8804@{blank@}+ yylloc->step ();
8805[\n]+ yylloc->lines (yyleng); yylloc->step ();
8806@end example
8807
8808@noindent
fb9712a9
AD
8809The rules are simple, just note the use of the driver to report errors.
8810It is convenient to use a typedef to shorten
8811@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8812@code{token::identifier} for instance.
12545799 8813
1c59e0a1 8814@comment file: calc++-scanner.ll
12545799 8815@example
fb9712a9
AD
8816%@{
8817 typedef yy::calcxx_parser::token token;
8818%@}
8c5b881d 8819 /* Convert ints to the actual type of tokens. */
c095d689 8820[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8821":=" return token::ASSIGN;
04098407
PE
8822@{int@} @{
8823 errno = 0;
8824 long n = strtol (yytext, NULL, 10);
8825 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8826 driver.error (*yylloc, "integer is out of range");
8827 yylval->ival = n;
fb9712a9 8828 return token::NUMBER;
04098407 8829@}
fb9712a9 8830@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8831. driver.error (*yylloc, "invalid character");
8832%%
8833@end example
8834
8835@noindent
8836Finally, because the scanner related driver's member function depend
8837on the scanner's data, it is simpler to implement them in this file.
8838
1c59e0a1 8839@comment file: calc++-scanner.ll
12545799
AD
8840@example
8841void
8842calcxx_driver::scan_begin ()
8843@{
8844 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8845 if (file == "-")
8846 yyin = stdin;
8847 else if (!(yyin = fopen (file.c_str (), "r")))
8848 @{
8849 error (std::string ("cannot open ") + file);
8850 exit (1);
8851 @}
12545799
AD
8852@}
8853
8854void
8855calcxx_driver::scan_end ()
8856@{
8857 fclose (yyin);
8858@}
8859@end example
8860
8861@node Calc++ Top Level
8405b70c 8862@subsubsection Calc++ Top Level
12545799
AD
8863
8864The top level file, @file{calc++.cc}, poses no problem.
8865
1c59e0a1 8866@comment file: calc++.cc
12545799
AD
8867@example
8868#include <iostream>
8869#include "calc++-driver.hh"
8870
8871int
fa4d969f 8872main (int argc, char *argv[])
12545799
AD
8873@{
8874 calcxx_driver driver;
8875 for (++argv; argv[0]; ++argv)
8876 if (*argv == std::string ("-p"))
8877 driver.trace_parsing = true;
8878 else if (*argv == std::string ("-s"))
8879 driver.trace_scanning = true;
bb32f4f2
AD
8880 else if (!driver.parse (*argv))
8881 std::cout << driver.result << std::endl;
12545799
AD
8882@}
8883@end example
8884
8405b70c
PB
8885@node Java Parsers
8886@section Java Parsers
8887
8888@menu
f56274a8
DJ
8889* Java Bison Interface:: Asking for Java parser generation
8890* Java Semantic Values:: %type and %token vs. Java
8891* Java Location Values:: The position and location classes
8892* Java Parser Interface:: Instantiating and running the parser
8893* Java Scanner Interface:: Specifying the scanner for the parser
8894* Java Action Features:: Special features for use in actions
8895* Java Differences:: Differences between C/C++ and Java Grammars
8896* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8897@end menu
8898
8899@node Java Bison Interface
8900@subsection Java Bison Interface
8901@c - %language "Java"
8405b70c 8902
59da312b
JD
8903(The current Java interface is experimental and may evolve.
8904More user feedback will help to stabilize it.)
8905
e254a580
DJ
8906The Java parser skeletons are selected using the @code{%language "Java"}
8907directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8908
e254a580
DJ
8909@c FIXME: Documented bug.
8910When generating a Java parser, @code{bison @var{basename}.y} will create
8911a single Java source file named @file{@var{basename}.java}. Using an
8912input file without a @file{.y} suffix is currently broken. The basename
8913of the output file can be changed by the @code{%file-prefix} directive
8914or the @option{-p}/@option{--name-prefix} option. The entire output file
8915name can be changed by the @code{%output} directive or the
8916@option{-o}/@option{--output} option. The output file contains a single
8917class for the parser.
8405b70c 8918
e254a580 8919You can create documentation for generated parsers using Javadoc.
8405b70c 8920
e254a580
DJ
8921Contrary to C parsers, Java parsers do not use global variables; the
8922state of the parser is always local to an instance of the parser class.
8923Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8924and @code{%define api.pure} directives does not do anything when used in
8925Java.
8405b70c 8926
e254a580
DJ
8927Push parsers are currently unsupported in Java and @code{%define
8928api.push_pull} have no effect.
01b477c6 8929
e254a580
DJ
8930@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8931@code{glr-parser} directive.
8932
8933No header file can be generated for Java parsers. Do not use the
8934@code{%defines} directive or the @option{-d}/@option{--defines} options.
8935
8936@c FIXME: Possible code change.
8937Currently, support for debugging and verbose errors are always compiled
8938in. Thus the @code{%debug} and @code{%token-table} directives and the
8939@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8940options have no effect. This may change in the future to eliminate
8941unused code in the generated parser, so use @code{%debug} and
8942@code{%verbose-error} explicitly if needed. Also, in the future the
8943@code{%token-table} directive might enable a public interface to
8944access the token names and codes.
8405b70c
PB
8945
8946@node Java Semantic Values
8947@subsection Java Semantic Values
8948@c - No %union, specify type in %type/%token.
8949@c - YYSTYPE
8950@c - Printer and destructor
8951
8952There is no @code{%union} directive in Java parsers. Instead, the
8953semantic values' types (class names) should be specified in the
8954@code{%type} or @code{%token} directive:
8955
8956@example
8957%type <Expression> expr assignment_expr term factor
8958%type <Integer> number
8959@end example
8960
8961By default, the semantic stack is declared to have @code{Object} members,
8962which means that the class types you specify can be of any class.
8963To improve the type safety of the parser, you can declare the common
e254a580
DJ
8964superclass of all the semantic values using the @code{%define stype}
8965directive. For example, after the following declaration:
8405b70c
PB
8966
8967@example
e254a580 8968%define stype "ASTNode"
8405b70c
PB
8969@end example
8970
8971@noindent
8972any @code{%type} or @code{%token} specifying a semantic type which
8973is not a subclass of ASTNode, will cause a compile-time error.
8974
e254a580 8975@c FIXME: Documented bug.
8405b70c
PB
8976Types used in the directives may be qualified with a package name.
8977Primitive data types are accepted for Java version 1.5 or later. Note
8978that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8979Generic types may not be used; this is due to a limitation in the
8980implementation of Bison, and may change in future releases.
8405b70c
PB
8981
8982Java parsers do not support @code{%destructor}, since the language
8983adopts garbage collection. The parser will try to hold references
8984to semantic values for as little time as needed.
8985
8986Java parsers do not support @code{%printer}, as @code{toString()}
8987can be used to print the semantic values. This however may change
8988(in a backwards-compatible way) in future versions of Bison.
8989
8990
8991@node Java Location Values
8992@subsection Java Location Values
8993@c - %locations
8994@c - class Position
8995@c - class Location
8996
8997When the directive @code{%locations} is used, the Java parser
8998supports location tracking, see @ref{Locations, , Locations Overview}.
8999An auxiliary user-defined class defines a @dfn{position}, a single point
9000in a file; Bison itself defines a class representing a @dfn{location},
9001a range composed of a pair of positions (possibly spanning several
9002files). The location class is an inner class of the parser; the name
e254a580
DJ
9003is @code{Location} by default, and may also be renamed using
9004@code{%define location_type "@var{class-name}}.
8405b70c
PB
9005
9006The location class treats the position as a completely opaque value.
9007By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9008with @code{%define position_type "@var{class-name}"}. This class must
9009be supplied by the user.
8405b70c
PB
9010
9011
e254a580
DJ
9012@deftypeivar {Location} {Position} begin
9013@deftypeivarx {Location} {Position} end
8405b70c 9014The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9015@end deftypeivar
9016
9017@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
9018Create a @code{Location} denoting an empty range located at a given point.
9019@end deftypeop
8405b70c 9020
e254a580
DJ
9021@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9022Create a @code{Location} from the endpoints of the range.
9023@end deftypeop
9024
9025@deftypemethod {Location} {String} toString ()
8405b70c
PB
9026Prints the range represented by the location. For this to work
9027properly, the position class should override the @code{equals} and
9028@code{toString} methods appropriately.
9029@end deftypemethod
9030
9031
9032@node Java Parser Interface
9033@subsection Java Parser Interface
9034@c - define parser_class_name
9035@c - Ctor
9036@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9037@c debug_stream.
9038@c - Reporting errors
9039
e254a580
DJ
9040The name of the generated parser class defaults to @code{YYParser}. The
9041@code{YY} prefix may be changed using the @code{%name-prefix} directive
9042or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9043@code{%define parser_class_name "@var{name}"} to give a custom name to
9044the class. The interface of this class is detailed below.
8405b70c 9045
e254a580
DJ
9046By default, the parser class has package visibility. A declaration
9047@code{%define public} will change to public visibility. Remember that,
9048according to the Java language specification, the name of the @file{.java}
9049file should match the name of the class in this case. Similarly, you can
9050use @code{abstract}, @code{final} and @code{strictfp} with the
9051@code{%define} declaration to add other modifiers to the parser class.
9052
9053The Java package name of the parser class can be specified using the
9054@code{%define package} directive. The superclass and the implemented
9055interfaces of the parser class can be specified with the @code{%define
9056extends} and @code{%define implements} directives.
9057
9058The parser class defines an inner class, @code{Location}, that is used
9059for location tracking (see @ref{Java Location Values}), and a inner
9060interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9061these inner class/interface, and the members described in the interface
9062below, all the other members and fields are preceded with a @code{yy} or
9063@code{YY} prefix to avoid clashes with user code.
9064
9065@c FIXME: The following constants and variables are still undocumented:
9066@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9067
9068The parser class can be extended using the @code{%parse-param}
9069directive. Each occurrence of the directive will add a @code{protected
9070final} field to the parser class, and an argument to its constructor,
9071which initialize them automatically.
9072
9073Token names defined by @code{%token} and the predefined @code{EOF} token
9074name are added as constant fields to the parser class.
9075
9076@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9077Build a new parser object with embedded @code{%code lexer}. There are
9078no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9079used.
9080@end deftypeop
9081
9082@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9083Build a new parser object using the specified scanner. There are no
9084additional parameters unless @code{%parse-param}s are used.
9085
9086If the scanner is defined by @code{%code lexer}, this constructor is
9087declared @code{protected} and is called automatically with a scanner
9088created with the correct @code{%lex-param}s.
9089@end deftypeop
8405b70c
PB
9090
9091@deftypemethod {YYParser} {boolean} parse ()
9092Run the syntactic analysis, and return @code{true} on success,
9093@code{false} otherwise.
9094@end deftypemethod
9095
01b477c6 9096@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9097During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9098from a syntax error.
9099@xref{Error Recovery}.
8405b70c
PB
9100@end deftypemethod
9101
9102@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9103@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9104Get or set the stream used for tracing the parsing. It defaults to
9105@code{System.err}.
9106@end deftypemethod
9107
9108@deftypemethod {YYParser} {int} getDebugLevel ()
9109@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9110Get or set the tracing level. Currently its value is either 0, no trace,
9111or nonzero, full tracing.
9112@end deftypemethod
9113
8405b70c
PB
9114
9115@node Java Scanner Interface
9116@subsection Java Scanner Interface
01b477c6 9117@c - %code lexer
8405b70c 9118@c - %lex-param
01b477c6 9119@c - Lexer interface
8405b70c 9120
e254a580
DJ
9121There are two possible ways to interface a Bison-generated Java parser
9122with a scanner: the scanner may be defined by @code{%code lexer}, or
9123defined elsewhere. In either case, the scanner has to implement the
9124@code{Lexer} inner interface of the parser class.
9125
9126In the first case, the body of the scanner class is placed in
9127@code{%code lexer} blocks. If you want to pass parameters from the
9128parser constructor to the scanner constructor, specify them with
9129@code{%lex-param}; they are passed before @code{%parse-param}s to the
9130constructor.
01b477c6 9131
59c5ac72 9132In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9133which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9134The constructor of the parser object will then accept an object
9135implementing the interface; @code{%lex-param} is not used in this
9136case.
9137
9138In both cases, the scanner has to implement the following methods.
9139
e254a580
DJ
9140@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9141This method is defined by the user to emit an error message. The first
9142parameter is omitted if location tracking is not active. Its type can be
9143changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9144@end deftypemethod
9145
e254a580 9146@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9147Return the next token. Its type is the return value, its semantic
9148value and location are saved and returned by the ther methods in the
e254a580
DJ
9149interface.
9150
9151Use @code{%define lex_throws} to specify any uncaught exceptions.
9152Default is @code{java.io.IOException}.
8405b70c
PB
9153@end deftypemethod
9154
9155@deftypemethod {Lexer} {Position} getStartPos ()
9156@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9157Return respectively the first position of the last token that
9158@code{yylex} returned, and the first position beyond it. These
9159methods are not needed unless location tracking is active.
8405b70c 9160
e254a580 9161The return type can be changed using @code{%define position_type
8405b70c
PB
9162"@var{class-name}".}
9163@end deftypemethod
9164
9165@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9166Return the semantical value of the last token that yylex returned.
8405b70c 9167
e254a580 9168The return type can be changed using @code{%define stype
8405b70c
PB
9169"@var{class-name}".}
9170@end deftypemethod
9171
9172
e254a580
DJ
9173@node Java Action Features
9174@subsection Special Features for Use in Java Actions
9175
9176The following special constructs can be uses in Java actions.
9177Other analogous C action features are currently unavailable for Java.
9178
9179Use @code{%define throws} to specify any uncaught exceptions from parser
9180actions, and initial actions specified by @code{%initial-action}.
9181
9182@defvar $@var{n}
9183The semantic value for the @var{n}th component of the current rule.
9184This may not be assigned to.
9185@xref{Java Semantic Values}.
9186@end defvar
9187
9188@defvar $<@var{typealt}>@var{n}
9189Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9190@xref{Java Semantic Values}.
9191@end defvar
9192
9193@defvar $$
9194The semantic value for the grouping made by the current rule. As a
9195value, this is in the base type (@code{Object} or as specified by
9196@code{%define stype}) as in not cast to the declared subtype because
9197casts are not allowed on the left-hand side of Java assignments.
9198Use an explicit Java cast if the correct subtype is needed.
9199@xref{Java Semantic Values}.
9200@end defvar
9201
9202@defvar $<@var{typealt}>$
9203Same as @code{$$} since Java always allow assigning to the base type.
9204Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9205for setting the value but there is currently no easy way to distinguish
9206these constructs.
9207@xref{Java Semantic Values}.
9208@end defvar
9209
9210@defvar @@@var{n}
9211The location information of the @var{n}th component of the current rule.
9212This may not be assigned to.
9213@xref{Java Location Values}.
9214@end defvar
9215
9216@defvar @@$
9217The location information of the grouping made by the current rule.
9218@xref{Java Location Values}.
9219@end defvar
9220
9221@deffn {Statement} {return YYABORT;}
9222Return immediately from the parser, indicating failure.
9223@xref{Java Parser Interface}.
9224@end deffn
8405b70c 9225
e254a580
DJ
9226@deffn {Statement} {return YYACCEPT;}
9227Return immediately from the parser, indicating success.
9228@xref{Java Parser Interface}.
9229@end deffn
8405b70c 9230
e254a580
DJ
9231@deffn {Statement} {return YYERROR;}
9232Start error recovery without printing an error message.
9233@xref{Error Recovery}.
9234@end deffn
8405b70c 9235
e254a580
DJ
9236@deffn {Statement} {return YYFAIL;}
9237Print an error message and start error recovery.
9238@xref{Error Recovery}.
9239@end deffn
8405b70c 9240
e254a580
DJ
9241@deftypefn {Function} {boolean} recovering ()
9242Return whether error recovery is being done. In this state, the parser
9243reads token until it reaches a known state, and then restarts normal
9244operation.
9245@xref{Error Recovery}.
9246@end deftypefn
8405b70c 9247
e254a580
DJ
9248@deftypefn {Function} {protected void} yyerror (String msg)
9249@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9250@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9251Print an error message using the @code{yyerror} method of the scanner
9252instance in use.
9253@end deftypefn
8405b70c 9254
8405b70c 9255
8405b70c
PB
9256@node Java Differences
9257@subsection Differences between C/C++ and Java Grammars
9258
9259The different structure of the Java language forces several differences
9260between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9261section summarizes these differences.
8405b70c
PB
9262
9263@itemize
9264@item
01b477c6 9265Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9266@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9267macros. Instead, they should be preceded by @code{return} when they
9268appear in an action. The actual definition of these symbols is
8405b70c
PB
9269opaque to the Bison grammar, and it might change in the future. The
9270only meaningful operation that you can do, is to return them.
e254a580 9271See @pxref{Java Action Features}.
8405b70c
PB
9272
9273Note that of these three symbols, only @code{YYACCEPT} and
9274@code{YYABORT} will cause a return from the @code{yyparse}
9275method@footnote{Java parsers include the actions in a separate
9276method than @code{yyparse} in order to have an intuitive syntax that
9277corresponds to these C macros.}.
9278
e254a580
DJ
9279@item
9280Java lacks unions, so @code{%union} has no effect. Instead, semantic
9281values have a common base type: @code{Object} or as specified by
9282@code{%define stype}. Angle backets on @code{%token}, @code{type},
9283@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9284an union. The type of @code{$$}, even with angle brackets, is the base
9285type since Java casts are not allow on the left-hand side of assignments.
9286Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9287left-hand side of assignments. See @pxref{Java Semantic Values} and
9288@pxref{Java Action Features}.
9289
8405b70c
PB
9290@item
9291The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9292@table @asis
9293@item @code{%code imports}
9294blocks are placed at the beginning of the Java source code. They may
9295include copyright notices. For a @code{package} declarations, it is
9296suggested to use @code{%define package} instead.
8405b70c 9297
01b477c6
PB
9298@item unqualified @code{%code}
9299blocks are placed inside the parser class.
9300
9301@item @code{%code lexer}
9302blocks, if specified, should include the implementation of the
9303scanner. If there is no such block, the scanner can be any class
9304that implements the appropriate interface (see @pxref{Java Scanner
9305Interface}).
29553547 9306@end table
8405b70c
PB
9307
9308Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9309In particular, @code{%@{ @dots{} %@}} blocks should not be used
9310and may give an error in future versions of Bison.
9311
01b477c6 9312The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9313be used to define other classes used by the parser @emph{outside}
9314the parser class.
8405b70c
PB
9315@end itemize
9316
e254a580
DJ
9317
9318@node Java Declarations Summary
9319@subsection Java Declarations Summary
9320
9321This summary only include declarations specific to Java or have special
9322meaning when used in a Java parser.
9323
9324@deffn {Directive} {%language "Java"}
9325Generate a Java class for the parser.
9326@end deffn
9327
9328@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9329A parameter for the lexer class defined by @code{%code lexer}
9330@emph{only}, added as parameters to the lexer constructor and the parser
9331constructor that @emph{creates} a lexer. Default is none.
9332@xref{Java Scanner Interface}.
9333@end deffn
9334
9335@deffn {Directive} %name-prefix "@var{prefix}"
9336The prefix of the parser class name @code{@var{prefix}Parser} if
9337@code{%define parser_class_name} is not used. Default is @code{YY}.
9338@xref{Java Bison Interface}.
9339@end deffn
9340
9341@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9342A parameter for the parser class added as parameters to constructor(s)
9343and as fields initialized by the constructor(s). Default is none.
9344@xref{Java Parser Interface}.
9345@end deffn
9346
9347@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9348Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9349@xref{Java Semantic Values}.
9350@end deffn
9351
9352@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9353Declare the type of nonterminals. Note that the angle brackets enclose
9354a Java @emph{type}.
9355@xref{Java Semantic Values}.
9356@end deffn
9357
9358@deffn {Directive} %code @{ @var{code} @dots{} @}
9359Code appended to the inside of the parser class.
9360@xref{Java Differences}.
9361@end deffn
9362
9363@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9364Code inserted just after the @code{package} declaration.
9365@xref{Java Differences}.
9366@end deffn
9367
9368@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9369Code added to the body of a inner lexer class within the parser class.
9370@xref{Java Scanner Interface}.
9371@end deffn
9372
9373@deffn {Directive} %% @var{code} @dots{}
9374Code (after the second @code{%%}) appended to the end of the file,
9375@emph{outside} the parser class.
9376@xref{Java Differences}.
9377@end deffn
9378
9379@deffn {Directive} %@{ @var{code} @dots{} %@}
9380Not supported. Use @code{%code import} instead.
9381@xref{Java Differences}.
9382@end deffn
9383
9384@deffn {Directive} {%define abstract}
9385Whether the parser class is declared @code{abstract}. Default is false.
9386@xref{Java Bison Interface}.
9387@end deffn
9388
9389@deffn {Directive} {%define extends} "@var{superclass}"
9390The superclass of the parser class. Default is none.
9391@xref{Java Bison Interface}.
9392@end deffn
9393
9394@deffn {Directive} {%define final}
9395Whether the parser class is declared @code{final}. Default is false.
9396@xref{Java Bison Interface}.
9397@end deffn
9398
9399@deffn {Directive} {%define implements} "@var{interfaces}"
9400The implemented interfaces of the parser class, a comma-separated list.
9401Default is none.
9402@xref{Java Bison Interface}.
9403@end deffn
9404
9405@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9406The exceptions thrown by the @code{yylex} method of the lexer, a
9407comma-separated list. Default is @code{java.io.IOException}.
9408@xref{Java Scanner Interface}.
9409@end deffn
9410
9411@deffn {Directive} {%define location_type} "@var{class}"
9412The name of the class used for locations (a range between two
9413positions). This class is generated as an inner class of the parser
9414class by @command{bison}. Default is @code{Location}.
9415@xref{Java Location Values}.
9416@end deffn
9417
9418@deffn {Directive} {%define package} "@var{package}"
9419The package to put the parser class in. Default is none.
9420@xref{Java Bison Interface}.
9421@end deffn
9422
9423@deffn {Directive} {%define parser_class_name} "@var{name}"
9424The name of the parser class. Default is @code{YYParser} or
9425@code{@var{name-prefix}Parser}.
9426@xref{Java Bison Interface}.
9427@end deffn
9428
9429@deffn {Directive} {%define position_type} "@var{class}"
9430The name of the class used for positions. This class must be supplied by
9431the user. Default is @code{Position}.
9432@xref{Java Location Values}.
9433@end deffn
9434
9435@deffn {Directive} {%define public}
9436Whether the parser class is declared @code{public}. Default is false.
9437@xref{Java Bison Interface}.
9438@end deffn
9439
9440@deffn {Directive} {%define stype} "@var{class}"
9441The base type of semantic values. Default is @code{Object}.
9442@xref{Java Semantic Values}.
9443@end deffn
9444
9445@deffn {Directive} {%define strictfp}
9446Whether the parser class is declared @code{strictfp}. Default is false.
9447@xref{Java Bison Interface}.
9448@end deffn
9449
9450@deffn {Directive} {%define throws} "@var{exceptions}"
9451The exceptions thrown by user-supplied parser actions and
9452@code{%initial-action}, a comma-separated list. Default is none.
9453@xref{Java Parser Interface}.
9454@end deffn
9455
9456
12545799 9457@c ================================================= FAQ
d1a1114f
AD
9458
9459@node FAQ
9460@chapter Frequently Asked Questions
9461@cindex frequently asked questions
9462@cindex questions
9463
9464Several questions about Bison come up occasionally. Here some of them
9465are addressed.
9466
9467@menu
55ba27be
AD
9468* Memory Exhausted:: Breaking the Stack Limits
9469* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9470* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9471* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9472* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9473* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9474* I can't build Bison:: Troubleshooting
9475* Where can I find help?:: Troubleshouting
9476* Bug Reports:: Troublereporting
8405b70c 9477* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9478* Beta Testing:: Experimenting development versions
9479* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9480@end menu
9481
1a059451
PE
9482@node Memory Exhausted
9483@section Memory Exhausted
d1a1114f
AD
9484
9485@display
1a059451 9486My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9487message. What can I do?
9488@end display
9489
9490This question is already addressed elsewhere, @xref{Recursion,
9491,Recursive Rules}.
9492
e64fec0a
PE
9493@node How Can I Reset the Parser
9494@section How Can I Reset the Parser
5b066063 9495
0e14ad77
PE
9496The following phenomenon has several symptoms, resulting in the
9497following typical questions:
5b066063
AD
9498
9499@display
9500I invoke @code{yyparse} several times, and on correct input it works
9501properly; but when a parse error is found, all the other calls fail
0e14ad77 9502too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9503@end display
9504
9505@noindent
9506or
9507
9508@display
0e14ad77 9509My parser includes support for an @samp{#include}-like feature, in
5b066063 9510which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9511although I did specify @code{%define api.pure}.
5b066063
AD
9512@end display
9513
0e14ad77
PE
9514These problems typically come not from Bison itself, but from
9515Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9516speed, they might not notice a change of input file. As a
9517demonstration, consider the following source file,
9518@file{first-line.l}:
9519
9520@verbatim
9521%{
9522#include <stdio.h>
9523#include <stdlib.h>
9524%}
9525%%
9526.*\n ECHO; return 1;
9527%%
9528int
0e14ad77 9529yyparse (char const *file)
5b066063
AD
9530{
9531 yyin = fopen (file, "r");
9532 if (!yyin)
9533 exit (2);
fa7e68c3 9534 /* One token only. */
5b066063 9535 yylex ();
0e14ad77 9536 if (fclose (yyin) != 0)
5b066063
AD
9537 exit (3);
9538 return 0;
9539}
9540
9541int
0e14ad77 9542main (void)
5b066063
AD
9543{
9544 yyparse ("input");
9545 yyparse ("input");
9546 return 0;
9547}
9548@end verbatim
9549
9550@noindent
9551If the file @file{input} contains
9552
9553@verbatim
9554input:1: Hello,
9555input:2: World!
9556@end verbatim
9557
9558@noindent
0e14ad77 9559then instead of getting the first line twice, you get:
5b066063
AD
9560
9561@example
9562$ @kbd{flex -ofirst-line.c first-line.l}
9563$ @kbd{gcc -ofirst-line first-line.c -ll}
9564$ @kbd{./first-line}
9565input:1: Hello,
9566input:2: World!
9567@end example
9568
0e14ad77
PE
9569Therefore, whenever you change @code{yyin}, you must tell the
9570Lex-generated scanner to discard its current buffer and switch to the
9571new one. This depends upon your implementation of Lex; see its
9572documentation for more. For Flex, it suffices to call
9573@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9574Flex-generated scanner needs to read from several input streams to
9575handle features like include files, you might consider using Flex
9576functions like @samp{yy_switch_to_buffer} that manipulate multiple
9577input buffers.
5b066063 9578
b165c324
AD
9579If your Flex-generated scanner uses start conditions (@pxref{Start
9580conditions, , Start conditions, flex, The Flex Manual}), you might
9581also want to reset the scanner's state, i.e., go back to the initial
9582start condition, through a call to @samp{BEGIN (0)}.
9583
fef4cb51
AD
9584@node Strings are Destroyed
9585@section Strings are Destroyed
9586
9587@display
c7e441b4 9588My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9589them. Instead of reporting @samp{"foo", "bar"}, it reports
9590@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9591@end display
9592
9593This error is probably the single most frequent ``bug report'' sent to
9594Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9595of the scanner. Consider the following Lex code:
fef4cb51
AD
9596
9597@verbatim
9598%{
9599#include <stdio.h>
9600char *yylval = NULL;
9601%}
9602%%
9603.* yylval = yytext; return 1;
9604\n /* IGNORE */
9605%%
9606int
9607main ()
9608{
fa7e68c3 9609 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9610 char *fst = (yylex (), yylval);
9611 char *snd = (yylex (), yylval);
9612 printf ("\"%s\", \"%s\"\n", fst, snd);
9613 return 0;
9614}
9615@end verbatim
9616
9617If you compile and run this code, you get:
9618
9619@example
9620$ @kbd{flex -osplit-lines.c split-lines.l}
9621$ @kbd{gcc -osplit-lines split-lines.c -ll}
9622$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9623"one
9624two", "two"
9625@end example
9626
9627@noindent
9628this is because @code{yytext} is a buffer provided for @emph{reading}
9629in the action, but if you want to keep it, you have to duplicate it
9630(e.g., using @code{strdup}). Note that the output may depend on how
9631your implementation of Lex handles @code{yytext}. For instance, when
9632given the Lex compatibility option @option{-l} (which triggers the
9633option @samp{%array}) Flex generates a different behavior:
9634
9635@example
9636$ @kbd{flex -l -osplit-lines.c split-lines.l}
9637$ @kbd{gcc -osplit-lines split-lines.c -ll}
9638$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9639"two", "two"
9640@end example
9641
9642
2fa09258
AD
9643@node Implementing Gotos/Loops
9644@section Implementing Gotos/Loops
a06ea4aa
AD
9645
9646@display
9647My simple calculator supports variables, assignments, and functions,
2fa09258 9648but how can I implement gotos, or loops?
a06ea4aa
AD
9649@end display
9650
9651Although very pedagogical, the examples included in the document blur
a1c84f45 9652the distinction to make between the parser---whose job is to recover
a06ea4aa 9653the structure of a text and to transmit it to subsequent modules of
a1c84f45 9654the program---and the processing (such as the execution) of this
a06ea4aa
AD
9655structure. This works well with so called straight line programs,
9656i.e., precisely those that have a straightforward execution model:
9657execute simple instructions one after the others.
9658
9659@cindex abstract syntax tree
9660@cindex @acronym{AST}
9661If you want a richer model, you will probably need to use the parser
9662to construct a tree that does represent the structure it has
9663recovered; this tree is usually called the @dfn{abstract syntax tree},
9664or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9665traversing it in various ways, will enable treatments such as its
9666execution or its translation, which will result in an interpreter or a
9667compiler.
9668
9669This topic is way beyond the scope of this manual, and the reader is
9670invited to consult the dedicated literature.
9671
9672
ed2e6384
AD
9673@node Multiple start-symbols
9674@section Multiple start-symbols
9675
9676@display
9677I have several closely related grammars, and I would like to share their
9678implementations. In fact, I could use a single grammar but with
9679multiple entry points.
9680@end display
9681
9682Bison does not support multiple start-symbols, but there is a very
9683simple means to simulate them. If @code{foo} and @code{bar} are the two
9684pseudo start-symbols, then introduce two new tokens, say
9685@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9686real start-symbol:
9687
9688@example
9689%token START_FOO START_BAR;
9690%start start;
9691start: START_FOO foo
9692 | START_BAR bar;
9693@end example
9694
9695These tokens prevents the introduction of new conflicts. As far as the
9696parser goes, that is all that is needed.
9697
9698Now the difficult part is ensuring that the scanner will send these
9699tokens first. If your scanner is hand-written, that should be
9700straightforward. If your scanner is generated by Lex, them there is
9701simple means to do it: recall that anything between @samp{%@{ ... %@}}
9702after the first @code{%%} is copied verbatim in the top of the generated
9703@code{yylex} function. Make sure a variable @code{start_token} is
9704available in the scanner (e.g., a global variable or using
9705@code{%lex-param} etc.), and use the following:
9706
9707@example
9708 /* @r{Prologue.} */
9709%%
9710%@{
9711 if (start_token)
9712 @{
9713 int t = start_token;
9714 start_token = 0;
9715 return t;
9716 @}
9717%@}
9718 /* @r{The rules.} */
9719@end example
9720
9721
55ba27be
AD
9722@node Secure? Conform?
9723@section Secure? Conform?
9724
9725@display
9726Is Bison secure? Does it conform to POSIX?
9727@end display
9728
9729If you're looking for a guarantee or certification, we don't provide it.
9730However, Bison is intended to be a reliable program that conforms to the
9731@acronym{POSIX} specification for Yacc. If you run into problems,
9732please send us a bug report.
9733
9734@node I can't build Bison
9735@section I can't build Bison
9736
9737@display
8c5b881d
PE
9738I can't build Bison because @command{make} complains that
9739@code{msgfmt} is not found.
55ba27be
AD
9740What should I do?
9741@end display
9742
9743Like most GNU packages with internationalization support, that feature
9744is turned on by default. If you have problems building in the @file{po}
9745subdirectory, it indicates that your system's internationalization
9746support is lacking. You can re-configure Bison with
9747@option{--disable-nls} to turn off this support, or you can install GNU
9748gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9749Bison. See the file @file{ABOUT-NLS} for more information.
9750
9751
9752@node Where can I find help?
9753@section Where can I find help?
9754
9755@display
9756I'm having trouble using Bison. Where can I find help?
9757@end display
9758
9759First, read this fine manual. Beyond that, you can send mail to
9760@email{help-bison@@gnu.org}. This mailing list is intended to be
9761populated with people who are willing to answer questions about using
9762and installing Bison. Please keep in mind that (most of) the people on
9763the list have aspects of their lives which are not related to Bison (!),
9764so you may not receive an answer to your question right away. This can
9765be frustrating, but please try not to honk them off; remember that any
9766help they provide is purely voluntary and out of the kindness of their
9767hearts.
9768
9769@node Bug Reports
9770@section Bug Reports
9771
9772@display
9773I found a bug. What should I include in the bug report?
9774@end display
9775
9776Before you send a bug report, make sure you are using the latest
9777version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9778mirrors. Be sure to include the version number in your bug report. If
9779the bug is present in the latest version but not in a previous version,
9780try to determine the most recent version which did not contain the bug.
9781
9782If the bug is parser-related, you should include the smallest grammar
9783you can which demonstrates the bug. The grammar file should also be
9784complete (i.e., I should be able to run it through Bison without having
9785to edit or add anything). The smaller and simpler the grammar, the
9786easier it will be to fix the bug.
9787
9788Include information about your compilation environment, including your
9789operating system's name and version and your compiler's name and
9790version. If you have trouble compiling, you should also include a
9791transcript of the build session, starting with the invocation of
9792`configure'. Depending on the nature of the bug, you may be asked to
9793send additional files as well (such as `config.h' or `config.cache').
9794
9795Patches are most welcome, but not required. That is, do not hesitate to
9796send a bug report just because you can not provide a fix.
9797
9798Send bug reports to @email{bug-bison@@gnu.org}.
9799
8405b70c
PB
9800@node More Languages
9801@section More Languages
55ba27be
AD
9802
9803@display
8405b70c 9804Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9805favorite language here}?
9806@end display
9807
8405b70c 9808C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9809languages; contributions are welcome.
9810
9811@node Beta Testing
9812@section Beta Testing
9813
9814@display
9815What is involved in being a beta tester?
9816@end display
9817
9818It's not terribly involved. Basically, you would download a test
9819release, compile it, and use it to build and run a parser or two. After
9820that, you would submit either a bug report or a message saying that
9821everything is okay. It is important to report successes as well as
9822failures because test releases eventually become mainstream releases,
9823but only if they are adequately tested. If no one tests, development is
9824essentially halted.
9825
9826Beta testers are particularly needed for operating systems to which the
9827developers do not have easy access. They currently have easy access to
9828recent GNU/Linux and Solaris versions. Reports about other operating
9829systems are especially welcome.
9830
9831@node Mailing Lists
9832@section Mailing Lists
9833
9834@display
9835How do I join the help-bison and bug-bison mailing lists?
9836@end display
9837
9838See @url{http://lists.gnu.org/}.
a06ea4aa 9839
d1a1114f
AD
9840@c ================================================= Table of Symbols
9841
342b8b6e 9842@node Table of Symbols
bfa74976
RS
9843@appendix Bison Symbols
9844@cindex Bison symbols, table of
9845@cindex symbols in Bison, table of
9846
18b519c0 9847@deffn {Variable} @@$
3ded9a63 9848In an action, the location of the left-hand side of the rule.
88bce5a2 9849@xref{Locations, , Locations Overview}.
18b519c0 9850@end deffn
3ded9a63 9851
18b519c0 9852@deffn {Variable} @@@var{n}
3ded9a63
AD
9853In an action, the location of the @var{n}-th symbol of the right-hand
9854side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9855@end deffn
3ded9a63 9856
18b519c0 9857@deffn {Variable} $$
3ded9a63
AD
9858In an action, the semantic value of the left-hand side of the rule.
9859@xref{Actions}.
18b519c0 9860@end deffn
3ded9a63 9861
18b519c0 9862@deffn {Variable} $@var{n}
3ded9a63
AD
9863In an action, the semantic value of the @var{n}-th symbol of the
9864right-hand side of the rule. @xref{Actions}.
18b519c0 9865@end deffn
3ded9a63 9866
dd8d9022
AD
9867@deffn {Delimiter} %%
9868Delimiter used to separate the grammar rule section from the
9869Bison declarations section or the epilogue.
9870@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9871@end deffn
bfa74976 9872
dd8d9022
AD
9873@c Don't insert spaces, or check the DVI output.
9874@deffn {Delimiter} %@{@var{code}%@}
9875All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9876the output file uninterpreted. Such code forms the prologue of the input
9877file. @xref{Grammar Outline, ,Outline of a Bison
9878Grammar}.
18b519c0 9879@end deffn
bfa74976 9880
dd8d9022
AD
9881@deffn {Construct} /*@dots{}*/
9882Comment delimiters, as in C.
18b519c0 9883@end deffn
bfa74976 9884
dd8d9022
AD
9885@deffn {Delimiter} :
9886Separates a rule's result from its components. @xref{Rules, ,Syntax of
9887Grammar Rules}.
18b519c0 9888@end deffn
bfa74976 9889
dd8d9022
AD
9890@deffn {Delimiter} ;
9891Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9892@end deffn
bfa74976 9893
dd8d9022
AD
9894@deffn {Delimiter} |
9895Separates alternate rules for the same result nonterminal.
9896@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9897@end deffn
bfa74976 9898
12e35840
JD
9899@deffn {Directive} <*>
9900Used to define a default tagged @code{%destructor} or default tagged
9901@code{%printer}.
85894313
JD
9902
9903This feature is experimental.
9904More user feedback will help to determine whether it should become a permanent
9905feature.
9906
12e35840
JD
9907@xref{Destructor Decl, , Freeing Discarded Symbols}.
9908@end deffn
9909
3ebecc24 9910@deffn {Directive} <>
12e35840
JD
9911Used to define a default tagless @code{%destructor} or default tagless
9912@code{%printer}.
85894313
JD
9913
9914This feature is experimental.
9915More user feedback will help to determine whether it should become a permanent
9916feature.
9917
12e35840
JD
9918@xref{Destructor Decl, , Freeing Discarded Symbols}.
9919@end deffn
9920
dd8d9022
AD
9921@deffn {Symbol} $accept
9922The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9923$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9924Start-Symbol}. It cannot be used in the grammar.
18b519c0 9925@end deffn
bfa74976 9926
136a0f76 9927@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9928@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9929Insert @var{code} verbatim into output parser source.
9930@xref{Decl Summary,,%code}.
9bc0dd67 9931@end deffn
9bc0dd67 9932
18b519c0 9933@deffn {Directive} %debug
6deb4447 9934Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9935@end deffn
6deb4447 9936
91d2c560 9937@ifset defaultprec
22fccf95
PE
9938@deffn {Directive} %default-prec
9939Assign a precedence to rules that lack an explicit @samp{%prec}
9940modifier. @xref{Contextual Precedence, ,Context-Dependent
9941Precedence}.
39a06c25 9942@end deffn
91d2c560 9943@end ifset
39a06c25 9944
148d66d8
JD
9945@deffn {Directive} %define @var{define-variable}
9946@deffnx {Directive} %define @var{define-variable} @var{value}
9947Define a variable to adjust Bison's behavior.
9948@xref{Decl Summary,,%define}.
9949@end deffn
9950
18b519c0 9951@deffn {Directive} %defines
6deb4447
AD
9952Bison declaration to create a header file meant for the scanner.
9953@xref{Decl Summary}.
18b519c0 9954@end deffn
6deb4447 9955
02975b9a
JD
9956@deffn {Directive} %defines @var{defines-file}
9957Same as above, but save in the file @var{defines-file}.
9958@xref{Decl Summary}.
9959@end deffn
9960
18b519c0 9961@deffn {Directive} %destructor
258b75ca 9962Specify how the parser should reclaim the memory associated to
fa7e68c3 9963discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9964@end deffn
72f889cc 9965
18b519c0 9966@deffn {Directive} %dprec
676385e2 9967Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9968time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9969@acronym{GLR} Parsers}.
18b519c0 9970@end deffn
676385e2 9971
dd8d9022
AD
9972@deffn {Symbol} $end
9973The predefined token marking the end of the token stream. It cannot be
9974used in the grammar.
9975@end deffn
9976
9977@deffn {Symbol} error
9978A token name reserved for error recovery. This token may be used in
9979grammar rules so as to allow the Bison parser to recognize an error in
9980the grammar without halting the process. In effect, a sentence
9981containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9982token @code{error} becomes the current lookahead token. Actions
9983corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9984token is reset to the token that originally caused the violation.
9985@xref{Error Recovery}.
18d192f0
AD
9986@end deffn
9987
18b519c0 9988@deffn {Directive} %error-verbose
2a8d363a
AD
9989Bison declaration to request verbose, specific error message strings
9990when @code{yyerror} is called.
18b519c0 9991@end deffn
2a8d363a 9992
02975b9a 9993@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9994Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9995Summary}.
18b519c0 9996@end deffn
d8988b2f 9997
18b519c0 9998@deffn {Directive} %glr-parser
c827f760
PE
9999Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10000Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10001@end deffn
676385e2 10002
dd8d9022
AD
10003@deffn {Directive} %initial-action
10004Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10005@end deffn
10006
e6e704dc
JD
10007@deffn {Directive} %language
10008Specify the programming language for the generated parser.
10009@xref{Decl Summary}.
10010@end deffn
10011
18b519c0 10012@deffn {Directive} %left
bfa74976
RS
10013Bison declaration to assign left associativity to token(s).
10014@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10015@end deffn
bfa74976 10016
feeb0eda 10017@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10018Bison declaration to specifying an additional parameter that
10019@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10020for Pure Parsers}.
18b519c0 10021@end deffn
2a8d363a 10022
18b519c0 10023@deffn {Directive} %merge
676385e2 10024Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10025reduce/reduce conflict with a rule having the same merging function, the
676385e2 10026function is applied to the two semantic values to get a single result.
c827f760 10027@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10028@end deffn
676385e2 10029
02975b9a 10030@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10031Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10032@end deffn
d8988b2f 10033
91d2c560 10034@ifset defaultprec
22fccf95
PE
10035@deffn {Directive} %no-default-prec
10036Do not assign a precedence to rules that lack an explicit @samp{%prec}
10037modifier. @xref{Contextual Precedence, ,Context-Dependent
10038Precedence}.
10039@end deffn
91d2c560 10040@end ifset
22fccf95 10041
18b519c0 10042@deffn {Directive} %no-lines
931c7513
RS
10043Bison declaration to avoid generating @code{#line} directives in the
10044parser file. @xref{Decl Summary}.
18b519c0 10045@end deffn
931c7513 10046
18b519c0 10047@deffn {Directive} %nonassoc
9d9b8b70 10048Bison declaration to assign nonassociativity to token(s).
bfa74976 10049@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10050@end deffn
bfa74976 10051
02975b9a 10052@deffn {Directive} %output "@var{file}"
72d2299c 10053Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10054Summary}.
18b519c0 10055@end deffn
d8988b2f 10056
feeb0eda 10057@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10058Bison declaration to specifying an additional parameter that
10059@code{yyparse} should accept. @xref{Parser Function,, The Parser
10060Function @code{yyparse}}.
18b519c0 10061@end deffn
2a8d363a 10062
18b519c0 10063@deffn {Directive} %prec
bfa74976
RS
10064Bison declaration to assign a precedence to a specific rule.
10065@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10066@end deffn
bfa74976 10067
18b519c0 10068@deffn {Directive} %pure-parser
d9df47b6
JD
10069Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10070for which Bison is more careful to warn about unreasonable usage.
18b519c0 10071@end deffn
bfa74976 10072
b50d2359 10073@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10074Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10075Require a Version of Bison}.
b50d2359
AD
10076@end deffn
10077
18b519c0 10078@deffn {Directive} %right
bfa74976
RS
10079Bison declaration to assign right associativity to token(s).
10080@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10081@end deffn
bfa74976 10082
e6e704dc
JD
10083@deffn {Directive} %skeleton
10084Specify the skeleton to use; usually for development.
10085@xref{Decl Summary}.
10086@end deffn
10087
18b519c0 10088@deffn {Directive} %start
704a47c4
AD
10089Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10090Start-Symbol}.
18b519c0 10091@end deffn
bfa74976 10092
18b519c0 10093@deffn {Directive} %token
bfa74976
RS
10094Bison declaration to declare token(s) without specifying precedence.
10095@xref{Token Decl, ,Token Type Names}.
18b519c0 10096@end deffn
bfa74976 10097
18b519c0 10098@deffn {Directive} %token-table
931c7513
RS
10099Bison declaration to include a token name table in the parser file.
10100@xref{Decl Summary}.
18b519c0 10101@end deffn
931c7513 10102
18b519c0 10103@deffn {Directive} %type
704a47c4
AD
10104Bison declaration to declare nonterminals. @xref{Type Decl,
10105,Nonterminal Symbols}.
18b519c0 10106@end deffn
bfa74976 10107
dd8d9022
AD
10108@deffn {Symbol} $undefined
10109The predefined token onto which all undefined values returned by
10110@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10111@code{error}.
10112@end deffn
10113
18b519c0 10114@deffn {Directive} %union
bfa74976
RS
10115Bison declaration to specify several possible data types for semantic
10116values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10117@end deffn
bfa74976 10118
dd8d9022
AD
10119@deffn {Macro} YYABORT
10120Macro to pretend that an unrecoverable syntax error has occurred, by
10121making @code{yyparse} return 1 immediately. The error reporting
10122function @code{yyerror} is not called. @xref{Parser Function, ,The
10123Parser Function @code{yyparse}}.
8405b70c
PB
10124
10125For Java parsers, this functionality is invoked using @code{return YYABORT;}
10126instead.
dd8d9022 10127@end deffn
3ded9a63 10128
dd8d9022
AD
10129@deffn {Macro} YYACCEPT
10130Macro to pretend that a complete utterance of the language has been
10131read, by making @code{yyparse} return 0 immediately.
10132@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10133
10134For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10135instead.
dd8d9022 10136@end deffn
bfa74976 10137
dd8d9022 10138@deffn {Macro} YYBACKUP
742e4900 10139Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10140token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10141@end deffn
bfa74976 10142
dd8d9022 10143@deffn {Variable} yychar
32c29292 10144External integer variable that contains the integer value of the
742e4900 10145lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10146@code{yyparse}.) Error-recovery rule actions may examine this variable.
10147@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10148@end deffn
bfa74976 10149
dd8d9022
AD
10150@deffn {Variable} yyclearin
10151Macro used in error-recovery rule actions. It clears the previous
742e4900 10152lookahead token. @xref{Error Recovery}.
18b519c0 10153@end deffn
bfa74976 10154
dd8d9022
AD
10155@deffn {Macro} YYDEBUG
10156Macro to define to equip the parser with tracing code. @xref{Tracing,
10157,Tracing Your Parser}.
18b519c0 10158@end deffn
bfa74976 10159
dd8d9022
AD
10160@deffn {Variable} yydebug
10161External integer variable set to zero by default. If @code{yydebug}
10162is given a nonzero value, the parser will output information on input
10163symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10164@end deffn
bfa74976 10165
dd8d9022
AD
10166@deffn {Macro} yyerrok
10167Macro to cause parser to recover immediately to its normal mode
10168after a syntax error. @xref{Error Recovery}.
10169@end deffn
10170
10171@deffn {Macro} YYERROR
10172Macro to pretend that a syntax error has just been detected: call
10173@code{yyerror} and then perform normal error recovery if possible
10174(@pxref{Error Recovery}), or (if recovery is impossible) make
10175@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10176
10177For Java parsers, this functionality is invoked using @code{return YYERROR;}
10178instead.
dd8d9022
AD
10179@end deffn
10180
10181@deffn {Function} yyerror
10182User-supplied function to be called by @code{yyparse} on error.
10183@xref{Error Reporting, ,The Error
10184Reporting Function @code{yyerror}}.
10185@end deffn
10186
10187@deffn {Macro} YYERROR_VERBOSE
10188An obsolete macro that you define with @code{#define} in the prologue
10189to request verbose, specific error message strings
10190when @code{yyerror} is called. It doesn't matter what definition you
10191use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10192@code{%error-verbose} is preferred.
10193@end deffn
10194
10195@deffn {Macro} YYINITDEPTH
10196Macro for specifying the initial size of the parser stack.
1a059451 10197@xref{Memory Management}.
dd8d9022
AD
10198@end deffn
10199
10200@deffn {Function} yylex
10201User-supplied lexical analyzer function, called with no arguments to get
10202the next token. @xref{Lexical, ,The Lexical Analyzer Function
10203@code{yylex}}.
10204@end deffn
10205
10206@deffn {Macro} YYLEX_PARAM
10207An obsolete macro for specifying an extra argument (or list of extra
32c29292 10208arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10209macro is deprecated, and is supported only for Yacc like parsers.
10210@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10211@end deffn
10212
10213@deffn {Variable} yylloc
10214External variable in which @code{yylex} should place the line and column
10215numbers associated with a token. (In a pure parser, it is a local
10216variable within @code{yyparse}, and its address is passed to
32c29292
JD
10217@code{yylex}.)
10218You can ignore this variable if you don't use the @samp{@@} feature in the
10219grammar actions.
10220@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10221In semantic actions, it stores the location of the lookahead token.
32c29292 10222@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10223@end deffn
10224
10225@deffn {Type} YYLTYPE
10226Data type of @code{yylloc}; by default, a structure with four
10227members. @xref{Location Type, , Data Types of Locations}.
10228@end deffn
10229
10230@deffn {Variable} yylval
10231External variable in which @code{yylex} should place the semantic
10232value associated with a token. (In a pure parser, it is a local
10233variable within @code{yyparse}, and its address is passed to
32c29292
JD
10234@code{yylex}.)
10235@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10236In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10237@xref{Actions, ,Actions}.
dd8d9022
AD
10238@end deffn
10239
10240@deffn {Macro} YYMAXDEPTH
1a059451
PE
10241Macro for specifying the maximum size of the parser stack. @xref{Memory
10242Management}.
dd8d9022
AD
10243@end deffn
10244
10245@deffn {Variable} yynerrs
8a2800e7 10246Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10247(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10248pure push parser, it is a member of yypstate.)
dd8d9022
AD
10249@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10250@end deffn
10251
10252@deffn {Function} yyparse
10253The parser function produced by Bison; call this function to start
10254parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10255@end deffn
10256
9987d1b3 10257@deffn {Function} yypstate_delete
f4101aa6 10258The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10259call this function to delete the memory associated with a parser.
f4101aa6 10260@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10261@code{yypstate_delete}}.
59da312b
JD
10262(The current push parsing interface is experimental and may evolve.
10263More user feedback will help to stabilize it.)
9987d1b3
JD
10264@end deffn
10265
10266@deffn {Function} yypstate_new
f4101aa6 10267The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10268call this function to create a new parser.
f4101aa6 10269@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10270@code{yypstate_new}}.
59da312b
JD
10271(The current push parsing interface is experimental and may evolve.
10272More user feedback will help to stabilize it.)
9987d1b3
JD
10273@end deffn
10274
10275@deffn {Function} yypull_parse
f4101aa6
AD
10276The parser function produced by Bison in push mode; call this function to
10277parse the rest of the input stream.
10278@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10279@code{yypull_parse}}.
59da312b
JD
10280(The current push parsing interface is experimental and may evolve.
10281More user feedback will help to stabilize it.)
9987d1b3
JD
10282@end deffn
10283
10284@deffn {Function} yypush_parse
f4101aa6
AD
10285The parser function produced by Bison in push mode; call this function to
10286parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10287@code{yypush_parse}}.
59da312b
JD
10288(The current push parsing interface is experimental and may evolve.
10289More user feedback will help to stabilize it.)
9987d1b3
JD
10290@end deffn
10291
dd8d9022
AD
10292@deffn {Macro} YYPARSE_PARAM
10293An obsolete macro for specifying the name of a parameter that
10294@code{yyparse} should accept. The use of this macro is deprecated, and
10295is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10296Conventions for Pure Parsers}.
10297@end deffn
10298
10299@deffn {Macro} YYRECOVERING
02103984
PE
10300The expression @code{YYRECOVERING ()} yields 1 when the parser
10301is recovering from a syntax error, and 0 otherwise.
10302@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10303@end deffn
10304
10305@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10306Macro used to control the use of @code{alloca} when the
10307deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10308the parser will use @code{malloc} to extend its stacks. If defined to
103091, the parser will use @code{alloca}. Values other than 0 and 1 are
10310reserved for future Bison extensions. If not defined,
10311@code{YYSTACK_USE_ALLOCA} defaults to 0.
10312
55289366 10313In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10314limited stack and with unreliable stack-overflow checking, you should
10315set @code{YYMAXDEPTH} to a value that cannot possibly result in
10316unchecked stack overflow on any of your target hosts when
10317@code{alloca} is called. You can inspect the code that Bison
10318generates in order to determine the proper numeric values. This will
10319require some expertise in low-level implementation details.
dd8d9022
AD
10320@end deffn
10321
10322@deffn {Type} YYSTYPE
10323Data type of semantic values; @code{int} by default.
10324@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10325@end deffn
bfa74976 10326
342b8b6e 10327@node Glossary
bfa74976
RS
10328@appendix Glossary
10329@cindex glossary
10330
10331@table @asis
34a6c2d1
JD
10332@item Accepting State
10333A state whose only action is the accept action.
10334The accepting state is thus a consistent state.
10335@xref{Understanding,,}.
10336
c827f760
PE
10337@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10338Formal method of specifying context-free grammars originally proposed
10339by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10340committee document contributing to what became the Algol 60 report.
10341@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10342
34a6c2d1
JD
10343@item Consistent State
10344A state containing only one possible action.
620b5727 10345@xref{Decl Summary,,lr.default_reductions}.
34a6c2d1 10346
bfa74976
RS
10347@item Context-free grammars
10348Grammars specified as rules that can be applied regardless of context.
10349Thus, if there is a rule which says that an integer can be used as an
10350expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10351permitted. @xref{Language and Grammar, ,Languages and Context-Free
10352Grammars}.
bfa74976 10353
620b5727
JD
10354@item Default Reduction
10355The reduction that a parser should perform if the current parser state
34a6c2d1 10356contains no other action for the lookahead token.
620b5727
JD
10357In permitted parser states, Bison declares the reduction with the
10358largest lookahead set to be the default reduction and removes that
10359lookahead set.
10360@xref{Decl Summary,,lr.default_reductions}.
34a6c2d1 10361
bfa74976
RS
10362@item Dynamic allocation
10363Allocation of memory that occurs during execution, rather than at
10364compile time or on entry to a function.
10365
10366@item Empty string
10367Analogous to the empty set in set theory, the empty string is a
10368character string of length zero.
10369
10370@item Finite-state stack machine
10371A ``machine'' that has discrete states in which it is said to exist at
10372each instant in time. As input to the machine is processed, the
10373machine moves from state to state as specified by the logic of the
10374machine. In the case of the parser, the input is the language being
10375parsed, and the states correspond to various stages in the grammar
c827f760 10376rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10377
c827f760 10378@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10379A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10380that are not @acronym{LR}(1). It resolves situations that Bison's
10381deterministic parsing
676385e2
PH
10382algorithm cannot by effectively splitting off multiple parsers, trying all
10383possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10384right context. @xref{Generalized LR Parsing, ,Generalized
10385@acronym{LR} Parsing}.
676385e2 10386
bfa74976
RS
10387@item Grouping
10388A language construct that is (in general) grammatically divisible;
c827f760 10389for example, `expression' or `declaration' in C@.
bfa74976
RS
10390@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10391
34a6c2d1
JD
10392@item @acronym{IELR}(1)
10393A minimal @acronym{LR}(1) parser table generation algorithm.
10394That is, given any context-free grammar, @acronym{IELR}(1) generates
10395parser tables with the full language recognition power of canonical
10396@acronym{LR}(1) but with nearly the same number of parser states as
10397@acronym{LALR}(1).
10398This reduction in parser states is often an order of magnitude.
10399More importantly, because canonical @acronym{LR}(1)'s extra parser
10400states may contain duplicate conflicts in the case of
10401non-@acronym{LR}(1) grammars, the number of conflicts for
10402@acronym{IELR}(1) is often an order of magnitude less as well.
10403This can significantly reduce the complexity of developing of a grammar.
10404@xref{Decl Summary,,lr.type}.
10405
bfa74976
RS
10406@item Infix operator
10407An arithmetic operator that is placed between the operands on which it
10408performs some operation.
10409
10410@item Input stream
10411A continuous flow of data between devices or programs.
10412
10413@item Language construct
10414One of the typical usage schemas of the language. For example, one of
10415the constructs of the C language is the @code{if} statement.
10416@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10417
10418@item Left associativity
10419Operators having left associativity are analyzed from left to right:
10420@samp{a+b+c} first computes @samp{a+b} and then combines with
10421@samp{c}. @xref{Precedence, ,Operator Precedence}.
10422
10423@item Left recursion
89cab50d
AD
10424A rule whose result symbol is also its first component symbol; for
10425example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10426Rules}.
bfa74976
RS
10427
10428@item Left-to-right parsing
10429Parsing a sentence of a language by analyzing it token by token from
c827f760 10430left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10431
10432@item Lexical analyzer (scanner)
10433A function that reads an input stream and returns tokens one by one.
10434@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10435
10436@item Lexical tie-in
10437A flag, set by actions in the grammar rules, which alters the way
10438tokens are parsed. @xref{Lexical Tie-ins}.
10439
931c7513 10440@item Literal string token
14ded682 10441A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10442
742e4900
JD
10443@item Lookahead token
10444A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10445Tokens}.
bfa74976 10446
c827f760 10447@item @acronym{LALR}(1)
bfa74976 10448The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10449generators) can handle by default; a subset of @acronym{LR}(1).
10450@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10451
c827f760 10452@item @acronym{LR}(1)
bfa74976 10453The class of context-free grammars in which at most one token of
742e4900 10454lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10455
10456@item Nonterminal symbol
10457A grammar symbol standing for a grammatical construct that can
10458be expressed through rules in terms of smaller constructs; in other
10459words, a construct that is not a token. @xref{Symbols}.
10460
bfa74976
RS
10461@item Parser
10462A function that recognizes valid sentences of a language by analyzing
10463the syntax structure of a set of tokens passed to it from a lexical
10464analyzer.
10465
10466@item Postfix operator
10467An arithmetic operator that is placed after the operands upon which it
10468performs some operation.
10469
10470@item Reduction
10471Replacing a string of nonterminals and/or terminals with a single
89cab50d 10472nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10473Parser Algorithm}.
bfa74976
RS
10474
10475@item Reentrant
10476A reentrant subprogram is a subprogram which can be in invoked any
10477number of times in parallel, without interference between the various
10478invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10479
10480@item Reverse polish notation
10481A language in which all operators are postfix operators.
10482
10483@item Right recursion
89cab50d
AD
10484A rule whose result symbol is also its last component symbol; for
10485example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10486Rules}.
bfa74976
RS
10487
10488@item Semantics
10489In computer languages, the semantics are specified by the actions
10490taken for each instance of the language, i.e., the meaning of
10491each statement. @xref{Semantics, ,Defining Language Semantics}.
10492
10493@item Shift
10494A parser is said to shift when it makes the choice of analyzing
10495further input from the stream rather than reducing immediately some
c827f760 10496already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10497
10498@item Single-character literal
10499A single character that is recognized and interpreted as is.
10500@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10501
10502@item Start symbol
10503The nonterminal symbol that stands for a complete valid utterance in
10504the language being parsed. The start symbol is usually listed as the
13863333 10505first nonterminal symbol in a language specification.
bfa74976
RS
10506@xref{Start Decl, ,The Start-Symbol}.
10507
10508@item Symbol table
10509A data structure where symbol names and associated data are stored
10510during parsing to allow for recognition and use of existing
10511information in repeated uses of a symbol. @xref{Multi-function Calc}.
10512
6e649e65
PE
10513@item Syntax error
10514An error encountered during parsing of an input stream due to invalid
10515syntax. @xref{Error Recovery}.
10516
bfa74976
RS
10517@item Token
10518A basic, grammatically indivisible unit of a language. The symbol
10519that describes a token in the grammar is a terminal symbol.
10520The input of the Bison parser is a stream of tokens which comes from
10521the lexical analyzer. @xref{Symbols}.
10522
10523@item Terminal symbol
89cab50d
AD
10524A grammar symbol that has no rules in the grammar and therefore is
10525grammatically indivisible. The piece of text it represents is a token.
10526@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10527@end table
10528
342b8b6e 10529@node Copying This Manual
f2b5126e 10530@appendix Copying This Manual
f2b5126e
PB
10531@include fdl.texi
10532
342b8b6e 10533@node Index
bfa74976
RS
10534@unnumbered Index
10535
10536@printindex cp
10537
bfa74976 10538@bye
a06ea4aa
AD
10539
10540@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10541@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10542@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10543@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10544@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10545@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10546@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10547@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10548@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10549@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10550@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10551@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10552@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10553@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10554@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10555@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10556@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10557@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10558@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10559@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10560@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10561@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10562@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10563@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10564@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10565@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10566@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10567@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
34a6c2d1 10568@c LocalWords: YYSTACK DVI fdl printindex IELR