]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Thank the developer of the initial push parser implementation.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
219c26ea
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2010 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
389c8cfd
PE
48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
49modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
50supports it in developing @acronym{GNU} and promoting software
51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
f56274a8
DJ
91* Copying:: The @acronym{GNU} General Public License says
92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
106* Invocation:: How to run Bison (to produce the parser source file).
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f56274a8
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
f56274a8
DJ
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
f56274a8
DJ
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
bfa74976 146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
150* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
151
152Reverse Polish Notation Calculator
153
f56274a8
DJ
154* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
155* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
156* Rpcalc Lexer:: The lexical analyzer.
157* Rpcalc Main:: The controlling function.
158* Rpcalc Error:: The error reporting function.
159* Rpcalc Generate:: Running Bison on the grammar file.
160* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
f56274a8
DJ
170* Ltcalc Declarations:: Bison and C declarations for ltcalc.
171* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
172* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
f56274a8
DJ
176* Mfcalc Declarations:: Bison declarations for multi-function calculator.
177* Mfcalc Rules:: Grammar rules for the calculator.
178* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
f56274a8 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
9987d1b3 227* Push Decl:: Requesting a push parser.
bfa74976
RS
228* Decl Summary:: Table of all Bison declarations.
229
230Parser C-Language Interface
231
f56274a8
DJ
232* Parser Function:: How to call @code{yyparse} and what it returns.
233* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
234* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
235* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
236* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
237* Lexical:: You must supply a function @code{yylex}
238 which reads tokens.
239* Error Reporting:: You must supply a function @code{yyerror}.
240* Action Features:: Special features for use in actions.
241* Internationalization:: How to let the parser speak in the user's
242 native language.
bfa74976
RS
243
244The Lexical Analyzer Function @code{yylex}
245
246* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
247* Token Values:: How @code{yylex} must return the semantic value
248 of the token it has read.
249* Token Locations:: How @code{yylex} must return the text location
250 (line number, etc.) of the token, if the
251 actions want that.
252* Pure Calling:: How the calling convention differs in a pure parser
253 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 254
13863333 255The Bison Parser Algorithm
bfa74976 256
742e4900 257* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
258* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
259* Precedence:: Operator precedence works by resolving conflicts.
260* Contextual Precedence:: When an operator's precedence depends on context.
261* Parser States:: The parser is a finite-state-machine with stack.
262* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 263* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 264* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 265* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
266
267Operator Precedence
268
269* Why Precedence:: An example showing why precedence is needed.
270* Using Precedence:: How to specify precedence in Bison grammars.
271* Precedence Examples:: How these features are used in the previous example.
272* How Precedence:: How they work.
273
274Handling Context Dependencies
275
276* Semantic Tokens:: Token parsing can depend on the semantic context.
277* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
278* Tie-in Recovery:: Lexical tie-ins have implications for how
279 error recovery rules must be written.
280
93dd49ab 281Debugging Your Parser
ec3bc396
AD
282
283* Understanding:: Understanding the structure of your parser.
284* Tracing:: Tracing the execution of your parser.
285
bfa74976
RS
286Invoking Bison
287
13863333 288* Bison Options:: All the options described in detail,
c827f760 289 in alphabetical order by short options.
bfa74976 290* Option Cross Key:: Alphabetical list of long options.
93dd49ab 291* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 292
8405b70c 293Parsers Written In Other Languages
12545799
AD
294
295* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 296* Java Parsers:: The interface to generate Java parser classes
12545799
AD
297
298C++ Parsers
299
300* C++ Bison Interface:: Asking for C++ parser generation
301* C++ Semantic Values:: %union vs. C++
302* C++ Location Values:: The position and location classes
303* C++ Parser Interface:: Instantiating and running the parser
304* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 305* A Complete C++ Example:: Demonstrating their use
12545799
AD
306
307A Complete C++ Example
308
309* Calc++ --- C++ Calculator:: The specifications
310* Calc++ Parsing Driver:: An active parsing context
311* Calc++ Parser:: A parser class
312* Calc++ Scanner:: A pure C++ Flex scanner
313* Calc++ Top Level:: Conducting the band
314
8405b70c
PB
315Java Parsers
316
f56274a8
DJ
317* Java Bison Interface:: Asking for Java parser generation
318* Java Semantic Values:: %type and %token vs. Java
319* Java Location Values:: The position and location classes
320* Java Parser Interface:: Instantiating and running the parser
321* Java Scanner Interface:: Specifying the scanner for the parser
322* Java Action Features:: Special features for use in actions
323* Java Differences:: Differences between C/C++ and Java Grammars
324* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 325
d1a1114f
AD
326Frequently Asked Questions
327
f56274a8
DJ
328* Memory Exhausted:: Breaking the Stack Limits
329* How Can I Reset the Parser:: @code{yyparse} Keeps some State
330* Strings are Destroyed:: @code{yylval} Loses Track of Strings
331* Implementing Gotos/Loops:: Control Flow in the Calculator
332* Multiple start-symbols:: Factoring closely related grammars
333* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
334* I can't build Bison:: Troubleshooting
335* Where can I find help?:: Troubleshouting
336* Bug Reports:: Troublereporting
337* More Languages:: Parsers in C++, Java, and so on
338* Beta Testing:: Experimenting development versions
339* Mailing Lists:: Meeting other Bison users
d1a1114f 340
f2b5126e
PB
341Copying This Manual
342
f56274a8 343* Copying This Manual:: License for copying this manual.
f2b5126e 344
342b8b6e 345@end detailmenu
bfa74976
RS
346@end menu
347
342b8b6e 348@node Introduction
bfa74976
RS
349@unnumbered Introduction
350@cindex introduction
351
6077da58
PE
352@dfn{Bison} is a general-purpose parser generator that converts an
353annotated context-free grammar into an @acronym{LALR}(1) or
354@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 355Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
356used in simple desk calculators to complex programming languages.
357
358Bison is upward compatible with Yacc: all properly-written Yacc grammars
359ought to work with Bison with no change. Anyone familiar with Yacc
360should be able to use Bison with little trouble. You need to be fluent in
1e137b71 361C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
362
363We begin with tutorial chapters that explain the basic concepts of using
364Bison and show three explained examples, each building on the last. If you
365don't know Bison or Yacc, start by reading these chapters. Reference
366chapters follow which describe specific aspects of Bison in detail.
367
931c7513
RS
368Bison was written primarily by Robert Corbett; Richard Stallman made it
369Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 370multi-character string literals and other features.
931c7513 371
df1af54c 372This edition corresponds to version @value{VERSION} of Bison.
bfa74976 373
342b8b6e 374@node Conditions
bfa74976
RS
375@unnumbered Conditions for Using Bison
376
193d7c70
PE
377The distribution terms for Bison-generated parsers permit using the
378parsers in nonfree programs. Before Bison version 2.2, these extra
379permissions applied only when Bison was generating @acronym{LALR}(1)
380parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 381parsers could be used only in programs that were free software.
a31239f1 382
c827f760
PE
383The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
384compiler, have never
9ecbd125 385had such a requirement. They could always be used for nonfree
a31239f1
RS
386software. The reason Bison was different was not due to a special
387policy decision; it resulted from applying the usual General Public
388License to all of the Bison source code.
389
390The output of the Bison utility---the Bison parser file---contains a
391verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
392parser's implementation. (The actions from your grammar are inserted
393into this implementation at one point, but most of the rest of the
394implementation is not changed.) When we applied the @acronym{GPL}
395terms to the skeleton code for the parser's implementation,
a31239f1
RS
396the effect was to restrict the use of Bison output to free software.
397
398We didn't change the terms because of sympathy for people who want to
399make software proprietary. @strong{Software should be free.} But we
400concluded that limiting Bison's use to free software was doing little to
401encourage people to make other software free. So we decided to make the
402practical conditions for using Bison match the practical conditions for
c827f760 403using the other @acronym{GNU} tools.
bfa74976 404
193d7c70
PE
405This exception applies when Bison is generating code for a parser.
406You can tell whether the exception applies to a Bison output file by
407inspecting the file for text beginning with ``As a special
408exception@dots{}''. The text spells out the exact terms of the
409exception.
262aa8dd 410
f16b0819
PE
411@node Copying
412@unnumbered GNU GENERAL PUBLIC LICENSE
413@include gpl-3.0.texi
bfa74976 414
342b8b6e 415@node Concepts
bfa74976
RS
416@chapter The Concepts of Bison
417
418This chapter introduces many of the basic concepts without which the
419details of Bison will not make sense. If you do not already know how to
420use Bison or Yacc, we suggest you start by reading this chapter carefully.
421
422@menu
f56274a8
DJ
423* Language and Grammar:: Languages and context-free grammars,
424 as mathematical ideas.
425* Grammar in Bison:: How we represent grammars for Bison's sake.
426* Semantic Values:: Each token or syntactic grouping can have
427 a semantic value (the value of an integer,
428 the name of an identifier, etc.).
429* Semantic Actions:: Each rule can have an action containing C code.
430* GLR Parsers:: Writing parsers for general context-free languages.
431* Locations Overview:: Tracking Locations.
432* Bison Parser:: What are Bison's input and output,
433 how is the output used?
434* Stages:: Stages in writing and running Bison grammars.
435* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
436@end menu
437
342b8b6e 438@node Language and Grammar
bfa74976
RS
439@section Languages and Context-Free Grammars
440
bfa74976
RS
441@cindex context-free grammar
442@cindex grammar, context-free
443In order for Bison to parse a language, it must be described by a
444@dfn{context-free grammar}. This means that you specify one or more
445@dfn{syntactic groupings} and give rules for constructing them from their
446parts. For example, in the C language, one kind of grouping is called an
447`expression'. One rule for making an expression might be, ``An expression
448can be made of a minus sign and another expression''. Another would be,
449``An expression can be an integer''. As you can see, rules are often
450recursive, but there must be at least one rule which leads out of the
451recursion.
452
c827f760 453@cindex @acronym{BNF}
bfa74976
RS
454@cindex Backus-Naur form
455The most common formal system for presenting such rules for humans to read
c827f760
PE
456is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
457order to specify the language Algol 60. Any grammar expressed in
458@acronym{BNF} is a context-free grammar. The input to Bison is
459essentially machine-readable @acronym{BNF}.
bfa74976 460
c827f760
PE
461@cindex @acronym{LALR}(1) grammars
462@cindex @acronym{LR}(1) grammars
676385e2
PH
463There are various important subclasses of context-free grammar. Although it
464can handle almost all context-free grammars, Bison is optimized for what
c827f760 465are called @acronym{LALR}(1) grammars.
676385e2 466In brief, in these grammars, it must be possible to
bfa74976 467tell how to parse any portion of an input string with just a single
742e4900 468token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
469@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
470restrictions that are
bfa74976 471hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
472@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
473@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
474more information on this.
bfa74976 475
c827f760
PE
476@cindex @acronym{GLR} parsing
477@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 478@cindex ambiguous grammars
9d9b8b70 479@cindex nondeterministic parsing
9501dc6e
AD
480
481Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
482roughly that the next grammar rule to apply at any point in the input is
483uniquely determined by the preceding input and a fixed, finite portion
742e4900 484(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 485grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 486apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 487grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 488lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
489With the proper declarations, Bison is also able to parse these more
490general context-free grammars, using a technique known as @acronym{GLR}
491parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
492are able to handle any context-free grammar for which the number of
493possible parses of any given string is finite.
676385e2 494
bfa74976
RS
495@cindex symbols (abstract)
496@cindex token
497@cindex syntactic grouping
498@cindex grouping, syntactic
9501dc6e
AD
499In the formal grammatical rules for a language, each kind of syntactic
500unit or grouping is named by a @dfn{symbol}. Those which are built by
501grouping smaller constructs according to grammatical rules are called
bfa74976
RS
502@dfn{nonterminal symbols}; those which can't be subdivided are called
503@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
504corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 505corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
506
507We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
508nonterminal, mean. The tokens of C are identifiers, constants (numeric
509and string), and the various keywords, arithmetic operators and
510punctuation marks. So the terminal symbols of a grammar for C include
511`identifier', `number', `string', plus one symbol for each keyword,
512operator or punctuation mark: `if', `return', `const', `static', `int',
513`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
514(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
515lexicography, not grammar.)
516
517Here is a simple C function subdivided into tokens:
518
9edcd895
AD
519@ifinfo
520@example
521int /* @r{keyword `int'} */
14d4662b 522square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
523 @r{identifier, close-paren} */
524@{ /* @r{open-brace} */
aa08666d
AD
525 return x * x; /* @r{keyword `return', identifier, asterisk,}
526 @r{identifier, semicolon} */
9edcd895
AD
527@} /* @r{close-brace} */
528@end example
529@end ifinfo
530@ifnotinfo
bfa74976
RS
531@example
532int /* @r{keyword `int'} */
14d4662b 533square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 534@{ /* @r{open-brace} */
9edcd895 535 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
536@} /* @r{close-brace} */
537@end example
9edcd895 538@end ifnotinfo
bfa74976
RS
539
540The syntactic groupings of C include the expression, the statement, the
541declaration, and the function definition. These are represented in the
542grammar of C by nonterminal symbols `expression', `statement',
543`declaration' and `function definition'. The full grammar uses dozens of
544additional language constructs, each with its own nonterminal symbol, in
545order to express the meanings of these four. The example above is a
546function definition; it contains one declaration, and one statement. In
547the statement, each @samp{x} is an expression and so is @samp{x * x}.
548
549Each nonterminal symbol must have grammatical rules showing how it is made
550out of simpler constructs. For example, one kind of C statement is the
551@code{return} statement; this would be described with a grammar rule which
552reads informally as follows:
553
554@quotation
555A `statement' can be made of a `return' keyword, an `expression' and a
556`semicolon'.
557@end quotation
558
559@noindent
560There would be many other rules for `statement', one for each kind of
561statement in C.
562
563@cindex start symbol
564One nonterminal symbol must be distinguished as the special one which
565defines a complete utterance in the language. It is called the @dfn{start
566symbol}. In a compiler, this means a complete input program. In the C
567language, the nonterminal symbol `sequence of definitions and declarations'
568plays this role.
569
570For example, @samp{1 + 2} is a valid C expression---a valid part of a C
571program---but it is not valid as an @emph{entire} C program. In the
572context-free grammar of C, this follows from the fact that `expression' is
573not the start symbol.
574
575The Bison parser reads a sequence of tokens as its input, and groups the
576tokens using the grammar rules. If the input is valid, the end result is
577that the entire token sequence reduces to a single grouping whose symbol is
578the grammar's start symbol. If we use a grammar for C, the entire input
579must be a `sequence of definitions and declarations'. If not, the parser
580reports a syntax error.
581
342b8b6e 582@node Grammar in Bison
bfa74976
RS
583@section From Formal Rules to Bison Input
584@cindex Bison grammar
585@cindex grammar, Bison
586@cindex formal grammar
587
588A formal grammar is a mathematical construct. To define the language
589for Bison, you must write a file expressing the grammar in Bison syntax:
590a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
591
592A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 593as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
594in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
595
596The Bison representation for a terminal symbol is also called a @dfn{token
597type}. Token types as well can be represented as C-like identifiers. By
598convention, these identifiers should be upper case to distinguish them from
599nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
600@code{RETURN}. A terminal symbol that stands for a particular keyword in
601the language should be named after that keyword converted to upper case.
602The terminal symbol @code{error} is reserved for error recovery.
931c7513 603@xref{Symbols}.
bfa74976
RS
604
605A terminal symbol can also be represented as a character literal, just like
606a C character constant. You should do this whenever a token is just a
607single character (parenthesis, plus-sign, etc.): use that same character in
608a literal as the terminal symbol for that token.
609
931c7513
RS
610A third way to represent a terminal symbol is with a C string constant
611containing several characters. @xref{Symbols}, for more information.
612
bfa74976
RS
613The grammar rules also have an expression in Bison syntax. For example,
614here is the Bison rule for a C @code{return} statement. The semicolon in
615quotes is a literal character token, representing part of the C syntax for
616the statement; the naked semicolon, and the colon, are Bison punctuation
617used in every rule.
618
619@example
620stmt: RETURN expr ';'
621 ;
622@end example
623
624@noindent
625@xref{Rules, ,Syntax of Grammar Rules}.
626
342b8b6e 627@node Semantic Values
bfa74976
RS
628@section Semantic Values
629@cindex semantic value
630@cindex value, semantic
631
632A formal grammar selects tokens only by their classifications: for example,
633if a rule mentions the terminal symbol `integer constant', it means that
634@emph{any} integer constant is grammatically valid in that position. The
635precise value of the constant is irrelevant to how to parse the input: if
636@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 637grammatical.
bfa74976
RS
638
639But the precise value is very important for what the input means once it is
640parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6413989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
642has both a token type and a @dfn{semantic value}. @xref{Semantics,
643,Defining Language Semantics},
bfa74976
RS
644for details.
645
646The token type is a terminal symbol defined in the grammar, such as
647@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
648you need to know to decide where the token may validly appear and how to
649group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 650except their types.
bfa74976
RS
651
652The semantic value has all the rest of the information about the
653meaning of the token, such as the value of an integer, or the name of an
654identifier. (A token such as @code{','} which is just punctuation doesn't
655need to have any semantic value.)
656
657For example, an input token might be classified as token type
658@code{INTEGER} and have the semantic value 4. Another input token might
659have the same token type @code{INTEGER} but value 3989. When a grammar
660rule says that @code{INTEGER} is allowed, either of these tokens is
661acceptable because each is an @code{INTEGER}. When the parser accepts the
662token, it keeps track of the token's semantic value.
663
664Each grouping can also have a semantic value as well as its nonterminal
665symbol. For example, in a calculator, an expression typically has a
666semantic value that is a number. In a compiler for a programming
667language, an expression typically has a semantic value that is a tree
668structure describing the meaning of the expression.
669
342b8b6e 670@node Semantic Actions
bfa74976
RS
671@section Semantic Actions
672@cindex semantic actions
673@cindex actions, semantic
674
675In order to be useful, a program must do more than parse input; it must
676also produce some output based on the input. In a Bison grammar, a grammar
677rule can have an @dfn{action} made up of C statements. Each time the
678parser recognizes a match for that rule, the action is executed.
679@xref{Actions}.
13863333 680
bfa74976
RS
681Most of the time, the purpose of an action is to compute the semantic value
682of the whole construct from the semantic values of its parts. For example,
683suppose we have a rule which says an expression can be the sum of two
684expressions. When the parser recognizes such a sum, each of the
685subexpressions has a semantic value which describes how it was built up.
686The action for this rule should create a similar sort of value for the
687newly recognized larger expression.
688
689For example, here is a rule that says an expression can be the sum of
690two subexpressions:
691
692@example
693expr: expr '+' expr @{ $$ = $1 + $3; @}
694 ;
695@end example
696
697@noindent
698The action says how to produce the semantic value of the sum expression
699from the values of the two subexpressions.
700
676385e2 701@node GLR Parsers
c827f760
PE
702@section Writing @acronym{GLR} Parsers
703@cindex @acronym{GLR} parsing
704@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
705@findex %glr-parser
706@cindex conflicts
707@cindex shift/reduce conflicts
fa7e68c3 708@cindex reduce/reduce conflicts
676385e2 709
fa7e68c3 710In some grammars, Bison's standard
9501dc6e
AD
711@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
712certain grammar rule at a given point. That is, it may not be able to
713decide (on the basis of the input read so far) which of two possible
714reductions (applications of a grammar rule) applies, or whether to apply
715a reduction or read more of the input and apply a reduction later in the
716input. These are known respectively as @dfn{reduce/reduce} conflicts
717(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
718(@pxref{Shift/Reduce}).
719
720To use a grammar that is not easily modified to be @acronym{LALR}(1), a
721more general parsing algorithm is sometimes necessary. If you include
676385e2 722@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 723(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
724(@acronym{GLR}) parser. These parsers handle Bison grammars that
725contain no unresolved conflicts (i.e., after applying precedence
726declarations) identically to @acronym{LALR}(1) parsers. However, when
727faced with unresolved shift/reduce and reduce/reduce conflicts,
728@acronym{GLR} parsers use the simple expedient of doing both,
729effectively cloning the parser to follow both possibilities. Each of
730the resulting parsers can again split, so that at any given time, there
731can be any number of possible parses being explored. The parsers
676385e2
PH
732proceed in lockstep; that is, all of them consume (shift) a given input
733symbol before any of them proceed to the next. Each of the cloned
734parsers eventually meets one of two possible fates: either it runs into
735a parsing error, in which case it simply vanishes, or it merges with
736another parser, because the two of them have reduced the input to an
737identical set of symbols.
738
739During the time that there are multiple parsers, semantic actions are
740recorded, but not performed. When a parser disappears, its recorded
741semantic actions disappear as well, and are never performed. When a
742reduction makes two parsers identical, causing them to merge, Bison
743records both sets of semantic actions. Whenever the last two parsers
744merge, reverting to the single-parser case, Bison resolves all the
745outstanding actions either by precedences given to the grammar rules
746involved, or by performing both actions, and then calling a designated
747user-defined function on the resulting values to produce an arbitrary
748merged result.
749
fa7e68c3 750@menu
f56274a8
DJ
751* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
752* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
753* GLR Semantic Actions:: Deferred semantic actions have special concerns.
754* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
755@end menu
756
757@node Simple GLR Parsers
758@subsection Using @acronym{GLR} on Unambiguous Grammars
759@cindex @acronym{GLR} parsing, unambiguous grammars
760@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
761@findex %glr-parser
762@findex %expect-rr
763@cindex conflicts
764@cindex reduce/reduce conflicts
765@cindex shift/reduce conflicts
766
767In the simplest cases, you can use the @acronym{GLR} algorithm
768to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 769Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
770or (in rare cases) fall into the category of grammars in which the
771@acronym{LALR}(1) algorithm throws away too much information (they are in
772@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
773
774Consider a problem that
775arises in the declaration of enumerated and subrange types in the
776programming language Pascal. Here are some examples:
777
778@example
779type subrange = lo .. hi;
780type enum = (a, b, c);
781@end example
782
783@noindent
784The original language standard allows only numeric
785literals and constant identifiers for the subrange bounds (@samp{lo}
786and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78710206) and many other
788Pascal implementations allow arbitrary expressions there. This gives
789rise to the following situation, containing a superfluous pair of
790parentheses:
791
792@example
793type subrange = (a) .. b;
794@end example
795
796@noindent
797Compare this to the following declaration of an enumerated
798type with only one value:
799
800@example
801type enum = (a);
802@end example
803
804@noindent
805(These declarations are contrived, but they are syntactically
806valid, and more-complicated cases can come up in practical programs.)
807
808These two declarations look identical until the @samp{..} token.
742e4900 809With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
810possible to decide between the two forms when the identifier
811@samp{a} is parsed. It is, however, desirable
812for a parser to decide this, since in the latter case
813@samp{a} must become a new identifier to represent the enumeration
814value, while in the former case @samp{a} must be evaluated with its
815current meaning, which may be a constant or even a function call.
816
817You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
818to be resolved later, but this typically requires substantial
819contortions in both semantic actions and large parts of the
820grammar, where the parentheses are nested in the recursive rules for
821expressions.
822
823You might think of using the lexer to distinguish between the two
824forms by returning different tokens for currently defined and
825undefined identifiers. But if these declarations occur in a local
826scope, and @samp{a} is defined in an outer scope, then both forms
827are possible---either locally redefining @samp{a}, or using the
828value of @samp{a} from the outer scope. So this approach cannot
829work.
830
e757bb10 831A simple solution to this problem is to declare the parser to
fa7e68c3
PE
832use the @acronym{GLR} algorithm.
833When the @acronym{GLR} parser reaches the critical state, it
834merely splits into two branches and pursues both syntax rules
835simultaneously. Sooner or later, one of them runs into a parsing
836error. If there is a @samp{..} token before the next
837@samp{;}, the rule for enumerated types fails since it cannot
838accept @samp{..} anywhere; otherwise, the subrange type rule
839fails since it requires a @samp{..} token. So one of the branches
840fails silently, and the other one continues normally, performing
841all the intermediate actions that were postponed during the split.
842
843If the input is syntactically incorrect, both branches fail and the parser
844reports a syntax error as usual.
845
846The effect of all this is that the parser seems to ``guess'' the
847correct branch to take, or in other words, it seems to use more
742e4900 848lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
849for. In this example, @acronym{LALR}(2) would suffice, but also some cases
850that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
851
852In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
853and the current Bison parser even takes exponential time and space
854for some grammars. In practice, this rarely happens, and for many
855grammars it is possible to prove that it cannot happen.
856The present example contains only one conflict between two
857rules, and the type-declaration context containing the conflict
858cannot be nested. So the number of
859branches that can exist at any time is limited by the constant 2,
860and the parsing time is still linear.
861
862Here is a Bison grammar corresponding to the example above. It
863parses a vastly simplified form of Pascal type declarations.
864
865@example
866%token TYPE DOTDOT ID
867
868@group
869%left '+' '-'
870%left '*' '/'
871@end group
872
873%%
874
875@group
876type_decl : TYPE ID '=' type ';'
877 ;
878@end group
879
880@group
881type : '(' id_list ')'
882 | expr DOTDOT expr
883 ;
884@end group
885
886@group
887id_list : ID
888 | id_list ',' ID
889 ;
890@end group
891
892@group
893expr : '(' expr ')'
894 | expr '+' expr
895 | expr '-' expr
896 | expr '*' expr
897 | expr '/' expr
898 | ID
899 ;
900@end group
901@end example
902
903When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
904about one reduce/reduce conflict. In the conflicting situation the
905parser chooses one of the alternatives, arbitrarily the one
906declared first. Therefore the following correct input is not
907recognized:
908
909@example
910type t = (a) .. b;
911@end example
912
913The parser can be turned into a @acronym{GLR} parser, while also telling Bison
914to be silent about the one known reduce/reduce conflict, by
e757bb10 915adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
916@samp{%%}):
917
918@example
919%glr-parser
920%expect-rr 1
921@end example
922
923@noindent
924No change in the grammar itself is required. Now the
925parser recognizes all valid declarations, according to the
926limited syntax above, transparently. In fact, the user does not even
927notice when the parser splits.
928
f8e1c9e5
AD
929So here we have a case where we can use the benefits of @acronym{GLR},
930almost without disadvantages. Even in simple cases like this, however,
931there are at least two potential problems to beware. First, always
932analyze the conflicts reported by Bison to make sure that @acronym{GLR}
933splitting is only done where it is intended. A @acronym{GLR} parser
934splitting inadvertently may cause problems less obvious than an
935@acronym{LALR} parser statically choosing the wrong alternative in a
936conflict. Second, consider interactions with the lexer (@pxref{Semantic
937Tokens}) with great care. Since a split parser consumes tokens without
938performing any actions during the split, the lexer cannot obtain
939information via parser actions. Some cases of lexer interactions can be
940eliminated by using @acronym{GLR} to shift the complications from the
941lexer to the parser. You must check the remaining cases for
942correctness.
943
944In our example, it would be safe for the lexer to return tokens based on
945their current meanings in some symbol table, because no new symbols are
946defined in the middle of a type declaration. Though it is possible for
947a parser to define the enumeration constants as they are parsed, before
948the type declaration is completed, it actually makes no difference since
949they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
950
951@node Merging GLR Parses
952@subsection Using @acronym{GLR} to Resolve Ambiguities
953@cindex @acronym{GLR} parsing, ambiguous grammars
954@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
955@findex %dprec
956@findex %merge
957@cindex conflicts
958@cindex reduce/reduce conflicts
959
2a8d363a 960Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
961
962@example
963%@{
38a92d50
PE
964 #include <stdio.h>
965 #define YYSTYPE char const *
966 int yylex (void);
967 void yyerror (char const *);
676385e2
PH
968%@}
969
970%token TYPENAME ID
971
972%right '='
973%left '+'
974
975%glr-parser
976
977%%
978
fae437e8 979prog :
676385e2
PH
980 | prog stmt @{ printf ("\n"); @}
981 ;
982
983stmt : expr ';' %dprec 1
984 | decl %dprec 2
985 ;
986
2a8d363a 987expr : ID @{ printf ("%s ", $$); @}
fae437e8 988 | TYPENAME '(' expr ')'
2a8d363a
AD
989 @{ printf ("%s <cast> ", $1); @}
990 | expr '+' expr @{ printf ("+ "); @}
991 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
992 ;
993
fae437e8 994decl : TYPENAME declarator ';'
2a8d363a 995 @{ printf ("%s <declare> ", $1); @}
676385e2 996 | TYPENAME declarator '=' expr ';'
2a8d363a 997 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
998 ;
999
2a8d363a 1000declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1001 | '(' declarator ')'
1002 ;
1003@end example
1004
1005@noindent
1006This models a problematic part of the C++ grammar---the ambiguity between
1007certain declarations and statements. For example,
1008
1009@example
1010T (x) = y+z;
1011@end example
1012
1013@noindent
1014parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1015(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1016@samp{x} as an @code{ID}).
676385e2 1017Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1018@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1019time it encounters @code{x} in the example above. Since this is a
1020@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1021each choice of resolving the reduce/reduce conflict.
1022Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1023however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1024ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1025the other reduces @code{stmt : decl}, after which both parsers are in an
1026identical state: they've seen @samp{prog stmt} and have the same unprocessed
1027input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1028
1029At this point, the @acronym{GLR} parser requires a specification in the
1030grammar of how to choose between the competing parses.
1031In the example above, the two @code{%dprec}
e757bb10 1032declarations specify that Bison is to give precedence
fa7e68c3 1033to the parse that interprets the example as a
676385e2
PH
1034@code{decl}, which implies that @code{x} is a declarator.
1035The parser therefore prints
1036
1037@example
fae437e8 1038"x" y z + T <init-declare>
676385e2
PH
1039@end example
1040
fa7e68c3
PE
1041The @code{%dprec} declarations only come into play when more than one
1042parse survives. Consider a different input string for this parser:
676385e2
PH
1043
1044@example
1045T (x) + y;
1046@end example
1047
1048@noindent
e757bb10 1049This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1050construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1051Here, there is no ambiguity (this cannot be parsed as a declaration).
1052However, at the time the Bison parser encounters @code{x}, it does not
1053have enough information to resolve the reduce/reduce conflict (again,
1054between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1055case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1056into two, one assuming that @code{x} is an @code{expr}, and the other
1057assuming @code{x} is a @code{declarator}. The second of these parsers
1058then vanishes when it sees @code{+}, and the parser prints
1059
1060@example
fae437e8 1061x T <cast> y +
676385e2
PH
1062@end example
1063
1064Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1065the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1066actions of the two possible parsers, rather than choosing one over the
1067other. To do so, you could change the declaration of @code{stmt} as
1068follows:
1069
1070@example
1071stmt : expr ';' %merge <stmtMerge>
1072 | decl %merge <stmtMerge>
1073 ;
1074@end example
1075
1076@noindent
676385e2
PH
1077and define the @code{stmtMerge} function as:
1078
1079@example
38a92d50
PE
1080static YYSTYPE
1081stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1082@{
1083 printf ("<OR> ");
1084 return "";
1085@}
1086@end example
1087
1088@noindent
1089with an accompanying forward declaration
1090in the C declarations at the beginning of the file:
1091
1092@example
1093%@{
38a92d50 1094 #define YYSTYPE char const *
676385e2
PH
1095 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1096%@}
1097@end example
1098
1099@noindent
fa7e68c3
PE
1100With these declarations, the resulting parser parses the first example
1101as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1102
1103@example
fae437e8 1104"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1105@end example
1106
fa7e68c3 1107Bison requires that all of the
e757bb10 1108productions that participate in any particular merge have identical
fa7e68c3
PE
1109@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1110and the parser will report an error during any parse that results in
1111the offending merge.
9501dc6e 1112
32c29292
JD
1113@node GLR Semantic Actions
1114@subsection GLR Semantic Actions
1115
1116@cindex deferred semantic actions
1117By definition, a deferred semantic action is not performed at the same time as
1118the associated reduction.
1119This raises caveats for several Bison features you might use in a semantic
1120action in a @acronym{GLR} parser.
1121
1122@vindex yychar
1123@cindex @acronym{GLR} parsers and @code{yychar}
1124@vindex yylval
1125@cindex @acronym{GLR} parsers and @code{yylval}
1126@vindex yylloc
1127@cindex @acronym{GLR} parsers and @code{yylloc}
1128In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1129the lookahead token present at the time of the associated reduction.
32c29292
JD
1130After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1131you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1132lookahead token's semantic value and location, if any.
32c29292
JD
1133In a nondeferred semantic action, you can also modify any of these variables to
1134influence syntax analysis.
742e4900 1135@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1136
1137@findex yyclearin
1138@cindex @acronym{GLR} parsers and @code{yyclearin}
1139In a deferred semantic action, it's too late to influence syntax analysis.
1140In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1141shallow copies of the values they had at the time of the associated reduction.
1142For this reason alone, modifying them is dangerous.
1143Moreover, the result of modifying them is undefined and subject to change with
1144future versions of Bison.
1145For example, if a semantic action might be deferred, you should never write it
1146to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1147memory referenced by @code{yylval}.
1148
1149@findex YYERROR
1150@cindex @acronym{GLR} parsers and @code{YYERROR}
1151Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1152(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1153initiate error recovery.
1154During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1155the same as its effect in an @acronym{LALR}(1) parser.
1156In a deferred semantic action, its effect is undefined.
1157@c The effect is probably a syntax error at the split point.
1158
8710fc41
JD
1159Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1160describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1161
fa7e68c3
PE
1162@node Compiler Requirements
1163@subsection Considerations when Compiling @acronym{GLR} Parsers
1164@cindex @code{inline}
9501dc6e 1165@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1166
38a92d50
PE
1167The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1168later. In addition, they use the @code{inline} keyword, which is not
1169C89, but is C99 and is a common extension in pre-C99 compilers. It is
1170up to the user of these parsers to handle
9501dc6e
AD
1171portability issues. For instance, if using Autoconf and the Autoconf
1172macro @code{AC_C_INLINE}, a mere
1173
1174@example
1175%@{
38a92d50 1176 #include <config.h>
9501dc6e
AD
1177%@}
1178@end example
1179
1180@noindent
1181will suffice. Otherwise, we suggest
1182
1183@example
1184%@{
38a92d50
PE
1185 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1186 #define inline
1187 #endif
9501dc6e
AD
1188%@}
1189@end example
676385e2 1190
342b8b6e 1191@node Locations Overview
847bf1f5
AD
1192@section Locations
1193@cindex location
95923bd6
AD
1194@cindex textual location
1195@cindex location, textual
847bf1f5
AD
1196
1197Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1198and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1199the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1200Bison provides a mechanism for handling these locations.
1201
72d2299c 1202Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1203associated location, but the type of locations is the same for all tokens and
72d2299c 1204groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1205structure for storing locations (@pxref{Locations}, for more details).
1206
1207Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1208set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1209is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1210@code{@@3}.
1211
1212When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1213of its left hand side (@pxref{Actions}). In the same way, another default
1214action is used for locations. However, the action for locations is general
847bf1f5 1215enough for most cases, meaning there is usually no need to describe for each
72d2299c 1216rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1217grouping, the default behavior of the output parser is to take the beginning
1218of the first symbol, and the end of the last symbol.
1219
342b8b6e 1220@node Bison Parser
bfa74976
RS
1221@section Bison Output: the Parser File
1222@cindex Bison parser
1223@cindex Bison utility
1224@cindex lexical analyzer, purpose
1225@cindex parser
1226
1227When you run Bison, you give it a Bison grammar file as input. The output
1228is a C source file that parses the language described by the grammar.
1229This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1230utility and the Bison parser are two distinct programs: the Bison utility
1231is a program whose output is the Bison parser that becomes part of your
1232program.
1233
1234The job of the Bison parser is to group tokens into groupings according to
1235the grammar rules---for example, to build identifiers and operators into
1236expressions. As it does this, it runs the actions for the grammar rules it
1237uses.
1238
704a47c4
AD
1239The tokens come from a function called the @dfn{lexical analyzer} that
1240you must supply in some fashion (such as by writing it in C). The Bison
1241parser calls the lexical analyzer each time it wants a new token. It
1242doesn't know what is ``inside'' the tokens (though their semantic values
1243may reflect this). Typically the lexical analyzer makes the tokens by
1244parsing characters of text, but Bison does not depend on this.
1245@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1246
1247The Bison parser file is C code which defines a function named
1248@code{yyparse} which implements that grammar. This function does not make
1249a complete C program: you must supply some additional functions. One is
1250the lexical analyzer. Another is an error-reporting function which the
1251parser calls to report an error. In addition, a complete C program must
1252start with a function called @code{main}; you have to provide this, and
1253arrange for it to call @code{yyparse} or the parser will never run.
1254@xref{Interface, ,Parser C-Language Interface}.
1255
f7ab6a50 1256Aside from the token type names and the symbols in the actions you
7093d0f5 1257write, all symbols defined in the Bison parser file itself
bfa74976
RS
1258begin with @samp{yy} or @samp{YY}. This includes interface functions
1259such as the lexical analyzer function @code{yylex}, the error reporting
1260function @code{yyerror} and the parser function @code{yyparse} itself.
1261This also includes numerous identifiers used for internal purposes.
1262Therefore, you should avoid using C identifiers starting with @samp{yy}
1263or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1264this manual. Also, you should avoid using the C identifiers
1265@samp{malloc} and @samp{free} for anything other than their usual
1266meanings.
bfa74976 1267
7093d0f5
AD
1268In some cases the Bison parser file includes system headers, and in
1269those cases your code should respect the identifiers reserved by those
55289366 1270headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1271@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1272declare memory allocators and related types. @code{<libintl.h>} is
1273included if message translation is in use
1274(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1275be included if you define @code{YYDEBUG} to a nonzero value
1276(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1277
342b8b6e 1278@node Stages
bfa74976
RS
1279@section Stages in Using Bison
1280@cindex stages in using Bison
1281@cindex using Bison
1282
1283The actual language-design process using Bison, from grammar specification
1284to a working compiler or interpreter, has these parts:
1285
1286@enumerate
1287@item
1288Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1289(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1290in the language, describe the action that is to be taken when an
1291instance of that rule is recognized. The action is described by a
1292sequence of C statements.
bfa74976
RS
1293
1294@item
704a47c4
AD
1295Write a lexical analyzer to process input and pass tokens to the parser.
1296The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1297Lexical Analyzer Function @code{yylex}}). It could also be produced
1298using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1299
1300@item
1301Write a controlling function that calls the Bison-produced parser.
1302
1303@item
1304Write error-reporting routines.
1305@end enumerate
1306
1307To turn this source code as written into a runnable program, you
1308must follow these steps:
1309
1310@enumerate
1311@item
1312Run Bison on the grammar to produce the parser.
1313
1314@item
1315Compile the code output by Bison, as well as any other source files.
1316
1317@item
1318Link the object files to produce the finished product.
1319@end enumerate
1320
342b8b6e 1321@node Grammar Layout
bfa74976
RS
1322@section The Overall Layout of a Bison Grammar
1323@cindex grammar file
1324@cindex file format
1325@cindex format of grammar file
1326@cindex layout of Bison grammar
1327
1328The input file for the Bison utility is a @dfn{Bison grammar file}. The
1329general form of a Bison grammar file is as follows:
1330
1331@example
1332%@{
08e49d20 1333@var{Prologue}
bfa74976
RS
1334%@}
1335
1336@var{Bison declarations}
1337
1338%%
1339@var{Grammar rules}
1340%%
08e49d20 1341@var{Epilogue}
bfa74976
RS
1342@end example
1343
1344@noindent
1345The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1346in every Bison grammar file to separate the sections.
1347
72d2299c 1348The prologue may define types and variables used in the actions. You can
342b8b6e 1349also use preprocessor commands to define macros used there, and use
bfa74976 1350@code{#include} to include header files that do any of these things.
38a92d50
PE
1351You need to declare the lexical analyzer @code{yylex} and the error
1352printer @code{yyerror} here, along with any other global identifiers
1353used by the actions in the grammar rules.
bfa74976
RS
1354
1355The Bison declarations declare the names of the terminal and nonterminal
1356symbols, and may also describe operator precedence and the data types of
1357semantic values of various symbols.
1358
1359The grammar rules define how to construct each nonterminal symbol from its
1360parts.
1361
38a92d50
PE
1362The epilogue can contain any code you want to use. Often the
1363definitions of functions declared in the prologue go here. In a
1364simple program, all the rest of the program can go here.
bfa74976 1365
342b8b6e 1366@node Examples
bfa74976
RS
1367@chapter Examples
1368@cindex simple examples
1369@cindex examples, simple
1370
1371Now we show and explain three sample programs written using Bison: a
1372reverse polish notation calculator, an algebraic (infix) notation
1373calculator, and a multi-function calculator. All three have been tested
1374under BSD Unix 4.3; each produces a usable, though limited, interactive
1375desk-top calculator.
1376
1377These examples are simple, but Bison grammars for real programming
aa08666d
AD
1378languages are written the same way. You can copy these examples into a
1379source file to try them.
bfa74976
RS
1380
1381@menu
f56274a8
DJ
1382* RPN Calc:: Reverse polish notation calculator;
1383 a first example with no operator precedence.
1384* Infix Calc:: Infix (algebraic) notation calculator.
1385 Operator precedence is introduced.
bfa74976 1386* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1387* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1388* Multi-function Calc:: Calculator with memory and trig functions.
1389 It uses multiple data-types for semantic values.
1390* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1391@end menu
1392
342b8b6e 1393@node RPN Calc
bfa74976
RS
1394@section Reverse Polish Notation Calculator
1395@cindex reverse polish notation
1396@cindex polish notation calculator
1397@cindex @code{rpcalc}
1398@cindex calculator, simple
1399
1400The first example is that of a simple double-precision @dfn{reverse polish
1401notation} calculator (a calculator using postfix operators). This example
1402provides a good starting point, since operator precedence is not an issue.
1403The second example will illustrate how operator precedence is handled.
1404
1405The source code for this calculator is named @file{rpcalc.y}. The
1406@samp{.y} extension is a convention used for Bison input files.
1407
1408@menu
f56274a8
DJ
1409* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1410* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1411* Rpcalc Lexer:: The lexical analyzer.
1412* Rpcalc Main:: The controlling function.
1413* Rpcalc Error:: The error reporting function.
1414* Rpcalc Generate:: Running Bison on the grammar file.
1415* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1416@end menu
1417
f56274a8 1418@node Rpcalc Declarations
bfa74976
RS
1419@subsection Declarations for @code{rpcalc}
1420
1421Here are the C and Bison declarations for the reverse polish notation
1422calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1423
1424@example
72d2299c 1425/* Reverse polish notation calculator. */
bfa74976
RS
1426
1427%@{
38a92d50
PE
1428 #define YYSTYPE double
1429 #include <math.h>
1430 int yylex (void);
1431 void yyerror (char const *);
bfa74976
RS
1432%@}
1433
1434%token NUM
1435
72d2299c 1436%% /* Grammar rules and actions follow. */
bfa74976
RS
1437@end example
1438
75f5aaea 1439The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1440preprocessor directives and two forward declarations.
bfa74976
RS
1441
1442The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1443specifying the C data type for semantic values of both tokens and
1444groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1445Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1446don't define it, @code{int} is the default. Because we specify
1447@code{double}, each token and each expression has an associated value,
1448which is a floating point number.
bfa74976
RS
1449
1450The @code{#include} directive is used to declare the exponentiation
1451function @code{pow}.
1452
38a92d50
PE
1453The forward declarations for @code{yylex} and @code{yyerror} are
1454needed because the C language requires that functions be declared
1455before they are used. These functions will be defined in the
1456epilogue, but the parser calls them so they must be declared in the
1457prologue.
1458
704a47c4
AD
1459The second section, Bison declarations, provides information to Bison
1460about the token types (@pxref{Bison Declarations, ,The Bison
1461Declarations Section}). Each terminal symbol that is not a
1462single-character literal must be declared here. (Single-character
bfa74976
RS
1463literals normally don't need to be declared.) In this example, all the
1464arithmetic operators are designated by single-character literals, so the
1465only terminal symbol that needs to be declared is @code{NUM}, the token
1466type for numeric constants.
1467
342b8b6e 1468@node Rpcalc Rules
bfa74976
RS
1469@subsection Grammar Rules for @code{rpcalc}
1470
1471Here are the grammar rules for the reverse polish notation calculator.
1472
1473@example
1474input: /* empty */
1475 | input line
1476;
1477
1478line: '\n'
18b519c0 1479 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1480;
1481
18b519c0
AD
1482exp: NUM @{ $$ = $1; @}
1483 | exp exp '+' @{ $$ = $1 + $2; @}
1484 | exp exp '-' @{ $$ = $1 - $2; @}
1485 | exp exp '*' @{ $$ = $1 * $2; @}
1486 | exp exp '/' @{ $$ = $1 / $2; @}
1487 /* Exponentiation */
1488 | exp exp '^' @{ $$ = pow ($1, $2); @}
1489 /* Unary minus */
1490 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1491;
1492%%
1493@end example
1494
1495The groupings of the rpcalc ``language'' defined here are the expression
1496(given the name @code{exp}), the line of input (@code{line}), and the
1497complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1498symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1499which is read as ``or''. The following sections explain what these rules
1500mean.
1501
1502The semantics of the language is determined by the actions taken when a
1503grouping is recognized. The actions are the C code that appears inside
1504braces. @xref{Actions}.
1505
1506You must specify these actions in C, but Bison provides the means for
1507passing semantic values between the rules. In each action, the
1508pseudo-variable @code{$$} stands for the semantic value for the grouping
1509that the rule is going to construct. Assigning a value to @code{$$} is the
1510main job of most actions. The semantic values of the components of the
1511rule are referred to as @code{$1}, @code{$2}, and so on.
1512
1513@menu
13863333
AD
1514* Rpcalc Input::
1515* Rpcalc Line::
1516* Rpcalc Expr::
bfa74976
RS
1517@end menu
1518
342b8b6e 1519@node Rpcalc Input
bfa74976
RS
1520@subsubsection Explanation of @code{input}
1521
1522Consider the definition of @code{input}:
1523
1524@example
1525input: /* empty */
1526 | input line
1527;
1528@end example
1529
1530This definition reads as follows: ``A complete input is either an empty
1531string, or a complete input followed by an input line''. Notice that
1532``complete input'' is defined in terms of itself. This definition is said
1533to be @dfn{left recursive} since @code{input} appears always as the
1534leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1535
1536The first alternative is empty because there are no symbols between the
1537colon and the first @samp{|}; this means that @code{input} can match an
1538empty string of input (no tokens). We write the rules this way because it
1539is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1540It's conventional to put an empty alternative first and write the comment
1541@samp{/* empty */} in it.
1542
1543The second alternate rule (@code{input line}) handles all nontrivial input.
1544It means, ``After reading any number of lines, read one more line if
1545possible.'' The left recursion makes this rule into a loop. Since the
1546first alternative matches empty input, the loop can be executed zero or
1547more times.
1548
1549The parser function @code{yyparse} continues to process input until a
1550grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1551input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1552
342b8b6e 1553@node Rpcalc Line
bfa74976
RS
1554@subsubsection Explanation of @code{line}
1555
1556Now consider the definition of @code{line}:
1557
1558@example
1559line: '\n'
1560 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1561;
1562@end example
1563
1564The first alternative is a token which is a newline character; this means
1565that rpcalc accepts a blank line (and ignores it, since there is no
1566action). The second alternative is an expression followed by a newline.
1567This is the alternative that makes rpcalc useful. The semantic value of
1568the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1569question is the first symbol in the alternative. The action prints this
1570value, which is the result of the computation the user asked for.
1571
1572This action is unusual because it does not assign a value to @code{$$}. As
1573a consequence, the semantic value associated with the @code{line} is
1574uninitialized (its value will be unpredictable). This would be a bug if
1575that value were ever used, but we don't use it: once rpcalc has printed the
1576value of the user's input line, that value is no longer needed.
1577
342b8b6e 1578@node Rpcalc Expr
bfa74976
RS
1579@subsubsection Explanation of @code{expr}
1580
1581The @code{exp} grouping has several rules, one for each kind of expression.
1582The first rule handles the simplest expressions: those that are just numbers.
1583The second handles an addition-expression, which looks like two expressions
1584followed by a plus-sign. The third handles subtraction, and so on.
1585
1586@example
1587exp: NUM
1588 | exp exp '+' @{ $$ = $1 + $2; @}
1589 | exp exp '-' @{ $$ = $1 - $2; @}
1590 @dots{}
1591 ;
1592@end example
1593
1594We have used @samp{|} to join all the rules for @code{exp}, but we could
1595equally well have written them separately:
1596
1597@example
1598exp: NUM ;
1599exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1600exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1601 @dots{}
1602@end example
1603
1604Most of the rules have actions that compute the value of the expression in
1605terms of the value of its parts. For example, in the rule for addition,
1606@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1607the second one. The third component, @code{'+'}, has no meaningful
1608associated semantic value, but if it had one you could refer to it as
1609@code{$3}. When @code{yyparse} recognizes a sum expression using this
1610rule, the sum of the two subexpressions' values is produced as the value of
1611the entire expression. @xref{Actions}.
1612
1613You don't have to give an action for every rule. When a rule has no
1614action, Bison by default copies the value of @code{$1} into @code{$$}.
1615This is what happens in the first rule (the one that uses @code{NUM}).
1616
1617The formatting shown here is the recommended convention, but Bison does
72d2299c 1618not require it. You can add or change white space as much as you wish.
bfa74976
RS
1619For example, this:
1620
1621@example
99a9344e 1622exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1623@end example
1624
1625@noindent
1626means the same thing as this:
1627
1628@example
1629exp: NUM
1630 | exp exp '+' @{ $$ = $1 + $2; @}
1631 | @dots{}
99a9344e 1632;
bfa74976
RS
1633@end example
1634
1635@noindent
1636The latter, however, is much more readable.
1637
342b8b6e 1638@node Rpcalc Lexer
bfa74976
RS
1639@subsection The @code{rpcalc} Lexical Analyzer
1640@cindex writing a lexical analyzer
1641@cindex lexical analyzer, writing
1642
704a47c4
AD
1643The lexical analyzer's job is low-level parsing: converting characters
1644or sequences of characters into tokens. The Bison parser gets its
1645tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1646Analyzer Function @code{yylex}}.
bfa74976 1647
c827f760
PE
1648Only a simple lexical analyzer is needed for the @acronym{RPN}
1649calculator. This
bfa74976
RS
1650lexical analyzer skips blanks and tabs, then reads in numbers as
1651@code{double} and returns them as @code{NUM} tokens. Any other character
1652that isn't part of a number is a separate token. Note that the token-code
1653for such a single-character token is the character itself.
1654
1655The return value of the lexical analyzer function is a numeric code which
1656represents a token type. The same text used in Bison rules to stand for
1657this token type is also a C expression for the numeric code for the type.
1658This works in two ways. If the token type is a character literal, then its
e966383b 1659numeric code is that of the character; you can use the same
bfa74976
RS
1660character literal in the lexical analyzer to express the number. If the
1661token type is an identifier, that identifier is defined by Bison as a C
1662macro whose definition is the appropriate number. In this example,
1663therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1664
1964ad8c
AD
1665The semantic value of the token (if it has one) is stored into the
1666global variable @code{yylval}, which is where the Bison parser will look
1667for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1668defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1669,Declarations for @code{rpcalc}}.)
bfa74976 1670
72d2299c
PE
1671A token type code of zero is returned if the end-of-input is encountered.
1672(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1673
1674Here is the code for the lexical analyzer:
1675
1676@example
1677@group
72d2299c 1678/* The lexical analyzer returns a double floating point
e966383b 1679 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1680 of the character read if not a number. It skips all blanks
1681 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1682
1683#include <ctype.h>
1684@end group
1685
1686@group
13863333
AD
1687int
1688yylex (void)
bfa74976
RS
1689@{
1690 int c;
1691
72d2299c 1692 /* Skip white space. */
13863333 1693 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1694 ;
1695@end group
1696@group
72d2299c 1697 /* Process numbers. */
13863333 1698 if (c == '.' || isdigit (c))
bfa74976
RS
1699 @{
1700 ungetc (c, stdin);
1701 scanf ("%lf", &yylval);
1702 return NUM;
1703 @}
1704@end group
1705@group
72d2299c 1706 /* Return end-of-input. */
13863333 1707 if (c == EOF)
bfa74976 1708 return 0;
72d2299c 1709 /* Return a single char. */
13863333 1710 return c;
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Main
bfa74976
RS
1716@subsection The Controlling Function
1717@cindex controlling function
1718@cindex main function in simple example
1719
1720In keeping with the spirit of this example, the controlling function is
1721kept to the bare minimum. The only requirement is that it call
1722@code{yyparse} to start the process of parsing.
1723
1724@example
1725@group
13863333
AD
1726int
1727main (void)
bfa74976 1728@{
13863333 1729 return yyparse ();
bfa74976
RS
1730@}
1731@end group
1732@end example
1733
342b8b6e 1734@node Rpcalc Error
bfa74976
RS
1735@subsection The Error Reporting Routine
1736@cindex error reporting routine
1737
1738When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1739function @code{yyerror} to print an error message (usually but not
6e649e65 1740always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1741@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1742here is the definition we will use:
bfa74976
RS
1743
1744@example
1745@group
1746#include <stdio.h>
1747
38a92d50 1748/* Called by yyparse on error. */
13863333 1749void
38a92d50 1750yyerror (char const *s)
bfa74976 1751@{
4e03e201 1752 fprintf (stderr, "%s\n", s);
bfa74976
RS
1753@}
1754@end group
1755@end example
1756
1757After @code{yyerror} returns, the Bison parser may recover from the error
1758and continue parsing if the grammar contains a suitable error rule
1759(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1760have not written any error rules in this example, so any invalid input will
1761cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1762real calculator, but it is adequate for the first example.
bfa74976 1763
f56274a8 1764@node Rpcalc Generate
bfa74976
RS
1765@subsection Running Bison to Make the Parser
1766@cindex running Bison (introduction)
1767
ceed8467
AD
1768Before running Bison to produce a parser, we need to decide how to
1769arrange all the source code in one or more source files. For such a
1770simple example, the easiest thing is to put everything in one file. The
1771definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1772end, in the epilogue of the file
75f5aaea 1773(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1774
1775For a large project, you would probably have several source files, and use
1776@code{make} to arrange to recompile them.
1777
1778With all the source in a single file, you use the following command to
1779convert it into a parser file:
1780
1781@example
fa4d969f 1782bison @var{file}.y
bfa74976
RS
1783@end example
1784
1785@noindent
1786In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1787@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1788removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1789Bison contains the source code for @code{yyparse}. The additional
1790functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1791are copied verbatim to the output.
1792
342b8b6e 1793@node Rpcalc Compile
bfa74976
RS
1794@subsection Compiling the Parser File
1795@cindex compiling the parser
1796
1797Here is how to compile and run the parser file:
1798
1799@example
1800@group
1801# @r{List files in current directory.}
9edcd895 1802$ @kbd{ls}
bfa74976
RS
1803rpcalc.tab.c rpcalc.y
1804@end group
1805
1806@group
1807# @r{Compile the Bison parser.}
1808# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1809$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1810@end group
1811
1812@group
1813# @r{List files again.}
9edcd895 1814$ @kbd{ls}
bfa74976
RS
1815rpcalc rpcalc.tab.c rpcalc.y
1816@end group
1817@end example
1818
1819The file @file{rpcalc} now contains the executable code. Here is an
1820example session using @code{rpcalc}.
1821
1822@example
9edcd895
AD
1823$ @kbd{rpcalc}
1824@kbd{4 9 +}
bfa74976 182513
9edcd895 1826@kbd{3 7 + 3 4 5 *+-}
bfa74976 1827-13
9edcd895 1828@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182913
9edcd895 1830@kbd{5 6 / 4 n +}
bfa74976 1831-3.166666667
9edcd895 1832@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183381
9edcd895
AD
1834@kbd{^D} @r{End-of-file indicator}
1835$
bfa74976
RS
1836@end example
1837
342b8b6e 1838@node Infix Calc
bfa74976
RS
1839@section Infix Notation Calculator: @code{calc}
1840@cindex infix notation calculator
1841@cindex @code{calc}
1842@cindex calculator, infix notation
1843
1844We now modify rpcalc to handle infix operators instead of postfix. Infix
1845notation involves the concept of operator precedence and the need for
1846parentheses nested to arbitrary depth. Here is the Bison code for
1847@file{calc.y}, an infix desk-top calculator.
1848
1849@example
38a92d50 1850/* Infix notation calculator. */
bfa74976
RS
1851
1852%@{
38a92d50
PE
1853 #define YYSTYPE double
1854 #include <math.h>
1855 #include <stdio.h>
1856 int yylex (void);
1857 void yyerror (char const *);
bfa74976
RS
1858%@}
1859
38a92d50 1860/* Bison declarations. */
bfa74976
RS
1861%token NUM
1862%left '-' '+'
1863%left '*' '/'
1864%left NEG /* negation--unary minus */
38a92d50 1865%right '^' /* exponentiation */
bfa74976 1866
38a92d50
PE
1867%% /* The grammar follows. */
1868input: /* empty */
bfa74976
RS
1869 | input line
1870;
1871
1872line: '\n'
1873 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1874;
1875
1876exp: NUM @{ $$ = $1; @}
1877 | exp '+' exp @{ $$ = $1 + $3; @}
1878 | exp '-' exp @{ $$ = $1 - $3; @}
1879 | exp '*' exp @{ $$ = $1 * $3; @}
1880 | exp '/' exp @{ $$ = $1 / $3; @}
1881 | '-' exp %prec NEG @{ $$ = -$2; @}
1882 | exp '^' exp @{ $$ = pow ($1, $3); @}
1883 | '(' exp ')' @{ $$ = $2; @}
1884;
1885%%
1886@end example
1887
1888@noindent
ceed8467
AD
1889The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1890same as before.
bfa74976
RS
1891
1892There are two important new features shown in this code.
1893
1894In the second section (Bison declarations), @code{%left} declares token
1895types and says they are left-associative operators. The declarations
1896@code{%left} and @code{%right} (right associativity) take the place of
1897@code{%token} which is used to declare a token type name without
1898associativity. (These tokens are single-character literals, which
1899ordinarily don't need to be declared. We declare them here to specify
1900the associativity.)
1901
1902Operator precedence is determined by the line ordering of the
1903declarations; the higher the line number of the declaration (lower on
1904the page or screen), the higher the precedence. Hence, exponentiation
1905has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1906by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1907Precedence}.
bfa74976 1908
704a47c4
AD
1909The other important new feature is the @code{%prec} in the grammar
1910section for the unary minus operator. The @code{%prec} simply instructs
1911Bison that the rule @samp{| '-' exp} has the same precedence as
1912@code{NEG}---in this case the next-to-highest. @xref{Contextual
1913Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1914
1915Here is a sample run of @file{calc.y}:
1916
1917@need 500
1918@example
9edcd895
AD
1919$ @kbd{calc}
1920@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19216.880952381
9edcd895 1922@kbd{-56 + 2}
bfa74976 1923-54
9edcd895 1924@kbd{3 ^ 2}
bfa74976
RS
19259
1926@end example
1927
342b8b6e 1928@node Simple Error Recovery
bfa74976
RS
1929@section Simple Error Recovery
1930@cindex error recovery, simple
1931
1932Up to this point, this manual has not addressed the issue of @dfn{error
1933recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1934error. All we have handled is error reporting with @code{yyerror}.
1935Recall that by default @code{yyparse} returns after calling
1936@code{yyerror}. This means that an erroneous input line causes the
1937calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1938
1939The Bison language itself includes the reserved word @code{error}, which
1940may be included in the grammar rules. In the example below it has
1941been added to one of the alternatives for @code{line}:
1942
1943@example
1944@group
1945line: '\n'
1946 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1947 | error '\n' @{ yyerrok; @}
1948;
1949@end group
1950@end example
1951
ceed8467 1952This addition to the grammar allows for simple error recovery in the
6e649e65 1953event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1954read, the error will be recognized by the third rule for @code{line},
1955and parsing will continue. (The @code{yyerror} function is still called
1956upon to print its message as well.) The action executes the statement
1957@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1958that error recovery is complete (@pxref{Error Recovery}). Note the
1959difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1960misprint.
bfa74976
RS
1961
1962This form of error recovery deals with syntax errors. There are other
1963kinds of errors; for example, division by zero, which raises an exception
1964signal that is normally fatal. A real calculator program must handle this
1965signal and use @code{longjmp} to return to @code{main} and resume parsing
1966input lines; it would also have to discard the rest of the current line of
1967input. We won't discuss this issue further because it is not specific to
1968Bison programs.
1969
342b8b6e
AD
1970@node Location Tracking Calc
1971@section Location Tracking Calculator: @code{ltcalc}
1972@cindex location tracking calculator
1973@cindex @code{ltcalc}
1974@cindex calculator, location tracking
1975
9edcd895
AD
1976This example extends the infix notation calculator with location
1977tracking. This feature will be used to improve the error messages. For
1978the sake of clarity, this example is a simple integer calculator, since
1979most of the work needed to use locations will be done in the lexical
72d2299c 1980analyzer.
342b8b6e
AD
1981
1982@menu
f56274a8
DJ
1983* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1984* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1985* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1986@end menu
1987
f56274a8 1988@node Ltcalc Declarations
342b8b6e
AD
1989@subsection Declarations for @code{ltcalc}
1990
9edcd895
AD
1991The C and Bison declarations for the location tracking calculator are
1992the same as the declarations for the infix notation calculator.
342b8b6e
AD
1993
1994@example
1995/* Location tracking calculator. */
1996
1997%@{
38a92d50
PE
1998 #define YYSTYPE int
1999 #include <math.h>
2000 int yylex (void);
2001 void yyerror (char const *);
342b8b6e
AD
2002%@}
2003
2004/* Bison declarations. */
2005%token NUM
2006
2007%left '-' '+'
2008%left '*' '/'
2009%left NEG
2010%right '^'
2011
38a92d50 2012%% /* The grammar follows. */
342b8b6e
AD
2013@end example
2014
9edcd895
AD
2015@noindent
2016Note there are no declarations specific to locations. Defining a data
2017type for storing locations is not needed: we will use the type provided
2018by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2019four member structure with the following integer fields:
2020@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2021@code{last_column}. By conventions, and in accordance with the GNU
2022Coding Standards and common practice, the line and column count both
2023start at 1.
342b8b6e
AD
2024
2025@node Ltcalc Rules
2026@subsection Grammar Rules for @code{ltcalc}
2027
9edcd895
AD
2028Whether handling locations or not has no effect on the syntax of your
2029language. Therefore, grammar rules for this example will be very close
2030to those of the previous example: we will only modify them to benefit
2031from the new information.
342b8b6e 2032
9edcd895
AD
2033Here, we will use locations to report divisions by zero, and locate the
2034wrong expressions or subexpressions.
342b8b6e
AD
2035
2036@example
2037@group
2038input : /* empty */
2039 | input line
2040;
2041@end group
2042
2043@group
2044line : '\n'
2045 | exp '\n' @{ printf ("%d\n", $1); @}
2046;
2047@end group
2048
2049@group
2050exp : NUM @{ $$ = $1; @}
2051 | exp '+' exp @{ $$ = $1 + $3; @}
2052 | exp '-' exp @{ $$ = $1 - $3; @}
2053 | exp '*' exp @{ $$ = $1 * $3; @}
2054@end group
342b8b6e 2055@group
9edcd895 2056 | exp '/' exp
342b8b6e
AD
2057 @{
2058 if ($3)
2059 $$ = $1 / $3;
2060 else
2061 @{
2062 $$ = 1;
9edcd895
AD
2063 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2064 @@3.first_line, @@3.first_column,
2065 @@3.last_line, @@3.last_column);
342b8b6e
AD
2066 @}
2067 @}
2068@end group
2069@group
178e123e 2070 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2071 | exp '^' exp @{ $$ = pow ($1, $3); @}
2072 | '(' exp ')' @{ $$ = $2; @}
2073@end group
2074@end example
2075
2076This code shows how to reach locations inside of semantic actions, by
2077using the pseudo-variables @code{@@@var{n}} for rule components, and the
2078pseudo-variable @code{@@$} for groupings.
2079
9edcd895
AD
2080We don't need to assign a value to @code{@@$}: the output parser does it
2081automatically. By default, before executing the C code of each action,
2082@code{@@$} is set to range from the beginning of @code{@@1} to the end
2083of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2084can be redefined (@pxref{Location Default Action, , Default Action for
2085Locations}), and for very specific rules, @code{@@$} can be computed by
2086hand.
342b8b6e
AD
2087
2088@node Ltcalc Lexer
2089@subsection The @code{ltcalc} Lexical Analyzer.
2090
9edcd895 2091Until now, we relied on Bison's defaults to enable location
72d2299c 2092tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2093able to feed the parser with the token locations, as it already does for
2094semantic values.
342b8b6e 2095
9edcd895
AD
2096To this end, we must take into account every single character of the
2097input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2098
2099@example
2100@group
2101int
2102yylex (void)
2103@{
2104 int c;
18b519c0 2105@end group
342b8b6e 2106
18b519c0 2107@group
72d2299c 2108 /* Skip white space. */
342b8b6e
AD
2109 while ((c = getchar ()) == ' ' || c == '\t')
2110 ++yylloc.last_column;
18b519c0 2111@end group
342b8b6e 2112
18b519c0 2113@group
72d2299c 2114 /* Step. */
342b8b6e
AD
2115 yylloc.first_line = yylloc.last_line;
2116 yylloc.first_column = yylloc.last_column;
2117@end group
2118
2119@group
72d2299c 2120 /* Process numbers. */
342b8b6e
AD
2121 if (isdigit (c))
2122 @{
2123 yylval = c - '0';
2124 ++yylloc.last_column;
2125 while (isdigit (c = getchar ()))
2126 @{
2127 ++yylloc.last_column;
2128 yylval = yylval * 10 + c - '0';
2129 @}
2130 ungetc (c, stdin);
2131 return NUM;
2132 @}
2133@end group
2134
72d2299c 2135 /* Return end-of-input. */
342b8b6e
AD
2136 if (c == EOF)
2137 return 0;
2138
72d2299c 2139 /* Return a single char, and update location. */
342b8b6e
AD
2140 if (c == '\n')
2141 @{
2142 ++yylloc.last_line;
2143 yylloc.last_column = 0;
2144 @}
2145 else
2146 ++yylloc.last_column;
2147 return c;
2148@}
2149@end example
2150
9edcd895
AD
2151Basically, the lexical analyzer performs the same processing as before:
2152it skips blanks and tabs, and reads numbers or single-character tokens.
2153In addition, it updates @code{yylloc}, the global variable (of type
2154@code{YYLTYPE}) containing the token's location.
342b8b6e 2155
9edcd895 2156Now, each time this function returns a token, the parser has its number
72d2299c 2157as well as its semantic value, and its location in the text. The last
9edcd895
AD
2158needed change is to initialize @code{yylloc}, for example in the
2159controlling function:
342b8b6e
AD
2160
2161@example
9edcd895 2162@group
342b8b6e
AD
2163int
2164main (void)
2165@{
2166 yylloc.first_line = yylloc.last_line = 1;
2167 yylloc.first_column = yylloc.last_column = 0;
2168 return yyparse ();
2169@}
9edcd895 2170@end group
342b8b6e
AD
2171@end example
2172
9edcd895
AD
2173Remember that computing locations is not a matter of syntax. Every
2174character must be associated to a location update, whether it is in
2175valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2176
2177@node Multi-function Calc
bfa74976
RS
2178@section Multi-Function Calculator: @code{mfcalc}
2179@cindex multi-function calculator
2180@cindex @code{mfcalc}
2181@cindex calculator, multi-function
2182
2183Now that the basics of Bison have been discussed, it is time to move on to
2184a more advanced problem. The above calculators provided only five
2185functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2186be nice to have a calculator that provides other mathematical functions such
2187as @code{sin}, @code{cos}, etc.
2188
2189It is easy to add new operators to the infix calculator as long as they are
2190only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2191back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2192adding a new operator. But we want something more flexible: built-in
2193functions whose syntax has this form:
2194
2195@example
2196@var{function_name} (@var{argument})
2197@end example
2198
2199@noindent
2200At the same time, we will add memory to the calculator, by allowing you
2201to create named variables, store values in them, and use them later.
2202Here is a sample session with the multi-function calculator:
2203
2204@example
9edcd895
AD
2205$ @kbd{mfcalc}
2206@kbd{pi = 3.141592653589}
bfa74976 22073.1415926536
9edcd895 2208@kbd{sin(pi)}
bfa74976 22090.0000000000
9edcd895 2210@kbd{alpha = beta1 = 2.3}
bfa74976 22112.3000000000
9edcd895 2212@kbd{alpha}
bfa74976 22132.3000000000
9edcd895 2214@kbd{ln(alpha)}
bfa74976 22150.8329091229
9edcd895 2216@kbd{exp(ln(beta1))}
bfa74976 22172.3000000000
9edcd895 2218$
bfa74976
RS
2219@end example
2220
2221Note that multiple assignment and nested function calls are permitted.
2222
2223@menu
f56274a8
DJ
2224* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2225* Mfcalc Rules:: Grammar rules for the calculator.
2226* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2227@end menu
2228
f56274a8 2229@node Mfcalc Declarations
bfa74976
RS
2230@subsection Declarations for @code{mfcalc}
2231
2232Here are the C and Bison declarations for the multi-function calculator.
2233
2234@smallexample
18b519c0 2235@group
bfa74976 2236%@{
38a92d50
PE
2237 #include <math.h> /* For math functions, cos(), sin(), etc. */
2238 #include "calc.h" /* Contains definition of `symrec'. */
2239 int yylex (void);
2240 void yyerror (char const *);
bfa74976 2241%@}
18b519c0
AD
2242@end group
2243@group
bfa74976 2244%union @{
38a92d50
PE
2245 double val; /* For returning numbers. */
2246 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2247@}
18b519c0 2248@end group
38a92d50
PE
2249%token <val> NUM /* Simple double precision number. */
2250%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2251%type <val> exp
2252
18b519c0 2253@group
bfa74976
RS
2254%right '='
2255%left '-' '+'
2256%left '*' '/'
38a92d50
PE
2257%left NEG /* negation--unary minus */
2258%right '^' /* exponentiation */
18b519c0 2259@end group
38a92d50 2260%% /* The grammar follows. */
bfa74976
RS
2261@end smallexample
2262
2263The above grammar introduces only two new features of the Bison language.
2264These features allow semantic values to have various data types
2265(@pxref{Multiple Types, ,More Than One Value Type}).
2266
2267The @code{%union} declaration specifies the entire list of possible types;
2268this is instead of defining @code{YYSTYPE}. The allowable types are now
2269double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2270the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2271
2272Since values can now have various types, it is necessary to associate a
2273type with each grammar symbol whose semantic value is used. These symbols
2274are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2275declarations are augmented with information about their data type (placed
2276between angle brackets).
2277
704a47c4
AD
2278The Bison construct @code{%type} is used for declaring nonterminal
2279symbols, just as @code{%token} is used for declaring token types. We
2280have not used @code{%type} before because nonterminal symbols are
2281normally declared implicitly by the rules that define them. But
2282@code{exp} must be declared explicitly so we can specify its value type.
2283@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2284
342b8b6e 2285@node Mfcalc Rules
bfa74976
RS
2286@subsection Grammar Rules for @code{mfcalc}
2287
2288Here are the grammar rules for the multi-function calculator.
2289Most of them are copied directly from @code{calc}; three rules,
2290those which mention @code{VAR} or @code{FNCT}, are new.
2291
2292@smallexample
18b519c0 2293@group
bfa74976
RS
2294input: /* empty */
2295 | input line
2296;
18b519c0 2297@end group
bfa74976 2298
18b519c0 2299@group
bfa74976
RS
2300line:
2301 '\n'
2302 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2303 | error '\n' @{ yyerrok; @}
2304;
18b519c0 2305@end group
bfa74976 2306
18b519c0 2307@group
bfa74976
RS
2308exp: NUM @{ $$ = $1; @}
2309 | VAR @{ $$ = $1->value.var; @}
2310 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2311 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2312 | exp '+' exp @{ $$ = $1 + $3; @}
2313 | exp '-' exp @{ $$ = $1 - $3; @}
2314 | exp '*' exp @{ $$ = $1 * $3; @}
2315 | exp '/' exp @{ $$ = $1 / $3; @}
2316 | '-' exp %prec NEG @{ $$ = -$2; @}
2317 | exp '^' exp @{ $$ = pow ($1, $3); @}
2318 | '(' exp ')' @{ $$ = $2; @}
2319;
18b519c0 2320@end group
38a92d50 2321/* End of grammar. */
bfa74976
RS
2322%%
2323@end smallexample
2324
f56274a8 2325@node Mfcalc Symbol Table
bfa74976
RS
2326@subsection The @code{mfcalc} Symbol Table
2327@cindex symbol table example
2328
2329The multi-function calculator requires a symbol table to keep track of the
2330names and meanings of variables and functions. This doesn't affect the
2331grammar rules (except for the actions) or the Bison declarations, but it
2332requires some additional C functions for support.
2333
2334The symbol table itself consists of a linked list of records. Its
2335definition, which is kept in the header @file{calc.h}, is as follows. It
2336provides for either functions or variables to be placed in the table.
2337
2338@smallexample
2339@group
38a92d50 2340/* Function type. */
32dfccf8 2341typedef double (*func_t) (double);
72f889cc 2342@end group
32dfccf8 2343
72f889cc 2344@group
38a92d50 2345/* Data type for links in the chain of symbols. */
bfa74976
RS
2346struct symrec
2347@{
38a92d50 2348 char *name; /* name of symbol */
bfa74976 2349 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2350 union
2351 @{
38a92d50
PE
2352 double var; /* value of a VAR */
2353 func_t fnctptr; /* value of a FNCT */
bfa74976 2354 @} value;
38a92d50 2355 struct symrec *next; /* link field */
bfa74976
RS
2356@};
2357@end group
2358
2359@group
2360typedef struct symrec symrec;
2361
38a92d50 2362/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2363extern symrec *sym_table;
2364
a730d142 2365symrec *putsym (char const *, int);
38a92d50 2366symrec *getsym (char const *);
bfa74976
RS
2367@end group
2368@end smallexample
2369
2370The new version of @code{main} includes a call to @code{init_table}, a
2371function that initializes the symbol table. Here it is, and
2372@code{init_table} as well:
2373
2374@smallexample
bfa74976
RS
2375#include <stdio.h>
2376
18b519c0 2377@group
38a92d50 2378/* Called by yyparse on error. */
13863333 2379void
38a92d50 2380yyerror (char const *s)
bfa74976
RS
2381@{
2382 printf ("%s\n", s);
2383@}
18b519c0 2384@end group
bfa74976 2385
18b519c0 2386@group
bfa74976
RS
2387struct init
2388@{
38a92d50
PE
2389 char const *fname;
2390 double (*fnct) (double);
bfa74976
RS
2391@};
2392@end group
2393
2394@group
38a92d50 2395struct init const arith_fncts[] =
13863333 2396@{
32dfccf8
AD
2397 "sin", sin,
2398 "cos", cos,
13863333 2399 "atan", atan,
32dfccf8
AD
2400 "ln", log,
2401 "exp", exp,
13863333
AD
2402 "sqrt", sqrt,
2403 0, 0
2404@};
18b519c0 2405@end group
bfa74976 2406
18b519c0 2407@group
bfa74976 2408/* The symbol table: a chain of `struct symrec'. */
38a92d50 2409symrec *sym_table;
bfa74976
RS
2410@end group
2411
2412@group
72d2299c 2413/* Put arithmetic functions in table. */
13863333
AD
2414void
2415init_table (void)
bfa74976
RS
2416@{
2417 int i;
2418 symrec *ptr;
2419 for (i = 0; arith_fncts[i].fname != 0; i++)
2420 @{
2421 ptr = putsym (arith_fncts[i].fname, FNCT);
2422 ptr->value.fnctptr = arith_fncts[i].fnct;
2423 @}
2424@}
2425@end group
38a92d50
PE
2426
2427@group
2428int
2429main (void)
2430@{
2431 init_table ();
2432 return yyparse ();
2433@}
2434@end group
bfa74976
RS
2435@end smallexample
2436
2437By simply editing the initialization list and adding the necessary include
2438files, you can add additional functions to the calculator.
2439
2440Two important functions allow look-up and installation of symbols in the
2441symbol table. The function @code{putsym} is passed a name and the type
2442(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2443linked to the front of the list, and a pointer to the object is returned.
2444The function @code{getsym} is passed the name of the symbol to look up. If
2445found, a pointer to that symbol is returned; otherwise zero is returned.
2446
2447@smallexample
2448symrec *
38a92d50 2449putsym (char const *sym_name, int sym_type)
bfa74976
RS
2450@{
2451 symrec *ptr;
2452 ptr = (symrec *) malloc (sizeof (symrec));
2453 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2454 strcpy (ptr->name,sym_name);
2455 ptr->type = sym_type;
72d2299c 2456 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2457 ptr->next = (struct symrec *)sym_table;
2458 sym_table = ptr;
2459 return ptr;
2460@}
2461
2462symrec *
38a92d50 2463getsym (char const *sym_name)
bfa74976
RS
2464@{
2465 symrec *ptr;
2466 for (ptr = sym_table; ptr != (symrec *) 0;
2467 ptr = (symrec *)ptr->next)
2468 if (strcmp (ptr->name,sym_name) == 0)
2469 return ptr;
2470 return 0;
2471@}
2472@end smallexample
2473
2474The function @code{yylex} must now recognize variables, numeric values, and
2475the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2476characters with a leading letter are recognized as either variables or
bfa74976
RS
2477functions depending on what the symbol table says about them.
2478
2479The string is passed to @code{getsym} for look up in the symbol table. If
2480the name appears in the table, a pointer to its location and its type
2481(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2482already in the table, then it is installed as a @code{VAR} using
2483@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2484returned to @code{yyparse}.
bfa74976
RS
2485
2486No change is needed in the handling of numeric values and arithmetic
2487operators in @code{yylex}.
2488
2489@smallexample
2490@group
2491#include <ctype.h>
18b519c0 2492@end group
13863333 2493
18b519c0 2494@group
13863333
AD
2495int
2496yylex (void)
bfa74976
RS
2497@{
2498 int c;
2499
72d2299c 2500 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2501 while ((c = getchar ()) == ' ' || c == '\t');
2502
2503 if (c == EOF)
2504 return 0;
2505@end group
2506
2507@group
2508 /* Char starts a number => parse the number. */
2509 if (c == '.' || isdigit (c))
2510 @{
2511 ungetc (c, stdin);
2512 scanf ("%lf", &yylval.val);
2513 return NUM;
2514 @}
2515@end group
2516
2517@group
2518 /* Char starts an identifier => read the name. */
2519 if (isalpha (c))
2520 @{
2521 symrec *s;
2522 static char *symbuf = 0;
2523 static int length = 0;
2524 int i;
2525@end group
2526
2527@group
2528 /* Initially make the buffer long enough
2529 for a 40-character symbol name. */
2530 if (length == 0)
2531 length = 40, symbuf = (char *)malloc (length + 1);
2532
2533 i = 0;
2534 do
2535@end group
2536@group
2537 @{
2538 /* If buffer is full, make it bigger. */
2539 if (i == length)
2540 @{
2541 length *= 2;
18b519c0 2542 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2543 @}
2544 /* Add this character to the buffer. */
2545 symbuf[i++] = c;
2546 /* Get another character. */
2547 c = getchar ();
2548 @}
2549@end group
2550@group
72d2299c 2551 while (isalnum (c));
bfa74976
RS
2552
2553 ungetc (c, stdin);
2554 symbuf[i] = '\0';
2555@end group
2556
2557@group
2558 s = getsym (symbuf);
2559 if (s == 0)
2560 s = putsym (symbuf, VAR);
2561 yylval.tptr = s;
2562 return s->type;
2563 @}
2564
2565 /* Any other character is a token by itself. */
2566 return c;
2567@}
2568@end group
2569@end smallexample
2570
72d2299c 2571This program is both powerful and flexible. You may easily add new
704a47c4
AD
2572functions, and it is a simple job to modify this code to install
2573predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2574
342b8b6e 2575@node Exercises
bfa74976
RS
2576@section Exercises
2577@cindex exercises
2578
2579@enumerate
2580@item
2581Add some new functions from @file{math.h} to the initialization list.
2582
2583@item
2584Add another array that contains constants and their values. Then
2585modify @code{init_table} to add these constants to the symbol table.
2586It will be easiest to give the constants type @code{VAR}.
2587
2588@item
2589Make the program report an error if the user refers to an
2590uninitialized variable in any way except to store a value in it.
2591@end enumerate
2592
342b8b6e 2593@node Grammar File
bfa74976
RS
2594@chapter Bison Grammar Files
2595
2596Bison takes as input a context-free grammar specification and produces a
2597C-language function that recognizes correct instances of the grammar.
2598
2599The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2600@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2601
2602@menu
2603* Grammar Outline:: Overall layout of the grammar file.
2604* Symbols:: Terminal and nonterminal symbols.
2605* Rules:: How to write grammar rules.
2606* Recursion:: Writing recursive rules.
2607* Semantics:: Semantic values and actions.
847bf1f5 2608* Locations:: Locations and actions.
bfa74976
RS
2609* Declarations:: All kinds of Bison declarations are described here.
2610* Multiple Parsers:: Putting more than one Bison parser in one program.
2611@end menu
2612
342b8b6e 2613@node Grammar Outline
bfa74976
RS
2614@section Outline of a Bison Grammar
2615
2616A Bison grammar file has four main sections, shown here with the
2617appropriate delimiters:
2618
2619@example
2620%@{
38a92d50 2621 @var{Prologue}
bfa74976
RS
2622%@}
2623
2624@var{Bison declarations}
2625
2626%%
2627@var{Grammar rules}
2628%%
2629
75f5aaea 2630@var{Epilogue}
bfa74976
RS
2631@end example
2632
2633Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2634As a @acronym{GNU} extension, @samp{//} introduces a comment that
2635continues until end of line.
bfa74976
RS
2636
2637@menu
f56274a8 2638* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2639* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2640* Bison Declarations:: Syntax and usage of the Bison declarations section.
2641* Grammar Rules:: Syntax and usage of the grammar rules section.
2642* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2643@end menu
2644
38a92d50 2645@node Prologue
75f5aaea
MA
2646@subsection The prologue
2647@cindex declarations section
2648@cindex Prologue
2649@cindex declarations
bfa74976 2650
f8e1c9e5
AD
2651The @var{Prologue} section contains macro definitions and declarations
2652of functions and variables that are used in the actions in the grammar
2653rules. These are copied to the beginning of the parser file so that
2654they precede the definition of @code{yyparse}. You can use
2655@samp{#include} to get the declarations from a header file. If you
2656don't need any C declarations, you may omit the @samp{%@{} and
2657@samp{%@}} delimiters that bracket this section.
bfa74976 2658
9c437126 2659The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2660of @samp{%@}} that is outside a comment, a string literal, or a
2661character constant.
2662
c732d2c6
AD
2663You may have more than one @var{Prologue} section, intermixed with the
2664@var{Bison declarations}. This allows you to have C and Bison
2665declarations that refer to each other. For example, the @code{%union}
2666declaration may use types defined in a header file, and you may wish to
2667prototype functions that take arguments of type @code{YYSTYPE}. This
2668can be done with two @var{Prologue} blocks, one before and one after the
2669@code{%union} declaration.
2670
2671@smallexample
2672%@{
aef3da86 2673 #define _GNU_SOURCE
38a92d50
PE
2674 #include <stdio.h>
2675 #include "ptypes.h"
c732d2c6
AD
2676%@}
2677
2678%union @{
779e7ceb 2679 long int n;
c732d2c6
AD
2680 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2681@}
2682
2683%@{
38a92d50
PE
2684 static void print_token_value (FILE *, int, YYSTYPE);
2685 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2686%@}
2687
2688@dots{}
2689@end smallexample
2690
aef3da86
PE
2691When in doubt, it is usually safer to put prologue code before all
2692Bison declarations, rather than after. For example, any definitions
2693of feature test macros like @code{_GNU_SOURCE} or
2694@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2695feature test macros can affect the behavior of Bison-generated
2696@code{#include} directives.
2697
2cbe6b7f
JD
2698@node Prologue Alternatives
2699@subsection Prologue Alternatives
2700@cindex Prologue Alternatives
2701
136a0f76 2702@findex %code
16dc6a9e
JD
2703@findex %code requires
2704@findex %code provides
2705@findex %code top
85894313 2706
2cbe6b7f
JD
2707The functionality of @var{Prologue} sections can often be subtle and
2708inflexible.
8e0a5e9e
JD
2709As an alternative, Bison provides a %code directive with an explicit qualifier
2710field, which identifies the purpose of the code and thus the location(s) where
2711Bison should generate it.
2712For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2713one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2714@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2715
2716Look again at the example of the previous section:
2717
2718@smallexample
2719%@{
2720 #define _GNU_SOURCE
2721 #include <stdio.h>
2722 #include "ptypes.h"
2723%@}
2724
2725%union @{
2726 long int n;
2727 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2728@}
2729
2730%@{
2731 static void print_token_value (FILE *, int, YYSTYPE);
2732 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2733%@}
2734
2735@dots{}
2736@end smallexample
2737
2738@noindent
2739Notice that there are two @var{Prologue} sections here, but there's a subtle
2740distinction between their functionality.
2741For example, if you decide to override Bison's default definition for
2742@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2743definition?
2744You should write it in the first since Bison will insert that code into the
8e0a5e9e 2745parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2746In which @var{Prologue} section should you prototype an internal function,
2747@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2748arguments?
2749You should prototype it in the second since Bison will insert that code
2750@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2751
2752This distinction in functionality between the two @var{Prologue} sections is
2753established by the appearance of the @code{%union} between them.
a501eca9 2754This behavior raises a few questions.
2cbe6b7f
JD
2755First, why should the position of a @code{%union} affect definitions related to
2756@code{YYLTYPE} and @code{yytokentype}?
2757Second, what if there is no @code{%union}?
2758In that case, the second kind of @var{Prologue} section is not available.
2759This behavior is not intuitive.
2760
8e0a5e9e 2761To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2762@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2763Let's go ahead and add the new @code{YYLTYPE} definition and the
2764@code{trace_token} prototype at the same time:
2765
2766@smallexample
16dc6a9e 2767%code top @{
2cbe6b7f
JD
2768 #define _GNU_SOURCE
2769 #include <stdio.h>
8e0a5e9e
JD
2770
2771 /* WARNING: The following code really belongs
16dc6a9e 2772 * in a `%code requires'; see below. */
8e0a5e9e 2773
2cbe6b7f
JD
2774 #include "ptypes.h"
2775 #define YYLTYPE YYLTYPE
2776 typedef struct YYLTYPE
2777 @{
2778 int first_line;
2779 int first_column;
2780 int last_line;
2781 int last_column;
2782 char *filename;
2783 @} YYLTYPE;
2784@}
2785
2786%union @{
2787 long int n;
2788 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2789@}
2790
2791%code @{
2792 static void print_token_value (FILE *, int, YYSTYPE);
2793 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2794 static void trace_token (enum yytokentype token, YYLTYPE loc);
2795@}
2796
2797@dots{}
2798@end smallexample
2799
2800@noindent
16dc6a9e
JD
2801In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2802functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2803explicit which kind you intend.
2cbe6b7f
JD
2804Moreover, both kinds are always available even in the absence of @code{%union}.
2805
16dc6a9e 2806The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2807The first two lines before the warning need to appear near the top of the
2808parser source code file.
2809The first line after the warning is required by @code{YYSTYPE} and thus also
2810needs to appear in the parser source code file.
2cbe6b7f 2811However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2812(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2813the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2814The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2815override the default @code{YYLTYPE} definition there.
2816
16dc6a9e 2817In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2818lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2819definitions.
16dc6a9e 2820Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2821
2822@smallexample
16dc6a9e 2823%code top @{
2cbe6b7f
JD
2824 #define _GNU_SOURCE
2825 #include <stdio.h>
2826@}
2827
16dc6a9e 2828%code requires @{
9bc0dd67
JD
2829 #include "ptypes.h"
2830@}
2831%union @{
2832 long int n;
2833 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2834@}
2835
16dc6a9e 2836%code requires @{
2cbe6b7f
JD
2837 #define YYLTYPE YYLTYPE
2838 typedef struct YYLTYPE
2839 @{
2840 int first_line;
2841 int first_column;
2842 int last_line;
2843 int last_column;
2844 char *filename;
2845 @} YYLTYPE;
2846@}
2847
136a0f76 2848%code @{
2cbe6b7f
JD
2849 static void print_token_value (FILE *, int, YYSTYPE);
2850 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2851 static void trace_token (enum yytokentype token, YYLTYPE loc);
2852@}
2853
2854@dots{}
2855@end smallexample
2856
2857@noindent
2858Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2859definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2860definitions in both the parser source code file and the parser header file.
16dc6a9e 2861(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2862place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2863
a501eca9 2864When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2865should prefer @code{%code requires} over @code{%code top} regardless of whether
2866you instruct Bison to generate a parser header file.
a501eca9 2867When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2868source code file and that has no special need to appear at the top of that
16dc6a9e 2869file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2870These practices will make the purpose of each block of your code explicit to
2871Bison and to other developers reading your grammar file.
8e0a5e9e 2872Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2873@code{%code requires} to be the most important of the four @var{Prologue}
2874alternatives.
a501eca9 2875
2cbe6b7f
JD
2876At some point while developing your parser, you might decide to provide
2877@code{trace_token} to modules that are external to your parser.
2878Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2879header file and the parser source code file.
2880Since this function is not a dependency required by @code{YYSTYPE} or
2881@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2882@code{%code requires}.
2cbe6b7f 2883More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2884@code{%code requires} is not sufficient.
8e0a5e9e 2885Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2886@code{%code provides}:
2cbe6b7f
JD
2887
2888@smallexample
16dc6a9e 2889%code top @{
2cbe6b7f 2890 #define _GNU_SOURCE
136a0f76 2891 #include <stdio.h>
2cbe6b7f 2892@}
136a0f76 2893
16dc6a9e 2894%code requires @{
2cbe6b7f
JD
2895 #include "ptypes.h"
2896@}
2897%union @{
2898 long int n;
2899 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2900@}
2901
16dc6a9e 2902%code requires @{
2cbe6b7f
JD
2903 #define YYLTYPE YYLTYPE
2904 typedef struct YYLTYPE
2905 @{
2906 int first_line;
2907 int first_column;
2908 int last_line;
2909 int last_column;
2910 char *filename;
2911 @} YYLTYPE;
2912@}
2913
16dc6a9e 2914%code provides @{
2cbe6b7f
JD
2915 void trace_token (enum yytokentype token, YYLTYPE loc);
2916@}
2917
2918%code @{
9bc0dd67
JD
2919 static void print_token_value (FILE *, int, YYSTYPE);
2920 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2921@}
9bc0dd67
JD
2922
2923@dots{}
2924@end smallexample
2925
2cbe6b7f
JD
2926@noindent
2927Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2928file and the parser source code file after the definitions for
2929@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2930
2931The above examples are careful to write directives in an order that reflects
8e0a5e9e 2932the layout of the generated parser source code and header files:
16dc6a9e 2933@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2934@code{%code}.
a501eca9 2935While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2936this order, Bison does not require it.
2937Instead, Bison lets you choose an organization that makes sense to you.
2938
a501eca9 2939You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2940In that case, Bison concatenates the contained code in declaration order.
2941This is the only way in which the position of one of these directives within
2942the grammar file affects its functionality.
2943
2944The result of the previous two properties is greater flexibility in how you may
2945organize your grammar file.
2946For example, you may organize semantic-type-related directives by semantic
2947type:
2948
2949@smallexample
16dc6a9e 2950%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2951%union @{ type1 field1; @}
2952%destructor @{ type1_free ($$); @} <field1>
2953%printer @{ type1_print ($$); @} <field1>
2954
16dc6a9e 2955%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2956%union @{ type2 field2; @}
2957%destructor @{ type2_free ($$); @} <field2>
2958%printer @{ type2_print ($$); @} <field2>
2959@end smallexample
2960
2961@noindent
2962You could even place each of the above directive groups in the rules section of
2963the grammar file next to the set of rules that uses the associated semantic
2964type.
61fee93e
JD
2965(In the rules section, you must terminate each of those directives with a
2966semicolon.)
2cbe6b7f
JD
2967And you don't have to worry that some directive (like a @code{%union}) in the
2968definitions section is going to adversely affect their functionality in some
2969counter-intuitive manner just because it comes first.
2970Such an organization is not possible using @var{Prologue} sections.
2971
a501eca9 2972This section has been concerned with explaining the advantages of the four
8e0a5e9e 2973@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2974However, in most cases when using these directives, you shouldn't need to
2975think about all the low-level ordering issues discussed here.
2976Instead, you should simply use these directives to label each block of your
2977code according to its purpose and let Bison handle the ordering.
2978@code{%code} is the most generic label.
16dc6a9e
JD
2979Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2980as needed.
a501eca9 2981
342b8b6e 2982@node Bison Declarations
bfa74976
RS
2983@subsection The Bison Declarations Section
2984@cindex Bison declarations (introduction)
2985@cindex declarations, Bison (introduction)
2986
2987The @var{Bison declarations} section contains declarations that define
2988terminal and nonterminal symbols, specify precedence, and so on.
2989In some simple grammars you may not need any declarations.
2990@xref{Declarations, ,Bison Declarations}.
2991
342b8b6e 2992@node Grammar Rules
bfa74976
RS
2993@subsection The Grammar Rules Section
2994@cindex grammar rules section
2995@cindex rules section for grammar
2996
2997The @dfn{grammar rules} section contains one or more Bison grammar
2998rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2999
3000There must always be at least one grammar rule, and the first
3001@samp{%%} (which precedes the grammar rules) may never be omitted even
3002if it is the first thing in the file.
3003
38a92d50 3004@node Epilogue
75f5aaea 3005@subsection The epilogue
bfa74976 3006@cindex additional C code section
75f5aaea 3007@cindex epilogue
bfa74976
RS
3008@cindex C code, section for additional
3009
08e49d20
PE
3010The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3011the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3012place to put anything that you want to have in the parser file but which need
3013not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3014definitions of @code{yylex} and @code{yyerror} often go here. Because
3015C requires functions to be declared before being used, you often need
3016to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3017even if you define them in the Epilogue.
75f5aaea 3018@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3019
3020If the last section is empty, you may omit the @samp{%%} that separates it
3021from the grammar rules.
3022
f8e1c9e5
AD
3023The Bison parser itself contains many macros and identifiers whose names
3024start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3025any such names (except those documented in this manual) in the epilogue
3026of the grammar file.
bfa74976 3027
342b8b6e 3028@node Symbols
bfa74976
RS
3029@section Symbols, Terminal and Nonterminal
3030@cindex nonterminal symbol
3031@cindex terminal symbol
3032@cindex token type
3033@cindex symbol
3034
3035@dfn{Symbols} in Bison grammars represent the grammatical classifications
3036of the language.
3037
3038A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3039class of syntactically equivalent tokens. You use the symbol in grammar
3040rules to mean that a token in that class is allowed. The symbol is
3041represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3042function returns a token type code to indicate what kind of token has
3043been read. You don't need to know what the code value is; you can use
3044the symbol to stand for it.
bfa74976 3045
f8e1c9e5
AD
3046A @dfn{nonterminal symbol} stands for a class of syntactically
3047equivalent groupings. The symbol name is used in writing grammar rules.
3048By convention, it should be all lower case.
bfa74976
RS
3049
3050Symbol names can contain letters, digits (not at the beginning),
3051underscores and periods. Periods make sense only in nonterminals.
3052
931c7513 3053There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3054
3055@itemize @bullet
3056@item
3057A @dfn{named token type} is written with an identifier, like an
c827f760 3058identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3059such name must be defined with a Bison declaration such as
3060@code{%token}. @xref{Token Decl, ,Token Type Names}.
3061
3062@item
3063@cindex character token
3064@cindex literal token
3065@cindex single-character literal
931c7513
RS
3066A @dfn{character token type} (or @dfn{literal character token}) is
3067written in the grammar using the same syntax used in C for character
3068constants; for example, @code{'+'} is a character token type. A
3069character token type doesn't need to be declared unless you need to
3070specify its semantic value data type (@pxref{Value Type, ,Data Types of
3071Semantic Values}), associativity, or precedence (@pxref{Precedence,
3072,Operator Precedence}).
bfa74976
RS
3073
3074By convention, a character token type is used only to represent a
3075token that consists of that particular character. Thus, the token
3076type @code{'+'} is used to represent the character @samp{+} as a
3077token. Nothing enforces this convention, but if you depart from it,
3078your program will confuse other readers.
3079
3080All the usual escape sequences used in character literals in C can be
3081used in Bison as well, but you must not use the null character as a
72d2299c
PE
3082character literal because its numeric code, zero, signifies
3083end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3084for @code{yylex}}). Also, unlike standard C, trigraphs have no
3085special meaning in Bison character literals, nor is backslash-newline
3086allowed.
931c7513
RS
3087
3088@item
3089@cindex string token
3090@cindex literal string token
9ecbd125 3091@cindex multicharacter literal
931c7513
RS
3092A @dfn{literal string token} is written like a C string constant; for
3093example, @code{"<="} is a literal string token. A literal string token
3094doesn't need to be declared unless you need to specify its semantic
14ded682 3095value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3096(@pxref{Precedence}).
3097
3098You can associate the literal string token with a symbolic name as an
3099alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3100Declarations}). If you don't do that, the lexical analyzer has to
3101retrieve the token number for the literal string token from the
3102@code{yytname} table (@pxref{Calling Convention}).
3103
c827f760 3104@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3105
3106By convention, a literal string token is used only to represent a token
3107that consists of that particular string. Thus, you should use the token
3108type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3109does not enforce this convention, but if you depart from it, people who
931c7513
RS
3110read your program will be confused.
3111
3112All the escape sequences used in string literals in C can be used in
92ac3705
PE
3113Bison as well, except that you must not use a null character within a
3114string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3115meaning in Bison string literals, nor is backslash-newline allowed. A
3116literal string token must contain two or more characters; for a token
3117containing just one character, use a character token (see above).
bfa74976
RS
3118@end itemize
3119
3120How you choose to write a terminal symbol has no effect on its
3121grammatical meaning. That depends only on where it appears in rules and
3122on when the parser function returns that symbol.
3123
72d2299c
PE
3124The value returned by @code{yylex} is always one of the terminal
3125symbols, except that a zero or negative value signifies end-of-input.
3126Whichever way you write the token type in the grammar rules, you write
3127it the same way in the definition of @code{yylex}. The numeric code
3128for a character token type is simply the positive numeric code of the
3129character, so @code{yylex} can use the identical value to generate the
3130requisite code, though you may need to convert it to @code{unsigned
3131char} to avoid sign-extension on hosts where @code{char} is signed.
3132Each named token type becomes a C macro in
bfa74976 3133the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3134(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3135@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3136
3137If @code{yylex} is defined in a separate file, you need to arrange for the
3138token-type macro definitions to be available there. Use the @samp{-d}
3139option when you run Bison, so that it will write these macro definitions
3140into a separate header file @file{@var{name}.tab.h} which you can include
3141in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3142
72d2299c 3143If you want to write a grammar that is portable to any Standard C
9d9b8b70 3144host, you must use only nonnull character tokens taken from the basic
c827f760 3145execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3146digits, the 52 lower- and upper-case English letters, and the
3147characters in the following C-language string:
3148
3149@example
3150"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3151@end example
3152
f8e1c9e5
AD
3153The @code{yylex} function and Bison must use a consistent character set
3154and encoding for character tokens. For example, if you run Bison in an
3155@acronym{ASCII} environment, but then compile and run the resulting
3156program in an environment that uses an incompatible character set like
3157@acronym{EBCDIC}, the resulting program may not work because the tables
3158generated by Bison will assume @acronym{ASCII} numeric values for
3159character tokens. It is standard practice for software distributions to
3160contain C source files that were generated by Bison in an
3161@acronym{ASCII} environment, so installers on platforms that are
3162incompatible with @acronym{ASCII} must rebuild those files before
3163compiling them.
e966383b 3164
bfa74976
RS
3165The symbol @code{error} is a terminal symbol reserved for error recovery
3166(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3167In particular, @code{yylex} should never return this value. The default
3168value of the error token is 256, unless you explicitly assigned 256 to
3169one of your tokens with a @code{%token} declaration.
bfa74976 3170
342b8b6e 3171@node Rules
bfa74976
RS
3172@section Syntax of Grammar Rules
3173@cindex rule syntax
3174@cindex grammar rule syntax
3175@cindex syntax of grammar rules
3176
3177A Bison grammar rule has the following general form:
3178
3179@example
e425e872 3180@group
bfa74976
RS
3181@var{result}: @var{components}@dots{}
3182 ;
e425e872 3183@end group
bfa74976
RS
3184@end example
3185
3186@noindent
9ecbd125 3187where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3188and @var{components} are various terminal and nonterminal symbols that
13863333 3189are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3190
3191For example,
3192
3193@example
3194@group
3195exp: exp '+' exp
3196 ;
3197@end group
3198@end example
3199
3200@noindent
3201says that two groupings of type @code{exp}, with a @samp{+} token in between,
3202can be combined into a larger grouping of type @code{exp}.
3203
72d2299c
PE
3204White space in rules is significant only to separate symbols. You can add
3205extra white space as you wish.
bfa74976
RS
3206
3207Scattered among the components can be @var{actions} that determine
3208the semantics of the rule. An action looks like this:
3209
3210@example
3211@{@var{C statements}@}
3212@end example
3213
3214@noindent
287c78f6
PE
3215@cindex braced code
3216This is an example of @dfn{braced code}, that is, C code surrounded by
3217braces, much like a compound statement in C@. Braced code can contain
3218any sequence of C tokens, so long as its braces are balanced. Bison
3219does not check the braced code for correctness directly; it merely
3220copies the code to the output file, where the C compiler can check it.
3221
3222Within braced code, the balanced-brace count is not affected by braces
3223within comments, string literals, or character constants, but it is
3224affected by the C digraphs @samp{<%} and @samp{%>} that represent
3225braces. At the top level braced code must be terminated by @samp{@}}
3226and not by a digraph. Bison does not look for trigraphs, so if braced
3227code uses trigraphs you should ensure that they do not affect the
3228nesting of braces or the boundaries of comments, string literals, or
3229character constants.
3230
bfa74976
RS
3231Usually there is only one action and it follows the components.
3232@xref{Actions}.
3233
3234@findex |
3235Multiple rules for the same @var{result} can be written separately or can
3236be joined with the vertical-bar character @samp{|} as follows:
3237
bfa74976
RS
3238@example
3239@group
3240@var{result}: @var{rule1-components}@dots{}
3241 | @var{rule2-components}@dots{}
3242 @dots{}
3243 ;
3244@end group
3245@end example
bfa74976
RS
3246
3247@noindent
3248They are still considered distinct rules even when joined in this way.
3249
3250If @var{components} in a rule is empty, it means that @var{result} can
3251match the empty string. For example, here is how to define a
3252comma-separated sequence of zero or more @code{exp} groupings:
3253
3254@example
3255@group
3256expseq: /* empty */
3257 | expseq1
3258 ;
3259@end group
3260
3261@group
3262expseq1: exp
3263 | expseq1 ',' exp
3264 ;
3265@end group
3266@end example
3267
3268@noindent
3269It is customary to write a comment @samp{/* empty */} in each rule
3270with no components.
3271
342b8b6e 3272@node Recursion
bfa74976
RS
3273@section Recursive Rules
3274@cindex recursive rule
3275
f8e1c9e5
AD
3276A rule is called @dfn{recursive} when its @var{result} nonterminal
3277appears also on its right hand side. Nearly all Bison grammars need to
3278use recursion, because that is the only way to define a sequence of any
3279number of a particular thing. Consider this recursive definition of a
9ecbd125 3280comma-separated sequence of one or more expressions:
bfa74976
RS
3281
3282@example
3283@group
3284expseq1: exp
3285 | expseq1 ',' exp
3286 ;
3287@end group
3288@end example
3289
3290@cindex left recursion
3291@cindex right recursion
3292@noindent
3293Since the recursive use of @code{expseq1} is the leftmost symbol in the
3294right hand side, we call this @dfn{left recursion}. By contrast, here
3295the same construct is defined using @dfn{right recursion}:
3296
3297@example
3298@group
3299expseq1: exp
3300 | exp ',' expseq1
3301 ;
3302@end group
3303@end example
3304
3305@noindent
ec3bc396
AD
3306Any kind of sequence can be defined using either left recursion or right
3307recursion, but you should always use left recursion, because it can
3308parse a sequence of any number of elements with bounded stack space.
3309Right recursion uses up space on the Bison stack in proportion to the
3310number of elements in the sequence, because all the elements must be
3311shifted onto the stack before the rule can be applied even once.
3312@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3313of this.
bfa74976
RS
3314
3315@cindex mutual recursion
3316@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3317rule does not appear directly on its right hand side, but does appear
3318in rules for other nonterminals which do appear on its right hand
13863333 3319side.
bfa74976
RS
3320
3321For example:
3322
3323@example
3324@group
3325expr: primary
3326 | primary '+' primary
3327 ;
3328@end group
3329
3330@group
3331primary: constant
3332 | '(' expr ')'
3333 ;
3334@end group
3335@end example
3336
3337@noindent
3338defines two mutually-recursive nonterminals, since each refers to the
3339other.
3340
342b8b6e 3341@node Semantics
bfa74976
RS
3342@section Defining Language Semantics
3343@cindex defining language semantics
13863333 3344@cindex language semantics, defining
bfa74976
RS
3345
3346The grammar rules for a language determine only the syntax. The semantics
3347are determined by the semantic values associated with various tokens and
3348groupings, and by the actions taken when various groupings are recognized.
3349
3350For example, the calculator calculates properly because the value
3351associated with each expression is the proper number; it adds properly
3352because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3353the numbers associated with @var{x} and @var{y}.
3354
3355@menu
3356* Value Type:: Specifying one data type for all semantic values.
3357* Multiple Types:: Specifying several alternative data types.
3358* Actions:: An action is the semantic definition of a grammar rule.
3359* Action Types:: Specifying data types for actions to operate on.
3360* Mid-Rule Actions:: Most actions go at the end of a rule.
3361 This says when, why and how to use the exceptional
3362 action in the middle of a rule.
3363@end menu
3364
342b8b6e 3365@node Value Type
bfa74976
RS
3366@subsection Data Types of Semantic Values
3367@cindex semantic value type
3368@cindex value type, semantic
3369@cindex data types of semantic values
3370@cindex default data type
3371
3372In a simple program it may be sufficient to use the same data type for
3373the semantic values of all language constructs. This was true in the
c827f760 3374@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3375Notation Calculator}).
bfa74976 3376
ddc8ede1
PE
3377Bison normally uses the type @code{int} for semantic values if your
3378program uses the same data type for all language constructs. To
bfa74976
RS
3379specify some other type, define @code{YYSTYPE} as a macro, like this:
3380
3381@example
3382#define YYSTYPE double
3383@end example
3384
3385@noindent
50cce58e
PE
3386@code{YYSTYPE}'s replacement list should be a type name
3387that does not contain parentheses or square brackets.
342b8b6e 3388This macro definition must go in the prologue of the grammar file
75f5aaea 3389(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3390
342b8b6e 3391@node Multiple Types
bfa74976
RS
3392@subsection More Than One Value Type
3393
3394In most programs, you will need different data types for different kinds
3395of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3396@code{int} or @code{long int}, while a string constant needs type
3397@code{char *}, and an identifier might need a pointer to an entry in the
3398symbol table.
bfa74976
RS
3399
3400To use more than one data type for semantic values in one parser, Bison
3401requires you to do two things:
3402
3403@itemize @bullet
3404@item
ddc8ede1 3405Specify the entire collection of possible data types, either by using the
704a47c4 3406@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3407Value Types}), or by using a @code{typedef} or a @code{#define} to
3408define @code{YYSTYPE} to be a union type whose member names are
3409the type tags.
bfa74976
RS
3410
3411@item
14ded682
AD
3412Choose one of those types for each symbol (terminal or nonterminal) for
3413which semantic values are used. This is done for tokens with the
3414@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3415and for groupings with the @code{%type} Bison declaration (@pxref{Type
3416Decl, ,Nonterminal Symbols}).
bfa74976
RS
3417@end itemize
3418
342b8b6e 3419@node Actions
bfa74976
RS
3420@subsection Actions
3421@cindex action
3422@vindex $$
3423@vindex $@var{n}
3424
3425An action accompanies a syntactic rule and contains C code to be executed
3426each time an instance of that rule is recognized. The task of most actions
3427is to compute a semantic value for the grouping built by the rule from the
3428semantic values associated with tokens or smaller groupings.
3429
287c78f6
PE
3430An action consists of braced code containing C statements, and can be
3431placed at any position in the rule;
704a47c4
AD
3432it is executed at that position. Most rules have just one action at the
3433end of the rule, following all the components. Actions in the middle of
3434a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3435Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3436
3437The C code in an action can refer to the semantic values of the components
3438matched by the rule with the construct @code{$@var{n}}, which stands for
3439the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3440being constructed is @code{$$}. Bison translates both of these
3441constructs into expressions of the appropriate type when it copies the
3442actions into the parser file. @code{$$} is translated to a modifiable
3443lvalue, so it can be assigned to.
bfa74976
RS
3444
3445Here is a typical example:
3446
3447@example
3448@group
3449exp: @dots{}
3450 | exp '+' exp
3451 @{ $$ = $1 + $3; @}
3452@end group
3453@end example
3454
3455@noindent
3456This rule constructs an @code{exp} from two smaller @code{exp} groupings
3457connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3458refer to the semantic values of the two component @code{exp} groupings,
3459which are the first and third symbols on the right hand side of the rule.
3460The sum is stored into @code{$$} so that it becomes the semantic value of
3461the addition-expression just recognized by the rule. If there were a
3462useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3463referred to as @code{$2}.
bfa74976 3464
3ded9a63
AD
3465Note that the vertical-bar character @samp{|} is really a rule
3466separator, and actions are attached to a single rule. This is a
3467difference with tools like Flex, for which @samp{|} stands for either
3468``or'', or ``the same action as that of the next rule''. In the
3469following example, the action is triggered only when @samp{b} is found:
3470
3471@example
3472@group
3473a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3474@end group
3475@end example
3476
bfa74976
RS
3477@cindex default action
3478If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3479@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3480becomes the value of the whole rule. Of course, the default action is
3481valid only if the two data types match. There is no meaningful default
3482action for an empty rule; every empty rule must have an explicit action
3483unless the rule's value does not matter.
bfa74976
RS
3484
3485@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3486to tokens and groupings on the stack @emph{before} those that match the
3487current rule. This is a very risky practice, and to use it reliably
3488you must be certain of the context in which the rule is applied. Here
3489is a case in which you can use this reliably:
3490
3491@example
3492@group
3493foo: expr bar '+' expr @{ @dots{} @}
3494 | expr bar '-' expr @{ @dots{} @}
3495 ;
3496@end group
3497
3498@group
3499bar: /* empty */
3500 @{ previous_expr = $0; @}
3501 ;
3502@end group
3503@end example
3504
3505As long as @code{bar} is used only in the fashion shown here, @code{$0}
3506always refers to the @code{expr} which precedes @code{bar} in the
3507definition of @code{foo}.
3508
32c29292 3509@vindex yylval
742e4900 3510It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3511any, from a semantic action.
3512This semantic value is stored in @code{yylval}.
3513@xref{Action Features, ,Special Features for Use in Actions}.
3514
342b8b6e 3515@node Action Types
bfa74976
RS
3516@subsection Data Types of Values in Actions
3517@cindex action data types
3518@cindex data types in actions
3519
3520If you have chosen a single data type for semantic values, the @code{$$}
3521and @code{$@var{n}} constructs always have that data type.
3522
3523If you have used @code{%union} to specify a variety of data types, then you
3524must declare a choice among these types for each terminal or nonterminal
3525symbol that can have a semantic value. Then each time you use @code{$$} or
3526@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3527in the rule. In this example,
bfa74976
RS
3528
3529@example
3530@group
3531exp: @dots{}
3532 | exp '+' exp
3533 @{ $$ = $1 + $3; @}
3534@end group
3535@end example
3536
3537@noindent
3538@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3539have the data type declared for the nonterminal symbol @code{exp}. If
3540@code{$2} were used, it would have the data type declared for the
e0c471a9 3541terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3542
3543Alternatively, you can specify the data type when you refer to the value,
3544by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3545reference. For example, if you have defined types as shown here:
3546
3547@example
3548@group
3549%union @{
3550 int itype;
3551 double dtype;
3552@}
3553@end group
3554@end example
3555
3556@noindent
3557then you can write @code{$<itype>1} to refer to the first subunit of the
3558rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3559
342b8b6e 3560@node Mid-Rule Actions
bfa74976
RS
3561@subsection Actions in Mid-Rule
3562@cindex actions in mid-rule
3563@cindex mid-rule actions
3564
3565Occasionally it is useful to put an action in the middle of a rule.
3566These actions are written just like usual end-of-rule actions, but they
3567are executed before the parser even recognizes the following components.
3568
3569A mid-rule action may refer to the components preceding it using
3570@code{$@var{n}}, but it may not refer to subsequent components because
3571it is run before they are parsed.
3572
3573The mid-rule action itself counts as one of the components of the rule.
3574This makes a difference when there is another action later in the same rule
3575(and usually there is another at the end): you have to count the actions
3576along with the symbols when working out which number @var{n} to use in
3577@code{$@var{n}}.
3578
3579The mid-rule action can also have a semantic value. The action can set
3580its value with an assignment to @code{$$}, and actions later in the rule
3581can refer to the value using @code{$@var{n}}. Since there is no symbol
3582to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3583in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3584specify a data type each time you refer to this value.
bfa74976
RS
3585
3586There is no way to set the value of the entire rule with a mid-rule
3587action, because assignments to @code{$$} do not have that effect. The
3588only way to set the value for the entire rule is with an ordinary action
3589at the end of the rule.
3590
3591Here is an example from a hypothetical compiler, handling a @code{let}
3592statement that looks like @samp{let (@var{variable}) @var{statement}} and
3593serves to create a variable named @var{variable} temporarily for the
3594duration of @var{statement}. To parse this construct, we must put
3595@var{variable} into the symbol table while @var{statement} is parsed, then
3596remove it afterward. Here is how it is done:
3597
3598@example
3599@group
3600stmt: LET '(' var ')'
3601 @{ $<context>$ = push_context ();
3602 declare_variable ($3); @}
3603 stmt @{ $$ = $6;
3604 pop_context ($<context>5); @}
3605@end group
3606@end example
3607
3608@noindent
3609As soon as @samp{let (@var{variable})} has been recognized, the first
3610action is run. It saves a copy of the current semantic context (the
3611list of accessible variables) as its semantic value, using alternative
3612@code{context} in the data-type union. Then it calls
3613@code{declare_variable} to add the new variable to that list. Once the
3614first action is finished, the embedded statement @code{stmt} can be
3615parsed. Note that the mid-rule action is component number 5, so the
3616@samp{stmt} is component number 6.
3617
3618After the embedded statement is parsed, its semantic value becomes the
3619value of the entire @code{let}-statement. Then the semantic value from the
3620earlier action is used to restore the prior list of variables. This
3621removes the temporary @code{let}-variable from the list so that it won't
3622appear to exist while the rest of the program is parsed.
3623
841a7737
JD
3624@findex %destructor
3625@cindex discarded symbols, mid-rule actions
3626@cindex error recovery, mid-rule actions
3627In the above example, if the parser initiates error recovery (@pxref{Error
3628Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3629it might discard the previous semantic context @code{$<context>5} without
3630restoring it.
3631Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3632Discarded Symbols}).
ec5479ce
JD
3633However, Bison currently provides no means to declare a destructor specific to
3634a particular mid-rule action's semantic value.
841a7737
JD
3635
3636One solution is to bury the mid-rule action inside a nonterminal symbol and to
3637declare a destructor for that symbol:
3638
3639@example
3640@group
3641%type <context> let
3642%destructor @{ pop_context ($$); @} let
3643
3644%%
3645
3646stmt: let stmt
3647 @{ $$ = $2;
3648 pop_context ($1); @}
3649 ;
3650
3651let: LET '(' var ')'
3652 @{ $$ = push_context ();
3653 declare_variable ($3); @}
3654 ;
3655
3656@end group
3657@end example
3658
3659@noindent
3660Note that the action is now at the end of its rule.
3661Any mid-rule action can be converted to an end-of-rule action in this way, and
3662this is what Bison actually does to implement mid-rule actions.
3663
bfa74976
RS
3664Taking action before a rule is completely recognized often leads to
3665conflicts since the parser must commit to a parse in order to execute the
3666action. For example, the following two rules, without mid-rule actions,
3667can coexist in a working parser because the parser can shift the open-brace
3668token and look at what follows before deciding whether there is a
3669declaration or not:
3670
3671@example
3672@group
3673compound: '@{' declarations statements '@}'
3674 | '@{' statements '@}'
3675 ;
3676@end group
3677@end example
3678
3679@noindent
3680But when we add a mid-rule action as follows, the rules become nonfunctional:
3681
3682@example
3683@group
3684compound: @{ prepare_for_local_variables (); @}
3685 '@{' declarations statements '@}'
3686@end group
3687@group
3688 | '@{' statements '@}'
3689 ;
3690@end group
3691@end example
3692
3693@noindent
3694Now the parser is forced to decide whether to run the mid-rule action
3695when it has read no farther than the open-brace. In other words, it
3696must commit to using one rule or the other, without sufficient
3697information to do it correctly. (The open-brace token is what is called
742e4900
JD
3698the @dfn{lookahead} token at this time, since the parser is still
3699deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3700
3701You might think that you could correct the problem by putting identical
3702actions into the two rules, like this:
3703
3704@example
3705@group
3706compound: @{ prepare_for_local_variables (); @}
3707 '@{' declarations statements '@}'
3708 | @{ prepare_for_local_variables (); @}
3709 '@{' statements '@}'
3710 ;
3711@end group
3712@end example
3713
3714@noindent
3715But this does not help, because Bison does not realize that the two actions
3716are identical. (Bison never tries to understand the C code in an action.)
3717
3718If the grammar is such that a declaration can be distinguished from a
3719statement by the first token (which is true in C), then one solution which
3720does work is to put the action after the open-brace, like this:
3721
3722@example
3723@group
3724compound: '@{' @{ prepare_for_local_variables (); @}
3725 declarations statements '@}'
3726 | '@{' statements '@}'
3727 ;
3728@end group
3729@end example
3730
3731@noindent
3732Now the first token of the following declaration or statement,
3733which would in any case tell Bison which rule to use, can still do so.
3734
3735Another solution is to bury the action inside a nonterminal symbol which
3736serves as a subroutine:
3737
3738@example
3739@group
3740subroutine: /* empty */
3741 @{ prepare_for_local_variables (); @}
3742 ;
3743
3744@end group
3745
3746@group
3747compound: subroutine
3748 '@{' declarations statements '@}'
3749 | subroutine
3750 '@{' statements '@}'
3751 ;
3752@end group
3753@end example
3754
3755@noindent
3756Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3757deciding which rule for @code{compound} it will eventually use.
bfa74976 3758
342b8b6e 3759@node Locations
847bf1f5
AD
3760@section Tracking Locations
3761@cindex location
95923bd6
AD
3762@cindex textual location
3763@cindex location, textual
847bf1f5
AD
3764
3765Though grammar rules and semantic actions are enough to write a fully
72d2299c 3766functional parser, it can be useful to process some additional information,
3e259915
MA
3767especially symbol locations.
3768
704a47c4
AD
3769The way locations are handled is defined by providing a data type, and
3770actions to take when rules are matched.
847bf1f5
AD
3771
3772@menu
3773* Location Type:: Specifying a data type for locations.
3774* Actions and Locations:: Using locations in actions.
3775* Location Default Action:: Defining a general way to compute locations.
3776@end menu
3777
342b8b6e 3778@node Location Type
847bf1f5
AD
3779@subsection Data Type of Locations
3780@cindex data type of locations
3781@cindex default location type
3782
3783Defining a data type for locations is much simpler than for semantic values,
3784since all tokens and groupings always use the same type.
3785
50cce58e
PE
3786You can specify the type of locations by defining a macro called
3787@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3788defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3789When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3790four members:
3791
3792@example
6273355b 3793typedef struct YYLTYPE
847bf1f5
AD
3794@{
3795 int first_line;
3796 int first_column;
3797 int last_line;
3798 int last_column;
6273355b 3799@} YYLTYPE;
847bf1f5
AD
3800@end example
3801
a022ff41
AD
3802When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3803initializes all these fields to 1 for @code{yylloc}. To initialize
3804@code{yylloc} with a custom location type (or to chose a different
3805initialization), use the @code{%initial-action} directive. @xref{Initial
3806Action Decl, , Performing Actions before Parsing}.
cd48d21d 3807
342b8b6e 3808@node Actions and Locations
847bf1f5
AD
3809@subsection Actions and Locations
3810@cindex location actions
3811@cindex actions, location
3812@vindex @@$
3813@vindex @@@var{n}
3814
3815Actions are not only useful for defining language semantics, but also for
3816describing the behavior of the output parser with locations.
3817
3818The most obvious way for building locations of syntactic groupings is very
72d2299c 3819similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3820constructs can be used to access the locations of the elements being matched.
3821The location of the @var{n}th component of the right hand side is
3822@code{@@@var{n}}, while the location of the left hand side grouping is
3823@code{@@$}.
3824
3e259915 3825Here is a basic example using the default data type for locations:
847bf1f5
AD
3826
3827@example
3828@group
3829exp: @dots{}
3e259915 3830 | exp '/' exp
847bf1f5 3831 @{
3e259915
MA
3832 @@$.first_column = @@1.first_column;
3833 @@$.first_line = @@1.first_line;
847bf1f5
AD
3834 @@$.last_column = @@3.last_column;
3835 @@$.last_line = @@3.last_line;
3e259915
MA
3836 if ($3)
3837 $$ = $1 / $3;
3838 else
3839 @{
3840 $$ = 1;
4e03e201
AD
3841 fprintf (stderr,
3842 "Division by zero, l%d,c%d-l%d,c%d",
3843 @@3.first_line, @@3.first_column,
3844 @@3.last_line, @@3.last_column);
3e259915 3845 @}
847bf1f5
AD
3846 @}
3847@end group
3848@end example
3849
3e259915 3850As for semantic values, there is a default action for locations that is
72d2299c 3851run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3852beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3853last symbol.
3e259915 3854
72d2299c 3855With this default action, the location tracking can be fully automatic. The
3e259915
MA
3856example above simply rewrites this way:
3857
3858@example
3859@group
3860exp: @dots{}
3861 | exp '/' exp
3862 @{
3863 if ($3)
3864 $$ = $1 / $3;
3865 else
3866 @{
3867 $$ = 1;
4e03e201
AD
3868 fprintf (stderr,
3869 "Division by zero, l%d,c%d-l%d,c%d",
3870 @@3.first_line, @@3.first_column,
3871 @@3.last_line, @@3.last_column);
3e259915
MA
3872 @}
3873 @}
3874@end group
3875@end example
847bf1f5 3876
32c29292 3877@vindex yylloc
742e4900 3878It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3879from a semantic action.
3880This location is stored in @code{yylloc}.
3881@xref{Action Features, ,Special Features for Use in Actions}.
3882
342b8b6e 3883@node Location Default Action
847bf1f5
AD
3884@subsection Default Action for Locations
3885@vindex YYLLOC_DEFAULT
8710fc41 3886@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3887
72d2299c 3888Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3889locations are much more general than semantic values, there is room in
3890the output parser to redefine the default action to take for each
72d2299c 3891rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3892matched, before the associated action is run. It is also invoked
3893while processing a syntax error, to compute the error's location.
8710fc41
JD
3894Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3895parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3896of that ambiguity.
847bf1f5 3897
3e259915 3898Most of the time, this macro is general enough to suppress location
79282c6c 3899dedicated code from semantic actions.
847bf1f5 3900
72d2299c 3901The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3902the location of the grouping (the result of the computation). When a
766de5eb 3903rule is matched, the second parameter identifies locations of
96b93a3d 3904all right hand side elements of the rule being matched, and the third
8710fc41
JD
3905parameter is the size of the rule's right hand side.
3906When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3907right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3908When processing a syntax error, the second parameter identifies locations
3909of the symbols that were discarded during error processing, and the third
96b93a3d 3910parameter is the number of discarded symbols.
847bf1f5 3911
766de5eb 3912By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3913
766de5eb 3914@smallexample
847bf1f5 3915@group
766de5eb
PE
3916# define YYLLOC_DEFAULT(Current, Rhs, N) \
3917 do \
3918 if (N) \
3919 @{ \
3920 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3921 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3922 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3923 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3924 @} \
3925 else \
3926 @{ \
3927 (Current).first_line = (Current).last_line = \
3928 YYRHSLOC(Rhs, 0).last_line; \
3929 (Current).first_column = (Current).last_column = \
3930 YYRHSLOC(Rhs, 0).last_column; \
3931 @} \
3932 while (0)
847bf1f5 3933@end group
766de5eb 3934@end smallexample
676385e2 3935
766de5eb
PE
3936where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3937in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3938just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3939
3e259915 3940When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3941
3e259915 3942@itemize @bullet
79282c6c 3943@item
72d2299c 3944All arguments are free of side-effects. However, only the first one (the
3e259915 3945result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3946
3e259915 3947@item
766de5eb
PE
3948For consistency with semantic actions, valid indexes within the
3949right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3950valid index, and it refers to the symbol just before the reduction.
3951During error processing @var{n} is always positive.
0ae99356
PE
3952
3953@item
3954Your macro should parenthesize its arguments, if need be, since the
3955actual arguments may not be surrounded by parentheses. Also, your
3956macro should expand to something that can be used as a single
3957statement when it is followed by a semicolon.
3e259915 3958@end itemize
847bf1f5 3959
342b8b6e 3960@node Declarations
bfa74976
RS
3961@section Bison Declarations
3962@cindex declarations, Bison
3963@cindex Bison declarations
3964
3965The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3966used in formulating the grammar and the data types of semantic values.
3967@xref{Symbols}.
3968
3969All token type names (but not single-character literal tokens such as
3970@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3971declared if you need to specify which data type to use for the semantic
3972value (@pxref{Multiple Types, ,More Than One Value Type}).
3973
3974The first rule in the file also specifies the start symbol, by default.
3975If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3976it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3977Grammars}).
bfa74976
RS
3978
3979@menu
b50d2359 3980* Require Decl:: Requiring a Bison version.
bfa74976
RS
3981* Token Decl:: Declaring terminal symbols.
3982* Precedence Decl:: Declaring terminals with precedence and associativity.
3983* Union Decl:: Declaring the set of all semantic value types.
3984* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3985* Initial Action Decl:: Code run before parsing starts.
72f889cc 3986* Destructor Decl:: Declaring how symbols are freed.
d6328241 3987* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3988* Start Decl:: Specifying the start symbol.
3989* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3990* Push Decl:: Requesting a push parser.
bfa74976
RS
3991* Decl Summary:: Table of all Bison declarations.
3992@end menu
3993
b50d2359
AD
3994@node Require Decl
3995@subsection Require a Version of Bison
3996@cindex version requirement
3997@cindex requiring a version of Bison
3998@findex %require
3999
4000You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4001the requirement is not met, @command{bison} exits with an error (exit
4002status 63).
b50d2359
AD
4003
4004@example
4005%require "@var{version}"
4006@end example
4007
342b8b6e 4008@node Token Decl
bfa74976
RS
4009@subsection Token Type Names
4010@cindex declaring token type names
4011@cindex token type names, declaring
931c7513 4012@cindex declaring literal string tokens
bfa74976
RS
4013@findex %token
4014
4015The basic way to declare a token type name (terminal symbol) is as follows:
4016
4017@example
4018%token @var{name}
4019@end example
4020
4021Bison will convert this into a @code{#define} directive in
4022the parser, so that the function @code{yylex} (if it is in this file)
4023can use the name @var{name} to stand for this token type's code.
4024
14ded682
AD
4025Alternatively, you can use @code{%left}, @code{%right}, or
4026@code{%nonassoc} instead of @code{%token}, if you wish to specify
4027associativity and precedence. @xref{Precedence Decl, ,Operator
4028Precedence}.
bfa74976
RS
4029
4030You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4031a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4032following the token name:
bfa74976
RS
4033
4034@example
4035%token NUM 300
1452af69 4036%token XNUM 0x12d // a GNU extension
bfa74976
RS
4037@end example
4038
4039@noindent
4040It is generally best, however, to let Bison choose the numeric codes for
4041all token types. Bison will automatically select codes that don't conflict
e966383b 4042with each other or with normal characters.
bfa74976
RS
4043
4044In the event that the stack type is a union, you must augment the
4045@code{%token} or other token declaration to include the data type
704a47c4
AD
4046alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4047Than One Value Type}).
bfa74976
RS
4048
4049For example:
4050
4051@example
4052@group
4053%union @{ /* define stack type */
4054 double val;
4055 symrec *tptr;
4056@}
4057%token <val> NUM /* define token NUM and its type */
4058@end group
4059@end example
4060
931c7513
RS
4061You can associate a literal string token with a token type name by
4062writing the literal string at the end of a @code{%token}
4063declaration which declares the name. For example:
4064
4065@example
4066%token arrow "=>"
4067@end example
4068
4069@noindent
4070For example, a grammar for the C language might specify these names with
4071equivalent literal string tokens:
4072
4073@example
4074%token <operator> OR "||"
4075%token <operator> LE 134 "<="
4076%left OR "<="
4077@end example
4078
4079@noindent
4080Once you equate the literal string and the token name, you can use them
4081interchangeably in further declarations or the grammar rules. The
4082@code{yylex} function can use the token name or the literal string to
4083obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4084Syntax error messages passed to @code{yyerror} from the parser will reference
4085the literal string instead of the token name.
4086
4087The token numbered as 0 corresponds to end of file; the following line
4088allows for nicer error messages referring to ``end of file'' instead
4089of ``$end'':
4090
4091@example
4092%token END 0 "end of file"
4093@end example
931c7513 4094
342b8b6e 4095@node Precedence Decl
bfa74976
RS
4096@subsection Operator Precedence
4097@cindex precedence declarations
4098@cindex declaring operator precedence
4099@cindex operator precedence, declaring
4100
4101Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4102declare a token and specify its precedence and associativity, all at
4103once. These are called @dfn{precedence declarations}.
704a47c4
AD
4104@xref{Precedence, ,Operator Precedence}, for general information on
4105operator precedence.
bfa74976 4106
ab7f29f8 4107The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4108@code{%token}: either
4109
4110@example
4111%left @var{symbols}@dots{}
4112@end example
4113
4114@noindent
4115or
4116
4117@example
4118%left <@var{type}> @var{symbols}@dots{}
4119@end example
4120
4121And indeed any of these declarations serves the purposes of @code{%token}.
4122But in addition, they specify the associativity and relative precedence for
4123all the @var{symbols}:
4124
4125@itemize @bullet
4126@item
4127The associativity of an operator @var{op} determines how repeated uses
4128of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4129@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4130grouping @var{y} with @var{z} first. @code{%left} specifies
4131left-associativity (grouping @var{x} with @var{y} first) and
4132@code{%right} specifies right-associativity (grouping @var{y} with
4133@var{z} first). @code{%nonassoc} specifies no associativity, which
4134means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4135considered a syntax error.
4136
4137@item
4138The precedence of an operator determines how it nests with other operators.
4139All the tokens declared in a single precedence declaration have equal
4140precedence and nest together according to their associativity.
4141When two tokens declared in different precedence declarations associate,
4142the one declared later has the higher precedence and is grouped first.
4143@end itemize
4144
ab7f29f8
JD
4145For backward compatibility, there is a confusing difference between the
4146argument lists of @code{%token} and precedence declarations.
4147Only a @code{%token} can associate a literal string with a token type name.
4148A precedence declaration always interprets a literal string as a reference to a
4149separate token.
4150For example:
4151
4152@example
4153%left OR "<=" // Does not declare an alias.
4154%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4155@end example
4156
342b8b6e 4157@node Union Decl
bfa74976
RS
4158@subsection The Collection of Value Types
4159@cindex declaring value types
4160@cindex value types, declaring
4161@findex %union
4162
287c78f6
PE
4163The @code{%union} declaration specifies the entire collection of
4164possible data types for semantic values. The keyword @code{%union} is
4165followed by braced code containing the same thing that goes inside a
4166@code{union} in C@.
bfa74976
RS
4167
4168For example:
4169
4170@example
4171@group
4172%union @{
4173 double val;
4174 symrec *tptr;
4175@}
4176@end group
4177@end example
4178
4179@noindent
4180This says that the two alternative types are @code{double} and @code{symrec
4181*}. They are given names @code{val} and @code{tptr}; these names are used
4182in the @code{%token} and @code{%type} declarations to pick one of the types
4183for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4184
6273355b
PE
4185As an extension to @acronym{POSIX}, a tag is allowed after the
4186@code{union}. For example:
4187
4188@example
4189@group
4190%union value @{
4191 double val;
4192 symrec *tptr;
4193@}
4194@end group
4195@end example
4196
d6ca7905 4197@noindent
6273355b
PE
4198specifies the union tag @code{value}, so the corresponding C type is
4199@code{union value}. If you do not specify a tag, it defaults to
4200@code{YYSTYPE}.
4201
d6ca7905
PE
4202As another extension to @acronym{POSIX}, you may specify multiple
4203@code{%union} declarations; their contents are concatenated. However,
4204only the first @code{%union} declaration can specify a tag.
4205
6273355b 4206Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4207a semicolon after the closing brace.
4208
ddc8ede1
PE
4209Instead of @code{%union}, you can define and use your own union type
4210@code{YYSTYPE} if your grammar contains at least one
4211@samp{<@var{type}>} tag. For example, you can put the following into
4212a header file @file{parser.h}:
4213
4214@example
4215@group
4216union YYSTYPE @{
4217 double val;
4218 symrec *tptr;
4219@};
4220typedef union YYSTYPE YYSTYPE;
4221@end group
4222@end example
4223
4224@noindent
4225and then your grammar can use the following
4226instead of @code{%union}:
4227
4228@example
4229@group
4230%@{
4231#include "parser.h"
4232%@}
4233%type <val> expr
4234%token <tptr> ID
4235@end group
4236@end example
4237
342b8b6e 4238@node Type Decl
bfa74976
RS
4239@subsection Nonterminal Symbols
4240@cindex declaring value types, nonterminals
4241@cindex value types, nonterminals, declaring
4242@findex %type
4243
4244@noindent
4245When you use @code{%union} to specify multiple value types, you must
4246declare the value type of each nonterminal symbol for which values are
4247used. This is done with a @code{%type} declaration, like this:
4248
4249@example
4250%type <@var{type}> @var{nonterminal}@dots{}
4251@end example
4252
4253@noindent
704a47c4
AD
4254Here @var{nonterminal} is the name of a nonterminal symbol, and
4255@var{type} is the name given in the @code{%union} to the alternative
4256that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4257can give any number of nonterminal symbols in the same @code{%type}
4258declaration, if they have the same value type. Use spaces to separate
4259the symbol names.
bfa74976 4260
931c7513
RS
4261You can also declare the value type of a terminal symbol. To do this,
4262use the same @code{<@var{type}>} construction in a declaration for the
4263terminal symbol. All kinds of token declarations allow
4264@code{<@var{type}>}.
4265
18d192f0
AD
4266@node Initial Action Decl
4267@subsection Performing Actions before Parsing
4268@findex %initial-action
4269
4270Sometimes your parser needs to perform some initializations before
4271parsing. The @code{%initial-action} directive allows for such arbitrary
4272code.
4273
4274@deffn {Directive} %initial-action @{ @var{code} @}
4275@findex %initial-action
287c78f6 4276Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4277@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4278@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4279@code{%parse-param}.
18d192f0
AD
4280@end deffn
4281
451364ed
AD
4282For instance, if your locations use a file name, you may use
4283
4284@example
48b16bbc 4285%parse-param @{ char const *file_name @};
451364ed
AD
4286%initial-action
4287@{
4626a15d 4288 @@$.initialize (file_name);
451364ed
AD
4289@};
4290@end example
4291
18d192f0 4292
72f889cc
AD
4293@node Destructor Decl
4294@subsection Freeing Discarded Symbols
4295@cindex freeing discarded symbols
4296@findex %destructor
12e35840 4297@findex <*>
3ebecc24 4298@findex <>
a85284cf
AD
4299During error recovery (@pxref{Error Recovery}), symbols already pushed
4300on the stack and tokens coming from the rest of the file are discarded
4301until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4302or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4303symbols on the stack must be discarded. Even if the parser succeeds, it
4304must discard the start symbol.
258b75ca
PE
4305
4306When discarded symbols convey heap based information, this memory is
4307lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4308in traditional compilers, it is unacceptable for programs like shells or
4309protocol implementations that may parse and execute indefinitely.
258b75ca 4310
a85284cf
AD
4311The @code{%destructor} directive defines code that is called when a
4312symbol is automatically discarded.
72f889cc
AD
4313
4314@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4315@findex %destructor
287c78f6
PE
4316Invoke the braced @var{code} whenever the parser discards one of the
4317@var{symbols}.
4b367315 4318Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4319with the discarded symbol, and @code{@@$} designates its location.
4320The additional parser parameters are also available (@pxref{Parser Function, ,
4321The Parser Function @code{yyparse}}).
ec5479ce 4322
b2a0b7ca
JD
4323When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4324per-symbol @code{%destructor}.
4325You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4326tag among @var{symbols}.
b2a0b7ca 4327In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4328grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4329per-symbol @code{%destructor}.
4330
12e35840 4331Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4332(These default forms are experimental.
4333More user feedback will help to determine whether they should become permanent
4334features.)
3ebecc24 4335You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4336exactly one @code{%destructor} declaration in your grammar file.
4337The parser will invoke the @var{code} associated with one of these whenever it
4338discards any user-defined grammar symbol that has no per-symbol and no per-type
4339@code{%destructor}.
4340The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4341symbol for which you have formally declared a semantic type tag (@code{%type}
4342counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4343The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4344symbol that has no declared semantic type tag.
72f889cc
AD
4345@end deffn
4346
b2a0b7ca 4347@noindent
12e35840 4348For example:
72f889cc
AD
4349
4350@smallexample
ec5479ce
JD
4351%union @{ char *string; @}
4352%token <string> STRING1
4353%token <string> STRING2
4354%type <string> string1
4355%type <string> string2
b2a0b7ca
JD
4356%union @{ char character; @}
4357%token <character> CHR
4358%type <character> chr
12e35840
JD
4359%token TAGLESS
4360
b2a0b7ca 4361%destructor @{ @} <character>
12e35840
JD
4362%destructor @{ free ($$); @} <*>
4363%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4364%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4365@end smallexample
4366
4367@noindent
b2a0b7ca
JD
4368guarantees that, when the parser discards any user-defined symbol that has a
4369semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4370to @code{free} by default.
ec5479ce
JD
4371However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4372prints its line number to @code{stdout}.
4373It performs only the second @code{%destructor} in this case, so it invokes
4374@code{free} only once.
12e35840
JD
4375Finally, the parser merely prints a message whenever it discards any symbol,
4376such as @code{TAGLESS}, that has no semantic type tag.
4377
4378A Bison-generated parser invokes the default @code{%destructor}s only for
4379user-defined as opposed to Bison-defined symbols.
4380For example, the parser will not invoke either kind of default
4381@code{%destructor} for the special Bison-defined symbols @code{$accept},
4382@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4383none of which you can reference in your grammar.
4384It also will not invoke either for the @code{error} token (@pxref{Table of
4385Symbols, ,error}), which is always defined by Bison regardless of whether you
4386reference it in your grammar.
4387However, it may invoke one of them for the end token (token 0) if you
4388redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4389
4390@smallexample
4391%token END 0
4392@end smallexample
4393
12e35840
JD
4394@cindex actions in mid-rule
4395@cindex mid-rule actions
4396Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4397mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4398That is, Bison does not consider a mid-rule to have a semantic value if you do
4399not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4400@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4401rule.
4402However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4403@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4404
3508ce36
JD
4405@ignore
4406@noindent
4407In the future, it may be possible to redefine the @code{error} token as a
4408nonterminal that captures the discarded symbols.
4409In that case, the parser will invoke the default destructor for it as well.
4410@end ignore
4411
e757bb10
AD
4412@sp 1
4413
4414@cindex discarded symbols
4415@dfn{Discarded symbols} are the following:
4416
4417@itemize
4418@item
4419stacked symbols popped during the first phase of error recovery,
4420@item
4421incoming terminals during the second phase of error recovery,
4422@item
742e4900 4423the current lookahead and the entire stack (except the current
9d9b8b70 4424right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4425@item
4426the start symbol, when the parser succeeds.
e757bb10
AD
4427@end itemize
4428
9d9b8b70
PE
4429The parser can @dfn{return immediately} because of an explicit call to
4430@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4431exhaustion.
4432
29553547 4433Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4434error via @code{YYERROR} are not discarded automatically. As a rule
4435of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4436the memory.
e757bb10 4437
342b8b6e 4438@node Expect Decl
bfa74976
RS
4439@subsection Suppressing Conflict Warnings
4440@cindex suppressing conflict warnings
4441@cindex preventing warnings about conflicts
4442@cindex warnings, preventing
4443@cindex conflicts, suppressing warnings of
4444@findex %expect
d6328241 4445@findex %expect-rr
bfa74976
RS
4446
4447Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4448(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4449have harmless shift/reduce conflicts which are resolved in a predictable
4450way and would be difficult to eliminate. It is desirable to suppress
4451the warning about these conflicts unless the number of conflicts
4452changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4453
4454The declaration looks like this:
4455
4456@example
4457%expect @var{n}
4458@end example
4459
035aa4a0
PE
4460Here @var{n} is a decimal integer. The declaration says there should
4461be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4462Bison reports an error if the number of shift/reduce conflicts differs
4463from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4464
035aa4a0
PE
4465For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4466serious, and should be eliminated entirely. Bison will always report
4467reduce/reduce conflicts for these parsers. With @acronym{GLR}
4468parsers, however, both kinds of conflicts are routine; otherwise,
4469there would be no need to use @acronym{GLR} parsing. Therefore, it is
4470also possible to specify an expected number of reduce/reduce conflicts
4471in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4472
4473@example
4474%expect-rr @var{n}
4475@end example
4476
bfa74976
RS
4477In general, using @code{%expect} involves these steps:
4478
4479@itemize @bullet
4480@item
4481Compile your grammar without @code{%expect}. Use the @samp{-v} option
4482to get a verbose list of where the conflicts occur. Bison will also
4483print the number of conflicts.
4484
4485@item
4486Check each of the conflicts to make sure that Bison's default
4487resolution is what you really want. If not, rewrite the grammar and
4488go back to the beginning.
4489
4490@item
4491Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4492number which Bison printed. With @acronym{GLR} parsers, add an
4493@code{%expect-rr} declaration as well.
bfa74976
RS
4494@end itemize
4495
035aa4a0
PE
4496Now Bison will warn you if you introduce an unexpected conflict, but
4497will keep silent otherwise.
bfa74976 4498
342b8b6e 4499@node Start Decl
bfa74976
RS
4500@subsection The Start-Symbol
4501@cindex declaring the start symbol
4502@cindex start symbol, declaring
4503@cindex default start symbol
4504@findex %start
4505
4506Bison assumes by default that the start symbol for the grammar is the first
4507nonterminal specified in the grammar specification section. The programmer
4508may override this restriction with the @code{%start} declaration as follows:
4509
4510@example
4511%start @var{symbol}
4512@end example
4513
342b8b6e 4514@node Pure Decl
bfa74976
RS
4515@subsection A Pure (Reentrant) Parser
4516@cindex reentrant parser
4517@cindex pure parser
d9df47b6 4518@findex %define api.pure
bfa74976
RS
4519
4520A @dfn{reentrant} program is one which does not alter in the course of
4521execution; in other words, it consists entirely of @dfn{pure} (read-only)
4522code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4523for example, a nonreentrant program may not be safe to call from a signal
4524handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4525program must be called only within interlocks.
4526
70811b85 4527Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4528suitable for most uses, and it permits compatibility with Yacc. (The
4529standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4530statically allocated variables for communication with @code{yylex},
4531including @code{yylval} and @code{yylloc}.)
bfa74976 4532
70811b85 4533Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4534declaration @code{%define api.pure} says that you want the parser to be
70811b85 4535reentrant. It looks like this:
bfa74976
RS
4536
4537@example
d9df47b6 4538%define api.pure
bfa74976
RS
4539@end example
4540
70811b85
RS
4541The result is that the communication variables @code{yylval} and
4542@code{yylloc} become local variables in @code{yyparse}, and a different
4543calling convention is used for the lexical analyzer function
4544@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4545Parsers}, for the details of this. The variable @code{yynerrs}
4546becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4547of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4548Reporting Function @code{yyerror}}). The convention for calling
4549@code{yyparse} itself is unchanged.
4550
4551Whether the parser is pure has nothing to do with the grammar rules.
4552You can generate either a pure parser or a nonreentrant parser from any
4553valid grammar.
bfa74976 4554
9987d1b3
JD
4555@node Push Decl
4556@subsection A Push Parser
4557@cindex push parser
4558@cindex push parser
c373bf8b 4559@findex %define api.push_pull
9987d1b3 4560
59da312b
JD
4561(The current push parsing interface is experimental and may evolve.
4562More user feedback will help to stabilize it.)
4563
f4101aa6
AD
4564A pull parser is called once and it takes control until all its input
4565is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4566each time a new token is made available.
4567
f4101aa6 4568A push parser is typically useful when the parser is part of a
9987d1b3 4569main event loop in the client's application. This is typically
f4101aa6
AD
4570a requirement of a GUI, when the main event loop needs to be triggered
4571within a certain time period.
9987d1b3 4572
d782395d
JD
4573Normally, Bison generates a pull parser.
4574The following Bison declaration says that you want the parser to be a push
c373bf8b 4575parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4576
4577@example
c373bf8b 4578%define api.push_pull "push"
9987d1b3
JD
4579@end example
4580
4581In almost all cases, you want to ensure that your push parser is also
4582a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4583time you should create an impure push parser is to have backwards
9987d1b3
JD
4584compatibility with the impure Yacc pull mode interface. Unless you know
4585what you are doing, your declarations should look like this:
4586
4587@example
d9df47b6 4588%define api.pure
c373bf8b 4589%define api.push_pull "push"
9987d1b3
JD
4590@end example
4591
f4101aa6
AD
4592There is a major notable functional difference between the pure push parser
4593and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4594many parser instances, of the same type of parser, in memory at the same time.
4595An impure push parser should only use one parser at a time.
4596
4597When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4598the generated parser. @code{yypstate} is a structure that the generated
4599parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4600function that will create a new parser instance. @code{yypstate_delete}
4601will free the resources associated with the corresponding parser instance.
f4101aa6 4602Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4603token is available to provide the parser. A trivial example
4604of using a pure push parser would look like this:
4605
4606@example
4607int status;
4608yypstate *ps = yypstate_new ();
4609do @{
4610 status = yypush_parse (ps, yylex (), NULL);
4611@} while (status == YYPUSH_MORE);
4612yypstate_delete (ps);
4613@end example
4614
4615If the user decided to use an impure push parser, a few things about
f4101aa6 4616the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4617a global variable instead of a variable in the @code{yypush_parse} function.
4618For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4619changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4620example would thus look like this:
4621
4622@example
4623extern int yychar;
4624int status;
4625yypstate *ps = yypstate_new ();
4626do @{
4627 yychar = yylex ();
4628 status = yypush_parse (ps);
4629@} while (status == YYPUSH_MORE);
4630yypstate_delete (ps);
4631@end example
4632
f4101aa6 4633That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4634for use by the next invocation of the @code{yypush_parse} function.
4635
f4101aa6 4636Bison also supports both the push parser interface along with the pull parser
9987d1b3 4637interface in the same generated parser. In order to get this functionality,
f4101aa6 4638you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4639@code{%define api.push_pull "both"} declaration. Doing this will create all of
4640the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4641and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4642would be used. However, the user should note that it is implemented in the
d782395d
JD
4643generated parser by calling @code{yypull_parse}.
4644This makes the @code{yyparse} function that is generated with the
c373bf8b 4645@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4646@code{yyparse} function. If the user
4647calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4648stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4649and then @code{yypull_parse} the rest of the input stream. If you would like
4650to switch back and forth between between parsing styles, you would have to
4651write your own @code{yypull_parse} function that knows when to quit looking
4652for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4653like this:
4654
4655@example
4656yypstate *ps = yypstate_new ();
4657yypull_parse (ps); /* Will call the lexer */
4658yypstate_delete (ps);
4659@end example
4660
d9df47b6 4661Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4662the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4663@code{%define api.push_pull "push"}.
9987d1b3 4664
342b8b6e 4665@node Decl Summary
bfa74976
RS
4666@subsection Bison Declaration Summary
4667@cindex Bison declaration summary
4668@cindex declaration summary
4669@cindex summary, Bison declaration
4670
d8988b2f 4671Here is a summary of the declarations used to define a grammar:
bfa74976 4672
18b519c0 4673@deffn {Directive} %union
bfa74976
RS
4674Declare the collection of data types that semantic values may have
4675(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4676@end deffn
bfa74976 4677
18b519c0 4678@deffn {Directive} %token
bfa74976
RS
4679Declare a terminal symbol (token type name) with no precedence
4680or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4681@end deffn
bfa74976 4682
18b519c0 4683@deffn {Directive} %right
bfa74976
RS
4684Declare a terminal symbol (token type name) that is right-associative
4685(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %left
bfa74976
RS
4689Declare a terminal symbol (token type name) that is left-associative
4690(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %nonassoc
bfa74976 4694Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4695(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4696Using it in a way that would be associative is a syntax error.
4697@end deffn
4698
91d2c560 4699@ifset defaultprec
39a06c25 4700@deffn {Directive} %default-prec
22fccf95 4701Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4702(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4703@end deffn
91d2c560 4704@end ifset
bfa74976 4705
18b519c0 4706@deffn {Directive} %type
bfa74976
RS
4707Declare the type of semantic values for a nonterminal symbol
4708(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4709@end deffn
bfa74976 4710
18b519c0 4711@deffn {Directive} %start
89cab50d
AD
4712Specify the grammar's start symbol (@pxref{Start Decl, ,The
4713Start-Symbol}).
18b519c0 4714@end deffn
bfa74976 4715
18b519c0 4716@deffn {Directive} %expect
bfa74976
RS
4717Declare the expected number of shift-reduce conflicts
4718(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4719@end deffn
4720
bfa74976 4721
d8988b2f
AD
4722@sp 1
4723@noindent
4724In order to change the behavior of @command{bison}, use the following
4725directives:
4726
148d66d8
JD
4727@deffn {Directive} %code @{@var{code}@}
4728@findex %code
4729This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4730It inserts @var{code} verbatim at a language-dependent default location in the
4731output@footnote{The default location is actually skeleton-dependent;
4732 writers of non-standard skeletons however should choose the default location
4733 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4734
4735@cindex Prologue
8405b70c 4736For C/C++, the default location is the parser source code
148d66d8
JD
4737file after the usual contents of the parser header file.
4738Thus, @code{%code} replaces the traditional Yacc prologue,
4739@code{%@{@var{code}%@}}, for most purposes.
4740For a detailed discussion, see @ref{Prologue Alternatives}.
4741
8405b70c 4742For Java, the default location is inside the parser class.
148d66d8
JD
4743@end deffn
4744
4745@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4746This is the qualified form of the @code{%code} directive.
4747If you need to specify location-sensitive verbatim @var{code} that does not
4748belong at the default location selected by the unqualified @code{%code} form,
4749use this form instead.
4750
4751@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4752where Bison should generate it.
4753Not all values of @var{qualifier} are available for all target languages:
4754
4755@itemize @bullet
148d66d8 4756@item requires
793fbca5 4757@findex %code requires
148d66d8
JD
4758
4759@itemize @bullet
4760@item Language(s): C, C++
4761
4762@item Purpose: This is the best place to write dependency code required for
4763@code{YYSTYPE} and @code{YYLTYPE}.
4764In other words, it's the best place to define types referenced in @code{%union}
4765directives, and it's the best place to override Bison's default @code{YYSTYPE}
4766and @code{YYLTYPE} definitions.
4767
4768@item Location(s): The parser header file and the parser source code file
4769before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4770@end itemize
4771
4772@item provides
4773@findex %code provides
4774
4775@itemize @bullet
4776@item Language(s): C, C++
4777
4778@item Purpose: This is the best place to write additional definitions and
4779declarations that should be provided to other modules.
4780
4781@item Location(s): The parser header file and the parser source code file after
4782the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4783@end itemize
4784
4785@item top
4786@findex %code top
4787
4788@itemize @bullet
4789@item Language(s): C, C++
4790
4791@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4792usually be more appropriate than @code{%code top}.
4793However, occasionally it is necessary to insert code much nearer the top of the
4794parser source code file.
4795For example:
4796
4797@smallexample
4798%code top @{
4799 #define _GNU_SOURCE
4800 #include <stdio.h>
4801@}
4802@end smallexample
4803
4804@item Location(s): Near the top of the parser source code file.
4805@end itemize
8405b70c 4806
148d66d8
JD
4807@item imports
4808@findex %code imports
4809
4810@itemize @bullet
4811@item Language(s): Java
4812
4813@item Purpose: This is the best place to write Java import directives.
4814
4815@item Location(s): The parser Java file after any Java package directive and
4816before any class definitions.
4817@end itemize
148d66d8
JD
4818@end itemize
4819
148d66d8
JD
4820@cindex Prologue
4821For a detailed discussion of how to use @code{%code} in place of the
4822traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4823@end deffn
4824
18b519c0 4825@deffn {Directive} %debug
4947ebdb
PE
4826In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4827already defined, so that the debugging facilities are compiled.
ec3bc396 4828@xref{Tracing, ,Tracing Your Parser}.
2f3064f0 4829@end deffn
d8988b2f 4830
c1d19e10
PB
4831@deffn {Directive} %define @var{variable}
4832@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4833Define a variable to adjust Bison's behavior.
4834The possible choices for @var{variable}, as well as their meanings, depend on
4835the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4836Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4837
4838Bison will warn if a @var{variable} is defined multiple times.
4839
4840Omitting @code{"@var{value}"} is always equivalent to specifying it as
4841@code{""}.
4842
922bdd7f 4843Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4844In this case, Bison will complain if the variable definition does not meet one
4845of the following four conditions:
4846
4847@enumerate
4848@item @code{"@var{value}"} is @code{"true"}
4849
4850@item @code{"@var{value}"} is omitted (or is @code{""}).
4851This is equivalent to @code{"true"}.
4852
4853@item @code{"@var{value}"} is @code{"false"}.
4854
4855@item @var{variable} is never defined.
4856In this case, Bison selects a default value, which may depend on the selected
4857target language and/or parser skeleton.
4858@end enumerate
148d66d8 4859
793fbca5
JD
4860Some of the accepted @var{variable}s are:
4861
4862@itemize @bullet
d9df47b6
JD
4863@item api.pure
4864@findex %define api.pure
4865
4866@itemize @bullet
4867@item Language(s): C
4868
4869@item Purpose: Request a pure (reentrant) parser program.
4870@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4871
4872@item Accepted Values: Boolean
4873
4874@item Default Value: @code{"false"}
4875@end itemize
4876
c373bf8b
JD
4877@item api.push_pull
4878@findex %define api.push_pull
793fbca5
JD
4879
4880@itemize @bullet
4881@item Language(s): C (LALR(1) only)
4882
4883@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4884@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4885(The current push parsing interface is experimental and may evolve.
4886More user feedback will help to stabilize it.)
793fbca5
JD
4887
4888@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4889
4890@item Default Value: @code{"pull"}
4891@end itemize
4892
31984206
JD
4893@item lr.keep_unreachable_states
4894@findex %define lr.keep_unreachable_states
4895
4896@itemize @bullet
4897@item Language(s): all
4898
4899@item Purpose: Requests that Bison allow unreachable parser states to remain in
4900the parser tables.
4901Bison considers a state to be unreachable if there exists no sequence of
4902transitions from the start state to that state.
4903A state can become unreachable during conflict resolution if Bison disables a
4904shift action leading to it from a predecessor state.
4905Keeping unreachable states is sometimes useful for analysis purposes, but they
4906are useless in the generated parser.
4907
4908@item Accepted Values: Boolean
4909
4910@item Default Value: @code{"false"}
4911
4912@item Caveats:
4913
4914@itemize @bullet
cff03fb2
JD
4915
4916@item Unreachable states may contain conflicts and may use rules not used in
4917any other state.
31984206
JD
4918Thus, keeping unreachable states may induce warnings that are irrelevant to
4919your parser's behavior, and it may eliminate warnings that are relevant.
4920Of course, the change in warnings may actually be relevant to a parser table
4921analysis that wants to keep unreachable states, so this behavior will likely
4922remain in future Bison releases.
4923
4924@item While Bison is able to remove unreachable states, it is not guaranteed to
4925remove other kinds of useless states.
4926Specifically, when Bison disables reduce actions during conflict resolution,
4927some goto actions may become useless, and thus some additional states may
4928become useless.
4929If Bison were to compute which goto actions were useless and then disable those
4930actions, it could identify such states as unreachable and then remove those
4931states.
4932However, Bison does not compute which goto actions are useless.
4933@end itemize
4934@end itemize
4935
793fbca5
JD
4936@item namespace
4937@findex %define namespace
4938
4939@itemize
4940@item Languages(s): C++
4941
4942@item Purpose: Specifies the namespace for the parser class.
4943For example, if you specify:
4944
4945@smallexample
4946%define namespace "foo::bar"
4947@end smallexample
4948
4949Bison uses @code{foo::bar} verbatim in references such as:
4950
4951@smallexample
4952foo::bar::parser::semantic_type
4953@end smallexample
4954
4955However, to open a namespace, Bison removes any leading @code{::} and then
4956splits on any remaining occurrences:
4957
4958@smallexample
4959namespace foo @{ namespace bar @{
4960 class position;
4961 class location;
4962@} @}
4963@end smallexample
4964
4965@item Accepted Values: Any absolute or relative C++ namespace reference without
4966a trailing @code{"::"}.
4967For example, @code{"foo"} or @code{"::foo::bar"}.
4968
4969@item Default Value: The value specified by @code{%name-prefix}, which defaults
4970to @code{yy}.
4971This usage of @code{%name-prefix} is for backward compatibility and can be
4972confusing since @code{%name-prefix} also specifies the textual prefix for the
4973lexical analyzer function.
4974Thus, if you specify @code{%name-prefix}, it is best to also specify
4975@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4976lexical analyzer function.
4977For example, if you specify:
4978
4979@smallexample
4980%define namespace "foo"
4981%name-prefix "bar::"
4982@end smallexample
4983
4984The parser namespace is @code{foo} and @code{yylex} is referenced as
4985@code{bar::lex}.
4986@end itemize
4987@end itemize
4988
d782395d
JD
4989@end deffn
4990
18b519c0 4991@deffn {Directive} %defines
4bfd5e4e
PE
4992Write a header file containing macro definitions for the token type
4993names defined in the grammar as well as a few other declarations.
d8988b2f 4994If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4995is named @file{@var{name}.h}.
d8988b2f 4996
b321737f 4997For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4998@code{YYSTYPE} is already defined as a macro or you have used a
4999@code{<@var{type}>} tag without using @code{%union}.
5000Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5001(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5002require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5003or type definition
f8e1c9e5
AD
5004(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5005arrange for these definitions to be propagated to all modules, e.g., by
5006putting them in a prerequisite header that is included both by your
5007parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5008
5009Unless your parser is pure, the output header declares @code{yylval}
5010as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5011Parser}.
5012
5013If you have also used locations, the output header declares
5014@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5015the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5016Locations}.
5017
f8e1c9e5
AD
5018This output file is normally essential if you wish to put the definition
5019of @code{yylex} in a separate source file, because @code{yylex}
5020typically needs to be able to refer to the above-mentioned declarations
5021and to the token type codes. @xref{Token Values, ,Semantic Values of
5022Tokens}.
9bc0dd67 5023
16dc6a9e
JD
5024@findex %code requires
5025@findex %code provides
5026If you have declared @code{%code requires} or @code{%code provides}, the output
5027header also contains their code.
148d66d8 5028@xref{Decl Summary, ,%code}.
592d0b1e
PB
5029@end deffn
5030
02975b9a
JD
5031@deffn {Directive} %defines @var{defines-file}
5032Same as above, but save in the file @var{defines-file}.
5033@end deffn
5034
18b519c0 5035@deffn {Directive} %destructor
258b75ca 5036Specify how the parser should reclaim the memory associated to
fa7e68c3 5037discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5038@end deffn
72f889cc 5039
02975b9a 5040@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5041Specify a prefix to use for all Bison output file names. The names are
5042chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5043@end deffn
d8988b2f 5044
e6e704dc 5045@deffn {Directive} %language "@var{language}"
0e021770 5046Specify the programming language for the generated parser. Currently
59da312b 5047supported languages include C, C++, and Java.
e6e704dc 5048@var{language} is case-insensitive.
ed4d67dc
JD
5049
5050This directive is experimental and its effect may be modified in future
5051releases.
0e021770
PE
5052@end deffn
5053
18b519c0 5054@deffn {Directive} %locations
89cab50d
AD
5055Generate the code processing the locations (@pxref{Action Features,
5056,Special Features for Use in Actions}). This mode is enabled as soon as
5057the grammar uses the special @samp{@@@var{n}} tokens, but if your
5058grammar does not use it, using @samp{%locations} allows for more
6e649e65 5059accurate syntax error messages.
18b519c0 5060@end deffn
89cab50d 5061
02975b9a 5062@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5063Rename the external symbols used in the parser so that they start with
5064@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5065in C parsers
d8988b2f 5066is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5067@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5068(if locations are used) @code{yylloc}. If you use a push parser,
5069@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5070@code{yypstate_new} and @code{yypstate_delete} will
5071also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5072names become @code{c_parse}, @code{c_lex}, and so on.
5073For C++ parsers, see the @code{%define namespace} documentation in this
5074section.
aa08666d 5075@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5076@end deffn
931c7513 5077
91d2c560 5078@ifset defaultprec
22fccf95
PE
5079@deffn {Directive} %no-default-prec
5080Do not assign a precedence to rules lacking an explicit @code{%prec}
5081modifier (@pxref{Contextual Precedence, ,Context-Dependent
5082Precedence}).
5083@end deffn
91d2c560 5084@end ifset
22fccf95 5085
18b519c0 5086@deffn {Directive} %no-lines
931c7513
RS
5087Don't generate any @code{#line} preprocessor commands in the parser
5088file. Ordinarily Bison writes these commands in the parser file so that
5089the C compiler and debuggers will associate errors and object code with
5090your source file (the grammar file). This directive causes them to
5091associate errors with the parser file, treating it an independent source
5092file in its own right.
18b519c0 5093@end deffn
931c7513 5094
02975b9a 5095@deffn {Directive} %output "@var{file}"
fa4d969f 5096Specify @var{file} for the parser file.
18b519c0 5097@end deffn
6deb4447 5098
18b519c0 5099@deffn {Directive} %pure-parser
d9df47b6
JD
5100Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5101for which Bison is more careful to warn about unreasonable usage.
18b519c0 5102@end deffn
6deb4447 5103
b50d2359 5104@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5105Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5106Require a Version of Bison}.
b50d2359
AD
5107@end deffn
5108
0e021770 5109@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5110Specify the skeleton to use.
5111
ed4d67dc
JD
5112@c You probably don't need this option unless you are developing Bison.
5113@c You should use @code{%language} if you want to specify the skeleton for a
5114@c different language, because it is clearer and because it will always choose the
5115@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5116
5117If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5118file in the Bison installation directory.
5119If it does, @var{file} is an absolute file name or a file name relative to the
5120directory of the grammar file.
5121This is similar to how most shells resolve commands.
0e021770
PE
5122@end deffn
5123
18b519c0 5124@deffn {Directive} %token-table
931c7513
RS
5125Generate an array of token names in the parser file. The name of the
5126array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5127token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5128three elements of @code{yytname} correspond to the predefined tokens
5129@code{"$end"},
88bce5a2
AD
5130@code{"error"}, and @code{"$undefined"}; after these come the symbols
5131defined in the grammar file.
931c7513 5132
9e0876fb
PE
5133The name in the table includes all the characters needed to represent
5134the token in Bison. For single-character literals and literal
5135strings, this includes the surrounding quoting characters and any
5136escape sequences. For example, the Bison single-character literal
5137@code{'+'} corresponds to a three-character name, represented in C as
5138@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5139corresponds to a five-character name, represented in C as
5140@code{"\"\\\\/\""}.
931c7513 5141
8c9a50be 5142When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5143definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5144@code{YYNRULES}, and @code{YYNSTATES}:
5145
5146@table @code
5147@item YYNTOKENS
5148The highest token number, plus one.
5149@item YYNNTS
9ecbd125 5150The number of nonterminal symbols.
931c7513
RS
5151@item YYNRULES
5152The number of grammar rules,
5153@item YYNSTATES
5154The number of parser states (@pxref{Parser States}).
5155@end table
18b519c0 5156@end deffn
d8988b2f 5157
18b519c0 5158@deffn {Directive} %verbose
d8988b2f 5159Write an extra output file containing verbose descriptions of the
742e4900 5160parser states and what is done for each type of lookahead token in
72d2299c 5161that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5162information.
18b519c0 5163@end deffn
d8988b2f 5164
18b519c0 5165@deffn {Directive} %yacc
d8988b2f
AD
5166Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5167including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5168@end deffn
d8988b2f
AD
5169
5170
342b8b6e 5171@node Multiple Parsers
bfa74976
RS
5172@section Multiple Parsers in the Same Program
5173
5174Most programs that use Bison parse only one language and therefore contain
5175only one Bison parser. But what if you want to parse more than one
5176language with the same program? Then you need to avoid a name conflict
5177between different definitions of @code{yyparse}, @code{yylval}, and so on.
5178
5179The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5180(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5181functions and variables of the Bison parser to start with @var{prefix}
5182instead of @samp{yy}. You can use this to give each parser distinct
5183names that do not conflict.
bfa74976
RS
5184
5185The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5186@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5187@code{yychar} and @code{yydebug}. If you use a push parser,
5188@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5189@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5190For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5191@code{clex}, and so on.
bfa74976
RS
5192
5193@strong{All the other variables and macros associated with Bison are not
5194renamed.} These others are not global; there is no conflict if the same
5195name is used in different parsers. For example, @code{YYSTYPE} is not
5196renamed, but defining this in different ways in different parsers causes
5197no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5198
5199The @samp{-p} option works by adding macro definitions to the beginning
5200of the parser source file, defining @code{yyparse} as
5201@code{@var{prefix}parse}, and so on. This effectively substitutes one
5202name for the other in the entire parser file.
5203
342b8b6e 5204@node Interface
bfa74976
RS
5205@chapter Parser C-Language Interface
5206@cindex C-language interface
5207@cindex interface
5208
5209The Bison parser is actually a C function named @code{yyparse}. Here we
5210describe the interface conventions of @code{yyparse} and the other
5211functions that it needs to use.
5212
5213Keep in mind that the parser uses many C identifiers starting with
5214@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5215identifier (aside from those in this manual) in an action or in epilogue
5216in the grammar file, you are likely to run into trouble.
bfa74976
RS
5217
5218@menu
f56274a8
DJ
5219* Parser Function:: How to call @code{yyparse} and what it returns.
5220* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5221* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5222* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5223* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5224* Lexical:: You must supply a function @code{yylex}
5225 which reads tokens.
5226* Error Reporting:: You must supply a function @code{yyerror}.
5227* Action Features:: Special features for use in actions.
5228* Internationalization:: How to let the parser speak in the user's
5229 native language.
bfa74976
RS
5230@end menu
5231
342b8b6e 5232@node Parser Function
bfa74976
RS
5233@section The Parser Function @code{yyparse}
5234@findex yyparse
5235
5236You call the function @code{yyparse} to cause parsing to occur. This
5237function reads tokens, executes actions, and ultimately returns when it
5238encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5239write an action which directs @code{yyparse} to return immediately
5240without reading further.
bfa74976 5241
2a8d363a
AD
5242
5243@deftypefun int yyparse (void)
bfa74976
RS
5244The value returned by @code{yyparse} is 0 if parsing was successful (return
5245is due to end-of-input).
5246
b47dbebe
PE
5247The value is 1 if parsing failed because of invalid input, i.e., input
5248that contains a syntax error or that causes @code{YYABORT} to be
5249invoked.
5250
5251The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5252@end deftypefun
bfa74976
RS
5253
5254In an action, you can cause immediate return from @code{yyparse} by using
5255these macros:
5256
2a8d363a 5257@defmac YYACCEPT
bfa74976
RS
5258@findex YYACCEPT
5259Return immediately with value 0 (to report success).
2a8d363a 5260@end defmac
bfa74976 5261
2a8d363a 5262@defmac YYABORT
bfa74976
RS
5263@findex YYABORT
5264Return immediately with value 1 (to report failure).
2a8d363a
AD
5265@end defmac
5266
5267If you use a reentrant parser, you can optionally pass additional
5268parameter information to it in a reentrant way. To do so, use the
5269declaration @code{%parse-param}:
5270
feeb0eda 5271@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5272@findex %parse-param
287c78f6
PE
5273Declare that an argument declared by the braced-code
5274@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5275The @var{argument-declaration} is used when declaring
feeb0eda
PE
5276functions or prototypes. The last identifier in
5277@var{argument-declaration} must be the argument name.
2a8d363a
AD
5278@end deffn
5279
5280Here's an example. Write this in the parser:
5281
5282@example
feeb0eda
PE
5283%parse-param @{int *nastiness@}
5284%parse-param @{int *randomness@}
2a8d363a
AD
5285@end example
5286
5287@noindent
5288Then call the parser like this:
5289
5290@example
5291@{
5292 int nastiness, randomness;
5293 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5294 value = yyparse (&nastiness, &randomness);
5295 @dots{}
5296@}
5297@end example
5298
5299@noindent
5300In the grammar actions, use expressions like this to refer to the data:
5301
5302@example
5303exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5304@end example
5305
9987d1b3
JD
5306@node Push Parser Function
5307@section The Push Parser Function @code{yypush_parse}
5308@findex yypush_parse
5309
59da312b
JD
5310(The current push parsing interface is experimental and may evolve.
5311More user feedback will help to stabilize it.)
5312
f4101aa6
AD
5313You call the function @code{yypush_parse} to parse a single token. This
5314function is available if either the @code{%define api.push_pull "push"} or
5315@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5316@xref{Push Decl, ,A Push Parser}.
5317
5318@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5319The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5320following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5321is required to finish parsing the grammar.
5322@end deftypefun
5323
5324@node Pull Parser Function
5325@section The Pull Parser Function @code{yypull_parse}
5326@findex yypull_parse
5327
59da312b
JD
5328(The current push parsing interface is experimental and may evolve.
5329More user feedback will help to stabilize it.)
5330
f4101aa6
AD
5331You call the function @code{yypull_parse} to parse the rest of the input
5332stream. This function is available if the @code{%define api.push_pull "both"}
5333declaration is used.
9987d1b3
JD
5334@xref{Push Decl, ,A Push Parser}.
5335
5336@deftypefun int yypull_parse (yypstate *yyps)
5337The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5338@end deftypefun
5339
5340@node Parser Create Function
5341@section The Parser Create Function @code{yystate_new}
5342@findex yypstate_new
5343
59da312b
JD
5344(The current push parsing interface is experimental and may evolve.
5345More user feedback will help to stabilize it.)
5346
f4101aa6
AD
5347You call the function @code{yypstate_new} to create a new parser instance.
5348This function is available if either the @code{%define api.push_pull "push"} or
5349@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5350@xref{Push Decl, ,A Push Parser}.
5351
5352@deftypefun yypstate *yypstate_new (void)
87b9c9bc 5353The function will return a valid parser instance if there was memory available
333e670c
JD
5354or 0 if no memory was available.
5355In impure mode, it will also return 0 if a parser instance is currently
5356allocated.
9987d1b3
JD
5357@end deftypefun
5358
5359@node Parser Delete Function
5360@section The Parser Delete Function @code{yystate_delete}
5361@findex yypstate_delete
5362
59da312b
JD
5363(The current push parsing interface is experimental and may evolve.
5364More user feedback will help to stabilize it.)
5365
9987d1b3 5366You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5367function is available if either the @code{%define api.push_pull "push"} or
5368@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5369@xref{Push Decl, ,A Push Parser}.
5370
5371@deftypefun void yypstate_delete (yypstate *yyps)
5372This function will reclaim the memory associated with a parser instance.
5373After this call, you should no longer attempt to use the parser instance.
5374@end deftypefun
bfa74976 5375
342b8b6e 5376@node Lexical
bfa74976
RS
5377@section The Lexical Analyzer Function @code{yylex}
5378@findex yylex
5379@cindex lexical analyzer
5380
5381The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5382the input stream and returns them to the parser. Bison does not create
5383this function automatically; you must write it so that @code{yyparse} can
5384call it. The function is sometimes referred to as a lexical scanner.
5385
5386In simple programs, @code{yylex} is often defined at the end of the Bison
5387grammar file. If @code{yylex} is defined in a separate source file, you
5388need to arrange for the token-type macro definitions to be available there.
5389To do this, use the @samp{-d} option when you run Bison, so that it will
5390write these macro definitions into a separate header file
5391@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5392that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5393
5394@menu
5395* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5396* Token Values:: How @code{yylex} must return the semantic value
5397 of the token it has read.
5398* Token Locations:: How @code{yylex} must return the text location
5399 (line number, etc.) of the token, if the
5400 actions want that.
5401* Pure Calling:: How the calling convention differs in a pure parser
5402 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5403@end menu
5404
342b8b6e 5405@node Calling Convention
bfa74976
RS
5406@subsection Calling Convention for @code{yylex}
5407
72d2299c
PE
5408The value that @code{yylex} returns must be the positive numeric code
5409for the type of token it has just found; a zero or negative value
5410signifies end-of-input.
bfa74976
RS
5411
5412When a token is referred to in the grammar rules by a name, that name
5413in the parser file becomes a C macro whose definition is the proper
5414numeric code for that token type. So @code{yylex} can use the name
5415to indicate that type. @xref{Symbols}.
5416
5417When a token is referred to in the grammar rules by a character literal,
5418the numeric code for that character is also the code for the token type.
72d2299c
PE
5419So @code{yylex} can simply return that character code, possibly converted
5420to @code{unsigned char} to avoid sign-extension. The null character
5421must not be used this way, because its code is zero and that
bfa74976
RS
5422signifies end-of-input.
5423
5424Here is an example showing these things:
5425
5426@example
13863333
AD
5427int
5428yylex (void)
bfa74976
RS
5429@{
5430 @dots{}
72d2299c 5431 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5432 return 0;
5433 @dots{}
5434 if (c == '+' || c == '-')
72d2299c 5435 return c; /* Assume token type for `+' is '+'. */
bfa74976 5436 @dots{}
72d2299c 5437 return INT; /* Return the type of the token. */
bfa74976
RS
5438 @dots{}
5439@}
5440@end example
5441
5442@noindent
5443This interface has been designed so that the output from the @code{lex}
5444utility can be used without change as the definition of @code{yylex}.
5445
931c7513
RS
5446If the grammar uses literal string tokens, there are two ways that
5447@code{yylex} can determine the token type codes for them:
5448
5449@itemize @bullet
5450@item
5451If the grammar defines symbolic token names as aliases for the
5452literal string tokens, @code{yylex} can use these symbolic names like
5453all others. In this case, the use of the literal string tokens in
5454the grammar file has no effect on @code{yylex}.
5455
5456@item
9ecbd125 5457@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5458table. The index of the token in the table is the token type's code.
9ecbd125 5459The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5460double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5461token's characters are escaped as necessary to be suitable as input
5462to Bison.
931c7513 5463
9e0876fb
PE
5464Here's code for looking up a multicharacter token in @code{yytname},
5465assuming that the characters of the token are stored in
5466@code{token_buffer}, and assuming that the token does not contain any
5467characters like @samp{"} that require escaping.
931c7513
RS
5468
5469@smallexample
5470for (i = 0; i < YYNTOKENS; i++)
5471 @{
5472 if (yytname[i] != 0
5473 && yytname[i][0] == '"'
68449b3a
PE
5474 && ! strncmp (yytname[i] + 1, token_buffer,
5475 strlen (token_buffer))
931c7513
RS
5476 && yytname[i][strlen (token_buffer) + 1] == '"'
5477 && yytname[i][strlen (token_buffer) + 2] == 0)
5478 break;
5479 @}
5480@end smallexample
5481
5482The @code{yytname} table is generated only if you use the
8c9a50be 5483@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5484@end itemize
5485
342b8b6e 5486@node Token Values
bfa74976
RS
5487@subsection Semantic Values of Tokens
5488
5489@vindex yylval
9d9b8b70 5490In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5491be stored into the global variable @code{yylval}. When you are using
5492just one data type for semantic values, @code{yylval} has that type.
5493Thus, if the type is @code{int} (the default), you might write this in
5494@code{yylex}:
5495
5496@example
5497@group
5498 @dots{}
72d2299c
PE
5499 yylval = value; /* Put value onto Bison stack. */
5500 return INT; /* Return the type of the token. */
bfa74976
RS
5501 @dots{}
5502@end group
5503@end example
5504
5505When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5506made from the @code{%union} declaration (@pxref{Union Decl, ,The
5507Collection of Value Types}). So when you store a token's value, you
5508must use the proper member of the union. If the @code{%union}
5509declaration looks like this:
bfa74976
RS
5510
5511@example
5512@group
5513%union @{
5514 int intval;
5515 double val;
5516 symrec *tptr;
5517@}
5518@end group
5519@end example
5520
5521@noindent
5522then the code in @code{yylex} might look like this:
5523
5524@example
5525@group
5526 @dots{}
72d2299c
PE
5527 yylval.intval = value; /* Put value onto Bison stack. */
5528 return INT; /* Return the type of the token. */
bfa74976
RS
5529 @dots{}
5530@end group
5531@end example
5532
95923bd6
AD
5533@node Token Locations
5534@subsection Textual Locations of Tokens
bfa74976
RS
5535
5536@vindex yylloc
847bf1f5 5537If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5538Tracking Locations}) in actions to keep track of the textual locations
5539of tokens and groupings, then you must provide this information in
5540@code{yylex}. The function @code{yyparse} expects to find the textual
5541location of a token just parsed in the global variable @code{yylloc}.
5542So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5543
5544By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5545initialize the members that are going to be used by the actions. The
5546four members are called @code{first_line}, @code{first_column},
5547@code{last_line} and @code{last_column}. Note that the use of this
5548feature makes the parser noticeably slower.
bfa74976
RS
5549
5550@tindex YYLTYPE
5551The data type of @code{yylloc} has the name @code{YYLTYPE}.
5552
342b8b6e 5553@node Pure Calling
c656404a 5554@subsection Calling Conventions for Pure Parsers
bfa74976 5555
d9df47b6 5556When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5557pure, reentrant parser, the global communication variables @code{yylval}
5558and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5559Parser}.) In such parsers the two global variables are replaced by
5560pointers passed as arguments to @code{yylex}. You must declare them as
5561shown here, and pass the information back by storing it through those
5562pointers.
bfa74976
RS
5563
5564@example
13863333
AD
5565int
5566yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5567@{
5568 @dots{}
5569 *lvalp = value; /* Put value onto Bison stack. */
5570 return INT; /* Return the type of the token. */
5571 @dots{}
5572@}
5573@end example
5574
5575If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5576textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5577this case, omit the second argument; @code{yylex} will be called with
5578only one argument.
5579
e425e872 5580
2a8d363a
AD
5581If you wish to pass the additional parameter data to @code{yylex}, use
5582@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5583Function}).
e425e872 5584
feeb0eda 5585@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5586@findex %lex-param
287c78f6
PE
5587Declare that the braced-code @var{argument-declaration} is an
5588additional @code{yylex} argument declaration.
2a8d363a 5589@end deffn
e425e872 5590
2a8d363a 5591For instance:
e425e872
RS
5592
5593@example
feeb0eda
PE
5594%parse-param @{int *nastiness@}
5595%lex-param @{int *nastiness@}
5596%parse-param @{int *randomness@}
e425e872
RS
5597@end example
5598
5599@noindent
2a8d363a 5600results in the following signature:
e425e872
RS
5601
5602@example
2a8d363a
AD
5603int yylex (int *nastiness);
5604int yyparse (int *nastiness, int *randomness);
e425e872
RS
5605@end example
5606
d9df47b6 5607If @code{%define api.pure} is added:
c656404a
RS
5608
5609@example
2a8d363a
AD
5610int yylex (YYSTYPE *lvalp, int *nastiness);
5611int yyparse (int *nastiness, int *randomness);
c656404a
RS
5612@end example
5613
2a8d363a 5614@noindent
d9df47b6 5615and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5616
2a8d363a
AD
5617@example
5618int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5619int yyparse (int *nastiness, int *randomness);
5620@end example
931c7513 5621
342b8b6e 5622@node Error Reporting
bfa74976
RS
5623@section The Error Reporting Function @code{yyerror}
5624@cindex error reporting function
5625@findex yyerror
5626@cindex parse error
5627@cindex syntax error
5628
6e649e65 5629The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5630whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5631action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5632macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5633in Actions}).
bfa74976
RS
5634
5635The Bison parser expects to report the error by calling an error
5636reporting function named @code{yyerror}, which you must supply. It is
5637called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5638receives one argument. For a syntax error, the string is normally
5639@w{@code{"syntax error"}}.
bfa74976 5640
2a8d363a
AD
5641@findex %error-verbose
5642If you invoke the directive @code{%error-verbose} in the Bison
5643declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5644Section}), then Bison provides a more verbose and specific error message
6e649e65 5645string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5646
1a059451
PE
5647The parser can detect one other kind of error: memory exhaustion. This
5648can happen when the input contains constructions that are very deeply
bfa74976 5649nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5650parser normally extends its stack automatically up to a very large limit. But
5651if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5652fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5653
5654In some cases diagnostics like @w{@code{"syntax error"}} are
5655translated automatically from English to some other language before
5656they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5657
5658The following definition suffices in simple programs:
5659
5660@example
5661@group
13863333 5662void
38a92d50 5663yyerror (char const *s)
bfa74976
RS
5664@{
5665@end group
5666@group
5667 fprintf (stderr, "%s\n", s);
5668@}
5669@end group
5670@end example
5671
5672After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5673error recovery if you have written suitable error recovery grammar rules
5674(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5675immediately return 1.
5676
93724f13 5677Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5678an access to the current location.
5679This is indeed the case for the @acronym{GLR}
2a8d363a 5680parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5681@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5682@code{yyerror} are:
5683
5684@example
38a92d50
PE
5685void yyerror (char const *msg); /* Yacc parsers. */
5686void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5687@end example
5688
feeb0eda 5689If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5690
5691@example
b317297e
PE
5692void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5693void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5694@end example
5695
fa7e68c3 5696Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5697convention for absolutely pure parsers, i.e., when the calling
5698convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5699@code{%define api.pure} are pure.
5700I.e.:
2a8d363a
AD
5701
5702@example
5703/* Location tracking. */
5704%locations
5705/* Pure yylex. */
d9df47b6 5706%define api.pure
feeb0eda 5707%lex-param @{int *nastiness@}
2a8d363a 5708/* Pure yyparse. */
feeb0eda
PE
5709%parse-param @{int *nastiness@}
5710%parse-param @{int *randomness@}
2a8d363a
AD
5711@end example
5712
5713@noindent
5714results in the following signatures for all the parser kinds:
5715
5716@example
5717int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5718int yyparse (int *nastiness, int *randomness);
93724f13
AD
5719void yyerror (YYLTYPE *locp,
5720 int *nastiness, int *randomness,
38a92d50 5721 char const *msg);
2a8d363a
AD
5722@end example
5723
1c0c3e95 5724@noindent
38a92d50
PE
5725The prototypes are only indications of how the code produced by Bison
5726uses @code{yyerror}. Bison-generated code always ignores the returned
5727value, so @code{yyerror} can return any type, including @code{void}.
5728Also, @code{yyerror} can be a variadic function; that is why the
5729message is always passed last.
5730
5731Traditionally @code{yyerror} returns an @code{int} that is always
5732ignored, but this is purely for historical reasons, and @code{void} is
5733preferable since it more accurately describes the return type for
5734@code{yyerror}.
93724f13 5735
bfa74976
RS
5736@vindex yynerrs
5737The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5738reported so far. Normally this variable is global; but if you
704a47c4
AD
5739request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5740then it is a local variable which only the actions can access.
bfa74976 5741
342b8b6e 5742@node Action Features
bfa74976
RS
5743@section Special Features for Use in Actions
5744@cindex summary, action features
5745@cindex action features summary
5746
5747Here is a table of Bison constructs, variables and macros that
5748are useful in actions.
5749
18b519c0 5750@deffn {Variable} $$
bfa74976
RS
5751Acts like a variable that contains the semantic value for the
5752grouping made by the current rule. @xref{Actions}.
18b519c0 5753@end deffn
bfa74976 5754
18b519c0 5755@deffn {Variable} $@var{n}
bfa74976
RS
5756Acts like a variable that contains the semantic value for the
5757@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5758@end deffn
bfa74976 5759
18b519c0 5760@deffn {Variable} $<@var{typealt}>$
bfa74976 5761Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5762specified by the @code{%union} declaration. @xref{Action Types, ,Data
5763Types of Values in Actions}.
18b519c0 5764@end deffn
bfa74976 5765
18b519c0 5766@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5767Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5768union specified by the @code{%union} declaration.
e0c471a9 5769@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5770@end deffn
bfa74976 5771
18b519c0 5772@deffn {Macro} YYABORT;
bfa74976
RS
5773Return immediately from @code{yyparse}, indicating failure.
5774@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5775@end deffn
bfa74976 5776
18b519c0 5777@deffn {Macro} YYACCEPT;
bfa74976
RS
5778Return immediately from @code{yyparse}, indicating success.
5779@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5780@end deffn
bfa74976 5781
18b519c0 5782@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5783@findex YYBACKUP
5784Unshift a token. This macro is allowed only for rules that reduce
742e4900 5785a single value, and only when there is no lookahead token.
c827f760 5786It is also disallowed in @acronym{GLR} parsers.
742e4900 5787It installs a lookahead token with token type @var{token} and
bfa74976
RS
5788semantic value @var{value}; then it discards the value that was
5789going to be reduced by this rule.
5790
5791If the macro is used when it is not valid, such as when there is
742e4900 5792a lookahead token already, then it reports a syntax error with
bfa74976
RS
5793a message @samp{cannot back up} and performs ordinary error
5794recovery.
5795
5796In either case, the rest of the action is not executed.
18b519c0 5797@end deffn
bfa74976 5798
18b519c0 5799@deffn {Macro} YYEMPTY
bfa74976 5800@vindex YYEMPTY
742e4900 5801Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5802@end deffn
bfa74976 5803
32c29292
JD
5804@deffn {Macro} YYEOF
5805@vindex YYEOF
742e4900 5806Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5807stream.
5808@end deffn
5809
18b519c0 5810@deffn {Macro} YYERROR;
bfa74976
RS
5811@findex YYERROR
5812Cause an immediate syntax error. This statement initiates error
5813recovery just as if the parser itself had detected an error; however, it
5814does not call @code{yyerror}, and does not print any message. If you
5815want to print an error message, call @code{yyerror} explicitly before
5816the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5817@end deffn
bfa74976 5818
18b519c0 5819@deffn {Macro} YYRECOVERING
02103984
PE
5820@findex YYRECOVERING
5821The expression @code{YYRECOVERING ()} yields 1 when the parser
5822is recovering from a syntax error, and 0 otherwise.
bfa74976 5823@xref{Error Recovery}.
18b519c0 5824@end deffn
bfa74976 5825
18b519c0 5826@deffn {Variable} yychar
742e4900
JD
5827Variable containing either the lookahead token, or @code{YYEOF} when the
5828lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5829has been performed so the next token is not yet known.
5830Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5831Actions}).
742e4900 5832@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5833@end deffn
bfa74976 5834
18b519c0 5835@deffn {Macro} yyclearin;
742e4900 5836Discard the current lookahead token. This is useful primarily in
32c29292
JD
5837error rules.
5838Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5839Semantic Actions}).
5840@xref{Error Recovery}.
18b519c0 5841@end deffn
bfa74976 5842
18b519c0 5843@deffn {Macro} yyerrok;
bfa74976 5844Resume generating error messages immediately for subsequent syntax
13863333 5845errors. This is useful primarily in error rules.
bfa74976 5846@xref{Error Recovery}.
18b519c0 5847@end deffn
bfa74976 5848
32c29292 5849@deffn {Variable} yylloc
742e4900 5850Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5851to @code{YYEMPTY} or @code{YYEOF}.
5852Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5853Actions}).
5854@xref{Actions and Locations, ,Actions and Locations}.
5855@end deffn
5856
5857@deffn {Variable} yylval
742e4900 5858Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5859not set to @code{YYEMPTY} or @code{YYEOF}.
5860Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5861Actions}).
5862@xref{Actions, ,Actions}.
5863@end deffn
5864
18b519c0 5865@deffn {Value} @@$
847bf1f5 5866@findex @@$
95923bd6 5867Acts like a structure variable containing information on the textual location
847bf1f5
AD
5868of the grouping made by the current rule. @xref{Locations, ,
5869Tracking Locations}.
bfa74976 5870
847bf1f5
AD
5871@c Check if those paragraphs are still useful or not.
5872
5873@c @example
5874@c struct @{
5875@c int first_line, last_line;
5876@c int first_column, last_column;
5877@c @};
5878@c @end example
5879
5880@c Thus, to get the starting line number of the third component, you would
5881@c use @samp{@@3.first_line}.
bfa74976 5882
847bf1f5
AD
5883@c In order for the members of this structure to contain valid information,
5884@c you must make @code{yylex} supply this information about each token.
5885@c If you need only certain members, then @code{yylex} need only fill in
5886@c those members.
bfa74976 5887
847bf1f5 5888@c The use of this feature makes the parser noticeably slower.
18b519c0 5889@end deffn
847bf1f5 5890
18b519c0 5891@deffn {Value} @@@var{n}
847bf1f5 5892@findex @@@var{n}
95923bd6 5893Acts like a structure variable containing information on the textual location
847bf1f5
AD
5894of the @var{n}th component of the current rule. @xref{Locations, ,
5895Tracking Locations}.
18b519c0 5896@end deffn
bfa74976 5897
f7ab6a50
PE
5898@node Internationalization
5899@section Parser Internationalization
5900@cindex internationalization
5901@cindex i18n
5902@cindex NLS
5903@cindex gettext
5904@cindex bison-po
5905
5906A Bison-generated parser can print diagnostics, including error and
5907tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5908also supports outputting diagnostics in the user's native language. To
5909make this work, the user should set the usual environment variables.
5910@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5911For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5912set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5913encoding. The exact set of available locales depends on the user's
5914installation.
5915
5916The maintainer of a package that uses a Bison-generated parser enables
5917the internationalization of the parser's output through the following
5918steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5919@acronym{GNU} Automake.
5920
5921@enumerate
5922@item
30757c8c 5923@cindex bison-i18n.m4
f7ab6a50
PE
5924Into the directory containing the @acronym{GNU} Autoconf macros used
5925by the package---often called @file{m4}---copy the
5926@file{bison-i18n.m4} file installed by Bison under
5927@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5928For example:
5929
5930@example
5931cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5932@end example
5933
5934@item
30757c8c
PE
5935@findex BISON_I18N
5936@vindex BISON_LOCALEDIR
5937@vindex YYENABLE_NLS
f7ab6a50
PE
5938In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5939invocation, add an invocation of @code{BISON_I18N}. This macro is
5940defined in the file @file{bison-i18n.m4} that you copied earlier. It
5941causes @samp{configure} to find the value of the
30757c8c
PE
5942@code{BISON_LOCALEDIR} variable, and it defines the source-language
5943symbol @code{YYENABLE_NLS} to enable translations in the
5944Bison-generated parser.
f7ab6a50
PE
5945
5946@item
5947In the @code{main} function of your program, designate the directory
5948containing Bison's runtime message catalog, through a call to
5949@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5950For example:
5951
5952@example
5953bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5954@end example
5955
5956Typically this appears after any other call @code{bindtextdomain
5957(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5958@samp{BISON_LOCALEDIR} to be defined as a string through the
5959@file{Makefile}.
5960
5961@item
5962In the @file{Makefile.am} that controls the compilation of the @code{main}
5963function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5964either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5965
5966@example
5967DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5968@end example
5969
5970or:
5971
5972@example
5973AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5974@end example
5975
5976@item
5977Finally, invoke the command @command{autoreconf} to generate the build
5978infrastructure.
5979@end enumerate
5980
bfa74976 5981
342b8b6e 5982@node Algorithm
13863333
AD
5983@chapter The Bison Parser Algorithm
5984@cindex Bison parser algorithm
bfa74976
RS
5985@cindex algorithm of parser
5986@cindex shifting
5987@cindex reduction
5988@cindex parser stack
5989@cindex stack, parser
5990
5991As Bison reads tokens, it pushes them onto a stack along with their
5992semantic values. The stack is called the @dfn{parser stack}. Pushing a
5993token is traditionally called @dfn{shifting}.
5994
5995For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5996@samp{3} to come. The stack will have four elements, one for each token
5997that was shifted.
5998
5999But the stack does not always have an element for each token read. When
6000the last @var{n} tokens and groupings shifted match the components of a
6001grammar rule, they can be combined according to that rule. This is called
6002@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6003single grouping whose symbol is the result (left hand side) of that rule.
6004Running the rule's action is part of the process of reduction, because this
6005is what computes the semantic value of the resulting grouping.
6006
6007For example, if the infix calculator's parser stack contains this:
6008
6009@example
60101 + 5 * 3
6011@end example
6012
6013@noindent
6014and the next input token is a newline character, then the last three
6015elements can be reduced to 15 via the rule:
6016
6017@example
6018expr: expr '*' expr;
6019@end example
6020
6021@noindent
6022Then the stack contains just these three elements:
6023
6024@example
60251 + 15
6026@end example
6027
6028@noindent
6029At this point, another reduction can be made, resulting in the single value
603016. Then the newline token can be shifted.
6031
6032The parser tries, by shifts and reductions, to reduce the entire input down
6033to a single grouping whose symbol is the grammar's start-symbol
6034(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6035
6036This kind of parser is known in the literature as a bottom-up parser.
6037
6038@menu
742e4900 6039* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6040* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6041* Precedence:: Operator precedence works by resolving conflicts.
6042* Contextual Precedence:: When an operator's precedence depends on context.
6043* Parser States:: The parser is a finite-state-machine with stack.
6044* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6045* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6046* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6047* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6048@end menu
6049
742e4900
JD
6050@node Lookahead
6051@section Lookahead Tokens
6052@cindex lookahead token
bfa74976
RS
6053
6054The Bison parser does @emph{not} always reduce immediately as soon as the
6055last @var{n} tokens and groupings match a rule. This is because such a
6056simple strategy is inadequate to handle most languages. Instead, when a
6057reduction is possible, the parser sometimes ``looks ahead'' at the next
6058token in order to decide what to do.
6059
6060When a token is read, it is not immediately shifted; first it becomes the
742e4900 6061@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6062perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6063the lookahead token remains off to the side. When no more reductions
6064should take place, the lookahead token is shifted onto the stack. This
bfa74976 6065does not mean that all possible reductions have been done; depending on the
742e4900 6066token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6067application.
6068
742e4900 6069Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6070expressions which contain binary addition operators and postfix unary
6071factorial operators (@samp{!}), and allow parentheses for grouping.
6072
6073@example
6074@group
6075expr: term '+' expr
6076 | term
6077 ;
6078@end group
6079
6080@group
6081term: '(' expr ')'
6082 | term '!'
6083 | NUMBER
6084 ;
6085@end group
6086@end example
6087
6088Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6089should be done? If the following token is @samp{)}, then the first three
6090tokens must be reduced to form an @code{expr}. This is the only valid
6091course, because shifting the @samp{)} would produce a sequence of symbols
6092@w{@code{term ')'}}, and no rule allows this.
6093
6094If the following token is @samp{!}, then it must be shifted immediately so
6095that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6096parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6097@code{expr}. It would then be impossible to shift the @samp{!} because
6098doing so would produce on the stack the sequence of symbols @code{expr
6099'!'}. No rule allows that sequence.
6100
6101@vindex yychar
32c29292
JD
6102@vindex yylval
6103@vindex yylloc
742e4900 6104The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6105Its semantic value and location, if any, are stored in the variables
6106@code{yylval} and @code{yylloc}.
bfa74976
RS
6107@xref{Action Features, ,Special Features for Use in Actions}.
6108
342b8b6e 6109@node Shift/Reduce
bfa74976
RS
6110@section Shift/Reduce Conflicts
6111@cindex conflicts
6112@cindex shift/reduce conflicts
6113@cindex dangling @code{else}
6114@cindex @code{else}, dangling
6115
6116Suppose we are parsing a language which has if-then and if-then-else
6117statements, with a pair of rules like this:
6118
6119@example
6120@group
6121if_stmt:
6122 IF expr THEN stmt
6123 | IF expr THEN stmt ELSE stmt
6124 ;
6125@end group
6126@end example
6127
6128@noindent
6129Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6130terminal symbols for specific keyword tokens.
6131
742e4900 6132When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6133contents of the stack (assuming the input is valid) are just right for
6134reduction by the first rule. But it is also legitimate to shift the
6135@code{ELSE}, because that would lead to eventual reduction by the second
6136rule.
6137
6138This situation, where either a shift or a reduction would be valid, is
6139called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6140these conflicts by choosing to shift, unless otherwise directed by
6141operator precedence declarations. To see the reason for this, let's
6142contrast it with the other alternative.
6143
6144Since the parser prefers to shift the @code{ELSE}, the result is to attach
6145the else-clause to the innermost if-statement, making these two inputs
6146equivalent:
6147
6148@example
6149if x then if y then win (); else lose;
6150
6151if x then do; if y then win (); else lose; end;
6152@end example
6153
6154But if the parser chose to reduce when possible rather than shift, the
6155result would be to attach the else-clause to the outermost if-statement,
6156making these two inputs equivalent:
6157
6158@example
6159if x then if y then win (); else lose;
6160
6161if x then do; if y then win (); end; else lose;
6162@end example
6163
6164The conflict exists because the grammar as written is ambiguous: either
6165parsing of the simple nested if-statement is legitimate. The established
6166convention is that these ambiguities are resolved by attaching the
6167else-clause to the innermost if-statement; this is what Bison accomplishes
6168by choosing to shift rather than reduce. (It would ideally be cleaner to
6169write an unambiguous grammar, but that is very hard to do in this case.)
6170This particular ambiguity was first encountered in the specifications of
6171Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6172
6173To avoid warnings from Bison about predictable, legitimate shift/reduce
6174conflicts, use the @code{%expect @var{n}} declaration. There will be no
6175warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6176@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6177
6178The definition of @code{if_stmt} above is solely to blame for the
6179conflict, but the conflict does not actually appear without additional
6180rules. Here is a complete Bison input file that actually manifests the
6181conflict:
6182
6183@example
6184@group
6185%token IF THEN ELSE variable
6186%%
6187@end group
6188@group
6189stmt: expr
6190 | if_stmt
6191 ;
6192@end group
6193
6194@group
6195if_stmt:
6196 IF expr THEN stmt
6197 | IF expr THEN stmt ELSE stmt
6198 ;
6199@end group
6200
6201expr: variable
6202 ;
6203@end example
6204
342b8b6e 6205@node Precedence
bfa74976
RS
6206@section Operator Precedence
6207@cindex operator precedence
6208@cindex precedence of operators
6209
6210Another situation where shift/reduce conflicts appear is in arithmetic
6211expressions. Here shifting is not always the preferred resolution; the
6212Bison declarations for operator precedence allow you to specify when to
6213shift and when to reduce.
6214
6215@menu
6216* Why Precedence:: An example showing why precedence is needed.
6217* Using Precedence:: How to specify precedence in Bison grammars.
6218* Precedence Examples:: How these features are used in the previous example.
6219* How Precedence:: How they work.
6220@end menu
6221
342b8b6e 6222@node Why Precedence
bfa74976
RS
6223@subsection When Precedence is Needed
6224
6225Consider the following ambiguous grammar fragment (ambiguous because the
6226input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6227
6228@example
6229@group
6230expr: expr '-' expr
6231 | expr '*' expr
6232 | expr '<' expr
6233 | '(' expr ')'
6234 @dots{}
6235 ;
6236@end group
6237@end example
6238
6239@noindent
6240Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6241should it reduce them via the rule for the subtraction operator? It
6242depends on the next token. Of course, if the next token is @samp{)}, we
6243must reduce; shifting is invalid because no single rule can reduce the
6244token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6245the next token is @samp{*} or @samp{<}, we have a choice: either
6246shifting or reduction would allow the parse to complete, but with
6247different results.
6248
6249To decide which one Bison should do, we must consider the results. If
6250the next operator token @var{op} is shifted, then it must be reduced
6251first in order to permit another opportunity to reduce the difference.
6252The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6253hand, if the subtraction is reduced before shifting @var{op}, the result
6254is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6255reduce should depend on the relative precedence of the operators
6256@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6257@samp{<}.
bfa74976
RS
6258
6259@cindex associativity
6260What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6261@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6262operators we prefer the former, which is called @dfn{left association}.
6263The latter alternative, @dfn{right association}, is desirable for
6264assignment operators. The choice of left or right association is a
6265matter of whether the parser chooses to shift or reduce when the stack
742e4900 6266contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6267makes right-associativity.
bfa74976 6268
342b8b6e 6269@node Using Precedence
bfa74976
RS
6270@subsection Specifying Operator Precedence
6271@findex %left
6272@findex %right
6273@findex %nonassoc
6274
6275Bison allows you to specify these choices with the operator precedence
6276declarations @code{%left} and @code{%right}. Each such declaration
6277contains a list of tokens, which are operators whose precedence and
6278associativity is being declared. The @code{%left} declaration makes all
6279those operators left-associative and the @code{%right} declaration makes
6280them right-associative. A third alternative is @code{%nonassoc}, which
6281declares that it is a syntax error to find the same operator twice ``in a
6282row''.
6283
6284The relative precedence of different operators is controlled by the
6285order in which they are declared. The first @code{%left} or
6286@code{%right} declaration in the file declares the operators whose
6287precedence is lowest, the next such declaration declares the operators
6288whose precedence is a little higher, and so on.
6289
342b8b6e 6290@node Precedence Examples
bfa74976
RS
6291@subsection Precedence Examples
6292
6293In our example, we would want the following declarations:
6294
6295@example
6296%left '<'
6297%left '-'
6298%left '*'
6299@end example
6300
6301In a more complete example, which supports other operators as well, we
6302would declare them in groups of equal precedence. For example, @code{'+'} is
6303declared with @code{'-'}:
6304
6305@example
6306%left '<' '>' '=' NE LE GE
6307%left '+' '-'
6308%left '*' '/'
6309@end example
6310
6311@noindent
6312(Here @code{NE} and so on stand for the operators for ``not equal''
6313and so on. We assume that these tokens are more than one character long
6314and therefore are represented by names, not character literals.)
6315
342b8b6e 6316@node How Precedence
bfa74976
RS
6317@subsection How Precedence Works
6318
6319The first effect of the precedence declarations is to assign precedence
6320levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6321precedence levels to certain rules: each rule gets its precedence from
6322the last terminal symbol mentioned in the components. (You can also
6323specify explicitly the precedence of a rule. @xref{Contextual
6324Precedence, ,Context-Dependent Precedence}.)
6325
6326Finally, the resolution of conflicts works by comparing the precedence
742e4900 6327of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6328token's precedence is higher, the choice is to shift. If the rule's
6329precedence is higher, the choice is to reduce. If they have equal
6330precedence, the choice is made based on the associativity of that
6331precedence level. The verbose output file made by @samp{-v}
6332(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6333resolved.
bfa74976
RS
6334
6335Not all rules and not all tokens have precedence. If either the rule or
742e4900 6336the lookahead token has no precedence, then the default is to shift.
bfa74976 6337
342b8b6e 6338@node Contextual Precedence
bfa74976
RS
6339@section Context-Dependent Precedence
6340@cindex context-dependent precedence
6341@cindex unary operator precedence
6342@cindex precedence, context-dependent
6343@cindex precedence, unary operator
6344@findex %prec
6345
6346Often the precedence of an operator depends on the context. This sounds
6347outlandish at first, but it is really very common. For example, a minus
6348sign typically has a very high precedence as a unary operator, and a
6349somewhat lower precedence (lower than multiplication) as a binary operator.
6350
6351The Bison precedence declarations, @code{%left}, @code{%right} and
6352@code{%nonassoc}, can only be used once for a given token; so a token has
6353only one precedence declared in this way. For context-dependent
6354precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6355modifier for rules.
bfa74976
RS
6356
6357The @code{%prec} modifier declares the precedence of a particular rule by
6358specifying a terminal symbol whose precedence should be used for that rule.
6359It's not necessary for that symbol to appear otherwise in the rule. The
6360modifier's syntax is:
6361
6362@example
6363%prec @var{terminal-symbol}
6364@end example
6365
6366@noindent
6367and it is written after the components of the rule. Its effect is to
6368assign the rule the precedence of @var{terminal-symbol}, overriding
6369the precedence that would be deduced for it in the ordinary way. The
6370altered rule precedence then affects how conflicts involving that rule
6371are resolved (@pxref{Precedence, ,Operator Precedence}).
6372
6373Here is how @code{%prec} solves the problem of unary minus. First, declare
6374a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6375are no tokens of this type, but the symbol serves to stand for its
6376precedence:
6377
6378@example
6379@dots{}
6380%left '+' '-'
6381%left '*'
6382%left UMINUS
6383@end example
6384
6385Now the precedence of @code{UMINUS} can be used in specific rules:
6386
6387@example
6388@group
6389exp: @dots{}
6390 | exp '-' exp
6391 @dots{}
6392 | '-' exp %prec UMINUS
6393@end group
6394@end example
6395
91d2c560 6396@ifset defaultprec
39a06c25
PE
6397If you forget to append @code{%prec UMINUS} to the rule for unary
6398minus, Bison silently assumes that minus has its usual precedence.
6399This kind of problem can be tricky to debug, since one typically
6400discovers the mistake only by testing the code.
6401
22fccf95 6402The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6403this kind of problem systematically. It causes rules that lack a
6404@code{%prec} modifier to have no precedence, even if the last terminal
6405symbol mentioned in their components has a declared precedence.
6406
22fccf95 6407If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6408for all rules that participate in precedence conflict resolution.
6409Then you will see any shift/reduce conflict until you tell Bison how
6410to resolve it, either by changing your grammar or by adding an
6411explicit precedence. This will probably add declarations to the
6412grammar, but it helps to protect against incorrect rule precedences.
6413
22fccf95
PE
6414The effect of @code{%no-default-prec;} can be reversed by giving
6415@code{%default-prec;}, which is the default.
91d2c560 6416@end ifset
39a06c25 6417
342b8b6e 6418@node Parser States
bfa74976
RS
6419@section Parser States
6420@cindex finite-state machine
6421@cindex parser state
6422@cindex state (of parser)
6423
6424The function @code{yyparse} is implemented using a finite-state machine.
6425The values pushed on the parser stack are not simply token type codes; they
6426represent the entire sequence of terminal and nonterminal symbols at or
6427near the top of the stack. The current state collects all the information
6428about previous input which is relevant to deciding what to do next.
6429
742e4900
JD
6430Each time a lookahead token is read, the current parser state together
6431with the type of lookahead token are looked up in a table. This table
6432entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6433specifies the new parser state, which is pushed onto the top of the
6434parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6435This means that a certain number of tokens or groupings are taken off
6436the top of the stack, and replaced by one grouping. In other words,
6437that number of states are popped from the stack, and one new state is
6438pushed.
6439
742e4900 6440There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6441is erroneous in the current state. This causes error processing to begin
6442(@pxref{Error Recovery}).
6443
342b8b6e 6444@node Reduce/Reduce
bfa74976
RS
6445@section Reduce/Reduce Conflicts
6446@cindex reduce/reduce conflict
6447@cindex conflicts, reduce/reduce
6448
6449A reduce/reduce conflict occurs if there are two or more rules that apply
6450to the same sequence of input. This usually indicates a serious error
6451in the grammar.
6452
6453For example, here is an erroneous attempt to define a sequence
6454of zero or more @code{word} groupings.
6455
6456@example
6457sequence: /* empty */
6458 @{ printf ("empty sequence\n"); @}
6459 | maybeword
6460 | sequence word
6461 @{ printf ("added word %s\n", $2); @}
6462 ;
6463
6464maybeword: /* empty */
6465 @{ printf ("empty maybeword\n"); @}
6466 | word
6467 @{ printf ("single word %s\n", $1); @}
6468 ;
6469@end example
6470
6471@noindent
6472The error is an ambiguity: there is more than one way to parse a single
6473@code{word} into a @code{sequence}. It could be reduced to a
6474@code{maybeword} and then into a @code{sequence} via the second rule.
6475Alternatively, nothing-at-all could be reduced into a @code{sequence}
6476via the first rule, and this could be combined with the @code{word}
6477using the third rule for @code{sequence}.
6478
6479There is also more than one way to reduce nothing-at-all into a
6480@code{sequence}. This can be done directly via the first rule,
6481or indirectly via @code{maybeword} and then the second rule.
6482
6483You might think that this is a distinction without a difference, because it
6484does not change whether any particular input is valid or not. But it does
6485affect which actions are run. One parsing order runs the second rule's
6486action; the other runs the first rule's action and the third rule's action.
6487In this example, the output of the program changes.
6488
6489Bison resolves a reduce/reduce conflict by choosing to use the rule that
6490appears first in the grammar, but it is very risky to rely on this. Every
6491reduce/reduce conflict must be studied and usually eliminated. Here is the
6492proper way to define @code{sequence}:
6493
6494@example
6495sequence: /* empty */
6496 @{ printf ("empty sequence\n"); @}
6497 | sequence word
6498 @{ printf ("added word %s\n", $2); @}
6499 ;
6500@end example
6501
6502Here is another common error that yields a reduce/reduce conflict:
6503
6504@example
6505sequence: /* empty */
6506 | sequence words
6507 | sequence redirects
6508 ;
6509
6510words: /* empty */
6511 | words word
6512 ;
6513
6514redirects:/* empty */
6515 | redirects redirect
6516 ;
6517@end example
6518
6519@noindent
6520The intention here is to define a sequence which can contain either
6521@code{word} or @code{redirect} groupings. The individual definitions of
6522@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6523three together make a subtle ambiguity: even an empty input can be parsed
6524in infinitely many ways!
6525
6526Consider: nothing-at-all could be a @code{words}. Or it could be two
6527@code{words} in a row, or three, or any number. It could equally well be a
6528@code{redirects}, or two, or any number. Or it could be a @code{words}
6529followed by three @code{redirects} and another @code{words}. And so on.
6530
6531Here are two ways to correct these rules. First, to make it a single level
6532of sequence:
6533
6534@example
6535sequence: /* empty */
6536 | sequence word
6537 | sequence redirect
6538 ;
6539@end example
6540
6541Second, to prevent either a @code{words} or a @code{redirects}
6542from being empty:
6543
6544@example
6545sequence: /* empty */
6546 | sequence words
6547 | sequence redirects
6548 ;
6549
6550words: word
6551 | words word
6552 ;
6553
6554redirects:redirect
6555 | redirects redirect
6556 ;
6557@end example
6558
342b8b6e 6559@node Mystery Conflicts
bfa74976
RS
6560@section Mysterious Reduce/Reduce Conflicts
6561
6562Sometimes reduce/reduce conflicts can occur that don't look warranted.
6563Here is an example:
6564
6565@example
6566@group
6567%token ID
6568
6569%%
6570def: param_spec return_spec ','
6571 ;
6572param_spec:
6573 type
6574 | name_list ':' type
6575 ;
6576@end group
6577@group
6578return_spec:
6579 type
6580 | name ':' type
6581 ;
6582@end group
6583@group
6584type: ID
6585 ;
6586@end group
6587@group
6588name: ID
6589 ;
6590name_list:
6591 name
6592 | name ',' name_list
6593 ;
6594@end group
6595@end example
6596
6597It would seem that this grammar can be parsed with only a single token
742e4900 6598of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6599a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6600@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6601
c827f760
PE
6602@cindex @acronym{LR}(1)
6603@cindex @acronym{LALR}(1)
bfa74976 6604However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6605@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6606an @code{ID}
bfa74976
RS
6607at the beginning of a @code{param_spec} and likewise at the beginning of
6608a @code{return_spec}, are similar enough that Bison assumes they are the
6609same. They appear similar because the same set of rules would be
6610active---the rule for reducing to a @code{name} and that for reducing to
6611a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6612that the rules would require different lookahead tokens in the two
bfa74976
RS
6613contexts, so it makes a single parser state for them both. Combining
6614the two contexts causes a conflict later. In parser terminology, this
c827f760 6615occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6616
6617In general, it is better to fix deficiencies than to document them. But
6618this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6619generators that can handle @acronym{LR}(1) grammars are hard to write
6620and tend to
bfa74976
RS
6621produce parsers that are very large. In practice, Bison is more useful
6622as it is now.
6623
6624When the problem arises, you can often fix it by identifying the two
a220f555
MA
6625parser states that are being confused, and adding something to make them
6626look distinct. In the above example, adding one rule to
bfa74976
RS
6627@code{return_spec} as follows makes the problem go away:
6628
6629@example
6630@group
6631%token BOGUS
6632@dots{}
6633%%
6634@dots{}
6635return_spec:
6636 type
6637 | name ':' type
6638 /* This rule is never used. */
6639 | ID BOGUS
6640 ;
6641@end group
6642@end example
6643
6644This corrects the problem because it introduces the possibility of an
6645additional active rule in the context after the @code{ID} at the beginning of
6646@code{return_spec}. This rule is not active in the corresponding context
6647in a @code{param_spec}, so the two contexts receive distinct parser states.
6648As long as the token @code{BOGUS} is never generated by @code{yylex},
6649the added rule cannot alter the way actual input is parsed.
6650
6651In this particular example, there is another way to solve the problem:
6652rewrite the rule for @code{return_spec} to use @code{ID} directly
6653instead of via @code{name}. This also causes the two confusing
6654contexts to have different sets of active rules, because the one for
6655@code{return_spec} activates the altered rule for @code{return_spec}
6656rather than the one for @code{name}.
6657
6658@example
6659param_spec:
6660 type
6661 | name_list ':' type
6662 ;
6663return_spec:
6664 type
6665 | ID ':' type
6666 ;
6667@end example
6668
e054b190
PE
6669For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6670generators, please see:
6671Frank DeRemer and Thomas Pennello, Efficient Computation of
6672@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6673Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6674pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6675
fae437e8 6676@node Generalized LR Parsing
c827f760
PE
6677@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6678@cindex @acronym{GLR} parsing
6679@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6680@cindex ambiguous grammars
9d9b8b70 6681@cindex nondeterministic parsing
676385e2 6682
fae437e8
AD
6683Bison produces @emph{deterministic} parsers that choose uniquely
6684when to reduce and which reduction to apply
742e4900 6685based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6686As a result, normal Bison handles a proper subset of the family of
6687context-free languages.
fae437e8 6688Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6689sequence of reductions cannot have deterministic parsers in this sense.
6690The same is true of languages that require more than one symbol of
742e4900 6691lookahead, since the parser lacks the information necessary to make a
676385e2 6692decision at the point it must be made in a shift-reduce parser.
fae437e8 6693Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6694there are languages where Bison's particular choice of how to
6695summarize the input seen so far loses necessary information.
6696
6697When you use the @samp{%glr-parser} declaration in your grammar file,
6698Bison generates a parser that uses a different algorithm, called
c827f760
PE
6699Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6700parser uses the same basic
676385e2
PH
6701algorithm for parsing as an ordinary Bison parser, but behaves
6702differently in cases where there is a shift-reduce conflict that has not
fae437e8 6703been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6704reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6705situation, it
fae437e8 6706effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6707shift or reduction. These parsers then proceed as usual, consuming
6708tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6709and split further, with the result that instead of a sequence of states,
c827f760 6710a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6711
6712In effect, each stack represents a guess as to what the proper parse
6713is. Additional input may indicate that a guess was wrong, in which case
6714the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6715actions generated in each stack are saved, rather than being executed
676385e2 6716immediately. When a stack disappears, its saved semantic actions never
fae437e8 6717get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6718their sets of semantic actions are both saved with the state that
6719results from the reduction. We say that two stacks are equivalent
fae437e8 6720when they both represent the same sequence of states,
676385e2
PH
6721and each pair of corresponding states represents a
6722grammar symbol that produces the same segment of the input token
6723stream.
6724
6725Whenever the parser makes a transition from having multiple
c827f760 6726states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6727algorithm, after resolving and executing the saved-up actions.
6728At this transition, some of the states on the stack will have semantic
6729values that are sets (actually multisets) of possible actions. The
6730parser tries to pick one of the actions by first finding one whose rule
6731has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6732declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6733precedence, but there the same merging function is declared for both
fae437e8 6734rules by the @samp{%merge} declaration,
676385e2
PH
6735Bison resolves and evaluates both and then calls the merge function on
6736the result. Otherwise, it reports an ambiguity.
6737
c827f760
PE
6738It is possible to use a data structure for the @acronym{GLR} parsing tree that
6739permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6740size of the input), any unambiguous (not necessarily
6741@acronym{LALR}(1)) grammar in
fae437e8 6742quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6743context-free grammar in cubic worst-case time. However, Bison currently
6744uses a simpler data structure that requires time proportional to the
6745length of the input times the maximum number of stacks required for any
9d9b8b70 6746prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6747grammars can require exponential time and space to process. Such badly
6748behaving examples, however, are not generally of practical interest.
9d9b8b70 6749Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6750doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6751structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6752grammar, in particular, it is only slightly slower than with the default
6753Bison parser.
6754
fa7e68c3 6755For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6756Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6757Generalised @acronym{LR} Parsers, Royal Holloway, University of
6758London, Department of Computer Science, TR-00-12,
6759@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6760(2000-12-24).
6761
1a059451
PE
6762@node Memory Management
6763@section Memory Management, and How to Avoid Memory Exhaustion
6764@cindex memory exhaustion
6765@cindex memory management
bfa74976
RS
6766@cindex stack overflow
6767@cindex parser stack overflow
6768@cindex overflow of parser stack
6769
1a059451 6770The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6771not reduced. When this happens, the parser function @code{yyparse}
1a059451 6772calls @code{yyerror} and then returns 2.
bfa74976 6773
c827f760 6774Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6775usually results from using a right recursion instead of a left
6776recursion, @xref{Recursion, ,Recursive Rules}.
6777
bfa74976
RS
6778@vindex YYMAXDEPTH
6779By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6780parser stack can become before memory is exhausted. Define the
bfa74976
RS
6781macro with a value that is an integer. This value is the maximum number
6782of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6783
6784The stack space allowed is not necessarily allocated. If you specify a
1a059451 6785large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6786stack at first, and then makes it bigger by stages as needed. This
6787increasing allocation happens automatically and silently. Therefore,
6788you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6789space for ordinary inputs that do not need much stack.
6790
d7e14fc0
PE
6791However, do not allow @code{YYMAXDEPTH} to be a value so large that
6792arithmetic overflow could occur when calculating the size of the stack
6793space. Also, do not allow @code{YYMAXDEPTH} to be less than
6794@code{YYINITDEPTH}.
6795
bfa74976
RS
6796@cindex default stack limit
6797The default value of @code{YYMAXDEPTH}, if you do not define it, is
679810000.
6799
6800@vindex YYINITDEPTH
6801You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6802macro @code{YYINITDEPTH} to a positive integer. For the C
6803@acronym{LALR}(1) parser, this value must be a compile-time constant
6804unless you are assuming C99 or some other target language or compiler
6805that allows variable-length arrays. The default is 200.
6806
1a059451 6807Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6808
d1a1114f 6809@c FIXME: C++ output.
87b9c9bc 6810Because of semantic differences between C and C++, the
1a059451
PE
6811@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6812by C++ compilers. In this precise case (compiling a C parser as C++) you are
6813suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6814this deficiency in a future release.
d1a1114f 6815
342b8b6e 6816@node Error Recovery
bfa74976
RS
6817@chapter Error Recovery
6818@cindex error recovery
6819@cindex recovery from errors
6820
6e649e65 6821It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6822error. For example, a compiler should recover sufficiently to parse the
6823rest of the input file and check it for errors; a calculator should accept
6824another expression.
6825
6826In a simple interactive command parser where each input is one line, it may
6827be sufficient to allow @code{yyparse} to return 1 on error and have the
6828caller ignore the rest of the input line when that happens (and then call
6829@code{yyparse} again). But this is inadequate for a compiler, because it
6830forgets all the syntactic context leading up to the error. A syntax error
6831deep within a function in the compiler input should not cause the compiler
6832to treat the following line like the beginning of a source file.
6833
6834@findex error
6835You can define how to recover from a syntax error by writing rules to
6836recognize the special token @code{error}. This is a terminal symbol that
6837is always defined (you need not declare it) and reserved for error
6838handling. The Bison parser generates an @code{error} token whenever a
6839syntax error happens; if you have provided a rule to recognize this token
13863333 6840in the current context, the parse can continue.
bfa74976
RS
6841
6842For example:
6843
6844@example
6845stmnts: /* empty string */
6846 | stmnts '\n'
6847 | stmnts exp '\n'
6848 | stmnts error '\n'
6849@end example
6850
6851The fourth rule in this example says that an error followed by a newline
6852makes a valid addition to any @code{stmnts}.
6853
6854What happens if a syntax error occurs in the middle of an @code{exp}? The
6855error recovery rule, interpreted strictly, applies to the precise sequence
6856of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6857the middle of an @code{exp}, there will probably be some additional tokens
6858and subexpressions on the stack after the last @code{stmnts}, and there
6859will be tokens to read before the next newline. So the rule is not
6860applicable in the ordinary way.
6861
6862But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6863the semantic context and part of the input. First it discards states
6864and objects from the stack until it gets back to a state in which the
bfa74976 6865@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6866already parsed are discarded, back to the last complete @code{stmnts}.)
6867At this point the @code{error} token can be shifted. Then, if the old
742e4900 6868lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6869tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6870this example, Bison reads and discards input until the next newline so
6871that the fourth rule can apply. Note that discarded symbols are
6872possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6873Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6874
6875The choice of error rules in the grammar is a choice of strategies for
6876error recovery. A simple and useful strategy is simply to skip the rest of
6877the current input line or current statement if an error is detected:
6878
6879@example
72d2299c 6880stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6881@end example
6882
6883It is also useful to recover to the matching close-delimiter of an
6884opening-delimiter that has already been parsed. Otherwise the
6885close-delimiter will probably appear to be unmatched, and generate another,
6886spurious error message:
6887
6888@example
6889primary: '(' expr ')'
6890 | '(' error ')'
6891 @dots{}
6892 ;
6893@end example
6894
6895Error recovery strategies are necessarily guesses. When they guess wrong,
6896one syntax error often leads to another. In the above example, the error
6897recovery rule guesses that an error is due to bad input within one
6898@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6899middle of a valid @code{stmnt}. After the error recovery rule recovers
6900from the first error, another syntax error will be found straightaway,
6901since the text following the spurious semicolon is also an invalid
6902@code{stmnt}.
6903
6904To prevent an outpouring of error messages, the parser will output no error
6905message for another syntax error that happens shortly after the first; only
6906after three consecutive input tokens have been successfully shifted will
6907error messages resume.
6908
6909Note that rules which accept the @code{error} token may have actions, just
6910as any other rules can.
6911
6912@findex yyerrok
6913You can make error messages resume immediately by using the macro
6914@code{yyerrok} in an action. If you do this in the error rule's action, no
6915error messages will be suppressed. This macro requires no arguments;
6916@samp{yyerrok;} is a valid C statement.
6917
6918@findex yyclearin
742e4900 6919The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6920this is unacceptable, then the macro @code{yyclearin} may be used to clear
6921this token. Write the statement @samp{yyclearin;} in the error rule's
6922action.
32c29292 6923@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6924
6e649e65 6925For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6926called that advances the input stream to some point where parsing should
6927once again commence. The next symbol returned by the lexical scanner is
742e4900 6928probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6929with @samp{yyclearin;}.
6930
6931@vindex YYRECOVERING
02103984
PE
6932The expression @code{YYRECOVERING ()} yields 1 when the parser
6933is recovering from a syntax error, and 0 otherwise.
6934Syntax error diagnostics are suppressed while recovering from a syntax
6935error.
bfa74976 6936
342b8b6e 6937@node Context Dependency
bfa74976
RS
6938@chapter Handling Context Dependencies
6939
6940The Bison paradigm is to parse tokens first, then group them into larger
6941syntactic units. In many languages, the meaning of a token is affected by
6942its context. Although this violates the Bison paradigm, certain techniques
6943(known as @dfn{kludges}) may enable you to write Bison parsers for such
6944languages.
6945
6946@menu
6947* Semantic Tokens:: Token parsing can depend on the semantic context.
6948* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6949* Tie-in Recovery:: Lexical tie-ins have implications for how
6950 error recovery rules must be written.
6951@end menu
6952
6953(Actually, ``kludge'' means any technique that gets its job done but is
6954neither clean nor robust.)
6955
342b8b6e 6956@node Semantic Tokens
bfa74976
RS
6957@section Semantic Info in Token Types
6958
6959The C language has a context dependency: the way an identifier is used
6960depends on what its current meaning is. For example, consider this:
6961
6962@example
6963foo (x);
6964@end example
6965
6966This looks like a function call statement, but if @code{foo} is a typedef
6967name, then this is actually a declaration of @code{x}. How can a Bison
6968parser for C decide how to parse this input?
6969
c827f760 6970The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6971@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6972identifier, it looks up the current declaration of the identifier in order
6973to decide which token type to return: @code{TYPENAME} if the identifier is
6974declared as a typedef, @code{IDENTIFIER} otherwise.
6975
6976The grammar rules can then express the context dependency by the choice of
6977token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6978but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6979@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6980is @emph{not} significant, such as in declarations that can shadow a
6981typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6982accepted---there is one rule for each of the two token types.
6983
6984This technique is simple to use if the decision of which kinds of
6985identifiers to allow is made at a place close to where the identifier is
6986parsed. But in C this is not always so: C allows a declaration to
6987redeclare a typedef name provided an explicit type has been specified
6988earlier:
6989
6990@example
3a4f411f
PE
6991typedef int foo, bar;
6992int baz (void)
6993@{
6994 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6995 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6996 return foo (bar);
6997@}
bfa74976
RS
6998@end example
6999
7000Unfortunately, the name being declared is separated from the declaration
7001construct itself by a complicated syntactic structure---the ``declarator''.
7002
9ecbd125 7003As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7004all the nonterminal names changed: once for parsing a declaration in
7005which a typedef name can be redefined, and once for parsing a
7006declaration in which that can't be done. Here is a part of the
7007duplication, with actions omitted for brevity:
bfa74976
RS
7008
7009@example
7010initdcl:
7011 declarator maybeasm '='
7012 init
7013 | declarator maybeasm
7014 ;
7015
7016notype_initdcl:
7017 notype_declarator maybeasm '='
7018 init
7019 | notype_declarator maybeasm
7020 ;
7021@end example
7022
7023@noindent
7024Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7025cannot. The distinction between @code{declarator} and
7026@code{notype_declarator} is the same sort of thing.
7027
7028There is some similarity between this technique and a lexical tie-in
7029(described next), in that information which alters the lexical analysis is
7030changed during parsing by other parts of the program. The difference is
7031here the information is global, and is used for other purposes in the
7032program. A true lexical tie-in has a special-purpose flag controlled by
7033the syntactic context.
7034
342b8b6e 7035@node Lexical Tie-ins
bfa74976
RS
7036@section Lexical Tie-ins
7037@cindex lexical tie-in
7038
7039One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7040which is set by Bison actions, whose purpose is to alter the way tokens are
7041parsed.
7042
7043For example, suppose we have a language vaguely like C, but with a special
7044construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7045an expression in parentheses in which all integers are hexadecimal. In
7046particular, the token @samp{a1b} must be treated as an integer rather than
7047as an identifier if it appears in that context. Here is how you can do it:
7048
7049@example
7050@group
7051%@{
38a92d50
PE
7052 int hexflag;
7053 int yylex (void);
7054 void yyerror (char const *);
bfa74976
RS
7055%@}
7056%%
7057@dots{}
7058@end group
7059@group
7060expr: IDENTIFIER
7061 | constant
7062 | HEX '('
7063 @{ hexflag = 1; @}
7064 expr ')'
7065 @{ hexflag = 0;
7066 $$ = $4; @}
7067 | expr '+' expr
7068 @{ $$ = make_sum ($1, $3); @}
7069 @dots{}
7070 ;
7071@end group
7072
7073@group
7074constant:
7075 INTEGER
7076 | STRING
7077 ;
7078@end group
7079@end example
7080
7081@noindent
7082Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7083it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7084with letters are parsed as integers if possible.
7085
342b8b6e
AD
7086The declaration of @code{hexflag} shown in the prologue of the parser file
7087is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7088You must also write the code in @code{yylex} to obey the flag.
bfa74976 7089
342b8b6e 7090@node Tie-in Recovery
bfa74976
RS
7091@section Lexical Tie-ins and Error Recovery
7092
7093Lexical tie-ins make strict demands on any error recovery rules you have.
7094@xref{Error Recovery}.
7095
7096The reason for this is that the purpose of an error recovery rule is to
7097abort the parsing of one construct and resume in some larger construct.
7098For example, in C-like languages, a typical error recovery rule is to skip
7099tokens until the next semicolon, and then start a new statement, like this:
7100
7101@example
7102stmt: expr ';'
7103 | IF '(' expr ')' stmt @{ @dots{} @}
7104 @dots{}
7105 error ';'
7106 @{ hexflag = 0; @}
7107 ;
7108@end example
7109
7110If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7111construct, this error rule will apply, and then the action for the
7112completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7113remain set for the entire rest of the input, or until the next @code{hex}
7114keyword, causing identifiers to be misinterpreted as integers.
7115
7116To avoid this problem the error recovery rule itself clears @code{hexflag}.
7117
7118There may also be an error recovery rule that works within expressions.
7119For example, there could be a rule which applies within parentheses
7120and skips to the close-parenthesis:
7121
7122@example
7123@group
7124expr: @dots{}
7125 | '(' expr ')'
7126 @{ $$ = $2; @}
7127 | '(' error ')'
7128 @dots{}
7129@end group
7130@end example
7131
7132If this rule acts within the @code{hex} construct, it is not going to abort
7133that construct (since it applies to an inner level of parentheses within
7134the construct). Therefore, it should not clear the flag: the rest of
7135the @code{hex} construct should be parsed with the flag still in effect.
7136
7137What if there is an error recovery rule which might abort out of the
7138@code{hex} construct or might not, depending on circumstances? There is no
7139way you can write the action to determine whether a @code{hex} construct is
7140being aborted or not. So if you are using a lexical tie-in, you had better
7141make sure your error recovery rules are not of this kind. Each rule must
7142be such that you can be sure that it always will, or always won't, have to
7143clear the flag.
7144
ec3bc396
AD
7145@c ================================================== Debugging Your Parser
7146
342b8b6e 7147@node Debugging
bfa74976 7148@chapter Debugging Your Parser
ec3bc396
AD
7149
7150Developing a parser can be a challenge, especially if you don't
7151understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7152Algorithm}). Even so, sometimes a detailed description of the automaton
7153can help (@pxref{Understanding, , Understanding Your Parser}), or
7154tracing the execution of the parser can give some insight on why it
7155behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7156
7157@menu
7158* Understanding:: Understanding the structure of your parser.
7159* Tracing:: Tracing the execution of your parser.
7160@end menu
7161
7162@node Understanding
7163@section Understanding Your Parser
7164
7165As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7166Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7167frequent than one would hope), looking at this automaton is required to
7168tune or simply fix a parser. Bison provides two different
35fe0834 7169representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7170
7171The textual file is generated when the options @option{--report} or
7172@option{--verbose} are specified, see @xref{Invocation, , Invoking
7173Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7174the parser output file name, and adding @samp{.output} instead.
7175Therefore, if the input file is @file{foo.y}, then the parser file is
7176called @file{foo.tab.c} by default. As a consequence, the verbose
7177output file is called @file{foo.output}.
7178
7179The following grammar file, @file{calc.y}, will be used in the sequel:
7180
7181@example
7182%token NUM STR
7183%left '+' '-'
7184%left '*'
7185%%
7186exp: exp '+' exp
7187 | exp '-' exp
7188 | exp '*' exp
7189 | exp '/' exp
7190 | NUM
7191 ;
7192useless: STR;
7193%%
7194@end example
7195
88bce5a2
AD
7196@command{bison} reports:
7197
7198@example
cff03fb2
JD
7199calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7200calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7201calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7202calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7203@end example
7204
7205When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7206creates a file @file{calc.output} with contents detailed below. The
7207order of the output and the exact presentation might vary, but the
7208interpretation is the same.
ec3bc396
AD
7209
7210The first section includes details on conflicts that were solved thanks
7211to precedence and/or associativity:
7212
7213@example
7214Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7215Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7216Conflict in state 8 between rule 2 and token '*' resolved as shift.
7217@exdent @dots{}
7218@end example
7219
7220@noindent
7221The next section lists states that still have conflicts.
7222
7223@example
5a99098d
PE
7224State 8 conflicts: 1 shift/reduce
7225State 9 conflicts: 1 shift/reduce
7226State 10 conflicts: 1 shift/reduce
7227State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7228@end example
7229
7230@noindent
7231@cindex token, useless
7232@cindex useless token
7233@cindex nonterminal, useless
7234@cindex useless nonterminal
7235@cindex rule, useless
7236@cindex useless rule
7237The next section reports useless tokens, nonterminal and rules. Useless
7238nonterminals and rules are removed in order to produce a smaller parser,
7239but useless tokens are preserved, since they might be used by the
d80fb37a 7240scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7241below):
7242
7243@example
d80fb37a 7244Nonterminals useless in grammar:
ec3bc396
AD
7245 useless
7246
d80fb37a 7247Terminals unused in grammar:
ec3bc396
AD
7248 STR
7249
cff03fb2 7250Rules useless in grammar:
ec3bc396
AD
7251#6 useless: STR;
7252@end example
7253
7254@noindent
7255The next section reproduces the exact grammar that Bison used:
7256
7257@example
7258Grammar
7259
7260 Number, Line, Rule
88bce5a2 7261 0 5 $accept -> exp $end
ec3bc396
AD
7262 1 5 exp -> exp '+' exp
7263 2 6 exp -> exp '-' exp
7264 3 7 exp -> exp '*' exp
7265 4 8 exp -> exp '/' exp
7266 5 9 exp -> NUM
7267@end example
7268
7269@noindent
7270and reports the uses of the symbols:
7271
7272@example
7273Terminals, with rules where they appear
7274
88bce5a2 7275$end (0) 0
ec3bc396
AD
7276'*' (42) 3
7277'+' (43) 1
7278'-' (45) 2
7279'/' (47) 4
7280error (256)
7281NUM (258) 5
7282
7283Nonterminals, with rules where they appear
7284
88bce5a2 7285$accept (8)
ec3bc396
AD
7286 on left: 0
7287exp (9)
7288 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7289@end example
7290
7291@noindent
7292@cindex item
7293@cindex pointed rule
7294@cindex rule, pointed
7295Bison then proceeds onto the automaton itself, describing each state
7296with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7297item is a production rule together with a point (marked by @samp{.})
7298that the input cursor.
7299
7300@example
7301state 0
7302
88bce5a2 7303 $accept -> . exp $ (rule 0)
ec3bc396 7304
2a8d363a 7305 NUM shift, and go to state 1
ec3bc396 7306
2a8d363a 7307 exp go to state 2
ec3bc396
AD
7308@end example
7309
7310This reads as follows: ``state 0 corresponds to being at the very
7311beginning of the parsing, in the initial rule, right before the start
7312symbol (here, @code{exp}). When the parser returns to this state right
7313after having reduced a rule that produced an @code{exp}, the control
7314flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7315symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7316the parse stack, and the control flow jumps to state 1. Any other
742e4900 7317lookahead triggers a syntax error.''
ec3bc396
AD
7318
7319@cindex core, item set
7320@cindex item set core
7321@cindex kernel, item set
7322@cindex item set core
7323Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7324report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7325at the beginning of any rule deriving an @code{exp}. By default Bison
7326reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7327you want to see more detail you can invoke @command{bison} with
7328@option{--report=itemset} to list all the items, include those that can
7329be derived:
7330
7331@example
7332state 0
7333
88bce5a2 7334 $accept -> . exp $ (rule 0)
ec3bc396
AD
7335 exp -> . exp '+' exp (rule 1)
7336 exp -> . exp '-' exp (rule 2)
7337 exp -> . exp '*' exp (rule 3)
7338 exp -> . exp '/' exp (rule 4)
7339 exp -> . NUM (rule 5)
7340
7341 NUM shift, and go to state 1
7342
7343 exp go to state 2
7344@end example
7345
7346@noindent
7347In the state 1...
7348
7349@example
7350state 1
7351
7352 exp -> NUM . (rule 5)
7353
2a8d363a 7354 $default reduce using rule 5 (exp)
ec3bc396
AD
7355@end example
7356
7357@noindent
742e4900 7358the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7359(@samp{$default}), the parser will reduce it. If it was coming from
7360state 0, then, after this reduction it will return to state 0, and will
7361jump to state 2 (@samp{exp: go to state 2}).
7362
7363@example
7364state 2
7365
88bce5a2 7366 $accept -> exp . $ (rule 0)
ec3bc396
AD
7367 exp -> exp . '+' exp (rule 1)
7368 exp -> exp . '-' exp (rule 2)
7369 exp -> exp . '*' exp (rule 3)
7370 exp -> exp . '/' exp (rule 4)
7371
2a8d363a
AD
7372 $ shift, and go to state 3
7373 '+' shift, and go to state 4
7374 '-' shift, and go to state 5
7375 '*' shift, and go to state 6
7376 '/' shift, and go to state 7
ec3bc396
AD
7377@end example
7378
7379@noindent
7380In state 2, the automaton can only shift a symbol. For instance,
742e4900 7381because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7382@samp{+}, it will be shifted on the parse stack, and the automaton
7383control will jump to state 4, corresponding to the item @samp{exp -> exp
7384'+' . exp}. Since there is no default action, any other token than
6e649e65 7385those listed above will trigger a syntax error.
ec3bc396
AD
7386
7387The state 3 is named the @dfn{final state}, or the @dfn{accepting
7388state}:
7389
7390@example
7391state 3
7392
88bce5a2 7393 $accept -> exp $ . (rule 0)
ec3bc396 7394
2a8d363a 7395 $default accept
ec3bc396
AD
7396@end example
7397
7398@noindent
7399the initial rule is completed (the start symbol and the end
7400of input were read), the parsing exits successfully.
7401
7402The interpretation of states 4 to 7 is straightforward, and is left to
7403the reader.
7404
7405@example
7406state 4
7407
7408 exp -> exp '+' . exp (rule 1)
7409
2a8d363a 7410 NUM shift, and go to state 1
ec3bc396 7411
2a8d363a 7412 exp go to state 8
ec3bc396
AD
7413
7414state 5
7415
7416 exp -> exp '-' . exp (rule 2)
7417
2a8d363a 7418 NUM shift, and go to state 1
ec3bc396 7419
2a8d363a 7420 exp go to state 9
ec3bc396
AD
7421
7422state 6
7423
7424 exp -> exp '*' . exp (rule 3)
7425
2a8d363a 7426 NUM shift, and go to state 1
ec3bc396 7427
2a8d363a 7428 exp go to state 10
ec3bc396
AD
7429
7430state 7
7431
7432 exp -> exp '/' . exp (rule 4)
7433
2a8d363a 7434 NUM shift, and go to state 1
ec3bc396 7435
2a8d363a 7436 exp go to state 11
ec3bc396
AD
7437@end example
7438
5a99098d
PE
7439As was announced in beginning of the report, @samp{State 8 conflicts:
74401 shift/reduce}:
ec3bc396
AD
7441
7442@example
7443state 8
7444
7445 exp -> exp . '+' exp (rule 1)
7446 exp -> exp '+' exp . (rule 1)
7447 exp -> exp . '-' exp (rule 2)
7448 exp -> exp . '*' exp (rule 3)
7449 exp -> exp . '/' exp (rule 4)
7450
2a8d363a
AD
7451 '*' shift, and go to state 6
7452 '/' shift, and go to state 7
ec3bc396 7453
2a8d363a
AD
7454 '/' [reduce using rule 1 (exp)]
7455 $default reduce using rule 1 (exp)
ec3bc396
AD
7456@end example
7457
742e4900 7458Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7459either shifting (and going to state 7), or reducing rule 1. The
7460conflict means that either the grammar is ambiguous, or the parser lacks
7461information to make the right decision. Indeed the grammar is
7462ambiguous, as, since we did not specify the precedence of @samp{/}, the
7463sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7464NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7465NUM}, which corresponds to reducing rule 1.
7466
c827f760 7467Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7468arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7469Shift/Reduce Conflicts}. Discarded actions are reported in between
7470square brackets.
7471
7472Note that all the previous states had a single possible action: either
7473shifting the next token and going to the corresponding state, or
7474reducing a single rule. In the other cases, i.e., when shifting
7475@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7476possible, the lookahead is required to select the action. State 8 is
7477one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7478is shifting, otherwise the action is reducing rule 1. In other words,
7479the first two items, corresponding to rule 1, are not eligible when the
742e4900 7480lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7481precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7482with some set of possible lookahead tokens. When run with
7483@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7484
7485@example
7486state 8
7487
88c78747 7488 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7489 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7490 exp -> exp . '-' exp (rule 2)
7491 exp -> exp . '*' exp (rule 3)
7492 exp -> exp . '/' exp (rule 4)
7493
7494 '*' shift, and go to state 6
7495 '/' shift, and go to state 7
7496
7497 '/' [reduce using rule 1 (exp)]
7498 $default reduce using rule 1 (exp)
7499@end example
7500
7501The remaining states are similar:
7502
7503@example
7504state 9
7505
7506 exp -> exp . '+' exp (rule 1)
7507 exp -> exp . '-' exp (rule 2)
7508 exp -> exp '-' exp . (rule 2)
7509 exp -> exp . '*' exp (rule 3)
7510 exp -> exp . '/' exp (rule 4)
7511
2a8d363a
AD
7512 '*' shift, and go to state 6
7513 '/' shift, and go to state 7
ec3bc396 7514
2a8d363a
AD
7515 '/' [reduce using rule 2 (exp)]
7516 $default reduce using rule 2 (exp)
ec3bc396
AD
7517
7518state 10
7519
7520 exp -> exp . '+' exp (rule 1)
7521 exp -> exp . '-' exp (rule 2)
7522 exp -> exp . '*' exp (rule 3)
7523 exp -> exp '*' exp . (rule 3)
7524 exp -> exp . '/' exp (rule 4)
7525
2a8d363a 7526 '/' shift, and go to state 7
ec3bc396 7527
2a8d363a
AD
7528 '/' [reduce using rule 3 (exp)]
7529 $default reduce using rule 3 (exp)
ec3bc396
AD
7530
7531state 11
7532
7533 exp -> exp . '+' exp (rule 1)
7534 exp -> exp . '-' exp (rule 2)
7535 exp -> exp . '*' exp (rule 3)
7536 exp -> exp . '/' exp (rule 4)
7537 exp -> exp '/' exp . (rule 4)
7538
2a8d363a
AD
7539 '+' shift, and go to state 4
7540 '-' shift, and go to state 5
7541 '*' shift, and go to state 6
7542 '/' shift, and go to state 7
ec3bc396 7543
2a8d363a
AD
7544 '+' [reduce using rule 4 (exp)]
7545 '-' [reduce using rule 4 (exp)]
7546 '*' [reduce using rule 4 (exp)]
7547 '/' [reduce using rule 4 (exp)]
7548 $default reduce using rule 4 (exp)
ec3bc396
AD
7549@end example
7550
7551@noindent
fa7e68c3
PE
7552Observe that state 11 contains conflicts not only due to the lack of
7553precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7554@samp{*}, but also because the
ec3bc396
AD
7555associativity of @samp{/} is not specified.
7556
7557
7558@node Tracing
7559@section Tracing Your Parser
bfa74976
RS
7560@findex yydebug
7561@cindex debugging
7562@cindex tracing the parser
7563
7564If a Bison grammar compiles properly but doesn't do what you want when it
7565runs, the @code{yydebug} parser-trace feature can help you figure out why.
7566
3ded9a63
AD
7567There are several means to enable compilation of trace facilities:
7568
7569@table @asis
7570@item the macro @code{YYDEBUG}
7571@findex YYDEBUG
7572Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7573parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7574@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7575YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7576Prologue}).
7577
7578@item the option @option{-t}, @option{--debug}
7579Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7580,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7581
7582@item the directive @samp{%debug}
7583@findex %debug
7584Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7585Declaration Summary}). This is a Bison extension, which will prove
7586useful when Bison will output parsers for languages that don't use a
c827f760
PE
7587preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7588you, this is
3ded9a63
AD
7589the preferred solution.
7590@end table
7591
7592We suggest that you always enable the debug option so that debugging is
7593always possible.
bfa74976 7594
02a81e05 7595The trace facility outputs messages with macro calls of the form
e2742e46 7596@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7597@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7598arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7599define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7600and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7601
7602Once you have compiled the program with trace facilities, the way to
7603request a trace is to store a nonzero value in the variable @code{yydebug}.
7604You can do this by making the C code do it (in @code{main}, perhaps), or
7605you can alter the value with a C debugger.
7606
7607Each step taken by the parser when @code{yydebug} is nonzero produces a
7608line or two of trace information, written on @code{stderr}. The trace
7609messages tell you these things:
7610
7611@itemize @bullet
7612@item
7613Each time the parser calls @code{yylex}, what kind of token was read.
7614
7615@item
7616Each time a token is shifted, the depth and complete contents of the
7617state stack (@pxref{Parser States}).
7618
7619@item
7620Each time a rule is reduced, which rule it is, and the complete contents
7621of the state stack afterward.
7622@end itemize
7623
7624To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7625produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7626Bison}). This file shows the meaning of each state in terms of
7627positions in various rules, and also what each state will do with each
7628possible input token. As you read the successive trace messages, you
7629can see that the parser is functioning according to its specification in
7630the listing file. Eventually you will arrive at the place where
7631something undesirable happens, and you will see which parts of the
7632grammar are to blame.
bfa74976
RS
7633
7634The parser file is a C program and you can use C debuggers on it, but it's
7635not easy to interpret what it is doing. The parser function is a
7636finite-state machine interpreter, and aside from the actions it executes
7637the same code over and over. Only the values of variables show where in
7638the grammar it is working.
7639
7640@findex YYPRINT
7641The debugging information normally gives the token type of each token
7642read, but not its semantic value. You can optionally define a macro
7643named @code{YYPRINT} to provide a way to print the value. If you define
7644@code{YYPRINT}, it should take three arguments. The parser will pass a
7645standard I/O stream, the numeric code for the token type, and the token
7646value (from @code{yylval}).
7647
7648Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7649calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7650
7651@smallexample
38a92d50
PE
7652%@{
7653 static void print_token_value (FILE *, int, YYSTYPE);
7654 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7655%@}
7656
7657@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7658
7659static void
831d3c99 7660print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7661@{
7662 if (type == VAR)
d3c4e709 7663 fprintf (file, "%s", value.tptr->name);
bfa74976 7664 else if (type == NUM)
d3c4e709 7665 fprintf (file, "%d", value.val);
bfa74976
RS
7666@}
7667@end smallexample
7668
ec3bc396
AD
7669@c ================================================= Invoking Bison
7670
342b8b6e 7671@node Invocation
bfa74976
RS
7672@chapter Invoking Bison
7673@cindex invoking Bison
7674@cindex Bison invocation
7675@cindex options for invoking Bison
7676
7677The usual way to invoke Bison is as follows:
7678
7679@example
7680bison @var{infile}
7681@end example
7682
7683Here @var{infile} is the grammar file name, which usually ends in
7684@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7685with @samp{.tab.c} and removing any leading directory. Thus, the
7686@samp{bison foo.y} file name yields
7687@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7688@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7689C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7690or @file{foo.y++}. Then, the output files will take an extension like
7691the given one as input (respectively @file{foo.tab.cpp} and
7692@file{foo.tab.c++}).
fa4d969f 7693This feature takes effect with all options that manipulate file names like
234a3be3
AD
7694@samp{-o} or @samp{-d}.
7695
7696For example :
7697
7698@example
7699bison -d @var{infile.yxx}
7700@end example
84163231 7701@noindent
72d2299c 7702will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7703
7704@example
b56471a6 7705bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7706@end example
84163231 7707@noindent
234a3be3
AD
7708will produce @file{output.c++} and @file{outfile.h++}.
7709
397ec073
PE
7710For compatibility with @acronym{POSIX}, the standard Bison
7711distribution also contains a shell script called @command{yacc} that
7712invokes Bison with the @option{-y} option.
7713
bfa74976 7714@menu
13863333 7715* Bison Options:: All the options described in detail,
c827f760 7716 in alphabetical order by short options.
bfa74976 7717* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7718* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7719@end menu
7720
342b8b6e 7721@node Bison Options
bfa74976
RS
7722@section Bison Options
7723
7724Bison supports both traditional single-letter options and mnemonic long
7725option names. Long option names are indicated with @samp{--} instead of
7726@samp{-}. Abbreviations for option names are allowed as long as they
7727are unique. When a long option takes an argument, like
7728@samp{--file-prefix}, connect the option name and the argument with
7729@samp{=}.
7730
7731Here is a list of options that can be used with Bison, alphabetized by
7732short option. It is followed by a cross key alphabetized by long
7733option.
7734
89cab50d
AD
7735@c Please, keep this ordered as in `bison --help'.
7736@noindent
7737Operations modes:
7738@table @option
7739@item -h
7740@itemx --help
7741Print a summary of the command-line options to Bison and exit.
bfa74976 7742
89cab50d
AD
7743@item -V
7744@itemx --version
7745Print the version number of Bison and exit.
bfa74976 7746
f7ab6a50
PE
7747@item --print-localedir
7748Print the name of the directory containing locale-dependent data.
7749
a0de5091
JD
7750@item --print-datadir
7751Print the name of the directory containing skeletons and XSLT.
7752
89cab50d
AD
7753@item -y
7754@itemx --yacc
54662697
PE
7755Act more like the traditional Yacc command. This can cause
7756different diagnostics to be generated, and may change behavior in
7757other minor ways. Most importantly, imitate Yacc's output
7758file name conventions, so that the parser output file is called
89cab50d 7759@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7760@file{y.tab.h}.
7761Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7762statements in addition to an @code{enum} to associate token numbers with token
7763names.
7764Thus, the following shell script can substitute for Yacc, and the Bison
7765distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7766
89cab50d 7767@example
397ec073 7768#! /bin/sh
26e06a21 7769bison -y "$@@"
89cab50d 7770@end example
54662697
PE
7771
7772The @option{-y}/@option{--yacc} option is intended for use with
7773traditional Yacc grammars. If your grammar uses a Bison extension
7774like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7775this option is specified.
7776
ecd1b61c
JD
7777@item -W [@var{category}]
7778@itemx --warnings[=@var{category}]
118d4978
AD
7779Output warnings falling in @var{category}. @var{category} can be one
7780of:
7781@table @code
7782@item midrule-values
8e55b3aa
JD
7783Warn about mid-rule values that are set but not used within any of the actions
7784of the parent rule.
7785For example, warn about unused @code{$2} in:
118d4978
AD
7786
7787@example
7788exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7789@end example
7790
8e55b3aa
JD
7791Also warn about mid-rule values that are used but not set.
7792For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7793
7794@example
7795 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7796@end example
7797
7798These warnings are not enabled by default since they sometimes prove to
7799be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7800@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7801
7802
7803@item yacc
7804Incompatibilities with @acronym{POSIX} Yacc.
7805
7806@item all
8e55b3aa 7807All the warnings.
118d4978 7808@item none
8e55b3aa 7809Turn off all the warnings.
118d4978 7810@item error
8e55b3aa 7811Treat warnings as errors.
118d4978
AD
7812@end table
7813
7814A category can be turned off by prefixing its name with @samp{no-}. For
7815instance, @option{-Wno-syntax} will hide the warnings about unused
7816variables.
89cab50d
AD
7817@end table
7818
7819@noindent
7820Tuning the parser:
7821
7822@table @option
7823@item -t
7824@itemx --debug
4947ebdb
PE
7825In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7826already defined, so that the debugging facilities are compiled.
ec3bc396 7827@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7828
0e021770
PE
7829@item -L @var{language}
7830@itemx --language=@var{language}
7831Specify the programming language for the generated parser, as if
7832@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7833Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7834@var{language} is case-insensitive.
0e021770 7835
ed4d67dc
JD
7836This option is experimental and its effect may be modified in future
7837releases.
7838
89cab50d 7839@item --locations
d8988b2f 7840Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7841
7842@item -p @var{prefix}
7843@itemx --name-prefix=@var{prefix}
02975b9a 7844Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7845@xref{Decl Summary}.
bfa74976
RS
7846
7847@item -l
7848@itemx --no-lines
7849Don't put any @code{#line} preprocessor commands in the parser file.
7850Ordinarily Bison puts them in the parser file so that the C compiler
7851and debuggers will associate errors with your source file, the
7852grammar file. This option causes them to associate errors with the
95e742f7 7853parser file, treating it as an independent source file in its own right.
bfa74976 7854
e6e704dc
JD
7855@item -S @var{file}
7856@itemx --skeleton=@var{file}
a7867f53 7857Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7858(@pxref{Decl Summary, , Bison Declaration Summary}).
7859
ed4d67dc
JD
7860@c You probably don't need this option unless you are developing Bison.
7861@c You should use @option{--language} if you want to specify the skeleton for a
7862@c different language, because it is clearer and because it will always
7863@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 7864
a7867f53
JD
7865If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7866file in the Bison installation directory.
7867If it does, @var{file} is an absolute file name or a file name relative to the
7868current working directory.
7869This is similar to how most shells resolve commands.
7870
89cab50d
AD
7871@item -k
7872@itemx --token-table
d8988b2f 7873Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7874@end table
bfa74976 7875
89cab50d
AD
7876@noindent
7877Adjust the output:
bfa74976 7878
89cab50d 7879@table @option
8e55b3aa 7880@item --defines[=@var{file}]
d8988b2f 7881Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7882file containing macro definitions for the token type names defined in
4bfd5e4e 7883the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7884
8e55b3aa
JD
7885@item -d
7886This is the same as @code{--defines} except @code{-d} does not accept a
7887@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
7888with other short options.
342b8b6e 7889
89cab50d
AD
7890@item -b @var{file-prefix}
7891@itemx --file-prefix=@var{prefix}
9c437126 7892Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7893for all Bison output file names. @xref{Decl Summary}.
bfa74976 7894
ec3bc396
AD
7895@item -r @var{things}
7896@itemx --report=@var{things}
7897Write an extra output file containing verbose description of the comma
7898separated list of @var{things} among:
7899
7900@table @code
7901@item state
7902Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7903@acronym{LALR} automaton.
ec3bc396 7904
742e4900 7905@item lookahead
ec3bc396 7906Implies @code{state} and augments the description of the automaton with
742e4900 7907each rule's lookahead set.
ec3bc396
AD
7908
7909@item itemset
7910Implies @code{state} and augments the description of the automaton with
7911the full set of items for each state, instead of its core only.
7912@end table
7913
1bb2bd75
JD
7914@item --report-file=@var{file}
7915Specify the @var{file} for the verbose description.
7916
bfa74976
RS
7917@item -v
7918@itemx --verbose
9c437126 7919Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7920file containing verbose descriptions of the grammar and
72d2299c 7921parser. @xref{Decl Summary}.
bfa74976 7922
fa4d969f
PE
7923@item -o @var{file}
7924@itemx --output=@var{file}
7925Specify the @var{file} for the parser file.
bfa74976 7926
fa4d969f 7927The other output files' names are constructed from @var{file} as
d8988b2f 7928described under the @samp{-v} and @samp{-d} options.
342b8b6e 7929
8e55b3aa
JD
7930@item -g[@var{file}]
7931@itemx --graph[=@var{file}]
35fe0834
PE
7932Output a graphical representation of the @acronym{LALR}(1) grammar
7933automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7934@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
7935@code{@var{file}} is optional.
7936If omitted and the grammar file is @file{foo.y}, the output file will be
7937@file{foo.dot}.
59da312b 7938
8e55b3aa
JD
7939@item -x[@var{file}]
7940@itemx --xml[=@var{file}]
59da312b 7941Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 7942@code{@var{file}} is optional.
59da312b
JD
7943If omitted and the grammar file is @file{foo.y}, the output file will be
7944@file{foo.xml}.
7945(The current XML schema is experimental and may evolve.
7946More user feedback will help to stabilize it.)
bfa74976
RS
7947@end table
7948
342b8b6e 7949@node Option Cross Key
bfa74976
RS
7950@section Option Cross Key
7951
aa08666d 7952@c FIXME: How about putting the directives too?
bfa74976
RS
7953Here is a list of options, alphabetized by long option, to help you find
7954the corresponding short option.
7955
aa08666d
AD
7956@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7957@headitem Long Option @tab Short Option
f4101aa6 7958@include cross-options.texi
aa08666d 7959@end multitable
bfa74976 7960
93dd49ab
PE
7961@node Yacc Library
7962@section Yacc Library
7963
7964The Yacc library contains default implementations of the
7965@code{yyerror} and @code{main} functions. These default
7966implementations are normally not useful, but @acronym{POSIX} requires
7967them. To use the Yacc library, link your program with the
7968@option{-ly} option. Note that Bison's implementation of the Yacc
7969library is distributed under the terms of the @acronym{GNU} General
7970Public License (@pxref{Copying}).
7971
7972If you use the Yacc library's @code{yyerror} function, you should
7973declare @code{yyerror} as follows:
7974
7975@example
7976int yyerror (char const *);
7977@end example
7978
7979Bison ignores the @code{int} value returned by this @code{yyerror}.
7980If you use the Yacc library's @code{main} function, your
7981@code{yyparse} function should have the following type signature:
7982
7983@example
7984int yyparse (void);
7985@end example
7986
12545799
AD
7987@c ================================================= C++ Bison
7988
8405b70c
PB
7989@node Other Languages
7990@chapter Parsers Written In Other Languages
12545799
AD
7991
7992@menu
7993* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7994* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7995@end menu
7996
7997@node C++ Parsers
7998@section C++ Parsers
7999
8000@menu
8001* C++ Bison Interface:: Asking for C++ parser generation
8002* C++ Semantic Values:: %union vs. C++
8003* C++ Location Values:: The position and location classes
8004* C++ Parser Interface:: Instantiating and running the parser
8005* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8006* A Complete C++ Example:: Demonstrating their use
12545799
AD
8007@end menu
8008
8009@node C++ Bison Interface
8010@subsection C++ Bison Interface
ed4d67dc 8011@c - %skeleton "lalr1.cc"
12545799
AD
8012@c - Always pure
8013@c - initial action
8014
ed4d67dc
JD
8015The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8016@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8017@option{--skeleton=lalr1.c}.
e6e704dc 8018@xref{Decl Summary}.
0e021770 8019
793fbca5
JD
8020When run, @command{bison} will create several entities in the @samp{yy}
8021namespace.
8022@findex %define namespace
8023Use the @samp{%define namespace} directive to change the namespace name, see
8024@ref{Decl Summary}.
8025The various classes are generated in the following files:
aa08666d 8026
12545799
AD
8027@table @file
8028@item position.hh
8029@itemx location.hh
8030The definition of the classes @code{position} and @code{location},
8031used for location tracking. @xref{C++ Location Values}.
8032
8033@item stack.hh
8034An auxiliary class @code{stack} used by the parser.
8035
fa4d969f
PE
8036@item @var{file}.hh
8037@itemx @var{file}.cc
cd8b5791
AD
8038(Assuming the extension of the input file was @samp{.yy}.) The
8039declaration and implementation of the C++ parser class. The basename
8040and extension of these two files follow the same rules as with regular C
8041parsers (@pxref{Invocation}).
12545799 8042
cd8b5791
AD
8043The header is @emph{mandatory}; you must either pass
8044@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8045@samp{%defines} directive.
8046@end table
8047
8048All these files are documented using Doxygen; run @command{doxygen}
8049for a complete and accurate documentation.
8050
8051@node C++ Semantic Values
8052@subsection C++ Semantic Values
8053@c - No objects in unions
178e123e 8054@c - YYSTYPE
12545799
AD
8055@c - Printer and destructor
8056
8057The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8058Collection of Value Types}. In particular it produces a genuine
8059@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8060within pseudo-unions (similar to Boost variants) might be implemented to
8061alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8062@itemize @minus
8063@item
fb9712a9
AD
8064The type @code{YYSTYPE} is defined but its use is discouraged: rather
8065you should refer to the parser's encapsulated type
8066@code{yy::parser::semantic_type}.
12545799
AD
8067@item
8068Non POD (Plain Old Data) types cannot be used. C++ forbids any
8069instance of classes with constructors in unions: only @emph{pointers}
8070to such objects are allowed.
8071@end itemize
8072
8073Because objects have to be stored via pointers, memory is not
8074reclaimed automatically: using the @code{%destructor} directive is the
8075only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8076Symbols}.
8077
8078
8079@node C++ Location Values
8080@subsection C++ Location Values
8081@c - %locations
8082@c - class Position
8083@c - class Location
16dc6a9e 8084@c - %define filename_type "const symbol::Symbol"
12545799
AD
8085
8086When the directive @code{%locations} is used, the C++ parser supports
8087location tracking, see @ref{Locations, , Locations Overview}. Two
8088auxiliary classes define a @code{position}, a single point in a file,
8089and a @code{location}, a range composed of a pair of
8090@code{position}s (possibly spanning several files).
8091
fa4d969f 8092@deftypemethod {position} {std::string*} file
12545799
AD
8093The name of the file. It will always be handled as a pointer, the
8094parser will never duplicate nor deallocate it. As an experimental
8095feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8096filename_type "@var{type}"}.
12545799
AD
8097@end deftypemethod
8098
8099@deftypemethod {position} {unsigned int} line
8100The line, starting at 1.
8101@end deftypemethod
8102
8103@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8104Advance by @var{height} lines, resetting the column number.
8105@end deftypemethod
8106
8107@deftypemethod {position} {unsigned int} column
8108The column, starting at 0.
8109@end deftypemethod
8110
8111@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8112Advance by @var{width} columns, without changing the line number.
8113@end deftypemethod
8114
8115@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8116@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8117@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8118@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8119Various forms of syntactic sugar for @code{columns}.
8120@end deftypemethod
8121
8122@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8123Report @var{p} on @var{o} like this:
fa4d969f
PE
8124@samp{@var{file}:@var{line}.@var{column}}, or
8125@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8126@end deftypemethod
8127
8128@deftypemethod {location} {position} begin
8129@deftypemethodx {location} {position} end
8130The first, inclusive, position of the range, and the first beyond.
8131@end deftypemethod
8132
8133@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8134@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8135Advance the @code{end} position.
8136@end deftypemethod
8137
8138@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8139@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8140@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8141Various forms of syntactic sugar.
8142@end deftypemethod
8143
8144@deftypemethod {location} {void} step ()
8145Move @code{begin} onto @code{end}.
8146@end deftypemethod
8147
8148
8149@node C++ Parser Interface
8150@subsection C++ Parser Interface
8151@c - define parser_class_name
8152@c - Ctor
8153@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8154@c debug_stream.
8155@c - Reporting errors
8156
8157The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8158declare and define the parser class in the namespace @code{yy}. The
8159class name defaults to @code{parser}, but may be changed using
16dc6a9e 8160@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8161this class is detailed below. It can be extended using the
12545799
AD
8162@code{%parse-param} feature: its semantics is slightly changed since
8163it describes an additional member of the parser class, and an
8164additional argument for its constructor.
8165
8a0adb01
AD
8166@defcv {Type} {parser} {semantic_value_type}
8167@defcvx {Type} {parser} {location_value_type}
12545799 8168The types for semantics value and locations.
8a0adb01 8169@end defcv
12545799
AD
8170
8171@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8172Build a new parser object. There are no arguments by default, unless
8173@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8174@end deftypemethod
8175
8176@deftypemethod {parser} {int} parse ()
8177Run the syntactic analysis, and return 0 on success, 1 otherwise.
8178@end deftypemethod
8179
8180@deftypemethod {parser} {std::ostream&} debug_stream ()
8181@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8182Get or set the stream used for tracing the parsing. It defaults to
8183@code{std::cerr}.
8184@end deftypemethod
8185
8186@deftypemethod {parser} {debug_level_type} debug_level ()
8187@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8188Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8189or nonzero, full tracing.
12545799
AD
8190@end deftypemethod
8191
8192@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8193The definition for this member function must be supplied by the user:
8194the parser uses it to report a parser error occurring at @var{l},
8195described by @var{m}.
8196@end deftypemethod
8197
8198
8199@node C++ Scanner Interface
8200@subsection C++ Scanner Interface
8201@c - prefix for yylex.
8202@c - Pure interface to yylex
8203@c - %lex-param
8204
8205The parser invokes the scanner by calling @code{yylex}. Contrary to C
8206parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8207@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8208
8209@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8210Return the next token. Its type is the return value, its semantic
8211value and location being @var{yylval} and @var{yylloc}. Invocations of
8212@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8213@end deftypemethod
8214
8215
8216@node A Complete C++ Example
8405b70c 8217@subsection A Complete C++ Example
12545799
AD
8218
8219This section demonstrates the use of a C++ parser with a simple but
8220complete example. This example should be available on your system,
8221ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8222focuses on the use of Bison, therefore the design of the various C++
8223classes is very naive: no accessors, no encapsulation of members etc.
8224We will use a Lex scanner, and more precisely, a Flex scanner, to
8225demonstrate the various interaction. A hand written scanner is
8226actually easier to interface with.
8227
8228@menu
8229* Calc++ --- C++ Calculator:: The specifications
8230* Calc++ Parsing Driver:: An active parsing context
8231* Calc++ Parser:: A parser class
8232* Calc++ Scanner:: A pure C++ Flex scanner
8233* Calc++ Top Level:: Conducting the band
8234@end menu
8235
8236@node Calc++ --- C++ Calculator
8405b70c 8237@subsubsection Calc++ --- C++ Calculator
12545799
AD
8238
8239Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8240expression, possibly preceded by variable assignments. An
12545799
AD
8241environment containing possibly predefined variables such as
8242@code{one} and @code{two}, is exchanged with the parser. An example
8243of valid input follows.
8244
8245@example
8246three := 3
8247seven := one + two * three
8248seven * seven
8249@end example
8250
8251@node Calc++ Parsing Driver
8405b70c 8252@subsubsection Calc++ Parsing Driver
12545799
AD
8253@c - An env
8254@c - A place to store error messages
8255@c - A place for the result
8256
8257To support a pure interface with the parser (and the scanner) the
8258technique of the ``parsing context'' is convenient: a structure
8259containing all the data to exchange. Since, in addition to simply
8260launch the parsing, there are several auxiliary tasks to execute (open
8261the file for parsing, instantiate the parser etc.), we recommend
8262transforming the simple parsing context structure into a fully blown
8263@dfn{parsing driver} class.
8264
8265The declaration of this driver class, @file{calc++-driver.hh}, is as
8266follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8267required standard library components, and the declaration of the parser
8268class.
12545799 8269
1c59e0a1 8270@comment file: calc++-driver.hh
12545799
AD
8271@example
8272#ifndef CALCXX_DRIVER_HH
8273# define CALCXX_DRIVER_HH
8274# include <string>
8275# include <map>
fb9712a9 8276# include "calc++-parser.hh"
12545799
AD
8277@end example
8278
12545799
AD
8279
8280@noindent
8281Then comes the declaration of the scanning function. Flex expects
8282the signature of @code{yylex} to be defined in the macro
8283@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8284factor both as follows.
1c59e0a1
AD
8285
8286@comment file: calc++-driver.hh
12545799 8287@example
3dc5e96b
PE
8288// Tell Flex the lexer's prototype ...
8289# define YY_DECL \
c095d689
AD
8290 yy::calcxx_parser::token_type \
8291 yylex (yy::calcxx_parser::semantic_type* yylval, \
8292 yy::calcxx_parser::location_type* yylloc, \
8293 calcxx_driver& driver)
12545799
AD
8294// ... and declare it for the parser's sake.
8295YY_DECL;
8296@end example
8297
8298@noindent
8299The @code{calcxx_driver} class is then declared with its most obvious
8300members.
8301
1c59e0a1 8302@comment file: calc++-driver.hh
12545799
AD
8303@example
8304// Conducting the whole scanning and parsing of Calc++.
8305class calcxx_driver
8306@{
8307public:
8308 calcxx_driver ();
8309 virtual ~calcxx_driver ();
8310
8311 std::map<std::string, int> variables;
8312
8313 int result;
8314@end example
8315
8316@noindent
8317To encapsulate the coordination with the Flex scanner, it is useful to
8318have two members function to open and close the scanning phase.
12545799 8319
1c59e0a1 8320@comment file: calc++-driver.hh
12545799
AD
8321@example
8322 // Handling the scanner.
8323 void scan_begin ();
8324 void scan_end ();
8325 bool trace_scanning;
8326@end example
8327
8328@noindent
8329Similarly for the parser itself.
8330
1c59e0a1 8331@comment file: calc++-driver.hh
12545799 8332@example
bb32f4f2
AD
8333 // Run the parser. Return 0 on success.
8334 int parse (const std::string& f);
12545799
AD
8335 std::string file;
8336 bool trace_parsing;
8337@end example
8338
8339@noindent
8340To demonstrate pure handling of parse errors, instead of simply
8341dumping them on the standard error output, we will pass them to the
8342compiler driver using the following two member functions. Finally, we
8343close the class declaration and CPP guard.
8344
1c59e0a1 8345@comment file: calc++-driver.hh
12545799
AD
8346@example
8347 // Error handling.
8348 void error (const yy::location& l, const std::string& m);
8349 void error (const std::string& m);
8350@};
8351#endif // ! CALCXX_DRIVER_HH
8352@end example
8353
8354The implementation of the driver is straightforward. The @code{parse}
8355member function deserves some attention. The @code{error} functions
8356are simple stubs, they should actually register the located error
8357messages and set error state.
8358
1c59e0a1 8359@comment file: calc++-driver.cc
12545799
AD
8360@example
8361#include "calc++-driver.hh"
8362#include "calc++-parser.hh"
8363
8364calcxx_driver::calcxx_driver ()
8365 : trace_scanning (false), trace_parsing (false)
8366@{
8367 variables["one"] = 1;
8368 variables["two"] = 2;
8369@}
8370
8371calcxx_driver::~calcxx_driver ()
8372@{
8373@}
8374
bb32f4f2 8375int
12545799
AD
8376calcxx_driver::parse (const std::string &f)
8377@{
8378 file = f;
8379 scan_begin ();
8380 yy::calcxx_parser parser (*this);
8381 parser.set_debug_level (trace_parsing);
bb32f4f2 8382 int res = parser.parse ();
12545799 8383 scan_end ();
bb32f4f2 8384 return res;
12545799
AD
8385@}
8386
8387void
8388calcxx_driver::error (const yy::location& l, const std::string& m)
8389@{
8390 std::cerr << l << ": " << m << std::endl;
8391@}
8392
8393void
8394calcxx_driver::error (const std::string& m)
8395@{
8396 std::cerr << m << std::endl;
8397@}
8398@end example
8399
8400@node Calc++ Parser
8405b70c 8401@subsubsection Calc++ Parser
12545799 8402
b50d2359
AD
8403The parser definition file @file{calc++-parser.yy} starts by asking for
8404the C++ LALR(1) skeleton, the creation of the parser header file, and
8405specifies the name of the parser class. Because the C++ skeleton
8406changed several times, it is safer to require the version you designed
8407the grammar for.
1c59e0a1
AD
8408
8409@comment file: calc++-parser.yy
12545799 8410@example
ed4d67dc 8411%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8412%require "@value{VERSION}"
12545799 8413%defines
16dc6a9e 8414%define parser_class_name "calcxx_parser"
fb9712a9
AD
8415@end example
8416
8417@noindent
16dc6a9e 8418@findex %code requires
fb9712a9
AD
8419Then come the declarations/inclusions needed to define the
8420@code{%union}. Because the parser uses the parsing driver and
8421reciprocally, both cannot include the header of the other. Because the
8422driver's header needs detailed knowledge about the parser class (in
8423particular its inner types), it is the parser's header which will simply
8424use a forward declaration of the driver.
148d66d8 8425@xref{Decl Summary, ,%code}.
fb9712a9
AD
8426
8427@comment file: calc++-parser.yy
8428@example
16dc6a9e 8429%code requires @{
12545799 8430# include <string>
fb9712a9 8431class calcxx_driver;
9bc0dd67 8432@}
12545799
AD
8433@end example
8434
8435@noindent
8436The driver is passed by reference to the parser and to the scanner.
8437This provides a simple but effective pure interface, not relying on
8438global variables.
8439
1c59e0a1 8440@comment file: calc++-parser.yy
12545799
AD
8441@example
8442// The parsing context.
8443%parse-param @{ calcxx_driver& driver @}
8444%lex-param @{ calcxx_driver& driver @}
8445@end example
8446
8447@noindent
8448Then we request the location tracking feature, and initialize the
87b9c9bc 8449first location's file name. Afterward new locations are computed
12545799
AD
8450relatively to the previous locations: the file name will be
8451automatically propagated.
8452
1c59e0a1 8453@comment file: calc++-parser.yy
12545799
AD
8454@example
8455%locations
8456%initial-action
8457@{
8458 // Initialize the initial location.
b47dbebe 8459 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8460@};
8461@end example
8462
8463@noindent
8464Use the two following directives to enable parser tracing and verbose
8465error messages.
8466
1c59e0a1 8467@comment file: calc++-parser.yy
12545799
AD
8468@example
8469%debug
8470%error-verbose
8471@end example
8472
8473@noindent
8474Semantic values cannot use ``real'' objects, but only pointers to
8475them.
8476
1c59e0a1 8477@comment file: calc++-parser.yy
12545799
AD
8478@example
8479// Symbols.
8480%union
8481@{
8482 int ival;
8483 std::string *sval;
8484@};
8485@end example
8486
fb9712a9 8487@noindent
136a0f76
PB
8488@findex %code
8489The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8490@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8491
8492@comment file: calc++-parser.yy
8493@example
136a0f76 8494%code @{
fb9712a9 8495# include "calc++-driver.hh"
34f98f46 8496@}
fb9712a9
AD
8497@end example
8498
8499
12545799
AD
8500@noindent
8501The token numbered as 0 corresponds to end of file; the following line
8502allows for nicer error messages referring to ``end of file'' instead
8503of ``$end''. Similarly user friendly named are provided for each
8504symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8505avoid name clashes.
8506
1c59e0a1 8507@comment file: calc++-parser.yy
12545799 8508@example
fb9712a9
AD
8509%token END 0 "end of file"
8510%token ASSIGN ":="
8511%token <sval> IDENTIFIER "identifier"
8512%token <ival> NUMBER "number"
a8c2e813 8513%type <ival> exp
12545799
AD
8514@end example
8515
8516@noindent
8517To enable memory deallocation during error recovery, use
8518@code{%destructor}.
8519
287c78f6 8520@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8521@comment file: calc++-parser.yy
12545799
AD
8522@example
8523%printer @{ debug_stream () << *$$; @} "identifier"
8524%destructor @{ delete $$; @} "identifier"
8525
a8c2e813 8526%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8527@end example
8528
8529@noindent
8530The grammar itself is straightforward.
8531
1c59e0a1 8532@comment file: calc++-parser.yy
12545799
AD
8533@example
8534%%
8535%start unit;
8536unit: assignments exp @{ driver.result = $2; @};
8537
8538assignments: assignments assignment @{@}
9d9b8b70 8539 | /* Nothing. */ @{@};
12545799 8540
3dc5e96b
PE
8541assignment:
8542 "identifier" ":=" exp
8543 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8544
8545%left '+' '-';
8546%left '*' '/';
8547exp: exp '+' exp @{ $$ = $1 + $3; @}
8548 | exp '-' exp @{ $$ = $1 - $3; @}
8549 | exp '*' exp @{ $$ = $1 * $3; @}
8550 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8551 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8552 | "number" @{ $$ = $1; @};
12545799
AD
8553%%
8554@end example
8555
8556@noindent
8557Finally the @code{error} member function registers the errors to the
8558driver.
8559
1c59e0a1 8560@comment file: calc++-parser.yy
12545799
AD
8561@example
8562void
1c59e0a1
AD
8563yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8564 const std::string& m)
12545799
AD
8565@{
8566 driver.error (l, m);
8567@}
8568@end example
8569
8570@node Calc++ Scanner
8405b70c 8571@subsubsection Calc++ Scanner
12545799
AD
8572
8573The Flex scanner first includes the driver declaration, then the
8574parser's to get the set of defined tokens.
8575
1c59e0a1 8576@comment file: calc++-scanner.ll
12545799
AD
8577@example
8578%@{ /* -*- C++ -*- */
04098407 8579# include <cstdlib>
c984dee8
AD
8580# include <cerrno>
8581# include <climits>
12545799
AD
8582# include <string>
8583# include "calc++-driver.hh"
8584# include "calc++-parser.hh"
eaea13f5
PE
8585
8586/* Work around an incompatibility in flex (at least versions
8587 2.5.31 through 2.5.33): it generates code that does
8588 not conform to C89. See Debian bug 333231
8589 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8590# undef yywrap
8591# define yywrap() 1
eaea13f5 8592
c095d689
AD
8593/* By default yylex returns int, we use token_type.
8594 Unfortunately yyterminate by default returns 0, which is
8595 not of token_type. */
8c5b881d 8596#define yyterminate() return token::END
12545799
AD
8597%@}
8598@end example
8599
8600@noindent
8601Because there is no @code{#include}-like feature we don't need
8602@code{yywrap}, we don't need @code{unput} either, and we parse an
8603actual file, this is not an interactive session with the user.
8604Finally we enable the scanner tracing features.
8605
1c59e0a1 8606@comment file: calc++-scanner.ll
12545799
AD
8607@example
8608%option noyywrap nounput batch debug
8609@end example
8610
8611@noindent
8612Abbreviations allow for more readable rules.
8613
1c59e0a1 8614@comment file: calc++-scanner.ll
12545799
AD
8615@example
8616id [a-zA-Z][a-zA-Z_0-9]*
8617int [0-9]+
8618blank [ \t]
8619@end example
8620
8621@noindent
9d9b8b70 8622The following paragraph suffices to track locations accurately. Each
12545799
AD
8623time @code{yylex} is invoked, the begin position is moved onto the end
8624position. Then when a pattern is matched, the end position is
8625advanced of its width. In case it matched ends of lines, the end
8626cursor is adjusted, and each time blanks are matched, the begin cursor
8627is moved onto the end cursor to effectively ignore the blanks
8628preceding tokens. Comments would be treated equally.
8629
1c59e0a1 8630@comment file: calc++-scanner.ll
12545799 8631@example
828c373b
AD
8632%@{
8633# define YY_USER_ACTION yylloc->columns (yyleng);
8634%@}
12545799
AD
8635%%
8636%@{
8637 yylloc->step ();
12545799
AD
8638%@}
8639@{blank@}+ yylloc->step ();
8640[\n]+ yylloc->lines (yyleng); yylloc->step ();
8641@end example
8642
8643@noindent
fb9712a9
AD
8644The rules are simple, just note the use of the driver to report errors.
8645It is convenient to use a typedef to shorten
8646@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8647@code{token::identifier} for instance.
12545799 8648
1c59e0a1 8649@comment file: calc++-scanner.ll
12545799 8650@example
fb9712a9
AD
8651%@{
8652 typedef yy::calcxx_parser::token token;
8653%@}
8c5b881d 8654 /* Convert ints to the actual type of tokens. */
c095d689 8655[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8656":=" return token::ASSIGN;
04098407
PE
8657@{int@} @{
8658 errno = 0;
8659 long n = strtol (yytext, NULL, 10);
8660 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8661 driver.error (*yylloc, "integer is out of range");
8662 yylval->ival = n;
fb9712a9 8663 return token::NUMBER;
04098407 8664@}
fb9712a9 8665@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8666. driver.error (*yylloc, "invalid character");
8667%%
8668@end example
8669
8670@noindent
8671Finally, because the scanner related driver's member function depend
8672on the scanner's data, it is simpler to implement them in this file.
8673
1c59e0a1 8674@comment file: calc++-scanner.ll
12545799
AD
8675@example
8676void
8677calcxx_driver::scan_begin ()
8678@{
8679 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8680 if (file == "-")
8681 yyin = stdin;
8682 else if (!(yyin = fopen (file.c_str (), "r")))
8683 @{
8684 error (std::string ("cannot open ") + file);
8685 exit (1);
8686 @}
12545799
AD
8687@}
8688
8689void
8690calcxx_driver::scan_end ()
8691@{
8692 fclose (yyin);
8693@}
8694@end example
8695
8696@node Calc++ Top Level
8405b70c 8697@subsubsection Calc++ Top Level
12545799
AD
8698
8699The top level file, @file{calc++.cc}, poses no problem.
8700
1c59e0a1 8701@comment file: calc++.cc
12545799
AD
8702@example
8703#include <iostream>
8704#include "calc++-driver.hh"
8705
8706int
fa4d969f 8707main (int argc, char *argv[])
12545799
AD
8708@{
8709 calcxx_driver driver;
8710 for (++argv; argv[0]; ++argv)
8711 if (*argv == std::string ("-p"))
8712 driver.trace_parsing = true;
8713 else if (*argv == std::string ("-s"))
8714 driver.trace_scanning = true;
bb32f4f2
AD
8715 else if (!driver.parse (*argv))
8716 std::cout << driver.result << std::endl;
12545799
AD
8717@}
8718@end example
8719
8405b70c
PB
8720@node Java Parsers
8721@section Java Parsers
8722
8723@menu
f56274a8
DJ
8724* Java Bison Interface:: Asking for Java parser generation
8725* Java Semantic Values:: %type and %token vs. Java
8726* Java Location Values:: The position and location classes
8727* Java Parser Interface:: Instantiating and running the parser
8728* Java Scanner Interface:: Specifying the scanner for the parser
8729* Java Action Features:: Special features for use in actions
8730* Java Differences:: Differences between C/C++ and Java Grammars
8731* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8732@end menu
8733
8734@node Java Bison Interface
8735@subsection Java Bison Interface
8736@c - %language "Java"
8405b70c 8737
59da312b
JD
8738(The current Java interface is experimental and may evolve.
8739More user feedback will help to stabilize it.)
8740
e254a580
DJ
8741The Java parser skeletons are selected using the @code{%language "Java"}
8742directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8743
e254a580
DJ
8744@c FIXME: Documented bug.
8745When generating a Java parser, @code{bison @var{basename}.y} will create
8746a single Java source file named @file{@var{basename}.java}. Using an
8747input file without a @file{.y} suffix is currently broken. The basename
8748of the output file can be changed by the @code{%file-prefix} directive
8749or the @option{-p}/@option{--name-prefix} option. The entire output file
8750name can be changed by the @code{%output} directive or the
8751@option{-o}/@option{--output} option. The output file contains a single
8752class for the parser.
8405b70c 8753
e254a580 8754You can create documentation for generated parsers using Javadoc.
8405b70c 8755
e254a580
DJ
8756Contrary to C parsers, Java parsers do not use global variables; the
8757state of the parser is always local to an instance of the parser class.
8758Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8759and @code{%define api.pure} directives does not do anything when used in
8760Java.
8405b70c 8761
e254a580
DJ
8762Push parsers are currently unsupported in Java and @code{%define
8763api.push_pull} have no effect.
01b477c6 8764
e254a580
DJ
8765@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8766@code{glr-parser} directive.
8767
8768No header file can be generated for Java parsers. Do not use the
8769@code{%defines} directive or the @option{-d}/@option{--defines} options.
8770
8771@c FIXME: Possible code change.
8772Currently, support for debugging and verbose errors are always compiled
8773in. Thus the @code{%debug} and @code{%token-table} directives and the
8774@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8775options have no effect. This may change in the future to eliminate
8776unused code in the generated parser, so use @code{%debug} and
8777@code{%verbose-error} explicitly if needed. Also, in the future the
8778@code{%token-table} directive might enable a public interface to
8779access the token names and codes.
8405b70c
PB
8780
8781@node Java Semantic Values
8782@subsection Java Semantic Values
8783@c - No %union, specify type in %type/%token.
8784@c - YYSTYPE
8785@c - Printer and destructor
8786
8787There is no @code{%union} directive in Java parsers. Instead, the
8788semantic values' types (class names) should be specified in the
8789@code{%type} or @code{%token} directive:
8790
8791@example
8792%type <Expression> expr assignment_expr term factor
8793%type <Integer> number
8794@end example
8795
8796By default, the semantic stack is declared to have @code{Object} members,
8797which means that the class types you specify can be of any class.
8798To improve the type safety of the parser, you can declare the common
e254a580
DJ
8799superclass of all the semantic values using the @code{%define stype}
8800directive. For example, after the following declaration:
8405b70c
PB
8801
8802@example
e254a580 8803%define stype "ASTNode"
8405b70c
PB
8804@end example
8805
8806@noindent
8807any @code{%type} or @code{%token} specifying a semantic type which
8808is not a subclass of ASTNode, will cause a compile-time error.
8809
e254a580 8810@c FIXME: Documented bug.
8405b70c
PB
8811Types used in the directives may be qualified with a package name.
8812Primitive data types are accepted for Java version 1.5 or later. Note
8813that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8814Generic types may not be used; this is due to a limitation in the
8815implementation of Bison, and may change in future releases.
8405b70c
PB
8816
8817Java parsers do not support @code{%destructor}, since the language
8818adopts garbage collection. The parser will try to hold references
8819to semantic values for as little time as needed.
8820
8821Java parsers do not support @code{%printer}, as @code{toString()}
8822can be used to print the semantic values. This however may change
8823(in a backwards-compatible way) in future versions of Bison.
8824
8825
8826@node Java Location Values
8827@subsection Java Location Values
8828@c - %locations
8829@c - class Position
8830@c - class Location
8831
8832When the directive @code{%locations} is used, the Java parser
8833supports location tracking, see @ref{Locations, , Locations Overview}.
8834An auxiliary user-defined class defines a @dfn{position}, a single point
8835in a file; Bison itself defines a class representing a @dfn{location},
8836a range composed of a pair of positions (possibly spanning several
8837files). The location class is an inner class of the parser; the name
e254a580
DJ
8838is @code{Location} by default, and may also be renamed using
8839@code{%define location_type "@var{class-name}}.
8405b70c
PB
8840
8841The location class treats the position as a completely opaque value.
8842By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8843with @code{%define position_type "@var{class-name}"}. This class must
8844be supplied by the user.
8405b70c
PB
8845
8846
e254a580
DJ
8847@deftypeivar {Location} {Position} begin
8848@deftypeivarx {Location} {Position} end
8405b70c 8849The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8850@end deftypeivar
8851
8852@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
8853Create a @code{Location} denoting an empty range located at a given point.
8854@end deftypeop
8405b70c 8855
e254a580
DJ
8856@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8857Create a @code{Location} from the endpoints of the range.
8858@end deftypeop
8859
8860@deftypemethod {Location} {String} toString ()
8405b70c
PB
8861Prints the range represented by the location. For this to work
8862properly, the position class should override the @code{equals} and
8863@code{toString} methods appropriately.
8864@end deftypemethod
8865
8866
8867@node Java Parser Interface
8868@subsection Java Parser Interface
8869@c - define parser_class_name
8870@c - Ctor
8871@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8872@c debug_stream.
8873@c - Reporting errors
8874
e254a580
DJ
8875The name of the generated parser class defaults to @code{YYParser}. The
8876@code{YY} prefix may be changed using the @code{%name-prefix} directive
8877or the @option{-p}/@option{--name-prefix} option. Alternatively, use
8878@code{%define parser_class_name "@var{name}"} to give a custom name to
8879the class. The interface of this class is detailed below.
8405b70c 8880
e254a580
DJ
8881By default, the parser class has package visibility. A declaration
8882@code{%define public} will change to public visibility. Remember that,
8883according to the Java language specification, the name of the @file{.java}
8884file should match the name of the class in this case. Similarly, you can
8885use @code{abstract}, @code{final} and @code{strictfp} with the
8886@code{%define} declaration to add other modifiers to the parser class.
8887
8888The Java package name of the parser class can be specified using the
8889@code{%define package} directive. The superclass and the implemented
8890interfaces of the parser class can be specified with the @code{%define
8891extends} and @code{%define implements} directives.
8892
8893The parser class defines an inner class, @code{Location}, that is used
8894for location tracking (see @ref{Java Location Values}), and a inner
8895interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
8896these inner class/interface, and the members described in the interface
8897below, all the other members and fields are preceded with a @code{yy} or
8898@code{YY} prefix to avoid clashes with user code.
8899
8900@c FIXME: The following constants and variables are still undocumented:
8901@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
8902
8903The parser class can be extended using the @code{%parse-param}
8904directive. Each occurrence of the directive will add a @code{protected
8905final} field to the parser class, and an argument to its constructor,
8906which initialize them automatically.
8907
8908Token names defined by @code{%token} and the predefined @code{EOF} token
8909name are added as constant fields to the parser class.
8910
8911@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
8912Build a new parser object with embedded @code{%code lexer}. There are
8913no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
8914used.
8915@end deftypeop
8916
8917@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
8918Build a new parser object using the specified scanner. There are no
8919additional parameters unless @code{%parse-param}s are used.
8920
8921If the scanner is defined by @code{%code lexer}, this constructor is
8922declared @code{protected} and is called automatically with a scanner
8923created with the correct @code{%lex-param}s.
8924@end deftypeop
8405b70c
PB
8925
8926@deftypemethod {YYParser} {boolean} parse ()
8927Run the syntactic analysis, and return @code{true} on success,
8928@code{false} otherwise.
8929@end deftypemethod
8930
01b477c6 8931@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 8932During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
8933from a syntax error.
8934@xref{Error Recovery}.
8405b70c
PB
8935@end deftypemethod
8936
8937@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8938@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8939Get or set the stream used for tracing the parsing. It defaults to
8940@code{System.err}.
8941@end deftypemethod
8942
8943@deftypemethod {YYParser} {int} getDebugLevel ()
8944@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8945Get or set the tracing level. Currently its value is either 0, no trace,
8946or nonzero, full tracing.
8947@end deftypemethod
8948
8405b70c
PB
8949
8950@node Java Scanner Interface
8951@subsection Java Scanner Interface
01b477c6 8952@c - %code lexer
8405b70c 8953@c - %lex-param
01b477c6 8954@c - Lexer interface
8405b70c 8955
e254a580
DJ
8956There are two possible ways to interface a Bison-generated Java parser
8957with a scanner: the scanner may be defined by @code{%code lexer}, or
8958defined elsewhere. In either case, the scanner has to implement the
8959@code{Lexer} inner interface of the parser class.
8960
8961In the first case, the body of the scanner class is placed in
8962@code{%code lexer} blocks. If you want to pass parameters from the
8963parser constructor to the scanner constructor, specify them with
8964@code{%lex-param}; they are passed before @code{%parse-param}s to the
8965constructor.
01b477c6 8966
59c5ac72 8967In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
8968which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8969The constructor of the parser object will then accept an object
8970implementing the interface; @code{%lex-param} is not used in this
8971case.
8972
8973In both cases, the scanner has to implement the following methods.
8974
e254a580
DJ
8975@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
8976This method is defined by the user to emit an error message. The first
8977parameter is omitted if location tracking is not active. Its type can be
8978changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
8979@end deftypemethod
8980
e254a580 8981@deftypemethod {Lexer} {int} yylex ()
8405b70c 8982Return the next token. Its type is the return value, its semantic
87b9c9bc 8983value and location are saved and returned by the their methods in the
e254a580
DJ
8984interface.
8985
8986Use @code{%define lex_throws} to specify any uncaught exceptions.
8987Default is @code{java.io.IOException}.
8405b70c
PB
8988@end deftypemethod
8989
8990@deftypemethod {Lexer} {Position} getStartPos ()
8991@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8992Return respectively the first position of the last token that
8993@code{yylex} returned, and the first position beyond it. These
8994methods are not needed unless location tracking is active.
8405b70c 8995
e254a580 8996The return type can be changed using @code{%define position_type
8405b70c
PB
8997"@var{class-name}".}
8998@end deftypemethod
8999
9000@deftypemethod {Lexer} {Object} getLVal ()
87b9c9bc 9001Return the semantic value of the last token that yylex returned.
8405b70c 9002
e254a580 9003The return type can be changed using @code{%define stype
8405b70c
PB
9004"@var{class-name}".}
9005@end deftypemethod
9006
9007
e254a580
DJ
9008@node Java Action Features
9009@subsection Special Features for Use in Java Actions
9010
9011The following special constructs can be uses in Java actions.
9012Other analogous C action features are currently unavailable for Java.
9013
9014Use @code{%define throws} to specify any uncaught exceptions from parser
9015actions, and initial actions specified by @code{%initial-action}.
9016
9017@defvar $@var{n}
9018The semantic value for the @var{n}th component of the current rule.
9019This may not be assigned to.
9020@xref{Java Semantic Values}.
9021@end defvar
9022
9023@defvar $<@var{typealt}>@var{n}
9024Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9025@xref{Java Semantic Values}.
9026@end defvar
9027
9028@defvar $$
9029The semantic value for the grouping made by the current rule. As a
9030value, this is in the base type (@code{Object} or as specified by
9031@code{%define stype}) as in not cast to the declared subtype because
9032casts are not allowed on the left-hand side of Java assignments.
9033Use an explicit Java cast if the correct subtype is needed.
9034@xref{Java Semantic Values}.
9035@end defvar
9036
9037@defvar $<@var{typealt}>$
9038Same as @code{$$} since Java always allow assigning to the base type.
9039Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9040for setting the value but there is currently no easy way to distinguish
9041these constructs.
9042@xref{Java Semantic Values}.
9043@end defvar
9044
9045@defvar @@@var{n}
9046The location information of the @var{n}th component of the current rule.
9047This may not be assigned to.
9048@xref{Java Location Values}.
9049@end defvar
9050
9051@defvar @@$
9052The location information of the grouping made by the current rule.
9053@xref{Java Location Values}.
9054@end defvar
9055
9056@deffn {Statement} {return YYABORT;}
9057Return immediately from the parser, indicating failure.
9058@xref{Java Parser Interface}.
9059@end deffn
8405b70c 9060
e254a580
DJ
9061@deffn {Statement} {return YYACCEPT;}
9062Return immediately from the parser, indicating success.
9063@xref{Java Parser Interface}.
9064@end deffn
8405b70c 9065
e254a580
DJ
9066@deffn {Statement} {return YYERROR;}
9067Start error recovery without printing an error message.
9068@xref{Error Recovery}.
9069@end deffn
8405b70c 9070
e254a580
DJ
9071@deftypefn {Function} {boolean} recovering ()
9072Return whether error recovery is being done. In this state, the parser
9073reads token until it reaches a known state, and then restarts normal
9074operation.
9075@xref{Error Recovery}.
9076@end deftypefn
8405b70c 9077
e254a580
DJ
9078@deftypefn {Function} {protected void} yyerror (String msg)
9079@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9080@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9081Print an error message using the @code{yyerror} method of the scanner
9082instance in use.
9083@end deftypefn
8405b70c 9084
8405b70c 9085
8405b70c
PB
9086@node Java Differences
9087@subsection Differences between C/C++ and Java Grammars
9088
9089The different structure of the Java language forces several differences
9090between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9091section summarizes these differences.
8405b70c
PB
9092
9093@itemize
9094@item
01b477c6 9095Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9096@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9097macros. Instead, they should be preceded by @code{return} when they
9098appear in an action. The actual definition of these symbols is
8405b70c
PB
9099opaque to the Bison grammar, and it might change in the future. The
9100only meaningful operation that you can do, is to return them.
e254a580 9101See @pxref{Java Action Features}.
8405b70c
PB
9102
9103Note that of these three symbols, only @code{YYACCEPT} and
9104@code{YYABORT} will cause a return from the @code{yyparse}
9105method@footnote{Java parsers include the actions in a separate
9106method than @code{yyparse} in order to have an intuitive syntax that
9107corresponds to these C macros.}.
9108
e254a580
DJ
9109@item
9110Java lacks unions, so @code{%union} has no effect. Instead, semantic
9111values have a common base type: @code{Object} or as specified by
87b9c9bc 9112@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9113@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9114an union. The type of @code{$$}, even with angle brackets, is the base
9115type since Java casts are not allow on the left-hand side of assignments.
9116Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9117left-hand side of assignments. See @pxref{Java Semantic Values} and
9118@pxref{Java Action Features}.
9119
8405b70c 9120@item
87b9c9bc 9121The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9122@table @asis
9123@item @code{%code imports}
9124blocks are placed at the beginning of the Java source code. They may
9125include copyright notices. For a @code{package} declarations, it is
9126suggested to use @code{%define package} instead.
8405b70c 9127
01b477c6
PB
9128@item unqualified @code{%code}
9129blocks are placed inside the parser class.
9130
9131@item @code{%code lexer}
9132blocks, if specified, should include the implementation of the
9133scanner. If there is no such block, the scanner can be any class
9134that implements the appropriate interface (see @pxref{Java Scanner
9135Interface}).
29553547 9136@end table
8405b70c
PB
9137
9138Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9139In particular, @code{%@{ @dots{} %@}} blocks should not be used
9140and may give an error in future versions of Bison.
9141
01b477c6 9142The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9143be used to define other classes used by the parser @emph{outside}
9144the parser class.
8405b70c
PB
9145@end itemize
9146
e254a580
DJ
9147
9148@node Java Declarations Summary
9149@subsection Java Declarations Summary
9150
9151This summary only include declarations specific to Java or have special
9152meaning when used in a Java parser.
9153
9154@deffn {Directive} {%language "Java"}
9155Generate a Java class for the parser.
9156@end deffn
9157
9158@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9159A parameter for the lexer class defined by @code{%code lexer}
9160@emph{only}, added as parameters to the lexer constructor and the parser
9161constructor that @emph{creates} a lexer. Default is none.
9162@xref{Java Scanner Interface}.
9163@end deffn
9164
9165@deffn {Directive} %name-prefix "@var{prefix}"
9166The prefix of the parser class name @code{@var{prefix}Parser} if
9167@code{%define parser_class_name} is not used. Default is @code{YY}.
9168@xref{Java Bison Interface}.
9169@end deffn
9170
9171@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9172A parameter for the parser class added as parameters to constructor(s)
9173and as fields initialized by the constructor(s). Default is none.
9174@xref{Java Parser Interface}.
9175@end deffn
9176
9177@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9178Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9179@xref{Java Semantic Values}.
9180@end deffn
9181
9182@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9183Declare the type of nonterminals. Note that the angle brackets enclose
9184a Java @emph{type}.
9185@xref{Java Semantic Values}.
9186@end deffn
9187
9188@deffn {Directive} %code @{ @var{code} @dots{} @}
9189Code appended to the inside of the parser class.
9190@xref{Java Differences}.
9191@end deffn
9192
9193@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9194Code inserted just after the @code{package} declaration.
9195@xref{Java Differences}.
9196@end deffn
9197
9198@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9199Code added to the body of a inner lexer class within the parser class.
9200@xref{Java Scanner Interface}.
9201@end deffn
9202
9203@deffn {Directive} %% @var{code} @dots{}
9204Code (after the second @code{%%}) appended to the end of the file,
9205@emph{outside} the parser class.
9206@xref{Java Differences}.
9207@end deffn
9208
9209@deffn {Directive} %@{ @var{code} @dots{} %@}
9210Not supported. Use @code{%code import} instead.
9211@xref{Java Differences}.
9212@end deffn
9213
9214@deffn {Directive} {%define abstract}
9215Whether the parser class is declared @code{abstract}. Default is false.
9216@xref{Java Bison Interface}.
9217@end deffn
9218
9219@deffn {Directive} {%define extends} "@var{superclass}"
9220The superclass of the parser class. Default is none.
9221@xref{Java Bison Interface}.
9222@end deffn
9223
9224@deffn {Directive} {%define final}
9225Whether the parser class is declared @code{final}. Default is false.
9226@xref{Java Bison Interface}.
9227@end deffn
9228
9229@deffn {Directive} {%define implements} "@var{interfaces}"
9230The implemented interfaces of the parser class, a comma-separated list.
9231Default is none.
9232@xref{Java Bison Interface}.
9233@end deffn
9234
9235@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9236The exceptions thrown by the @code{yylex} method of the lexer, a
9237comma-separated list. Default is @code{java.io.IOException}.
9238@xref{Java Scanner Interface}.
9239@end deffn
9240
9241@deffn {Directive} {%define location_type} "@var{class}"
9242The name of the class used for locations (a range between two
9243positions). This class is generated as an inner class of the parser
9244class by @command{bison}. Default is @code{Location}.
9245@xref{Java Location Values}.
9246@end deffn
9247
9248@deffn {Directive} {%define package} "@var{package}"
9249The package to put the parser class in. Default is none.
9250@xref{Java Bison Interface}.
9251@end deffn
9252
9253@deffn {Directive} {%define parser_class_name} "@var{name}"
9254The name of the parser class. Default is @code{YYParser} or
9255@code{@var{name-prefix}Parser}.
9256@xref{Java Bison Interface}.
9257@end deffn
9258
9259@deffn {Directive} {%define position_type} "@var{class}"
9260The name of the class used for positions. This class must be supplied by
9261the user. Default is @code{Position}.
9262@xref{Java Location Values}.
9263@end deffn
9264
9265@deffn {Directive} {%define public}
9266Whether the parser class is declared @code{public}. Default is false.
9267@xref{Java Bison Interface}.
9268@end deffn
9269
9270@deffn {Directive} {%define stype} "@var{class}"
9271The base type of semantic values. Default is @code{Object}.
9272@xref{Java Semantic Values}.
9273@end deffn
9274
9275@deffn {Directive} {%define strictfp}
9276Whether the parser class is declared @code{strictfp}. Default is false.
9277@xref{Java Bison Interface}.
9278@end deffn
9279
9280@deffn {Directive} {%define throws} "@var{exceptions}"
9281The exceptions thrown by user-supplied parser actions and
9282@code{%initial-action}, a comma-separated list. Default is none.
9283@xref{Java Parser Interface}.
9284@end deffn
9285
9286
12545799 9287@c ================================================= FAQ
d1a1114f
AD
9288
9289@node FAQ
9290@chapter Frequently Asked Questions
9291@cindex frequently asked questions
9292@cindex questions
9293
9294Several questions about Bison come up occasionally. Here some of them
9295are addressed.
9296
9297@menu
55ba27be
AD
9298* Memory Exhausted:: Breaking the Stack Limits
9299* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9300* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9301* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9302* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9303* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9304* I can't build Bison:: Troubleshooting
9305* Where can I find help?:: Troubleshouting
9306* Bug Reports:: Troublereporting
8405b70c 9307* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9308* Beta Testing:: Experimenting development versions
9309* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9310@end menu
9311
1a059451
PE
9312@node Memory Exhausted
9313@section Memory Exhausted
d1a1114f
AD
9314
9315@display
1a059451 9316My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9317message. What can I do?
9318@end display
9319
9320This question is already addressed elsewhere, @xref{Recursion,
9321,Recursive Rules}.
9322
e64fec0a
PE
9323@node How Can I Reset the Parser
9324@section How Can I Reset the Parser
5b066063 9325
0e14ad77
PE
9326The following phenomenon has several symptoms, resulting in the
9327following typical questions:
5b066063
AD
9328
9329@display
9330I invoke @code{yyparse} several times, and on correct input it works
9331properly; but when a parse error is found, all the other calls fail
0e14ad77 9332too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9333@end display
9334
9335@noindent
9336or
9337
9338@display
0e14ad77 9339My parser includes support for an @samp{#include}-like feature, in
5b066063 9340which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9341although I did specify @code{%define api.pure}.
5b066063
AD
9342@end display
9343
0e14ad77
PE
9344These problems typically come not from Bison itself, but from
9345Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9346speed, they might not notice a change of input file. As a
9347demonstration, consider the following source file,
9348@file{first-line.l}:
9349
9350@verbatim
9351%{
9352#include <stdio.h>
9353#include <stdlib.h>
9354%}
9355%%
9356.*\n ECHO; return 1;
9357%%
9358int
0e14ad77 9359yyparse (char const *file)
5b066063
AD
9360{
9361 yyin = fopen (file, "r");
9362 if (!yyin)
9363 exit (2);
fa7e68c3 9364 /* One token only. */
5b066063 9365 yylex ();
0e14ad77 9366 if (fclose (yyin) != 0)
5b066063
AD
9367 exit (3);
9368 return 0;
9369}
9370
9371int
0e14ad77 9372main (void)
5b066063
AD
9373{
9374 yyparse ("input");
9375 yyparse ("input");
9376 return 0;
9377}
9378@end verbatim
9379
9380@noindent
9381If the file @file{input} contains
9382
9383@verbatim
9384input:1: Hello,
9385input:2: World!
9386@end verbatim
9387
9388@noindent
0e14ad77 9389then instead of getting the first line twice, you get:
5b066063
AD
9390
9391@example
9392$ @kbd{flex -ofirst-line.c first-line.l}
9393$ @kbd{gcc -ofirst-line first-line.c -ll}
9394$ @kbd{./first-line}
9395input:1: Hello,
9396input:2: World!
9397@end example
9398
0e14ad77
PE
9399Therefore, whenever you change @code{yyin}, you must tell the
9400Lex-generated scanner to discard its current buffer and switch to the
9401new one. This depends upon your implementation of Lex; see its
9402documentation for more. For Flex, it suffices to call
9403@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9404Flex-generated scanner needs to read from several input streams to
9405handle features like include files, you might consider using Flex
9406functions like @samp{yy_switch_to_buffer} that manipulate multiple
9407input buffers.
5b066063 9408
b165c324
AD
9409If your Flex-generated scanner uses start conditions (@pxref{Start
9410conditions, , Start conditions, flex, The Flex Manual}), you might
9411also want to reset the scanner's state, i.e., go back to the initial
9412start condition, through a call to @samp{BEGIN (0)}.
9413
fef4cb51
AD
9414@node Strings are Destroyed
9415@section Strings are Destroyed
9416
9417@display
c7e441b4 9418My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9419them. Instead of reporting @samp{"foo", "bar"}, it reports
9420@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9421@end display
9422
9423This error is probably the single most frequent ``bug report'' sent to
9424Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9425of the scanner. Consider the following Lex code:
fef4cb51
AD
9426
9427@verbatim
9428%{
9429#include <stdio.h>
9430char *yylval = NULL;
9431%}
9432%%
9433.* yylval = yytext; return 1;
9434\n /* IGNORE */
9435%%
9436int
9437main ()
9438{
fa7e68c3 9439 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9440 char *fst = (yylex (), yylval);
9441 char *snd = (yylex (), yylval);
9442 printf ("\"%s\", \"%s\"\n", fst, snd);
9443 return 0;
9444}
9445@end verbatim
9446
9447If you compile and run this code, you get:
9448
9449@example
9450$ @kbd{flex -osplit-lines.c split-lines.l}
9451$ @kbd{gcc -osplit-lines split-lines.c -ll}
9452$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9453"one
9454two", "two"
9455@end example
9456
9457@noindent
9458this is because @code{yytext} is a buffer provided for @emph{reading}
9459in the action, but if you want to keep it, you have to duplicate it
9460(e.g., using @code{strdup}). Note that the output may depend on how
9461your implementation of Lex handles @code{yytext}. For instance, when
9462given the Lex compatibility option @option{-l} (which triggers the
9463option @samp{%array}) Flex generates a different behavior:
9464
9465@example
9466$ @kbd{flex -l -osplit-lines.c split-lines.l}
9467$ @kbd{gcc -osplit-lines split-lines.c -ll}
9468$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9469"two", "two"
9470@end example
9471
9472
2fa09258
AD
9473@node Implementing Gotos/Loops
9474@section Implementing Gotos/Loops
a06ea4aa
AD
9475
9476@display
9477My simple calculator supports variables, assignments, and functions,
2fa09258 9478but how can I implement gotos, or loops?
a06ea4aa
AD
9479@end display
9480
9481Although very pedagogical, the examples included in the document blur
a1c84f45 9482the distinction to make between the parser---whose job is to recover
a06ea4aa 9483the structure of a text and to transmit it to subsequent modules of
a1c84f45 9484the program---and the processing (such as the execution) of this
a06ea4aa
AD
9485structure. This works well with so called straight line programs,
9486i.e., precisely those that have a straightforward execution model:
9487execute simple instructions one after the others.
9488
9489@cindex abstract syntax tree
9490@cindex @acronym{AST}
9491If you want a richer model, you will probably need to use the parser
9492to construct a tree that does represent the structure it has
9493recovered; this tree is usually called the @dfn{abstract syntax tree},
9494or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9495traversing it in various ways, will enable treatments such as its
9496execution or its translation, which will result in an interpreter or a
9497compiler.
9498
9499This topic is way beyond the scope of this manual, and the reader is
9500invited to consult the dedicated literature.
9501
9502
ed2e6384
AD
9503@node Multiple start-symbols
9504@section Multiple start-symbols
9505
9506@display
9507I have several closely related grammars, and I would like to share their
9508implementations. In fact, I could use a single grammar but with
9509multiple entry points.
9510@end display
9511
9512Bison does not support multiple start-symbols, but there is a very
9513simple means to simulate them. If @code{foo} and @code{bar} are the two
9514pseudo start-symbols, then introduce two new tokens, say
9515@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9516real start-symbol:
9517
9518@example
9519%token START_FOO START_BAR;
9520%start start;
9521start: START_FOO foo
9522 | START_BAR bar;
9523@end example
9524
9525These tokens prevents the introduction of new conflicts. As far as the
9526parser goes, that is all that is needed.
9527
9528Now the difficult part is ensuring that the scanner will send these
9529tokens first. If your scanner is hand-written, that should be
9530straightforward. If your scanner is generated by Lex, them there is
9531simple means to do it: recall that anything between @samp{%@{ ... %@}}
9532after the first @code{%%} is copied verbatim in the top of the generated
9533@code{yylex} function. Make sure a variable @code{start_token} is
9534available in the scanner (e.g., a global variable or using
9535@code{%lex-param} etc.), and use the following:
9536
9537@example
9538 /* @r{Prologue.} */
9539%%
9540%@{
9541 if (start_token)
9542 @{
9543 int t = start_token;
9544 start_token = 0;
9545 return t;
9546 @}
9547%@}
9548 /* @r{The rules.} */
9549@end example
9550
9551
55ba27be
AD
9552@node Secure? Conform?
9553@section Secure? Conform?
9554
9555@display
9556Is Bison secure? Does it conform to POSIX?
9557@end display
9558
9559If you're looking for a guarantee or certification, we don't provide it.
9560However, Bison is intended to be a reliable program that conforms to the
9561@acronym{POSIX} specification for Yacc. If you run into problems,
9562please send us a bug report.
9563
9564@node I can't build Bison
9565@section I can't build Bison
9566
9567@display
8c5b881d
PE
9568I can't build Bison because @command{make} complains that
9569@code{msgfmt} is not found.
55ba27be
AD
9570What should I do?
9571@end display
9572
9573Like most GNU packages with internationalization support, that feature
9574is turned on by default. If you have problems building in the @file{po}
9575subdirectory, it indicates that your system's internationalization
9576support is lacking. You can re-configure Bison with
9577@option{--disable-nls} to turn off this support, or you can install GNU
9578gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9579Bison. See the file @file{ABOUT-NLS} for more information.
9580
9581
9582@node Where can I find help?
9583@section Where can I find help?
9584
9585@display
9586I'm having trouble using Bison. Where can I find help?
9587@end display
9588
9589First, read this fine manual. Beyond that, you can send mail to
9590@email{help-bison@@gnu.org}. This mailing list is intended to be
9591populated with people who are willing to answer questions about using
9592and installing Bison. Please keep in mind that (most of) the people on
9593the list have aspects of their lives which are not related to Bison (!),
9594so you may not receive an answer to your question right away. This can
9595be frustrating, but please try not to honk them off; remember that any
9596help they provide is purely voluntary and out of the kindness of their
9597hearts.
9598
9599@node Bug Reports
9600@section Bug Reports
9601
9602@display
9603I found a bug. What should I include in the bug report?
9604@end display
9605
9606Before you send a bug report, make sure you are using the latest
9607version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9608mirrors. Be sure to include the version number in your bug report. If
9609the bug is present in the latest version but not in a previous version,
9610try to determine the most recent version which did not contain the bug.
9611
9612If the bug is parser-related, you should include the smallest grammar
9613you can which demonstrates the bug. The grammar file should also be
9614complete (i.e., I should be able to run it through Bison without having
9615to edit or add anything). The smaller and simpler the grammar, the
9616easier it will be to fix the bug.
9617
9618Include information about your compilation environment, including your
9619operating system's name and version and your compiler's name and
9620version. If you have trouble compiling, you should also include a
9621transcript of the build session, starting with the invocation of
9622`configure'. Depending on the nature of the bug, you may be asked to
9623send additional files as well (such as `config.h' or `config.cache').
9624
9625Patches are most welcome, but not required. That is, do not hesitate to
9626send a bug report just because you can not provide a fix.
9627
9628Send bug reports to @email{bug-bison@@gnu.org}.
9629
8405b70c
PB
9630@node More Languages
9631@section More Languages
55ba27be
AD
9632
9633@display
8405b70c 9634Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9635favorite language here}?
9636@end display
9637
8405b70c 9638C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9639languages; contributions are welcome.
9640
9641@node Beta Testing
9642@section Beta Testing
9643
9644@display
9645What is involved in being a beta tester?
9646@end display
9647
9648It's not terribly involved. Basically, you would download a test
9649release, compile it, and use it to build and run a parser or two. After
9650that, you would submit either a bug report or a message saying that
9651everything is okay. It is important to report successes as well as
9652failures because test releases eventually become mainstream releases,
9653but only if they are adequately tested. If no one tests, development is
9654essentially halted.
9655
9656Beta testers are particularly needed for operating systems to which the
9657developers do not have easy access. They currently have easy access to
9658recent GNU/Linux and Solaris versions. Reports about other operating
9659systems are especially welcome.
9660
9661@node Mailing Lists
9662@section Mailing Lists
9663
9664@display
9665How do I join the help-bison and bug-bison mailing lists?
9666@end display
9667
9668See @url{http://lists.gnu.org/}.
a06ea4aa 9669
d1a1114f
AD
9670@c ================================================= Table of Symbols
9671
342b8b6e 9672@node Table of Symbols
bfa74976
RS
9673@appendix Bison Symbols
9674@cindex Bison symbols, table of
9675@cindex symbols in Bison, table of
9676
18b519c0 9677@deffn {Variable} @@$
3ded9a63 9678In an action, the location of the left-hand side of the rule.
88bce5a2 9679@xref{Locations, , Locations Overview}.
18b519c0 9680@end deffn
3ded9a63 9681
18b519c0 9682@deffn {Variable} @@@var{n}
3ded9a63
AD
9683In an action, the location of the @var{n}-th symbol of the right-hand
9684side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9685@end deffn
3ded9a63 9686
18b519c0 9687@deffn {Variable} $$
3ded9a63
AD
9688In an action, the semantic value of the left-hand side of the rule.
9689@xref{Actions}.
18b519c0 9690@end deffn
3ded9a63 9691
18b519c0 9692@deffn {Variable} $@var{n}
3ded9a63
AD
9693In an action, the semantic value of the @var{n}-th symbol of the
9694right-hand side of the rule. @xref{Actions}.
18b519c0 9695@end deffn
3ded9a63 9696
dd8d9022
AD
9697@deffn {Delimiter} %%
9698Delimiter used to separate the grammar rule section from the
9699Bison declarations section or the epilogue.
9700@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9701@end deffn
bfa74976 9702
dd8d9022
AD
9703@c Don't insert spaces, or check the DVI output.
9704@deffn {Delimiter} %@{@var{code}%@}
9705All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9706the output file uninterpreted. Such code forms the prologue of the input
9707file. @xref{Grammar Outline, ,Outline of a Bison
9708Grammar}.
18b519c0 9709@end deffn
bfa74976 9710
dd8d9022
AD
9711@deffn {Construct} /*@dots{}*/
9712Comment delimiters, as in C.
18b519c0 9713@end deffn
bfa74976 9714
dd8d9022
AD
9715@deffn {Delimiter} :
9716Separates a rule's result from its components. @xref{Rules, ,Syntax of
9717Grammar Rules}.
18b519c0 9718@end deffn
bfa74976 9719
dd8d9022
AD
9720@deffn {Delimiter} ;
9721Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9722@end deffn
bfa74976 9723
dd8d9022
AD
9724@deffn {Delimiter} |
9725Separates alternate rules for the same result nonterminal.
9726@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9727@end deffn
bfa74976 9728
12e35840
JD
9729@deffn {Directive} <*>
9730Used to define a default tagged @code{%destructor} or default tagged
9731@code{%printer}.
85894313
JD
9732
9733This feature is experimental.
9734More user feedback will help to determine whether it should become a permanent
9735feature.
9736
12e35840
JD
9737@xref{Destructor Decl, , Freeing Discarded Symbols}.
9738@end deffn
9739
3ebecc24 9740@deffn {Directive} <>
12e35840
JD
9741Used to define a default tagless @code{%destructor} or default tagless
9742@code{%printer}.
85894313
JD
9743
9744This feature is experimental.
9745More user feedback will help to determine whether it should become a permanent
9746feature.
9747
12e35840
JD
9748@xref{Destructor Decl, , Freeing Discarded Symbols}.
9749@end deffn
9750
dd8d9022
AD
9751@deffn {Symbol} $accept
9752The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9753$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9754Start-Symbol}. It cannot be used in the grammar.
18b519c0 9755@end deffn
bfa74976 9756
136a0f76 9757@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9758@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9759Insert @var{code} verbatim into output parser source.
9760@xref{Decl Summary,,%code}.
9bc0dd67 9761@end deffn
9bc0dd67 9762
18b519c0 9763@deffn {Directive} %debug
6deb4447 9764Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9765@end deffn
6deb4447 9766
91d2c560 9767@ifset defaultprec
22fccf95
PE
9768@deffn {Directive} %default-prec
9769Assign a precedence to rules that lack an explicit @samp{%prec}
9770modifier. @xref{Contextual Precedence, ,Context-Dependent
9771Precedence}.
39a06c25 9772@end deffn
91d2c560 9773@end ifset
39a06c25 9774
148d66d8
JD
9775@deffn {Directive} %define @var{define-variable}
9776@deffnx {Directive} %define @var{define-variable} @var{value}
9777Define a variable to adjust Bison's behavior.
9778@xref{Decl Summary,,%define}.
9779@end deffn
9780
18b519c0 9781@deffn {Directive} %defines
6deb4447
AD
9782Bison declaration to create a header file meant for the scanner.
9783@xref{Decl Summary}.
18b519c0 9784@end deffn
6deb4447 9785
02975b9a
JD
9786@deffn {Directive} %defines @var{defines-file}
9787Same as above, but save in the file @var{defines-file}.
9788@xref{Decl Summary}.
9789@end deffn
9790
18b519c0 9791@deffn {Directive} %destructor
258b75ca 9792Specify how the parser should reclaim the memory associated to
fa7e68c3 9793discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9794@end deffn
72f889cc 9795
18b519c0 9796@deffn {Directive} %dprec
676385e2 9797Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9798time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9799@acronym{GLR} Parsers}.
18b519c0 9800@end deffn
676385e2 9801
dd8d9022
AD
9802@deffn {Symbol} $end
9803The predefined token marking the end of the token stream. It cannot be
9804used in the grammar.
9805@end deffn
9806
9807@deffn {Symbol} error
9808A token name reserved for error recovery. This token may be used in
9809grammar rules so as to allow the Bison parser to recognize an error in
9810the grammar without halting the process. In effect, a sentence
9811containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9812token @code{error} becomes the current lookahead token. Actions
9813corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9814token is reset to the token that originally caused the violation.
9815@xref{Error Recovery}.
18d192f0
AD
9816@end deffn
9817
18b519c0 9818@deffn {Directive} %error-verbose
2a8d363a
AD
9819Bison declaration to request verbose, specific error message strings
9820when @code{yyerror} is called.
18b519c0 9821@end deffn
2a8d363a 9822
02975b9a 9823@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9824Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9825Summary}.
18b519c0 9826@end deffn
d8988b2f 9827
18b519c0 9828@deffn {Directive} %glr-parser
c827f760
PE
9829Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9830Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9831@end deffn
676385e2 9832
dd8d9022
AD
9833@deffn {Directive} %initial-action
9834Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9835@end deffn
9836
e6e704dc
JD
9837@deffn {Directive} %language
9838Specify the programming language for the generated parser.
9839@xref{Decl Summary}.
9840@end deffn
9841
18b519c0 9842@deffn {Directive} %left
bfa74976
RS
9843Bison declaration to assign left associativity to token(s).
9844@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9845@end deffn
bfa74976 9846
feeb0eda 9847@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9848Bison declaration to specifying an additional parameter that
9849@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9850for Pure Parsers}.
18b519c0 9851@end deffn
2a8d363a 9852
18b519c0 9853@deffn {Directive} %merge
676385e2 9854Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9855reduce/reduce conflict with a rule having the same merging function, the
676385e2 9856function is applied to the two semantic values to get a single result.
c827f760 9857@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9858@end deffn
676385e2 9859
02975b9a 9860@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9861Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9862@end deffn
d8988b2f 9863
91d2c560 9864@ifset defaultprec
22fccf95
PE
9865@deffn {Directive} %no-default-prec
9866Do not assign a precedence to rules that lack an explicit @samp{%prec}
9867modifier. @xref{Contextual Precedence, ,Context-Dependent
9868Precedence}.
9869@end deffn
91d2c560 9870@end ifset
22fccf95 9871
18b519c0 9872@deffn {Directive} %no-lines
931c7513
RS
9873Bison declaration to avoid generating @code{#line} directives in the
9874parser file. @xref{Decl Summary}.
18b519c0 9875@end deffn
931c7513 9876
18b519c0 9877@deffn {Directive} %nonassoc
9d9b8b70 9878Bison declaration to assign nonassociativity to token(s).
bfa74976 9879@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9880@end deffn
bfa74976 9881
02975b9a 9882@deffn {Directive} %output "@var{file}"
72d2299c 9883Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9884Summary}.
18b519c0 9885@end deffn
d8988b2f 9886
feeb0eda 9887@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9888Bison declaration to specifying an additional parameter that
9889@code{yyparse} should accept. @xref{Parser Function,, The Parser
9890Function @code{yyparse}}.
18b519c0 9891@end deffn
2a8d363a 9892
18b519c0 9893@deffn {Directive} %prec
bfa74976
RS
9894Bison declaration to assign a precedence to a specific rule.
9895@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9896@end deffn
bfa74976 9897
18b519c0 9898@deffn {Directive} %pure-parser
d9df47b6
JD
9899Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9900for which Bison is more careful to warn about unreasonable usage.
18b519c0 9901@end deffn
bfa74976 9902
b50d2359 9903@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9904Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9905Require a Version of Bison}.
b50d2359
AD
9906@end deffn
9907
18b519c0 9908@deffn {Directive} %right
bfa74976
RS
9909Bison declaration to assign right associativity to token(s).
9910@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9911@end deffn
bfa74976 9912
e6e704dc
JD
9913@deffn {Directive} %skeleton
9914Specify the skeleton to use; usually for development.
9915@xref{Decl Summary}.
9916@end deffn
9917
18b519c0 9918@deffn {Directive} %start
704a47c4
AD
9919Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9920Start-Symbol}.
18b519c0 9921@end deffn
bfa74976 9922
18b519c0 9923@deffn {Directive} %token
bfa74976
RS
9924Bison declaration to declare token(s) without specifying precedence.
9925@xref{Token Decl, ,Token Type Names}.
18b519c0 9926@end deffn
bfa74976 9927
18b519c0 9928@deffn {Directive} %token-table
931c7513
RS
9929Bison declaration to include a token name table in the parser file.
9930@xref{Decl Summary}.
18b519c0 9931@end deffn
931c7513 9932
18b519c0 9933@deffn {Directive} %type
704a47c4
AD
9934Bison declaration to declare nonterminals. @xref{Type Decl,
9935,Nonterminal Symbols}.
18b519c0 9936@end deffn
bfa74976 9937
dd8d9022
AD
9938@deffn {Symbol} $undefined
9939The predefined token onto which all undefined values returned by
9940@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9941@code{error}.
9942@end deffn
9943
18b519c0 9944@deffn {Directive} %union
bfa74976
RS
9945Bison declaration to specify several possible data types for semantic
9946values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9947@end deffn
bfa74976 9948
dd8d9022
AD
9949@deffn {Macro} YYABORT
9950Macro to pretend that an unrecoverable syntax error has occurred, by
9951making @code{yyparse} return 1 immediately. The error reporting
9952function @code{yyerror} is not called. @xref{Parser Function, ,The
9953Parser Function @code{yyparse}}.
8405b70c
PB
9954
9955For Java parsers, this functionality is invoked using @code{return YYABORT;}
9956instead.
dd8d9022 9957@end deffn
3ded9a63 9958
dd8d9022
AD
9959@deffn {Macro} YYACCEPT
9960Macro to pretend that a complete utterance of the language has been
9961read, by making @code{yyparse} return 0 immediately.
9962@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9963
9964For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9965instead.
dd8d9022 9966@end deffn
bfa74976 9967
dd8d9022 9968@deffn {Macro} YYBACKUP
742e4900 9969Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9970token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9971@end deffn
bfa74976 9972
dd8d9022 9973@deffn {Variable} yychar
32c29292 9974External integer variable that contains the integer value of the
742e4900 9975lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9976@code{yyparse}.) Error-recovery rule actions may examine this variable.
9977@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9978@end deffn
bfa74976 9979
dd8d9022
AD
9980@deffn {Variable} yyclearin
9981Macro used in error-recovery rule actions. It clears the previous
742e4900 9982lookahead token. @xref{Error Recovery}.
18b519c0 9983@end deffn
bfa74976 9984
dd8d9022
AD
9985@deffn {Macro} YYDEBUG
9986Macro to define to equip the parser with tracing code. @xref{Tracing,
9987,Tracing Your Parser}.
18b519c0 9988@end deffn
bfa74976 9989
dd8d9022
AD
9990@deffn {Variable} yydebug
9991External integer variable set to zero by default. If @code{yydebug}
9992is given a nonzero value, the parser will output information on input
9993symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9994@end deffn
bfa74976 9995
dd8d9022
AD
9996@deffn {Macro} yyerrok
9997Macro to cause parser to recover immediately to its normal mode
9998after a syntax error. @xref{Error Recovery}.
9999@end deffn
10000
10001@deffn {Macro} YYERROR
10002Macro to pretend that a syntax error has just been detected: call
10003@code{yyerror} and then perform normal error recovery if possible
10004(@pxref{Error Recovery}), or (if recovery is impossible) make
10005@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10006
10007For Java parsers, this functionality is invoked using @code{return YYERROR;}
10008instead.
dd8d9022
AD
10009@end deffn
10010
10011@deffn {Function} yyerror
10012User-supplied function to be called by @code{yyparse} on error.
10013@xref{Error Reporting, ,The Error
10014Reporting Function @code{yyerror}}.
10015@end deffn
10016
10017@deffn {Macro} YYERROR_VERBOSE
10018An obsolete macro that you define with @code{#define} in the prologue
10019to request verbose, specific error message strings
10020when @code{yyerror} is called. It doesn't matter what definition you
10021use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10022@code{%error-verbose} is preferred.
10023@end deffn
10024
10025@deffn {Macro} YYINITDEPTH
10026Macro for specifying the initial size of the parser stack.
1a059451 10027@xref{Memory Management}.
dd8d9022
AD
10028@end deffn
10029
10030@deffn {Function} yylex
10031User-supplied lexical analyzer function, called with no arguments to get
10032the next token. @xref{Lexical, ,The Lexical Analyzer Function
10033@code{yylex}}.
10034@end deffn
10035
10036@deffn {Macro} YYLEX_PARAM
10037An obsolete macro for specifying an extra argument (or list of extra
32c29292 10038arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10039macro is deprecated, and is supported only for Yacc like parsers.
10040@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10041@end deffn
10042
10043@deffn {Variable} yylloc
10044External variable in which @code{yylex} should place the line and column
10045numbers associated with a token. (In a pure parser, it is a local
10046variable within @code{yyparse}, and its address is passed to
32c29292
JD
10047@code{yylex}.)
10048You can ignore this variable if you don't use the @samp{@@} feature in the
10049grammar actions.
10050@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10051In semantic actions, it stores the location of the lookahead token.
32c29292 10052@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10053@end deffn
10054
10055@deffn {Type} YYLTYPE
10056Data type of @code{yylloc}; by default, a structure with four
10057members. @xref{Location Type, , Data Types of Locations}.
10058@end deffn
10059
10060@deffn {Variable} yylval
10061External variable in which @code{yylex} should place the semantic
10062value associated with a token. (In a pure parser, it is a local
10063variable within @code{yyparse}, and its address is passed to
32c29292
JD
10064@code{yylex}.)
10065@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10066In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10067@xref{Actions, ,Actions}.
dd8d9022
AD
10068@end deffn
10069
10070@deffn {Macro} YYMAXDEPTH
1a059451
PE
10071Macro for specifying the maximum size of the parser stack. @xref{Memory
10072Management}.
dd8d9022
AD
10073@end deffn
10074
10075@deffn {Variable} yynerrs
8a2800e7 10076Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10077(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10078pure push parser, it is a member of yypstate.)
dd8d9022
AD
10079@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10080@end deffn
10081
10082@deffn {Function} yyparse
10083The parser function produced by Bison; call this function to start
10084parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10085@end deffn
10086
9987d1b3 10087@deffn {Function} yypstate_delete
f4101aa6 10088The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10089call this function to delete the memory associated with a parser.
f4101aa6 10090@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10091@code{yypstate_delete}}.
59da312b
JD
10092(The current push parsing interface is experimental and may evolve.
10093More user feedback will help to stabilize it.)
9987d1b3
JD
10094@end deffn
10095
10096@deffn {Function} yypstate_new
f4101aa6 10097The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10098call this function to create a new parser.
f4101aa6 10099@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10100@code{yypstate_new}}.
59da312b
JD
10101(The current push parsing interface is experimental and may evolve.
10102More user feedback will help to stabilize it.)
9987d1b3
JD
10103@end deffn
10104
10105@deffn {Function} yypull_parse
f4101aa6
AD
10106The parser function produced by Bison in push mode; call this function to
10107parse the rest of the input stream.
10108@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10109@code{yypull_parse}}.
59da312b
JD
10110(The current push parsing interface is experimental and may evolve.
10111More user feedback will help to stabilize it.)
9987d1b3
JD
10112@end deffn
10113
10114@deffn {Function} yypush_parse
f4101aa6
AD
10115The parser function produced by Bison in push mode; call this function to
10116parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10117@code{yypush_parse}}.
59da312b
JD
10118(The current push parsing interface is experimental and may evolve.
10119More user feedback will help to stabilize it.)
9987d1b3
JD
10120@end deffn
10121
dd8d9022
AD
10122@deffn {Macro} YYPARSE_PARAM
10123An obsolete macro for specifying the name of a parameter that
10124@code{yyparse} should accept. The use of this macro is deprecated, and
10125is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10126Conventions for Pure Parsers}.
10127@end deffn
10128
10129@deffn {Macro} YYRECOVERING
02103984
PE
10130The expression @code{YYRECOVERING ()} yields 1 when the parser
10131is recovering from a syntax error, and 0 otherwise.
10132@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10133@end deffn
10134
10135@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10136Macro used to control the use of @code{alloca} when the C
10137@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10138the parser will use @code{malloc} to extend its stacks. If defined to
101391, the parser will use @code{alloca}. Values other than 0 and 1 are
10140reserved for future Bison extensions. If not defined,
10141@code{YYSTACK_USE_ALLOCA} defaults to 0.
10142
55289366 10143In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10144limited stack and with unreliable stack-overflow checking, you should
10145set @code{YYMAXDEPTH} to a value that cannot possibly result in
10146unchecked stack overflow on any of your target hosts when
10147@code{alloca} is called. You can inspect the code that Bison
10148generates in order to determine the proper numeric values. This will
10149require some expertise in low-level implementation details.
dd8d9022
AD
10150@end deffn
10151
10152@deffn {Type} YYSTYPE
10153Data type of semantic values; @code{int} by default.
10154@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10155@end deffn
bfa74976 10156
342b8b6e 10157@node Glossary
bfa74976
RS
10158@appendix Glossary
10159@cindex glossary
10160
10161@table @asis
c827f760
PE
10162@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10163Formal method of specifying context-free grammars originally proposed
10164by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10165committee document contributing to what became the Algol 60 report.
10166@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10167
10168@item Context-free grammars
10169Grammars specified as rules that can be applied regardless of context.
10170Thus, if there is a rule which says that an integer can be used as an
10171expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10172permitted. @xref{Language and Grammar, ,Languages and Context-Free
10173Grammars}.
bfa74976
RS
10174
10175@item Dynamic allocation
10176Allocation of memory that occurs during execution, rather than at
10177compile time or on entry to a function.
10178
10179@item Empty string
10180Analogous to the empty set in set theory, the empty string is a
10181character string of length zero.
10182
10183@item Finite-state stack machine
10184A ``machine'' that has discrete states in which it is said to exist at
10185each instant in time. As input to the machine is processed, the
10186machine moves from state to state as specified by the logic of the
10187machine. In the case of the parser, the input is the language being
10188parsed, and the states correspond to various stages in the grammar
c827f760 10189rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10190
c827f760 10191@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10192A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10193that are not @acronym{LALR}(1). It resolves situations that Bison's
10194usual @acronym{LALR}(1)
676385e2
PH
10195algorithm cannot by effectively splitting off multiple parsers, trying all
10196possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10197right context. @xref{Generalized LR Parsing, ,Generalized
10198@acronym{LR} Parsing}.
676385e2 10199
bfa74976
RS
10200@item Grouping
10201A language construct that is (in general) grammatically divisible;
c827f760 10202for example, `expression' or `declaration' in C@.
bfa74976
RS
10203@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10204
10205@item Infix operator
10206An arithmetic operator that is placed between the operands on which it
10207performs some operation.
10208
10209@item Input stream
10210A continuous flow of data between devices or programs.
10211
10212@item Language construct
10213One of the typical usage schemas of the language. For example, one of
10214the constructs of the C language is the @code{if} statement.
10215@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10216
10217@item Left associativity
10218Operators having left associativity are analyzed from left to right:
10219@samp{a+b+c} first computes @samp{a+b} and then combines with
10220@samp{c}. @xref{Precedence, ,Operator Precedence}.
10221
10222@item Left recursion
89cab50d
AD
10223A rule whose result symbol is also its first component symbol; for
10224example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10225Rules}.
bfa74976
RS
10226
10227@item Left-to-right parsing
10228Parsing a sentence of a language by analyzing it token by token from
c827f760 10229left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10230
10231@item Lexical analyzer (scanner)
10232A function that reads an input stream and returns tokens one by one.
10233@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10234
10235@item Lexical tie-in
10236A flag, set by actions in the grammar rules, which alters the way
10237tokens are parsed. @xref{Lexical Tie-ins}.
10238
931c7513 10239@item Literal string token
14ded682 10240A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10241
742e4900
JD
10242@item Lookahead token
10243A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10244Tokens}.
bfa74976 10245
c827f760 10246@item @acronym{LALR}(1)
bfa74976 10247The class of context-free grammars that Bison (like most other parser
c827f760
PE
10248generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10249Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10250
c827f760 10251@item @acronym{LR}(1)
bfa74976 10252The class of context-free grammars in which at most one token of
742e4900 10253lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10254
10255@item Nonterminal symbol
10256A grammar symbol standing for a grammatical construct that can
10257be expressed through rules in terms of smaller constructs; in other
10258words, a construct that is not a token. @xref{Symbols}.
10259
bfa74976
RS
10260@item Parser
10261A function that recognizes valid sentences of a language by analyzing
10262the syntax structure of a set of tokens passed to it from a lexical
10263analyzer.
10264
10265@item Postfix operator
10266An arithmetic operator that is placed after the operands upon which it
10267performs some operation.
10268
10269@item Reduction
10270Replacing a string of nonterminals and/or terminals with a single
89cab50d 10271nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10272Parser Algorithm}.
bfa74976
RS
10273
10274@item Reentrant
10275A reentrant subprogram is a subprogram which can be in invoked any
10276number of times in parallel, without interference between the various
10277invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10278
10279@item Reverse polish notation
10280A language in which all operators are postfix operators.
10281
10282@item Right recursion
89cab50d
AD
10283A rule whose result symbol is also its last component symbol; for
10284example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10285Rules}.
bfa74976
RS
10286
10287@item Semantics
10288In computer languages, the semantics are specified by the actions
10289taken for each instance of the language, i.e., the meaning of
10290each statement. @xref{Semantics, ,Defining Language Semantics}.
10291
10292@item Shift
10293A parser is said to shift when it makes the choice of analyzing
10294further input from the stream rather than reducing immediately some
c827f760 10295already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10296
10297@item Single-character literal
10298A single character that is recognized and interpreted as is.
10299@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10300
10301@item Start symbol
10302The nonterminal symbol that stands for a complete valid utterance in
10303the language being parsed. The start symbol is usually listed as the
13863333 10304first nonterminal symbol in a language specification.
bfa74976
RS
10305@xref{Start Decl, ,The Start-Symbol}.
10306
10307@item Symbol table
10308A data structure where symbol names and associated data are stored
10309during parsing to allow for recognition and use of existing
10310information in repeated uses of a symbol. @xref{Multi-function Calc}.
10311
6e649e65
PE
10312@item Syntax error
10313An error encountered during parsing of an input stream due to invalid
10314syntax. @xref{Error Recovery}.
10315
bfa74976
RS
10316@item Token
10317A basic, grammatically indivisible unit of a language. The symbol
10318that describes a token in the grammar is a terminal symbol.
10319The input of the Bison parser is a stream of tokens which comes from
10320the lexical analyzer. @xref{Symbols}.
10321
10322@item Terminal symbol
89cab50d
AD
10323A grammar symbol that has no rules in the grammar and therefore is
10324grammatically indivisible. The piece of text it represents is a token.
10325@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10326@end table
10327
342b8b6e 10328@node Copying This Manual
f2b5126e 10329@appendix Copying This Manual
f2b5126e
PB
10330@include fdl.texi
10331
342b8b6e 10332@node Index
bfa74976
RS
10333@unnumbered Index
10334
10335@printindex cp
10336
bfa74976 10337@bye
a06ea4aa 10338
a022ff41
AD
10339@c Local Variables:
10340@c fill-column: 76
10341@c End:
10342
a06ea4aa
AD
10343@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10344@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10345@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10346@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10347@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10348@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10349@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10350@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10351@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10352@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10353@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10354@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10355@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10356@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10357@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10358@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10359@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10360@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10361@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10362@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10363@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10364@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10365@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10366@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10367@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10368@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10369@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10370@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10371@c LocalWords: YYSTACK DVI fdl printindex