]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
YYFAIL: deprecate.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58
PE
353@dfn{Bison} is a general-purpose parser generator that converts an
354annotated context-free grammar into an @acronym{LALR}(1) or
355@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 356Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
357used in simple desk calculators to complex programming languages.
358
359Bison is upward compatible with Yacc: all properly-written Yacc grammars
360ought to work with Bison with no change. Anyone familiar with Yacc
361should be able to use Bison with little trouble. You need to be fluent in
1e137b71 362C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
363
364We begin with tutorial chapters that explain the basic concepts of using
365Bison and show three explained examples, each building on the last. If you
366don't know Bison or Yacc, start by reading these chapters. Reference
367chapters follow which describe specific aspects of Bison in detail.
368
931c7513
RS
369Bison was written primarily by Robert Corbett; Richard Stallman made it
370Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 371multi-character string literals and other features.
931c7513 372
df1af54c 373This edition corresponds to version @value{VERSION} of Bison.
bfa74976 374
342b8b6e 375@node Conditions
bfa74976
RS
376@unnumbered Conditions for Using Bison
377
193d7c70
PE
378The distribution terms for Bison-generated parsers permit using the
379parsers in nonfree programs. Before Bison version 2.2, these extra
380permissions applied only when Bison was generating @acronym{LALR}(1)
381parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 382parsers could be used only in programs that were free software.
a31239f1 383
c827f760
PE
384The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
385compiler, have never
9ecbd125 386had such a requirement. They could always be used for nonfree
a31239f1
RS
387software. The reason Bison was different was not due to a special
388policy decision; it resulted from applying the usual General Public
389License to all of the Bison source code.
390
391The output of the Bison utility---the Bison parser file---contains a
392verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
393parser's implementation. (The actions from your grammar are inserted
394into this implementation at one point, but most of the rest of the
395implementation is not changed.) When we applied the @acronym{GPL}
396terms to the skeleton code for the parser's implementation,
a31239f1
RS
397the effect was to restrict the use of Bison output to free software.
398
399We didn't change the terms because of sympathy for people who want to
400make software proprietary. @strong{Software should be free.} But we
401concluded that limiting Bison's use to free software was doing little to
402encourage people to make other software free. So we decided to make the
403practical conditions for using Bison match the practical conditions for
c827f760 404using the other @acronym{GNU} tools.
bfa74976 405
193d7c70
PE
406This exception applies when Bison is generating code for a parser.
407You can tell whether the exception applies to a Bison output file by
408inspecting the file for text beginning with ``As a special
409exception@dots{}''. The text spells out the exact terms of the
410exception.
262aa8dd 411
f16b0819
PE
412@node Copying
413@unnumbered GNU GENERAL PUBLIC LICENSE
414@include gpl-3.0.texi
bfa74976 415
342b8b6e 416@node Concepts
bfa74976
RS
417@chapter The Concepts of Bison
418
419This chapter introduces many of the basic concepts without which the
420details of Bison will not make sense. If you do not already know how to
421use Bison or Yacc, we suggest you start by reading this chapter carefully.
422
423@menu
f56274a8
DJ
424* Language and Grammar:: Languages and context-free grammars,
425 as mathematical ideas.
426* Grammar in Bison:: How we represent grammars for Bison's sake.
427* Semantic Values:: Each token or syntactic grouping can have
428 a semantic value (the value of an integer,
429 the name of an identifier, etc.).
430* Semantic Actions:: Each rule can have an action containing C code.
431* GLR Parsers:: Writing parsers for general context-free languages.
432* Locations Overview:: Tracking Locations.
433* Bison Parser:: What are Bison's input and output,
434 how is the output used?
435* Stages:: Stages in writing and running Bison grammars.
436* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
437@end menu
438
342b8b6e 439@node Language and Grammar
bfa74976
RS
440@section Languages and Context-Free Grammars
441
bfa74976
RS
442@cindex context-free grammar
443@cindex grammar, context-free
444In order for Bison to parse a language, it must be described by a
445@dfn{context-free grammar}. This means that you specify one or more
446@dfn{syntactic groupings} and give rules for constructing them from their
447parts. For example, in the C language, one kind of grouping is called an
448`expression'. One rule for making an expression might be, ``An expression
449can be made of a minus sign and another expression''. Another would be,
450``An expression can be an integer''. As you can see, rules are often
451recursive, but there must be at least one rule which leads out of the
452recursion.
453
c827f760 454@cindex @acronym{BNF}
bfa74976
RS
455@cindex Backus-Naur form
456The most common formal system for presenting such rules for humans to read
c827f760
PE
457is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
458order to specify the language Algol 60. Any grammar expressed in
459@acronym{BNF} is a context-free grammar. The input to Bison is
460essentially machine-readable @acronym{BNF}.
bfa74976 461
c827f760
PE
462@cindex @acronym{LALR}(1) grammars
463@cindex @acronym{LR}(1) grammars
676385e2
PH
464There are various important subclasses of context-free grammar. Although it
465can handle almost all context-free grammars, Bison is optimized for what
c827f760 466are called @acronym{LALR}(1) grammars.
676385e2 467In brief, in these grammars, it must be possible to
bfa74976 468tell how to parse any portion of an input string with just a single
742e4900 469token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
470@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
471restrictions that are
bfa74976 472hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
473@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
bfa74976 476
c827f760
PE
477@cindex @acronym{GLR} parsing
478@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 479@cindex ambiguous grammars
9d9b8b70 480@cindex nondeterministic parsing
9501dc6e
AD
481
482Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
483roughly that the next grammar rule to apply at any point in the input is
484uniquely determined by the preceding input and a fixed, finite portion
742e4900 485(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 486grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 487apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 488grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 489lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
490With the proper declarations, Bison is also able to parse these more
491general context-free grammars, using a technique known as @acronym{GLR}
492parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
493are able to handle any context-free grammar for which the number of
494possible parses of any given string is finite.
676385e2 495
bfa74976
RS
496@cindex symbols (abstract)
497@cindex token
498@cindex syntactic grouping
499@cindex grouping, syntactic
9501dc6e
AD
500In the formal grammatical rules for a language, each kind of syntactic
501unit or grouping is named by a @dfn{symbol}. Those which are built by
502grouping smaller constructs according to grammatical rules are called
bfa74976
RS
503@dfn{nonterminal symbols}; those which can't be subdivided are called
504@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
505corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 506corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
507
508We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
509nonterminal, mean. The tokens of C are identifiers, constants (numeric
510and string), and the various keywords, arithmetic operators and
511punctuation marks. So the terminal symbols of a grammar for C include
512`identifier', `number', `string', plus one symbol for each keyword,
513operator or punctuation mark: `if', `return', `const', `static', `int',
514`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
515(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
516lexicography, not grammar.)
517
518Here is a simple C function subdivided into tokens:
519
9edcd895
AD
520@ifinfo
521@example
522int /* @r{keyword `int'} */
14d4662b 523square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
524 @r{identifier, close-paren} */
525@{ /* @r{open-brace} */
aa08666d
AD
526 return x * x; /* @r{keyword `return', identifier, asterisk,}
527 @r{identifier, semicolon} */
9edcd895
AD
528@} /* @r{close-brace} */
529@end example
530@end ifinfo
531@ifnotinfo
bfa74976
RS
532@example
533int /* @r{keyword `int'} */
14d4662b 534square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 535@{ /* @r{open-brace} */
9edcd895 536 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
537@} /* @r{close-brace} */
538@end example
9edcd895 539@end ifnotinfo
bfa74976
RS
540
541The syntactic groupings of C include the expression, the statement, the
542declaration, and the function definition. These are represented in the
543grammar of C by nonterminal symbols `expression', `statement',
544`declaration' and `function definition'. The full grammar uses dozens of
545additional language constructs, each with its own nonterminal symbol, in
546order to express the meanings of these four. The example above is a
547function definition; it contains one declaration, and one statement. In
548the statement, each @samp{x} is an expression and so is @samp{x * x}.
549
550Each nonterminal symbol must have grammatical rules showing how it is made
551out of simpler constructs. For example, one kind of C statement is the
552@code{return} statement; this would be described with a grammar rule which
553reads informally as follows:
554
555@quotation
556A `statement' can be made of a `return' keyword, an `expression' and a
557`semicolon'.
558@end quotation
559
560@noindent
561There would be many other rules for `statement', one for each kind of
562statement in C.
563
564@cindex start symbol
565One nonterminal symbol must be distinguished as the special one which
566defines a complete utterance in the language. It is called the @dfn{start
567symbol}. In a compiler, this means a complete input program. In the C
568language, the nonterminal symbol `sequence of definitions and declarations'
569plays this role.
570
571For example, @samp{1 + 2} is a valid C expression---a valid part of a C
572program---but it is not valid as an @emph{entire} C program. In the
573context-free grammar of C, this follows from the fact that `expression' is
574not the start symbol.
575
576The Bison parser reads a sequence of tokens as its input, and groups the
577tokens using the grammar rules. If the input is valid, the end result is
578that the entire token sequence reduces to a single grouping whose symbol is
579the grammar's start symbol. If we use a grammar for C, the entire input
580must be a `sequence of definitions and declarations'. If not, the parser
581reports a syntax error.
582
342b8b6e 583@node Grammar in Bison
bfa74976
RS
584@section From Formal Rules to Bison Input
585@cindex Bison grammar
586@cindex grammar, Bison
587@cindex formal grammar
588
589A formal grammar is a mathematical construct. To define the language
590for Bison, you must write a file expressing the grammar in Bison syntax:
591a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
592
593A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 594as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
595in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
596
597The Bison representation for a terminal symbol is also called a @dfn{token
598type}. Token types as well can be represented as C-like identifiers. By
599convention, these identifiers should be upper case to distinguish them from
600nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
601@code{RETURN}. A terminal symbol that stands for a particular keyword in
602the language should be named after that keyword converted to upper case.
603The terminal symbol @code{error} is reserved for error recovery.
931c7513 604@xref{Symbols}.
bfa74976
RS
605
606A terminal symbol can also be represented as a character literal, just like
607a C character constant. You should do this whenever a token is just a
608single character (parenthesis, plus-sign, etc.): use that same character in
609a literal as the terminal symbol for that token.
610
931c7513
RS
611A third way to represent a terminal symbol is with a C string constant
612containing several characters. @xref{Symbols}, for more information.
613
bfa74976
RS
614The grammar rules also have an expression in Bison syntax. For example,
615here is the Bison rule for a C @code{return} statement. The semicolon in
616quotes is a literal character token, representing part of the C syntax for
617the statement; the naked semicolon, and the colon, are Bison punctuation
618used in every rule.
619
620@example
621stmt: RETURN expr ';'
622 ;
623@end example
624
625@noindent
626@xref{Rules, ,Syntax of Grammar Rules}.
627
342b8b6e 628@node Semantic Values
bfa74976
RS
629@section Semantic Values
630@cindex semantic value
631@cindex value, semantic
632
633A formal grammar selects tokens only by their classifications: for example,
634if a rule mentions the terminal symbol `integer constant', it means that
635@emph{any} integer constant is grammatically valid in that position. The
636precise value of the constant is irrelevant to how to parse the input: if
637@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 638grammatical.
bfa74976
RS
639
640But the precise value is very important for what the input means once it is
641parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6423989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
643has both a token type and a @dfn{semantic value}. @xref{Semantics,
644,Defining Language Semantics},
bfa74976
RS
645for details.
646
647The token type is a terminal symbol defined in the grammar, such as
648@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
649you need to know to decide where the token may validly appear and how to
650group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 651except their types.
bfa74976
RS
652
653The semantic value has all the rest of the information about the
654meaning of the token, such as the value of an integer, or the name of an
655identifier. (A token such as @code{','} which is just punctuation doesn't
656need to have any semantic value.)
657
658For example, an input token might be classified as token type
659@code{INTEGER} and have the semantic value 4. Another input token might
660have the same token type @code{INTEGER} but value 3989. When a grammar
661rule says that @code{INTEGER} is allowed, either of these tokens is
662acceptable because each is an @code{INTEGER}. When the parser accepts the
663token, it keeps track of the token's semantic value.
664
665Each grouping can also have a semantic value as well as its nonterminal
666symbol. For example, in a calculator, an expression typically has a
667semantic value that is a number. In a compiler for a programming
668language, an expression typically has a semantic value that is a tree
669structure describing the meaning of the expression.
670
342b8b6e 671@node Semantic Actions
bfa74976
RS
672@section Semantic Actions
673@cindex semantic actions
674@cindex actions, semantic
675
676In order to be useful, a program must do more than parse input; it must
677also produce some output based on the input. In a Bison grammar, a grammar
678rule can have an @dfn{action} made up of C statements. Each time the
679parser recognizes a match for that rule, the action is executed.
680@xref{Actions}.
13863333 681
bfa74976
RS
682Most of the time, the purpose of an action is to compute the semantic value
683of the whole construct from the semantic values of its parts. For example,
684suppose we have a rule which says an expression can be the sum of two
685expressions. When the parser recognizes such a sum, each of the
686subexpressions has a semantic value which describes how it was built up.
687The action for this rule should create a similar sort of value for the
688newly recognized larger expression.
689
690For example, here is a rule that says an expression can be the sum of
691two subexpressions:
692
693@example
694expr: expr '+' expr @{ $$ = $1 + $3; @}
695 ;
696@end example
697
698@noindent
699The action says how to produce the semantic value of the sum expression
700from the values of the two subexpressions.
701
676385e2 702@node GLR Parsers
c827f760
PE
703@section Writing @acronym{GLR} Parsers
704@cindex @acronym{GLR} parsing
705@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
706@findex %glr-parser
707@cindex conflicts
708@cindex shift/reduce conflicts
fa7e68c3 709@cindex reduce/reduce conflicts
676385e2 710
fa7e68c3 711In some grammars, Bison's standard
9501dc6e
AD
712@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
713certain grammar rule at a given point. That is, it may not be able to
714decide (on the basis of the input read so far) which of two possible
715reductions (applications of a grammar rule) applies, or whether to apply
716a reduction or read more of the input and apply a reduction later in the
717input. These are known respectively as @dfn{reduce/reduce} conflicts
718(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
719(@pxref{Shift/Reduce}).
720
721To use a grammar that is not easily modified to be @acronym{LALR}(1), a
722more general parsing algorithm is sometimes necessary. If you include
676385e2 723@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 724(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
725(@acronym{GLR}) parser. These parsers handle Bison grammars that
726contain no unresolved conflicts (i.e., after applying precedence
727declarations) identically to @acronym{LALR}(1) parsers. However, when
728faced with unresolved shift/reduce and reduce/reduce conflicts,
729@acronym{GLR} parsers use the simple expedient of doing both,
730effectively cloning the parser to follow both possibilities. Each of
731the resulting parsers can again split, so that at any given time, there
732can be any number of possible parses being explored. The parsers
676385e2
PH
733proceed in lockstep; that is, all of them consume (shift) a given input
734symbol before any of them proceed to the next. Each of the cloned
735parsers eventually meets one of two possible fates: either it runs into
736a parsing error, in which case it simply vanishes, or it merges with
737another parser, because the two of them have reduced the input to an
738identical set of symbols.
739
740During the time that there are multiple parsers, semantic actions are
741recorded, but not performed. When a parser disappears, its recorded
742semantic actions disappear as well, and are never performed. When a
743reduction makes two parsers identical, causing them to merge, Bison
744records both sets of semantic actions. Whenever the last two parsers
745merge, reverting to the single-parser case, Bison resolves all the
746outstanding actions either by precedences given to the grammar rules
747involved, or by performing both actions, and then calling a designated
748user-defined function on the resulting values to produce an arbitrary
749merged result.
750
fa7e68c3 751@menu
f56274a8
DJ
752* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
753* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
754* GLR Semantic Actions:: Deferred semantic actions have special concerns.
755* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
756@end menu
757
758@node Simple GLR Parsers
759@subsection Using @acronym{GLR} on Unambiguous Grammars
760@cindex @acronym{GLR} parsing, unambiguous grammars
761@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
762@findex %glr-parser
763@findex %expect-rr
764@cindex conflicts
765@cindex reduce/reduce conflicts
766@cindex shift/reduce conflicts
767
768In the simplest cases, you can use the @acronym{GLR} algorithm
769to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 770Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
771or (in rare cases) fall into the category of grammars in which the
772@acronym{LALR}(1) algorithm throws away too much information (they are in
773@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
742e4900 810With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
742e4900 849lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
850for. In this example, @acronym{LALR}(2) would suffice, but also some cases
851that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
904When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
936@acronym{LALR} parser statically choosing the wrong alternative in a
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1156the same as its effect in an @acronym{LALR}(1) parser.
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313 2707
2cbe6b7f
JD
2708The functionality of @var{Prologue} sections can often be subtle and
2709inflexible.
8e0a5e9e
JD
2710As an alternative, Bison provides a %code directive with an explicit qualifier
2711field, which identifies the purpose of the code and thus the location(s) where
2712Bison should generate it.
2713For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2714one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2715@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2716
2717Look again at the example of the previous section:
2718
2719@smallexample
2720%@{
2721 #define _GNU_SOURCE
2722 #include <stdio.h>
2723 #include "ptypes.h"
2724%@}
2725
2726%union @{
2727 long int n;
2728 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2729@}
2730
2731%@{
2732 static void print_token_value (FILE *, int, YYSTYPE);
2733 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2734%@}
2735
2736@dots{}
2737@end smallexample
2738
2739@noindent
2740Notice that there are two @var{Prologue} sections here, but there's a subtle
2741distinction between their functionality.
2742For example, if you decide to override Bison's default definition for
2743@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2744definition?
2745You should write it in the first since Bison will insert that code into the
8e0a5e9e 2746parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2747In which @var{Prologue} section should you prototype an internal function,
2748@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2749arguments?
2750You should prototype it in the second since Bison will insert that code
2751@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2752
2753This distinction in functionality between the two @var{Prologue} sections is
2754established by the appearance of the @code{%union} between them.
a501eca9 2755This behavior raises a few questions.
2cbe6b7f
JD
2756First, why should the position of a @code{%union} affect definitions related to
2757@code{YYLTYPE} and @code{yytokentype}?
2758Second, what if there is no @code{%union}?
2759In that case, the second kind of @var{Prologue} section is not available.
2760This behavior is not intuitive.
2761
8e0a5e9e 2762To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2763@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2764Let's go ahead and add the new @code{YYLTYPE} definition and the
2765@code{trace_token} prototype at the same time:
2766
2767@smallexample
16dc6a9e 2768%code top @{
2cbe6b7f
JD
2769 #define _GNU_SOURCE
2770 #include <stdio.h>
8e0a5e9e
JD
2771
2772 /* WARNING: The following code really belongs
16dc6a9e 2773 * in a `%code requires'; see below. */
8e0a5e9e 2774
2cbe6b7f
JD
2775 #include "ptypes.h"
2776 #define YYLTYPE YYLTYPE
2777 typedef struct YYLTYPE
2778 @{
2779 int first_line;
2780 int first_column;
2781 int last_line;
2782 int last_column;
2783 char *filename;
2784 @} YYLTYPE;
2785@}
2786
2787%union @{
2788 long int n;
2789 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2790@}
2791
2792%code @{
2793 static void print_token_value (FILE *, int, YYSTYPE);
2794 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2795 static void trace_token (enum yytokentype token, YYLTYPE loc);
2796@}
2797
2798@dots{}
2799@end smallexample
2800
2801@noindent
16dc6a9e
JD
2802In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2803functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2804explicit which kind you intend.
2cbe6b7f
JD
2805Moreover, both kinds are always available even in the absence of @code{%union}.
2806
16dc6a9e 2807The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2808The first two lines before the warning need to appear near the top of the
2809parser source code file.
2810The first line after the warning is required by @code{YYSTYPE} and thus also
2811needs to appear in the parser source code file.
2cbe6b7f 2812However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2813(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2814the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2815The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2816override the default @code{YYLTYPE} definition there.
2817
16dc6a9e 2818In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2819lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2820definitions.
16dc6a9e 2821Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2822
2823@smallexample
16dc6a9e 2824%code top @{
2cbe6b7f
JD
2825 #define _GNU_SOURCE
2826 #include <stdio.h>
2827@}
2828
16dc6a9e 2829%code requires @{
9bc0dd67
JD
2830 #include "ptypes.h"
2831@}
2832%union @{
2833 long int n;
2834 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2835@}
2836
16dc6a9e 2837%code requires @{
2cbe6b7f
JD
2838 #define YYLTYPE YYLTYPE
2839 typedef struct YYLTYPE
2840 @{
2841 int first_line;
2842 int first_column;
2843 int last_line;
2844 int last_column;
2845 char *filename;
2846 @} YYLTYPE;
2847@}
2848
136a0f76 2849%code @{
2cbe6b7f
JD
2850 static void print_token_value (FILE *, int, YYSTYPE);
2851 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2852 static void trace_token (enum yytokentype token, YYLTYPE loc);
2853@}
2854
2855@dots{}
2856@end smallexample
2857
2858@noindent
2859Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2860definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2861definitions in both the parser source code file and the parser header file.
16dc6a9e 2862(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2863place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2864
a501eca9 2865When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2866should prefer @code{%code requires} over @code{%code top} regardless of whether
2867you instruct Bison to generate a parser header file.
a501eca9 2868When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2869source code file and that has no special need to appear at the top of that
16dc6a9e 2870file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2871These practices will make the purpose of each block of your code explicit to
2872Bison and to other developers reading your grammar file.
8e0a5e9e 2873Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2874@code{%code requires} to be the most important of the four @var{Prologue}
2875alternatives.
a501eca9 2876
2cbe6b7f
JD
2877At some point while developing your parser, you might decide to provide
2878@code{trace_token} to modules that are external to your parser.
2879Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2880header file and the parser source code file.
2881Since this function is not a dependency required by @code{YYSTYPE} or
2882@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2883@code{%code requires}.
2cbe6b7f 2884More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2885@code{%code requires} is not sufficient.
8e0a5e9e 2886Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2887@code{%code provides}:
2cbe6b7f
JD
2888
2889@smallexample
16dc6a9e 2890%code top @{
2cbe6b7f 2891 #define _GNU_SOURCE
136a0f76 2892 #include <stdio.h>
2cbe6b7f 2893@}
136a0f76 2894
16dc6a9e 2895%code requires @{
2cbe6b7f
JD
2896 #include "ptypes.h"
2897@}
2898%union @{
2899 long int n;
2900 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2901@}
2902
16dc6a9e 2903%code requires @{
2cbe6b7f
JD
2904 #define YYLTYPE YYLTYPE
2905 typedef struct YYLTYPE
2906 @{
2907 int first_line;
2908 int first_column;
2909 int last_line;
2910 int last_column;
2911 char *filename;
2912 @} YYLTYPE;
2913@}
2914
16dc6a9e 2915%code provides @{
2cbe6b7f
JD
2916 void trace_token (enum yytokentype token, YYLTYPE loc);
2917@}
2918
2919%code @{
9bc0dd67
JD
2920 static void print_token_value (FILE *, int, YYSTYPE);
2921 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2922@}
9bc0dd67
JD
2923
2924@dots{}
2925@end smallexample
2926
2cbe6b7f
JD
2927@noindent
2928Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2929file and the parser source code file after the definitions for
2930@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2931
2932The above examples are careful to write directives in an order that reflects
8e0a5e9e 2933the layout of the generated parser source code and header files:
16dc6a9e 2934@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2935@code{%code}.
a501eca9 2936While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2937this order, Bison does not require it.
2938Instead, Bison lets you choose an organization that makes sense to you.
2939
a501eca9 2940You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2941In that case, Bison concatenates the contained code in declaration order.
2942This is the only way in which the position of one of these directives within
2943the grammar file affects its functionality.
2944
2945The result of the previous two properties is greater flexibility in how you may
2946organize your grammar file.
2947For example, you may organize semantic-type-related directives by semantic
2948type:
2949
2950@smallexample
16dc6a9e 2951%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2952%union @{ type1 field1; @}
2953%destructor @{ type1_free ($$); @} <field1>
2954%printer @{ type1_print ($$); @} <field1>
2955
16dc6a9e 2956%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2957%union @{ type2 field2; @}
2958%destructor @{ type2_free ($$); @} <field2>
2959%printer @{ type2_print ($$); @} <field2>
2960@end smallexample
2961
2962@noindent
2963You could even place each of the above directive groups in the rules section of
2964the grammar file next to the set of rules that uses the associated semantic
2965type.
61fee93e
JD
2966(In the rules section, you must terminate each of those directives with a
2967semicolon.)
2cbe6b7f
JD
2968And you don't have to worry that some directive (like a @code{%union}) in the
2969definitions section is going to adversely affect their functionality in some
2970counter-intuitive manner just because it comes first.
2971Such an organization is not possible using @var{Prologue} sections.
2972
a501eca9 2973This section has been concerned with explaining the advantages of the four
8e0a5e9e 2974@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2975However, in most cases when using these directives, you shouldn't need to
2976think about all the low-level ordering issues discussed here.
2977Instead, you should simply use these directives to label each block of your
2978code according to its purpose and let Bison handle the ordering.
2979@code{%code} is the most generic label.
16dc6a9e
JD
2980Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2981as needed.
a501eca9 2982
342b8b6e 2983@node Bison Declarations
bfa74976
RS
2984@subsection The Bison Declarations Section
2985@cindex Bison declarations (introduction)
2986@cindex declarations, Bison (introduction)
2987
2988The @var{Bison declarations} section contains declarations that define
2989terminal and nonterminal symbols, specify precedence, and so on.
2990In some simple grammars you may not need any declarations.
2991@xref{Declarations, ,Bison Declarations}.
2992
342b8b6e 2993@node Grammar Rules
bfa74976
RS
2994@subsection The Grammar Rules Section
2995@cindex grammar rules section
2996@cindex rules section for grammar
2997
2998The @dfn{grammar rules} section contains one or more Bison grammar
2999rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3000
3001There must always be at least one grammar rule, and the first
3002@samp{%%} (which precedes the grammar rules) may never be omitted even
3003if it is the first thing in the file.
3004
38a92d50 3005@node Epilogue
75f5aaea 3006@subsection The epilogue
bfa74976 3007@cindex additional C code section
75f5aaea 3008@cindex epilogue
bfa74976
RS
3009@cindex C code, section for additional
3010
08e49d20
PE
3011The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3012the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3013place to put anything that you want to have in the parser file but which need
3014not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3015definitions of @code{yylex} and @code{yyerror} often go here. Because
3016C requires functions to be declared before being used, you often need
3017to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3018even if you define them in the Epilogue.
75f5aaea 3019@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3020
3021If the last section is empty, you may omit the @samp{%%} that separates it
3022from the grammar rules.
3023
f8e1c9e5
AD
3024The Bison parser itself contains many macros and identifiers whose names
3025start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3026any such names (except those documented in this manual) in the epilogue
3027of the grammar file.
bfa74976 3028
342b8b6e 3029@node Symbols
bfa74976
RS
3030@section Symbols, Terminal and Nonterminal
3031@cindex nonterminal symbol
3032@cindex terminal symbol
3033@cindex token type
3034@cindex symbol
3035
3036@dfn{Symbols} in Bison grammars represent the grammatical classifications
3037of the language.
3038
3039A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3040class of syntactically equivalent tokens. You use the symbol in grammar
3041rules to mean that a token in that class is allowed. The symbol is
3042represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3043function returns a token type code to indicate what kind of token has
3044been read. You don't need to know what the code value is; you can use
3045the symbol to stand for it.
bfa74976 3046
f8e1c9e5
AD
3047A @dfn{nonterminal symbol} stands for a class of syntactically
3048equivalent groupings. The symbol name is used in writing grammar rules.
3049By convention, it should be all lower case.
bfa74976
RS
3050
3051Symbol names can contain letters, digits (not at the beginning),
3052underscores and periods. Periods make sense only in nonterminals.
3053
931c7513 3054There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3055
3056@itemize @bullet
3057@item
3058A @dfn{named token type} is written with an identifier, like an
c827f760 3059identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3060such name must be defined with a Bison declaration such as
3061@code{%token}. @xref{Token Decl, ,Token Type Names}.
3062
3063@item
3064@cindex character token
3065@cindex literal token
3066@cindex single-character literal
931c7513
RS
3067A @dfn{character token type} (or @dfn{literal character token}) is
3068written in the grammar using the same syntax used in C for character
3069constants; for example, @code{'+'} is a character token type. A
3070character token type doesn't need to be declared unless you need to
3071specify its semantic value data type (@pxref{Value Type, ,Data Types of
3072Semantic Values}), associativity, or precedence (@pxref{Precedence,
3073,Operator Precedence}).
bfa74976
RS
3074
3075By convention, a character token type is used only to represent a
3076token that consists of that particular character. Thus, the token
3077type @code{'+'} is used to represent the character @samp{+} as a
3078token. Nothing enforces this convention, but if you depart from it,
3079your program will confuse other readers.
3080
3081All the usual escape sequences used in character literals in C can be
3082used in Bison as well, but you must not use the null character as a
72d2299c
PE
3083character literal because its numeric code, zero, signifies
3084end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3085for @code{yylex}}). Also, unlike standard C, trigraphs have no
3086special meaning in Bison character literals, nor is backslash-newline
3087allowed.
931c7513
RS
3088
3089@item
3090@cindex string token
3091@cindex literal string token
9ecbd125 3092@cindex multicharacter literal
931c7513
RS
3093A @dfn{literal string token} is written like a C string constant; for
3094example, @code{"<="} is a literal string token. A literal string token
3095doesn't need to be declared unless you need to specify its semantic
14ded682 3096value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3097(@pxref{Precedence}).
3098
3099You can associate the literal string token with a symbolic name as an
3100alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3101Declarations}). If you don't do that, the lexical analyzer has to
3102retrieve the token number for the literal string token from the
3103@code{yytname} table (@pxref{Calling Convention}).
3104
c827f760 3105@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3106
3107By convention, a literal string token is used only to represent a token
3108that consists of that particular string. Thus, you should use the token
3109type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3110does not enforce this convention, but if you depart from it, people who
931c7513
RS
3111read your program will be confused.
3112
3113All the escape sequences used in string literals in C can be used in
92ac3705
PE
3114Bison as well, except that you must not use a null character within a
3115string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3116meaning in Bison string literals, nor is backslash-newline allowed. A
3117literal string token must contain two or more characters; for a token
3118containing just one character, use a character token (see above).
bfa74976
RS
3119@end itemize
3120
3121How you choose to write a terminal symbol has no effect on its
3122grammatical meaning. That depends only on where it appears in rules and
3123on when the parser function returns that symbol.
3124
72d2299c
PE
3125The value returned by @code{yylex} is always one of the terminal
3126symbols, except that a zero or negative value signifies end-of-input.
3127Whichever way you write the token type in the grammar rules, you write
3128it the same way in the definition of @code{yylex}. The numeric code
3129for a character token type is simply the positive numeric code of the
3130character, so @code{yylex} can use the identical value to generate the
3131requisite code, though you may need to convert it to @code{unsigned
3132char} to avoid sign-extension on hosts where @code{char} is signed.
3133Each named token type becomes a C macro in
bfa74976 3134the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3135(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3136@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3137
3138If @code{yylex} is defined in a separate file, you need to arrange for the
3139token-type macro definitions to be available there. Use the @samp{-d}
3140option when you run Bison, so that it will write these macro definitions
3141into a separate header file @file{@var{name}.tab.h} which you can include
3142in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3143
72d2299c 3144If you want to write a grammar that is portable to any Standard C
9d9b8b70 3145host, you must use only nonnull character tokens taken from the basic
c827f760 3146execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3147digits, the 52 lower- and upper-case English letters, and the
3148characters in the following C-language string:
3149
3150@example
3151"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3152@end example
3153
f8e1c9e5
AD
3154The @code{yylex} function and Bison must use a consistent character set
3155and encoding for character tokens. For example, if you run Bison in an
3156@acronym{ASCII} environment, but then compile and run the resulting
3157program in an environment that uses an incompatible character set like
3158@acronym{EBCDIC}, the resulting program may not work because the tables
3159generated by Bison will assume @acronym{ASCII} numeric values for
3160character tokens. It is standard practice for software distributions to
3161contain C source files that were generated by Bison in an
3162@acronym{ASCII} environment, so installers on platforms that are
3163incompatible with @acronym{ASCII} must rebuild those files before
3164compiling them.
e966383b 3165
bfa74976
RS
3166The symbol @code{error} is a terminal symbol reserved for error recovery
3167(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3168In particular, @code{yylex} should never return this value. The default
3169value of the error token is 256, unless you explicitly assigned 256 to
3170one of your tokens with a @code{%token} declaration.
bfa74976 3171
342b8b6e 3172@node Rules
bfa74976
RS
3173@section Syntax of Grammar Rules
3174@cindex rule syntax
3175@cindex grammar rule syntax
3176@cindex syntax of grammar rules
3177
3178A Bison grammar rule has the following general form:
3179
3180@example
e425e872 3181@group
bfa74976
RS
3182@var{result}: @var{components}@dots{}
3183 ;
e425e872 3184@end group
bfa74976
RS
3185@end example
3186
3187@noindent
9ecbd125 3188where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3189and @var{components} are various terminal and nonterminal symbols that
13863333 3190are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3191
3192For example,
3193
3194@example
3195@group
3196exp: exp '+' exp
3197 ;
3198@end group
3199@end example
3200
3201@noindent
3202says that two groupings of type @code{exp}, with a @samp{+} token in between,
3203can be combined into a larger grouping of type @code{exp}.
3204
72d2299c
PE
3205White space in rules is significant only to separate symbols. You can add
3206extra white space as you wish.
bfa74976
RS
3207
3208Scattered among the components can be @var{actions} that determine
3209the semantics of the rule. An action looks like this:
3210
3211@example
3212@{@var{C statements}@}
3213@end example
3214
3215@noindent
287c78f6
PE
3216@cindex braced code
3217This is an example of @dfn{braced code}, that is, C code surrounded by
3218braces, much like a compound statement in C@. Braced code can contain
3219any sequence of C tokens, so long as its braces are balanced. Bison
3220does not check the braced code for correctness directly; it merely
3221copies the code to the output file, where the C compiler can check it.
3222
3223Within braced code, the balanced-brace count is not affected by braces
3224within comments, string literals, or character constants, but it is
3225affected by the C digraphs @samp{<%} and @samp{%>} that represent
3226braces. At the top level braced code must be terminated by @samp{@}}
3227and not by a digraph. Bison does not look for trigraphs, so if braced
3228code uses trigraphs you should ensure that they do not affect the
3229nesting of braces or the boundaries of comments, string literals, or
3230character constants.
3231
bfa74976
RS
3232Usually there is only one action and it follows the components.
3233@xref{Actions}.
3234
3235@findex |
3236Multiple rules for the same @var{result} can be written separately or can
3237be joined with the vertical-bar character @samp{|} as follows:
3238
bfa74976
RS
3239@example
3240@group
3241@var{result}: @var{rule1-components}@dots{}
3242 | @var{rule2-components}@dots{}
3243 @dots{}
3244 ;
3245@end group
3246@end example
bfa74976
RS
3247
3248@noindent
3249They are still considered distinct rules even when joined in this way.
3250
3251If @var{components} in a rule is empty, it means that @var{result} can
3252match the empty string. For example, here is how to define a
3253comma-separated sequence of zero or more @code{exp} groupings:
3254
3255@example
3256@group
3257expseq: /* empty */
3258 | expseq1
3259 ;
3260@end group
3261
3262@group
3263expseq1: exp
3264 | expseq1 ',' exp
3265 ;
3266@end group
3267@end example
3268
3269@noindent
3270It is customary to write a comment @samp{/* empty */} in each rule
3271with no components.
3272
342b8b6e 3273@node Recursion
bfa74976
RS
3274@section Recursive Rules
3275@cindex recursive rule
3276
f8e1c9e5
AD
3277A rule is called @dfn{recursive} when its @var{result} nonterminal
3278appears also on its right hand side. Nearly all Bison grammars need to
3279use recursion, because that is the only way to define a sequence of any
3280number of a particular thing. Consider this recursive definition of a
9ecbd125 3281comma-separated sequence of one or more expressions:
bfa74976
RS
3282
3283@example
3284@group
3285expseq1: exp
3286 | expseq1 ',' exp
3287 ;
3288@end group
3289@end example
3290
3291@cindex left recursion
3292@cindex right recursion
3293@noindent
3294Since the recursive use of @code{expseq1} is the leftmost symbol in the
3295right hand side, we call this @dfn{left recursion}. By contrast, here
3296the same construct is defined using @dfn{right recursion}:
3297
3298@example
3299@group
3300expseq1: exp
3301 | exp ',' expseq1
3302 ;
3303@end group
3304@end example
3305
3306@noindent
ec3bc396
AD
3307Any kind of sequence can be defined using either left recursion or right
3308recursion, but you should always use left recursion, because it can
3309parse a sequence of any number of elements with bounded stack space.
3310Right recursion uses up space on the Bison stack in proportion to the
3311number of elements in the sequence, because all the elements must be
3312shifted onto the stack before the rule can be applied even once.
3313@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3314of this.
bfa74976
RS
3315
3316@cindex mutual recursion
3317@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3318rule does not appear directly on its right hand side, but does appear
3319in rules for other nonterminals which do appear on its right hand
13863333 3320side.
bfa74976
RS
3321
3322For example:
3323
3324@example
3325@group
3326expr: primary
3327 | primary '+' primary
3328 ;
3329@end group
3330
3331@group
3332primary: constant
3333 | '(' expr ')'
3334 ;
3335@end group
3336@end example
3337
3338@noindent
3339defines two mutually-recursive nonterminals, since each refers to the
3340other.
3341
342b8b6e 3342@node Semantics
bfa74976
RS
3343@section Defining Language Semantics
3344@cindex defining language semantics
13863333 3345@cindex language semantics, defining
bfa74976
RS
3346
3347The grammar rules for a language determine only the syntax. The semantics
3348are determined by the semantic values associated with various tokens and
3349groupings, and by the actions taken when various groupings are recognized.
3350
3351For example, the calculator calculates properly because the value
3352associated with each expression is the proper number; it adds properly
3353because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3354the numbers associated with @var{x} and @var{y}.
3355
3356@menu
3357* Value Type:: Specifying one data type for all semantic values.
3358* Multiple Types:: Specifying several alternative data types.
3359* Actions:: An action is the semantic definition of a grammar rule.
3360* Action Types:: Specifying data types for actions to operate on.
3361* Mid-Rule Actions:: Most actions go at the end of a rule.
3362 This says when, why and how to use the exceptional
3363 action in the middle of a rule.
3364@end menu
3365
342b8b6e 3366@node Value Type
bfa74976
RS
3367@subsection Data Types of Semantic Values
3368@cindex semantic value type
3369@cindex value type, semantic
3370@cindex data types of semantic values
3371@cindex default data type
3372
3373In a simple program it may be sufficient to use the same data type for
3374the semantic values of all language constructs. This was true in the
c827f760 3375@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3376Notation Calculator}).
bfa74976 3377
ddc8ede1
PE
3378Bison normally uses the type @code{int} for semantic values if your
3379program uses the same data type for all language constructs. To
bfa74976
RS
3380specify some other type, define @code{YYSTYPE} as a macro, like this:
3381
3382@example
3383#define YYSTYPE double
3384@end example
3385
3386@noindent
50cce58e
PE
3387@code{YYSTYPE}'s replacement list should be a type name
3388that does not contain parentheses or square brackets.
342b8b6e 3389This macro definition must go in the prologue of the grammar file
75f5aaea 3390(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3391
342b8b6e 3392@node Multiple Types
bfa74976
RS
3393@subsection More Than One Value Type
3394
3395In most programs, you will need different data types for different kinds
3396of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3397@code{int} or @code{long int}, while a string constant needs type
3398@code{char *}, and an identifier might need a pointer to an entry in the
3399symbol table.
bfa74976
RS
3400
3401To use more than one data type for semantic values in one parser, Bison
3402requires you to do two things:
3403
3404@itemize @bullet
3405@item
ddc8ede1 3406Specify the entire collection of possible data types, either by using the
704a47c4 3407@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3408Value Types}), or by using a @code{typedef} or a @code{#define} to
3409define @code{YYSTYPE} to be a union type whose member names are
3410the type tags.
bfa74976
RS
3411
3412@item
14ded682
AD
3413Choose one of those types for each symbol (terminal or nonterminal) for
3414which semantic values are used. This is done for tokens with the
3415@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3416and for groupings with the @code{%type} Bison declaration (@pxref{Type
3417Decl, ,Nonterminal Symbols}).
bfa74976
RS
3418@end itemize
3419
342b8b6e 3420@node Actions
bfa74976
RS
3421@subsection Actions
3422@cindex action
3423@vindex $$
3424@vindex $@var{n}
3425
3426An action accompanies a syntactic rule and contains C code to be executed
3427each time an instance of that rule is recognized. The task of most actions
3428is to compute a semantic value for the grouping built by the rule from the
3429semantic values associated with tokens or smaller groupings.
3430
287c78f6
PE
3431An action consists of braced code containing C statements, and can be
3432placed at any position in the rule;
704a47c4
AD
3433it is executed at that position. Most rules have just one action at the
3434end of the rule, following all the components. Actions in the middle of
3435a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3436Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3437
3438The C code in an action can refer to the semantic values of the components
3439matched by the rule with the construct @code{$@var{n}}, which stands for
3440the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3441being constructed is @code{$$}. Bison translates both of these
3442constructs into expressions of the appropriate type when it copies the
3443actions into the parser file. @code{$$} is translated to a modifiable
3444lvalue, so it can be assigned to.
bfa74976
RS
3445
3446Here is a typical example:
3447
3448@example
3449@group
3450exp: @dots{}
3451 | exp '+' exp
3452 @{ $$ = $1 + $3; @}
3453@end group
3454@end example
3455
3456@noindent
3457This rule constructs an @code{exp} from two smaller @code{exp} groupings
3458connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3459refer to the semantic values of the two component @code{exp} groupings,
3460which are the first and third symbols on the right hand side of the rule.
3461The sum is stored into @code{$$} so that it becomes the semantic value of
3462the addition-expression just recognized by the rule. If there were a
3463useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3464referred to as @code{$2}.
bfa74976 3465
3ded9a63
AD
3466Note that the vertical-bar character @samp{|} is really a rule
3467separator, and actions are attached to a single rule. This is a
3468difference with tools like Flex, for which @samp{|} stands for either
3469``or'', or ``the same action as that of the next rule''. In the
3470following example, the action is triggered only when @samp{b} is found:
3471
3472@example
3473@group
3474a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3475@end group
3476@end example
3477
bfa74976
RS
3478@cindex default action
3479If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3480@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3481becomes the value of the whole rule. Of course, the default action is
3482valid only if the two data types match. There is no meaningful default
3483action for an empty rule; every empty rule must have an explicit action
3484unless the rule's value does not matter.
bfa74976
RS
3485
3486@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3487to tokens and groupings on the stack @emph{before} those that match the
3488current rule. This is a very risky practice, and to use it reliably
3489you must be certain of the context in which the rule is applied. Here
3490is a case in which you can use this reliably:
3491
3492@example
3493@group
3494foo: expr bar '+' expr @{ @dots{} @}
3495 | expr bar '-' expr @{ @dots{} @}
3496 ;
3497@end group
3498
3499@group
3500bar: /* empty */
3501 @{ previous_expr = $0; @}
3502 ;
3503@end group
3504@end example
3505
3506As long as @code{bar} is used only in the fashion shown here, @code{$0}
3507always refers to the @code{expr} which precedes @code{bar} in the
3508definition of @code{foo}.
3509
32c29292 3510@vindex yylval
742e4900 3511It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3512any, from a semantic action.
3513This semantic value is stored in @code{yylval}.
3514@xref{Action Features, ,Special Features for Use in Actions}.
3515
342b8b6e 3516@node Action Types
bfa74976
RS
3517@subsection Data Types of Values in Actions
3518@cindex action data types
3519@cindex data types in actions
3520
3521If you have chosen a single data type for semantic values, the @code{$$}
3522and @code{$@var{n}} constructs always have that data type.
3523
3524If you have used @code{%union} to specify a variety of data types, then you
3525must declare a choice among these types for each terminal or nonterminal
3526symbol that can have a semantic value. Then each time you use @code{$$} or
3527@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3528in the rule. In this example,
bfa74976
RS
3529
3530@example
3531@group
3532exp: @dots{}
3533 | exp '+' exp
3534 @{ $$ = $1 + $3; @}
3535@end group
3536@end example
3537
3538@noindent
3539@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3540have the data type declared for the nonterminal symbol @code{exp}. If
3541@code{$2} were used, it would have the data type declared for the
e0c471a9 3542terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3543
3544Alternatively, you can specify the data type when you refer to the value,
3545by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3546reference. For example, if you have defined types as shown here:
3547
3548@example
3549@group
3550%union @{
3551 int itype;
3552 double dtype;
3553@}
3554@end group
3555@end example
3556
3557@noindent
3558then you can write @code{$<itype>1} to refer to the first subunit of the
3559rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3560
342b8b6e 3561@node Mid-Rule Actions
bfa74976
RS
3562@subsection Actions in Mid-Rule
3563@cindex actions in mid-rule
3564@cindex mid-rule actions
3565
3566Occasionally it is useful to put an action in the middle of a rule.
3567These actions are written just like usual end-of-rule actions, but they
3568are executed before the parser even recognizes the following components.
3569
3570A mid-rule action may refer to the components preceding it using
3571@code{$@var{n}}, but it may not refer to subsequent components because
3572it is run before they are parsed.
3573
3574The mid-rule action itself counts as one of the components of the rule.
3575This makes a difference when there is another action later in the same rule
3576(and usually there is another at the end): you have to count the actions
3577along with the symbols when working out which number @var{n} to use in
3578@code{$@var{n}}.
3579
3580The mid-rule action can also have a semantic value. The action can set
3581its value with an assignment to @code{$$}, and actions later in the rule
3582can refer to the value using @code{$@var{n}}. Since there is no symbol
3583to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3584in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3585specify a data type each time you refer to this value.
bfa74976
RS
3586
3587There is no way to set the value of the entire rule with a mid-rule
3588action, because assignments to @code{$$} do not have that effect. The
3589only way to set the value for the entire rule is with an ordinary action
3590at the end of the rule.
3591
3592Here is an example from a hypothetical compiler, handling a @code{let}
3593statement that looks like @samp{let (@var{variable}) @var{statement}} and
3594serves to create a variable named @var{variable} temporarily for the
3595duration of @var{statement}. To parse this construct, we must put
3596@var{variable} into the symbol table while @var{statement} is parsed, then
3597remove it afterward. Here is how it is done:
3598
3599@example
3600@group
3601stmt: LET '(' var ')'
3602 @{ $<context>$ = push_context ();
3603 declare_variable ($3); @}
3604 stmt @{ $$ = $6;
3605 pop_context ($<context>5); @}
3606@end group
3607@end example
3608
3609@noindent
3610As soon as @samp{let (@var{variable})} has been recognized, the first
3611action is run. It saves a copy of the current semantic context (the
3612list of accessible variables) as its semantic value, using alternative
3613@code{context} in the data-type union. Then it calls
3614@code{declare_variable} to add the new variable to that list. Once the
3615first action is finished, the embedded statement @code{stmt} can be
3616parsed. Note that the mid-rule action is component number 5, so the
3617@samp{stmt} is component number 6.
3618
3619After the embedded statement is parsed, its semantic value becomes the
3620value of the entire @code{let}-statement. Then the semantic value from the
3621earlier action is used to restore the prior list of variables. This
3622removes the temporary @code{let}-variable from the list so that it won't
3623appear to exist while the rest of the program is parsed.
3624
841a7737
JD
3625@findex %destructor
3626@cindex discarded symbols, mid-rule actions
3627@cindex error recovery, mid-rule actions
3628In the above example, if the parser initiates error recovery (@pxref{Error
3629Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3630it might discard the previous semantic context @code{$<context>5} without
3631restoring it.
3632Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3633Discarded Symbols}).
ec5479ce
JD
3634However, Bison currently provides no means to declare a destructor specific to
3635a particular mid-rule action's semantic value.
841a7737
JD
3636
3637One solution is to bury the mid-rule action inside a nonterminal symbol and to
3638declare a destructor for that symbol:
3639
3640@example
3641@group
3642%type <context> let
3643%destructor @{ pop_context ($$); @} let
3644
3645%%
3646
3647stmt: let stmt
3648 @{ $$ = $2;
3649 pop_context ($1); @}
3650 ;
3651
3652let: LET '(' var ')'
3653 @{ $$ = push_context ();
3654 declare_variable ($3); @}
3655 ;
3656
3657@end group
3658@end example
3659
3660@noindent
3661Note that the action is now at the end of its rule.
3662Any mid-rule action can be converted to an end-of-rule action in this way, and
3663this is what Bison actually does to implement mid-rule actions.
3664
bfa74976
RS
3665Taking action before a rule is completely recognized often leads to
3666conflicts since the parser must commit to a parse in order to execute the
3667action. For example, the following two rules, without mid-rule actions,
3668can coexist in a working parser because the parser can shift the open-brace
3669token and look at what follows before deciding whether there is a
3670declaration or not:
3671
3672@example
3673@group
3674compound: '@{' declarations statements '@}'
3675 | '@{' statements '@}'
3676 ;
3677@end group
3678@end example
3679
3680@noindent
3681But when we add a mid-rule action as follows, the rules become nonfunctional:
3682
3683@example
3684@group
3685compound: @{ prepare_for_local_variables (); @}
3686 '@{' declarations statements '@}'
3687@end group
3688@group
3689 | '@{' statements '@}'
3690 ;
3691@end group
3692@end example
3693
3694@noindent
3695Now the parser is forced to decide whether to run the mid-rule action
3696when it has read no farther than the open-brace. In other words, it
3697must commit to using one rule or the other, without sufficient
3698information to do it correctly. (The open-brace token is what is called
742e4900
JD
3699the @dfn{lookahead} token at this time, since the parser is still
3700deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3701
3702You might think that you could correct the problem by putting identical
3703actions into the two rules, like this:
3704
3705@example
3706@group
3707compound: @{ prepare_for_local_variables (); @}
3708 '@{' declarations statements '@}'
3709 | @{ prepare_for_local_variables (); @}
3710 '@{' statements '@}'
3711 ;
3712@end group
3713@end example
3714
3715@noindent
3716But this does not help, because Bison does not realize that the two actions
3717are identical. (Bison never tries to understand the C code in an action.)
3718
3719If the grammar is such that a declaration can be distinguished from a
3720statement by the first token (which is true in C), then one solution which
3721does work is to put the action after the open-brace, like this:
3722
3723@example
3724@group
3725compound: '@{' @{ prepare_for_local_variables (); @}
3726 declarations statements '@}'
3727 | '@{' statements '@}'
3728 ;
3729@end group
3730@end example
3731
3732@noindent
3733Now the first token of the following declaration or statement,
3734which would in any case tell Bison which rule to use, can still do so.
3735
3736Another solution is to bury the action inside a nonterminal symbol which
3737serves as a subroutine:
3738
3739@example
3740@group
3741subroutine: /* empty */
3742 @{ prepare_for_local_variables (); @}
3743 ;
3744
3745@end group
3746
3747@group
3748compound: subroutine
3749 '@{' declarations statements '@}'
3750 | subroutine
3751 '@{' statements '@}'
3752 ;
3753@end group
3754@end example
3755
3756@noindent
3757Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3758deciding which rule for @code{compound} it will eventually use.
bfa74976 3759
342b8b6e 3760@node Locations
847bf1f5
AD
3761@section Tracking Locations
3762@cindex location
95923bd6
AD
3763@cindex textual location
3764@cindex location, textual
847bf1f5
AD
3765
3766Though grammar rules and semantic actions are enough to write a fully
72d2299c 3767functional parser, it can be useful to process some additional information,
3e259915
MA
3768especially symbol locations.
3769
704a47c4
AD
3770The way locations are handled is defined by providing a data type, and
3771actions to take when rules are matched.
847bf1f5
AD
3772
3773@menu
3774* Location Type:: Specifying a data type for locations.
3775* Actions and Locations:: Using locations in actions.
3776* Location Default Action:: Defining a general way to compute locations.
3777@end menu
3778
342b8b6e 3779@node Location Type
847bf1f5
AD
3780@subsection Data Type of Locations
3781@cindex data type of locations
3782@cindex default location type
3783
3784Defining a data type for locations is much simpler than for semantic values,
3785since all tokens and groupings always use the same type.
3786
50cce58e
PE
3787You can specify the type of locations by defining a macro called
3788@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3789defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3790When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3791four members:
3792
3793@example
6273355b 3794typedef struct YYLTYPE
847bf1f5
AD
3795@{
3796 int first_line;
3797 int first_column;
3798 int last_line;
3799 int last_column;
6273355b 3800@} YYLTYPE;
847bf1f5
AD
3801@end example
3802
a022ff41
AD
3803When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3804initializes all these fields to 1 for @code{yylloc}. To initialize
3805@code{yylloc} with a custom location type (or to chose a different
3806initialization), use the @code{%initial-action} directive. @xref{Initial
3807Action Decl, , Performing Actions before Parsing}.
cd48d21d 3808
342b8b6e 3809@node Actions and Locations
847bf1f5
AD
3810@subsection Actions and Locations
3811@cindex location actions
3812@cindex actions, location
3813@vindex @@$
3814@vindex @@@var{n}
3815
3816Actions are not only useful for defining language semantics, but also for
3817describing the behavior of the output parser with locations.
3818
3819The most obvious way for building locations of syntactic groupings is very
72d2299c 3820similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3821constructs can be used to access the locations of the elements being matched.
3822The location of the @var{n}th component of the right hand side is
3823@code{@@@var{n}}, while the location of the left hand side grouping is
3824@code{@@$}.
3825
3e259915 3826Here is a basic example using the default data type for locations:
847bf1f5
AD
3827
3828@example
3829@group
3830exp: @dots{}
3e259915 3831 | exp '/' exp
847bf1f5 3832 @{
3e259915
MA
3833 @@$.first_column = @@1.first_column;
3834 @@$.first_line = @@1.first_line;
847bf1f5
AD
3835 @@$.last_column = @@3.last_column;
3836 @@$.last_line = @@3.last_line;
3e259915
MA
3837 if ($3)
3838 $$ = $1 / $3;
3839 else
3840 @{
3841 $$ = 1;
4e03e201
AD
3842 fprintf (stderr,
3843 "Division by zero, l%d,c%d-l%d,c%d",
3844 @@3.first_line, @@3.first_column,
3845 @@3.last_line, @@3.last_column);
3e259915 3846 @}
847bf1f5
AD
3847 @}
3848@end group
3849@end example
3850
3e259915 3851As for semantic values, there is a default action for locations that is
72d2299c 3852run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3853beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3854last symbol.
3e259915 3855
72d2299c 3856With this default action, the location tracking can be fully automatic. The
3e259915
MA
3857example above simply rewrites this way:
3858
3859@example
3860@group
3861exp: @dots{}
3862 | exp '/' exp
3863 @{
3864 if ($3)
3865 $$ = $1 / $3;
3866 else
3867 @{
3868 $$ = 1;
4e03e201
AD
3869 fprintf (stderr,
3870 "Division by zero, l%d,c%d-l%d,c%d",
3871 @@3.first_line, @@3.first_column,
3872 @@3.last_line, @@3.last_column);
3e259915
MA
3873 @}
3874 @}
3875@end group
3876@end example
847bf1f5 3877
32c29292 3878@vindex yylloc
742e4900 3879It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3880from a semantic action.
3881This location is stored in @code{yylloc}.
3882@xref{Action Features, ,Special Features for Use in Actions}.
3883
342b8b6e 3884@node Location Default Action
847bf1f5
AD
3885@subsection Default Action for Locations
3886@vindex YYLLOC_DEFAULT
8710fc41 3887@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3888
72d2299c 3889Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3890locations are much more general than semantic values, there is room in
3891the output parser to redefine the default action to take for each
72d2299c 3892rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3893matched, before the associated action is run. It is also invoked
3894while processing a syntax error, to compute the error's location.
8710fc41
JD
3895Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3896parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3897of that ambiguity.
847bf1f5 3898
3e259915 3899Most of the time, this macro is general enough to suppress location
79282c6c 3900dedicated code from semantic actions.
847bf1f5 3901
72d2299c 3902The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3903the location of the grouping (the result of the computation). When a
766de5eb 3904rule is matched, the second parameter identifies locations of
96b93a3d 3905all right hand side elements of the rule being matched, and the third
8710fc41
JD
3906parameter is the size of the rule's right hand side.
3907When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3908right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3909When processing a syntax error, the second parameter identifies locations
3910of the symbols that were discarded during error processing, and the third
96b93a3d 3911parameter is the number of discarded symbols.
847bf1f5 3912
766de5eb 3913By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3914
766de5eb 3915@smallexample
847bf1f5 3916@group
766de5eb
PE
3917# define YYLLOC_DEFAULT(Current, Rhs, N) \
3918 do \
3919 if (N) \
3920 @{ \
3921 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3922 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3923 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3924 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3925 @} \
3926 else \
3927 @{ \
3928 (Current).first_line = (Current).last_line = \
3929 YYRHSLOC(Rhs, 0).last_line; \
3930 (Current).first_column = (Current).last_column = \
3931 YYRHSLOC(Rhs, 0).last_column; \
3932 @} \
3933 while (0)
847bf1f5 3934@end group
766de5eb 3935@end smallexample
676385e2 3936
766de5eb
PE
3937where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3938in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3939just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3940
3e259915 3941When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3942
3e259915 3943@itemize @bullet
79282c6c 3944@item
72d2299c 3945All arguments are free of side-effects. However, only the first one (the
3e259915 3946result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3947
3e259915 3948@item
766de5eb
PE
3949For consistency with semantic actions, valid indexes within the
3950right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3951valid index, and it refers to the symbol just before the reduction.
3952During error processing @var{n} is always positive.
0ae99356
PE
3953
3954@item
3955Your macro should parenthesize its arguments, if need be, since the
3956actual arguments may not be surrounded by parentheses. Also, your
3957macro should expand to something that can be used as a single
3958statement when it is followed by a semicolon.
3e259915 3959@end itemize
847bf1f5 3960
342b8b6e 3961@node Declarations
bfa74976
RS
3962@section Bison Declarations
3963@cindex declarations, Bison
3964@cindex Bison declarations
3965
3966The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3967used in formulating the grammar and the data types of semantic values.
3968@xref{Symbols}.
3969
3970All token type names (but not single-character literal tokens such as
3971@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3972declared if you need to specify which data type to use for the semantic
3973value (@pxref{Multiple Types, ,More Than One Value Type}).
3974
3975The first rule in the file also specifies the start symbol, by default.
3976If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3977it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3978Grammars}).
bfa74976
RS
3979
3980@menu
b50d2359 3981* Require Decl:: Requiring a Bison version.
bfa74976
RS
3982* Token Decl:: Declaring terminal symbols.
3983* Precedence Decl:: Declaring terminals with precedence and associativity.
3984* Union Decl:: Declaring the set of all semantic value types.
3985* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3986* Initial Action Decl:: Code run before parsing starts.
72f889cc 3987* Destructor Decl:: Declaring how symbols are freed.
d6328241 3988* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3989* Start Decl:: Specifying the start symbol.
3990* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3991* Push Decl:: Requesting a push parser.
bfa74976
RS
3992* Decl Summary:: Table of all Bison declarations.
3993@end menu
3994
b50d2359
AD
3995@node Require Decl
3996@subsection Require a Version of Bison
3997@cindex version requirement
3998@cindex requiring a version of Bison
3999@findex %require
4000
4001You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4002the requirement is not met, @command{bison} exits with an error (exit
4003status 63).
b50d2359
AD
4004
4005@example
4006%require "@var{version}"
4007@end example
4008
342b8b6e 4009@node Token Decl
bfa74976
RS
4010@subsection Token Type Names
4011@cindex declaring token type names
4012@cindex token type names, declaring
931c7513 4013@cindex declaring literal string tokens
bfa74976
RS
4014@findex %token
4015
4016The basic way to declare a token type name (terminal symbol) is as follows:
4017
4018@example
4019%token @var{name}
4020@end example
4021
4022Bison will convert this into a @code{#define} directive in
4023the parser, so that the function @code{yylex} (if it is in this file)
4024can use the name @var{name} to stand for this token type's code.
4025
14ded682
AD
4026Alternatively, you can use @code{%left}, @code{%right}, or
4027@code{%nonassoc} instead of @code{%token}, if you wish to specify
4028associativity and precedence. @xref{Precedence Decl, ,Operator
4029Precedence}.
bfa74976
RS
4030
4031You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4032a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4033following the token name:
bfa74976
RS
4034
4035@example
4036%token NUM 300
1452af69 4037%token XNUM 0x12d // a GNU extension
bfa74976
RS
4038@end example
4039
4040@noindent
4041It is generally best, however, to let Bison choose the numeric codes for
4042all token types. Bison will automatically select codes that don't conflict
e966383b 4043with each other or with normal characters.
bfa74976
RS
4044
4045In the event that the stack type is a union, you must augment the
4046@code{%token} or other token declaration to include the data type
704a47c4
AD
4047alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4048Than One Value Type}).
bfa74976
RS
4049
4050For example:
4051
4052@example
4053@group
4054%union @{ /* define stack type */
4055 double val;
4056 symrec *tptr;
4057@}
4058%token <val> NUM /* define token NUM and its type */
4059@end group
4060@end example
4061
931c7513
RS
4062You can associate a literal string token with a token type name by
4063writing the literal string at the end of a @code{%token}
4064declaration which declares the name. For example:
4065
4066@example
4067%token arrow "=>"
4068@end example
4069
4070@noindent
4071For example, a grammar for the C language might specify these names with
4072equivalent literal string tokens:
4073
4074@example
4075%token <operator> OR "||"
4076%token <operator> LE 134 "<="
4077%left OR "<="
4078@end example
4079
4080@noindent
4081Once you equate the literal string and the token name, you can use them
4082interchangeably in further declarations or the grammar rules. The
4083@code{yylex} function can use the token name or the literal string to
4084obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4085Syntax error messages passed to @code{yyerror} from the parser will reference
4086the literal string instead of the token name.
4087
4088The token numbered as 0 corresponds to end of file; the following line
4089allows for nicer error messages referring to ``end of file'' instead
4090of ``$end'':
4091
4092@example
4093%token END 0 "end of file"
4094@end example
931c7513 4095
342b8b6e 4096@node Precedence Decl
bfa74976
RS
4097@subsection Operator Precedence
4098@cindex precedence declarations
4099@cindex declaring operator precedence
4100@cindex operator precedence, declaring
4101
4102Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4103declare a token and specify its precedence and associativity, all at
4104once. These are called @dfn{precedence declarations}.
704a47c4
AD
4105@xref{Precedence, ,Operator Precedence}, for general information on
4106operator precedence.
bfa74976 4107
ab7f29f8 4108The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4109@code{%token}: either
4110
4111@example
4112%left @var{symbols}@dots{}
4113@end example
4114
4115@noindent
4116or
4117
4118@example
4119%left <@var{type}> @var{symbols}@dots{}
4120@end example
4121
4122And indeed any of these declarations serves the purposes of @code{%token}.
4123But in addition, they specify the associativity and relative precedence for
4124all the @var{symbols}:
4125
4126@itemize @bullet
4127@item
4128The associativity of an operator @var{op} determines how repeated uses
4129of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4130@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4131grouping @var{y} with @var{z} first. @code{%left} specifies
4132left-associativity (grouping @var{x} with @var{y} first) and
4133@code{%right} specifies right-associativity (grouping @var{y} with
4134@var{z} first). @code{%nonassoc} specifies no associativity, which
4135means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4136considered a syntax error.
4137
4138@item
4139The precedence of an operator determines how it nests with other operators.
4140All the tokens declared in a single precedence declaration have equal
4141precedence and nest together according to their associativity.
4142When two tokens declared in different precedence declarations associate,
4143the one declared later has the higher precedence and is grouped first.
4144@end itemize
4145
ab7f29f8
JD
4146For backward compatibility, there is a confusing difference between the
4147argument lists of @code{%token} and precedence declarations.
4148Only a @code{%token} can associate a literal string with a token type name.
4149A precedence declaration always interprets a literal string as a reference to a
4150separate token.
4151For example:
4152
4153@example
4154%left OR "<=" // Does not declare an alias.
4155%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4156@end example
4157
342b8b6e 4158@node Union Decl
bfa74976
RS
4159@subsection The Collection of Value Types
4160@cindex declaring value types
4161@cindex value types, declaring
4162@findex %union
4163
287c78f6
PE
4164The @code{%union} declaration specifies the entire collection of
4165possible data types for semantic values. The keyword @code{%union} is
4166followed by braced code containing the same thing that goes inside a
4167@code{union} in C@.
bfa74976
RS
4168
4169For example:
4170
4171@example
4172@group
4173%union @{
4174 double val;
4175 symrec *tptr;
4176@}
4177@end group
4178@end example
4179
4180@noindent
4181This says that the two alternative types are @code{double} and @code{symrec
4182*}. They are given names @code{val} and @code{tptr}; these names are used
4183in the @code{%token} and @code{%type} declarations to pick one of the types
4184for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4185
6273355b
PE
4186As an extension to @acronym{POSIX}, a tag is allowed after the
4187@code{union}. For example:
4188
4189@example
4190@group
4191%union value @{
4192 double val;
4193 symrec *tptr;
4194@}
4195@end group
4196@end example
4197
d6ca7905 4198@noindent
6273355b
PE
4199specifies the union tag @code{value}, so the corresponding C type is
4200@code{union value}. If you do not specify a tag, it defaults to
4201@code{YYSTYPE}.
4202
d6ca7905
PE
4203As another extension to @acronym{POSIX}, you may specify multiple
4204@code{%union} declarations; their contents are concatenated. However,
4205only the first @code{%union} declaration can specify a tag.
4206
6273355b 4207Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4208a semicolon after the closing brace.
4209
ddc8ede1
PE
4210Instead of @code{%union}, you can define and use your own union type
4211@code{YYSTYPE} if your grammar contains at least one
4212@samp{<@var{type}>} tag. For example, you can put the following into
4213a header file @file{parser.h}:
4214
4215@example
4216@group
4217union YYSTYPE @{
4218 double val;
4219 symrec *tptr;
4220@};
4221typedef union YYSTYPE YYSTYPE;
4222@end group
4223@end example
4224
4225@noindent
4226and then your grammar can use the following
4227instead of @code{%union}:
4228
4229@example
4230@group
4231%@{
4232#include "parser.h"
4233%@}
4234%type <val> expr
4235%token <tptr> ID
4236@end group
4237@end example
4238
342b8b6e 4239@node Type Decl
bfa74976
RS
4240@subsection Nonterminal Symbols
4241@cindex declaring value types, nonterminals
4242@cindex value types, nonterminals, declaring
4243@findex %type
4244
4245@noindent
4246When you use @code{%union} to specify multiple value types, you must
4247declare the value type of each nonterminal symbol for which values are
4248used. This is done with a @code{%type} declaration, like this:
4249
4250@example
4251%type <@var{type}> @var{nonterminal}@dots{}
4252@end example
4253
4254@noindent
704a47c4
AD
4255Here @var{nonterminal} is the name of a nonterminal symbol, and
4256@var{type} is the name given in the @code{%union} to the alternative
4257that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4258can give any number of nonterminal symbols in the same @code{%type}
4259declaration, if they have the same value type. Use spaces to separate
4260the symbol names.
bfa74976 4261
931c7513
RS
4262You can also declare the value type of a terminal symbol. To do this,
4263use the same @code{<@var{type}>} construction in a declaration for the
4264terminal symbol. All kinds of token declarations allow
4265@code{<@var{type}>}.
4266
18d192f0
AD
4267@node Initial Action Decl
4268@subsection Performing Actions before Parsing
4269@findex %initial-action
4270
4271Sometimes your parser needs to perform some initializations before
4272parsing. The @code{%initial-action} directive allows for such arbitrary
4273code.
4274
4275@deffn {Directive} %initial-action @{ @var{code} @}
4276@findex %initial-action
287c78f6 4277Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4278@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4279@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4280@code{%parse-param}.
18d192f0
AD
4281@end deffn
4282
451364ed
AD
4283For instance, if your locations use a file name, you may use
4284
4285@example
48b16bbc 4286%parse-param @{ char const *file_name @};
451364ed
AD
4287%initial-action
4288@{
4626a15d 4289 @@$.initialize (file_name);
451364ed
AD
4290@};
4291@end example
4292
18d192f0 4293
72f889cc
AD
4294@node Destructor Decl
4295@subsection Freeing Discarded Symbols
4296@cindex freeing discarded symbols
4297@findex %destructor
12e35840 4298@findex <*>
3ebecc24 4299@findex <>
a85284cf
AD
4300During error recovery (@pxref{Error Recovery}), symbols already pushed
4301on the stack and tokens coming from the rest of the file are discarded
4302until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4303or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4304symbols on the stack must be discarded. Even if the parser succeeds, it
4305must discard the start symbol.
258b75ca
PE
4306
4307When discarded symbols convey heap based information, this memory is
4308lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4309in traditional compilers, it is unacceptable for programs like shells or
4310protocol implementations that may parse and execute indefinitely.
258b75ca 4311
a85284cf
AD
4312The @code{%destructor} directive defines code that is called when a
4313symbol is automatically discarded.
72f889cc
AD
4314
4315@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4316@findex %destructor
287c78f6
PE
4317Invoke the braced @var{code} whenever the parser discards one of the
4318@var{symbols}.
4b367315 4319Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4320with the discarded symbol, and @code{@@$} designates its location.
4321The additional parser parameters are also available (@pxref{Parser Function, ,
4322The Parser Function @code{yyparse}}).
ec5479ce 4323
b2a0b7ca
JD
4324When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4325per-symbol @code{%destructor}.
4326You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4327tag among @var{symbols}.
b2a0b7ca 4328In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4329grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4330per-symbol @code{%destructor}.
4331
12e35840 4332Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4333(These default forms are experimental.
4334More user feedback will help to determine whether they should become permanent
4335features.)
3ebecc24 4336You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4337exactly one @code{%destructor} declaration in your grammar file.
4338The parser will invoke the @var{code} associated with one of these whenever it
4339discards any user-defined grammar symbol that has no per-symbol and no per-type
4340@code{%destructor}.
4341The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4342symbol for which you have formally declared a semantic type tag (@code{%type}
4343counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4344The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4345symbol that has no declared semantic type tag.
72f889cc
AD
4346@end deffn
4347
b2a0b7ca 4348@noindent
12e35840 4349For example:
72f889cc
AD
4350
4351@smallexample
ec5479ce
JD
4352%union @{ char *string; @}
4353%token <string> STRING1
4354%token <string> STRING2
4355%type <string> string1
4356%type <string> string2
b2a0b7ca
JD
4357%union @{ char character; @}
4358%token <character> CHR
4359%type <character> chr
12e35840
JD
4360%token TAGLESS
4361
b2a0b7ca 4362%destructor @{ @} <character>
12e35840
JD
4363%destructor @{ free ($$); @} <*>
4364%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4365%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4366@end smallexample
4367
4368@noindent
b2a0b7ca
JD
4369guarantees that, when the parser discards any user-defined symbol that has a
4370semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4371to @code{free} by default.
ec5479ce
JD
4372However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4373prints its line number to @code{stdout}.
4374It performs only the second @code{%destructor} in this case, so it invokes
4375@code{free} only once.
12e35840
JD
4376Finally, the parser merely prints a message whenever it discards any symbol,
4377such as @code{TAGLESS}, that has no semantic type tag.
4378
4379A Bison-generated parser invokes the default @code{%destructor}s only for
4380user-defined as opposed to Bison-defined symbols.
4381For example, the parser will not invoke either kind of default
4382@code{%destructor} for the special Bison-defined symbols @code{$accept},
4383@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4384none of which you can reference in your grammar.
4385It also will not invoke either for the @code{error} token (@pxref{Table of
4386Symbols, ,error}), which is always defined by Bison regardless of whether you
4387reference it in your grammar.
4388However, it may invoke one of them for the end token (token 0) if you
4389redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4390
4391@smallexample
4392%token END 0
4393@end smallexample
4394
12e35840
JD
4395@cindex actions in mid-rule
4396@cindex mid-rule actions
4397Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4398mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4399That is, Bison does not consider a mid-rule to have a semantic value if you do
4400not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4401@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4402rule.
4403However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4404@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4405
3508ce36
JD
4406@ignore
4407@noindent
4408In the future, it may be possible to redefine the @code{error} token as a
4409nonterminal that captures the discarded symbols.
4410In that case, the parser will invoke the default destructor for it as well.
4411@end ignore
4412
e757bb10
AD
4413@sp 1
4414
4415@cindex discarded symbols
4416@dfn{Discarded symbols} are the following:
4417
4418@itemize
4419@item
4420stacked symbols popped during the first phase of error recovery,
4421@item
4422incoming terminals during the second phase of error recovery,
4423@item
742e4900 4424the current lookahead and the entire stack (except the current
9d9b8b70 4425right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4426@item
4427the start symbol, when the parser succeeds.
e757bb10
AD
4428@end itemize
4429
9d9b8b70
PE
4430The parser can @dfn{return immediately} because of an explicit call to
4431@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4432exhaustion.
4433
29553547 4434Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4435error via @code{YYERROR} are not discarded automatically. As a rule
4436of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4437the memory.
e757bb10 4438
342b8b6e 4439@node Expect Decl
bfa74976
RS
4440@subsection Suppressing Conflict Warnings
4441@cindex suppressing conflict warnings
4442@cindex preventing warnings about conflicts
4443@cindex warnings, preventing
4444@cindex conflicts, suppressing warnings of
4445@findex %expect
d6328241 4446@findex %expect-rr
bfa74976
RS
4447
4448Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4449(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4450have harmless shift/reduce conflicts which are resolved in a predictable
4451way and would be difficult to eliminate. It is desirable to suppress
4452the warning about these conflicts unless the number of conflicts
4453changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4454
4455The declaration looks like this:
4456
4457@example
4458%expect @var{n}
4459@end example
4460
035aa4a0
PE
4461Here @var{n} is a decimal integer. The declaration says there should
4462be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4463Bison reports an error if the number of shift/reduce conflicts differs
4464from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4465
035aa4a0
PE
4466For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4467serious, and should be eliminated entirely. Bison will always report
4468reduce/reduce conflicts for these parsers. With @acronym{GLR}
4469parsers, however, both kinds of conflicts are routine; otherwise,
4470there would be no need to use @acronym{GLR} parsing. Therefore, it is
4471also possible to specify an expected number of reduce/reduce conflicts
4472in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4473
4474@example
4475%expect-rr @var{n}
4476@end example
4477
bfa74976
RS
4478In general, using @code{%expect} involves these steps:
4479
4480@itemize @bullet
4481@item
4482Compile your grammar without @code{%expect}. Use the @samp{-v} option
4483to get a verbose list of where the conflicts occur. Bison will also
4484print the number of conflicts.
4485
4486@item
4487Check each of the conflicts to make sure that Bison's default
4488resolution is what you really want. If not, rewrite the grammar and
4489go back to the beginning.
4490
4491@item
4492Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4493number which Bison printed. With @acronym{GLR} parsers, add an
4494@code{%expect-rr} declaration as well.
bfa74976
RS
4495@end itemize
4496
035aa4a0
PE
4497Now Bison will warn you if you introduce an unexpected conflict, but
4498will keep silent otherwise.
bfa74976 4499
342b8b6e 4500@node Start Decl
bfa74976
RS
4501@subsection The Start-Symbol
4502@cindex declaring the start symbol
4503@cindex start symbol, declaring
4504@cindex default start symbol
4505@findex %start
4506
4507Bison assumes by default that the start symbol for the grammar is the first
4508nonterminal specified in the grammar specification section. The programmer
4509may override this restriction with the @code{%start} declaration as follows:
4510
4511@example
4512%start @var{symbol}
4513@end example
4514
342b8b6e 4515@node Pure Decl
bfa74976
RS
4516@subsection A Pure (Reentrant) Parser
4517@cindex reentrant parser
4518@cindex pure parser
d9df47b6 4519@findex %define api.pure
bfa74976
RS
4520
4521A @dfn{reentrant} program is one which does not alter in the course of
4522execution; in other words, it consists entirely of @dfn{pure} (read-only)
4523code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4524for example, a nonreentrant program may not be safe to call from a signal
4525handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4526program must be called only within interlocks.
4527
70811b85 4528Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4529suitable for most uses, and it permits compatibility with Yacc. (The
4530standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4531statically allocated variables for communication with @code{yylex},
4532including @code{yylval} and @code{yylloc}.)
bfa74976 4533
70811b85 4534Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4535declaration @code{%define api.pure} says that you want the parser to be
70811b85 4536reentrant. It looks like this:
bfa74976
RS
4537
4538@example
d9df47b6 4539%define api.pure
bfa74976
RS
4540@end example
4541
70811b85
RS
4542The result is that the communication variables @code{yylval} and
4543@code{yylloc} become local variables in @code{yyparse}, and a different
4544calling convention is used for the lexical analyzer function
4545@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4546Parsers}, for the details of this. The variable @code{yynerrs}
4547becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4548of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4549Reporting Function @code{yyerror}}). The convention for calling
4550@code{yyparse} itself is unchanged.
4551
4552Whether the parser is pure has nothing to do with the grammar rules.
4553You can generate either a pure parser or a nonreentrant parser from any
4554valid grammar.
bfa74976 4555
9987d1b3
JD
4556@node Push Decl
4557@subsection A Push Parser
4558@cindex push parser
4559@cindex push parser
c373bf8b 4560@findex %define api.push_pull
9987d1b3 4561
59da312b
JD
4562(The current push parsing interface is experimental and may evolve.
4563More user feedback will help to stabilize it.)
4564
f4101aa6
AD
4565A pull parser is called once and it takes control until all its input
4566is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4567each time a new token is made available.
4568
f4101aa6 4569A push parser is typically useful when the parser is part of a
9987d1b3 4570main event loop in the client's application. This is typically
f4101aa6
AD
4571a requirement of a GUI, when the main event loop needs to be triggered
4572within a certain time period.
9987d1b3 4573
d782395d
JD
4574Normally, Bison generates a pull parser.
4575The following Bison declaration says that you want the parser to be a push
c373bf8b 4576parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4577
4578@example
c373bf8b 4579%define api.push_pull "push"
9987d1b3
JD
4580@end example
4581
4582In almost all cases, you want to ensure that your push parser is also
4583a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4584time you should create an impure push parser is to have backwards
9987d1b3
JD
4585compatibility with the impure Yacc pull mode interface. Unless you know
4586what you are doing, your declarations should look like this:
4587
4588@example
d9df47b6 4589%define api.pure
c373bf8b 4590%define api.push_pull "push"
9987d1b3
JD
4591@end example
4592
f4101aa6
AD
4593There is a major notable functional difference between the pure push parser
4594and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4595many parser instances, of the same type of parser, in memory at the same time.
4596An impure push parser should only use one parser at a time.
4597
4598When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4599the generated parser. @code{yypstate} is a structure that the generated
4600parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4601function that will create a new parser instance. @code{yypstate_delete}
4602will free the resources associated with the corresponding parser instance.
f4101aa6 4603Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4604token is available to provide the parser. A trivial example
4605of using a pure push parser would look like this:
4606
4607@example
4608int status;
4609yypstate *ps = yypstate_new ();
4610do @{
4611 status = yypush_parse (ps, yylex (), NULL);
4612@} while (status == YYPUSH_MORE);
4613yypstate_delete (ps);
4614@end example
4615
4616If the user decided to use an impure push parser, a few things about
f4101aa6 4617the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4618a global variable instead of a variable in the @code{yypush_parse} function.
4619For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4620changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4621example would thus look like this:
4622
4623@example
4624extern int yychar;
4625int status;
4626yypstate *ps = yypstate_new ();
4627do @{
4628 yychar = yylex ();
4629 status = yypush_parse (ps);
4630@} while (status == YYPUSH_MORE);
4631yypstate_delete (ps);
4632@end example
4633
f4101aa6 4634That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4635for use by the next invocation of the @code{yypush_parse} function.
4636
f4101aa6 4637Bison also supports both the push parser interface along with the pull parser
9987d1b3 4638interface in the same generated parser. In order to get this functionality,
f4101aa6 4639you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4640@code{%define api.push_pull "both"} declaration. Doing this will create all of
4641the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4642and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4643would be used. However, the user should note that it is implemented in the
d782395d
JD
4644generated parser by calling @code{yypull_parse}.
4645This makes the @code{yyparse} function that is generated with the
c373bf8b 4646@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4647@code{yyparse} function. If the user
4648calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4649stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4650and then @code{yypull_parse} the rest of the input stream. If you would like
4651to switch back and forth between between parsing styles, you would have to
4652write your own @code{yypull_parse} function that knows when to quit looking
4653for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4654like this:
4655
4656@example
4657yypstate *ps = yypstate_new ();
4658yypull_parse (ps); /* Will call the lexer */
4659yypstate_delete (ps);
4660@end example
4661
d9df47b6 4662Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4663the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4664@code{%define api.push_pull "push"}.
9987d1b3 4665
342b8b6e 4666@node Decl Summary
bfa74976
RS
4667@subsection Bison Declaration Summary
4668@cindex Bison declaration summary
4669@cindex declaration summary
4670@cindex summary, Bison declaration
4671
d8988b2f 4672Here is a summary of the declarations used to define a grammar:
bfa74976 4673
18b519c0 4674@deffn {Directive} %union
bfa74976
RS
4675Declare the collection of data types that semantic values may have
4676(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4677@end deffn
bfa74976 4678
18b519c0 4679@deffn {Directive} %token
bfa74976
RS
4680Declare a terminal symbol (token type name) with no precedence
4681or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4682@end deffn
bfa74976 4683
18b519c0 4684@deffn {Directive} %right
bfa74976
RS
4685Declare a terminal symbol (token type name) that is right-associative
4686(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4687@end deffn
bfa74976 4688
18b519c0 4689@deffn {Directive} %left
bfa74976
RS
4690Declare a terminal symbol (token type name) that is left-associative
4691(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4692@end deffn
bfa74976 4693
18b519c0 4694@deffn {Directive} %nonassoc
bfa74976 4695Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4696(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4697Using it in a way that would be associative is a syntax error.
4698@end deffn
4699
91d2c560 4700@ifset defaultprec
39a06c25 4701@deffn {Directive} %default-prec
22fccf95 4702Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4703(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4704@end deffn
91d2c560 4705@end ifset
bfa74976 4706
18b519c0 4707@deffn {Directive} %type
bfa74976
RS
4708Declare the type of semantic values for a nonterminal symbol
4709(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4710@end deffn
bfa74976 4711
18b519c0 4712@deffn {Directive} %start
89cab50d
AD
4713Specify the grammar's start symbol (@pxref{Start Decl, ,The
4714Start-Symbol}).
18b519c0 4715@end deffn
bfa74976 4716
18b519c0 4717@deffn {Directive} %expect
bfa74976
RS
4718Declare the expected number of shift-reduce conflicts
4719(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4720@end deffn
4721
bfa74976 4722
d8988b2f
AD
4723@sp 1
4724@noindent
4725In order to change the behavior of @command{bison}, use the following
4726directives:
4727
148d66d8
JD
4728@deffn {Directive} %code @{@var{code}@}
4729@findex %code
4730This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4731It inserts @var{code} verbatim at a language-dependent default location in the
4732output@footnote{The default location is actually skeleton-dependent;
4733 writers of non-standard skeletons however should choose the default location
4734 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4735
4736@cindex Prologue
8405b70c 4737For C/C++, the default location is the parser source code
148d66d8
JD
4738file after the usual contents of the parser header file.
4739Thus, @code{%code} replaces the traditional Yacc prologue,
4740@code{%@{@var{code}%@}}, for most purposes.
4741For a detailed discussion, see @ref{Prologue Alternatives}.
4742
8405b70c 4743For Java, the default location is inside the parser class.
148d66d8
JD
4744@end deffn
4745
4746@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4747This is the qualified form of the @code{%code} directive.
4748If you need to specify location-sensitive verbatim @var{code} that does not
4749belong at the default location selected by the unqualified @code{%code} form,
4750use this form instead.
4751
4752@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4753where Bison should generate it.
4754Not all values of @var{qualifier} are available for all target languages:
4755
4756@itemize @bullet
148d66d8 4757@item requires
793fbca5 4758@findex %code requires
148d66d8
JD
4759
4760@itemize @bullet
4761@item Language(s): C, C++
4762
4763@item Purpose: This is the best place to write dependency code required for
4764@code{YYSTYPE} and @code{YYLTYPE}.
4765In other words, it's the best place to define types referenced in @code{%union}
4766directives, and it's the best place to override Bison's default @code{YYSTYPE}
4767and @code{YYLTYPE} definitions.
4768
4769@item Location(s): The parser header file and the parser source code file
4770before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4771@end itemize
4772
4773@item provides
4774@findex %code provides
4775
4776@itemize @bullet
4777@item Language(s): C, C++
4778
4779@item Purpose: This is the best place to write additional definitions and
4780declarations that should be provided to other modules.
4781
4782@item Location(s): The parser header file and the parser source code file after
4783the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4784@end itemize
4785
4786@item top
4787@findex %code top
4788
4789@itemize @bullet
4790@item Language(s): C, C++
4791
4792@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4793usually be more appropriate than @code{%code top}.
4794However, occasionally it is necessary to insert code much nearer the top of the
4795parser source code file.
4796For example:
4797
4798@smallexample
4799%code top @{
4800 #define _GNU_SOURCE
4801 #include <stdio.h>
4802@}
4803@end smallexample
4804
4805@item Location(s): Near the top of the parser source code file.
4806@end itemize
8405b70c 4807
148d66d8
JD
4808@item imports
4809@findex %code imports
4810
4811@itemize @bullet
4812@item Language(s): Java
4813
4814@item Purpose: This is the best place to write Java import directives.
4815
4816@item Location(s): The parser Java file after any Java package directive and
4817before any class definitions.
4818@end itemize
148d66d8
JD
4819@end itemize
4820
148d66d8
JD
4821@cindex Prologue
4822For a detailed discussion of how to use @code{%code} in place of the
4823traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4824@end deffn
4825
18b519c0 4826@deffn {Directive} %debug
4947ebdb
PE
4827In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4828already defined, so that the debugging facilities are compiled.
ec3bc396 4829@xref{Tracing, ,Tracing Your Parser}.
2f3064f0 4830@end deffn
d8988b2f 4831
c1d19e10
PB
4832@deffn {Directive} %define @var{variable}
4833@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4834Define a variable to adjust Bison's behavior.
4835The possible choices for @var{variable}, as well as their meanings, depend on
4836the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4837Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4838
4839Bison will warn if a @var{variable} is defined multiple times.
4840
4841Omitting @code{"@var{value}"} is always equivalent to specifying it as
4842@code{""}.
4843
922bdd7f 4844Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4845In this case, Bison will complain if the variable definition does not meet one
4846of the following four conditions:
4847
4848@enumerate
4849@item @code{"@var{value}"} is @code{"true"}
4850
4851@item @code{"@var{value}"} is omitted (or is @code{""}).
4852This is equivalent to @code{"true"}.
4853
4854@item @code{"@var{value}"} is @code{"false"}.
4855
4856@item @var{variable} is never defined.
4857In this case, Bison selects a default value, which may depend on the selected
4858target language and/or parser skeleton.
4859@end enumerate
148d66d8 4860
793fbca5
JD
4861Some of the accepted @var{variable}s are:
4862
4863@itemize @bullet
d9df47b6
JD
4864@item api.pure
4865@findex %define api.pure
4866
4867@itemize @bullet
4868@item Language(s): C
4869
4870@item Purpose: Request a pure (reentrant) parser program.
4871@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4872
4873@item Accepted Values: Boolean
4874
4875@item Default Value: @code{"false"}
4876@end itemize
4877
c373bf8b
JD
4878@item api.push_pull
4879@findex %define api.push_pull
793fbca5
JD
4880
4881@itemize @bullet
4882@item Language(s): C (LALR(1) only)
4883
4884@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4885@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4886(The current push parsing interface is experimental and may evolve.
4887More user feedback will help to stabilize it.)
793fbca5
JD
4888
4889@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4890
4891@item Default Value: @code{"pull"}
4892@end itemize
4893
31984206
JD
4894@item lr.keep_unreachable_states
4895@findex %define lr.keep_unreachable_states
4896
4897@itemize @bullet
4898@item Language(s): all
4899
4900@item Purpose: Requests that Bison allow unreachable parser states to remain in
4901the parser tables.
4902Bison considers a state to be unreachable if there exists no sequence of
4903transitions from the start state to that state.
4904A state can become unreachable during conflict resolution if Bison disables a
4905shift action leading to it from a predecessor state.
4906Keeping unreachable states is sometimes useful for analysis purposes, but they
4907are useless in the generated parser.
4908
4909@item Accepted Values: Boolean
4910
4911@item Default Value: @code{"false"}
4912
4913@item Caveats:
4914
4915@itemize @bullet
cff03fb2
JD
4916
4917@item Unreachable states may contain conflicts and may use rules not used in
4918any other state.
31984206
JD
4919Thus, keeping unreachable states may induce warnings that are irrelevant to
4920your parser's behavior, and it may eliminate warnings that are relevant.
4921Of course, the change in warnings may actually be relevant to a parser table
4922analysis that wants to keep unreachable states, so this behavior will likely
4923remain in future Bison releases.
4924
4925@item While Bison is able to remove unreachable states, it is not guaranteed to
4926remove other kinds of useless states.
4927Specifically, when Bison disables reduce actions during conflict resolution,
4928some goto actions may become useless, and thus some additional states may
4929become useless.
4930If Bison were to compute which goto actions were useless and then disable those
4931actions, it could identify such states as unreachable and then remove those
4932states.
4933However, Bison does not compute which goto actions are useless.
4934@end itemize
4935@end itemize
4936
793fbca5
JD
4937@item namespace
4938@findex %define namespace
4939
4940@itemize
4941@item Languages(s): C++
4942
4943@item Purpose: Specifies the namespace for the parser class.
4944For example, if you specify:
4945
4946@smallexample
4947%define namespace "foo::bar"
4948@end smallexample
4949
4950Bison uses @code{foo::bar} verbatim in references such as:
4951
4952@smallexample
4953foo::bar::parser::semantic_type
4954@end smallexample
4955
4956However, to open a namespace, Bison removes any leading @code{::} and then
4957splits on any remaining occurrences:
4958
4959@smallexample
4960namespace foo @{ namespace bar @{
4961 class position;
4962 class location;
4963@} @}
4964@end smallexample
4965
4966@item Accepted Values: Any absolute or relative C++ namespace reference without
4967a trailing @code{"::"}.
4968For example, @code{"foo"} or @code{"::foo::bar"}.
4969
4970@item Default Value: The value specified by @code{%name-prefix}, which defaults
4971to @code{yy}.
4972This usage of @code{%name-prefix} is for backward compatibility and can be
4973confusing since @code{%name-prefix} also specifies the textual prefix for the
4974lexical analyzer function.
4975Thus, if you specify @code{%name-prefix}, it is best to also specify
4976@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4977lexical analyzer function.
4978For example, if you specify:
4979
4980@smallexample
4981%define namespace "foo"
4982%name-prefix "bar::"
4983@end smallexample
4984
4985The parser namespace is @code{foo} and @code{yylex} is referenced as
4986@code{bar::lex}.
4987@end itemize
4988@end itemize
4989
d782395d
JD
4990@end deffn
4991
18b519c0 4992@deffn {Directive} %defines
4bfd5e4e
PE
4993Write a header file containing macro definitions for the token type
4994names defined in the grammar as well as a few other declarations.
d8988b2f 4995If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4996is named @file{@var{name}.h}.
d8988b2f 4997
b321737f 4998For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4999@code{YYSTYPE} is already defined as a macro or you have used a
5000@code{<@var{type}>} tag without using @code{%union}.
5001Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5002(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5003require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5004or type definition
f8e1c9e5
AD
5005(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5006arrange for these definitions to be propagated to all modules, e.g., by
5007putting them in a prerequisite header that is included both by your
5008parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5009
5010Unless your parser is pure, the output header declares @code{yylval}
5011as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5012Parser}.
5013
5014If you have also used locations, the output header declares
5015@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5016the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5017Locations}.
5018
f8e1c9e5
AD
5019This output file is normally essential if you wish to put the definition
5020of @code{yylex} in a separate source file, because @code{yylex}
5021typically needs to be able to refer to the above-mentioned declarations
5022and to the token type codes. @xref{Token Values, ,Semantic Values of
5023Tokens}.
9bc0dd67 5024
16dc6a9e
JD
5025@findex %code requires
5026@findex %code provides
5027If you have declared @code{%code requires} or @code{%code provides}, the output
5028header also contains their code.
148d66d8 5029@xref{Decl Summary, ,%code}.
592d0b1e
PB
5030@end deffn
5031
02975b9a
JD
5032@deffn {Directive} %defines @var{defines-file}
5033Same as above, but save in the file @var{defines-file}.
5034@end deffn
5035
18b519c0 5036@deffn {Directive} %destructor
258b75ca 5037Specify how the parser should reclaim the memory associated to
fa7e68c3 5038discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5039@end deffn
72f889cc 5040
02975b9a 5041@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5042Specify a prefix to use for all Bison output file names. The names are
5043chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5044@end deffn
d8988b2f 5045
e6e704dc 5046@deffn {Directive} %language "@var{language}"
0e021770 5047Specify the programming language for the generated parser. Currently
59da312b 5048supported languages include C, C++, and Java.
e6e704dc 5049@var{language} is case-insensitive.
ed4d67dc
JD
5050
5051This directive is experimental and its effect may be modified in future
5052releases.
0e021770
PE
5053@end deffn
5054
18b519c0 5055@deffn {Directive} %locations
89cab50d
AD
5056Generate the code processing the locations (@pxref{Action Features,
5057,Special Features for Use in Actions}). This mode is enabled as soon as
5058the grammar uses the special @samp{@@@var{n}} tokens, but if your
5059grammar does not use it, using @samp{%locations} allows for more
6e649e65 5060accurate syntax error messages.
18b519c0 5061@end deffn
89cab50d 5062
02975b9a 5063@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5064Rename the external symbols used in the parser so that they start with
5065@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5066in C parsers
d8988b2f 5067is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5068@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5069(if locations are used) @code{yylloc}. If you use a push parser,
5070@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5071@code{yypstate_new} and @code{yypstate_delete} will
5072also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5073names become @code{c_parse}, @code{c_lex}, and so on.
5074For C++ parsers, see the @code{%define namespace} documentation in this
5075section.
aa08666d 5076@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5077@end deffn
931c7513 5078
91d2c560 5079@ifset defaultprec
22fccf95
PE
5080@deffn {Directive} %no-default-prec
5081Do not assign a precedence to rules lacking an explicit @code{%prec}
5082modifier (@pxref{Contextual Precedence, ,Context-Dependent
5083Precedence}).
5084@end deffn
91d2c560 5085@end ifset
22fccf95 5086
18b519c0 5087@deffn {Directive} %no-lines
931c7513
RS
5088Don't generate any @code{#line} preprocessor commands in the parser
5089file. Ordinarily Bison writes these commands in the parser file so that
5090the C compiler and debuggers will associate errors and object code with
5091your source file (the grammar file). This directive causes them to
5092associate errors with the parser file, treating it an independent source
5093file in its own right.
18b519c0 5094@end deffn
931c7513 5095
02975b9a 5096@deffn {Directive} %output "@var{file}"
fa4d969f 5097Specify @var{file} for the parser file.
18b519c0 5098@end deffn
6deb4447 5099
18b519c0 5100@deffn {Directive} %pure-parser
d9df47b6
JD
5101Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5102for which Bison is more careful to warn about unreasonable usage.
18b519c0 5103@end deffn
6deb4447 5104
b50d2359 5105@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5106Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5107Require a Version of Bison}.
b50d2359
AD
5108@end deffn
5109
0e021770 5110@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5111Specify the skeleton to use.
5112
ed4d67dc
JD
5113@c You probably don't need this option unless you are developing Bison.
5114@c You should use @code{%language} if you want to specify the skeleton for a
5115@c different language, because it is clearer and because it will always choose the
5116@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5117
5118If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5119file in the Bison installation directory.
5120If it does, @var{file} is an absolute file name or a file name relative to the
5121directory of the grammar file.
5122This is similar to how most shells resolve commands.
0e021770
PE
5123@end deffn
5124
18b519c0 5125@deffn {Directive} %token-table
931c7513
RS
5126Generate an array of token names in the parser file. The name of the
5127array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5128token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5129three elements of @code{yytname} correspond to the predefined tokens
5130@code{"$end"},
88bce5a2
AD
5131@code{"error"}, and @code{"$undefined"}; after these come the symbols
5132defined in the grammar file.
931c7513 5133
9e0876fb
PE
5134The name in the table includes all the characters needed to represent
5135the token in Bison. For single-character literals and literal
5136strings, this includes the surrounding quoting characters and any
5137escape sequences. For example, the Bison single-character literal
5138@code{'+'} corresponds to a three-character name, represented in C as
5139@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5140corresponds to a five-character name, represented in C as
5141@code{"\"\\\\/\""}.
931c7513 5142
8c9a50be 5143When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5144definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5145@code{YYNRULES}, and @code{YYNSTATES}:
5146
5147@table @code
5148@item YYNTOKENS
5149The highest token number, plus one.
5150@item YYNNTS
9ecbd125 5151The number of nonterminal symbols.
931c7513
RS
5152@item YYNRULES
5153The number of grammar rules,
5154@item YYNSTATES
5155The number of parser states (@pxref{Parser States}).
5156@end table
18b519c0 5157@end deffn
d8988b2f 5158
18b519c0 5159@deffn {Directive} %verbose
d8988b2f 5160Write an extra output file containing verbose descriptions of the
742e4900 5161parser states and what is done for each type of lookahead token in
72d2299c 5162that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5163information.
18b519c0 5164@end deffn
d8988b2f 5165
18b519c0 5166@deffn {Directive} %yacc
d8988b2f
AD
5167Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5168including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5169@end deffn
d8988b2f
AD
5170
5171
342b8b6e 5172@node Multiple Parsers
bfa74976
RS
5173@section Multiple Parsers in the Same Program
5174
5175Most programs that use Bison parse only one language and therefore contain
5176only one Bison parser. But what if you want to parse more than one
5177language with the same program? Then you need to avoid a name conflict
5178between different definitions of @code{yyparse}, @code{yylval}, and so on.
5179
5180The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5181(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5182functions and variables of the Bison parser to start with @var{prefix}
5183instead of @samp{yy}. You can use this to give each parser distinct
5184names that do not conflict.
bfa74976
RS
5185
5186The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5187@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5188@code{yychar} and @code{yydebug}. If you use a push parser,
5189@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5190@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5191For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5192@code{clex}, and so on.
bfa74976
RS
5193
5194@strong{All the other variables and macros associated with Bison are not
5195renamed.} These others are not global; there is no conflict if the same
5196name is used in different parsers. For example, @code{YYSTYPE} is not
5197renamed, but defining this in different ways in different parsers causes
5198no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5199
5200The @samp{-p} option works by adding macro definitions to the beginning
5201of the parser source file, defining @code{yyparse} as
5202@code{@var{prefix}parse}, and so on. This effectively substitutes one
5203name for the other in the entire parser file.
5204
342b8b6e 5205@node Interface
bfa74976
RS
5206@chapter Parser C-Language Interface
5207@cindex C-language interface
5208@cindex interface
5209
5210The Bison parser is actually a C function named @code{yyparse}. Here we
5211describe the interface conventions of @code{yyparse} and the other
5212functions that it needs to use.
5213
5214Keep in mind that the parser uses many C identifiers starting with
5215@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5216identifier (aside from those in this manual) in an action or in epilogue
5217in the grammar file, you are likely to run into trouble.
bfa74976
RS
5218
5219@menu
f56274a8
DJ
5220* Parser Function:: How to call @code{yyparse} and what it returns.
5221* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5222* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5223* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5224* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5225* Lexical:: You must supply a function @code{yylex}
5226 which reads tokens.
5227* Error Reporting:: You must supply a function @code{yyerror}.
5228* Action Features:: Special features for use in actions.
5229* Internationalization:: How to let the parser speak in the user's
5230 native language.
bfa74976
RS
5231@end menu
5232
342b8b6e 5233@node Parser Function
bfa74976
RS
5234@section The Parser Function @code{yyparse}
5235@findex yyparse
5236
5237You call the function @code{yyparse} to cause parsing to occur. This
5238function reads tokens, executes actions, and ultimately returns when it
5239encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5240write an action which directs @code{yyparse} to return immediately
5241without reading further.
bfa74976 5242
2a8d363a
AD
5243
5244@deftypefun int yyparse (void)
bfa74976
RS
5245The value returned by @code{yyparse} is 0 if parsing was successful (return
5246is due to end-of-input).
5247
b47dbebe
PE
5248The value is 1 if parsing failed because of invalid input, i.e., input
5249that contains a syntax error or that causes @code{YYABORT} to be
5250invoked.
5251
5252The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5253@end deftypefun
bfa74976
RS
5254
5255In an action, you can cause immediate return from @code{yyparse} by using
5256these macros:
5257
2a8d363a 5258@defmac YYACCEPT
bfa74976
RS
5259@findex YYACCEPT
5260Return immediately with value 0 (to report success).
2a8d363a 5261@end defmac
bfa74976 5262
2a8d363a 5263@defmac YYABORT
bfa74976
RS
5264@findex YYABORT
5265Return immediately with value 1 (to report failure).
2a8d363a
AD
5266@end defmac
5267
5268If you use a reentrant parser, you can optionally pass additional
5269parameter information to it in a reentrant way. To do so, use the
5270declaration @code{%parse-param}:
5271
feeb0eda 5272@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5273@findex %parse-param
287c78f6
PE
5274Declare that an argument declared by the braced-code
5275@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5276The @var{argument-declaration} is used when declaring
feeb0eda
PE
5277functions or prototypes. The last identifier in
5278@var{argument-declaration} must be the argument name.
2a8d363a
AD
5279@end deffn
5280
5281Here's an example. Write this in the parser:
5282
5283@example
feeb0eda
PE
5284%parse-param @{int *nastiness@}
5285%parse-param @{int *randomness@}
2a8d363a
AD
5286@end example
5287
5288@noindent
5289Then call the parser like this:
5290
5291@example
5292@{
5293 int nastiness, randomness;
5294 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5295 value = yyparse (&nastiness, &randomness);
5296 @dots{}
5297@}
5298@end example
5299
5300@noindent
5301In the grammar actions, use expressions like this to refer to the data:
5302
5303@example
5304exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5305@end example
5306
9987d1b3
JD
5307@node Push Parser Function
5308@section The Push Parser Function @code{yypush_parse}
5309@findex yypush_parse
5310
59da312b
JD
5311(The current push parsing interface is experimental and may evolve.
5312More user feedback will help to stabilize it.)
5313
f4101aa6
AD
5314You call the function @code{yypush_parse} to parse a single token. This
5315function is available if either the @code{%define api.push_pull "push"} or
5316@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5317@xref{Push Decl, ,A Push Parser}.
5318
5319@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5320The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5321following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5322is required to finish parsing the grammar.
5323@end deftypefun
5324
5325@node Pull Parser Function
5326@section The Pull Parser Function @code{yypull_parse}
5327@findex yypull_parse
5328
59da312b
JD
5329(The current push parsing interface is experimental and may evolve.
5330More user feedback will help to stabilize it.)
5331
f4101aa6
AD
5332You call the function @code{yypull_parse} to parse the rest of the input
5333stream. This function is available if the @code{%define api.push_pull "both"}
5334declaration is used.
9987d1b3
JD
5335@xref{Push Decl, ,A Push Parser}.
5336
5337@deftypefun int yypull_parse (yypstate *yyps)
5338The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5339@end deftypefun
5340
5341@node Parser Create Function
5342@section The Parser Create Function @code{yystate_new}
5343@findex yypstate_new
5344
59da312b
JD
5345(The current push parsing interface is experimental and may evolve.
5346More user feedback will help to stabilize it.)
5347
f4101aa6
AD
5348You call the function @code{yypstate_new} to create a new parser instance.
5349This function is available if either the @code{%define api.push_pull "push"} or
5350@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5351@xref{Push Decl, ,A Push Parser}.
5352
5353@deftypefun yypstate *yypstate_new (void)
87b9c9bc 5354The function will return a valid parser instance if there was memory available
333e670c
JD
5355or 0 if no memory was available.
5356In impure mode, it will also return 0 if a parser instance is currently
5357allocated.
9987d1b3
JD
5358@end deftypefun
5359
5360@node Parser Delete Function
5361@section The Parser Delete Function @code{yystate_delete}
5362@findex yypstate_delete
5363
59da312b
JD
5364(The current push parsing interface is experimental and may evolve.
5365More user feedback will help to stabilize it.)
5366
9987d1b3 5367You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5368function is available if either the @code{%define api.push_pull "push"} or
5369@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5370@xref{Push Decl, ,A Push Parser}.
5371
5372@deftypefun void yypstate_delete (yypstate *yyps)
5373This function will reclaim the memory associated with a parser instance.
5374After this call, you should no longer attempt to use the parser instance.
5375@end deftypefun
bfa74976 5376
342b8b6e 5377@node Lexical
bfa74976
RS
5378@section The Lexical Analyzer Function @code{yylex}
5379@findex yylex
5380@cindex lexical analyzer
5381
5382The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5383the input stream and returns them to the parser. Bison does not create
5384this function automatically; you must write it so that @code{yyparse} can
5385call it. The function is sometimes referred to as a lexical scanner.
5386
5387In simple programs, @code{yylex} is often defined at the end of the Bison
5388grammar file. If @code{yylex} is defined in a separate source file, you
5389need to arrange for the token-type macro definitions to be available there.
5390To do this, use the @samp{-d} option when you run Bison, so that it will
5391write these macro definitions into a separate header file
5392@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5393that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5394
5395@menu
5396* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5397* Token Values:: How @code{yylex} must return the semantic value
5398 of the token it has read.
5399* Token Locations:: How @code{yylex} must return the text location
5400 (line number, etc.) of the token, if the
5401 actions want that.
5402* Pure Calling:: How the calling convention differs in a pure parser
5403 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5404@end menu
5405
342b8b6e 5406@node Calling Convention
bfa74976
RS
5407@subsection Calling Convention for @code{yylex}
5408
72d2299c
PE
5409The value that @code{yylex} returns must be the positive numeric code
5410for the type of token it has just found; a zero or negative value
5411signifies end-of-input.
bfa74976
RS
5412
5413When a token is referred to in the grammar rules by a name, that name
5414in the parser file becomes a C macro whose definition is the proper
5415numeric code for that token type. So @code{yylex} can use the name
5416to indicate that type. @xref{Symbols}.
5417
5418When a token is referred to in the grammar rules by a character literal,
5419the numeric code for that character is also the code for the token type.
72d2299c
PE
5420So @code{yylex} can simply return that character code, possibly converted
5421to @code{unsigned char} to avoid sign-extension. The null character
5422must not be used this way, because its code is zero and that
bfa74976
RS
5423signifies end-of-input.
5424
5425Here is an example showing these things:
5426
5427@example
13863333
AD
5428int
5429yylex (void)
bfa74976
RS
5430@{
5431 @dots{}
72d2299c 5432 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5433 return 0;
5434 @dots{}
5435 if (c == '+' || c == '-')
72d2299c 5436 return c; /* Assume token type for `+' is '+'. */
bfa74976 5437 @dots{}
72d2299c 5438 return INT; /* Return the type of the token. */
bfa74976
RS
5439 @dots{}
5440@}
5441@end example
5442
5443@noindent
5444This interface has been designed so that the output from the @code{lex}
5445utility can be used without change as the definition of @code{yylex}.
5446
931c7513
RS
5447If the grammar uses literal string tokens, there are two ways that
5448@code{yylex} can determine the token type codes for them:
5449
5450@itemize @bullet
5451@item
5452If the grammar defines symbolic token names as aliases for the
5453literal string tokens, @code{yylex} can use these symbolic names like
5454all others. In this case, the use of the literal string tokens in
5455the grammar file has no effect on @code{yylex}.
5456
5457@item
9ecbd125 5458@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5459table. The index of the token in the table is the token type's code.
9ecbd125 5460The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5461double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5462token's characters are escaped as necessary to be suitable as input
5463to Bison.
931c7513 5464
9e0876fb
PE
5465Here's code for looking up a multicharacter token in @code{yytname},
5466assuming that the characters of the token are stored in
5467@code{token_buffer}, and assuming that the token does not contain any
5468characters like @samp{"} that require escaping.
931c7513
RS
5469
5470@smallexample
5471for (i = 0; i < YYNTOKENS; i++)
5472 @{
5473 if (yytname[i] != 0
5474 && yytname[i][0] == '"'
68449b3a
PE
5475 && ! strncmp (yytname[i] + 1, token_buffer,
5476 strlen (token_buffer))
931c7513
RS
5477 && yytname[i][strlen (token_buffer) + 1] == '"'
5478 && yytname[i][strlen (token_buffer) + 2] == 0)
5479 break;
5480 @}
5481@end smallexample
5482
5483The @code{yytname} table is generated only if you use the
8c9a50be 5484@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5485@end itemize
5486
342b8b6e 5487@node Token Values
bfa74976
RS
5488@subsection Semantic Values of Tokens
5489
5490@vindex yylval
9d9b8b70 5491In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5492be stored into the global variable @code{yylval}. When you are using
5493just one data type for semantic values, @code{yylval} has that type.
5494Thus, if the type is @code{int} (the default), you might write this in
5495@code{yylex}:
5496
5497@example
5498@group
5499 @dots{}
72d2299c
PE
5500 yylval = value; /* Put value onto Bison stack. */
5501 return INT; /* Return the type of the token. */
bfa74976
RS
5502 @dots{}
5503@end group
5504@end example
5505
5506When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5507made from the @code{%union} declaration (@pxref{Union Decl, ,The
5508Collection of Value Types}). So when you store a token's value, you
5509must use the proper member of the union. If the @code{%union}
5510declaration looks like this:
bfa74976
RS
5511
5512@example
5513@group
5514%union @{
5515 int intval;
5516 double val;
5517 symrec *tptr;
5518@}
5519@end group
5520@end example
5521
5522@noindent
5523then the code in @code{yylex} might look like this:
5524
5525@example
5526@group
5527 @dots{}
72d2299c
PE
5528 yylval.intval = value; /* Put value onto Bison stack. */
5529 return INT; /* Return the type of the token. */
bfa74976
RS
5530 @dots{}
5531@end group
5532@end example
5533
95923bd6
AD
5534@node Token Locations
5535@subsection Textual Locations of Tokens
bfa74976
RS
5536
5537@vindex yylloc
847bf1f5 5538If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5539Tracking Locations}) in actions to keep track of the textual locations
5540of tokens and groupings, then you must provide this information in
5541@code{yylex}. The function @code{yyparse} expects to find the textual
5542location of a token just parsed in the global variable @code{yylloc}.
5543So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5544
5545By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5546initialize the members that are going to be used by the actions. The
5547four members are called @code{first_line}, @code{first_column},
5548@code{last_line} and @code{last_column}. Note that the use of this
5549feature makes the parser noticeably slower.
bfa74976
RS
5550
5551@tindex YYLTYPE
5552The data type of @code{yylloc} has the name @code{YYLTYPE}.
5553
342b8b6e 5554@node Pure Calling
c656404a 5555@subsection Calling Conventions for Pure Parsers
bfa74976 5556
d9df47b6 5557When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5558pure, reentrant parser, the global communication variables @code{yylval}
5559and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5560Parser}.) In such parsers the two global variables are replaced by
5561pointers passed as arguments to @code{yylex}. You must declare them as
5562shown here, and pass the information back by storing it through those
5563pointers.
bfa74976
RS
5564
5565@example
13863333
AD
5566int
5567yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5568@{
5569 @dots{}
5570 *lvalp = value; /* Put value onto Bison stack. */
5571 return INT; /* Return the type of the token. */
5572 @dots{}
5573@}
5574@end example
5575
5576If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5577textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5578this case, omit the second argument; @code{yylex} will be called with
5579only one argument.
5580
e425e872 5581
2a8d363a
AD
5582If you wish to pass the additional parameter data to @code{yylex}, use
5583@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5584Function}).
e425e872 5585
feeb0eda 5586@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5587@findex %lex-param
287c78f6
PE
5588Declare that the braced-code @var{argument-declaration} is an
5589additional @code{yylex} argument declaration.
2a8d363a 5590@end deffn
e425e872 5591
2a8d363a 5592For instance:
e425e872
RS
5593
5594@example
feeb0eda
PE
5595%parse-param @{int *nastiness@}
5596%lex-param @{int *nastiness@}
5597%parse-param @{int *randomness@}
e425e872
RS
5598@end example
5599
5600@noindent
2a8d363a 5601results in the following signature:
e425e872
RS
5602
5603@example
2a8d363a
AD
5604int yylex (int *nastiness);
5605int yyparse (int *nastiness, int *randomness);
e425e872
RS
5606@end example
5607
d9df47b6 5608If @code{%define api.pure} is added:
c656404a
RS
5609
5610@example
2a8d363a
AD
5611int yylex (YYSTYPE *lvalp, int *nastiness);
5612int yyparse (int *nastiness, int *randomness);
c656404a
RS
5613@end example
5614
2a8d363a 5615@noindent
d9df47b6 5616and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5617
2a8d363a
AD
5618@example
5619int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5620int yyparse (int *nastiness, int *randomness);
5621@end example
931c7513 5622
342b8b6e 5623@node Error Reporting
bfa74976
RS
5624@section The Error Reporting Function @code{yyerror}
5625@cindex error reporting function
5626@findex yyerror
5627@cindex parse error
5628@cindex syntax error
5629
6e649e65 5630The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5631whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5632action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5633macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5634in Actions}).
bfa74976
RS
5635
5636The Bison parser expects to report the error by calling an error
5637reporting function named @code{yyerror}, which you must supply. It is
5638called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5639receives one argument. For a syntax error, the string is normally
5640@w{@code{"syntax error"}}.
bfa74976 5641
2a8d363a
AD
5642@findex %error-verbose
5643If you invoke the directive @code{%error-verbose} in the Bison
5644declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5645Section}), then Bison provides a more verbose and specific error message
6e649e65 5646string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5647
1a059451
PE
5648The parser can detect one other kind of error: memory exhaustion. This
5649can happen when the input contains constructions that are very deeply
bfa74976 5650nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5651parser normally extends its stack automatically up to a very large limit. But
5652if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5653fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5654
5655In some cases diagnostics like @w{@code{"syntax error"}} are
5656translated automatically from English to some other language before
5657they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5658
5659The following definition suffices in simple programs:
5660
5661@example
5662@group
13863333 5663void
38a92d50 5664yyerror (char const *s)
bfa74976
RS
5665@{
5666@end group
5667@group
5668 fprintf (stderr, "%s\n", s);
5669@}
5670@end group
5671@end example
5672
5673After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5674error recovery if you have written suitable error recovery grammar rules
5675(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5676immediately return 1.
5677
93724f13 5678Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5679an access to the current location.
5680This is indeed the case for the @acronym{GLR}
2a8d363a 5681parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5682@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5683@code{yyerror} are:
5684
5685@example
38a92d50
PE
5686void yyerror (char const *msg); /* Yacc parsers. */
5687void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5688@end example
5689
feeb0eda 5690If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5691
5692@example
b317297e
PE
5693void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5694void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5695@end example
5696
fa7e68c3 5697Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5698convention for absolutely pure parsers, i.e., when the calling
5699convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5700@code{%define api.pure} are pure.
5701I.e.:
2a8d363a
AD
5702
5703@example
5704/* Location tracking. */
5705%locations
5706/* Pure yylex. */
d9df47b6 5707%define api.pure
feeb0eda 5708%lex-param @{int *nastiness@}
2a8d363a 5709/* Pure yyparse. */
feeb0eda
PE
5710%parse-param @{int *nastiness@}
5711%parse-param @{int *randomness@}
2a8d363a
AD
5712@end example
5713
5714@noindent
5715results in the following signatures for all the parser kinds:
5716
5717@example
5718int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5719int yyparse (int *nastiness, int *randomness);
93724f13
AD
5720void yyerror (YYLTYPE *locp,
5721 int *nastiness, int *randomness,
38a92d50 5722 char const *msg);
2a8d363a
AD
5723@end example
5724
1c0c3e95 5725@noindent
38a92d50
PE
5726The prototypes are only indications of how the code produced by Bison
5727uses @code{yyerror}. Bison-generated code always ignores the returned
5728value, so @code{yyerror} can return any type, including @code{void}.
5729Also, @code{yyerror} can be a variadic function; that is why the
5730message is always passed last.
5731
5732Traditionally @code{yyerror} returns an @code{int} that is always
5733ignored, but this is purely for historical reasons, and @code{void} is
5734preferable since it more accurately describes the return type for
5735@code{yyerror}.
93724f13 5736
bfa74976
RS
5737@vindex yynerrs
5738The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5739reported so far. Normally this variable is global; but if you
704a47c4
AD
5740request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5741then it is a local variable which only the actions can access.
bfa74976 5742
342b8b6e 5743@node Action Features
bfa74976
RS
5744@section Special Features for Use in Actions
5745@cindex summary, action features
5746@cindex action features summary
5747
5748Here is a table of Bison constructs, variables and macros that
5749are useful in actions.
5750
18b519c0 5751@deffn {Variable} $$
bfa74976
RS
5752Acts like a variable that contains the semantic value for the
5753grouping made by the current rule. @xref{Actions}.
18b519c0 5754@end deffn
bfa74976 5755
18b519c0 5756@deffn {Variable} $@var{n}
bfa74976
RS
5757Acts like a variable that contains the semantic value for the
5758@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5759@end deffn
bfa74976 5760
18b519c0 5761@deffn {Variable} $<@var{typealt}>$
bfa74976 5762Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5763specified by the @code{%union} declaration. @xref{Action Types, ,Data
5764Types of Values in Actions}.
18b519c0 5765@end deffn
bfa74976 5766
18b519c0 5767@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5768Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5769union specified by the @code{%union} declaration.
e0c471a9 5770@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5771@end deffn
bfa74976 5772
18b519c0 5773@deffn {Macro} YYABORT;
bfa74976
RS
5774Return immediately from @code{yyparse}, indicating failure.
5775@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5776@end deffn
bfa74976 5777
18b519c0 5778@deffn {Macro} YYACCEPT;
bfa74976
RS
5779Return immediately from @code{yyparse}, indicating success.
5780@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5781@end deffn
bfa74976 5782
18b519c0 5783@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5784@findex YYBACKUP
5785Unshift a token. This macro is allowed only for rules that reduce
742e4900 5786a single value, and only when there is no lookahead token.
c827f760 5787It is also disallowed in @acronym{GLR} parsers.
742e4900 5788It installs a lookahead token with token type @var{token} and
bfa74976
RS
5789semantic value @var{value}; then it discards the value that was
5790going to be reduced by this rule.
5791
5792If the macro is used when it is not valid, such as when there is
742e4900 5793a lookahead token already, then it reports a syntax error with
bfa74976
RS
5794a message @samp{cannot back up} and performs ordinary error
5795recovery.
5796
5797In either case, the rest of the action is not executed.
18b519c0 5798@end deffn
bfa74976 5799
18b519c0 5800@deffn {Macro} YYEMPTY
bfa74976 5801@vindex YYEMPTY
742e4900 5802Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5803@end deffn
bfa74976 5804
32c29292
JD
5805@deffn {Macro} YYEOF
5806@vindex YYEOF
742e4900 5807Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5808stream.
5809@end deffn
5810
18b519c0 5811@deffn {Macro} YYERROR;
bfa74976
RS
5812@findex YYERROR
5813Cause an immediate syntax error. This statement initiates error
5814recovery just as if the parser itself had detected an error; however, it
5815does not call @code{yyerror}, and does not print any message. If you
5816want to print an error message, call @code{yyerror} explicitly before
5817the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5818@end deffn
bfa74976 5819
18b519c0 5820@deffn {Macro} YYRECOVERING
02103984
PE
5821@findex YYRECOVERING
5822The expression @code{YYRECOVERING ()} yields 1 when the parser
5823is recovering from a syntax error, and 0 otherwise.
bfa74976 5824@xref{Error Recovery}.
18b519c0 5825@end deffn
bfa74976 5826
18b519c0 5827@deffn {Variable} yychar
742e4900
JD
5828Variable containing either the lookahead token, or @code{YYEOF} when the
5829lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5830has been performed so the next token is not yet known.
5831Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5832Actions}).
742e4900 5833@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5834@end deffn
bfa74976 5835
18b519c0 5836@deffn {Macro} yyclearin;
742e4900 5837Discard the current lookahead token. This is useful primarily in
32c29292
JD
5838error rules.
5839Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5840Semantic Actions}).
5841@xref{Error Recovery}.
18b519c0 5842@end deffn
bfa74976 5843
18b519c0 5844@deffn {Macro} yyerrok;
bfa74976 5845Resume generating error messages immediately for subsequent syntax
13863333 5846errors. This is useful primarily in error rules.
bfa74976 5847@xref{Error Recovery}.
18b519c0 5848@end deffn
bfa74976 5849
32c29292 5850@deffn {Variable} yylloc
742e4900 5851Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5852to @code{YYEMPTY} or @code{YYEOF}.
5853Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5854Actions}).
5855@xref{Actions and Locations, ,Actions and Locations}.
5856@end deffn
5857
5858@deffn {Variable} yylval
742e4900 5859Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5860not set to @code{YYEMPTY} or @code{YYEOF}.
5861Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5862Actions}).
5863@xref{Actions, ,Actions}.
5864@end deffn
5865
18b519c0 5866@deffn {Value} @@$
847bf1f5 5867@findex @@$
95923bd6 5868Acts like a structure variable containing information on the textual location
847bf1f5
AD
5869of the grouping made by the current rule. @xref{Locations, ,
5870Tracking Locations}.
bfa74976 5871
847bf1f5
AD
5872@c Check if those paragraphs are still useful or not.
5873
5874@c @example
5875@c struct @{
5876@c int first_line, last_line;
5877@c int first_column, last_column;
5878@c @};
5879@c @end example
5880
5881@c Thus, to get the starting line number of the third component, you would
5882@c use @samp{@@3.first_line}.
bfa74976 5883
847bf1f5
AD
5884@c In order for the members of this structure to contain valid information,
5885@c you must make @code{yylex} supply this information about each token.
5886@c If you need only certain members, then @code{yylex} need only fill in
5887@c those members.
bfa74976 5888
847bf1f5 5889@c The use of this feature makes the parser noticeably slower.
18b519c0 5890@end deffn
847bf1f5 5891
18b519c0 5892@deffn {Value} @@@var{n}
847bf1f5 5893@findex @@@var{n}
95923bd6 5894Acts like a structure variable containing information on the textual location
847bf1f5
AD
5895of the @var{n}th component of the current rule. @xref{Locations, ,
5896Tracking Locations}.
18b519c0 5897@end deffn
bfa74976 5898
f7ab6a50
PE
5899@node Internationalization
5900@section Parser Internationalization
5901@cindex internationalization
5902@cindex i18n
5903@cindex NLS
5904@cindex gettext
5905@cindex bison-po
5906
5907A Bison-generated parser can print diagnostics, including error and
5908tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5909also supports outputting diagnostics in the user's native language. To
5910make this work, the user should set the usual environment variables.
5911@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5912For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5913set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5914encoding. The exact set of available locales depends on the user's
5915installation.
5916
5917The maintainer of a package that uses a Bison-generated parser enables
5918the internationalization of the parser's output through the following
5919steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5920@acronym{GNU} Automake.
5921
5922@enumerate
5923@item
30757c8c 5924@cindex bison-i18n.m4
f7ab6a50
PE
5925Into the directory containing the @acronym{GNU} Autoconf macros used
5926by the package---often called @file{m4}---copy the
5927@file{bison-i18n.m4} file installed by Bison under
5928@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5929For example:
5930
5931@example
5932cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5933@end example
5934
5935@item
30757c8c
PE
5936@findex BISON_I18N
5937@vindex BISON_LOCALEDIR
5938@vindex YYENABLE_NLS
f7ab6a50
PE
5939In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5940invocation, add an invocation of @code{BISON_I18N}. This macro is
5941defined in the file @file{bison-i18n.m4} that you copied earlier. It
5942causes @samp{configure} to find the value of the
30757c8c
PE
5943@code{BISON_LOCALEDIR} variable, and it defines the source-language
5944symbol @code{YYENABLE_NLS} to enable translations in the
5945Bison-generated parser.
f7ab6a50
PE
5946
5947@item
5948In the @code{main} function of your program, designate the directory
5949containing Bison's runtime message catalog, through a call to
5950@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5951For example:
5952
5953@example
5954bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5955@end example
5956
5957Typically this appears after any other call @code{bindtextdomain
5958(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5959@samp{BISON_LOCALEDIR} to be defined as a string through the
5960@file{Makefile}.
5961
5962@item
5963In the @file{Makefile.am} that controls the compilation of the @code{main}
5964function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5965either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5966
5967@example
5968DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5969@end example
5970
5971or:
5972
5973@example
5974AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5975@end example
5976
5977@item
5978Finally, invoke the command @command{autoreconf} to generate the build
5979infrastructure.
5980@end enumerate
5981
bfa74976 5982
342b8b6e 5983@node Algorithm
13863333
AD
5984@chapter The Bison Parser Algorithm
5985@cindex Bison parser algorithm
bfa74976
RS
5986@cindex algorithm of parser
5987@cindex shifting
5988@cindex reduction
5989@cindex parser stack
5990@cindex stack, parser
5991
5992As Bison reads tokens, it pushes them onto a stack along with their
5993semantic values. The stack is called the @dfn{parser stack}. Pushing a
5994token is traditionally called @dfn{shifting}.
5995
5996For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5997@samp{3} to come. The stack will have four elements, one for each token
5998that was shifted.
5999
6000But the stack does not always have an element for each token read. When
6001the last @var{n} tokens and groupings shifted match the components of a
6002grammar rule, they can be combined according to that rule. This is called
6003@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6004single grouping whose symbol is the result (left hand side) of that rule.
6005Running the rule's action is part of the process of reduction, because this
6006is what computes the semantic value of the resulting grouping.
6007
6008For example, if the infix calculator's parser stack contains this:
6009
6010@example
60111 + 5 * 3
6012@end example
6013
6014@noindent
6015and the next input token is a newline character, then the last three
6016elements can be reduced to 15 via the rule:
6017
6018@example
6019expr: expr '*' expr;
6020@end example
6021
6022@noindent
6023Then the stack contains just these three elements:
6024
6025@example
60261 + 15
6027@end example
6028
6029@noindent
6030At this point, another reduction can be made, resulting in the single value
603116. Then the newline token can be shifted.
6032
6033The parser tries, by shifts and reductions, to reduce the entire input down
6034to a single grouping whose symbol is the grammar's start-symbol
6035(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6036
6037This kind of parser is known in the literature as a bottom-up parser.
6038
6039@menu
742e4900 6040* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6041* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6042* Precedence:: Operator precedence works by resolving conflicts.
6043* Contextual Precedence:: When an operator's precedence depends on context.
6044* Parser States:: The parser is a finite-state-machine with stack.
6045* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6046* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6047* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6048* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6049@end menu
6050
742e4900
JD
6051@node Lookahead
6052@section Lookahead Tokens
6053@cindex lookahead token
bfa74976
RS
6054
6055The Bison parser does @emph{not} always reduce immediately as soon as the
6056last @var{n} tokens and groupings match a rule. This is because such a
6057simple strategy is inadequate to handle most languages. Instead, when a
6058reduction is possible, the parser sometimes ``looks ahead'' at the next
6059token in order to decide what to do.
6060
6061When a token is read, it is not immediately shifted; first it becomes the
742e4900 6062@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6063perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6064the lookahead token remains off to the side. When no more reductions
6065should take place, the lookahead token is shifted onto the stack. This
bfa74976 6066does not mean that all possible reductions have been done; depending on the
742e4900 6067token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6068application.
6069
742e4900 6070Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6071expressions which contain binary addition operators and postfix unary
6072factorial operators (@samp{!}), and allow parentheses for grouping.
6073
6074@example
6075@group
6076expr: term '+' expr
6077 | term
6078 ;
6079@end group
6080
6081@group
6082term: '(' expr ')'
6083 | term '!'
6084 | NUMBER
6085 ;
6086@end group
6087@end example
6088
6089Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6090should be done? If the following token is @samp{)}, then the first three
6091tokens must be reduced to form an @code{expr}. This is the only valid
6092course, because shifting the @samp{)} would produce a sequence of symbols
6093@w{@code{term ')'}}, and no rule allows this.
6094
6095If the following token is @samp{!}, then it must be shifted immediately so
6096that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6097parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6098@code{expr}. It would then be impossible to shift the @samp{!} because
6099doing so would produce on the stack the sequence of symbols @code{expr
6100'!'}. No rule allows that sequence.
6101
6102@vindex yychar
32c29292
JD
6103@vindex yylval
6104@vindex yylloc
742e4900 6105The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6106Its semantic value and location, if any, are stored in the variables
6107@code{yylval} and @code{yylloc}.
bfa74976
RS
6108@xref{Action Features, ,Special Features for Use in Actions}.
6109
342b8b6e 6110@node Shift/Reduce
bfa74976
RS
6111@section Shift/Reduce Conflicts
6112@cindex conflicts
6113@cindex shift/reduce conflicts
6114@cindex dangling @code{else}
6115@cindex @code{else}, dangling
6116
6117Suppose we are parsing a language which has if-then and if-then-else
6118statements, with a pair of rules like this:
6119
6120@example
6121@group
6122if_stmt:
6123 IF expr THEN stmt
6124 | IF expr THEN stmt ELSE stmt
6125 ;
6126@end group
6127@end example
6128
6129@noindent
6130Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6131terminal symbols for specific keyword tokens.
6132
742e4900 6133When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6134contents of the stack (assuming the input is valid) are just right for
6135reduction by the first rule. But it is also legitimate to shift the
6136@code{ELSE}, because that would lead to eventual reduction by the second
6137rule.
6138
6139This situation, where either a shift or a reduction would be valid, is
6140called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6141these conflicts by choosing to shift, unless otherwise directed by
6142operator precedence declarations. To see the reason for this, let's
6143contrast it with the other alternative.
6144
6145Since the parser prefers to shift the @code{ELSE}, the result is to attach
6146the else-clause to the innermost if-statement, making these two inputs
6147equivalent:
6148
6149@example
6150if x then if y then win (); else lose;
6151
6152if x then do; if y then win (); else lose; end;
6153@end example
6154
6155But if the parser chose to reduce when possible rather than shift, the
6156result would be to attach the else-clause to the outermost if-statement,
6157making these two inputs equivalent:
6158
6159@example
6160if x then if y then win (); else lose;
6161
6162if x then do; if y then win (); end; else lose;
6163@end example
6164
6165The conflict exists because the grammar as written is ambiguous: either
6166parsing of the simple nested if-statement is legitimate. The established
6167convention is that these ambiguities are resolved by attaching the
6168else-clause to the innermost if-statement; this is what Bison accomplishes
6169by choosing to shift rather than reduce. (It would ideally be cleaner to
6170write an unambiguous grammar, but that is very hard to do in this case.)
6171This particular ambiguity was first encountered in the specifications of
6172Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6173
6174To avoid warnings from Bison about predictable, legitimate shift/reduce
6175conflicts, use the @code{%expect @var{n}} declaration. There will be no
6176warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6177@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6178
6179The definition of @code{if_stmt} above is solely to blame for the
6180conflict, but the conflict does not actually appear without additional
6181rules. Here is a complete Bison input file that actually manifests the
6182conflict:
6183
6184@example
6185@group
6186%token IF THEN ELSE variable
6187%%
6188@end group
6189@group
6190stmt: expr
6191 | if_stmt
6192 ;
6193@end group
6194
6195@group
6196if_stmt:
6197 IF expr THEN stmt
6198 | IF expr THEN stmt ELSE stmt
6199 ;
6200@end group
6201
6202expr: variable
6203 ;
6204@end example
6205
342b8b6e 6206@node Precedence
bfa74976
RS
6207@section Operator Precedence
6208@cindex operator precedence
6209@cindex precedence of operators
6210
6211Another situation where shift/reduce conflicts appear is in arithmetic
6212expressions. Here shifting is not always the preferred resolution; the
6213Bison declarations for operator precedence allow you to specify when to
6214shift and when to reduce.
6215
6216@menu
6217* Why Precedence:: An example showing why precedence is needed.
6218* Using Precedence:: How to specify precedence in Bison grammars.
6219* Precedence Examples:: How these features are used in the previous example.
6220* How Precedence:: How they work.
6221@end menu
6222
342b8b6e 6223@node Why Precedence
bfa74976
RS
6224@subsection When Precedence is Needed
6225
6226Consider the following ambiguous grammar fragment (ambiguous because the
6227input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6228
6229@example
6230@group
6231expr: expr '-' expr
6232 | expr '*' expr
6233 | expr '<' expr
6234 | '(' expr ')'
6235 @dots{}
6236 ;
6237@end group
6238@end example
6239
6240@noindent
6241Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6242should it reduce them via the rule for the subtraction operator? It
6243depends on the next token. Of course, if the next token is @samp{)}, we
6244must reduce; shifting is invalid because no single rule can reduce the
6245token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6246the next token is @samp{*} or @samp{<}, we have a choice: either
6247shifting or reduction would allow the parse to complete, but with
6248different results.
6249
6250To decide which one Bison should do, we must consider the results. If
6251the next operator token @var{op} is shifted, then it must be reduced
6252first in order to permit another opportunity to reduce the difference.
6253The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6254hand, if the subtraction is reduced before shifting @var{op}, the result
6255is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6256reduce should depend on the relative precedence of the operators
6257@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6258@samp{<}.
bfa74976
RS
6259
6260@cindex associativity
6261What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6262@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6263operators we prefer the former, which is called @dfn{left association}.
6264The latter alternative, @dfn{right association}, is desirable for
6265assignment operators. The choice of left or right association is a
6266matter of whether the parser chooses to shift or reduce when the stack
742e4900 6267contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6268makes right-associativity.
bfa74976 6269
342b8b6e 6270@node Using Precedence
bfa74976
RS
6271@subsection Specifying Operator Precedence
6272@findex %left
6273@findex %right
6274@findex %nonassoc
6275
6276Bison allows you to specify these choices with the operator precedence
6277declarations @code{%left} and @code{%right}. Each such declaration
6278contains a list of tokens, which are operators whose precedence and
6279associativity is being declared. The @code{%left} declaration makes all
6280those operators left-associative and the @code{%right} declaration makes
6281them right-associative. A third alternative is @code{%nonassoc}, which
6282declares that it is a syntax error to find the same operator twice ``in a
6283row''.
6284
6285The relative precedence of different operators is controlled by the
6286order in which they are declared. The first @code{%left} or
6287@code{%right} declaration in the file declares the operators whose
6288precedence is lowest, the next such declaration declares the operators
6289whose precedence is a little higher, and so on.
6290
342b8b6e 6291@node Precedence Examples
bfa74976
RS
6292@subsection Precedence Examples
6293
6294In our example, we would want the following declarations:
6295
6296@example
6297%left '<'
6298%left '-'
6299%left '*'
6300@end example
6301
6302In a more complete example, which supports other operators as well, we
6303would declare them in groups of equal precedence. For example, @code{'+'} is
6304declared with @code{'-'}:
6305
6306@example
6307%left '<' '>' '=' NE LE GE
6308%left '+' '-'
6309%left '*' '/'
6310@end example
6311
6312@noindent
6313(Here @code{NE} and so on stand for the operators for ``not equal''
6314and so on. We assume that these tokens are more than one character long
6315and therefore are represented by names, not character literals.)
6316
342b8b6e 6317@node How Precedence
bfa74976
RS
6318@subsection How Precedence Works
6319
6320The first effect of the precedence declarations is to assign precedence
6321levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6322precedence levels to certain rules: each rule gets its precedence from
6323the last terminal symbol mentioned in the components. (You can also
6324specify explicitly the precedence of a rule. @xref{Contextual
6325Precedence, ,Context-Dependent Precedence}.)
6326
6327Finally, the resolution of conflicts works by comparing the precedence
742e4900 6328of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6329token's precedence is higher, the choice is to shift. If the rule's
6330precedence is higher, the choice is to reduce. If they have equal
6331precedence, the choice is made based on the associativity of that
6332precedence level. The verbose output file made by @samp{-v}
6333(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6334resolved.
bfa74976
RS
6335
6336Not all rules and not all tokens have precedence. If either the rule or
742e4900 6337the lookahead token has no precedence, then the default is to shift.
bfa74976 6338
342b8b6e 6339@node Contextual Precedence
bfa74976
RS
6340@section Context-Dependent Precedence
6341@cindex context-dependent precedence
6342@cindex unary operator precedence
6343@cindex precedence, context-dependent
6344@cindex precedence, unary operator
6345@findex %prec
6346
6347Often the precedence of an operator depends on the context. This sounds
6348outlandish at first, but it is really very common. For example, a minus
6349sign typically has a very high precedence as a unary operator, and a
6350somewhat lower precedence (lower than multiplication) as a binary operator.
6351
6352The Bison precedence declarations, @code{%left}, @code{%right} and
6353@code{%nonassoc}, can only be used once for a given token; so a token has
6354only one precedence declared in this way. For context-dependent
6355precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6356modifier for rules.
bfa74976
RS
6357
6358The @code{%prec} modifier declares the precedence of a particular rule by
6359specifying a terminal symbol whose precedence should be used for that rule.
6360It's not necessary for that symbol to appear otherwise in the rule. The
6361modifier's syntax is:
6362
6363@example
6364%prec @var{terminal-symbol}
6365@end example
6366
6367@noindent
6368and it is written after the components of the rule. Its effect is to
6369assign the rule the precedence of @var{terminal-symbol}, overriding
6370the precedence that would be deduced for it in the ordinary way. The
6371altered rule precedence then affects how conflicts involving that rule
6372are resolved (@pxref{Precedence, ,Operator Precedence}).
6373
6374Here is how @code{%prec} solves the problem of unary minus. First, declare
6375a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6376are no tokens of this type, but the symbol serves to stand for its
6377precedence:
6378
6379@example
6380@dots{}
6381%left '+' '-'
6382%left '*'
6383%left UMINUS
6384@end example
6385
6386Now the precedence of @code{UMINUS} can be used in specific rules:
6387
6388@example
6389@group
6390exp: @dots{}
6391 | exp '-' exp
6392 @dots{}
6393 | '-' exp %prec UMINUS
6394@end group
6395@end example
6396
91d2c560 6397@ifset defaultprec
39a06c25
PE
6398If you forget to append @code{%prec UMINUS} to the rule for unary
6399minus, Bison silently assumes that minus has its usual precedence.
6400This kind of problem can be tricky to debug, since one typically
6401discovers the mistake only by testing the code.
6402
22fccf95 6403The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6404this kind of problem systematically. It causes rules that lack a
6405@code{%prec} modifier to have no precedence, even if the last terminal
6406symbol mentioned in their components has a declared precedence.
6407
22fccf95 6408If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6409for all rules that participate in precedence conflict resolution.
6410Then you will see any shift/reduce conflict until you tell Bison how
6411to resolve it, either by changing your grammar or by adding an
6412explicit precedence. This will probably add declarations to the
6413grammar, but it helps to protect against incorrect rule precedences.
6414
22fccf95
PE
6415The effect of @code{%no-default-prec;} can be reversed by giving
6416@code{%default-prec;}, which is the default.
91d2c560 6417@end ifset
39a06c25 6418
342b8b6e 6419@node Parser States
bfa74976
RS
6420@section Parser States
6421@cindex finite-state machine
6422@cindex parser state
6423@cindex state (of parser)
6424
6425The function @code{yyparse} is implemented using a finite-state machine.
6426The values pushed on the parser stack are not simply token type codes; they
6427represent the entire sequence of terminal and nonterminal symbols at or
6428near the top of the stack. The current state collects all the information
6429about previous input which is relevant to deciding what to do next.
6430
742e4900
JD
6431Each time a lookahead token is read, the current parser state together
6432with the type of lookahead token are looked up in a table. This table
6433entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6434specifies the new parser state, which is pushed onto the top of the
6435parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6436This means that a certain number of tokens or groupings are taken off
6437the top of the stack, and replaced by one grouping. In other words,
6438that number of states are popped from the stack, and one new state is
6439pushed.
6440
742e4900 6441There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6442is erroneous in the current state. This causes error processing to begin
6443(@pxref{Error Recovery}).
6444
342b8b6e 6445@node Reduce/Reduce
bfa74976
RS
6446@section Reduce/Reduce Conflicts
6447@cindex reduce/reduce conflict
6448@cindex conflicts, reduce/reduce
6449
6450A reduce/reduce conflict occurs if there are two or more rules that apply
6451to the same sequence of input. This usually indicates a serious error
6452in the grammar.
6453
6454For example, here is an erroneous attempt to define a sequence
6455of zero or more @code{word} groupings.
6456
6457@example
6458sequence: /* empty */
6459 @{ printf ("empty sequence\n"); @}
6460 | maybeword
6461 | sequence word
6462 @{ printf ("added word %s\n", $2); @}
6463 ;
6464
6465maybeword: /* empty */
6466 @{ printf ("empty maybeword\n"); @}
6467 | word
6468 @{ printf ("single word %s\n", $1); @}
6469 ;
6470@end example
6471
6472@noindent
6473The error is an ambiguity: there is more than one way to parse a single
6474@code{word} into a @code{sequence}. It could be reduced to a
6475@code{maybeword} and then into a @code{sequence} via the second rule.
6476Alternatively, nothing-at-all could be reduced into a @code{sequence}
6477via the first rule, and this could be combined with the @code{word}
6478using the third rule for @code{sequence}.
6479
6480There is also more than one way to reduce nothing-at-all into a
6481@code{sequence}. This can be done directly via the first rule,
6482or indirectly via @code{maybeword} and then the second rule.
6483
6484You might think that this is a distinction without a difference, because it
6485does not change whether any particular input is valid or not. But it does
6486affect which actions are run. One parsing order runs the second rule's
6487action; the other runs the first rule's action and the third rule's action.
6488In this example, the output of the program changes.
6489
6490Bison resolves a reduce/reduce conflict by choosing to use the rule that
6491appears first in the grammar, but it is very risky to rely on this. Every
6492reduce/reduce conflict must be studied and usually eliminated. Here is the
6493proper way to define @code{sequence}:
6494
6495@example
6496sequence: /* empty */
6497 @{ printf ("empty sequence\n"); @}
6498 | sequence word
6499 @{ printf ("added word %s\n", $2); @}
6500 ;
6501@end example
6502
6503Here is another common error that yields a reduce/reduce conflict:
6504
6505@example
6506sequence: /* empty */
6507 | sequence words
6508 | sequence redirects
6509 ;
6510
6511words: /* empty */
6512 | words word
6513 ;
6514
6515redirects:/* empty */
6516 | redirects redirect
6517 ;
6518@end example
6519
6520@noindent
6521The intention here is to define a sequence which can contain either
6522@code{word} or @code{redirect} groupings. The individual definitions of
6523@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6524three together make a subtle ambiguity: even an empty input can be parsed
6525in infinitely many ways!
6526
6527Consider: nothing-at-all could be a @code{words}. Or it could be two
6528@code{words} in a row, or three, or any number. It could equally well be a
6529@code{redirects}, or two, or any number. Or it could be a @code{words}
6530followed by three @code{redirects} and another @code{words}. And so on.
6531
6532Here are two ways to correct these rules. First, to make it a single level
6533of sequence:
6534
6535@example
6536sequence: /* empty */
6537 | sequence word
6538 | sequence redirect
6539 ;
6540@end example
6541
6542Second, to prevent either a @code{words} or a @code{redirects}
6543from being empty:
6544
6545@example
6546sequence: /* empty */
6547 | sequence words
6548 | sequence redirects
6549 ;
6550
6551words: word
6552 | words word
6553 ;
6554
6555redirects:redirect
6556 | redirects redirect
6557 ;
6558@end example
6559
342b8b6e 6560@node Mystery Conflicts
bfa74976
RS
6561@section Mysterious Reduce/Reduce Conflicts
6562
6563Sometimes reduce/reduce conflicts can occur that don't look warranted.
6564Here is an example:
6565
6566@example
6567@group
6568%token ID
6569
6570%%
6571def: param_spec return_spec ','
6572 ;
6573param_spec:
6574 type
6575 | name_list ':' type
6576 ;
6577@end group
6578@group
6579return_spec:
6580 type
6581 | name ':' type
6582 ;
6583@end group
6584@group
6585type: ID
6586 ;
6587@end group
6588@group
6589name: ID
6590 ;
6591name_list:
6592 name
6593 | name ',' name_list
6594 ;
6595@end group
6596@end example
6597
6598It would seem that this grammar can be parsed with only a single token
742e4900 6599of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6600a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6601@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6602
c827f760
PE
6603@cindex @acronym{LR}(1)
6604@cindex @acronym{LALR}(1)
bfa74976 6605However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6606@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6607an @code{ID}
bfa74976
RS
6608at the beginning of a @code{param_spec} and likewise at the beginning of
6609a @code{return_spec}, are similar enough that Bison assumes they are the
6610same. They appear similar because the same set of rules would be
6611active---the rule for reducing to a @code{name} and that for reducing to
6612a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6613that the rules would require different lookahead tokens in the two
bfa74976
RS
6614contexts, so it makes a single parser state for them both. Combining
6615the two contexts causes a conflict later. In parser terminology, this
c827f760 6616occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6617
6618In general, it is better to fix deficiencies than to document them. But
6619this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6620generators that can handle @acronym{LR}(1) grammars are hard to write
6621and tend to
bfa74976
RS
6622produce parsers that are very large. In practice, Bison is more useful
6623as it is now.
6624
6625When the problem arises, you can often fix it by identifying the two
a220f555
MA
6626parser states that are being confused, and adding something to make them
6627look distinct. In the above example, adding one rule to
bfa74976
RS
6628@code{return_spec} as follows makes the problem go away:
6629
6630@example
6631@group
6632%token BOGUS
6633@dots{}
6634%%
6635@dots{}
6636return_spec:
6637 type
6638 | name ':' type
6639 /* This rule is never used. */
6640 | ID BOGUS
6641 ;
6642@end group
6643@end example
6644
6645This corrects the problem because it introduces the possibility of an
6646additional active rule in the context after the @code{ID} at the beginning of
6647@code{return_spec}. This rule is not active in the corresponding context
6648in a @code{param_spec}, so the two contexts receive distinct parser states.
6649As long as the token @code{BOGUS} is never generated by @code{yylex},
6650the added rule cannot alter the way actual input is parsed.
6651
6652In this particular example, there is another way to solve the problem:
6653rewrite the rule for @code{return_spec} to use @code{ID} directly
6654instead of via @code{name}. This also causes the two confusing
6655contexts to have different sets of active rules, because the one for
6656@code{return_spec} activates the altered rule for @code{return_spec}
6657rather than the one for @code{name}.
6658
6659@example
6660param_spec:
6661 type
6662 | name_list ':' type
6663 ;
6664return_spec:
6665 type
6666 | ID ':' type
6667 ;
6668@end example
6669
e054b190
PE
6670For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6671generators, please see:
6672Frank DeRemer and Thomas Pennello, Efficient Computation of
6673@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6674Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6675pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6676
fae437e8 6677@node Generalized LR Parsing
c827f760
PE
6678@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6679@cindex @acronym{GLR} parsing
6680@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6681@cindex ambiguous grammars
9d9b8b70 6682@cindex nondeterministic parsing
676385e2 6683
fae437e8
AD
6684Bison produces @emph{deterministic} parsers that choose uniquely
6685when to reduce and which reduction to apply
742e4900 6686based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6687As a result, normal Bison handles a proper subset of the family of
6688context-free languages.
fae437e8 6689Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6690sequence of reductions cannot have deterministic parsers in this sense.
6691The same is true of languages that require more than one symbol of
742e4900 6692lookahead, since the parser lacks the information necessary to make a
676385e2 6693decision at the point it must be made in a shift-reduce parser.
fae437e8 6694Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6695there are languages where Bison's particular choice of how to
6696summarize the input seen so far loses necessary information.
6697
6698When you use the @samp{%glr-parser} declaration in your grammar file,
6699Bison generates a parser that uses a different algorithm, called
c827f760
PE
6700Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6701parser uses the same basic
676385e2
PH
6702algorithm for parsing as an ordinary Bison parser, but behaves
6703differently in cases where there is a shift-reduce conflict that has not
fae437e8 6704been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6705reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6706situation, it
fae437e8 6707effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6708shift or reduction. These parsers then proceed as usual, consuming
6709tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6710and split further, with the result that instead of a sequence of states,
c827f760 6711a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6712
6713In effect, each stack represents a guess as to what the proper parse
6714is. Additional input may indicate that a guess was wrong, in which case
6715the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6716actions generated in each stack are saved, rather than being executed
676385e2 6717immediately. When a stack disappears, its saved semantic actions never
fae437e8 6718get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6719their sets of semantic actions are both saved with the state that
6720results from the reduction. We say that two stacks are equivalent
fae437e8 6721when they both represent the same sequence of states,
676385e2
PH
6722and each pair of corresponding states represents a
6723grammar symbol that produces the same segment of the input token
6724stream.
6725
6726Whenever the parser makes a transition from having multiple
c827f760 6727states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6728algorithm, after resolving and executing the saved-up actions.
6729At this transition, some of the states on the stack will have semantic
6730values that are sets (actually multisets) of possible actions. The
6731parser tries to pick one of the actions by first finding one whose rule
6732has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6733declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6734precedence, but there the same merging function is declared for both
fae437e8 6735rules by the @samp{%merge} declaration,
676385e2
PH
6736Bison resolves and evaluates both and then calls the merge function on
6737the result. Otherwise, it reports an ambiguity.
6738
c827f760
PE
6739It is possible to use a data structure for the @acronym{GLR} parsing tree that
6740permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6741size of the input), any unambiguous (not necessarily
6742@acronym{LALR}(1)) grammar in
fae437e8 6743quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6744context-free grammar in cubic worst-case time. However, Bison currently
6745uses a simpler data structure that requires time proportional to the
6746length of the input times the maximum number of stacks required for any
9d9b8b70 6747prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6748grammars can require exponential time and space to process. Such badly
6749behaving examples, however, are not generally of practical interest.
9d9b8b70 6750Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6751doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6752structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6753grammar, in particular, it is only slightly slower than with the default
6754Bison parser.
6755
fa7e68c3 6756For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6757Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6758Generalised @acronym{LR} Parsers, Royal Holloway, University of
6759London, Department of Computer Science, TR-00-12,
6760@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6761(2000-12-24).
6762
1a059451
PE
6763@node Memory Management
6764@section Memory Management, and How to Avoid Memory Exhaustion
6765@cindex memory exhaustion
6766@cindex memory management
bfa74976
RS
6767@cindex stack overflow
6768@cindex parser stack overflow
6769@cindex overflow of parser stack
6770
1a059451 6771The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6772not reduced. When this happens, the parser function @code{yyparse}
1a059451 6773calls @code{yyerror} and then returns 2.
bfa74976 6774
c827f760 6775Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6776usually results from using a right recursion instead of a left
6777recursion, @xref{Recursion, ,Recursive Rules}.
6778
bfa74976
RS
6779@vindex YYMAXDEPTH
6780By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6781parser stack can become before memory is exhausted. Define the
bfa74976
RS
6782macro with a value that is an integer. This value is the maximum number
6783of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6784
6785The stack space allowed is not necessarily allocated. If you specify a
1a059451 6786large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6787stack at first, and then makes it bigger by stages as needed. This
6788increasing allocation happens automatically and silently. Therefore,
6789you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6790space for ordinary inputs that do not need much stack.
6791
d7e14fc0
PE
6792However, do not allow @code{YYMAXDEPTH} to be a value so large that
6793arithmetic overflow could occur when calculating the size of the stack
6794space. Also, do not allow @code{YYMAXDEPTH} to be less than
6795@code{YYINITDEPTH}.
6796
bfa74976
RS
6797@cindex default stack limit
6798The default value of @code{YYMAXDEPTH}, if you do not define it, is
679910000.
6800
6801@vindex YYINITDEPTH
6802You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6803macro @code{YYINITDEPTH} to a positive integer. For the C
6804@acronym{LALR}(1) parser, this value must be a compile-time constant
6805unless you are assuming C99 or some other target language or compiler
6806that allows variable-length arrays. The default is 200.
6807
1a059451 6808Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6809
d1a1114f 6810@c FIXME: C++ output.
87b9c9bc 6811Because of semantic differences between C and C++, the
1a059451
PE
6812@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6813by C++ compilers. In this precise case (compiling a C parser as C++) you are
6814suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6815this deficiency in a future release.
d1a1114f 6816
342b8b6e 6817@node Error Recovery
bfa74976
RS
6818@chapter Error Recovery
6819@cindex error recovery
6820@cindex recovery from errors
6821
6e649e65 6822It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6823error. For example, a compiler should recover sufficiently to parse the
6824rest of the input file and check it for errors; a calculator should accept
6825another expression.
6826
6827In a simple interactive command parser where each input is one line, it may
6828be sufficient to allow @code{yyparse} to return 1 on error and have the
6829caller ignore the rest of the input line when that happens (and then call
6830@code{yyparse} again). But this is inadequate for a compiler, because it
6831forgets all the syntactic context leading up to the error. A syntax error
6832deep within a function in the compiler input should not cause the compiler
6833to treat the following line like the beginning of a source file.
6834
6835@findex error
6836You can define how to recover from a syntax error by writing rules to
6837recognize the special token @code{error}. This is a terminal symbol that
6838is always defined (you need not declare it) and reserved for error
6839handling. The Bison parser generates an @code{error} token whenever a
6840syntax error happens; if you have provided a rule to recognize this token
13863333 6841in the current context, the parse can continue.
bfa74976
RS
6842
6843For example:
6844
6845@example
6846stmnts: /* empty string */
6847 | stmnts '\n'
6848 | stmnts exp '\n'
6849 | stmnts error '\n'
6850@end example
6851
6852The fourth rule in this example says that an error followed by a newline
6853makes a valid addition to any @code{stmnts}.
6854
6855What happens if a syntax error occurs in the middle of an @code{exp}? The
6856error recovery rule, interpreted strictly, applies to the precise sequence
6857of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6858the middle of an @code{exp}, there will probably be some additional tokens
6859and subexpressions on the stack after the last @code{stmnts}, and there
6860will be tokens to read before the next newline. So the rule is not
6861applicable in the ordinary way.
6862
6863But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6864the semantic context and part of the input. First it discards states
6865and objects from the stack until it gets back to a state in which the
bfa74976 6866@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6867already parsed are discarded, back to the last complete @code{stmnts}.)
6868At this point the @code{error} token can be shifted. Then, if the old
742e4900 6869lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6870tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6871this example, Bison reads and discards input until the next newline so
6872that the fourth rule can apply. Note that discarded symbols are
6873possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6874Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6875
6876The choice of error rules in the grammar is a choice of strategies for
6877error recovery. A simple and useful strategy is simply to skip the rest of
6878the current input line or current statement if an error is detected:
6879
6880@example
72d2299c 6881stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6882@end example
6883
6884It is also useful to recover to the matching close-delimiter of an
6885opening-delimiter that has already been parsed. Otherwise the
6886close-delimiter will probably appear to be unmatched, and generate another,
6887spurious error message:
6888
6889@example
6890primary: '(' expr ')'
6891 | '(' error ')'
6892 @dots{}
6893 ;
6894@end example
6895
6896Error recovery strategies are necessarily guesses. When they guess wrong,
6897one syntax error often leads to another. In the above example, the error
6898recovery rule guesses that an error is due to bad input within one
6899@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6900middle of a valid @code{stmnt}. After the error recovery rule recovers
6901from the first error, another syntax error will be found straightaway,
6902since the text following the spurious semicolon is also an invalid
6903@code{stmnt}.
6904
6905To prevent an outpouring of error messages, the parser will output no error
6906message for another syntax error that happens shortly after the first; only
6907after three consecutive input tokens have been successfully shifted will
6908error messages resume.
6909
6910Note that rules which accept the @code{error} token may have actions, just
6911as any other rules can.
6912
6913@findex yyerrok
6914You can make error messages resume immediately by using the macro
6915@code{yyerrok} in an action. If you do this in the error rule's action, no
6916error messages will be suppressed. This macro requires no arguments;
6917@samp{yyerrok;} is a valid C statement.
6918
6919@findex yyclearin
742e4900 6920The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6921this is unacceptable, then the macro @code{yyclearin} may be used to clear
6922this token. Write the statement @samp{yyclearin;} in the error rule's
6923action.
32c29292 6924@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6925
6e649e65 6926For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6927called that advances the input stream to some point where parsing should
6928once again commence. The next symbol returned by the lexical scanner is
742e4900 6929probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6930with @samp{yyclearin;}.
6931
6932@vindex YYRECOVERING
02103984
PE
6933The expression @code{YYRECOVERING ()} yields 1 when the parser
6934is recovering from a syntax error, and 0 otherwise.
6935Syntax error diagnostics are suppressed while recovering from a syntax
6936error.
bfa74976 6937
342b8b6e 6938@node Context Dependency
bfa74976
RS
6939@chapter Handling Context Dependencies
6940
6941The Bison paradigm is to parse tokens first, then group them into larger
6942syntactic units. In many languages, the meaning of a token is affected by
6943its context. Although this violates the Bison paradigm, certain techniques
6944(known as @dfn{kludges}) may enable you to write Bison parsers for such
6945languages.
6946
6947@menu
6948* Semantic Tokens:: Token parsing can depend on the semantic context.
6949* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6950* Tie-in Recovery:: Lexical tie-ins have implications for how
6951 error recovery rules must be written.
6952@end menu
6953
6954(Actually, ``kludge'' means any technique that gets its job done but is
6955neither clean nor robust.)
6956
342b8b6e 6957@node Semantic Tokens
bfa74976
RS
6958@section Semantic Info in Token Types
6959
6960The C language has a context dependency: the way an identifier is used
6961depends on what its current meaning is. For example, consider this:
6962
6963@example
6964foo (x);
6965@end example
6966
6967This looks like a function call statement, but if @code{foo} is a typedef
6968name, then this is actually a declaration of @code{x}. How can a Bison
6969parser for C decide how to parse this input?
6970
c827f760 6971The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6972@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6973identifier, it looks up the current declaration of the identifier in order
6974to decide which token type to return: @code{TYPENAME} if the identifier is
6975declared as a typedef, @code{IDENTIFIER} otherwise.
6976
6977The grammar rules can then express the context dependency by the choice of
6978token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6979but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6980@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6981is @emph{not} significant, such as in declarations that can shadow a
6982typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6983accepted---there is one rule for each of the two token types.
6984
6985This technique is simple to use if the decision of which kinds of
6986identifiers to allow is made at a place close to where the identifier is
6987parsed. But in C this is not always so: C allows a declaration to
6988redeclare a typedef name provided an explicit type has been specified
6989earlier:
6990
6991@example
3a4f411f
PE
6992typedef int foo, bar;
6993int baz (void)
6994@{
6995 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6996 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6997 return foo (bar);
6998@}
bfa74976
RS
6999@end example
7000
7001Unfortunately, the name being declared is separated from the declaration
7002construct itself by a complicated syntactic structure---the ``declarator''.
7003
9ecbd125 7004As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7005all the nonterminal names changed: once for parsing a declaration in
7006which a typedef name can be redefined, and once for parsing a
7007declaration in which that can't be done. Here is a part of the
7008duplication, with actions omitted for brevity:
bfa74976
RS
7009
7010@example
7011initdcl:
7012 declarator maybeasm '='
7013 init
7014 | declarator maybeasm
7015 ;
7016
7017notype_initdcl:
7018 notype_declarator maybeasm '='
7019 init
7020 | notype_declarator maybeasm
7021 ;
7022@end example
7023
7024@noindent
7025Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7026cannot. The distinction between @code{declarator} and
7027@code{notype_declarator} is the same sort of thing.
7028
7029There is some similarity between this technique and a lexical tie-in
7030(described next), in that information which alters the lexical analysis is
7031changed during parsing by other parts of the program. The difference is
7032here the information is global, and is used for other purposes in the
7033program. A true lexical tie-in has a special-purpose flag controlled by
7034the syntactic context.
7035
342b8b6e 7036@node Lexical Tie-ins
bfa74976
RS
7037@section Lexical Tie-ins
7038@cindex lexical tie-in
7039
7040One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7041which is set by Bison actions, whose purpose is to alter the way tokens are
7042parsed.
7043
7044For example, suppose we have a language vaguely like C, but with a special
7045construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7046an expression in parentheses in which all integers are hexadecimal. In
7047particular, the token @samp{a1b} must be treated as an integer rather than
7048as an identifier if it appears in that context. Here is how you can do it:
7049
7050@example
7051@group
7052%@{
38a92d50
PE
7053 int hexflag;
7054 int yylex (void);
7055 void yyerror (char const *);
bfa74976
RS
7056%@}
7057%%
7058@dots{}
7059@end group
7060@group
7061expr: IDENTIFIER
7062 | constant
7063 | HEX '('
7064 @{ hexflag = 1; @}
7065 expr ')'
7066 @{ hexflag = 0;
7067 $$ = $4; @}
7068 | expr '+' expr
7069 @{ $$ = make_sum ($1, $3); @}
7070 @dots{}
7071 ;
7072@end group
7073
7074@group
7075constant:
7076 INTEGER
7077 | STRING
7078 ;
7079@end group
7080@end example
7081
7082@noindent
7083Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7084it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7085with letters are parsed as integers if possible.
7086
342b8b6e
AD
7087The declaration of @code{hexflag} shown in the prologue of the parser file
7088is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7089You must also write the code in @code{yylex} to obey the flag.
bfa74976 7090
342b8b6e 7091@node Tie-in Recovery
bfa74976
RS
7092@section Lexical Tie-ins and Error Recovery
7093
7094Lexical tie-ins make strict demands on any error recovery rules you have.
7095@xref{Error Recovery}.
7096
7097The reason for this is that the purpose of an error recovery rule is to
7098abort the parsing of one construct and resume in some larger construct.
7099For example, in C-like languages, a typical error recovery rule is to skip
7100tokens until the next semicolon, and then start a new statement, like this:
7101
7102@example
7103stmt: expr ';'
7104 | IF '(' expr ')' stmt @{ @dots{} @}
7105 @dots{}
7106 error ';'
7107 @{ hexflag = 0; @}
7108 ;
7109@end example
7110
7111If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7112construct, this error rule will apply, and then the action for the
7113completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7114remain set for the entire rest of the input, or until the next @code{hex}
7115keyword, causing identifiers to be misinterpreted as integers.
7116
7117To avoid this problem the error recovery rule itself clears @code{hexflag}.
7118
7119There may also be an error recovery rule that works within expressions.
7120For example, there could be a rule which applies within parentheses
7121and skips to the close-parenthesis:
7122
7123@example
7124@group
7125expr: @dots{}
7126 | '(' expr ')'
7127 @{ $$ = $2; @}
7128 | '(' error ')'
7129 @dots{}
7130@end group
7131@end example
7132
7133If this rule acts within the @code{hex} construct, it is not going to abort
7134that construct (since it applies to an inner level of parentheses within
7135the construct). Therefore, it should not clear the flag: the rest of
7136the @code{hex} construct should be parsed with the flag still in effect.
7137
7138What if there is an error recovery rule which might abort out of the
7139@code{hex} construct or might not, depending on circumstances? There is no
7140way you can write the action to determine whether a @code{hex} construct is
7141being aborted or not. So if you are using a lexical tie-in, you had better
7142make sure your error recovery rules are not of this kind. Each rule must
7143be such that you can be sure that it always will, or always won't, have to
7144clear the flag.
7145
ec3bc396
AD
7146@c ================================================== Debugging Your Parser
7147
342b8b6e 7148@node Debugging
bfa74976 7149@chapter Debugging Your Parser
ec3bc396
AD
7150
7151Developing a parser can be a challenge, especially if you don't
7152understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7153Algorithm}). Even so, sometimes a detailed description of the automaton
7154can help (@pxref{Understanding, , Understanding Your Parser}), or
7155tracing the execution of the parser can give some insight on why it
7156behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7157
7158@menu
7159* Understanding:: Understanding the structure of your parser.
7160* Tracing:: Tracing the execution of your parser.
7161@end menu
7162
7163@node Understanding
7164@section Understanding Your Parser
7165
7166As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7167Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7168frequent than one would hope), looking at this automaton is required to
7169tune or simply fix a parser. Bison provides two different
35fe0834 7170representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7171
7172The textual file is generated when the options @option{--report} or
7173@option{--verbose} are specified, see @xref{Invocation, , Invoking
7174Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7175the parser output file name, and adding @samp{.output} instead.
7176Therefore, if the input file is @file{foo.y}, then the parser file is
7177called @file{foo.tab.c} by default. As a consequence, the verbose
7178output file is called @file{foo.output}.
7179
7180The following grammar file, @file{calc.y}, will be used in the sequel:
7181
7182@example
7183%token NUM STR
7184%left '+' '-'
7185%left '*'
7186%%
7187exp: exp '+' exp
7188 | exp '-' exp
7189 | exp '*' exp
7190 | exp '/' exp
7191 | NUM
7192 ;
7193useless: STR;
7194%%
7195@end example
7196
88bce5a2
AD
7197@command{bison} reports:
7198
7199@example
cff03fb2
JD
7200calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7201calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7202calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7203calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7204@end example
7205
7206When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7207creates a file @file{calc.output} with contents detailed below. The
7208order of the output and the exact presentation might vary, but the
7209interpretation is the same.
ec3bc396
AD
7210
7211The first section includes details on conflicts that were solved thanks
7212to precedence and/or associativity:
7213
7214@example
7215Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7216Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7217Conflict in state 8 between rule 2 and token '*' resolved as shift.
7218@exdent @dots{}
7219@end example
7220
7221@noindent
7222The next section lists states that still have conflicts.
7223
7224@example
5a99098d
PE
7225State 8 conflicts: 1 shift/reduce
7226State 9 conflicts: 1 shift/reduce
7227State 10 conflicts: 1 shift/reduce
7228State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7229@end example
7230
7231@noindent
7232@cindex token, useless
7233@cindex useless token
7234@cindex nonterminal, useless
7235@cindex useless nonterminal
7236@cindex rule, useless
7237@cindex useless rule
7238The next section reports useless tokens, nonterminal and rules. Useless
7239nonterminals and rules are removed in order to produce a smaller parser,
7240but useless tokens are preserved, since they might be used by the
d80fb37a 7241scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7242below):
7243
7244@example
d80fb37a 7245Nonterminals useless in grammar:
ec3bc396
AD
7246 useless
7247
d80fb37a 7248Terminals unused in grammar:
ec3bc396
AD
7249 STR
7250
cff03fb2 7251Rules useless in grammar:
ec3bc396
AD
7252#6 useless: STR;
7253@end example
7254
7255@noindent
7256The next section reproduces the exact grammar that Bison used:
7257
7258@example
7259Grammar
7260
7261 Number, Line, Rule
88bce5a2 7262 0 5 $accept -> exp $end
ec3bc396
AD
7263 1 5 exp -> exp '+' exp
7264 2 6 exp -> exp '-' exp
7265 3 7 exp -> exp '*' exp
7266 4 8 exp -> exp '/' exp
7267 5 9 exp -> NUM
7268@end example
7269
7270@noindent
7271and reports the uses of the symbols:
7272
7273@example
7274Terminals, with rules where they appear
7275
88bce5a2 7276$end (0) 0
ec3bc396
AD
7277'*' (42) 3
7278'+' (43) 1
7279'-' (45) 2
7280'/' (47) 4
7281error (256)
7282NUM (258) 5
7283
7284Nonterminals, with rules where they appear
7285
88bce5a2 7286$accept (8)
ec3bc396
AD
7287 on left: 0
7288exp (9)
7289 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7290@end example
7291
7292@noindent
7293@cindex item
7294@cindex pointed rule
7295@cindex rule, pointed
7296Bison then proceeds onto the automaton itself, describing each state
7297with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7298item is a production rule together with a point (marked by @samp{.})
7299that the input cursor.
7300
7301@example
7302state 0
7303
88bce5a2 7304 $accept -> . exp $ (rule 0)
ec3bc396 7305
2a8d363a 7306 NUM shift, and go to state 1
ec3bc396 7307
2a8d363a 7308 exp go to state 2
ec3bc396
AD
7309@end example
7310
7311This reads as follows: ``state 0 corresponds to being at the very
7312beginning of the parsing, in the initial rule, right before the start
7313symbol (here, @code{exp}). When the parser returns to this state right
7314after having reduced a rule that produced an @code{exp}, the control
7315flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7316symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7317the parse stack, and the control flow jumps to state 1. Any other
742e4900 7318lookahead triggers a syntax error.''
ec3bc396
AD
7319
7320@cindex core, item set
7321@cindex item set core
7322@cindex kernel, item set
7323@cindex item set core
7324Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7325report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7326at the beginning of any rule deriving an @code{exp}. By default Bison
7327reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7328you want to see more detail you can invoke @command{bison} with
7329@option{--report=itemset} to list all the items, include those that can
7330be derived:
7331
7332@example
7333state 0
7334
88bce5a2 7335 $accept -> . exp $ (rule 0)
ec3bc396
AD
7336 exp -> . exp '+' exp (rule 1)
7337 exp -> . exp '-' exp (rule 2)
7338 exp -> . exp '*' exp (rule 3)
7339 exp -> . exp '/' exp (rule 4)
7340 exp -> . NUM (rule 5)
7341
7342 NUM shift, and go to state 1
7343
7344 exp go to state 2
7345@end example
7346
7347@noindent
7348In the state 1...
7349
7350@example
7351state 1
7352
7353 exp -> NUM . (rule 5)
7354
2a8d363a 7355 $default reduce using rule 5 (exp)
ec3bc396
AD
7356@end example
7357
7358@noindent
742e4900 7359the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7360(@samp{$default}), the parser will reduce it. If it was coming from
7361state 0, then, after this reduction it will return to state 0, and will
7362jump to state 2 (@samp{exp: go to state 2}).
7363
7364@example
7365state 2
7366
88bce5a2 7367 $accept -> exp . $ (rule 0)
ec3bc396
AD
7368 exp -> exp . '+' exp (rule 1)
7369 exp -> exp . '-' exp (rule 2)
7370 exp -> exp . '*' exp (rule 3)
7371 exp -> exp . '/' exp (rule 4)
7372
2a8d363a
AD
7373 $ shift, and go to state 3
7374 '+' shift, and go to state 4
7375 '-' shift, and go to state 5
7376 '*' shift, and go to state 6
7377 '/' shift, and go to state 7
ec3bc396
AD
7378@end example
7379
7380@noindent
7381In state 2, the automaton can only shift a symbol. For instance,
742e4900 7382because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7383@samp{+}, it will be shifted on the parse stack, and the automaton
7384control will jump to state 4, corresponding to the item @samp{exp -> exp
7385'+' . exp}. Since there is no default action, any other token than
6e649e65 7386those listed above will trigger a syntax error.
ec3bc396
AD
7387
7388The state 3 is named the @dfn{final state}, or the @dfn{accepting
7389state}:
7390
7391@example
7392state 3
7393
88bce5a2 7394 $accept -> exp $ . (rule 0)
ec3bc396 7395
2a8d363a 7396 $default accept
ec3bc396
AD
7397@end example
7398
7399@noindent
7400the initial rule is completed (the start symbol and the end
7401of input were read), the parsing exits successfully.
7402
7403The interpretation of states 4 to 7 is straightforward, and is left to
7404the reader.
7405
7406@example
7407state 4
7408
7409 exp -> exp '+' . exp (rule 1)
7410
2a8d363a 7411 NUM shift, and go to state 1
ec3bc396 7412
2a8d363a 7413 exp go to state 8
ec3bc396
AD
7414
7415state 5
7416
7417 exp -> exp '-' . exp (rule 2)
7418
2a8d363a 7419 NUM shift, and go to state 1
ec3bc396 7420
2a8d363a 7421 exp go to state 9
ec3bc396
AD
7422
7423state 6
7424
7425 exp -> exp '*' . exp (rule 3)
7426
2a8d363a 7427 NUM shift, and go to state 1
ec3bc396 7428
2a8d363a 7429 exp go to state 10
ec3bc396
AD
7430
7431state 7
7432
7433 exp -> exp '/' . exp (rule 4)
7434
2a8d363a 7435 NUM shift, and go to state 1
ec3bc396 7436
2a8d363a 7437 exp go to state 11
ec3bc396
AD
7438@end example
7439
5a99098d
PE
7440As was announced in beginning of the report, @samp{State 8 conflicts:
74411 shift/reduce}:
ec3bc396
AD
7442
7443@example
7444state 8
7445
7446 exp -> exp . '+' exp (rule 1)
7447 exp -> exp '+' exp . (rule 1)
7448 exp -> exp . '-' exp (rule 2)
7449 exp -> exp . '*' exp (rule 3)
7450 exp -> exp . '/' exp (rule 4)
7451
2a8d363a
AD
7452 '*' shift, and go to state 6
7453 '/' shift, and go to state 7
ec3bc396 7454
2a8d363a
AD
7455 '/' [reduce using rule 1 (exp)]
7456 $default reduce using rule 1 (exp)
ec3bc396
AD
7457@end example
7458
742e4900 7459Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7460either shifting (and going to state 7), or reducing rule 1. The
7461conflict means that either the grammar is ambiguous, or the parser lacks
7462information to make the right decision. Indeed the grammar is
7463ambiguous, as, since we did not specify the precedence of @samp{/}, the
7464sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7465NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7466NUM}, which corresponds to reducing rule 1.
7467
c827f760 7468Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7469arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7470Shift/Reduce Conflicts}. Discarded actions are reported in between
7471square brackets.
7472
7473Note that all the previous states had a single possible action: either
7474shifting the next token and going to the corresponding state, or
7475reducing a single rule. In the other cases, i.e., when shifting
7476@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7477possible, the lookahead is required to select the action. State 8 is
7478one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7479is shifting, otherwise the action is reducing rule 1. In other words,
7480the first two items, corresponding to rule 1, are not eligible when the
742e4900 7481lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7482precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7483with some set of possible lookahead tokens. When run with
7484@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7485
7486@example
7487state 8
7488
88c78747 7489 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7490 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7491 exp -> exp . '-' exp (rule 2)
7492 exp -> exp . '*' exp (rule 3)
7493 exp -> exp . '/' exp (rule 4)
7494
7495 '*' shift, and go to state 6
7496 '/' shift, and go to state 7
7497
7498 '/' [reduce using rule 1 (exp)]
7499 $default reduce using rule 1 (exp)
7500@end example
7501
7502The remaining states are similar:
7503
7504@example
7505state 9
7506
7507 exp -> exp . '+' exp (rule 1)
7508 exp -> exp . '-' exp (rule 2)
7509 exp -> exp '-' exp . (rule 2)
7510 exp -> exp . '*' exp (rule 3)
7511 exp -> exp . '/' exp (rule 4)
7512
2a8d363a
AD
7513 '*' shift, and go to state 6
7514 '/' shift, and go to state 7
ec3bc396 7515
2a8d363a
AD
7516 '/' [reduce using rule 2 (exp)]
7517 $default reduce using rule 2 (exp)
ec3bc396
AD
7518
7519state 10
7520
7521 exp -> exp . '+' exp (rule 1)
7522 exp -> exp . '-' exp (rule 2)
7523 exp -> exp . '*' exp (rule 3)
7524 exp -> exp '*' exp . (rule 3)
7525 exp -> exp . '/' exp (rule 4)
7526
2a8d363a 7527 '/' shift, and go to state 7
ec3bc396 7528
2a8d363a
AD
7529 '/' [reduce using rule 3 (exp)]
7530 $default reduce using rule 3 (exp)
ec3bc396
AD
7531
7532state 11
7533
7534 exp -> exp . '+' exp (rule 1)
7535 exp -> exp . '-' exp (rule 2)
7536 exp -> exp . '*' exp (rule 3)
7537 exp -> exp . '/' exp (rule 4)
7538 exp -> exp '/' exp . (rule 4)
7539
2a8d363a
AD
7540 '+' shift, and go to state 4
7541 '-' shift, and go to state 5
7542 '*' shift, and go to state 6
7543 '/' shift, and go to state 7
ec3bc396 7544
2a8d363a
AD
7545 '+' [reduce using rule 4 (exp)]
7546 '-' [reduce using rule 4 (exp)]
7547 '*' [reduce using rule 4 (exp)]
7548 '/' [reduce using rule 4 (exp)]
7549 $default reduce using rule 4 (exp)
ec3bc396
AD
7550@end example
7551
7552@noindent
fa7e68c3
PE
7553Observe that state 11 contains conflicts not only due to the lack of
7554precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7555@samp{*}, but also because the
ec3bc396
AD
7556associativity of @samp{/} is not specified.
7557
7558
7559@node Tracing
7560@section Tracing Your Parser
bfa74976
RS
7561@findex yydebug
7562@cindex debugging
7563@cindex tracing the parser
7564
7565If a Bison grammar compiles properly but doesn't do what you want when it
7566runs, the @code{yydebug} parser-trace feature can help you figure out why.
7567
3ded9a63
AD
7568There are several means to enable compilation of trace facilities:
7569
7570@table @asis
7571@item the macro @code{YYDEBUG}
7572@findex YYDEBUG
7573Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7574parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7575@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7576YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7577Prologue}).
7578
7579@item the option @option{-t}, @option{--debug}
7580Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7581,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7582
7583@item the directive @samp{%debug}
7584@findex %debug
7585Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7586Declaration Summary}). This is a Bison extension, which will prove
7587useful when Bison will output parsers for languages that don't use a
c827f760
PE
7588preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7589you, this is
3ded9a63
AD
7590the preferred solution.
7591@end table
7592
7593We suggest that you always enable the debug option so that debugging is
7594always possible.
bfa74976 7595
02a81e05 7596The trace facility outputs messages with macro calls of the form
e2742e46 7597@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7598@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7599arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7600define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7601and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7602
7603Once you have compiled the program with trace facilities, the way to
7604request a trace is to store a nonzero value in the variable @code{yydebug}.
7605You can do this by making the C code do it (in @code{main}, perhaps), or
7606you can alter the value with a C debugger.
7607
7608Each step taken by the parser when @code{yydebug} is nonzero produces a
7609line or two of trace information, written on @code{stderr}. The trace
7610messages tell you these things:
7611
7612@itemize @bullet
7613@item
7614Each time the parser calls @code{yylex}, what kind of token was read.
7615
7616@item
7617Each time a token is shifted, the depth and complete contents of the
7618state stack (@pxref{Parser States}).
7619
7620@item
7621Each time a rule is reduced, which rule it is, and the complete contents
7622of the state stack afterward.
7623@end itemize
7624
7625To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7626produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7627Bison}). This file shows the meaning of each state in terms of
7628positions in various rules, and also what each state will do with each
7629possible input token. As you read the successive trace messages, you
7630can see that the parser is functioning according to its specification in
7631the listing file. Eventually you will arrive at the place where
7632something undesirable happens, and you will see which parts of the
7633grammar are to blame.
bfa74976
RS
7634
7635The parser file is a C program and you can use C debuggers on it, but it's
7636not easy to interpret what it is doing. The parser function is a
7637finite-state machine interpreter, and aside from the actions it executes
7638the same code over and over. Only the values of variables show where in
7639the grammar it is working.
7640
7641@findex YYPRINT
7642The debugging information normally gives the token type of each token
7643read, but not its semantic value. You can optionally define a macro
7644named @code{YYPRINT} to provide a way to print the value. If you define
7645@code{YYPRINT}, it should take three arguments. The parser will pass a
7646standard I/O stream, the numeric code for the token type, and the token
7647value (from @code{yylval}).
7648
7649Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7650calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7651
7652@smallexample
38a92d50
PE
7653%@{
7654 static void print_token_value (FILE *, int, YYSTYPE);
7655 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7656%@}
7657
7658@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7659
7660static void
831d3c99 7661print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7662@{
7663 if (type == VAR)
d3c4e709 7664 fprintf (file, "%s", value.tptr->name);
bfa74976 7665 else if (type == NUM)
d3c4e709 7666 fprintf (file, "%d", value.val);
bfa74976
RS
7667@}
7668@end smallexample
7669
ec3bc396
AD
7670@c ================================================= Invoking Bison
7671
342b8b6e 7672@node Invocation
bfa74976
RS
7673@chapter Invoking Bison
7674@cindex invoking Bison
7675@cindex Bison invocation
7676@cindex options for invoking Bison
7677
7678The usual way to invoke Bison is as follows:
7679
7680@example
7681bison @var{infile}
7682@end example
7683
7684Here @var{infile} is the grammar file name, which usually ends in
7685@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7686with @samp{.tab.c} and removing any leading directory. Thus, the
7687@samp{bison foo.y} file name yields
7688@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7689@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7690C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7691or @file{foo.y++}. Then, the output files will take an extension like
7692the given one as input (respectively @file{foo.tab.cpp} and
7693@file{foo.tab.c++}).
fa4d969f 7694This feature takes effect with all options that manipulate file names like
234a3be3
AD
7695@samp{-o} or @samp{-d}.
7696
7697For example :
7698
7699@example
7700bison -d @var{infile.yxx}
7701@end example
84163231 7702@noindent
72d2299c 7703will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7704
7705@example
b56471a6 7706bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7707@end example
84163231 7708@noindent
234a3be3
AD
7709will produce @file{output.c++} and @file{outfile.h++}.
7710
397ec073
PE
7711For compatibility with @acronym{POSIX}, the standard Bison
7712distribution also contains a shell script called @command{yacc} that
7713invokes Bison with the @option{-y} option.
7714
bfa74976 7715@menu
13863333 7716* Bison Options:: All the options described in detail,
c827f760 7717 in alphabetical order by short options.
bfa74976 7718* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7719* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7720@end menu
7721
342b8b6e 7722@node Bison Options
bfa74976
RS
7723@section Bison Options
7724
7725Bison supports both traditional single-letter options and mnemonic long
7726option names. Long option names are indicated with @samp{--} instead of
7727@samp{-}. Abbreviations for option names are allowed as long as they
7728are unique. When a long option takes an argument, like
7729@samp{--file-prefix}, connect the option name and the argument with
7730@samp{=}.
7731
7732Here is a list of options that can be used with Bison, alphabetized by
7733short option. It is followed by a cross key alphabetized by long
7734option.
7735
89cab50d
AD
7736@c Please, keep this ordered as in `bison --help'.
7737@noindent
7738Operations modes:
7739@table @option
7740@item -h
7741@itemx --help
7742Print a summary of the command-line options to Bison and exit.
bfa74976 7743
89cab50d
AD
7744@item -V
7745@itemx --version
7746Print the version number of Bison and exit.
bfa74976 7747
f7ab6a50
PE
7748@item --print-localedir
7749Print the name of the directory containing locale-dependent data.
7750
a0de5091
JD
7751@item --print-datadir
7752Print the name of the directory containing skeletons and XSLT.
7753
89cab50d
AD
7754@item -y
7755@itemx --yacc
54662697
PE
7756Act more like the traditional Yacc command. This can cause
7757different diagnostics to be generated, and may change behavior in
7758other minor ways. Most importantly, imitate Yacc's output
7759file name conventions, so that the parser output file is called
89cab50d 7760@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7761@file{y.tab.h}.
7762Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7763statements in addition to an @code{enum} to associate token numbers with token
7764names.
7765Thus, the following shell script can substitute for Yacc, and the Bison
7766distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7767
89cab50d 7768@example
397ec073 7769#! /bin/sh
26e06a21 7770bison -y "$@@"
89cab50d 7771@end example
54662697
PE
7772
7773The @option{-y}/@option{--yacc} option is intended for use with
7774traditional Yacc grammars. If your grammar uses a Bison extension
7775like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7776this option is specified.
7777
ecd1b61c
JD
7778@item -W [@var{category}]
7779@itemx --warnings[=@var{category}]
118d4978
AD
7780Output warnings falling in @var{category}. @var{category} can be one
7781of:
7782@table @code
7783@item midrule-values
8e55b3aa
JD
7784Warn about mid-rule values that are set but not used within any of the actions
7785of the parent rule.
7786For example, warn about unused @code{$2} in:
118d4978
AD
7787
7788@example
7789exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7790@end example
7791
8e55b3aa
JD
7792Also warn about mid-rule values that are used but not set.
7793For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7794
7795@example
7796 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7797@end example
7798
7799These warnings are not enabled by default since they sometimes prove to
7800be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7801@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7802
7803
7804@item yacc
7805Incompatibilities with @acronym{POSIX} Yacc.
7806
7807@item all
8e55b3aa 7808All the warnings.
118d4978 7809@item none
8e55b3aa 7810Turn off all the warnings.
118d4978 7811@item error
8e55b3aa 7812Treat warnings as errors.
118d4978
AD
7813@end table
7814
7815A category can be turned off by prefixing its name with @samp{no-}. For
7816instance, @option{-Wno-syntax} will hide the warnings about unused
7817variables.
89cab50d
AD
7818@end table
7819
7820@noindent
7821Tuning the parser:
7822
7823@table @option
7824@item -t
7825@itemx --debug
4947ebdb
PE
7826In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7827already defined, so that the debugging facilities are compiled.
ec3bc396 7828@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7829
0e021770
PE
7830@item -L @var{language}
7831@itemx --language=@var{language}
7832Specify the programming language for the generated parser, as if
7833@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7834Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7835@var{language} is case-insensitive.
0e021770 7836
ed4d67dc
JD
7837This option is experimental and its effect may be modified in future
7838releases.
7839
89cab50d 7840@item --locations
d8988b2f 7841Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7842
7843@item -p @var{prefix}
7844@itemx --name-prefix=@var{prefix}
02975b9a 7845Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7846@xref{Decl Summary}.
bfa74976
RS
7847
7848@item -l
7849@itemx --no-lines
7850Don't put any @code{#line} preprocessor commands in the parser file.
7851Ordinarily Bison puts them in the parser file so that the C compiler
7852and debuggers will associate errors with your source file, the
7853grammar file. This option causes them to associate errors with the
95e742f7 7854parser file, treating it as an independent source file in its own right.
bfa74976 7855
e6e704dc
JD
7856@item -S @var{file}
7857@itemx --skeleton=@var{file}
a7867f53 7858Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7859(@pxref{Decl Summary, , Bison Declaration Summary}).
7860
ed4d67dc
JD
7861@c You probably don't need this option unless you are developing Bison.
7862@c You should use @option{--language} if you want to specify the skeleton for a
7863@c different language, because it is clearer and because it will always
7864@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 7865
a7867f53
JD
7866If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7867file in the Bison installation directory.
7868If it does, @var{file} is an absolute file name or a file name relative to the
7869current working directory.
7870This is similar to how most shells resolve commands.
7871
89cab50d
AD
7872@item -k
7873@itemx --token-table
d8988b2f 7874Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7875@end table
bfa74976 7876
89cab50d
AD
7877@noindent
7878Adjust the output:
bfa74976 7879
89cab50d 7880@table @option
8e55b3aa 7881@item --defines[=@var{file}]
d8988b2f 7882Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7883file containing macro definitions for the token type names defined in
4bfd5e4e 7884the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7885
8e55b3aa
JD
7886@item -d
7887This is the same as @code{--defines} except @code{-d} does not accept a
7888@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
7889with other short options.
342b8b6e 7890
89cab50d
AD
7891@item -b @var{file-prefix}
7892@itemx --file-prefix=@var{prefix}
9c437126 7893Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7894for all Bison output file names. @xref{Decl Summary}.
bfa74976 7895
ec3bc396
AD
7896@item -r @var{things}
7897@itemx --report=@var{things}
7898Write an extra output file containing verbose description of the comma
7899separated list of @var{things} among:
7900
7901@table @code
7902@item state
7903Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7904@acronym{LALR} automaton.
ec3bc396 7905
742e4900 7906@item lookahead
ec3bc396 7907Implies @code{state} and augments the description of the automaton with
742e4900 7908each rule's lookahead set.
ec3bc396
AD
7909
7910@item itemset
7911Implies @code{state} and augments the description of the automaton with
7912the full set of items for each state, instead of its core only.
7913@end table
7914
1bb2bd75
JD
7915@item --report-file=@var{file}
7916Specify the @var{file} for the verbose description.
7917
bfa74976
RS
7918@item -v
7919@itemx --verbose
9c437126 7920Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7921file containing verbose descriptions of the grammar and
72d2299c 7922parser. @xref{Decl Summary}.
bfa74976 7923
fa4d969f
PE
7924@item -o @var{file}
7925@itemx --output=@var{file}
7926Specify the @var{file} for the parser file.
bfa74976 7927
fa4d969f 7928The other output files' names are constructed from @var{file} as
d8988b2f 7929described under the @samp{-v} and @samp{-d} options.
342b8b6e 7930
8e55b3aa
JD
7931@item -g[@var{file}]
7932@itemx --graph[=@var{file}]
35fe0834
PE
7933Output a graphical representation of the @acronym{LALR}(1) grammar
7934automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7935@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
7936@code{@var{file}} is optional.
7937If omitted and the grammar file is @file{foo.y}, the output file will be
7938@file{foo.dot}.
59da312b 7939
8e55b3aa
JD
7940@item -x[@var{file}]
7941@itemx --xml[=@var{file}]
59da312b 7942Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 7943@code{@var{file}} is optional.
59da312b
JD
7944If omitted and the grammar file is @file{foo.y}, the output file will be
7945@file{foo.xml}.
7946(The current XML schema is experimental and may evolve.
7947More user feedback will help to stabilize it.)
bfa74976
RS
7948@end table
7949
342b8b6e 7950@node Option Cross Key
bfa74976
RS
7951@section Option Cross Key
7952
aa08666d 7953@c FIXME: How about putting the directives too?
bfa74976
RS
7954Here is a list of options, alphabetized by long option, to help you find
7955the corresponding short option.
7956
aa08666d
AD
7957@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7958@headitem Long Option @tab Short Option
f4101aa6 7959@include cross-options.texi
aa08666d 7960@end multitable
bfa74976 7961
93dd49ab
PE
7962@node Yacc Library
7963@section Yacc Library
7964
7965The Yacc library contains default implementations of the
7966@code{yyerror} and @code{main} functions. These default
7967implementations are normally not useful, but @acronym{POSIX} requires
7968them. To use the Yacc library, link your program with the
7969@option{-ly} option. Note that Bison's implementation of the Yacc
7970library is distributed under the terms of the @acronym{GNU} General
7971Public License (@pxref{Copying}).
7972
7973If you use the Yacc library's @code{yyerror} function, you should
7974declare @code{yyerror} as follows:
7975
7976@example
7977int yyerror (char const *);
7978@end example
7979
7980Bison ignores the @code{int} value returned by this @code{yyerror}.
7981If you use the Yacc library's @code{main} function, your
7982@code{yyparse} function should have the following type signature:
7983
7984@example
7985int yyparse (void);
7986@end example
7987
12545799
AD
7988@c ================================================= C++ Bison
7989
8405b70c
PB
7990@node Other Languages
7991@chapter Parsers Written In Other Languages
12545799
AD
7992
7993@menu
7994* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7995* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7996@end menu
7997
7998@node C++ Parsers
7999@section C++ Parsers
8000
8001@menu
8002* C++ Bison Interface:: Asking for C++ parser generation
8003* C++ Semantic Values:: %union vs. C++
8004* C++ Location Values:: The position and location classes
8005* C++ Parser Interface:: Instantiating and running the parser
8006* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8007* A Complete C++ Example:: Demonstrating their use
12545799
AD
8008@end menu
8009
8010@node C++ Bison Interface
8011@subsection C++ Bison Interface
ed4d67dc 8012@c - %skeleton "lalr1.cc"
12545799
AD
8013@c - Always pure
8014@c - initial action
8015
ed4d67dc
JD
8016The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8017@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8018@option{--skeleton=lalr1.c}.
e6e704dc 8019@xref{Decl Summary}.
0e021770 8020
793fbca5
JD
8021When run, @command{bison} will create several entities in the @samp{yy}
8022namespace.
8023@findex %define namespace
8024Use the @samp{%define namespace} directive to change the namespace name, see
8025@ref{Decl Summary}.
8026The various classes are generated in the following files:
aa08666d 8027
12545799
AD
8028@table @file
8029@item position.hh
8030@itemx location.hh
8031The definition of the classes @code{position} and @code{location},
8032used for location tracking. @xref{C++ Location Values}.
8033
8034@item stack.hh
8035An auxiliary class @code{stack} used by the parser.
8036
fa4d969f
PE
8037@item @var{file}.hh
8038@itemx @var{file}.cc
cd8b5791
AD
8039(Assuming the extension of the input file was @samp{.yy}.) The
8040declaration and implementation of the C++ parser class. The basename
8041and extension of these two files follow the same rules as with regular C
8042parsers (@pxref{Invocation}).
12545799 8043
cd8b5791
AD
8044The header is @emph{mandatory}; you must either pass
8045@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8046@samp{%defines} directive.
8047@end table
8048
8049All these files are documented using Doxygen; run @command{doxygen}
8050for a complete and accurate documentation.
8051
8052@node C++ Semantic Values
8053@subsection C++ Semantic Values
8054@c - No objects in unions
178e123e 8055@c - YYSTYPE
12545799
AD
8056@c - Printer and destructor
8057
8058The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8059Collection of Value Types}. In particular it produces a genuine
8060@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8061within pseudo-unions (similar to Boost variants) might be implemented to
8062alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8063@itemize @minus
8064@item
fb9712a9
AD
8065The type @code{YYSTYPE} is defined but its use is discouraged: rather
8066you should refer to the parser's encapsulated type
8067@code{yy::parser::semantic_type}.
12545799
AD
8068@item
8069Non POD (Plain Old Data) types cannot be used. C++ forbids any
8070instance of classes with constructors in unions: only @emph{pointers}
8071to such objects are allowed.
8072@end itemize
8073
8074Because objects have to be stored via pointers, memory is not
8075reclaimed automatically: using the @code{%destructor} directive is the
8076only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8077Symbols}.
8078
8079
8080@node C++ Location Values
8081@subsection C++ Location Values
8082@c - %locations
8083@c - class Position
8084@c - class Location
16dc6a9e 8085@c - %define filename_type "const symbol::Symbol"
12545799
AD
8086
8087When the directive @code{%locations} is used, the C++ parser supports
8088location tracking, see @ref{Locations, , Locations Overview}. Two
8089auxiliary classes define a @code{position}, a single point in a file,
8090and a @code{location}, a range composed of a pair of
8091@code{position}s (possibly spanning several files).
8092
fa4d969f 8093@deftypemethod {position} {std::string*} file
12545799
AD
8094The name of the file. It will always be handled as a pointer, the
8095parser will never duplicate nor deallocate it. As an experimental
8096feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8097filename_type "@var{type}"}.
12545799
AD
8098@end deftypemethod
8099
8100@deftypemethod {position} {unsigned int} line
8101The line, starting at 1.
8102@end deftypemethod
8103
8104@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8105Advance by @var{height} lines, resetting the column number.
8106@end deftypemethod
8107
8108@deftypemethod {position} {unsigned int} column
8109The column, starting at 0.
8110@end deftypemethod
8111
8112@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8113Advance by @var{width} columns, without changing the line number.
8114@end deftypemethod
8115
8116@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8117@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8118@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8119@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8120Various forms of syntactic sugar for @code{columns}.
8121@end deftypemethod
8122
8123@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8124Report @var{p} on @var{o} like this:
fa4d969f
PE
8125@samp{@var{file}:@var{line}.@var{column}}, or
8126@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8127@end deftypemethod
8128
8129@deftypemethod {location} {position} begin
8130@deftypemethodx {location} {position} end
8131The first, inclusive, position of the range, and the first beyond.
8132@end deftypemethod
8133
8134@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8135@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8136Advance the @code{end} position.
8137@end deftypemethod
8138
8139@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8140@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8141@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8142Various forms of syntactic sugar.
8143@end deftypemethod
8144
8145@deftypemethod {location} {void} step ()
8146Move @code{begin} onto @code{end}.
8147@end deftypemethod
8148
8149
8150@node C++ Parser Interface
8151@subsection C++ Parser Interface
8152@c - define parser_class_name
8153@c - Ctor
8154@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8155@c debug_stream.
8156@c - Reporting errors
8157
8158The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8159declare and define the parser class in the namespace @code{yy}. The
8160class name defaults to @code{parser}, but may be changed using
16dc6a9e 8161@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8162this class is detailed below. It can be extended using the
12545799
AD
8163@code{%parse-param} feature: its semantics is slightly changed since
8164it describes an additional member of the parser class, and an
8165additional argument for its constructor.
8166
8a0adb01
AD
8167@defcv {Type} {parser} {semantic_value_type}
8168@defcvx {Type} {parser} {location_value_type}
12545799 8169The types for semantics value and locations.
8a0adb01 8170@end defcv
12545799
AD
8171
8172@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8173Build a new parser object. There are no arguments by default, unless
8174@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8175@end deftypemethod
8176
8177@deftypemethod {parser} {int} parse ()
8178Run the syntactic analysis, and return 0 on success, 1 otherwise.
8179@end deftypemethod
8180
8181@deftypemethod {parser} {std::ostream&} debug_stream ()
8182@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8183Get or set the stream used for tracing the parsing. It defaults to
8184@code{std::cerr}.
8185@end deftypemethod
8186
8187@deftypemethod {parser} {debug_level_type} debug_level ()
8188@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8189Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8190or nonzero, full tracing.
12545799
AD
8191@end deftypemethod
8192
8193@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8194The definition for this member function must be supplied by the user:
8195the parser uses it to report a parser error occurring at @var{l},
8196described by @var{m}.
8197@end deftypemethod
8198
8199
8200@node C++ Scanner Interface
8201@subsection C++ Scanner Interface
8202@c - prefix for yylex.
8203@c - Pure interface to yylex
8204@c - %lex-param
8205
8206The parser invokes the scanner by calling @code{yylex}. Contrary to C
8207parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8208@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8209
8210@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8211Return the next token. Its type is the return value, its semantic
8212value and location being @var{yylval} and @var{yylloc}. Invocations of
8213@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8214@end deftypemethod
8215
8216
8217@node A Complete C++ Example
8405b70c 8218@subsection A Complete C++ Example
12545799
AD
8219
8220This section demonstrates the use of a C++ parser with a simple but
8221complete example. This example should be available on your system,
8222ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8223focuses on the use of Bison, therefore the design of the various C++
8224classes is very naive: no accessors, no encapsulation of members etc.
8225We will use a Lex scanner, and more precisely, a Flex scanner, to
8226demonstrate the various interaction. A hand written scanner is
8227actually easier to interface with.
8228
8229@menu
8230* Calc++ --- C++ Calculator:: The specifications
8231* Calc++ Parsing Driver:: An active parsing context
8232* Calc++ Parser:: A parser class
8233* Calc++ Scanner:: A pure C++ Flex scanner
8234* Calc++ Top Level:: Conducting the band
8235@end menu
8236
8237@node Calc++ --- C++ Calculator
8405b70c 8238@subsubsection Calc++ --- C++ Calculator
12545799
AD
8239
8240Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8241expression, possibly preceded by variable assignments. An
12545799
AD
8242environment containing possibly predefined variables such as
8243@code{one} and @code{two}, is exchanged with the parser. An example
8244of valid input follows.
8245
8246@example
8247three := 3
8248seven := one + two * three
8249seven * seven
8250@end example
8251
8252@node Calc++ Parsing Driver
8405b70c 8253@subsubsection Calc++ Parsing Driver
12545799
AD
8254@c - An env
8255@c - A place to store error messages
8256@c - A place for the result
8257
8258To support a pure interface with the parser (and the scanner) the
8259technique of the ``parsing context'' is convenient: a structure
8260containing all the data to exchange. Since, in addition to simply
8261launch the parsing, there are several auxiliary tasks to execute (open
8262the file for parsing, instantiate the parser etc.), we recommend
8263transforming the simple parsing context structure into a fully blown
8264@dfn{parsing driver} class.
8265
8266The declaration of this driver class, @file{calc++-driver.hh}, is as
8267follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8268required standard library components, and the declaration of the parser
8269class.
12545799 8270
1c59e0a1 8271@comment file: calc++-driver.hh
12545799
AD
8272@example
8273#ifndef CALCXX_DRIVER_HH
8274# define CALCXX_DRIVER_HH
8275# include <string>
8276# include <map>
fb9712a9 8277# include "calc++-parser.hh"
12545799
AD
8278@end example
8279
12545799
AD
8280
8281@noindent
8282Then comes the declaration of the scanning function. Flex expects
8283the signature of @code{yylex} to be defined in the macro
8284@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8285factor both as follows.
1c59e0a1
AD
8286
8287@comment file: calc++-driver.hh
12545799 8288@example
3dc5e96b
PE
8289// Tell Flex the lexer's prototype ...
8290# define YY_DECL \
c095d689
AD
8291 yy::calcxx_parser::token_type \
8292 yylex (yy::calcxx_parser::semantic_type* yylval, \
8293 yy::calcxx_parser::location_type* yylloc, \
8294 calcxx_driver& driver)
12545799
AD
8295// ... and declare it for the parser's sake.
8296YY_DECL;
8297@end example
8298
8299@noindent
8300The @code{calcxx_driver} class is then declared with its most obvious
8301members.
8302
1c59e0a1 8303@comment file: calc++-driver.hh
12545799
AD
8304@example
8305// Conducting the whole scanning and parsing of Calc++.
8306class calcxx_driver
8307@{
8308public:
8309 calcxx_driver ();
8310 virtual ~calcxx_driver ();
8311
8312 std::map<std::string, int> variables;
8313
8314 int result;
8315@end example
8316
8317@noindent
8318To encapsulate the coordination with the Flex scanner, it is useful to
8319have two members function to open and close the scanning phase.
12545799 8320
1c59e0a1 8321@comment file: calc++-driver.hh
12545799
AD
8322@example
8323 // Handling the scanner.
8324 void scan_begin ();
8325 void scan_end ();
8326 bool trace_scanning;
8327@end example
8328
8329@noindent
8330Similarly for the parser itself.
8331
1c59e0a1 8332@comment file: calc++-driver.hh
12545799 8333@example
bb32f4f2
AD
8334 // Run the parser. Return 0 on success.
8335 int parse (const std::string& f);
12545799
AD
8336 std::string file;
8337 bool trace_parsing;
8338@end example
8339
8340@noindent
8341To demonstrate pure handling of parse errors, instead of simply
8342dumping them on the standard error output, we will pass them to the
8343compiler driver using the following two member functions. Finally, we
8344close the class declaration and CPP guard.
8345
1c59e0a1 8346@comment file: calc++-driver.hh
12545799
AD
8347@example
8348 // Error handling.
8349 void error (const yy::location& l, const std::string& m);
8350 void error (const std::string& m);
8351@};
8352#endif // ! CALCXX_DRIVER_HH
8353@end example
8354
8355The implementation of the driver is straightforward. The @code{parse}
8356member function deserves some attention. The @code{error} functions
8357are simple stubs, they should actually register the located error
8358messages and set error state.
8359
1c59e0a1 8360@comment file: calc++-driver.cc
12545799
AD
8361@example
8362#include "calc++-driver.hh"
8363#include "calc++-parser.hh"
8364
8365calcxx_driver::calcxx_driver ()
8366 : trace_scanning (false), trace_parsing (false)
8367@{
8368 variables["one"] = 1;
8369 variables["two"] = 2;
8370@}
8371
8372calcxx_driver::~calcxx_driver ()
8373@{
8374@}
8375
bb32f4f2 8376int
12545799
AD
8377calcxx_driver::parse (const std::string &f)
8378@{
8379 file = f;
8380 scan_begin ();
8381 yy::calcxx_parser parser (*this);
8382 parser.set_debug_level (trace_parsing);
bb32f4f2 8383 int res = parser.parse ();
12545799 8384 scan_end ();
bb32f4f2 8385 return res;
12545799
AD
8386@}
8387
8388void
8389calcxx_driver::error (const yy::location& l, const std::string& m)
8390@{
8391 std::cerr << l << ": " << m << std::endl;
8392@}
8393
8394void
8395calcxx_driver::error (const std::string& m)
8396@{
8397 std::cerr << m << std::endl;
8398@}
8399@end example
8400
8401@node Calc++ Parser
8405b70c 8402@subsubsection Calc++ Parser
12545799 8403
b50d2359
AD
8404The parser definition file @file{calc++-parser.yy} starts by asking for
8405the C++ LALR(1) skeleton, the creation of the parser header file, and
8406specifies the name of the parser class. Because the C++ skeleton
8407changed several times, it is safer to require the version you designed
8408the grammar for.
1c59e0a1
AD
8409
8410@comment file: calc++-parser.yy
12545799 8411@example
ed4d67dc 8412%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8413%require "@value{VERSION}"
12545799 8414%defines
16dc6a9e 8415%define parser_class_name "calcxx_parser"
fb9712a9
AD
8416@end example
8417
8418@noindent
16dc6a9e 8419@findex %code requires
fb9712a9
AD
8420Then come the declarations/inclusions needed to define the
8421@code{%union}. Because the parser uses the parsing driver and
8422reciprocally, both cannot include the header of the other. Because the
8423driver's header needs detailed knowledge about the parser class (in
8424particular its inner types), it is the parser's header which will simply
8425use a forward declaration of the driver.
148d66d8 8426@xref{Decl Summary, ,%code}.
fb9712a9
AD
8427
8428@comment file: calc++-parser.yy
8429@example
16dc6a9e 8430%code requires @{
12545799 8431# include <string>
fb9712a9 8432class calcxx_driver;
9bc0dd67 8433@}
12545799
AD
8434@end example
8435
8436@noindent
8437The driver is passed by reference to the parser and to the scanner.
8438This provides a simple but effective pure interface, not relying on
8439global variables.
8440
1c59e0a1 8441@comment file: calc++-parser.yy
12545799
AD
8442@example
8443// The parsing context.
8444%parse-param @{ calcxx_driver& driver @}
8445%lex-param @{ calcxx_driver& driver @}
8446@end example
8447
8448@noindent
8449Then we request the location tracking feature, and initialize the
87b9c9bc 8450first location's file name. Afterward new locations are computed
12545799
AD
8451relatively to the previous locations: the file name will be
8452automatically propagated.
8453
1c59e0a1 8454@comment file: calc++-parser.yy
12545799
AD
8455@example
8456%locations
8457%initial-action
8458@{
8459 // Initialize the initial location.
b47dbebe 8460 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8461@};
8462@end example
8463
8464@noindent
8465Use the two following directives to enable parser tracing and verbose
8466error messages.
8467
1c59e0a1 8468@comment file: calc++-parser.yy
12545799
AD
8469@example
8470%debug
8471%error-verbose
8472@end example
8473
8474@noindent
8475Semantic values cannot use ``real'' objects, but only pointers to
8476them.
8477
1c59e0a1 8478@comment file: calc++-parser.yy
12545799
AD
8479@example
8480// Symbols.
8481%union
8482@{
8483 int ival;
8484 std::string *sval;
8485@};
8486@end example
8487
fb9712a9 8488@noindent
136a0f76
PB
8489@findex %code
8490The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8491@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8492
8493@comment file: calc++-parser.yy
8494@example
136a0f76 8495%code @{
fb9712a9 8496# include "calc++-driver.hh"
34f98f46 8497@}
fb9712a9
AD
8498@end example
8499
8500
12545799
AD
8501@noindent
8502The token numbered as 0 corresponds to end of file; the following line
8503allows for nicer error messages referring to ``end of file'' instead
8504of ``$end''. Similarly user friendly named are provided for each
8505symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8506avoid name clashes.
8507
1c59e0a1 8508@comment file: calc++-parser.yy
12545799 8509@example
fb9712a9
AD
8510%token END 0 "end of file"
8511%token ASSIGN ":="
8512%token <sval> IDENTIFIER "identifier"
8513%token <ival> NUMBER "number"
a8c2e813 8514%type <ival> exp
12545799
AD
8515@end example
8516
8517@noindent
8518To enable memory deallocation during error recovery, use
8519@code{%destructor}.
8520
287c78f6 8521@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8522@comment file: calc++-parser.yy
12545799
AD
8523@example
8524%printer @{ debug_stream () << *$$; @} "identifier"
8525%destructor @{ delete $$; @} "identifier"
8526
a8c2e813 8527%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8528@end example
8529
8530@noindent
8531The grammar itself is straightforward.
8532
1c59e0a1 8533@comment file: calc++-parser.yy
12545799
AD
8534@example
8535%%
8536%start unit;
8537unit: assignments exp @{ driver.result = $2; @};
8538
8539assignments: assignments assignment @{@}
9d9b8b70 8540 | /* Nothing. */ @{@};
12545799 8541
3dc5e96b
PE
8542assignment:
8543 "identifier" ":=" exp
8544 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8545
8546%left '+' '-';
8547%left '*' '/';
8548exp: exp '+' exp @{ $$ = $1 + $3; @}
8549 | exp '-' exp @{ $$ = $1 - $3; @}
8550 | exp '*' exp @{ $$ = $1 * $3; @}
8551 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8552 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8553 | "number" @{ $$ = $1; @};
12545799
AD
8554%%
8555@end example
8556
8557@noindent
8558Finally the @code{error} member function registers the errors to the
8559driver.
8560
1c59e0a1 8561@comment file: calc++-parser.yy
12545799
AD
8562@example
8563void
1c59e0a1
AD
8564yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8565 const std::string& m)
12545799
AD
8566@{
8567 driver.error (l, m);
8568@}
8569@end example
8570
8571@node Calc++ Scanner
8405b70c 8572@subsubsection Calc++ Scanner
12545799
AD
8573
8574The Flex scanner first includes the driver declaration, then the
8575parser's to get the set of defined tokens.
8576
1c59e0a1 8577@comment file: calc++-scanner.ll
12545799
AD
8578@example
8579%@{ /* -*- C++ -*- */
04098407 8580# include <cstdlib>
c984dee8
AD
8581# include <cerrno>
8582# include <climits>
12545799
AD
8583# include <string>
8584# include "calc++-driver.hh"
8585# include "calc++-parser.hh"
eaea13f5
PE
8586
8587/* Work around an incompatibility in flex (at least versions
8588 2.5.31 through 2.5.33): it generates code that does
8589 not conform to C89. See Debian bug 333231
8590 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8591# undef yywrap
8592# define yywrap() 1
eaea13f5 8593
c095d689
AD
8594/* By default yylex returns int, we use token_type.
8595 Unfortunately yyterminate by default returns 0, which is
8596 not of token_type. */
8c5b881d 8597#define yyterminate() return token::END
12545799
AD
8598%@}
8599@end example
8600
8601@noindent
8602Because there is no @code{#include}-like feature we don't need
8603@code{yywrap}, we don't need @code{unput} either, and we parse an
8604actual file, this is not an interactive session with the user.
8605Finally we enable the scanner tracing features.
8606
1c59e0a1 8607@comment file: calc++-scanner.ll
12545799
AD
8608@example
8609%option noyywrap nounput batch debug
8610@end example
8611
8612@noindent
8613Abbreviations allow for more readable rules.
8614
1c59e0a1 8615@comment file: calc++-scanner.ll
12545799
AD
8616@example
8617id [a-zA-Z][a-zA-Z_0-9]*
8618int [0-9]+
8619blank [ \t]
8620@end example
8621
8622@noindent
9d9b8b70 8623The following paragraph suffices to track locations accurately. Each
12545799
AD
8624time @code{yylex} is invoked, the begin position is moved onto the end
8625position. Then when a pattern is matched, the end position is
8626advanced of its width. In case it matched ends of lines, the end
8627cursor is adjusted, and each time blanks are matched, the begin cursor
8628is moved onto the end cursor to effectively ignore the blanks
8629preceding tokens. Comments would be treated equally.
8630
1c59e0a1 8631@comment file: calc++-scanner.ll
12545799 8632@example
828c373b
AD
8633%@{
8634# define YY_USER_ACTION yylloc->columns (yyleng);
8635%@}
12545799
AD
8636%%
8637%@{
8638 yylloc->step ();
12545799
AD
8639%@}
8640@{blank@}+ yylloc->step ();
8641[\n]+ yylloc->lines (yyleng); yylloc->step ();
8642@end example
8643
8644@noindent
fb9712a9
AD
8645The rules are simple, just note the use of the driver to report errors.
8646It is convenient to use a typedef to shorten
8647@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8648@code{token::identifier} for instance.
12545799 8649
1c59e0a1 8650@comment file: calc++-scanner.ll
12545799 8651@example
fb9712a9
AD
8652%@{
8653 typedef yy::calcxx_parser::token token;
8654%@}
8c5b881d 8655 /* Convert ints to the actual type of tokens. */
c095d689 8656[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8657":=" return token::ASSIGN;
04098407
PE
8658@{int@} @{
8659 errno = 0;
8660 long n = strtol (yytext, NULL, 10);
8661 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8662 driver.error (*yylloc, "integer is out of range");
8663 yylval->ival = n;
fb9712a9 8664 return token::NUMBER;
04098407 8665@}
fb9712a9 8666@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8667. driver.error (*yylloc, "invalid character");
8668%%
8669@end example
8670
8671@noindent
8672Finally, because the scanner related driver's member function depend
8673on the scanner's data, it is simpler to implement them in this file.
8674
1c59e0a1 8675@comment file: calc++-scanner.ll
12545799
AD
8676@example
8677void
8678calcxx_driver::scan_begin ()
8679@{
8680 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8681 if (file == "-")
8682 yyin = stdin;
8683 else if (!(yyin = fopen (file.c_str (), "r")))
8684 @{
8685 error (std::string ("cannot open ") + file);
8686 exit (1);
8687 @}
12545799
AD
8688@}
8689
8690void
8691calcxx_driver::scan_end ()
8692@{
8693 fclose (yyin);
8694@}
8695@end example
8696
8697@node Calc++ Top Level
8405b70c 8698@subsubsection Calc++ Top Level
12545799
AD
8699
8700The top level file, @file{calc++.cc}, poses no problem.
8701
1c59e0a1 8702@comment file: calc++.cc
12545799
AD
8703@example
8704#include <iostream>
8705#include "calc++-driver.hh"
8706
8707int
fa4d969f 8708main (int argc, char *argv[])
12545799
AD
8709@{
8710 calcxx_driver driver;
8711 for (++argv; argv[0]; ++argv)
8712 if (*argv == std::string ("-p"))
8713 driver.trace_parsing = true;
8714 else if (*argv == std::string ("-s"))
8715 driver.trace_scanning = true;
bb32f4f2
AD
8716 else if (!driver.parse (*argv))
8717 std::cout << driver.result << std::endl;
12545799
AD
8718@}
8719@end example
8720
8405b70c
PB
8721@node Java Parsers
8722@section Java Parsers
8723
8724@menu
f56274a8
DJ
8725* Java Bison Interface:: Asking for Java parser generation
8726* Java Semantic Values:: %type and %token vs. Java
8727* Java Location Values:: The position and location classes
8728* Java Parser Interface:: Instantiating and running the parser
8729* Java Scanner Interface:: Specifying the scanner for the parser
8730* Java Action Features:: Special features for use in actions
8731* Java Differences:: Differences between C/C++ and Java Grammars
8732* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8733@end menu
8734
8735@node Java Bison Interface
8736@subsection Java Bison Interface
8737@c - %language "Java"
8405b70c 8738
59da312b
JD
8739(The current Java interface is experimental and may evolve.
8740More user feedback will help to stabilize it.)
8741
e254a580
DJ
8742The Java parser skeletons are selected using the @code{%language "Java"}
8743directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8744
e254a580
DJ
8745@c FIXME: Documented bug.
8746When generating a Java parser, @code{bison @var{basename}.y} will create
8747a single Java source file named @file{@var{basename}.java}. Using an
8748input file without a @file{.y} suffix is currently broken. The basename
8749of the output file can be changed by the @code{%file-prefix} directive
8750or the @option{-p}/@option{--name-prefix} option. The entire output file
8751name can be changed by the @code{%output} directive or the
8752@option{-o}/@option{--output} option. The output file contains a single
8753class for the parser.
8405b70c 8754
e254a580 8755You can create documentation for generated parsers using Javadoc.
8405b70c 8756
e254a580
DJ
8757Contrary to C parsers, Java parsers do not use global variables; the
8758state of the parser is always local to an instance of the parser class.
8759Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8760and @code{%define api.pure} directives does not do anything when used in
8761Java.
8405b70c 8762
e254a580
DJ
8763Push parsers are currently unsupported in Java and @code{%define
8764api.push_pull} have no effect.
01b477c6 8765
e254a580
DJ
8766@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8767@code{glr-parser} directive.
8768
8769No header file can be generated for Java parsers. Do not use the
8770@code{%defines} directive or the @option{-d}/@option{--defines} options.
8771
8772@c FIXME: Possible code change.
8773Currently, support for debugging and verbose errors are always compiled
8774in. Thus the @code{%debug} and @code{%token-table} directives and the
8775@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8776options have no effect. This may change in the future to eliminate
8777unused code in the generated parser, so use @code{%debug} and
8778@code{%verbose-error} explicitly if needed. Also, in the future the
8779@code{%token-table} directive might enable a public interface to
8780access the token names and codes.
8405b70c
PB
8781
8782@node Java Semantic Values
8783@subsection Java Semantic Values
8784@c - No %union, specify type in %type/%token.
8785@c - YYSTYPE
8786@c - Printer and destructor
8787
8788There is no @code{%union} directive in Java parsers. Instead, the
8789semantic values' types (class names) should be specified in the
8790@code{%type} or @code{%token} directive:
8791
8792@example
8793%type <Expression> expr assignment_expr term factor
8794%type <Integer> number
8795@end example
8796
8797By default, the semantic stack is declared to have @code{Object} members,
8798which means that the class types you specify can be of any class.
8799To improve the type safety of the parser, you can declare the common
e254a580
DJ
8800superclass of all the semantic values using the @code{%define stype}
8801directive. For example, after the following declaration:
8405b70c
PB
8802
8803@example
e254a580 8804%define stype "ASTNode"
8405b70c
PB
8805@end example
8806
8807@noindent
8808any @code{%type} or @code{%token} specifying a semantic type which
8809is not a subclass of ASTNode, will cause a compile-time error.
8810
e254a580 8811@c FIXME: Documented bug.
8405b70c
PB
8812Types used in the directives may be qualified with a package name.
8813Primitive data types are accepted for Java version 1.5 or later. Note
8814that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8815Generic types may not be used; this is due to a limitation in the
8816implementation of Bison, and may change in future releases.
8405b70c
PB
8817
8818Java parsers do not support @code{%destructor}, since the language
8819adopts garbage collection. The parser will try to hold references
8820to semantic values for as little time as needed.
8821
8822Java parsers do not support @code{%printer}, as @code{toString()}
8823can be used to print the semantic values. This however may change
8824(in a backwards-compatible way) in future versions of Bison.
8825
8826
8827@node Java Location Values
8828@subsection Java Location Values
8829@c - %locations
8830@c - class Position
8831@c - class Location
8832
8833When the directive @code{%locations} is used, the Java parser
8834supports location tracking, see @ref{Locations, , Locations Overview}.
8835An auxiliary user-defined class defines a @dfn{position}, a single point
8836in a file; Bison itself defines a class representing a @dfn{location},
8837a range composed of a pair of positions (possibly spanning several
8838files). The location class is an inner class of the parser; the name
e254a580
DJ
8839is @code{Location} by default, and may also be renamed using
8840@code{%define location_type "@var{class-name}}.
8405b70c
PB
8841
8842The location class treats the position as a completely opaque value.
8843By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8844with @code{%define position_type "@var{class-name}"}. This class must
8845be supplied by the user.
8405b70c
PB
8846
8847
e254a580
DJ
8848@deftypeivar {Location} {Position} begin
8849@deftypeivarx {Location} {Position} end
8405b70c 8850The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8851@end deftypeivar
8852
8853@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
8854Create a @code{Location} denoting an empty range located at a given point.
8855@end deftypeop
8405b70c 8856
e254a580
DJ
8857@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8858Create a @code{Location} from the endpoints of the range.
8859@end deftypeop
8860
8861@deftypemethod {Location} {String} toString ()
8405b70c
PB
8862Prints the range represented by the location. For this to work
8863properly, the position class should override the @code{equals} and
8864@code{toString} methods appropriately.
8865@end deftypemethod
8866
8867
8868@node Java Parser Interface
8869@subsection Java Parser Interface
8870@c - define parser_class_name
8871@c - Ctor
8872@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8873@c debug_stream.
8874@c - Reporting errors
8875
e254a580
DJ
8876The name of the generated parser class defaults to @code{YYParser}. The
8877@code{YY} prefix may be changed using the @code{%name-prefix} directive
8878or the @option{-p}/@option{--name-prefix} option. Alternatively, use
8879@code{%define parser_class_name "@var{name}"} to give a custom name to
8880the class. The interface of this class is detailed below.
8405b70c 8881
e254a580
DJ
8882By default, the parser class has package visibility. A declaration
8883@code{%define public} will change to public visibility. Remember that,
8884according to the Java language specification, the name of the @file{.java}
8885file should match the name of the class in this case. Similarly, you can
8886use @code{abstract}, @code{final} and @code{strictfp} with the
8887@code{%define} declaration to add other modifiers to the parser class.
8888
8889The Java package name of the parser class can be specified using the
8890@code{%define package} directive. The superclass and the implemented
8891interfaces of the parser class can be specified with the @code{%define
8892extends} and @code{%define implements} directives.
8893
8894The parser class defines an inner class, @code{Location}, that is used
8895for location tracking (see @ref{Java Location Values}), and a inner
8896interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
8897these inner class/interface, and the members described in the interface
8898below, all the other members and fields are preceded with a @code{yy} or
8899@code{YY} prefix to avoid clashes with user code.
8900
8901@c FIXME: The following constants and variables are still undocumented:
8902@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
8903
8904The parser class can be extended using the @code{%parse-param}
8905directive. Each occurrence of the directive will add a @code{protected
8906final} field to the parser class, and an argument to its constructor,
8907which initialize them automatically.
8908
8909Token names defined by @code{%token} and the predefined @code{EOF} token
8910name are added as constant fields to the parser class.
8911
8912@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
8913Build a new parser object with embedded @code{%code lexer}. There are
8914no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
8915used.
8916@end deftypeop
8917
8918@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
8919Build a new parser object using the specified scanner. There are no
8920additional parameters unless @code{%parse-param}s are used.
8921
8922If the scanner is defined by @code{%code lexer}, this constructor is
8923declared @code{protected} and is called automatically with a scanner
8924created with the correct @code{%lex-param}s.
8925@end deftypeop
8405b70c
PB
8926
8927@deftypemethod {YYParser} {boolean} parse ()
8928Run the syntactic analysis, and return @code{true} on success,
8929@code{false} otherwise.
8930@end deftypemethod
8931
01b477c6 8932@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 8933During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
8934from a syntax error.
8935@xref{Error Recovery}.
8405b70c
PB
8936@end deftypemethod
8937
8938@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8939@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8940Get or set the stream used for tracing the parsing. It defaults to
8941@code{System.err}.
8942@end deftypemethod
8943
8944@deftypemethod {YYParser} {int} getDebugLevel ()
8945@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8946Get or set the tracing level. Currently its value is either 0, no trace,
8947or nonzero, full tracing.
8948@end deftypemethod
8949
8405b70c
PB
8950
8951@node Java Scanner Interface
8952@subsection Java Scanner Interface
01b477c6 8953@c - %code lexer
8405b70c 8954@c - %lex-param
01b477c6 8955@c - Lexer interface
8405b70c 8956
e254a580
DJ
8957There are two possible ways to interface a Bison-generated Java parser
8958with a scanner: the scanner may be defined by @code{%code lexer}, or
8959defined elsewhere. In either case, the scanner has to implement the
8960@code{Lexer} inner interface of the parser class.
8961
8962In the first case, the body of the scanner class is placed in
8963@code{%code lexer} blocks. If you want to pass parameters from the
8964parser constructor to the scanner constructor, specify them with
8965@code{%lex-param}; they are passed before @code{%parse-param}s to the
8966constructor.
01b477c6 8967
59c5ac72 8968In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
8969which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8970The constructor of the parser object will then accept an object
8971implementing the interface; @code{%lex-param} is not used in this
8972case.
8973
8974In both cases, the scanner has to implement the following methods.
8975
e254a580
DJ
8976@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
8977This method is defined by the user to emit an error message. The first
8978parameter is omitted if location tracking is not active. Its type can be
8979changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
8980@end deftypemethod
8981
e254a580 8982@deftypemethod {Lexer} {int} yylex ()
8405b70c 8983Return the next token. Its type is the return value, its semantic
87b9c9bc 8984value and location are saved and returned by the their methods in the
e254a580
DJ
8985interface.
8986
8987Use @code{%define lex_throws} to specify any uncaught exceptions.
8988Default is @code{java.io.IOException}.
8405b70c
PB
8989@end deftypemethod
8990
8991@deftypemethod {Lexer} {Position} getStartPos ()
8992@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8993Return respectively the first position of the last token that
8994@code{yylex} returned, and the first position beyond it. These
8995methods are not needed unless location tracking is active.
8405b70c 8996
e254a580 8997The return type can be changed using @code{%define position_type
8405b70c
PB
8998"@var{class-name}".}
8999@end deftypemethod
9000
9001@deftypemethod {Lexer} {Object} getLVal ()
87b9c9bc 9002Return the semantic value of the last token that yylex returned.
8405b70c 9003
e254a580 9004The return type can be changed using @code{%define stype
8405b70c
PB
9005"@var{class-name}".}
9006@end deftypemethod
9007
9008
e254a580
DJ
9009@node Java Action Features
9010@subsection Special Features for Use in Java Actions
9011
9012The following special constructs can be uses in Java actions.
9013Other analogous C action features are currently unavailable for Java.
9014
9015Use @code{%define throws} to specify any uncaught exceptions from parser
9016actions, and initial actions specified by @code{%initial-action}.
9017
9018@defvar $@var{n}
9019The semantic value for the @var{n}th component of the current rule.
9020This may not be assigned to.
9021@xref{Java Semantic Values}.
9022@end defvar
9023
9024@defvar $<@var{typealt}>@var{n}
9025Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9026@xref{Java Semantic Values}.
9027@end defvar
9028
9029@defvar $$
9030The semantic value for the grouping made by the current rule. As a
9031value, this is in the base type (@code{Object} or as specified by
9032@code{%define stype}) as in not cast to the declared subtype because
9033casts are not allowed on the left-hand side of Java assignments.
9034Use an explicit Java cast if the correct subtype is needed.
9035@xref{Java Semantic Values}.
9036@end defvar
9037
9038@defvar $<@var{typealt}>$
9039Same as @code{$$} since Java always allow assigning to the base type.
9040Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9041for setting the value but there is currently no easy way to distinguish
9042these constructs.
9043@xref{Java Semantic Values}.
9044@end defvar
9045
9046@defvar @@@var{n}
9047The location information of the @var{n}th component of the current rule.
9048This may not be assigned to.
9049@xref{Java Location Values}.
9050@end defvar
9051
9052@defvar @@$
9053The location information of the grouping made by the current rule.
9054@xref{Java Location Values}.
9055@end defvar
9056
9057@deffn {Statement} {return YYABORT;}
9058Return immediately from the parser, indicating failure.
9059@xref{Java Parser Interface}.
9060@end deffn
8405b70c 9061
e254a580
DJ
9062@deffn {Statement} {return YYACCEPT;}
9063Return immediately from the parser, indicating success.
9064@xref{Java Parser Interface}.
9065@end deffn
8405b70c 9066
e254a580
DJ
9067@deffn {Statement} {return YYERROR;}
9068Start error recovery without printing an error message.
9069@xref{Error Recovery}.
9070@end deffn
8405b70c 9071
e254a580
DJ
9072@deftypefn {Function} {boolean} recovering ()
9073Return whether error recovery is being done. In this state, the parser
9074reads token until it reaches a known state, and then restarts normal
9075operation.
9076@xref{Error Recovery}.
9077@end deftypefn
8405b70c 9078
e254a580
DJ
9079@deftypefn {Function} {protected void} yyerror (String msg)
9080@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9081@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9082Print an error message using the @code{yyerror} method of the scanner
9083instance in use.
9084@end deftypefn
8405b70c 9085
8405b70c 9086
8405b70c
PB
9087@node Java Differences
9088@subsection Differences between C/C++ and Java Grammars
9089
9090The different structure of the Java language forces several differences
9091between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9092section summarizes these differences.
8405b70c
PB
9093
9094@itemize
9095@item
01b477c6 9096Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9097@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9098macros. Instead, they should be preceded by @code{return} when they
9099appear in an action. The actual definition of these symbols is
8405b70c
PB
9100opaque to the Bison grammar, and it might change in the future. The
9101only meaningful operation that you can do, is to return them.
e254a580 9102See @pxref{Java Action Features}.
8405b70c
PB
9103
9104Note that of these three symbols, only @code{YYACCEPT} and
9105@code{YYABORT} will cause a return from the @code{yyparse}
9106method@footnote{Java parsers include the actions in a separate
9107method than @code{yyparse} in order to have an intuitive syntax that
9108corresponds to these C macros.}.
9109
e254a580
DJ
9110@item
9111Java lacks unions, so @code{%union} has no effect. Instead, semantic
9112values have a common base type: @code{Object} or as specified by
87b9c9bc 9113@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9114@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9115an union. The type of @code{$$}, even with angle brackets, is the base
9116type since Java casts are not allow on the left-hand side of assignments.
9117Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9118left-hand side of assignments. See @pxref{Java Semantic Values} and
9119@pxref{Java Action Features}.
9120
8405b70c 9121@item
87b9c9bc 9122The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9123@table @asis
9124@item @code{%code imports}
9125blocks are placed at the beginning of the Java source code. They may
9126include copyright notices. For a @code{package} declarations, it is
9127suggested to use @code{%define package} instead.
8405b70c 9128
01b477c6
PB
9129@item unqualified @code{%code}
9130blocks are placed inside the parser class.
9131
9132@item @code{%code lexer}
9133blocks, if specified, should include the implementation of the
9134scanner. If there is no such block, the scanner can be any class
9135that implements the appropriate interface (see @pxref{Java Scanner
9136Interface}).
29553547 9137@end table
8405b70c
PB
9138
9139Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9140In particular, @code{%@{ @dots{} %@}} blocks should not be used
9141and may give an error in future versions of Bison.
9142
01b477c6 9143The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9144be used to define other classes used by the parser @emph{outside}
9145the parser class.
8405b70c
PB
9146@end itemize
9147
e254a580
DJ
9148
9149@node Java Declarations Summary
9150@subsection Java Declarations Summary
9151
9152This summary only include declarations specific to Java or have special
9153meaning when used in a Java parser.
9154
9155@deffn {Directive} {%language "Java"}
9156Generate a Java class for the parser.
9157@end deffn
9158
9159@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9160A parameter for the lexer class defined by @code{%code lexer}
9161@emph{only}, added as parameters to the lexer constructor and the parser
9162constructor that @emph{creates} a lexer. Default is none.
9163@xref{Java Scanner Interface}.
9164@end deffn
9165
9166@deffn {Directive} %name-prefix "@var{prefix}"
9167The prefix of the parser class name @code{@var{prefix}Parser} if
9168@code{%define parser_class_name} is not used. Default is @code{YY}.
9169@xref{Java Bison Interface}.
9170@end deffn
9171
9172@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9173A parameter for the parser class added as parameters to constructor(s)
9174and as fields initialized by the constructor(s). Default is none.
9175@xref{Java Parser Interface}.
9176@end deffn
9177
9178@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9179Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9180@xref{Java Semantic Values}.
9181@end deffn
9182
9183@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9184Declare the type of nonterminals. Note that the angle brackets enclose
9185a Java @emph{type}.
9186@xref{Java Semantic Values}.
9187@end deffn
9188
9189@deffn {Directive} %code @{ @var{code} @dots{} @}
9190Code appended to the inside of the parser class.
9191@xref{Java Differences}.
9192@end deffn
9193
9194@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9195Code inserted just after the @code{package} declaration.
9196@xref{Java Differences}.
9197@end deffn
9198
9199@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9200Code added to the body of a inner lexer class within the parser class.
9201@xref{Java Scanner Interface}.
9202@end deffn
9203
9204@deffn {Directive} %% @var{code} @dots{}
9205Code (after the second @code{%%}) appended to the end of the file,
9206@emph{outside} the parser class.
9207@xref{Java Differences}.
9208@end deffn
9209
9210@deffn {Directive} %@{ @var{code} @dots{} %@}
9211Not supported. Use @code{%code import} instead.
9212@xref{Java Differences}.
9213@end deffn
9214
9215@deffn {Directive} {%define abstract}
9216Whether the parser class is declared @code{abstract}. Default is false.
9217@xref{Java Bison Interface}.
9218@end deffn
9219
9220@deffn {Directive} {%define extends} "@var{superclass}"
9221The superclass of the parser class. Default is none.
9222@xref{Java Bison Interface}.
9223@end deffn
9224
9225@deffn {Directive} {%define final}
9226Whether the parser class is declared @code{final}. Default is false.
9227@xref{Java Bison Interface}.
9228@end deffn
9229
9230@deffn {Directive} {%define implements} "@var{interfaces}"
9231The implemented interfaces of the parser class, a comma-separated list.
9232Default is none.
9233@xref{Java Bison Interface}.
9234@end deffn
9235
9236@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9237The exceptions thrown by the @code{yylex} method of the lexer, a
9238comma-separated list. Default is @code{java.io.IOException}.
9239@xref{Java Scanner Interface}.
9240@end deffn
9241
9242@deffn {Directive} {%define location_type} "@var{class}"
9243The name of the class used for locations (a range between two
9244positions). This class is generated as an inner class of the parser
9245class by @command{bison}. Default is @code{Location}.
9246@xref{Java Location Values}.
9247@end deffn
9248
9249@deffn {Directive} {%define package} "@var{package}"
9250The package to put the parser class in. Default is none.
9251@xref{Java Bison Interface}.
9252@end deffn
9253
9254@deffn {Directive} {%define parser_class_name} "@var{name}"
9255The name of the parser class. Default is @code{YYParser} or
9256@code{@var{name-prefix}Parser}.
9257@xref{Java Bison Interface}.
9258@end deffn
9259
9260@deffn {Directive} {%define position_type} "@var{class}"
9261The name of the class used for positions. This class must be supplied by
9262the user. Default is @code{Position}.
9263@xref{Java Location Values}.
9264@end deffn
9265
9266@deffn {Directive} {%define public}
9267Whether the parser class is declared @code{public}. Default is false.
9268@xref{Java Bison Interface}.
9269@end deffn
9270
9271@deffn {Directive} {%define stype} "@var{class}"
9272The base type of semantic values. Default is @code{Object}.
9273@xref{Java Semantic Values}.
9274@end deffn
9275
9276@deffn {Directive} {%define strictfp}
9277Whether the parser class is declared @code{strictfp}. Default is false.
9278@xref{Java Bison Interface}.
9279@end deffn
9280
9281@deffn {Directive} {%define throws} "@var{exceptions}"
9282The exceptions thrown by user-supplied parser actions and
9283@code{%initial-action}, a comma-separated list. Default is none.
9284@xref{Java Parser Interface}.
9285@end deffn
9286
9287
12545799 9288@c ================================================= FAQ
d1a1114f
AD
9289
9290@node FAQ
9291@chapter Frequently Asked Questions
9292@cindex frequently asked questions
9293@cindex questions
9294
9295Several questions about Bison come up occasionally. Here some of them
9296are addressed.
9297
9298@menu
55ba27be
AD
9299* Memory Exhausted:: Breaking the Stack Limits
9300* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9301* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9302* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9303* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9304* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9305* I can't build Bison:: Troubleshooting
9306* Where can I find help?:: Troubleshouting
9307* Bug Reports:: Troublereporting
8405b70c 9308* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9309* Beta Testing:: Experimenting development versions
9310* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9311@end menu
9312
1a059451
PE
9313@node Memory Exhausted
9314@section Memory Exhausted
d1a1114f
AD
9315
9316@display
1a059451 9317My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9318message. What can I do?
9319@end display
9320
9321This question is already addressed elsewhere, @xref{Recursion,
9322,Recursive Rules}.
9323
e64fec0a
PE
9324@node How Can I Reset the Parser
9325@section How Can I Reset the Parser
5b066063 9326
0e14ad77
PE
9327The following phenomenon has several symptoms, resulting in the
9328following typical questions:
5b066063
AD
9329
9330@display
9331I invoke @code{yyparse} several times, and on correct input it works
9332properly; but when a parse error is found, all the other calls fail
0e14ad77 9333too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9334@end display
9335
9336@noindent
9337or
9338
9339@display
0e14ad77 9340My parser includes support for an @samp{#include}-like feature, in
5b066063 9341which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9342although I did specify @code{%define api.pure}.
5b066063
AD
9343@end display
9344
0e14ad77
PE
9345These problems typically come not from Bison itself, but from
9346Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9347speed, they might not notice a change of input file. As a
9348demonstration, consider the following source file,
9349@file{first-line.l}:
9350
9351@verbatim
9352%{
9353#include <stdio.h>
9354#include <stdlib.h>
9355%}
9356%%
9357.*\n ECHO; return 1;
9358%%
9359int
0e14ad77 9360yyparse (char const *file)
5b066063
AD
9361{
9362 yyin = fopen (file, "r");
9363 if (!yyin)
9364 exit (2);
fa7e68c3 9365 /* One token only. */
5b066063 9366 yylex ();
0e14ad77 9367 if (fclose (yyin) != 0)
5b066063
AD
9368 exit (3);
9369 return 0;
9370}
9371
9372int
0e14ad77 9373main (void)
5b066063
AD
9374{
9375 yyparse ("input");
9376 yyparse ("input");
9377 return 0;
9378}
9379@end verbatim
9380
9381@noindent
9382If the file @file{input} contains
9383
9384@verbatim
9385input:1: Hello,
9386input:2: World!
9387@end verbatim
9388
9389@noindent
0e14ad77 9390then instead of getting the first line twice, you get:
5b066063
AD
9391
9392@example
9393$ @kbd{flex -ofirst-line.c first-line.l}
9394$ @kbd{gcc -ofirst-line first-line.c -ll}
9395$ @kbd{./first-line}
9396input:1: Hello,
9397input:2: World!
9398@end example
9399
0e14ad77
PE
9400Therefore, whenever you change @code{yyin}, you must tell the
9401Lex-generated scanner to discard its current buffer and switch to the
9402new one. This depends upon your implementation of Lex; see its
9403documentation for more. For Flex, it suffices to call
9404@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9405Flex-generated scanner needs to read from several input streams to
9406handle features like include files, you might consider using Flex
9407functions like @samp{yy_switch_to_buffer} that manipulate multiple
9408input buffers.
5b066063 9409
b165c324
AD
9410If your Flex-generated scanner uses start conditions (@pxref{Start
9411conditions, , Start conditions, flex, The Flex Manual}), you might
9412also want to reset the scanner's state, i.e., go back to the initial
9413start condition, through a call to @samp{BEGIN (0)}.
9414
fef4cb51
AD
9415@node Strings are Destroyed
9416@section Strings are Destroyed
9417
9418@display
c7e441b4 9419My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9420them. Instead of reporting @samp{"foo", "bar"}, it reports
9421@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9422@end display
9423
9424This error is probably the single most frequent ``bug report'' sent to
9425Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9426of the scanner. Consider the following Lex code:
fef4cb51
AD
9427
9428@verbatim
9429%{
9430#include <stdio.h>
9431char *yylval = NULL;
9432%}
9433%%
9434.* yylval = yytext; return 1;
9435\n /* IGNORE */
9436%%
9437int
9438main ()
9439{
fa7e68c3 9440 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9441 char *fst = (yylex (), yylval);
9442 char *snd = (yylex (), yylval);
9443 printf ("\"%s\", \"%s\"\n", fst, snd);
9444 return 0;
9445}
9446@end verbatim
9447
9448If you compile and run this code, you get:
9449
9450@example
9451$ @kbd{flex -osplit-lines.c split-lines.l}
9452$ @kbd{gcc -osplit-lines split-lines.c -ll}
9453$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9454"one
9455two", "two"
9456@end example
9457
9458@noindent
9459this is because @code{yytext} is a buffer provided for @emph{reading}
9460in the action, but if you want to keep it, you have to duplicate it
9461(e.g., using @code{strdup}). Note that the output may depend on how
9462your implementation of Lex handles @code{yytext}. For instance, when
9463given the Lex compatibility option @option{-l} (which triggers the
9464option @samp{%array}) Flex generates a different behavior:
9465
9466@example
9467$ @kbd{flex -l -osplit-lines.c split-lines.l}
9468$ @kbd{gcc -osplit-lines split-lines.c -ll}
9469$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9470"two", "two"
9471@end example
9472
9473
2fa09258
AD
9474@node Implementing Gotos/Loops
9475@section Implementing Gotos/Loops
a06ea4aa
AD
9476
9477@display
9478My simple calculator supports variables, assignments, and functions,
2fa09258 9479but how can I implement gotos, or loops?
a06ea4aa
AD
9480@end display
9481
9482Although very pedagogical, the examples included in the document blur
a1c84f45 9483the distinction to make between the parser---whose job is to recover
a06ea4aa 9484the structure of a text and to transmit it to subsequent modules of
a1c84f45 9485the program---and the processing (such as the execution) of this
a06ea4aa
AD
9486structure. This works well with so called straight line programs,
9487i.e., precisely those that have a straightforward execution model:
9488execute simple instructions one after the others.
9489
9490@cindex abstract syntax tree
9491@cindex @acronym{AST}
9492If you want a richer model, you will probably need to use the parser
9493to construct a tree that does represent the structure it has
9494recovered; this tree is usually called the @dfn{abstract syntax tree},
9495or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9496traversing it in various ways, will enable treatments such as its
9497execution or its translation, which will result in an interpreter or a
9498compiler.
9499
9500This topic is way beyond the scope of this manual, and the reader is
9501invited to consult the dedicated literature.
9502
9503
ed2e6384
AD
9504@node Multiple start-symbols
9505@section Multiple start-symbols
9506
9507@display
9508I have several closely related grammars, and I would like to share their
9509implementations. In fact, I could use a single grammar but with
9510multiple entry points.
9511@end display
9512
9513Bison does not support multiple start-symbols, but there is a very
9514simple means to simulate them. If @code{foo} and @code{bar} are the two
9515pseudo start-symbols, then introduce two new tokens, say
9516@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9517real start-symbol:
9518
9519@example
9520%token START_FOO START_BAR;
9521%start start;
9522start: START_FOO foo
9523 | START_BAR bar;
9524@end example
9525
9526These tokens prevents the introduction of new conflicts. As far as the
9527parser goes, that is all that is needed.
9528
9529Now the difficult part is ensuring that the scanner will send these
9530tokens first. If your scanner is hand-written, that should be
9531straightforward. If your scanner is generated by Lex, them there is
9532simple means to do it: recall that anything between @samp{%@{ ... %@}}
9533after the first @code{%%} is copied verbatim in the top of the generated
9534@code{yylex} function. Make sure a variable @code{start_token} is
9535available in the scanner (e.g., a global variable or using
9536@code{%lex-param} etc.), and use the following:
9537
9538@example
9539 /* @r{Prologue.} */
9540%%
9541%@{
9542 if (start_token)
9543 @{
9544 int t = start_token;
9545 start_token = 0;
9546 return t;
9547 @}
9548%@}
9549 /* @r{The rules.} */
9550@end example
9551
9552
55ba27be
AD
9553@node Secure? Conform?
9554@section Secure? Conform?
9555
9556@display
9557Is Bison secure? Does it conform to POSIX?
9558@end display
9559
9560If you're looking for a guarantee or certification, we don't provide it.
9561However, Bison is intended to be a reliable program that conforms to the
9562@acronym{POSIX} specification for Yacc. If you run into problems,
9563please send us a bug report.
9564
9565@node I can't build Bison
9566@section I can't build Bison
9567
9568@display
8c5b881d
PE
9569I can't build Bison because @command{make} complains that
9570@code{msgfmt} is not found.
55ba27be
AD
9571What should I do?
9572@end display
9573
9574Like most GNU packages with internationalization support, that feature
9575is turned on by default. If you have problems building in the @file{po}
9576subdirectory, it indicates that your system's internationalization
9577support is lacking. You can re-configure Bison with
9578@option{--disable-nls} to turn off this support, or you can install GNU
9579gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9580Bison. See the file @file{ABOUT-NLS} for more information.
9581
9582
9583@node Where can I find help?
9584@section Where can I find help?
9585
9586@display
9587I'm having trouble using Bison. Where can I find help?
9588@end display
9589
9590First, read this fine manual. Beyond that, you can send mail to
9591@email{help-bison@@gnu.org}. This mailing list is intended to be
9592populated with people who are willing to answer questions about using
9593and installing Bison. Please keep in mind that (most of) the people on
9594the list have aspects of their lives which are not related to Bison (!),
9595so you may not receive an answer to your question right away. This can
9596be frustrating, but please try not to honk them off; remember that any
9597help they provide is purely voluntary and out of the kindness of their
9598hearts.
9599
9600@node Bug Reports
9601@section Bug Reports
9602
9603@display
9604I found a bug. What should I include in the bug report?
9605@end display
9606
9607Before you send a bug report, make sure you are using the latest
9608version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9609mirrors. Be sure to include the version number in your bug report. If
9610the bug is present in the latest version but not in a previous version,
9611try to determine the most recent version which did not contain the bug.
9612
9613If the bug is parser-related, you should include the smallest grammar
9614you can which demonstrates the bug. The grammar file should also be
9615complete (i.e., I should be able to run it through Bison without having
9616to edit or add anything). The smaller and simpler the grammar, the
9617easier it will be to fix the bug.
9618
9619Include information about your compilation environment, including your
9620operating system's name and version and your compiler's name and
9621version. If you have trouble compiling, you should also include a
9622transcript of the build session, starting with the invocation of
9623`configure'. Depending on the nature of the bug, you may be asked to
9624send additional files as well (such as `config.h' or `config.cache').
9625
9626Patches are most welcome, but not required. That is, do not hesitate to
9627send a bug report just because you can not provide a fix.
9628
9629Send bug reports to @email{bug-bison@@gnu.org}.
9630
8405b70c
PB
9631@node More Languages
9632@section More Languages
55ba27be
AD
9633
9634@display
8405b70c 9635Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9636favorite language here}?
9637@end display
9638
8405b70c 9639C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9640languages; contributions are welcome.
9641
9642@node Beta Testing
9643@section Beta Testing
9644
9645@display
9646What is involved in being a beta tester?
9647@end display
9648
9649It's not terribly involved. Basically, you would download a test
9650release, compile it, and use it to build and run a parser or two. After
9651that, you would submit either a bug report or a message saying that
9652everything is okay. It is important to report successes as well as
9653failures because test releases eventually become mainstream releases,
9654but only if they are adequately tested. If no one tests, development is
9655essentially halted.
9656
9657Beta testers are particularly needed for operating systems to which the
9658developers do not have easy access. They currently have easy access to
9659recent GNU/Linux and Solaris versions. Reports about other operating
9660systems are especially welcome.
9661
9662@node Mailing Lists
9663@section Mailing Lists
9664
9665@display
9666How do I join the help-bison and bug-bison mailing lists?
9667@end display
9668
9669See @url{http://lists.gnu.org/}.
a06ea4aa 9670
d1a1114f
AD
9671@c ================================================= Table of Symbols
9672
342b8b6e 9673@node Table of Symbols
bfa74976
RS
9674@appendix Bison Symbols
9675@cindex Bison symbols, table of
9676@cindex symbols in Bison, table of
9677
18b519c0 9678@deffn {Variable} @@$
3ded9a63 9679In an action, the location of the left-hand side of the rule.
88bce5a2 9680@xref{Locations, , Locations Overview}.
18b519c0 9681@end deffn
3ded9a63 9682
18b519c0 9683@deffn {Variable} @@@var{n}
3ded9a63
AD
9684In an action, the location of the @var{n}-th symbol of the right-hand
9685side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9686@end deffn
3ded9a63 9687
18b519c0 9688@deffn {Variable} $$
3ded9a63
AD
9689In an action, the semantic value of the left-hand side of the rule.
9690@xref{Actions}.
18b519c0 9691@end deffn
3ded9a63 9692
18b519c0 9693@deffn {Variable} $@var{n}
3ded9a63
AD
9694In an action, the semantic value of the @var{n}-th symbol of the
9695right-hand side of the rule. @xref{Actions}.
18b519c0 9696@end deffn
3ded9a63 9697
dd8d9022
AD
9698@deffn {Delimiter} %%
9699Delimiter used to separate the grammar rule section from the
9700Bison declarations section or the epilogue.
9701@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9702@end deffn
bfa74976 9703
dd8d9022
AD
9704@c Don't insert spaces, or check the DVI output.
9705@deffn {Delimiter} %@{@var{code}%@}
9706All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9707the output file uninterpreted. Such code forms the prologue of the input
9708file. @xref{Grammar Outline, ,Outline of a Bison
9709Grammar}.
18b519c0 9710@end deffn
bfa74976 9711
dd8d9022
AD
9712@deffn {Construct} /*@dots{}*/
9713Comment delimiters, as in C.
18b519c0 9714@end deffn
bfa74976 9715
dd8d9022
AD
9716@deffn {Delimiter} :
9717Separates a rule's result from its components. @xref{Rules, ,Syntax of
9718Grammar Rules}.
18b519c0 9719@end deffn
bfa74976 9720
dd8d9022
AD
9721@deffn {Delimiter} ;
9722Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9723@end deffn
bfa74976 9724
dd8d9022
AD
9725@deffn {Delimiter} |
9726Separates alternate rules for the same result nonterminal.
9727@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9728@end deffn
bfa74976 9729
12e35840
JD
9730@deffn {Directive} <*>
9731Used to define a default tagged @code{%destructor} or default tagged
9732@code{%printer}.
85894313
JD
9733
9734This feature is experimental.
9735More user feedback will help to determine whether it should become a permanent
9736feature.
9737
12e35840
JD
9738@xref{Destructor Decl, , Freeing Discarded Symbols}.
9739@end deffn
9740
3ebecc24 9741@deffn {Directive} <>
12e35840
JD
9742Used to define a default tagless @code{%destructor} or default tagless
9743@code{%printer}.
85894313
JD
9744
9745This feature is experimental.
9746More user feedback will help to determine whether it should become a permanent
9747feature.
9748
12e35840
JD
9749@xref{Destructor Decl, , Freeing Discarded Symbols}.
9750@end deffn
9751
dd8d9022
AD
9752@deffn {Symbol} $accept
9753The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9754$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9755Start-Symbol}. It cannot be used in the grammar.
18b519c0 9756@end deffn
bfa74976 9757
136a0f76 9758@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9759@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9760Insert @var{code} verbatim into output parser source.
9761@xref{Decl Summary,,%code}.
9bc0dd67 9762@end deffn
9bc0dd67 9763
18b519c0 9764@deffn {Directive} %debug
6deb4447 9765Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9766@end deffn
6deb4447 9767
91d2c560 9768@ifset defaultprec
22fccf95
PE
9769@deffn {Directive} %default-prec
9770Assign a precedence to rules that lack an explicit @samp{%prec}
9771modifier. @xref{Contextual Precedence, ,Context-Dependent
9772Precedence}.
39a06c25 9773@end deffn
91d2c560 9774@end ifset
39a06c25 9775
148d66d8
JD
9776@deffn {Directive} %define @var{define-variable}
9777@deffnx {Directive} %define @var{define-variable} @var{value}
9778Define a variable to adjust Bison's behavior.
9779@xref{Decl Summary,,%define}.
9780@end deffn
9781
18b519c0 9782@deffn {Directive} %defines
6deb4447
AD
9783Bison declaration to create a header file meant for the scanner.
9784@xref{Decl Summary}.
18b519c0 9785@end deffn
6deb4447 9786
02975b9a
JD
9787@deffn {Directive} %defines @var{defines-file}
9788Same as above, but save in the file @var{defines-file}.
9789@xref{Decl Summary}.
9790@end deffn
9791
18b519c0 9792@deffn {Directive} %destructor
258b75ca 9793Specify how the parser should reclaim the memory associated to
fa7e68c3 9794discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9795@end deffn
72f889cc 9796
18b519c0 9797@deffn {Directive} %dprec
676385e2 9798Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9799time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9800@acronym{GLR} Parsers}.
18b519c0 9801@end deffn
676385e2 9802
dd8d9022
AD
9803@deffn {Symbol} $end
9804The predefined token marking the end of the token stream. It cannot be
9805used in the grammar.
9806@end deffn
9807
9808@deffn {Symbol} error
9809A token name reserved for error recovery. This token may be used in
9810grammar rules so as to allow the Bison parser to recognize an error in
9811the grammar without halting the process. In effect, a sentence
9812containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9813token @code{error} becomes the current lookahead token. Actions
9814corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9815token is reset to the token that originally caused the violation.
9816@xref{Error Recovery}.
18d192f0
AD
9817@end deffn
9818
18b519c0 9819@deffn {Directive} %error-verbose
2a8d363a
AD
9820Bison declaration to request verbose, specific error message strings
9821when @code{yyerror} is called.
18b519c0 9822@end deffn
2a8d363a 9823
02975b9a 9824@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9825Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9826Summary}.
18b519c0 9827@end deffn
d8988b2f 9828
18b519c0 9829@deffn {Directive} %glr-parser
c827f760
PE
9830Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9831Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9832@end deffn
676385e2 9833
dd8d9022
AD
9834@deffn {Directive} %initial-action
9835Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9836@end deffn
9837
e6e704dc
JD
9838@deffn {Directive} %language
9839Specify the programming language for the generated parser.
9840@xref{Decl Summary}.
9841@end deffn
9842
18b519c0 9843@deffn {Directive} %left
bfa74976
RS
9844Bison declaration to assign left associativity to token(s).
9845@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9846@end deffn
bfa74976 9847
feeb0eda 9848@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9849Bison declaration to specifying an additional parameter that
9850@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9851for Pure Parsers}.
18b519c0 9852@end deffn
2a8d363a 9853
18b519c0 9854@deffn {Directive} %merge
676385e2 9855Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9856reduce/reduce conflict with a rule having the same merging function, the
676385e2 9857function is applied to the two semantic values to get a single result.
c827f760 9858@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9859@end deffn
676385e2 9860
02975b9a 9861@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9862Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9863@end deffn
d8988b2f 9864
91d2c560 9865@ifset defaultprec
22fccf95
PE
9866@deffn {Directive} %no-default-prec
9867Do not assign a precedence to rules that lack an explicit @samp{%prec}
9868modifier. @xref{Contextual Precedence, ,Context-Dependent
9869Precedence}.
9870@end deffn
91d2c560 9871@end ifset
22fccf95 9872
18b519c0 9873@deffn {Directive} %no-lines
931c7513
RS
9874Bison declaration to avoid generating @code{#line} directives in the
9875parser file. @xref{Decl Summary}.
18b519c0 9876@end deffn
931c7513 9877
18b519c0 9878@deffn {Directive} %nonassoc
9d9b8b70 9879Bison declaration to assign nonassociativity to token(s).
bfa74976 9880@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9881@end deffn
bfa74976 9882
02975b9a 9883@deffn {Directive} %output "@var{file}"
72d2299c 9884Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9885Summary}.
18b519c0 9886@end deffn
d8988b2f 9887
feeb0eda 9888@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9889Bison declaration to specifying an additional parameter that
9890@code{yyparse} should accept. @xref{Parser Function,, The Parser
9891Function @code{yyparse}}.
18b519c0 9892@end deffn
2a8d363a 9893
18b519c0 9894@deffn {Directive} %prec
bfa74976
RS
9895Bison declaration to assign a precedence to a specific rule.
9896@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9897@end deffn
bfa74976 9898
18b519c0 9899@deffn {Directive} %pure-parser
d9df47b6
JD
9900Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9901for which Bison is more careful to warn about unreasonable usage.
18b519c0 9902@end deffn
bfa74976 9903
b50d2359 9904@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9905Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9906Require a Version of Bison}.
b50d2359
AD
9907@end deffn
9908
18b519c0 9909@deffn {Directive} %right
bfa74976
RS
9910Bison declaration to assign right associativity to token(s).
9911@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9912@end deffn
bfa74976 9913
e6e704dc
JD
9914@deffn {Directive} %skeleton
9915Specify the skeleton to use; usually for development.
9916@xref{Decl Summary}.
9917@end deffn
9918
18b519c0 9919@deffn {Directive} %start
704a47c4
AD
9920Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9921Start-Symbol}.
18b519c0 9922@end deffn
bfa74976 9923
18b519c0 9924@deffn {Directive} %token
bfa74976
RS
9925Bison declaration to declare token(s) without specifying precedence.
9926@xref{Token Decl, ,Token Type Names}.
18b519c0 9927@end deffn
bfa74976 9928
18b519c0 9929@deffn {Directive} %token-table
931c7513
RS
9930Bison declaration to include a token name table in the parser file.
9931@xref{Decl Summary}.
18b519c0 9932@end deffn
931c7513 9933
18b519c0 9934@deffn {Directive} %type
704a47c4
AD
9935Bison declaration to declare nonterminals. @xref{Type Decl,
9936,Nonterminal Symbols}.
18b519c0 9937@end deffn
bfa74976 9938
dd8d9022
AD
9939@deffn {Symbol} $undefined
9940The predefined token onto which all undefined values returned by
9941@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9942@code{error}.
9943@end deffn
9944
18b519c0 9945@deffn {Directive} %union
bfa74976
RS
9946Bison declaration to specify several possible data types for semantic
9947values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9948@end deffn
bfa74976 9949
dd8d9022
AD
9950@deffn {Macro} YYABORT
9951Macro to pretend that an unrecoverable syntax error has occurred, by
9952making @code{yyparse} return 1 immediately. The error reporting
9953function @code{yyerror} is not called. @xref{Parser Function, ,The
9954Parser Function @code{yyparse}}.
8405b70c
PB
9955
9956For Java parsers, this functionality is invoked using @code{return YYABORT;}
9957instead.
dd8d9022 9958@end deffn
3ded9a63 9959
dd8d9022
AD
9960@deffn {Macro} YYACCEPT
9961Macro to pretend that a complete utterance of the language has been
9962read, by making @code{yyparse} return 0 immediately.
9963@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9964
9965For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9966instead.
dd8d9022 9967@end deffn
bfa74976 9968
dd8d9022 9969@deffn {Macro} YYBACKUP
742e4900 9970Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9971token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9972@end deffn
bfa74976 9973
dd8d9022 9974@deffn {Variable} yychar
32c29292 9975External integer variable that contains the integer value of the
742e4900 9976lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9977@code{yyparse}.) Error-recovery rule actions may examine this variable.
9978@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9979@end deffn
bfa74976 9980
dd8d9022
AD
9981@deffn {Variable} yyclearin
9982Macro used in error-recovery rule actions. It clears the previous
742e4900 9983lookahead token. @xref{Error Recovery}.
18b519c0 9984@end deffn
bfa74976 9985
dd8d9022
AD
9986@deffn {Macro} YYDEBUG
9987Macro to define to equip the parser with tracing code. @xref{Tracing,
9988,Tracing Your Parser}.
18b519c0 9989@end deffn
bfa74976 9990
dd8d9022
AD
9991@deffn {Variable} yydebug
9992External integer variable set to zero by default. If @code{yydebug}
9993is given a nonzero value, the parser will output information on input
9994symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9995@end deffn
bfa74976 9996
dd8d9022
AD
9997@deffn {Macro} yyerrok
9998Macro to cause parser to recover immediately to its normal mode
9999after a syntax error. @xref{Error Recovery}.
10000@end deffn
10001
10002@deffn {Macro} YYERROR
10003Macro to pretend that a syntax error has just been detected: call
10004@code{yyerror} and then perform normal error recovery if possible
10005(@pxref{Error Recovery}), or (if recovery is impossible) make
10006@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10007
10008For Java parsers, this functionality is invoked using @code{return YYERROR;}
10009instead.
dd8d9022
AD
10010@end deffn
10011
10012@deffn {Function} yyerror
10013User-supplied function to be called by @code{yyparse} on error.
10014@xref{Error Reporting, ,The Error
10015Reporting Function @code{yyerror}}.
10016@end deffn
10017
10018@deffn {Macro} YYERROR_VERBOSE
10019An obsolete macro that you define with @code{#define} in the prologue
10020to request verbose, specific error message strings
10021when @code{yyerror} is called. It doesn't matter what definition you
10022use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10023@code{%error-verbose} is preferred.
10024@end deffn
10025
10026@deffn {Macro} YYINITDEPTH
10027Macro for specifying the initial size of the parser stack.
1a059451 10028@xref{Memory Management}.
dd8d9022
AD
10029@end deffn
10030
10031@deffn {Function} yylex
10032User-supplied lexical analyzer function, called with no arguments to get
10033the next token. @xref{Lexical, ,The Lexical Analyzer Function
10034@code{yylex}}.
10035@end deffn
10036
10037@deffn {Macro} YYLEX_PARAM
10038An obsolete macro for specifying an extra argument (or list of extra
32c29292 10039arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10040macro is deprecated, and is supported only for Yacc like parsers.
10041@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10042@end deffn
10043
10044@deffn {Variable} yylloc
10045External variable in which @code{yylex} should place the line and column
10046numbers associated with a token. (In a pure parser, it is a local
10047variable within @code{yyparse}, and its address is passed to
32c29292
JD
10048@code{yylex}.)
10049You can ignore this variable if you don't use the @samp{@@} feature in the
10050grammar actions.
10051@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10052In semantic actions, it stores the location of the lookahead token.
32c29292 10053@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10054@end deffn
10055
10056@deffn {Type} YYLTYPE
10057Data type of @code{yylloc}; by default, a structure with four
10058members. @xref{Location Type, , Data Types of Locations}.
10059@end deffn
10060
10061@deffn {Variable} yylval
10062External variable in which @code{yylex} should place the semantic
10063value associated with a token. (In a pure parser, it is a local
10064variable within @code{yyparse}, and its address is passed to
32c29292
JD
10065@code{yylex}.)
10066@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10067In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10068@xref{Actions, ,Actions}.
dd8d9022
AD
10069@end deffn
10070
10071@deffn {Macro} YYMAXDEPTH
1a059451
PE
10072Macro for specifying the maximum size of the parser stack. @xref{Memory
10073Management}.
dd8d9022
AD
10074@end deffn
10075
10076@deffn {Variable} yynerrs
8a2800e7 10077Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10078(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10079pure push parser, it is a member of yypstate.)
dd8d9022
AD
10080@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10081@end deffn
10082
10083@deffn {Function} yyparse
10084The parser function produced by Bison; call this function to start
10085parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10086@end deffn
10087
9987d1b3 10088@deffn {Function} yypstate_delete
f4101aa6 10089The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10090call this function to delete the memory associated with a parser.
f4101aa6 10091@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10092@code{yypstate_delete}}.
59da312b
JD
10093(The current push parsing interface is experimental and may evolve.
10094More user feedback will help to stabilize it.)
9987d1b3
JD
10095@end deffn
10096
10097@deffn {Function} yypstate_new
f4101aa6 10098The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10099call this function to create a new parser.
f4101aa6 10100@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10101@code{yypstate_new}}.
59da312b
JD
10102(The current push parsing interface is experimental and may evolve.
10103More user feedback will help to stabilize it.)
9987d1b3
JD
10104@end deffn
10105
10106@deffn {Function} yypull_parse
f4101aa6
AD
10107The parser function produced by Bison in push mode; call this function to
10108parse the rest of the input stream.
10109@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10110@code{yypull_parse}}.
59da312b
JD
10111(The current push parsing interface is experimental and may evolve.
10112More user feedback will help to stabilize it.)
9987d1b3
JD
10113@end deffn
10114
10115@deffn {Function} yypush_parse
f4101aa6
AD
10116The parser function produced by Bison in push mode; call this function to
10117parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10118@code{yypush_parse}}.
59da312b
JD
10119(The current push parsing interface is experimental and may evolve.
10120More user feedback will help to stabilize it.)
9987d1b3
JD
10121@end deffn
10122
dd8d9022
AD
10123@deffn {Macro} YYPARSE_PARAM
10124An obsolete macro for specifying the name of a parameter that
10125@code{yyparse} should accept. The use of this macro is deprecated, and
10126is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10127Conventions for Pure Parsers}.
10128@end deffn
10129
10130@deffn {Macro} YYRECOVERING
02103984
PE
10131The expression @code{YYRECOVERING ()} yields 1 when the parser
10132is recovering from a syntax error, and 0 otherwise.
10133@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10134@end deffn
10135
10136@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10137Macro used to control the use of @code{alloca} when the C
10138@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10139the parser will use @code{malloc} to extend its stacks. If defined to
101401, the parser will use @code{alloca}. Values other than 0 and 1 are
10141reserved for future Bison extensions. If not defined,
10142@code{YYSTACK_USE_ALLOCA} defaults to 0.
10143
55289366 10144In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10145limited stack and with unreliable stack-overflow checking, you should
10146set @code{YYMAXDEPTH} to a value that cannot possibly result in
10147unchecked stack overflow on any of your target hosts when
10148@code{alloca} is called. You can inspect the code that Bison
10149generates in order to determine the proper numeric values. This will
10150require some expertise in low-level implementation details.
dd8d9022
AD
10151@end deffn
10152
10153@deffn {Type} YYSTYPE
10154Data type of semantic values; @code{int} by default.
10155@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10156@end deffn
bfa74976 10157
342b8b6e 10158@node Glossary
bfa74976
RS
10159@appendix Glossary
10160@cindex glossary
10161
10162@table @asis
c827f760
PE
10163@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10164Formal method of specifying context-free grammars originally proposed
10165by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10166committee document contributing to what became the Algol 60 report.
10167@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10168
10169@item Context-free grammars
10170Grammars specified as rules that can be applied regardless of context.
10171Thus, if there is a rule which says that an integer can be used as an
10172expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10173permitted. @xref{Language and Grammar, ,Languages and Context-Free
10174Grammars}.
bfa74976
RS
10175
10176@item Dynamic allocation
10177Allocation of memory that occurs during execution, rather than at
10178compile time or on entry to a function.
10179
10180@item Empty string
10181Analogous to the empty set in set theory, the empty string is a
10182character string of length zero.
10183
10184@item Finite-state stack machine
10185A ``machine'' that has discrete states in which it is said to exist at
10186each instant in time. As input to the machine is processed, the
10187machine moves from state to state as specified by the logic of the
10188machine. In the case of the parser, the input is the language being
10189parsed, and the states correspond to various stages in the grammar
c827f760 10190rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10191
c827f760 10192@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10193A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10194that are not @acronym{LALR}(1). It resolves situations that Bison's
10195usual @acronym{LALR}(1)
676385e2
PH
10196algorithm cannot by effectively splitting off multiple parsers, trying all
10197possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10198right context. @xref{Generalized LR Parsing, ,Generalized
10199@acronym{LR} Parsing}.
676385e2 10200
bfa74976
RS
10201@item Grouping
10202A language construct that is (in general) grammatically divisible;
c827f760 10203for example, `expression' or `declaration' in C@.
bfa74976
RS
10204@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10205
10206@item Infix operator
10207An arithmetic operator that is placed between the operands on which it
10208performs some operation.
10209
10210@item Input stream
10211A continuous flow of data between devices or programs.
10212
10213@item Language construct
10214One of the typical usage schemas of the language. For example, one of
10215the constructs of the C language is the @code{if} statement.
10216@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10217
10218@item Left associativity
10219Operators having left associativity are analyzed from left to right:
10220@samp{a+b+c} first computes @samp{a+b} and then combines with
10221@samp{c}. @xref{Precedence, ,Operator Precedence}.
10222
10223@item Left recursion
89cab50d
AD
10224A rule whose result symbol is also its first component symbol; for
10225example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10226Rules}.
bfa74976
RS
10227
10228@item Left-to-right parsing
10229Parsing a sentence of a language by analyzing it token by token from
c827f760 10230left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10231
10232@item Lexical analyzer (scanner)
10233A function that reads an input stream and returns tokens one by one.
10234@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10235
10236@item Lexical tie-in
10237A flag, set by actions in the grammar rules, which alters the way
10238tokens are parsed. @xref{Lexical Tie-ins}.
10239
931c7513 10240@item Literal string token
14ded682 10241A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10242
742e4900
JD
10243@item Lookahead token
10244A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10245Tokens}.
bfa74976 10246
c827f760 10247@item @acronym{LALR}(1)
bfa74976 10248The class of context-free grammars that Bison (like most other parser
c827f760
PE
10249generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10250Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10251
c827f760 10252@item @acronym{LR}(1)
bfa74976 10253The class of context-free grammars in which at most one token of
742e4900 10254lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10255
10256@item Nonterminal symbol
10257A grammar symbol standing for a grammatical construct that can
10258be expressed through rules in terms of smaller constructs; in other
10259words, a construct that is not a token. @xref{Symbols}.
10260
bfa74976
RS
10261@item Parser
10262A function that recognizes valid sentences of a language by analyzing
10263the syntax structure of a set of tokens passed to it from a lexical
10264analyzer.
10265
10266@item Postfix operator
10267An arithmetic operator that is placed after the operands upon which it
10268performs some operation.
10269
10270@item Reduction
10271Replacing a string of nonterminals and/or terminals with a single
89cab50d 10272nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10273Parser Algorithm}.
bfa74976
RS
10274
10275@item Reentrant
10276A reentrant subprogram is a subprogram which can be in invoked any
10277number of times in parallel, without interference between the various
10278invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10279
10280@item Reverse polish notation
10281A language in which all operators are postfix operators.
10282
10283@item Right recursion
89cab50d
AD
10284A rule whose result symbol is also its last component symbol; for
10285example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10286Rules}.
bfa74976
RS
10287
10288@item Semantics
10289In computer languages, the semantics are specified by the actions
10290taken for each instance of the language, i.e., the meaning of
10291each statement. @xref{Semantics, ,Defining Language Semantics}.
10292
10293@item Shift
10294A parser is said to shift when it makes the choice of analyzing
10295further input from the stream rather than reducing immediately some
c827f760 10296already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10297
10298@item Single-character literal
10299A single character that is recognized and interpreted as is.
10300@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10301
10302@item Start symbol
10303The nonterminal symbol that stands for a complete valid utterance in
10304the language being parsed. The start symbol is usually listed as the
13863333 10305first nonterminal symbol in a language specification.
bfa74976
RS
10306@xref{Start Decl, ,The Start-Symbol}.
10307
10308@item Symbol table
10309A data structure where symbol names and associated data are stored
10310during parsing to allow for recognition and use of existing
10311information in repeated uses of a symbol. @xref{Multi-function Calc}.
10312
6e649e65
PE
10313@item Syntax error
10314An error encountered during parsing of an input stream due to invalid
10315syntax. @xref{Error Recovery}.
10316
bfa74976
RS
10317@item Token
10318A basic, grammatically indivisible unit of a language. The symbol
10319that describes a token in the grammar is a terminal symbol.
10320The input of the Bison parser is a stream of tokens which comes from
10321the lexical analyzer. @xref{Symbols}.
10322
10323@item Terminal symbol
89cab50d
AD
10324A grammar symbol that has no rules in the grammar and therefore is
10325grammatically indivisible. The piece of text it represents is a token.
10326@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10327@end table
10328
342b8b6e 10329@node Copying This Manual
f2b5126e 10330@appendix Copying This Manual
f2b5126e
PB
10331@include fdl.texi
10332
342b8b6e 10333@node Index
bfa74976
RS
10334@unnumbered Index
10335
10336@printindex cp
10337
bfa74976 10338@bye
a06ea4aa 10339
a022ff41
AD
10340@c Local Variables:
10341@c fill-column: 76
10342@c End:
10343
a06ea4aa
AD
10344@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10345@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10346@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10347@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10348@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10349@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10350@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10351@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10352@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10353@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10354@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10355@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10356@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10357@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10358@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10359@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10360@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10361@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10362@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10363@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10364@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10365@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10366@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10367@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10368@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10369@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10370@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10371@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10372@c LocalWords: YYSTACK DVI fdl printindex