]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Regen.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ab7f29f8
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
38Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
c827f760 92* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
93 how you can copy and share Bison
94
95Tutorial sections:
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
98
99Reference sections:
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
104* Context Dependency:: What to do if your language syntax is too
105 messy for Bison to handle straightforwardly.
ec3bc396 106* Debugging:: Understanding or debugging Bison parsers.
bfa74976 107* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 108* Other Languages:: Creating C++ and Java parsers.
12545799 109* FAQ:: Frequently Asked Questions
bfa74976
RS
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
f2b5126e 112* Copying This Manual:: License for copying this manual.
bfa74976
RS
113* Index:: Cross-references to the text.
114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 127* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 128* Locations Overview:: Tracking Locations.
bfa74976
RS
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
32c29292
JD
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
bfa74976
RS
151* Exercises:: Ideas for improving the multi-function calculator.
152
153Reverse Polish Notation Calculator
154
75f5aaea 155* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
156* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
157* Lexer: Rpcalc Lexer. The lexical analyzer.
158* Main: Rpcalc Main. The controlling function.
159* Error: Rpcalc Error. The error reporting function.
160* Gen: Rpcalc Gen. Running Bison on the grammar file.
161* Comp: Rpcalc Compile. Run the C compiler on the output code.
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
171* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
172* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
173* Lexer: Ltcalc Lexer. The lexical analyzer.
174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
177* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
178* Rules: Mfcalc Rules. Grammar rules for the calculator.
179* Symtab: Mfcalc Symtab. Symbol table management subroutines.
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
93dd49ab 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
233* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 234* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
235 which reads tokens.
236* Error Reporting:: You must supply a function @code{yyerror}.
237* Action Features:: Special features for use in actions.
f7ab6a50
PE
238* Internationalization:: How to let the parser speak in the user's
239 native language.
bfa74976
RS
240
241The Lexical Analyzer Function @code{yylex}
242
243* Calling Convention:: How @code{yyparse} calls @code{yylex}.
244* Token Values:: How @code{yylex} must return the semantic value
245 of the token it has read.
95923bd6 246* Token Locations:: How @code{yylex} must return the text location
bfa74976 247 (line number, etc.) of the token, if the
93dd49ab 248 actions want that.
bfa74976
RS
249* Pure Calling:: How the calling convention differs
250 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
251
13863333 252The Bison Parser Algorithm
bfa74976 253
742e4900 254* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
255* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
256* Precedence:: Operator precedence works by resolving conflicts.
257* Contextual Precedence:: When an operator's precedence depends on context.
258* Parser States:: The parser is a finite-state-machine with stack.
259* Reduce/Reduce:: When two rules are applicable in the same situation.
260* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 261* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 262* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
263
264Operator Precedence
265
266* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
267* Using Precedence:: How to specify precedence and associativity.
268* Precedence Only:: How to specify precedence only.
bfa74976
RS
269* Precedence Examples:: How these features are used in the previous example.
270* How Precedence:: How they work.
271
272Handling Context Dependencies
273
274* Semantic Tokens:: Token parsing can depend on the semantic context.
275* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
276* Tie-in Recovery:: Lexical tie-ins have implications for how
277 error recovery rules must be written.
278
93dd49ab 279Debugging Your Parser
ec3bc396
AD
280
281* Understanding:: Understanding the structure of your parser.
282* Tracing:: Tracing the execution of your parser.
283
bfa74976
RS
284Invoking Bison
285
13863333 286* Bison Options:: All the options described in detail,
c827f760 287 in alphabetical order by short options.
bfa74976 288* Option Cross Key:: Alphabetical list of long options.
93dd49ab 289* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 290
8405b70c 291Parsers Written In Other Languages
12545799
AD
292
293* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 294* Java Parsers:: The interface to generate Java parser classes
12545799
AD
295
296C++ Parsers
297
298* C++ Bison Interface:: Asking for C++ parser generation
299* C++ Semantic Values:: %union vs. C++
300* C++ Location Values:: The position and location classes
301* C++ Parser Interface:: Instantiating and running the parser
302* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 303* A Complete C++ Example:: Demonstrating their use
12545799
AD
304
305A Complete C++ Example
306
307* Calc++ --- C++ Calculator:: The specifications
308* Calc++ Parsing Driver:: An active parsing context
309* Calc++ Parser:: A parser class
310* Calc++ Scanner:: A pure C++ Flex scanner
311* Calc++ Top Level:: Conducting the band
312
8405b70c
PB
313Java Parsers
314
315* Java Bison Interface:: Asking for Java parser generation
316* Java Semantic Values:: %type and %token vs. Java
317* Java Location Values:: The position and location classes
318* Java Parser Interface:: Instantiating and running the parser
e254a580
DJ
319* Java Scanner Interface:: Specifying the scanner for the parser
320* Java Action Features:: Special features for use in actions.
8405b70c 321* Java Differences:: Differences between C/C++ and Java Grammars
e254a580 322* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 323
d1a1114f
AD
324Frequently Asked Questions
325
1a059451 326* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 327* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 328* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 329* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 330* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
331* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
332* I can't build Bison:: Troubleshooting
333* Where can I find help?:: Troubleshouting
334* Bug Reports:: Troublereporting
335* Other Languages:: Parsers in Java and others
336* Beta Testing:: Experimenting development versions
337* Mailing Lists:: Meeting other Bison users
d1a1114f 338
f2b5126e
PB
339Copying This Manual
340
f16b0819 341* Copying This Manual:: License for copying this manual.
f2b5126e 342
342b8b6e 343@end detailmenu
bfa74976
RS
344@end menu
345
342b8b6e 346@node Introduction
bfa74976
RS
347@unnumbered Introduction
348@cindex introduction
349
6077da58
PE
350@dfn{Bison} is a general-purpose parser generator that converts an
351annotated context-free grammar into an @acronym{LALR}(1) or
352@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 353Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
354used in simple desk calculators to complex programming languages.
355
356Bison is upward compatible with Yacc: all properly-written Yacc grammars
357ought to work with Bison with no change. Anyone familiar with Yacc
358should be able to use Bison with little trouble. You need to be fluent in
1e137b71 359C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
360
361We begin with tutorial chapters that explain the basic concepts of using
362Bison and show three explained examples, each building on the last. If you
363don't know Bison or Yacc, start by reading these chapters. Reference
364chapters follow which describe specific aspects of Bison in detail.
365
931c7513
RS
366Bison was written primarily by Robert Corbett; Richard Stallman made it
367Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 368multi-character string literals and other features.
931c7513 369
df1af54c 370This edition corresponds to version @value{VERSION} of Bison.
bfa74976 371
342b8b6e 372@node Conditions
bfa74976
RS
373@unnumbered Conditions for Using Bison
374
193d7c70
PE
375The distribution terms for Bison-generated parsers permit using the
376parsers in nonfree programs. Before Bison version 2.2, these extra
377permissions applied only when Bison was generating @acronym{LALR}(1)
378parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 379parsers could be used only in programs that were free software.
a31239f1 380
c827f760
PE
381The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
382compiler, have never
9ecbd125 383had such a requirement. They could always be used for nonfree
a31239f1
RS
384software. The reason Bison was different was not due to a special
385policy decision; it resulted from applying the usual General Public
386License to all of the Bison source code.
387
388The output of the Bison utility---the Bison parser file---contains a
389verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
390parser's implementation. (The actions from your grammar are inserted
391into this implementation at one point, but most of the rest of the
392implementation is not changed.) When we applied the @acronym{GPL}
393terms to the skeleton code for the parser's implementation,
a31239f1
RS
394the effect was to restrict the use of Bison output to free software.
395
396We didn't change the terms because of sympathy for people who want to
397make software proprietary. @strong{Software should be free.} But we
398concluded that limiting Bison's use to free software was doing little to
399encourage people to make other software free. So we decided to make the
400practical conditions for using Bison match the practical conditions for
c827f760 401using the other @acronym{GNU} tools.
bfa74976 402
193d7c70
PE
403This exception applies when Bison is generating code for a parser.
404You can tell whether the exception applies to a Bison output file by
405inspecting the file for text beginning with ``As a special
406exception@dots{}''. The text spells out the exact terms of the
407exception.
262aa8dd 408
f16b0819
PE
409@node Copying
410@unnumbered GNU GENERAL PUBLIC LICENSE
411@include gpl-3.0.texi
bfa74976 412
342b8b6e 413@node Concepts
bfa74976
RS
414@chapter The Concepts of Bison
415
416This chapter introduces many of the basic concepts without which the
417details of Bison will not make sense. If you do not already know how to
418use Bison or Yacc, we suggest you start by reading this chapter carefully.
419
420@menu
421* Language and Grammar:: Languages and context-free grammars,
422 as mathematical ideas.
423* Grammar in Bison:: How we represent grammars for Bison's sake.
424* Semantic Values:: Each token or syntactic grouping can have
425 a semantic value (the value of an integer,
426 the name of an identifier, etc.).
427* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 428* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 429* Locations Overview:: Tracking Locations.
bfa74976
RS
430* Bison Parser:: What are Bison's input and output,
431 how is the output used?
432* Stages:: Stages in writing and running Bison grammars.
433* Grammar Layout:: Overall structure of a Bison grammar file.
434@end menu
435
342b8b6e 436@node Language and Grammar
bfa74976
RS
437@section Languages and Context-Free Grammars
438
bfa74976
RS
439@cindex context-free grammar
440@cindex grammar, context-free
441In order for Bison to parse a language, it must be described by a
442@dfn{context-free grammar}. This means that you specify one or more
443@dfn{syntactic groupings} and give rules for constructing them from their
444parts. For example, in the C language, one kind of grouping is called an
445`expression'. One rule for making an expression might be, ``An expression
446can be made of a minus sign and another expression''. Another would be,
447``An expression can be an integer''. As you can see, rules are often
448recursive, but there must be at least one rule which leads out of the
449recursion.
450
c827f760 451@cindex @acronym{BNF}
bfa74976
RS
452@cindex Backus-Naur form
453The most common formal system for presenting such rules for humans to read
c827f760
PE
454is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
455order to specify the language Algol 60. Any grammar expressed in
456@acronym{BNF} is a context-free grammar. The input to Bison is
457essentially machine-readable @acronym{BNF}.
bfa74976 458
c827f760
PE
459@cindex @acronym{LALR}(1) grammars
460@cindex @acronym{LR}(1) grammars
676385e2
PH
461There are various important subclasses of context-free grammar. Although it
462can handle almost all context-free grammars, Bison is optimized for what
c827f760 463are called @acronym{LALR}(1) grammars.
676385e2 464In brief, in these grammars, it must be possible to
bfa74976 465tell how to parse any portion of an input string with just a single
742e4900 466token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
467@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
468restrictions that are
bfa74976 469hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
470@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
471@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
472more information on this.
bfa74976 473
c827f760
PE
474@cindex @acronym{GLR} parsing
475@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 476@cindex ambiguous grammars
9d9b8b70 477@cindex nondeterministic parsing
9501dc6e
AD
478
479Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
480roughly that the next grammar rule to apply at any point in the input is
481uniquely determined by the preceding input and a fixed, finite portion
742e4900 482(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 483grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 484apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 485grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 486lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
487With the proper declarations, Bison is also able to parse these more
488general context-free grammars, using a technique known as @acronym{GLR}
489parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
490are able to handle any context-free grammar for which the number of
491possible parses of any given string is finite.
676385e2 492
bfa74976
RS
493@cindex symbols (abstract)
494@cindex token
495@cindex syntactic grouping
496@cindex grouping, syntactic
9501dc6e
AD
497In the formal grammatical rules for a language, each kind of syntactic
498unit or grouping is named by a @dfn{symbol}. Those which are built by
499grouping smaller constructs according to grammatical rules are called
bfa74976
RS
500@dfn{nonterminal symbols}; those which can't be subdivided are called
501@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
502corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 503corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
504
505We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
506nonterminal, mean. The tokens of C are identifiers, constants (numeric
507and string), and the various keywords, arithmetic operators and
508punctuation marks. So the terminal symbols of a grammar for C include
509`identifier', `number', `string', plus one symbol for each keyword,
510operator or punctuation mark: `if', `return', `const', `static', `int',
511`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
512(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
513lexicography, not grammar.)
514
515Here is a simple C function subdivided into tokens:
516
9edcd895
AD
517@ifinfo
518@example
519int /* @r{keyword `int'} */
14d4662b 520square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
521 @r{identifier, close-paren} */
522@{ /* @r{open-brace} */
aa08666d
AD
523 return x * x; /* @r{keyword `return', identifier, asterisk,}
524 @r{identifier, semicolon} */
9edcd895
AD
525@} /* @r{close-brace} */
526@end example
527@end ifinfo
528@ifnotinfo
bfa74976
RS
529@example
530int /* @r{keyword `int'} */
14d4662b 531square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 532@{ /* @r{open-brace} */
9edcd895 533 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
534@} /* @r{close-brace} */
535@end example
9edcd895 536@end ifnotinfo
bfa74976
RS
537
538The syntactic groupings of C include the expression, the statement, the
539declaration, and the function definition. These are represented in the
540grammar of C by nonterminal symbols `expression', `statement',
541`declaration' and `function definition'. The full grammar uses dozens of
542additional language constructs, each with its own nonterminal symbol, in
543order to express the meanings of these four. The example above is a
544function definition; it contains one declaration, and one statement. In
545the statement, each @samp{x} is an expression and so is @samp{x * x}.
546
547Each nonterminal symbol must have grammatical rules showing how it is made
548out of simpler constructs. For example, one kind of C statement is the
549@code{return} statement; this would be described with a grammar rule which
550reads informally as follows:
551
552@quotation
553A `statement' can be made of a `return' keyword, an `expression' and a
554`semicolon'.
555@end quotation
556
557@noindent
558There would be many other rules for `statement', one for each kind of
559statement in C.
560
561@cindex start symbol
562One nonterminal symbol must be distinguished as the special one which
563defines a complete utterance in the language. It is called the @dfn{start
564symbol}. In a compiler, this means a complete input program. In the C
565language, the nonterminal symbol `sequence of definitions and declarations'
566plays this role.
567
568For example, @samp{1 + 2} is a valid C expression---a valid part of a C
569program---but it is not valid as an @emph{entire} C program. In the
570context-free grammar of C, this follows from the fact that `expression' is
571not the start symbol.
572
573The Bison parser reads a sequence of tokens as its input, and groups the
574tokens using the grammar rules. If the input is valid, the end result is
575that the entire token sequence reduces to a single grouping whose symbol is
576the grammar's start symbol. If we use a grammar for C, the entire input
577must be a `sequence of definitions and declarations'. If not, the parser
578reports a syntax error.
579
342b8b6e 580@node Grammar in Bison
bfa74976
RS
581@section From Formal Rules to Bison Input
582@cindex Bison grammar
583@cindex grammar, Bison
584@cindex formal grammar
585
586A formal grammar is a mathematical construct. To define the language
587for Bison, you must write a file expressing the grammar in Bison syntax:
588a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
589
590A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 591as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
592in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
593
594The Bison representation for a terminal symbol is also called a @dfn{token
595type}. Token types as well can be represented as C-like identifiers. By
596convention, these identifiers should be upper case to distinguish them from
597nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
598@code{RETURN}. A terminal symbol that stands for a particular keyword in
599the language should be named after that keyword converted to upper case.
600The terminal symbol @code{error} is reserved for error recovery.
931c7513 601@xref{Symbols}.
bfa74976
RS
602
603A terminal symbol can also be represented as a character literal, just like
604a C character constant. You should do this whenever a token is just a
605single character (parenthesis, plus-sign, etc.): use that same character in
606a literal as the terminal symbol for that token.
607
931c7513
RS
608A third way to represent a terminal symbol is with a C string constant
609containing several characters. @xref{Symbols}, for more information.
610
bfa74976
RS
611The grammar rules also have an expression in Bison syntax. For example,
612here is the Bison rule for a C @code{return} statement. The semicolon in
613quotes is a literal character token, representing part of the C syntax for
614the statement; the naked semicolon, and the colon, are Bison punctuation
615used in every rule.
616
617@example
618stmt: RETURN expr ';'
619 ;
620@end example
621
622@noindent
623@xref{Rules, ,Syntax of Grammar Rules}.
624
342b8b6e 625@node Semantic Values
bfa74976
RS
626@section Semantic Values
627@cindex semantic value
628@cindex value, semantic
629
630A formal grammar selects tokens only by their classifications: for example,
631if a rule mentions the terminal symbol `integer constant', it means that
632@emph{any} integer constant is grammatically valid in that position. The
633precise value of the constant is irrelevant to how to parse the input: if
634@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 635grammatical.
bfa74976
RS
636
637But the precise value is very important for what the input means once it is
638parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6393989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
640has both a token type and a @dfn{semantic value}. @xref{Semantics,
641,Defining Language Semantics},
bfa74976
RS
642for details.
643
644The token type is a terminal symbol defined in the grammar, such as
645@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
646you need to know to decide where the token may validly appear and how to
647group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 648except their types.
bfa74976
RS
649
650The semantic value has all the rest of the information about the
651meaning of the token, such as the value of an integer, or the name of an
652identifier. (A token such as @code{','} which is just punctuation doesn't
653need to have any semantic value.)
654
655For example, an input token might be classified as token type
656@code{INTEGER} and have the semantic value 4. Another input token might
657have the same token type @code{INTEGER} but value 3989. When a grammar
658rule says that @code{INTEGER} is allowed, either of these tokens is
659acceptable because each is an @code{INTEGER}. When the parser accepts the
660token, it keeps track of the token's semantic value.
661
662Each grouping can also have a semantic value as well as its nonterminal
663symbol. For example, in a calculator, an expression typically has a
664semantic value that is a number. In a compiler for a programming
665language, an expression typically has a semantic value that is a tree
666structure describing the meaning of the expression.
667
342b8b6e 668@node Semantic Actions
bfa74976
RS
669@section Semantic Actions
670@cindex semantic actions
671@cindex actions, semantic
672
673In order to be useful, a program must do more than parse input; it must
674also produce some output based on the input. In a Bison grammar, a grammar
675rule can have an @dfn{action} made up of C statements. Each time the
676parser recognizes a match for that rule, the action is executed.
677@xref{Actions}.
13863333 678
bfa74976
RS
679Most of the time, the purpose of an action is to compute the semantic value
680of the whole construct from the semantic values of its parts. For example,
681suppose we have a rule which says an expression can be the sum of two
682expressions. When the parser recognizes such a sum, each of the
683subexpressions has a semantic value which describes how it was built up.
684The action for this rule should create a similar sort of value for the
685newly recognized larger expression.
686
687For example, here is a rule that says an expression can be the sum of
688two subexpressions:
689
690@example
691expr: expr '+' expr @{ $$ = $1 + $3; @}
692 ;
693@end example
694
695@noindent
696The action says how to produce the semantic value of the sum expression
697from the values of the two subexpressions.
698
676385e2 699@node GLR Parsers
c827f760
PE
700@section Writing @acronym{GLR} Parsers
701@cindex @acronym{GLR} parsing
702@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
703@findex %glr-parser
704@cindex conflicts
705@cindex shift/reduce conflicts
fa7e68c3 706@cindex reduce/reduce conflicts
676385e2 707
fa7e68c3 708In some grammars, Bison's standard
9501dc6e
AD
709@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
710certain grammar rule at a given point. That is, it may not be able to
711decide (on the basis of the input read so far) which of two possible
712reductions (applications of a grammar rule) applies, or whether to apply
713a reduction or read more of the input and apply a reduction later in the
714input. These are known respectively as @dfn{reduce/reduce} conflicts
715(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
716(@pxref{Shift/Reduce}).
717
718To use a grammar that is not easily modified to be @acronym{LALR}(1), a
719more general parsing algorithm is sometimes necessary. If you include
676385e2 720@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 721(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
722(@acronym{GLR}) parser. These parsers handle Bison grammars that
723contain no unresolved conflicts (i.e., after applying precedence
724declarations) identically to @acronym{LALR}(1) parsers. However, when
725faced with unresolved shift/reduce and reduce/reduce conflicts,
726@acronym{GLR} parsers use the simple expedient of doing both,
727effectively cloning the parser to follow both possibilities. Each of
728the resulting parsers can again split, so that at any given time, there
729can be any number of possible parses being explored. The parsers
676385e2
PH
730proceed in lockstep; that is, all of them consume (shift) a given input
731symbol before any of them proceed to the next. Each of the cloned
732parsers eventually meets one of two possible fates: either it runs into
733a parsing error, in which case it simply vanishes, or it merges with
734another parser, because the two of them have reduced the input to an
735identical set of symbols.
736
737During the time that there are multiple parsers, semantic actions are
738recorded, but not performed. When a parser disappears, its recorded
739semantic actions disappear as well, and are never performed. When a
740reduction makes two parsers identical, causing them to merge, Bison
741records both sets of semantic actions. Whenever the last two parsers
742merge, reverting to the single-parser case, Bison resolves all the
743outstanding actions either by precedences given to the grammar rules
744involved, or by performing both actions, and then calling a designated
745user-defined function on the resulting values to produce an arbitrary
746merged result.
747
fa7e68c3 748@menu
32c29292
JD
749* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
750* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
751* GLR Semantic Actions:: Deferred semantic actions have special concerns.
752* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
753@end menu
754
755@node Simple GLR Parsers
756@subsection Using @acronym{GLR} on Unambiguous Grammars
757@cindex @acronym{GLR} parsing, unambiguous grammars
758@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
759@findex %glr-parser
760@findex %expect-rr
761@cindex conflicts
762@cindex reduce/reduce conflicts
763@cindex shift/reduce conflicts
764
765In the simplest cases, you can use the @acronym{GLR} algorithm
766to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 767Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
768or (in rare cases) fall into the category of grammars in which the
769@acronym{LALR}(1) algorithm throws away too much information (they are in
770@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
771
772Consider a problem that
773arises in the declaration of enumerated and subrange types in the
774programming language Pascal. Here are some examples:
775
776@example
777type subrange = lo .. hi;
778type enum = (a, b, c);
779@end example
780
781@noindent
782The original language standard allows only numeric
783literals and constant identifiers for the subrange bounds (@samp{lo}
784and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78510206) and many other
786Pascal implementations allow arbitrary expressions there. This gives
787rise to the following situation, containing a superfluous pair of
788parentheses:
789
790@example
791type subrange = (a) .. b;
792@end example
793
794@noindent
795Compare this to the following declaration of an enumerated
796type with only one value:
797
798@example
799type enum = (a);
800@end example
801
802@noindent
803(These declarations are contrived, but they are syntactically
804valid, and more-complicated cases can come up in practical programs.)
805
806These two declarations look identical until the @samp{..} token.
742e4900 807With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
808possible to decide between the two forms when the identifier
809@samp{a} is parsed. It is, however, desirable
810for a parser to decide this, since in the latter case
811@samp{a} must become a new identifier to represent the enumeration
812value, while in the former case @samp{a} must be evaluated with its
813current meaning, which may be a constant or even a function call.
814
815You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
816to be resolved later, but this typically requires substantial
817contortions in both semantic actions and large parts of the
818grammar, where the parentheses are nested in the recursive rules for
819expressions.
820
821You might think of using the lexer to distinguish between the two
822forms by returning different tokens for currently defined and
823undefined identifiers. But if these declarations occur in a local
824scope, and @samp{a} is defined in an outer scope, then both forms
825are possible---either locally redefining @samp{a}, or using the
826value of @samp{a} from the outer scope. So this approach cannot
827work.
828
e757bb10 829A simple solution to this problem is to declare the parser to
fa7e68c3
PE
830use the @acronym{GLR} algorithm.
831When the @acronym{GLR} parser reaches the critical state, it
832merely splits into two branches and pursues both syntax rules
833simultaneously. Sooner or later, one of them runs into a parsing
834error. If there is a @samp{..} token before the next
835@samp{;}, the rule for enumerated types fails since it cannot
836accept @samp{..} anywhere; otherwise, the subrange type rule
837fails since it requires a @samp{..} token. So one of the branches
838fails silently, and the other one continues normally, performing
839all the intermediate actions that were postponed during the split.
840
841If the input is syntactically incorrect, both branches fail and the parser
842reports a syntax error as usual.
843
844The effect of all this is that the parser seems to ``guess'' the
845correct branch to take, or in other words, it seems to use more
742e4900 846lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
847for. In this example, @acronym{LALR}(2) would suffice, but also some cases
848that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
849
850In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
851and the current Bison parser even takes exponential time and space
852for some grammars. In practice, this rarely happens, and for many
853grammars it is possible to prove that it cannot happen.
854The present example contains only one conflict between two
855rules, and the type-declaration context containing the conflict
856cannot be nested. So the number of
857branches that can exist at any time is limited by the constant 2,
858and the parsing time is still linear.
859
860Here is a Bison grammar corresponding to the example above. It
861parses a vastly simplified form of Pascal type declarations.
862
863@example
864%token TYPE DOTDOT ID
865
866@group
867%left '+' '-'
868%left '*' '/'
869@end group
870
871%%
872
873@group
874type_decl : TYPE ID '=' type ';'
875 ;
876@end group
877
878@group
879type : '(' id_list ')'
880 | expr DOTDOT expr
881 ;
882@end group
883
884@group
885id_list : ID
886 | id_list ',' ID
887 ;
888@end group
889
890@group
891expr : '(' expr ')'
892 | expr '+' expr
893 | expr '-' expr
894 | expr '*' expr
895 | expr '/' expr
896 | ID
897 ;
898@end group
899@end example
900
901When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
902about one reduce/reduce conflict. In the conflicting situation the
903parser chooses one of the alternatives, arbitrarily the one
904declared first. Therefore the following correct input is not
905recognized:
906
907@example
908type t = (a) .. b;
909@end example
910
911The parser can be turned into a @acronym{GLR} parser, while also telling Bison
912to be silent about the one known reduce/reduce conflict, by
e757bb10 913adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
914@samp{%%}):
915
916@example
917%glr-parser
918%expect-rr 1
919@end example
920
921@noindent
922No change in the grammar itself is required. Now the
923parser recognizes all valid declarations, according to the
924limited syntax above, transparently. In fact, the user does not even
925notice when the parser splits.
926
f8e1c9e5
AD
927So here we have a case where we can use the benefits of @acronym{GLR},
928almost without disadvantages. Even in simple cases like this, however,
929there are at least two potential problems to beware. First, always
930analyze the conflicts reported by Bison to make sure that @acronym{GLR}
931splitting is only done where it is intended. A @acronym{GLR} parser
932splitting inadvertently may cause problems less obvious than an
933@acronym{LALR} parser statically choosing the wrong alternative in a
934conflict. Second, consider interactions with the lexer (@pxref{Semantic
935Tokens}) with great care. Since a split parser consumes tokens without
936performing any actions during the split, the lexer cannot obtain
937information via parser actions. Some cases of lexer interactions can be
938eliminated by using @acronym{GLR} to shift the complications from the
939lexer to the parser. You must check the remaining cases for
940correctness.
941
942In our example, it would be safe for the lexer to return tokens based on
943their current meanings in some symbol table, because no new symbols are
944defined in the middle of a type declaration. Though it is possible for
945a parser to define the enumeration constants as they are parsed, before
946the type declaration is completed, it actually makes no difference since
947they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
948
949@node Merging GLR Parses
950@subsection Using @acronym{GLR} to Resolve Ambiguities
951@cindex @acronym{GLR} parsing, ambiguous grammars
952@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
953@findex %dprec
954@findex %merge
955@cindex conflicts
956@cindex reduce/reduce conflicts
957
2a8d363a 958Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
959
960@example
961%@{
38a92d50
PE
962 #include <stdio.h>
963 #define YYSTYPE char const *
964 int yylex (void);
965 void yyerror (char const *);
676385e2
PH
966%@}
967
968%token TYPENAME ID
969
970%right '='
971%left '+'
972
973%glr-parser
974
975%%
976
fae437e8 977prog :
676385e2
PH
978 | prog stmt @{ printf ("\n"); @}
979 ;
980
981stmt : expr ';' %dprec 1
982 | decl %dprec 2
983 ;
984
2a8d363a 985expr : ID @{ printf ("%s ", $$); @}
fae437e8 986 | TYPENAME '(' expr ')'
2a8d363a
AD
987 @{ printf ("%s <cast> ", $1); @}
988 | expr '+' expr @{ printf ("+ "); @}
989 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
990 ;
991
fae437e8 992decl : TYPENAME declarator ';'
2a8d363a 993 @{ printf ("%s <declare> ", $1); @}
676385e2 994 | TYPENAME declarator '=' expr ';'
2a8d363a 995 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
996 ;
997
2a8d363a 998declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
999 | '(' declarator ')'
1000 ;
1001@end example
1002
1003@noindent
1004This models a problematic part of the C++ grammar---the ambiguity between
1005certain declarations and statements. For example,
1006
1007@example
1008T (x) = y+z;
1009@end example
1010
1011@noindent
1012parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1013(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1014@samp{x} as an @code{ID}).
676385e2 1015Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1016@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1017time it encounters @code{x} in the example above. Since this is a
1018@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1019each choice of resolving the reduce/reduce conflict.
1020Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1021however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1022ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1023the other reduces @code{stmt : decl}, after which both parsers are in an
1024identical state: they've seen @samp{prog stmt} and have the same unprocessed
1025input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1026
1027At this point, the @acronym{GLR} parser requires a specification in the
1028grammar of how to choose between the competing parses.
1029In the example above, the two @code{%dprec}
e757bb10 1030declarations specify that Bison is to give precedence
fa7e68c3 1031to the parse that interprets the example as a
676385e2
PH
1032@code{decl}, which implies that @code{x} is a declarator.
1033The parser therefore prints
1034
1035@example
fae437e8 1036"x" y z + T <init-declare>
676385e2
PH
1037@end example
1038
fa7e68c3
PE
1039The @code{%dprec} declarations only come into play when more than one
1040parse survives. Consider a different input string for this parser:
676385e2
PH
1041
1042@example
1043T (x) + y;
1044@end example
1045
1046@noindent
e757bb10 1047This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1048construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1049Here, there is no ambiguity (this cannot be parsed as a declaration).
1050However, at the time the Bison parser encounters @code{x}, it does not
1051have enough information to resolve the reduce/reduce conflict (again,
1052between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1053case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1054into two, one assuming that @code{x} is an @code{expr}, and the other
1055assuming @code{x} is a @code{declarator}. The second of these parsers
1056then vanishes when it sees @code{+}, and the parser prints
1057
1058@example
fae437e8 1059x T <cast> y +
676385e2
PH
1060@end example
1061
1062Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1063the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1064actions of the two possible parsers, rather than choosing one over the
1065other. To do so, you could change the declaration of @code{stmt} as
1066follows:
1067
1068@example
1069stmt : expr ';' %merge <stmtMerge>
1070 | decl %merge <stmtMerge>
1071 ;
1072@end example
1073
1074@noindent
676385e2
PH
1075and define the @code{stmtMerge} function as:
1076
1077@example
38a92d50
PE
1078static YYSTYPE
1079stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1080@{
1081 printf ("<OR> ");
1082 return "";
1083@}
1084@end example
1085
1086@noindent
1087with an accompanying forward declaration
1088in the C declarations at the beginning of the file:
1089
1090@example
1091%@{
38a92d50 1092 #define YYSTYPE char const *
676385e2
PH
1093 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1094%@}
1095@end example
1096
1097@noindent
fa7e68c3
PE
1098With these declarations, the resulting parser parses the first example
1099as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1100
1101@example
fae437e8 1102"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1103@end example
1104
fa7e68c3 1105Bison requires that all of the
e757bb10 1106productions that participate in any particular merge have identical
fa7e68c3
PE
1107@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1108and the parser will report an error during any parse that results in
1109the offending merge.
9501dc6e 1110
32c29292
JD
1111@node GLR Semantic Actions
1112@subsection GLR Semantic Actions
1113
1114@cindex deferred semantic actions
1115By definition, a deferred semantic action is not performed at the same time as
1116the associated reduction.
1117This raises caveats for several Bison features you might use in a semantic
1118action in a @acronym{GLR} parser.
1119
1120@vindex yychar
1121@cindex @acronym{GLR} parsers and @code{yychar}
1122@vindex yylval
1123@cindex @acronym{GLR} parsers and @code{yylval}
1124@vindex yylloc
1125@cindex @acronym{GLR} parsers and @code{yylloc}
1126In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1127the lookahead token present at the time of the associated reduction.
32c29292
JD
1128After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1129you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1130lookahead token's semantic value and location, if any.
32c29292
JD
1131In a nondeferred semantic action, you can also modify any of these variables to
1132influence syntax analysis.
742e4900 1133@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1134
1135@findex yyclearin
1136@cindex @acronym{GLR} parsers and @code{yyclearin}
1137In a deferred semantic action, it's too late to influence syntax analysis.
1138In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1139shallow copies of the values they had at the time of the associated reduction.
1140For this reason alone, modifying them is dangerous.
1141Moreover, the result of modifying them is undefined and subject to change with
1142future versions of Bison.
1143For example, if a semantic action might be deferred, you should never write it
1144to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1145memory referenced by @code{yylval}.
1146
1147@findex YYERROR
1148@cindex @acronym{GLR} parsers and @code{YYERROR}
1149Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1150(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1151initiate error recovery.
1152During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1153the same as its effect in an @acronym{LALR}(1) parser.
1154In a deferred semantic action, its effect is undefined.
1155@c The effect is probably a syntax error at the split point.
1156
8710fc41
JD
1157Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1158describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1159
fa7e68c3
PE
1160@node Compiler Requirements
1161@subsection Considerations when Compiling @acronym{GLR} Parsers
1162@cindex @code{inline}
9501dc6e 1163@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1164
38a92d50
PE
1165The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1166later. In addition, they use the @code{inline} keyword, which is not
1167C89, but is C99 and is a common extension in pre-C99 compilers. It is
1168up to the user of these parsers to handle
9501dc6e
AD
1169portability issues. For instance, if using Autoconf and the Autoconf
1170macro @code{AC_C_INLINE}, a mere
1171
1172@example
1173%@{
38a92d50 1174 #include <config.h>
9501dc6e
AD
1175%@}
1176@end example
1177
1178@noindent
1179will suffice. Otherwise, we suggest
1180
1181@example
1182%@{
38a92d50
PE
1183 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1184 #define inline
1185 #endif
9501dc6e
AD
1186%@}
1187@end example
676385e2 1188
342b8b6e 1189@node Locations Overview
847bf1f5
AD
1190@section Locations
1191@cindex location
95923bd6
AD
1192@cindex textual location
1193@cindex location, textual
847bf1f5
AD
1194
1195Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1196and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1197the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1198Bison provides a mechanism for handling these locations.
1199
72d2299c 1200Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1201associated location, but the type of locations is the same for all tokens and
72d2299c 1202groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1203structure for storing locations (@pxref{Locations}, for more details).
1204
1205Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1206set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1207is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1208@code{@@3}.
1209
1210When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1211of its left hand side (@pxref{Actions}). In the same way, another default
1212action is used for locations. However, the action for locations is general
847bf1f5 1213enough for most cases, meaning there is usually no need to describe for each
72d2299c 1214rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1215grouping, the default behavior of the output parser is to take the beginning
1216of the first symbol, and the end of the last symbol.
1217
342b8b6e 1218@node Bison Parser
bfa74976
RS
1219@section Bison Output: the Parser File
1220@cindex Bison parser
1221@cindex Bison utility
1222@cindex lexical analyzer, purpose
1223@cindex parser
1224
1225When you run Bison, you give it a Bison grammar file as input. The output
1226is a C source file that parses the language described by the grammar.
1227This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1228utility and the Bison parser are two distinct programs: the Bison utility
1229is a program whose output is the Bison parser that becomes part of your
1230program.
1231
1232The job of the Bison parser is to group tokens into groupings according to
1233the grammar rules---for example, to build identifiers and operators into
1234expressions. As it does this, it runs the actions for the grammar rules it
1235uses.
1236
704a47c4
AD
1237The tokens come from a function called the @dfn{lexical analyzer} that
1238you must supply in some fashion (such as by writing it in C). The Bison
1239parser calls the lexical analyzer each time it wants a new token. It
1240doesn't know what is ``inside'' the tokens (though their semantic values
1241may reflect this). Typically the lexical analyzer makes the tokens by
1242parsing characters of text, but Bison does not depend on this.
1243@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1244
1245The Bison parser file is C code which defines a function named
1246@code{yyparse} which implements that grammar. This function does not make
1247a complete C program: you must supply some additional functions. One is
1248the lexical analyzer. Another is an error-reporting function which the
1249parser calls to report an error. In addition, a complete C program must
1250start with a function called @code{main}; you have to provide this, and
1251arrange for it to call @code{yyparse} or the parser will never run.
1252@xref{Interface, ,Parser C-Language Interface}.
1253
f7ab6a50 1254Aside from the token type names and the symbols in the actions you
7093d0f5 1255write, all symbols defined in the Bison parser file itself
bfa74976
RS
1256begin with @samp{yy} or @samp{YY}. This includes interface functions
1257such as the lexical analyzer function @code{yylex}, the error reporting
1258function @code{yyerror} and the parser function @code{yyparse} itself.
1259This also includes numerous identifiers used for internal purposes.
1260Therefore, you should avoid using C identifiers starting with @samp{yy}
1261or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1262this manual. Also, you should avoid using the C identifiers
1263@samp{malloc} and @samp{free} for anything other than their usual
1264meanings.
bfa74976 1265
7093d0f5
AD
1266In some cases the Bison parser file includes system headers, and in
1267those cases your code should respect the identifiers reserved by those
55289366 1268headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1269@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1270declare memory allocators and related types. @code{<libintl.h>} is
1271included if message translation is in use
1272(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1273be included if you define @code{YYDEBUG} to a nonzero value
1274(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1275
342b8b6e 1276@node Stages
bfa74976
RS
1277@section Stages in Using Bison
1278@cindex stages in using Bison
1279@cindex using Bison
1280
1281The actual language-design process using Bison, from grammar specification
1282to a working compiler or interpreter, has these parts:
1283
1284@enumerate
1285@item
1286Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1287(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1288in the language, describe the action that is to be taken when an
1289instance of that rule is recognized. The action is described by a
1290sequence of C statements.
bfa74976
RS
1291
1292@item
704a47c4
AD
1293Write a lexical analyzer to process input and pass tokens to the parser.
1294The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1295Lexical Analyzer Function @code{yylex}}). It could also be produced
1296using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1297
1298@item
1299Write a controlling function that calls the Bison-produced parser.
1300
1301@item
1302Write error-reporting routines.
1303@end enumerate
1304
1305To turn this source code as written into a runnable program, you
1306must follow these steps:
1307
1308@enumerate
1309@item
1310Run Bison on the grammar to produce the parser.
1311
1312@item
1313Compile the code output by Bison, as well as any other source files.
1314
1315@item
1316Link the object files to produce the finished product.
1317@end enumerate
1318
342b8b6e 1319@node Grammar Layout
bfa74976
RS
1320@section The Overall Layout of a Bison Grammar
1321@cindex grammar file
1322@cindex file format
1323@cindex format of grammar file
1324@cindex layout of Bison grammar
1325
1326The input file for the Bison utility is a @dfn{Bison grammar file}. The
1327general form of a Bison grammar file is as follows:
1328
1329@example
1330%@{
08e49d20 1331@var{Prologue}
bfa74976
RS
1332%@}
1333
1334@var{Bison declarations}
1335
1336%%
1337@var{Grammar rules}
1338%%
08e49d20 1339@var{Epilogue}
bfa74976
RS
1340@end example
1341
1342@noindent
1343The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1344in every Bison grammar file to separate the sections.
1345
72d2299c 1346The prologue may define types and variables used in the actions. You can
342b8b6e 1347also use preprocessor commands to define macros used there, and use
bfa74976 1348@code{#include} to include header files that do any of these things.
38a92d50
PE
1349You need to declare the lexical analyzer @code{yylex} and the error
1350printer @code{yyerror} here, along with any other global identifiers
1351used by the actions in the grammar rules.
bfa74976
RS
1352
1353The Bison declarations declare the names of the terminal and nonterminal
1354symbols, and may also describe operator precedence and the data types of
1355semantic values of various symbols.
1356
1357The grammar rules define how to construct each nonterminal symbol from its
1358parts.
1359
38a92d50
PE
1360The epilogue can contain any code you want to use. Often the
1361definitions of functions declared in the prologue go here. In a
1362simple program, all the rest of the program can go here.
bfa74976 1363
342b8b6e 1364@node Examples
bfa74976
RS
1365@chapter Examples
1366@cindex simple examples
1367@cindex examples, simple
1368
1369Now we show and explain three sample programs written using Bison: a
1370reverse polish notation calculator, an algebraic (infix) notation
1371calculator, and a multi-function calculator. All three have been tested
1372under BSD Unix 4.3; each produces a usable, though limited, interactive
1373desk-top calculator.
1374
1375These examples are simple, but Bison grammars for real programming
aa08666d
AD
1376languages are written the same way. You can copy these examples into a
1377source file to try them.
bfa74976
RS
1378
1379@menu
1380* RPN Calc:: Reverse polish notation calculator;
1381 a first example with no operator precedence.
1382* Infix Calc:: Infix (algebraic) notation calculator.
1383 Operator precedence is introduced.
1384* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1385* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1386* Multi-function Calc:: Calculator with memory and trig functions.
1387 It uses multiple data-types for semantic values.
1388* Exercises:: Ideas for improving the multi-function calculator.
1389@end menu
1390
342b8b6e 1391@node RPN Calc
bfa74976
RS
1392@section Reverse Polish Notation Calculator
1393@cindex reverse polish notation
1394@cindex polish notation calculator
1395@cindex @code{rpcalc}
1396@cindex calculator, simple
1397
1398The first example is that of a simple double-precision @dfn{reverse polish
1399notation} calculator (a calculator using postfix operators). This example
1400provides a good starting point, since operator precedence is not an issue.
1401The second example will illustrate how operator precedence is handled.
1402
1403The source code for this calculator is named @file{rpcalc.y}. The
1404@samp{.y} extension is a convention used for Bison input files.
1405
1406@menu
75f5aaea 1407* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1408* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1409* Lexer: Rpcalc Lexer. The lexical analyzer.
1410* Main: Rpcalc Main. The controlling function.
1411* Error: Rpcalc Error. The error reporting function.
1412* Gen: Rpcalc Gen. Running Bison on the grammar file.
1413* Comp: Rpcalc Compile. Run the C compiler on the output code.
1414@end menu
1415
342b8b6e 1416@node Rpcalc Decls
bfa74976
RS
1417@subsection Declarations for @code{rpcalc}
1418
1419Here are the C and Bison declarations for the reverse polish notation
1420calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1421
1422@example
72d2299c 1423/* Reverse polish notation calculator. */
bfa74976
RS
1424
1425%@{
38a92d50
PE
1426 #define YYSTYPE double
1427 #include <math.h>
1428 int yylex (void);
1429 void yyerror (char const *);
bfa74976
RS
1430%@}
1431
1432%token NUM
1433
72d2299c 1434%% /* Grammar rules and actions follow. */
bfa74976
RS
1435@end example
1436
75f5aaea 1437The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1438preprocessor directives and two forward declarations.
bfa74976
RS
1439
1440The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1441specifying the C data type for semantic values of both tokens and
1442groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1443Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1444don't define it, @code{int} is the default. Because we specify
1445@code{double}, each token and each expression has an associated value,
1446which is a floating point number.
bfa74976
RS
1447
1448The @code{#include} directive is used to declare the exponentiation
1449function @code{pow}.
1450
38a92d50
PE
1451The forward declarations for @code{yylex} and @code{yyerror} are
1452needed because the C language requires that functions be declared
1453before they are used. These functions will be defined in the
1454epilogue, but the parser calls them so they must be declared in the
1455prologue.
1456
704a47c4
AD
1457The second section, Bison declarations, provides information to Bison
1458about the token types (@pxref{Bison Declarations, ,The Bison
1459Declarations Section}). Each terminal symbol that is not a
1460single-character literal must be declared here. (Single-character
bfa74976
RS
1461literals normally don't need to be declared.) In this example, all the
1462arithmetic operators are designated by single-character literals, so the
1463only terminal symbol that needs to be declared is @code{NUM}, the token
1464type for numeric constants.
1465
342b8b6e 1466@node Rpcalc Rules
bfa74976
RS
1467@subsection Grammar Rules for @code{rpcalc}
1468
1469Here are the grammar rules for the reverse polish notation calculator.
1470
1471@example
1472input: /* empty */
1473 | input line
1474;
1475
1476line: '\n'
18b519c0 1477 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1478;
1479
18b519c0
AD
1480exp: NUM @{ $$ = $1; @}
1481 | exp exp '+' @{ $$ = $1 + $2; @}
1482 | exp exp '-' @{ $$ = $1 - $2; @}
1483 | exp exp '*' @{ $$ = $1 * $2; @}
1484 | exp exp '/' @{ $$ = $1 / $2; @}
1485 /* Exponentiation */
1486 | exp exp '^' @{ $$ = pow ($1, $2); @}
1487 /* Unary minus */
1488 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1489;
1490%%
1491@end example
1492
1493The groupings of the rpcalc ``language'' defined here are the expression
1494(given the name @code{exp}), the line of input (@code{line}), and the
1495complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1496symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1497which is read as ``or''. The following sections explain what these rules
1498mean.
1499
1500The semantics of the language is determined by the actions taken when a
1501grouping is recognized. The actions are the C code that appears inside
1502braces. @xref{Actions}.
1503
1504You must specify these actions in C, but Bison provides the means for
1505passing semantic values between the rules. In each action, the
1506pseudo-variable @code{$$} stands for the semantic value for the grouping
1507that the rule is going to construct. Assigning a value to @code{$$} is the
1508main job of most actions. The semantic values of the components of the
1509rule are referred to as @code{$1}, @code{$2}, and so on.
1510
1511@menu
13863333
AD
1512* Rpcalc Input::
1513* Rpcalc Line::
1514* Rpcalc Expr::
bfa74976
RS
1515@end menu
1516
342b8b6e 1517@node Rpcalc Input
bfa74976
RS
1518@subsubsection Explanation of @code{input}
1519
1520Consider the definition of @code{input}:
1521
1522@example
1523input: /* empty */
1524 | input line
1525;
1526@end example
1527
1528This definition reads as follows: ``A complete input is either an empty
1529string, or a complete input followed by an input line''. Notice that
1530``complete input'' is defined in terms of itself. This definition is said
1531to be @dfn{left recursive} since @code{input} appears always as the
1532leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1533
1534The first alternative is empty because there are no symbols between the
1535colon and the first @samp{|}; this means that @code{input} can match an
1536empty string of input (no tokens). We write the rules this way because it
1537is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1538It's conventional to put an empty alternative first and write the comment
1539@samp{/* empty */} in it.
1540
1541The second alternate rule (@code{input line}) handles all nontrivial input.
1542It means, ``After reading any number of lines, read one more line if
1543possible.'' The left recursion makes this rule into a loop. Since the
1544first alternative matches empty input, the loop can be executed zero or
1545more times.
1546
1547The parser function @code{yyparse} continues to process input until a
1548grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1549input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1550
342b8b6e 1551@node Rpcalc Line
bfa74976
RS
1552@subsubsection Explanation of @code{line}
1553
1554Now consider the definition of @code{line}:
1555
1556@example
1557line: '\n'
1558 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1559;
1560@end example
1561
1562The first alternative is a token which is a newline character; this means
1563that rpcalc accepts a blank line (and ignores it, since there is no
1564action). The second alternative is an expression followed by a newline.
1565This is the alternative that makes rpcalc useful. The semantic value of
1566the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1567question is the first symbol in the alternative. The action prints this
1568value, which is the result of the computation the user asked for.
1569
1570This action is unusual because it does not assign a value to @code{$$}. As
1571a consequence, the semantic value associated with the @code{line} is
1572uninitialized (its value will be unpredictable). This would be a bug if
1573that value were ever used, but we don't use it: once rpcalc has printed the
1574value of the user's input line, that value is no longer needed.
1575
342b8b6e 1576@node Rpcalc Expr
bfa74976
RS
1577@subsubsection Explanation of @code{expr}
1578
1579The @code{exp} grouping has several rules, one for each kind of expression.
1580The first rule handles the simplest expressions: those that are just numbers.
1581The second handles an addition-expression, which looks like two expressions
1582followed by a plus-sign. The third handles subtraction, and so on.
1583
1584@example
1585exp: NUM
1586 | exp exp '+' @{ $$ = $1 + $2; @}
1587 | exp exp '-' @{ $$ = $1 - $2; @}
1588 @dots{}
1589 ;
1590@end example
1591
1592We have used @samp{|} to join all the rules for @code{exp}, but we could
1593equally well have written them separately:
1594
1595@example
1596exp: NUM ;
1597exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1598exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1599 @dots{}
1600@end example
1601
1602Most of the rules have actions that compute the value of the expression in
1603terms of the value of its parts. For example, in the rule for addition,
1604@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1605the second one. The third component, @code{'+'}, has no meaningful
1606associated semantic value, but if it had one you could refer to it as
1607@code{$3}. When @code{yyparse} recognizes a sum expression using this
1608rule, the sum of the two subexpressions' values is produced as the value of
1609the entire expression. @xref{Actions}.
1610
1611You don't have to give an action for every rule. When a rule has no
1612action, Bison by default copies the value of @code{$1} into @code{$$}.
1613This is what happens in the first rule (the one that uses @code{NUM}).
1614
1615The formatting shown here is the recommended convention, but Bison does
72d2299c 1616not require it. You can add or change white space as much as you wish.
bfa74976
RS
1617For example, this:
1618
1619@example
99a9344e 1620exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1621@end example
1622
1623@noindent
1624means the same thing as this:
1625
1626@example
1627exp: NUM
1628 | exp exp '+' @{ $$ = $1 + $2; @}
1629 | @dots{}
99a9344e 1630;
bfa74976
RS
1631@end example
1632
1633@noindent
1634The latter, however, is much more readable.
1635
342b8b6e 1636@node Rpcalc Lexer
bfa74976
RS
1637@subsection The @code{rpcalc} Lexical Analyzer
1638@cindex writing a lexical analyzer
1639@cindex lexical analyzer, writing
1640
704a47c4
AD
1641The lexical analyzer's job is low-level parsing: converting characters
1642or sequences of characters into tokens. The Bison parser gets its
1643tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1644Analyzer Function @code{yylex}}.
bfa74976 1645
c827f760
PE
1646Only a simple lexical analyzer is needed for the @acronym{RPN}
1647calculator. This
bfa74976
RS
1648lexical analyzer skips blanks and tabs, then reads in numbers as
1649@code{double} and returns them as @code{NUM} tokens. Any other character
1650that isn't part of a number is a separate token. Note that the token-code
1651for such a single-character token is the character itself.
1652
1653The return value of the lexical analyzer function is a numeric code which
1654represents a token type. The same text used in Bison rules to stand for
1655this token type is also a C expression for the numeric code for the type.
1656This works in two ways. If the token type is a character literal, then its
e966383b 1657numeric code is that of the character; you can use the same
bfa74976
RS
1658character literal in the lexical analyzer to express the number. If the
1659token type is an identifier, that identifier is defined by Bison as a C
1660macro whose definition is the appropriate number. In this example,
1661therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1662
1964ad8c
AD
1663The semantic value of the token (if it has one) is stored into the
1664global variable @code{yylval}, which is where the Bison parser will look
1665for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1666defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1667,Declarations for @code{rpcalc}}.)
bfa74976 1668
72d2299c
PE
1669A token type code of zero is returned if the end-of-input is encountered.
1670(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1671
1672Here is the code for the lexical analyzer:
1673
1674@example
1675@group
72d2299c 1676/* The lexical analyzer returns a double floating point
e966383b 1677 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1678 of the character read if not a number. It skips all blanks
1679 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1680
1681#include <ctype.h>
1682@end group
1683
1684@group
13863333
AD
1685int
1686yylex (void)
bfa74976
RS
1687@{
1688 int c;
1689
72d2299c 1690 /* Skip white space. */
13863333 1691 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1692 ;
1693@end group
1694@group
72d2299c 1695 /* Process numbers. */
13863333 1696 if (c == '.' || isdigit (c))
bfa74976
RS
1697 @{
1698 ungetc (c, stdin);
1699 scanf ("%lf", &yylval);
1700 return NUM;
1701 @}
1702@end group
1703@group
72d2299c 1704 /* Return end-of-input. */
13863333 1705 if (c == EOF)
bfa74976 1706 return 0;
72d2299c 1707 /* Return a single char. */
13863333 1708 return c;
bfa74976
RS
1709@}
1710@end group
1711@end example
1712
342b8b6e 1713@node Rpcalc Main
bfa74976
RS
1714@subsection The Controlling Function
1715@cindex controlling function
1716@cindex main function in simple example
1717
1718In keeping with the spirit of this example, the controlling function is
1719kept to the bare minimum. The only requirement is that it call
1720@code{yyparse} to start the process of parsing.
1721
1722@example
1723@group
13863333
AD
1724int
1725main (void)
bfa74976 1726@{
13863333 1727 return yyparse ();
bfa74976
RS
1728@}
1729@end group
1730@end example
1731
342b8b6e 1732@node Rpcalc Error
bfa74976
RS
1733@subsection The Error Reporting Routine
1734@cindex error reporting routine
1735
1736When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1737function @code{yyerror} to print an error message (usually but not
6e649e65 1738always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1739@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1740here is the definition we will use:
bfa74976
RS
1741
1742@example
1743@group
1744#include <stdio.h>
1745
38a92d50 1746/* Called by yyparse on error. */
13863333 1747void
38a92d50 1748yyerror (char const *s)
bfa74976 1749@{
4e03e201 1750 fprintf (stderr, "%s\n", s);
bfa74976
RS
1751@}
1752@end group
1753@end example
1754
1755After @code{yyerror} returns, the Bison parser may recover from the error
1756and continue parsing if the grammar contains a suitable error rule
1757(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1758have not written any error rules in this example, so any invalid input will
1759cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1760real calculator, but it is adequate for the first example.
bfa74976 1761
342b8b6e 1762@node Rpcalc Gen
bfa74976
RS
1763@subsection Running Bison to Make the Parser
1764@cindex running Bison (introduction)
1765
ceed8467
AD
1766Before running Bison to produce a parser, we need to decide how to
1767arrange all the source code in one or more source files. For such a
1768simple example, the easiest thing is to put everything in one file. The
1769definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1770end, in the epilogue of the file
75f5aaea 1771(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1772
1773For a large project, you would probably have several source files, and use
1774@code{make} to arrange to recompile them.
1775
1776With all the source in a single file, you use the following command to
1777convert it into a parser file:
1778
1779@example
fa4d969f 1780bison @var{file}.y
bfa74976
RS
1781@end example
1782
1783@noindent
1784In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1785@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1786removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1787Bison contains the source code for @code{yyparse}. The additional
1788functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1789are copied verbatim to the output.
1790
342b8b6e 1791@node Rpcalc Compile
bfa74976
RS
1792@subsection Compiling the Parser File
1793@cindex compiling the parser
1794
1795Here is how to compile and run the parser file:
1796
1797@example
1798@group
1799# @r{List files in current directory.}
9edcd895 1800$ @kbd{ls}
bfa74976
RS
1801rpcalc.tab.c rpcalc.y
1802@end group
1803
1804@group
1805# @r{Compile the Bison parser.}
1806# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1807$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1808@end group
1809
1810@group
1811# @r{List files again.}
9edcd895 1812$ @kbd{ls}
bfa74976
RS
1813rpcalc rpcalc.tab.c rpcalc.y
1814@end group
1815@end example
1816
1817The file @file{rpcalc} now contains the executable code. Here is an
1818example session using @code{rpcalc}.
1819
1820@example
9edcd895
AD
1821$ @kbd{rpcalc}
1822@kbd{4 9 +}
bfa74976 182313
9edcd895 1824@kbd{3 7 + 3 4 5 *+-}
bfa74976 1825-13
9edcd895 1826@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182713
9edcd895 1828@kbd{5 6 / 4 n +}
bfa74976 1829-3.166666667
9edcd895 1830@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183181
9edcd895
AD
1832@kbd{^D} @r{End-of-file indicator}
1833$
bfa74976
RS
1834@end example
1835
342b8b6e 1836@node Infix Calc
bfa74976
RS
1837@section Infix Notation Calculator: @code{calc}
1838@cindex infix notation calculator
1839@cindex @code{calc}
1840@cindex calculator, infix notation
1841
1842We now modify rpcalc to handle infix operators instead of postfix. Infix
1843notation involves the concept of operator precedence and the need for
1844parentheses nested to arbitrary depth. Here is the Bison code for
1845@file{calc.y}, an infix desk-top calculator.
1846
1847@example
38a92d50 1848/* Infix notation calculator. */
bfa74976
RS
1849
1850%@{
38a92d50
PE
1851 #define YYSTYPE double
1852 #include <math.h>
1853 #include <stdio.h>
1854 int yylex (void);
1855 void yyerror (char const *);
bfa74976
RS
1856%@}
1857
38a92d50 1858/* Bison declarations. */
bfa74976
RS
1859%token NUM
1860%left '-' '+'
1861%left '*' '/'
d78f0ac9
AD
1862%precedence NEG /* negation--unary minus */
1863%right '^' /* exponentiation */
bfa74976 1864
38a92d50
PE
1865%% /* The grammar follows. */
1866input: /* empty */
bfa74976
RS
1867 | input line
1868;
1869
1870line: '\n'
1871 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1872;
1873
1874exp: NUM @{ $$ = $1; @}
1875 | exp '+' exp @{ $$ = $1 + $3; @}
1876 | exp '-' exp @{ $$ = $1 - $3; @}
1877 | exp '*' exp @{ $$ = $1 * $3; @}
1878 | exp '/' exp @{ $$ = $1 / $3; @}
1879 | '-' exp %prec NEG @{ $$ = -$2; @}
1880 | exp '^' exp @{ $$ = pow ($1, $3); @}
1881 | '(' exp ')' @{ $$ = $2; @}
1882;
1883%%
1884@end example
1885
1886@noindent
ceed8467
AD
1887The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1888same as before.
bfa74976
RS
1889
1890There are two important new features shown in this code.
1891
1892In the second section (Bison declarations), @code{%left} declares token
1893types and says they are left-associative operators. The declarations
1894@code{%left} and @code{%right} (right associativity) take the place of
1895@code{%token} which is used to declare a token type name without
d78f0ac9 1896associativity/precedence. (These tokens are single-character literals, which
bfa74976 1897ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1898the associativity/precedence.)
bfa74976
RS
1899
1900Operator precedence is determined by the line ordering of the
1901declarations; the higher the line number of the declaration (lower on
1902the page or screen), the higher the precedence. Hence, exponentiation
1903has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1904by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1905only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1906Precedence}.
bfa74976 1907
704a47c4
AD
1908The other important new feature is the @code{%prec} in the grammar
1909section for the unary minus operator. The @code{%prec} simply instructs
1910Bison that the rule @samp{| '-' exp} has the same precedence as
1911@code{NEG}---in this case the next-to-highest. @xref{Contextual
1912Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1913
1914Here is a sample run of @file{calc.y}:
1915
1916@need 500
1917@example
9edcd895
AD
1918$ @kbd{calc}
1919@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19206.880952381
9edcd895 1921@kbd{-56 + 2}
bfa74976 1922-54
9edcd895 1923@kbd{3 ^ 2}
bfa74976
RS
19249
1925@end example
1926
342b8b6e 1927@node Simple Error Recovery
bfa74976
RS
1928@section Simple Error Recovery
1929@cindex error recovery, simple
1930
1931Up to this point, this manual has not addressed the issue of @dfn{error
1932recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1933error. All we have handled is error reporting with @code{yyerror}.
1934Recall that by default @code{yyparse} returns after calling
1935@code{yyerror}. This means that an erroneous input line causes the
1936calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1937
1938The Bison language itself includes the reserved word @code{error}, which
1939may be included in the grammar rules. In the example below it has
1940been added to one of the alternatives for @code{line}:
1941
1942@example
1943@group
1944line: '\n'
1945 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1946 | error '\n' @{ yyerrok; @}
1947;
1948@end group
1949@end example
1950
ceed8467 1951This addition to the grammar allows for simple error recovery in the
6e649e65 1952event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1953read, the error will be recognized by the third rule for @code{line},
1954and parsing will continue. (The @code{yyerror} function is still called
1955upon to print its message as well.) The action executes the statement
1956@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1957that error recovery is complete (@pxref{Error Recovery}). Note the
1958difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1959misprint.
bfa74976
RS
1960
1961This form of error recovery deals with syntax errors. There are other
1962kinds of errors; for example, division by zero, which raises an exception
1963signal that is normally fatal. A real calculator program must handle this
1964signal and use @code{longjmp} to return to @code{main} and resume parsing
1965input lines; it would also have to discard the rest of the current line of
1966input. We won't discuss this issue further because it is not specific to
1967Bison programs.
1968
342b8b6e
AD
1969@node Location Tracking Calc
1970@section Location Tracking Calculator: @code{ltcalc}
1971@cindex location tracking calculator
1972@cindex @code{ltcalc}
1973@cindex calculator, location tracking
1974
9edcd895
AD
1975This example extends the infix notation calculator with location
1976tracking. This feature will be used to improve the error messages. For
1977the sake of clarity, this example is a simple integer calculator, since
1978most of the work needed to use locations will be done in the lexical
72d2299c 1979analyzer.
342b8b6e
AD
1980
1981@menu
1982* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1983* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1984* Lexer: Ltcalc Lexer. The lexical analyzer.
1985@end menu
1986
1987@node Ltcalc Decls
1988@subsection Declarations for @code{ltcalc}
1989
9edcd895
AD
1990The C and Bison declarations for the location tracking calculator are
1991the same as the declarations for the infix notation calculator.
342b8b6e
AD
1992
1993@example
1994/* Location tracking calculator. */
1995
1996%@{
38a92d50
PE
1997 #define YYSTYPE int
1998 #include <math.h>
1999 int yylex (void);
2000 void yyerror (char const *);
342b8b6e
AD
2001%@}
2002
2003/* Bison declarations. */
2004%token NUM
2005
2006%left '-' '+'
2007%left '*' '/'
d78f0ac9 2008%precedence NEG
342b8b6e
AD
2009%right '^'
2010
38a92d50 2011%% /* The grammar follows. */
342b8b6e
AD
2012@end example
2013
9edcd895
AD
2014@noindent
2015Note there are no declarations specific to locations. Defining a data
2016type for storing locations is not needed: we will use the type provided
2017by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2018four member structure with the following integer fields:
2019@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2020@code{last_column}. By conventions, and in accordance with the GNU
2021Coding Standards and common practice, the line and column count both
2022start at 1.
342b8b6e
AD
2023
2024@node Ltcalc Rules
2025@subsection Grammar Rules for @code{ltcalc}
2026
9edcd895
AD
2027Whether handling locations or not has no effect on the syntax of your
2028language. Therefore, grammar rules for this example will be very close
2029to those of the previous example: we will only modify them to benefit
2030from the new information.
342b8b6e 2031
9edcd895
AD
2032Here, we will use locations to report divisions by zero, and locate the
2033wrong expressions or subexpressions.
342b8b6e
AD
2034
2035@example
2036@group
2037input : /* empty */
2038 | input line
2039;
2040@end group
2041
2042@group
2043line : '\n'
2044 | exp '\n' @{ printf ("%d\n", $1); @}
2045;
2046@end group
2047
2048@group
2049exp : NUM @{ $$ = $1; @}
2050 | exp '+' exp @{ $$ = $1 + $3; @}
2051 | exp '-' exp @{ $$ = $1 - $3; @}
2052 | exp '*' exp @{ $$ = $1 * $3; @}
2053@end group
342b8b6e 2054@group
9edcd895 2055 | exp '/' exp
342b8b6e
AD
2056 @{
2057 if ($3)
2058 $$ = $1 / $3;
2059 else
2060 @{
2061 $$ = 1;
9edcd895
AD
2062 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2063 @@3.first_line, @@3.first_column,
2064 @@3.last_line, @@3.last_column);
342b8b6e
AD
2065 @}
2066 @}
2067@end group
2068@group
178e123e 2069 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2070 | exp '^' exp @{ $$ = pow ($1, $3); @}
2071 | '(' exp ')' @{ $$ = $2; @}
2072@end group
2073@end example
2074
2075This code shows how to reach locations inside of semantic actions, by
2076using the pseudo-variables @code{@@@var{n}} for rule components, and the
2077pseudo-variable @code{@@$} for groupings.
2078
9edcd895
AD
2079We don't need to assign a value to @code{@@$}: the output parser does it
2080automatically. By default, before executing the C code of each action,
2081@code{@@$} is set to range from the beginning of @code{@@1} to the end
2082of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2083can be redefined (@pxref{Location Default Action, , Default Action for
2084Locations}), and for very specific rules, @code{@@$} can be computed by
2085hand.
342b8b6e
AD
2086
2087@node Ltcalc Lexer
2088@subsection The @code{ltcalc} Lexical Analyzer.
2089
9edcd895 2090Until now, we relied on Bison's defaults to enable location
72d2299c 2091tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2092able to feed the parser with the token locations, as it already does for
2093semantic values.
342b8b6e 2094
9edcd895
AD
2095To this end, we must take into account every single character of the
2096input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2097
2098@example
2099@group
2100int
2101yylex (void)
2102@{
2103 int c;
18b519c0 2104@end group
342b8b6e 2105
18b519c0 2106@group
72d2299c 2107 /* Skip white space. */
342b8b6e
AD
2108 while ((c = getchar ()) == ' ' || c == '\t')
2109 ++yylloc.last_column;
18b519c0 2110@end group
342b8b6e 2111
18b519c0 2112@group
72d2299c 2113 /* Step. */
342b8b6e
AD
2114 yylloc.first_line = yylloc.last_line;
2115 yylloc.first_column = yylloc.last_column;
2116@end group
2117
2118@group
72d2299c 2119 /* Process numbers. */
342b8b6e
AD
2120 if (isdigit (c))
2121 @{
2122 yylval = c - '0';
2123 ++yylloc.last_column;
2124 while (isdigit (c = getchar ()))
2125 @{
2126 ++yylloc.last_column;
2127 yylval = yylval * 10 + c - '0';
2128 @}
2129 ungetc (c, stdin);
2130 return NUM;
2131 @}
2132@end group
2133
72d2299c 2134 /* Return end-of-input. */
342b8b6e
AD
2135 if (c == EOF)
2136 return 0;
2137
72d2299c 2138 /* Return a single char, and update location. */
342b8b6e
AD
2139 if (c == '\n')
2140 @{
2141 ++yylloc.last_line;
2142 yylloc.last_column = 0;
2143 @}
2144 else
2145 ++yylloc.last_column;
2146 return c;
2147@}
2148@end example
2149
9edcd895
AD
2150Basically, the lexical analyzer performs the same processing as before:
2151it skips blanks and tabs, and reads numbers or single-character tokens.
2152In addition, it updates @code{yylloc}, the global variable (of type
2153@code{YYLTYPE}) containing the token's location.
342b8b6e 2154
9edcd895 2155Now, each time this function returns a token, the parser has its number
72d2299c 2156as well as its semantic value, and its location in the text. The last
9edcd895
AD
2157needed change is to initialize @code{yylloc}, for example in the
2158controlling function:
342b8b6e
AD
2159
2160@example
9edcd895 2161@group
342b8b6e
AD
2162int
2163main (void)
2164@{
2165 yylloc.first_line = yylloc.last_line = 1;
2166 yylloc.first_column = yylloc.last_column = 0;
2167 return yyparse ();
2168@}
9edcd895 2169@end group
342b8b6e
AD
2170@end example
2171
9edcd895
AD
2172Remember that computing locations is not a matter of syntax. Every
2173character must be associated to a location update, whether it is in
2174valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2175
2176@node Multi-function Calc
bfa74976
RS
2177@section Multi-Function Calculator: @code{mfcalc}
2178@cindex multi-function calculator
2179@cindex @code{mfcalc}
2180@cindex calculator, multi-function
2181
2182Now that the basics of Bison have been discussed, it is time to move on to
2183a more advanced problem. The above calculators provided only five
2184functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2185be nice to have a calculator that provides other mathematical functions such
2186as @code{sin}, @code{cos}, etc.
2187
2188It is easy to add new operators to the infix calculator as long as they are
2189only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2190back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2191adding a new operator. But we want something more flexible: built-in
2192functions whose syntax has this form:
2193
2194@example
2195@var{function_name} (@var{argument})
2196@end example
2197
2198@noindent
2199At the same time, we will add memory to the calculator, by allowing you
2200to create named variables, store values in them, and use them later.
2201Here is a sample session with the multi-function calculator:
2202
2203@example
9edcd895
AD
2204$ @kbd{mfcalc}
2205@kbd{pi = 3.141592653589}
bfa74976 22063.1415926536
9edcd895 2207@kbd{sin(pi)}
bfa74976 22080.0000000000
9edcd895 2209@kbd{alpha = beta1 = 2.3}
bfa74976 22102.3000000000
9edcd895 2211@kbd{alpha}
bfa74976 22122.3000000000
9edcd895 2213@kbd{ln(alpha)}
bfa74976 22140.8329091229
9edcd895 2215@kbd{exp(ln(beta1))}
bfa74976 22162.3000000000
9edcd895 2217$
bfa74976
RS
2218@end example
2219
2220Note that multiple assignment and nested function calls are permitted.
2221
2222@menu
2223* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2224* Rules: Mfcalc Rules. Grammar rules for the calculator.
2225* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2226@end menu
2227
342b8b6e 2228@node Mfcalc Decl
bfa74976
RS
2229@subsection Declarations for @code{mfcalc}
2230
2231Here are the C and Bison declarations for the multi-function calculator.
2232
2233@smallexample
18b519c0 2234@group
bfa74976 2235%@{
38a92d50
PE
2236 #include <math.h> /* For math functions, cos(), sin(), etc. */
2237 #include "calc.h" /* Contains definition of `symrec'. */
2238 int yylex (void);
2239 void yyerror (char const *);
bfa74976 2240%@}
18b519c0
AD
2241@end group
2242@group
bfa74976 2243%union @{
38a92d50
PE
2244 double val; /* For returning numbers. */
2245 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2246@}
18b519c0 2247@end group
38a92d50
PE
2248%token <val> NUM /* Simple double precision number. */
2249%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2250%type <val> exp
2251
18b519c0 2252@group
bfa74976
RS
2253%right '='
2254%left '-' '+'
2255%left '*' '/'
d78f0ac9
AD
2256%precedence NEG /* negation--unary minus */
2257%right '^' /* exponentiation */
18b519c0 2258@end group
38a92d50 2259%% /* The grammar follows. */
bfa74976
RS
2260@end smallexample
2261
2262The above grammar introduces only two new features of the Bison language.
2263These features allow semantic values to have various data types
2264(@pxref{Multiple Types, ,More Than One Value Type}).
2265
2266The @code{%union} declaration specifies the entire list of possible types;
2267this is instead of defining @code{YYSTYPE}. The allowable types are now
2268double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2269the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2270
2271Since values can now have various types, it is necessary to associate a
2272type with each grammar symbol whose semantic value is used. These symbols
2273are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2274declarations are augmented with information about their data type (placed
2275between angle brackets).
2276
704a47c4
AD
2277The Bison construct @code{%type} is used for declaring nonterminal
2278symbols, just as @code{%token} is used for declaring token types. We
2279have not used @code{%type} before because nonterminal symbols are
2280normally declared implicitly by the rules that define them. But
2281@code{exp} must be declared explicitly so we can specify its value type.
2282@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2283
342b8b6e 2284@node Mfcalc Rules
bfa74976
RS
2285@subsection Grammar Rules for @code{mfcalc}
2286
2287Here are the grammar rules for the multi-function calculator.
2288Most of them are copied directly from @code{calc}; three rules,
2289those which mention @code{VAR} or @code{FNCT}, are new.
2290
2291@smallexample
18b519c0 2292@group
bfa74976
RS
2293input: /* empty */
2294 | input line
2295;
18b519c0 2296@end group
bfa74976 2297
18b519c0 2298@group
bfa74976
RS
2299line:
2300 '\n'
2301 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2302 | error '\n' @{ yyerrok; @}
2303;
18b519c0 2304@end group
bfa74976 2305
18b519c0 2306@group
bfa74976
RS
2307exp: NUM @{ $$ = $1; @}
2308 | VAR @{ $$ = $1->value.var; @}
2309 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2310 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2311 | exp '+' exp @{ $$ = $1 + $3; @}
2312 | exp '-' exp @{ $$ = $1 - $3; @}
2313 | exp '*' exp @{ $$ = $1 * $3; @}
2314 | exp '/' exp @{ $$ = $1 / $3; @}
2315 | '-' exp %prec NEG @{ $$ = -$2; @}
2316 | exp '^' exp @{ $$ = pow ($1, $3); @}
2317 | '(' exp ')' @{ $$ = $2; @}
2318;
18b519c0 2319@end group
38a92d50 2320/* End of grammar. */
bfa74976
RS
2321%%
2322@end smallexample
2323
342b8b6e 2324@node Mfcalc Symtab
bfa74976
RS
2325@subsection The @code{mfcalc} Symbol Table
2326@cindex symbol table example
2327
2328The multi-function calculator requires a symbol table to keep track of the
2329names and meanings of variables and functions. This doesn't affect the
2330grammar rules (except for the actions) or the Bison declarations, but it
2331requires some additional C functions for support.
2332
2333The symbol table itself consists of a linked list of records. Its
2334definition, which is kept in the header @file{calc.h}, is as follows. It
2335provides for either functions or variables to be placed in the table.
2336
2337@smallexample
2338@group
38a92d50 2339/* Function type. */
32dfccf8 2340typedef double (*func_t) (double);
72f889cc 2341@end group
32dfccf8 2342
72f889cc 2343@group
38a92d50 2344/* Data type for links in the chain of symbols. */
bfa74976
RS
2345struct symrec
2346@{
38a92d50 2347 char *name; /* name of symbol */
bfa74976 2348 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2349 union
2350 @{
38a92d50
PE
2351 double var; /* value of a VAR */
2352 func_t fnctptr; /* value of a FNCT */
bfa74976 2353 @} value;
38a92d50 2354 struct symrec *next; /* link field */
bfa74976
RS
2355@};
2356@end group
2357
2358@group
2359typedef struct symrec symrec;
2360
38a92d50 2361/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2362extern symrec *sym_table;
2363
a730d142 2364symrec *putsym (char const *, int);
38a92d50 2365symrec *getsym (char const *);
bfa74976
RS
2366@end group
2367@end smallexample
2368
2369The new version of @code{main} includes a call to @code{init_table}, a
2370function that initializes the symbol table. Here it is, and
2371@code{init_table} as well:
2372
2373@smallexample
bfa74976
RS
2374#include <stdio.h>
2375
18b519c0 2376@group
38a92d50 2377/* Called by yyparse on error. */
13863333 2378void
38a92d50 2379yyerror (char const *s)
bfa74976
RS
2380@{
2381 printf ("%s\n", s);
2382@}
18b519c0 2383@end group
bfa74976 2384
18b519c0 2385@group
bfa74976
RS
2386struct init
2387@{
38a92d50
PE
2388 char const *fname;
2389 double (*fnct) (double);
bfa74976
RS
2390@};
2391@end group
2392
2393@group
38a92d50 2394struct init const arith_fncts[] =
13863333 2395@{
32dfccf8
AD
2396 "sin", sin,
2397 "cos", cos,
13863333 2398 "atan", atan,
32dfccf8
AD
2399 "ln", log,
2400 "exp", exp,
13863333
AD
2401 "sqrt", sqrt,
2402 0, 0
2403@};
18b519c0 2404@end group
bfa74976 2405
18b519c0 2406@group
bfa74976 2407/* The symbol table: a chain of `struct symrec'. */
38a92d50 2408symrec *sym_table;
bfa74976
RS
2409@end group
2410
2411@group
72d2299c 2412/* Put arithmetic functions in table. */
13863333
AD
2413void
2414init_table (void)
bfa74976
RS
2415@{
2416 int i;
2417 symrec *ptr;
2418 for (i = 0; arith_fncts[i].fname != 0; i++)
2419 @{
2420 ptr = putsym (arith_fncts[i].fname, FNCT);
2421 ptr->value.fnctptr = arith_fncts[i].fnct;
2422 @}
2423@}
2424@end group
38a92d50
PE
2425
2426@group
2427int
2428main (void)
2429@{
2430 init_table ();
2431 return yyparse ();
2432@}
2433@end group
bfa74976
RS
2434@end smallexample
2435
2436By simply editing the initialization list and adding the necessary include
2437files, you can add additional functions to the calculator.
2438
2439Two important functions allow look-up and installation of symbols in the
2440symbol table. The function @code{putsym} is passed a name and the type
2441(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2442linked to the front of the list, and a pointer to the object is returned.
2443The function @code{getsym} is passed the name of the symbol to look up. If
2444found, a pointer to that symbol is returned; otherwise zero is returned.
2445
2446@smallexample
2447symrec *
38a92d50 2448putsym (char const *sym_name, int sym_type)
bfa74976
RS
2449@{
2450 symrec *ptr;
2451 ptr = (symrec *) malloc (sizeof (symrec));
2452 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2453 strcpy (ptr->name,sym_name);
2454 ptr->type = sym_type;
72d2299c 2455 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2456 ptr->next = (struct symrec *)sym_table;
2457 sym_table = ptr;
2458 return ptr;
2459@}
2460
2461symrec *
38a92d50 2462getsym (char const *sym_name)
bfa74976
RS
2463@{
2464 symrec *ptr;
2465 for (ptr = sym_table; ptr != (symrec *) 0;
2466 ptr = (symrec *)ptr->next)
2467 if (strcmp (ptr->name,sym_name) == 0)
2468 return ptr;
2469 return 0;
2470@}
2471@end smallexample
2472
2473The function @code{yylex} must now recognize variables, numeric values, and
2474the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2475characters with a leading letter are recognized as either variables or
bfa74976
RS
2476functions depending on what the symbol table says about them.
2477
2478The string is passed to @code{getsym} for look up in the symbol table. If
2479the name appears in the table, a pointer to its location and its type
2480(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2481already in the table, then it is installed as a @code{VAR} using
2482@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2483returned to @code{yyparse}.
bfa74976
RS
2484
2485No change is needed in the handling of numeric values and arithmetic
2486operators in @code{yylex}.
2487
2488@smallexample
2489@group
2490#include <ctype.h>
18b519c0 2491@end group
13863333 2492
18b519c0 2493@group
13863333
AD
2494int
2495yylex (void)
bfa74976
RS
2496@{
2497 int c;
2498
72d2299c 2499 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2500 while ((c = getchar ()) == ' ' || c == '\t');
2501
2502 if (c == EOF)
2503 return 0;
2504@end group
2505
2506@group
2507 /* Char starts a number => parse the number. */
2508 if (c == '.' || isdigit (c))
2509 @{
2510 ungetc (c, stdin);
2511 scanf ("%lf", &yylval.val);
2512 return NUM;
2513 @}
2514@end group
2515
2516@group
2517 /* Char starts an identifier => read the name. */
2518 if (isalpha (c))
2519 @{
2520 symrec *s;
2521 static char *symbuf = 0;
2522 static int length = 0;
2523 int i;
2524@end group
2525
2526@group
2527 /* Initially make the buffer long enough
2528 for a 40-character symbol name. */
2529 if (length == 0)
2530 length = 40, symbuf = (char *)malloc (length + 1);
2531
2532 i = 0;
2533 do
2534@end group
2535@group
2536 @{
2537 /* If buffer is full, make it bigger. */
2538 if (i == length)
2539 @{
2540 length *= 2;
18b519c0 2541 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2542 @}
2543 /* Add this character to the buffer. */
2544 symbuf[i++] = c;
2545 /* Get another character. */
2546 c = getchar ();
2547 @}
2548@end group
2549@group
72d2299c 2550 while (isalnum (c));
bfa74976
RS
2551
2552 ungetc (c, stdin);
2553 symbuf[i] = '\0';
2554@end group
2555
2556@group
2557 s = getsym (symbuf);
2558 if (s == 0)
2559 s = putsym (symbuf, VAR);
2560 yylval.tptr = s;
2561 return s->type;
2562 @}
2563
2564 /* Any other character is a token by itself. */
2565 return c;
2566@}
2567@end group
2568@end smallexample
2569
72d2299c 2570This program is both powerful and flexible. You may easily add new
704a47c4
AD
2571functions, and it is a simple job to modify this code to install
2572predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2573
342b8b6e 2574@node Exercises
bfa74976
RS
2575@section Exercises
2576@cindex exercises
2577
2578@enumerate
2579@item
2580Add some new functions from @file{math.h} to the initialization list.
2581
2582@item
2583Add another array that contains constants and their values. Then
2584modify @code{init_table} to add these constants to the symbol table.
2585It will be easiest to give the constants type @code{VAR}.
2586
2587@item
2588Make the program report an error if the user refers to an
2589uninitialized variable in any way except to store a value in it.
2590@end enumerate
2591
342b8b6e 2592@node Grammar File
bfa74976
RS
2593@chapter Bison Grammar Files
2594
2595Bison takes as input a context-free grammar specification and produces a
2596C-language function that recognizes correct instances of the grammar.
2597
2598The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2599@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2600
2601@menu
2602* Grammar Outline:: Overall layout of the grammar file.
2603* Symbols:: Terminal and nonterminal symbols.
2604* Rules:: How to write grammar rules.
2605* Recursion:: Writing recursive rules.
2606* Semantics:: Semantic values and actions.
847bf1f5 2607* Locations:: Locations and actions.
bfa74976
RS
2608* Declarations:: All kinds of Bison declarations are described here.
2609* Multiple Parsers:: Putting more than one Bison parser in one program.
2610@end menu
2611
342b8b6e 2612@node Grammar Outline
bfa74976
RS
2613@section Outline of a Bison Grammar
2614
2615A Bison grammar file has four main sections, shown here with the
2616appropriate delimiters:
2617
2618@example
2619%@{
38a92d50 2620 @var{Prologue}
bfa74976
RS
2621%@}
2622
2623@var{Bison declarations}
2624
2625%%
2626@var{Grammar rules}
2627%%
2628
75f5aaea 2629@var{Epilogue}
bfa74976
RS
2630@end example
2631
2632Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2633As a @acronym{GNU} extension, @samp{//} introduces a comment that
2634continues until end of line.
bfa74976
RS
2635
2636@menu
75f5aaea 2637* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2638* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2639* Bison Declarations:: Syntax and usage of the Bison declarations section.
2640* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2641* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2642@end menu
2643
38a92d50 2644@node Prologue
75f5aaea
MA
2645@subsection The prologue
2646@cindex declarations section
2647@cindex Prologue
2648@cindex declarations
bfa74976 2649
f8e1c9e5
AD
2650The @var{Prologue} section contains macro definitions and declarations
2651of functions and variables that are used in the actions in the grammar
2652rules. These are copied to the beginning of the parser file so that
2653they precede the definition of @code{yyparse}. You can use
2654@samp{#include} to get the declarations from a header file. If you
2655don't need any C declarations, you may omit the @samp{%@{} and
2656@samp{%@}} delimiters that bracket this section.
bfa74976 2657
9c437126 2658The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2659of @samp{%@}} that is outside a comment, a string literal, or a
2660character constant.
2661
c732d2c6
AD
2662You may have more than one @var{Prologue} section, intermixed with the
2663@var{Bison declarations}. This allows you to have C and Bison
2664declarations that refer to each other. For example, the @code{%union}
2665declaration may use types defined in a header file, and you may wish to
2666prototype functions that take arguments of type @code{YYSTYPE}. This
2667can be done with two @var{Prologue} blocks, one before and one after the
2668@code{%union} declaration.
2669
2670@smallexample
2671%@{
aef3da86 2672 #define _GNU_SOURCE
38a92d50
PE
2673 #include <stdio.h>
2674 #include "ptypes.h"
c732d2c6
AD
2675%@}
2676
2677%union @{
779e7ceb 2678 long int n;
c732d2c6
AD
2679 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2680@}
2681
2682%@{
38a92d50
PE
2683 static void print_token_value (FILE *, int, YYSTYPE);
2684 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2685%@}
2686
2687@dots{}
2688@end smallexample
2689
aef3da86
PE
2690When in doubt, it is usually safer to put prologue code before all
2691Bison declarations, rather than after. For example, any definitions
2692of feature test macros like @code{_GNU_SOURCE} or
2693@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2694feature test macros can affect the behavior of Bison-generated
2695@code{#include} directives.
2696
2cbe6b7f
JD
2697@node Prologue Alternatives
2698@subsection Prologue Alternatives
2699@cindex Prologue Alternatives
2700
136a0f76 2701@findex %code
16dc6a9e
JD
2702@findex %code requires
2703@findex %code provides
2704@findex %code top
85894313
JD
2705(The prologue alternatives described here are experimental.
2706More user feedback will help to determine whether they should become permanent
2707features.)
2708
2cbe6b7f
JD
2709The functionality of @var{Prologue} sections can often be subtle and
2710inflexible.
8e0a5e9e
JD
2711As an alternative, Bison provides a %code directive with an explicit qualifier
2712field, which identifies the purpose of the code and thus the location(s) where
2713Bison should generate it.
2714For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2715one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2716@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2717
2718Look again at the example of the previous section:
2719
2720@smallexample
2721%@{
2722 #define _GNU_SOURCE
2723 #include <stdio.h>
2724 #include "ptypes.h"
2725%@}
2726
2727%union @{
2728 long int n;
2729 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2730@}
2731
2732%@{
2733 static void print_token_value (FILE *, int, YYSTYPE);
2734 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2735%@}
2736
2737@dots{}
2738@end smallexample
2739
2740@noindent
2741Notice that there are two @var{Prologue} sections here, but there's a subtle
2742distinction between their functionality.
2743For example, if you decide to override Bison's default definition for
2744@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2745definition?
2746You should write it in the first since Bison will insert that code into the
8e0a5e9e 2747parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2748In which @var{Prologue} section should you prototype an internal function,
2749@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2750arguments?
2751You should prototype it in the second since Bison will insert that code
2752@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2753
2754This distinction in functionality between the two @var{Prologue} sections is
2755established by the appearance of the @code{%union} between them.
a501eca9 2756This behavior raises a few questions.
2cbe6b7f
JD
2757First, why should the position of a @code{%union} affect definitions related to
2758@code{YYLTYPE} and @code{yytokentype}?
2759Second, what if there is no @code{%union}?
2760In that case, the second kind of @var{Prologue} section is not available.
2761This behavior is not intuitive.
2762
8e0a5e9e 2763To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2764@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2765Let's go ahead and add the new @code{YYLTYPE} definition and the
2766@code{trace_token} prototype at the same time:
2767
2768@smallexample
16dc6a9e 2769%code top @{
2cbe6b7f
JD
2770 #define _GNU_SOURCE
2771 #include <stdio.h>
8e0a5e9e
JD
2772
2773 /* WARNING: The following code really belongs
16dc6a9e 2774 * in a `%code requires'; see below. */
8e0a5e9e 2775
2cbe6b7f
JD
2776 #include "ptypes.h"
2777 #define YYLTYPE YYLTYPE
2778 typedef struct YYLTYPE
2779 @{
2780 int first_line;
2781 int first_column;
2782 int last_line;
2783 int last_column;
2784 char *filename;
2785 @} YYLTYPE;
2786@}
2787
2788%union @{
2789 long int n;
2790 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2791@}
2792
2793%code @{
2794 static void print_token_value (FILE *, int, YYSTYPE);
2795 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2796 static void trace_token (enum yytokentype token, YYLTYPE loc);
2797@}
2798
2799@dots{}
2800@end smallexample
2801
2802@noindent
16dc6a9e
JD
2803In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2804functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2805explicit which kind you intend.
2cbe6b7f
JD
2806Moreover, both kinds are always available even in the absence of @code{%union}.
2807
16dc6a9e 2808The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2809The first two lines before the warning need to appear near the top of the
2810parser source code file.
2811The first line after the warning is required by @code{YYSTYPE} and thus also
2812needs to appear in the parser source code file.
2cbe6b7f 2813However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2814(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2815the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2816The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2817override the default @code{YYLTYPE} definition there.
2818
16dc6a9e 2819In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2820lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2821definitions.
16dc6a9e 2822Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2823
2824@smallexample
16dc6a9e 2825%code top @{
2cbe6b7f
JD
2826 #define _GNU_SOURCE
2827 #include <stdio.h>
2828@}
2829
16dc6a9e 2830%code requires @{
9bc0dd67
JD
2831 #include "ptypes.h"
2832@}
2833%union @{
2834 long int n;
2835 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2836@}
2837
16dc6a9e 2838%code requires @{
2cbe6b7f
JD
2839 #define YYLTYPE YYLTYPE
2840 typedef struct YYLTYPE
2841 @{
2842 int first_line;
2843 int first_column;
2844 int last_line;
2845 int last_column;
2846 char *filename;
2847 @} YYLTYPE;
2848@}
2849
136a0f76 2850%code @{
2cbe6b7f
JD
2851 static void print_token_value (FILE *, int, YYSTYPE);
2852 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2853 static void trace_token (enum yytokentype token, YYLTYPE loc);
2854@}
2855
2856@dots{}
2857@end smallexample
2858
2859@noindent
2860Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2861definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2862definitions in both the parser source code file and the parser header file.
16dc6a9e 2863(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2864place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2865
a501eca9 2866When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2867should prefer @code{%code requires} over @code{%code top} regardless of whether
2868you instruct Bison to generate a parser header file.
a501eca9 2869When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2870source code file and that has no special need to appear at the top of that
16dc6a9e 2871file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2872These practices will make the purpose of each block of your code explicit to
2873Bison and to other developers reading your grammar file.
8e0a5e9e 2874Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2875@code{%code requires} to be the most important of the four @var{Prologue}
2876alternatives.
a501eca9 2877
2cbe6b7f
JD
2878At some point while developing your parser, you might decide to provide
2879@code{trace_token} to modules that are external to your parser.
2880Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2881header file and the parser source code file.
2882Since this function is not a dependency required by @code{YYSTYPE} or
2883@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2884@code{%code requires}.
2cbe6b7f 2885More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2886@code{%code requires} is not sufficient.
8e0a5e9e 2887Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2888@code{%code provides}:
2cbe6b7f
JD
2889
2890@smallexample
16dc6a9e 2891%code top @{
2cbe6b7f 2892 #define _GNU_SOURCE
136a0f76 2893 #include <stdio.h>
2cbe6b7f 2894@}
136a0f76 2895
16dc6a9e 2896%code requires @{
2cbe6b7f
JD
2897 #include "ptypes.h"
2898@}
2899%union @{
2900 long int n;
2901 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2902@}
2903
16dc6a9e 2904%code requires @{
2cbe6b7f
JD
2905 #define YYLTYPE YYLTYPE
2906 typedef struct YYLTYPE
2907 @{
2908 int first_line;
2909 int first_column;
2910 int last_line;
2911 int last_column;
2912 char *filename;
2913 @} YYLTYPE;
2914@}
2915
16dc6a9e 2916%code provides @{
2cbe6b7f
JD
2917 void trace_token (enum yytokentype token, YYLTYPE loc);
2918@}
2919
2920%code @{
9bc0dd67
JD
2921 static void print_token_value (FILE *, int, YYSTYPE);
2922 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2923@}
9bc0dd67
JD
2924
2925@dots{}
2926@end smallexample
2927
2cbe6b7f
JD
2928@noindent
2929Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2930file and the parser source code file after the definitions for
2931@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2932
2933The above examples are careful to write directives in an order that reflects
8e0a5e9e 2934the layout of the generated parser source code and header files:
16dc6a9e 2935@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2936@code{%code}.
a501eca9 2937While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2938this order, Bison does not require it.
2939Instead, Bison lets you choose an organization that makes sense to you.
2940
a501eca9 2941You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2942In that case, Bison concatenates the contained code in declaration order.
2943This is the only way in which the position of one of these directives within
2944the grammar file affects its functionality.
2945
2946The result of the previous two properties is greater flexibility in how you may
2947organize your grammar file.
2948For example, you may organize semantic-type-related directives by semantic
2949type:
2950
2951@smallexample
16dc6a9e 2952%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2953%union @{ type1 field1; @}
2954%destructor @{ type1_free ($$); @} <field1>
2955%printer @{ type1_print ($$); @} <field1>
2956
16dc6a9e 2957%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2958%union @{ type2 field2; @}
2959%destructor @{ type2_free ($$); @} <field2>
2960%printer @{ type2_print ($$); @} <field2>
2961@end smallexample
2962
2963@noindent
2964You could even place each of the above directive groups in the rules section of
2965the grammar file next to the set of rules that uses the associated semantic
2966type.
61fee93e
JD
2967(In the rules section, you must terminate each of those directives with a
2968semicolon.)
2cbe6b7f
JD
2969And you don't have to worry that some directive (like a @code{%union}) in the
2970definitions section is going to adversely affect their functionality in some
2971counter-intuitive manner just because it comes first.
2972Such an organization is not possible using @var{Prologue} sections.
2973
a501eca9 2974This section has been concerned with explaining the advantages of the four
8e0a5e9e 2975@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2976However, in most cases when using these directives, you shouldn't need to
2977think about all the low-level ordering issues discussed here.
2978Instead, you should simply use these directives to label each block of your
2979code according to its purpose and let Bison handle the ordering.
2980@code{%code} is the most generic label.
16dc6a9e
JD
2981Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2982as needed.
a501eca9 2983
342b8b6e 2984@node Bison Declarations
bfa74976
RS
2985@subsection The Bison Declarations Section
2986@cindex Bison declarations (introduction)
2987@cindex declarations, Bison (introduction)
2988
2989The @var{Bison declarations} section contains declarations that define
2990terminal and nonterminal symbols, specify precedence, and so on.
2991In some simple grammars you may not need any declarations.
2992@xref{Declarations, ,Bison Declarations}.
2993
342b8b6e 2994@node Grammar Rules
bfa74976
RS
2995@subsection The Grammar Rules Section
2996@cindex grammar rules section
2997@cindex rules section for grammar
2998
2999The @dfn{grammar rules} section contains one or more Bison grammar
3000rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3001
3002There must always be at least one grammar rule, and the first
3003@samp{%%} (which precedes the grammar rules) may never be omitted even
3004if it is the first thing in the file.
3005
38a92d50 3006@node Epilogue
75f5aaea 3007@subsection The epilogue
bfa74976 3008@cindex additional C code section
75f5aaea 3009@cindex epilogue
bfa74976
RS
3010@cindex C code, section for additional
3011
08e49d20
PE
3012The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3013the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3014place to put anything that you want to have in the parser file but which need
3015not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3016definitions of @code{yylex} and @code{yyerror} often go here. Because
3017C requires functions to be declared before being used, you often need
3018to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3019even if you define them in the Epilogue.
75f5aaea 3020@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3021
3022If the last section is empty, you may omit the @samp{%%} that separates it
3023from the grammar rules.
3024
f8e1c9e5
AD
3025The Bison parser itself contains many macros and identifiers whose names
3026start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3027any such names (except those documented in this manual) in the epilogue
3028of the grammar file.
bfa74976 3029
342b8b6e 3030@node Symbols
bfa74976
RS
3031@section Symbols, Terminal and Nonterminal
3032@cindex nonterminal symbol
3033@cindex terminal symbol
3034@cindex token type
3035@cindex symbol
3036
3037@dfn{Symbols} in Bison grammars represent the grammatical classifications
3038of the language.
3039
3040A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3041class of syntactically equivalent tokens. You use the symbol in grammar
3042rules to mean that a token in that class is allowed. The symbol is
3043represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3044function returns a token type code to indicate what kind of token has
3045been read. You don't need to know what the code value is; you can use
3046the symbol to stand for it.
bfa74976 3047
f8e1c9e5
AD
3048A @dfn{nonterminal symbol} stands for a class of syntactically
3049equivalent groupings. The symbol name is used in writing grammar rules.
3050By convention, it should be all lower case.
bfa74976
RS
3051
3052Symbol names can contain letters, digits (not at the beginning),
3053underscores and periods. Periods make sense only in nonterminals.
3054
931c7513 3055There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3056
3057@itemize @bullet
3058@item
3059A @dfn{named token type} is written with an identifier, like an
c827f760 3060identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3061such name must be defined with a Bison declaration such as
3062@code{%token}. @xref{Token Decl, ,Token Type Names}.
3063
3064@item
3065@cindex character token
3066@cindex literal token
3067@cindex single-character literal
931c7513
RS
3068A @dfn{character token type} (or @dfn{literal character token}) is
3069written in the grammar using the same syntax used in C for character
3070constants; for example, @code{'+'} is a character token type. A
3071character token type doesn't need to be declared unless you need to
3072specify its semantic value data type (@pxref{Value Type, ,Data Types of
3073Semantic Values}), associativity, or precedence (@pxref{Precedence,
3074,Operator Precedence}).
bfa74976
RS
3075
3076By convention, a character token type is used only to represent a
3077token that consists of that particular character. Thus, the token
3078type @code{'+'} is used to represent the character @samp{+} as a
3079token. Nothing enforces this convention, but if you depart from it,
3080your program will confuse other readers.
3081
3082All the usual escape sequences used in character literals in C can be
3083used in Bison as well, but you must not use the null character as a
72d2299c
PE
3084character literal because its numeric code, zero, signifies
3085end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3086for @code{yylex}}). Also, unlike standard C, trigraphs have no
3087special meaning in Bison character literals, nor is backslash-newline
3088allowed.
931c7513
RS
3089
3090@item
3091@cindex string token
3092@cindex literal string token
9ecbd125 3093@cindex multicharacter literal
931c7513
RS
3094A @dfn{literal string token} is written like a C string constant; for
3095example, @code{"<="} is a literal string token. A literal string token
3096doesn't need to be declared unless you need to specify its semantic
14ded682 3097value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3098(@pxref{Precedence}).
3099
3100You can associate the literal string token with a symbolic name as an
3101alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3102Declarations}). If you don't do that, the lexical analyzer has to
3103retrieve the token number for the literal string token from the
3104@code{yytname} table (@pxref{Calling Convention}).
3105
c827f760 3106@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3107
3108By convention, a literal string token is used only to represent a token
3109that consists of that particular string. Thus, you should use the token
3110type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3111does not enforce this convention, but if you depart from it, people who
931c7513
RS
3112read your program will be confused.
3113
3114All the escape sequences used in string literals in C can be used in
92ac3705
PE
3115Bison as well, except that you must not use a null character within a
3116string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3117meaning in Bison string literals, nor is backslash-newline allowed. A
3118literal string token must contain two or more characters; for a token
3119containing just one character, use a character token (see above).
bfa74976
RS
3120@end itemize
3121
3122How you choose to write a terminal symbol has no effect on its
3123grammatical meaning. That depends only on where it appears in rules and
3124on when the parser function returns that symbol.
3125
72d2299c
PE
3126The value returned by @code{yylex} is always one of the terminal
3127symbols, except that a zero or negative value signifies end-of-input.
3128Whichever way you write the token type in the grammar rules, you write
3129it the same way in the definition of @code{yylex}. The numeric code
3130for a character token type is simply the positive numeric code of the
3131character, so @code{yylex} can use the identical value to generate the
3132requisite code, though you may need to convert it to @code{unsigned
3133char} to avoid sign-extension on hosts where @code{char} is signed.
3134Each named token type becomes a C macro in
bfa74976 3135the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3136(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3137@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3138
3139If @code{yylex} is defined in a separate file, you need to arrange for the
3140token-type macro definitions to be available there. Use the @samp{-d}
3141option when you run Bison, so that it will write these macro definitions
3142into a separate header file @file{@var{name}.tab.h} which you can include
3143in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3144
72d2299c 3145If you want to write a grammar that is portable to any Standard C
9d9b8b70 3146host, you must use only nonnull character tokens taken from the basic
c827f760 3147execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3148digits, the 52 lower- and upper-case English letters, and the
3149characters in the following C-language string:
3150
3151@example
3152"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3153@end example
3154
f8e1c9e5
AD
3155The @code{yylex} function and Bison must use a consistent character set
3156and encoding for character tokens. For example, if you run Bison in an
3157@acronym{ASCII} environment, but then compile and run the resulting
3158program in an environment that uses an incompatible character set like
3159@acronym{EBCDIC}, the resulting program may not work because the tables
3160generated by Bison will assume @acronym{ASCII} numeric values for
3161character tokens. It is standard practice for software distributions to
3162contain C source files that were generated by Bison in an
3163@acronym{ASCII} environment, so installers on platforms that are
3164incompatible with @acronym{ASCII} must rebuild those files before
3165compiling them.
e966383b 3166
bfa74976
RS
3167The symbol @code{error} is a terminal symbol reserved for error recovery
3168(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3169In particular, @code{yylex} should never return this value. The default
3170value of the error token is 256, unless you explicitly assigned 256 to
3171one of your tokens with a @code{%token} declaration.
bfa74976 3172
342b8b6e 3173@node Rules
bfa74976
RS
3174@section Syntax of Grammar Rules
3175@cindex rule syntax
3176@cindex grammar rule syntax
3177@cindex syntax of grammar rules
3178
3179A Bison grammar rule has the following general form:
3180
3181@example
e425e872 3182@group
bfa74976
RS
3183@var{result}: @var{components}@dots{}
3184 ;
e425e872 3185@end group
bfa74976
RS
3186@end example
3187
3188@noindent
9ecbd125 3189where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3190and @var{components} are various terminal and nonterminal symbols that
13863333 3191are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3192
3193For example,
3194
3195@example
3196@group
3197exp: exp '+' exp
3198 ;
3199@end group
3200@end example
3201
3202@noindent
3203says that two groupings of type @code{exp}, with a @samp{+} token in between,
3204can be combined into a larger grouping of type @code{exp}.
3205
72d2299c
PE
3206White space in rules is significant only to separate symbols. You can add
3207extra white space as you wish.
bfa74976
RS
3208
3209Scattered among the components can be @var{actions} that determine
3210the semantics of the rule. An action looks like this:
3211
3212@example
3213@{@var{C statements}@}
3214@end example
3215
3216@noindent
287c78f6
PE
3217@cindex braced code
3218This is an example of @dfn{braced code}, that is, C code surrounded by
3219braces, much like a compound statement in C@. Braced code can contain
3220any sequence of C tokens, so long as its braces are balanced. Bison
3221does not check the braced code for correctness directly; it merely
3222copies the code to the output file, where the C compiler can check it.
3223
3224Within braced code, the balanced-brace count is not affected by braces
3225within comments, string literals, or character constants, but it is
3226affected by the C digraphs @samp{<%} and @samp{%>} that represent
3227braces. At the top level braced code must be terminated by @samp{@}}
3228and not by a digraph. Bison does not look for trigraphs, so if braced
3229code uses trigraphs you should ensure that they do not affect the
3230nesting of braces or the boundaries of comments, string literals, or
3231character constants.
3232
bfa74976
RS
3233Usually there is only one action and it follows the components.
3234@xref{Actions}.
3235
3236@findex |
3237Multiple rules for the same @var{result} can be written separately or can
3238be joined with the vertical-bar character @samp{|} as follows:
3239
bfa74976
RS
3240@example
3241@group
3242@var{result}: @var{rule1-components}@dots{}
3243 | @var{rule2-components}@dots{}
3244 @dots{}
3245 ;
3246@end group
3247@end example
bfa74976
RS
3248
3249@noindent
3250They are still considered distinct rules even when joined in this way.
3251
3252If @var{components} in a rule is empty, it means that @var{result} can
3253match the empty string. For example, here is how to define a
3254comma-separated sequence of zero or more @code{exp} groupings:
3255
3256@example
3257@group
3258expseq: /* empty */
3259 | expseq1
3260 ;
3261@end group
3262
3263@group
3264expseq1: exp
3265 | expseq1 ',' exp
3266 ;
3267@end group
3268@end example
3269
3270@noindent
3271It is customary to write a comment @samp{/* empty */} in each rule
3272with no components.
3273
342b8b6e 3274@node Recursion
bfa74976
RS
3275@section Recursive Rules
3276@cindex recursive rule
3277
f8e1c9e5
AD
3278A rule is called @dfn{recursive} when its @var{result} nonterminal
3279appears also on its right hand side. Nearly all Bison grammars need to
3280use recursion, because that is the only way to define a sequence of any
3281number of a particular thing. Consider this recursive definition of a
9ecbd125 3282comma-separated sequence of one or more expressions:
bfa74976
RS
3283
3284@example
3285@group
3286expseq1: exp
3287 | expseq1 ',' exp
3288 ;
3289@end group
3290@end example
3291
3292@cindex left recursion
3293@cindex right recursion
3294@noindent
3295Since the recursive use of @code{expseq1} is the leftmost symbol in the
3296right hand side, we call this @dfn{left recursion}. By contrast, here
3297the same construct is defined using @dfn{right recursion}:
3298
3299@example
3300@group
3301expseq1: exp
3302 | exp ',' expseq1
3303 ;
3304@end group
3305@end example
3306
3307@noindent
ec3bc396
AD
3308Any kind of sequence can be defined using either left recursion or right
3309recursion, but you should always use left recursion, because it can
3310parse a sequence of any number of elements with bounded stack space.
3311Right recursion uses up space on the Bison stack in proportion to the
3312number of elements in the sequence, because all the elements must be
3313shifted onto the stack before the rule can be applied even once.
3314@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3315of this.
bfa74976
RS
3316
3317@cindex mutual recursion
3318@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3319rule does not appear directly on its right hand side, but does appear
3320in rules for other nonterminals which do appear on its right hand
13863333 3321side.
bfa74976
RS
3322
3323For example:
3324
3325@example
3326@group
3327expr: primary
3328 | primary '+' primary
3329 ;
3330@end group
3331
3332@group
3333primary: constant
3334 | '(' expr ')'
3335 ;
3336@end group
3337@end example
3338
3339@noindent
3340defines two mutually-recursive nonterminals, since each refers to the
3341other.
3342
342b8b6e 3343@node Semantics
bfa74976
RS
3344@section Defining Language Semantics
3345@cindex defining language semantics
13863333 3346@cindex language semantics, defining
bfa74976
RS
3347
3348The grammar rules for a language determine only the syntax. The semantics
3349are determined by the semantic values associated with various tokens and
3350groupings, and by the actions taken when various groupings are recognized.
3351
3352For example, the calculator calculates properly because the value
3353associated with each expression is the proper number; it adds properly
3354because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3355the numbers associated with @var{x} and @var{y}.
3356
3357@menu
3358* Value Type:: Specifying one data type for all semantic values.
3359* Multiple Types:: Specifying several alternative data types.
3360* Actions:: An action is the semantic definition of a grammar rule.
3361* Action Types:: Specifying data types for actions to operate on.
3362* Mid-Rule Actions:: Most actions go at the end of a rule.
3363 This says when, why and how to use the exceptional
3364 action in the middle of a rule.
3365@end menu
3366
342b8b6e 3367@node Value Type
bfa74976
RS
3368@subsection Data Types of Semantic Values
3369@cindex semantic value type
3370@cindex value type, semantic
3371@cindex data types of semantic values
3372@cindex default data type
3373
3374In a simple program it may be sufficient to use the same data type for
3375the semantic values of all language constructs. This was true in the
c827f760 3376@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3377Notation Calculator}).
bfa74976 3378
ddc8ede1
PE
3379Bison normally uses the type @code{int} for semantic values if your
3380program uses the same data type for all language constructs. To
bfa74976
RS
3381specify some other type, define @code{YYSTYPE} as a macro, like this:
3382
3383@example
3384#define YYSTYPE double
3385@end example
3386
3387@noindent
50cce58e
PE
3388@code{YYSTYPE}'s replacement list should be a type name
3389that does not contain parentheses or square brackets.
342b8b6e 3390This macro definition must go in the prologue of the grammar file
75f5aaea 3391(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3392
342b8b6e 3393@node Multiple Types
bfa74976
RS
3394@subsection More Than One Value Type
3395
3396In most programs, you will need different data types for different kinds
3397of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3398@code{int} or @code{long int}, while a string constant needs type
3399@code{char *}, and an identifier might need a pointer to an entry in the
3400symbol table.
bfa74976
RS
3401
3402To use more than one data type for semantic values in one parser, Bison
3403requires you to do two things:
3404
3405@itemize @bullet
3406@item
ddc8ede1 3407Specify the entire collection of possible data types, either by using the
704a47c4 3408@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3409Value Types}), or by using a @code{typedef} or a @code{#define} to
3410define @code{YYSTYPE} to be a union type whose member names are
3411the type tags.
bfa74976
RS
3412
3413@item
14ded682
AD
3414Choose one of those types for each symbol (terminal or nonterminal) for
3415which semantic values are used. This is done for tokens with the
3416@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3417and for groupings with the @code{%type} Bison declaration (@pxref{Type
3418Decl, ,Nonterminal Symbols}).
bfa74976
RS
3419@end itemize
3420
342b8b6e 3421@node Actions
bfa74976
RS
3422@subsection Actions
3423@cindex action
3424@vindex $$
3425@vindex $@var{n}
3426
3427An action accompanies a syntactic rule and contains C code to be executed
3428each time an instance of that rule is recognized. The task of most actions
3429is to compute a semantic value for the grouping built by the rule from the
3430semantic values associated with tokens or smaller groupings.
3431
287c78f6
PE
3432An action consists of braced code containing C statements, and can be
3433placed at any position in the rule;
704a47c4
AD
3434it is executed at that position. Most rules have just one action at the
3435end of the rule, following all the components. Actions in the middle of
3436a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3437Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3438
3439The C code in an action can refer to the semantic values of the components
3440matched by the rule with the construct @code{$@var{n}}, which stands for
3441the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3442being constructed is @code{$$}. Bison translates both of these
3443constructs into expressions of the appropriate type when it copies the
3444actions into the parser file. @code{$$} is translated to a modifiable
3445lvalue, so it can be assigned to.
bfa74976
RS
3446
3447Here is a typical example:
3448
3449@example
3450@group
3451exp: @dots{}
3452 | exp '+' exp
3453 @{ $$ = $1 + $3; @}
3454@end group
3455@end example
3456
3457@noindent
3458This rule constructs an @code{exp} from two smaller @code{exp} groupings
3459connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3460refer to the semantic values of the two component @code{exp} groupings,
3461which are the first and third symbols on the right hand side of the rule.
3462The sum is stored into @code{$$} so that it becomes the semantic value of
3463the addition-expression just recognized by the rule. If there were a
3464useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3465referred to as @code{$2}.
bfa74976 3466
3ded9a63
AD
3467Note that the vertical-bar character @samp{|} is really a rule
3468separator, and actions are attached to a single rule. This is a
3469difference with tools like Flex, for which @samp{|} stands for either
3470``or'', or ``the same action as that of the next rule''. In the
3471following example, the action is triggered only when @samp{b} is found:
3472
3473@example
3474@group
3475a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3476@end group
3477@end example
3478
bfa74976
RS
3479@cindex default action
3480If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3481@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3482becomes the value of the whole rule. Of course, the default action is
3483valid only if the two data types match. There is no meaningful default
3484action for an empty rule; every empty rule must have an explicit action
3485unless the rule's value does not matter.
bfa74976
RS
3486
3487@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3488to tokens and groupings on the stack @emph{before} those that match the
3489current rule. This is a very risky practice, and to use it reliably
3490you must be certain of the context in which the rule is applied. Here
3491is a case in which you can use this reliably:
3492
3493@example
3494@group
3495foo: expr bar '+' expr @{ @dots{} @}
3496 | expr bar '-' expr @{ @dots{} @}
3497 ;
3498@end group
3499
3500@group
3501bar: /* empty */
3502 @{ previous_expr = $0; @}
3503 ;
3504@end group
3505@end example
3506
3507As long as @code{bar} is used only in the fashion shown here, @code{$0}
3508always refers to the @code{expr} which precedes @code{bar} in the
3509definition of @code{foo}.
3510
32c29292 3511@vindex yylval
742e4900 3512It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3513any, from a semantic action.
3514This semantic value is stored in @code{yylval}.
3515@xref{Action Features, ,Special Features for Use in Actions}.
3516
342b8b6e 3517@node Action Types
bfa74976
RS
3518@subsection Data Types of Values in Actions
3519@cindex action data types
3520@cindex data types in actions
3521
3522If you have chosen a single data type for semantic values, the @code{$$}
3523and @code{$@var{n}} constructs always have that data type.
3524
3525If you have used @code{%union} to specify a variety of data types, then you
3526must declare a choice among these types for each terminal or nonterminal
3527symbol that can have a semantic value. Then each time you use @code{$$} or
3528@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3529in the rule. In this example,
bfa74976
RS
3530
3531@example
3532@group
3533exp: @dots{}
3534 | exp '+' exp
3535 @{ $$ = $1 + $3; @}
3536@end group
3537@end example
3538
3539@noindent
3540@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3541have the data type declared for the nonterminal symbol @code{exp}. If
3542@code{$2} were used, it would have the data type declared for the
e0c471a9 3543terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3544
3545Alternatively, you can specify the data type when you refer to the value,
3546by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3547reference. For example, if you have defined types as shown here:
3548
3549@example
3550@group
3551%union @{
3552 int itype;
3553 double dtype;
3554@}
3555@end group
3556@end example
3557
3558@noindent
3559then you can write @code{$<itype>1} to refer to the first subunit of the
3560rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3561
342b8b6e 3562@node Mid-Rule Actions
bfa74976
RS
3563@subsection Actions in Mid-Rule
3564@cindex actions in mid-rule
3565@cindex mid-rule actions
3566
3567Occasionally it is useful to put an action in the middle of a rule.
3568These actions are written just like usual end-of-rule actions, but they
3569are executed before the parser even recognizes the following components.
3570
3571A mid-rule action may refer to the components preceding it using
3572@code{$@var{n}}, but it may not refer to subsequent components because
3573it is run before they are parsed.
3574
3575The mid-rule action itself counts as one of the components of the rule.
3576This makes a difference when there is another action later in the same rule
3577(and usually there is another at the end): you have to count the actions
3578along with the symbols when working out which number @var{n} to use in
3579@code{$@var{n}}.
3580
3581The mid-rule action can also have a semantic value. The action can set
3582its value with an assignment to @code{$$}, and actions later in the rule
3583can refer to the value using @code{$@var{n}}. Since there is no symbol
3584to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3585in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3586specify a data type each time you refer to this value.
bfa74976
RS
3587
3588There is no way to set the value of the entire rule with a mid-rule
3589action, because assignments to @code{$$} do not have that effect. The
3590only way to set the value for the entire rule is with an ordinary action
3591at the end of the rule.
3592
3593Here is an example from a hypothetical compiler, handling a @code{let}
3594statement that looks like @samp{let (@var{variable}) @var{statement}} and
3595serves to create a variable named @var{variable} temporarily for the
3596duration of @var{statement}. To parse this construct, we must put
3597@var{variable} into the symbol table while @var{statement} is parsed, then
3598remove it afterward. Here is how it is done:
3599
3600@example
3601@group
3602stmt: LET '(' var ')'
3603 @{ $<context>$ = push_context ();
3604 declare_variable ($3); @}
3605 stmt @{ $$ = $6;
3606 pop_context ($<context>5); @}
3607@end group
3608@end example
3609
3610@noindent
3611As soon as @samp{let (@var{variable})} has been recognized, the first
3612action is run. It saves a copy of the current semantic context (the
3613list of accessible variables) as its semantic value, using alternative
3614@code{context} in the data-type union. Then it calls
3615@code{declare_variable} to add the new variable to that list. Once the
3616first action is finished, the embedded statement @code{stmt} can be
3617parsed. Note that the mid-rule action is component number 5, so the
3618@samp{stmt} is component number 6.
3619
3620After the embedded statement is parsed, its semantic value becomes the
3621value of the entire @code{let}-statement. Then the semantic value from the
3622earlier action is used to restore the prior list of variables. This
3623removes the temporary @code{let}-variable from the list so that it won't
3624appear to exist while the rest of the program is parsed.
3625
841a7737
JD
3626@findex %destructor
3627@cindex discarded symbols, mid-rule actions
3628@cindex error recovery, mid-rule actions
3629In the above example, if the parser initiates error recovery (@pxref{Error
3630Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3631it might discard the previous semantic context @code{$<context>5} without
3632restoring it.
3633Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3634Discarded Symbols}).
ec5479ce
JD
3635However, Bison currently provides no means to declare a destructor specific to
3636a particular mid-rule action's semantic value.
841a7737
JD
3637
3638One solution is to bury the mid-rule action inside a nonterminal symbol and to
3639declare a destructor for that symbol:
3640
3641@example
3642@group
3643%type <context> let
3644%destructor @{ pop_context ($$); @} let
3645
3646%%
3647
3648stmt: let stmt
3649 @{ $$ = $2;
3650 pop_context ($1); @}
3651 ;
3652
3653let: LET '(' var ')'
3654 @{ $$ = push_context ();
3655 declare_variable ($3); @}
3656 ;
3657
3658@end group
3659@end example
3660
3661@noindent
3662Note that the action is now at the end of its rule.
3663Any mid-rule action can be converted to an end-of-rule action in this way, and
3664this is what Bison actually does to implement mid-rule actions.
3665
bfa74976
RS
3666Taking action before a rule is completely recognized often leads to
3667conflicts since the parser must commit to a parse in order to execute the
3668action. For example, the following two rules, without mid-rule actions,
3669can coexist in a working parser because the parser can shift the open-brace
3670token and look at what follows before deciding whether there is a
3671declaration or not:
3672
3673@example
3674@group
3675compound: '@{' declarations statements '@}'
3676 | '@{' statements '@}'
3677 ;
3678@end group
3679@end example
3680
3681@noindent
3682But when we add a mid-rule action as follows, the rules become nonfunctional:
3683
3684@example
3685@group
3686compound: @{ prepare_for_local_variables (); @}
3687 '@{' declarations statements '@}'
3688@end group
3689@group
3690 | '@{' statements '@}'
3691 ;
3692@end group
3693@end example
3694
3695@noindent
3696Now the parser is forced to decide whether to run the mid-rule action
3697when it has read no farther than the open-brace. In other words, it
3698must commit to using one rule or the other, without sufficient
3699information to do it correctly. (The open-brace token is what is called
742e4900
JD
3700the @dfn{lookahead} token at this time, since the parser is still
3701deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3702
3703You might think that you could correct the problem by putting identical
3704actions into the two rules, like this:
3705
3706@example
3707@group
3708compound: @{ prepare_for_local_variables (); @}
3709 '@{' declarations statements '@}'
3710 | @{ prepare_for_local_variables (); @}
3711 '@{' statements '@}'
3712 ;
3713@end group
3714@end example
3715
3716@noindent
3717But this does not help, because Bison does not realize that the two actions
3718are identical. (Bison never tries to understand the C code in an action.)
3719
3720If the grammar is such that a declaration can be distinguished from a
3721statement by the first token (which is true in C), then one solution which
3722does work is to put the action after the open-brace, like this:
3723
3724@example
3725@group
3726compound: '@{' @{ prepare_for_local_variables (); @}
3727 declarations statements '@}'
3728 | '@{' statements '@}'
3729 ;
3730@end group
3731@end example
3732
3733@noindent
3734Now the first token of the following declaration or statement,
3735which would in any case tell Bison which rule to use, can still do so.
3736
3737Another solution is to bury the action inside a nonterminal symbol which
3738serves as a subroutine:
3739
3740@example
3741@group
3742subroutine: /* empty */
3743 @{ prepare_for_local_variables (); @}
3744 ;
3745
3746@end group
3747
3748@group
3749compound: subroutine
3750 '@{' declarations statements '@}'
3751 | subroutine
3752 '@{' statements '@}'
3753 ;
3754@end group
3755@end example
3756
3757@noindent
3758Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3759deciding which rule for @code{compound} it will eventually use.
bfa74976 3760
342b8b6e 3761@node Locations
847bf1f5
AD
3762@section Tracking Locations
3763@cindex location
95923bd6
AD
3764@cindex textual location
3765@cindex location, textual
847bf1f5
AD
3766
3767Though grammar rules and semantic actions are enough to write a fully
72d2299c 3768functional parser, it can be useful to process some additional information,
3e259915
MA
3769especially symbol locations.
3770
704a47c4
AD
3771The way locations are handled is defined by providing a data type, and
3772actions to take when rules are matched.
847bf1f5
AD
3773
3774@menu
3775* Location Type:: Specifying a data type for locations.
3776* Actions and Locations:: Using locations in actions.
3777* Location Default Action:: Defining a general way to compute locations.
3778@end menu
3779
342b8b6e 3780@node Location Type
847bf1f5
AD
3781@subsection Data Type of Locations
3782@cindex data type of locations
3783@cindex default location type
3784
3785Defining a data type for locations is much simpler than for semantic values,
3786since all tokens and groupings always use the same type.
3787
50cce58e
PE
3788You can specify the type of locations by defining a macro called
3789@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3790defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3791When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3792four members:
3793
3794@example
6273355b 3795typedef struct YYLTYPE
847bf1f5
AD
3796@{
3797 int first_line;
3798 int first_column;
3799 int last_line;
3800 int last_column;
6273355b 3801@} YYLTYPE;
847bf1f5
AD
3802@end example
3803
cd48d21d
AD
3804At the beginning of the parsing, Bison initializes all these fields to 1
3805for @code{yylloc}.
3806
342b8b6e 3807@node Actions and Locations
847bf1f5
AD
3808@subsection Actions and Locations
3809@cindex location actions
3810@cindex actions, location
3811@vindex @@$
3812@vindex @@@var{n}
3813
3814Actions are not only useful for defining language semantics, but also for
3815describing the behavior of the output parser with locations.
3816
3817The most obvious way for building locations of syntactic groupings is very
72d2299c 3818similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3819constructs can be used to access the locations of the elements being matched.
3820The location of the @var{n}th component of the right hand side is
3821@code{@@@var{n}}, while the location of the left hand side grouping is
3822@code{@@$}.
3823
3e259915 3824Here is a basic example using the default data type for locations:
847bf1f5
AD
3825
3826@example
3827@group
3828exp: @dots{}
3e259915 3829 | exp '/' exp
847bf1f5 3830 @{
3e259915
MA
3831 @@$.first_column = @@1.first_column;
3832 @@$.first_line = @@1.first_line;
847bf1f5
AD
3833 @@$.last_column = @@3.last_column;
3834 @@$.last_line = @@3.last_line;
3e259915
MA
3835 if ($3)
3836 $$ = $1 / $3;
3837 else
3838 @{
3839 $$ = 1;
4e03e201
AD
3840 fprintf (stderr,
3841 "Division by zero, l%d,c%d-l%d,c%d",
3842 @@3.first_line, @@3.first_column,
3843 @@3.last_line, @@3.last_column);
3e259915 3844 @}
847bf1f5
AD
3845 @}
3846@end group
3847@end example
3848
3e259915 3849As for semantic values, there is a default action for locations that is
72d2299c 3850run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3851beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3852last symbol.
3e259915 3853
72d2299c 3854With this default action, the location tracking can be fully automatic. The
3e259915
MA
3855example above simply rewrites this way:
3856
3857@example
3858@group
3859exp: @dots{}
3860 | exp '/' exp
3861 @{
3862 if ($3)
3863 $$ = $1 / $3;
3864 else
3865 @{
3866 $$ = 1;
4e03e201
AD
3867 fprintf (stderr,
3868 "Division by zero, l%d,c%d-l%d,c%d",
3869 @@3.first_line, @@3.first_column,
3870 @@3.last_line, @@3.last_column);
3e259915
MA
3871 @}
3872 @}
3873@end group
3874@end example
847bf1f5 3875
32c29292 3876@vindex yylloc
742e4900 3877It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3878from a semantic action.
3879This location is stored in @code{yylloc}.
3880@xref{Action Features, ,Special Features for Use in Actions}.
3881
342b8b6e 3882@node Location Default Action
847bf1f5
AD
3883@subsection Default Action for Locations
3884@vindex YYLLOC_DEFAULT
8710fc41 3885@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3886
72d2299c 3887Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3888locations are much more general than semantic values, there is room in
3889the output parser to redefine the default action to take for each
72d2299c 3890rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3891matched, before the associated action is run. It is also invoked
3892while processing a syntax error, to compute the error's location.
8710fc41
JD
3893Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3894parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3895of that ambiguity.
847bf1f5 3896
3e259915 3897Most of the time, this macro is general enough to suppress location
79282c6c 3898dedicated code from semantic actions.
847bf1f5 3899
72d2299c 3900The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3901the location of the grouping (the result of the computation). When a
766de5eb 3902rule is matched, the second parameter identifies locations of
96b93a3d 3903all right hand side elements of the rule being matched, and the third
8710fc41
JD
3904parameter is the size of the rule's right hand side.
3905When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3906right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3907When processing a syntax error, the second parameter identifies locations
3908of the symbols that were discarded during error processing, and the third
96b93a3d 3909parameter is the number of discarded symbols.
847bf1f5 3910
766de5eb 3911By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3912
766de5eb 3913@smallexample
847bf1f5 3914@group
766de5eb
PE
3915# define YYLLOC_DEFAULT(Current, Rhs, N) \
3916 do \
3917 if (N) \
3918 @{ \
3919 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3920 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3921 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3922 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3923 @} \
3924 else \
3925 @{ \
3926 (Current).first_line = (Current).last_line = \
3927 YYRHSLOC(Rhs, 0).last_line; \
3928 (Current).first_column = (Current).last_column = \
3929 YYRHSLOC(Rhs, 0).last_column; \
3930 @} \
3931 while (0)
847bf1f5 3932@end group
766de5eb 3933@end smallexample
676385e2 3934
766de5eb
PE
3935where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3936in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3937just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3938
3e259915 3939When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3940
3e259915 3941@itemize @bullet
79282c6c 3942@item
72d2299c 3943All arguments are free of side-effects. However, only the first one (the
3e259915 3944result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3945
3e259915 3946@item
766de5eb
PE
3947For consistency with semantic actions, valid indexes within the
3948right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3949valid index, and it refers to the symbol just before the reduction.
3950During error processing @var{n} is always positive.
0ae99356
PE
3951
3952@item
3953Your macro should parenthesize its arguments, if need be, since the
3954actual arguments may not be surrounded by parentheses. Also, your
3955macro should expand to something that can be used as a single
3956statement when it is followed by a semicolon.
3e259915 3957@end itemize
847bf1f5 3958
342b8b6e 3959@node Declarations
bfa74976
RS
3960@section Bison Declarations
3961@cindex declarations, Bison
3962@cindex Bison declarations
3963
3964The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3965used in formulating the grammar and the data types of semantic values.
3966@xref{Symbols}.
3967
3968All token type names (but not single-character literal tokens such as
3969@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3970declared if you need to specify which data type to use for the semantic
3971value (@pxref{Multiple Types, ,More Than One Value Type}).
3972
3973The first rule in the file also specifies the start symbol, by default.
3974If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3975it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3976Grammars}).
bfa74976
RS
3977
3978@menu
b50d2359 3979* Require Decl:: Requiring a Bison version.
bfa74976
RS
3980* Token Decl:: Declaring terminal symbols.
3981* Precedence Decl:: Declaring terminals with precedence and associativity.
3982* Union Decl:: Declaring the set of all semantic value types.
3983* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3984* Initial Action Decl:: Code run before parsing starts.
72f889cc 3985* Destructor Decl:: Declaring how symbols are freed.
d6328241 3986* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3987* Start Decl:: Specifying the start symbol.
3988* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3989* Push Decl:: Requesting a push parser.
bfa74976
RS
3990* Decl Summary:: Table of all Bison declarations.
3991@end menu
3992
b50d2359
AD
3993@node Require Decl
3994@subsection Require a Version of Bison
3995@cindex version requirement
3996@cindex requiring a version of Bison
3997@findex %require
3998
3999You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4000the requirement is not met, @command{bison} exits with an error (exit
4001status 63).
b50d2359
AD
4002
4003@example
4004%require "@var{version}"
4005@end example
4006
342b8b6e 4007@node Token Decl
bfa74976
RS
4008@subsection Token Type Names
4009@cindex declaring token type names
4010@cindex token type names, declaring
931c7513 4011@cindex declaring literal string tokens
bfa74976
RS
4012@findex %token
4013
4014The basic way to declare a token type name (terminal symbol) is as follows:
4015
4016@example
4017%token @var{name}
4018@end example
4019
4020Bison will convert this into a @code{#define} directive in
4021the parser, so that the function @code{yylex} (if it is in this file)
4022can use the name @var{name} to stand for this token type's code.
4023
d78f0ac9
AD
4024Alternatively, you can use @code{%left}, @code{%right},
4025@code{%precedence}, or
14ded682
AD
4026@code{%nonassoc} instead of @code{%token}, if you wish to specify
4027associativity and precedence. @xref{Precedence Decl, ,Operator
4028Precedence}.
bfa74976
RS
4029
4030You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4031a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4032following the token name:
bfa74976
RS
4033
4034@example
4035%token NUM 300
1452af69 4036%token XNUM 0x12d // a GNU extension
bfa74976
RS
4037@end example
4038
4039@noindent
4040It is generally best, however, to let Bison choose the numeric codes for
4041all token types. Bison will automatically select codes that don't conflict
e966383b 4042with each other or with normal characters.
bfa74976
RS
4043
4044In the event that the stack type is a union, you must augment the
4045@code{%token} or other token declaration to include the data type
704a47c4
AD
4046alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4047Than One Value Type}).
bfa74976
RS
4048
4049For example:
4050
4051@example
4052@group
4053%union @{ /* define stack type */
4054 double val;
4055 symrec *tptr;
4056@}
4057%token <val> NUM /* define token NUM and its type */
4058@end group
4059@end example
4060
931c7513
RS
4061You can associate a literal string token with a token type name by
4062writing the literal string at the end of a @code{%token}
4063declaration which declares the name. For example:
4064
4065@example
4066%token arrow "=>"
4067@end example
4068
4069@noindent
4070For example, a grammar for the C language might specify these names with
4071equivalent literal string tokens:
4072
4073@example
4074%token <operator> OR "||"
4075%token <operator> LE 134 "<="
4076%left OR "<="
4077@end example
4078
4079@noindent
4080Once you equate the literal string and the token name, you can use them
4081interchangeably in further declarations or the grammar rules. The
4082@code{yylex} function can use the token name or the literal string to
4083obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4084Syntax error messages passed to @code{yyerror} from the parser will reference
4085the literal string instead of the token name.
4086
4087The token numbered as 0 corresponds to end of file; the following line
4088allows for nicer error messages referring to ``end of file'' instead
4089of ``$end'':
4090
4091@example
4092%token END 0 "end of file"
4093@end example
931c7513 4094
342b8b6e 4095@node Precedence Decl
bfa74976
RS
4096@subsection Operator Precedence
4097@cindex precedence declarations
4098@cindex declaring operator precedence
4099@cindex operator precedence, declaring
4100
d78f0ac9
AD
4101Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4102@code{%precedence} declaration to
bfa74976
RS
4103declare a token and specify its precedence and associativity, all at
4104once. These are called @dfn{precedence declarations}.
704a47c4
AD
4105@xref{Precedence, ,Operator Precedence}, for general information on
4106operator precedence.
bfa74976 4107
ab7f29f8 4108The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4109@code{%token}: either
4110
4111@example
4112%left @var{symbols}@dots{}
4113@end example
4114
4115@noindent
4116or
4117
4118@example
4119%left <@var{type}> @var{symbols}@dots{}
4120@end example
4121
4122And indeed any of these declarations serves the purposes of @code{%token}.
4123But in addition, they specify the associativity and relative precedence for
4124all the @var{symbols}:
4125
4126@itemize @bullet
4127@item
4128The associativity of an operator @var{op} determines how repeated uses
4129of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4130@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4131grouping @var{y} with @var{z} first. @code{%left} specifies
4132left-associativity (grouping @var{x} with @var{y} first) and
4133@code{%right} specifies right-associativity (grouping @var{y} with
4134@var{z} first). @code{%nonassoc} specifies no associativity, which
4135means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4136considered a syntax error.
4137
d78f0ac9
AD
4138@code{%precedence} gives only precedence to the @var{symbols}, and
4139defines no associativity at all. Use this to define precedence only,
4140and leave any potential conflict due to associativity enabled.
4141
bfa74976
RS
4142@item
4143The precedence of an operator determines how it nests with other operators.
4144All the tokens declared in a single precedence declaration have equal
4145precedence and nest together according to their associativity.
4146When two tokens declared in different precedence declarations associate,
4147the one declared later has the higher precedence and is grouped first.
4148@end itemize
4149
ab7f29f8
JD
4150For backward compatibility, there is a confusing difference between the
4151argument lists of @code{%token} and precedence declarations.
4152Only a @code{%token} can associate a literal string with a token type name.
4153A precedence declaration always interprets a literal string as a reference to a
4154separate token.
4155For example:
4156
4157@example
4158%left OR "<=" // Does not declare an alias.
4159%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4160@end example
4161
342b8b6e 4162@node Union Decl
bfa74976
RS
4163@subsection The Collection of Value Types
4164@cindex declaring value types
4165@cindex value types, declaring
4166@findex %union
4167
287c78f6
PE
4168The @code{%union} declaration specifies the entire collection of
4169possible data types for semantic values. The keyword @code{%union} is
4170followed by braced code containing the same thing that goes inside a
4171@code{union} in C@.
bfa74976
RS
4172
4173For example:
4174
4175@example
4176@group
4177%union @{
4178 double val;
4179 symrec *tptr;
4180@}
4181@end group
4182@end example
4183
4184@noindent
4185This says that the two alternative types are @code{double} and @code{symrec
4186*}. They are given names @code{val} and @code{tptr}; these names are used
4187in the @code{%token} and @code{%type} declarations to pick one of the types
4188for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4189
6273355b
PE
4190As an extension to @acronym{POSIX}, a tag is allowed after the
4191@code{union}. For example:
4192
4193@example
4194@group
4195%union value @{
4196 double val;
4197 symrec *tptr;
4198@}
4199@end group
4200@end example
4201
d6ca7905 4202@noindent
6273355b
PE
4203specifies the union tag @code{value}, so the corresponding C type is
4204@code{union value}. If you do not specify a tag, it defaults to
4205@code{YYSTYPE}.
4206
d6ca7905
PE
4207As another extension to @acronym{POSIX}, you may specify multiple
4208@code{%union} declarations; their contents are concatenated. However,
4209only the first @code{%union} declaration can specify a tag.
4210
6273355b 4211Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4212a semicolon after the closing brace.
4213
ddc8ede1
PE
4214Instead of @code{%union}, you can define and use your own union type
4215@code{YYSTYPE} if your grammar contains at least one
4216@samp{<@var{type}>} tag. For example, you can put the following into
4217a header file @file{parser.h}:
4218
4219@example
4220@group
4221union YYSTYPE @{
4222 double val;
4223 symrec *tptr;
4224@};
4225typedef union YYSTYPE YYSTYPE;
4226@end group
4227@end example
4228
4229@noindent
4230and then your grammar can use the following
4231instead of @code{%union}:
4232
4233@example
4234@group
4235%@{
4236#include "parser.h"
4237%@}
4238%type <val> expr
4239%token <tptr> ID
4240@end group
4241@end example
4242
342b8b6e 4243@node Type Decl
bfa74976
RS
4244@subsection Nonterminal Symbols
4245@cindex declaring value types, nonterminals
4246@cindex value types, nonterminals, declaring
4247@findex %type
4248
4249@noindent
4250When you use @code{%union} to specify multiple value types, you must
4251declare the value type of each nonterminal symbol for which values are
4252used. This is done with a @code{%type} declaration, like this:
4253
4254@example
4255%type <@var{type}> @var{nonterminal}@dots{}
4256@end example
4257
4258@noindent
704a47c4
AD
4259Here @var{nonterminal} is the name of a nonterminal symbol, and
4260@var{type} is the name given in the @code{%union} to the alternative
4261that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4262can give any number of nonterminal symbols in the same @code{%type}
4263declaration, if they have the same value type. Use spaces to separate
4264the symbol names.
bfa74976 4265
931c7513
RS
4266You can also declare the value type of a terminal symbol. To do this,
4267use the same @code{<@var{type}>} construction in a declaration for the
4268terminal symbol. All kinds of token declarations allow
4269@code{<@var{type}>}.
4270
18d192f0
AD
4271@node Initial Action Decl
4272@subsection Performing Actions before Parsing
4273@findex %initial-action
4274
4275Sometimes your parser needs to perform some initializations before
4276parsing. The @code{%initial-action} directive allows for such arbitrary
4277code.
4278
4279@deffn {Directive} %initial-action @{ @var{code} @}
4280@findex %initial-action
287c78f6 4281Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4282@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4283@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4284@code{%parse-param}.
18d192f0
AD
4285@end deffn
4286
451364ed
AD
4287For instance, if your locations use a file name, you may use
4288
4289@example
48b16bbc 4290%parse-param @{ char const *file_name @};
451364ed
AD
4291%initial-action
4292@{
4626a15d 4293 @@$.initialize (file_name);
451364ed
AD
4294@};
4295@end example
4296
18d192f0 4297
72f889cc
AD
4298@node Destructor Decl
4299@subsection Freeing Discarded Symbols
4300@cindex freeing discarded symbols
4301@findex %destructor
12e35840 4302@findex <*>
3ebecc24 4303@findex <>
a85284cf
AD
4304During error recovery (@pxref{Error Recovery}), symbols already pushed
4305on the stack and tokens coming from the rest of the file are discarded
4306until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4307or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4308symbols on the stack must be discarded. Even if the parser succeeds, it
4309must discard the start symbol.
258b75ca
PE
4310
4311When discarded symbols convey heap based information, this memory is
4312lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4313in traditional compilers, it is unacceptable for programs like shells or
4314protocol implementations that may parse and execute indefinitely.
258b75ca 4315
a85284cf
AD
4316The @code{%destructor} directive defines code that is called when a
4317symbol is automatically discarded.
72f889cc
AD
4318
4319@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4320@findex %destructor
287c78f6
PE
4321Invoke the braced @var{code} whenever the parser discards one of the
4322@var{symbols}.
4b367315 4323Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4324with the discarded symbol, and @code{@@$} designates its location.
4325The additional parser parameters are also available (@pxref{Parser Function, ,
4326The Parser Function @code{yyparse}}).
ec5479ce 4327
b2a0b7ca
JD
4328When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4329per-symbol @code{%destructor}.
4330You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4331tag among @var{symbols}.
b2a0b7ca 4332In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4333grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4334per-symbol @code{%destructor}.
4335
12e35840 4336Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4337(These default forms are experimental.
4338More user feedback will help to determine whether they should become permanent
4339features.)
3ebecc24 4340You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4341exactly one @code{%destructor} declaration in your grammar file.
4342The parser will invoke the @var{code} associated with one of these whenever it
4343discards any user-defined grammar symbol that has no per-symbol and no per-type
4344@code{%destructor}.
4345The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4346symbol for which you have formally declared a semantic type tag (@code{%type}
4347counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4348The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4349symbol that has no declared semantic type tag.
72f889cc
AD
4350@end deffn
4351
b2a0b7ca 4352@noindent
12e35840 4353For example:
72f889cc
AD
4354
4355@smallexample
ec5479ce
JD
4356%union @{ char *string; @}
4357%token <string> STRING1
4358%token <string> STRING2
4359%type <string> string1
4360%type <string> string2
b2a0b7ca
JD
4361%union @{ char character; @}
4362%token <character> CHR
4363%type <character> chr
12e35840
JD
4364%token TAGLESS
4365
b2a0b7ca 4366%destructor @{ @} <character>
12e35840
JD
4367%destructor @{ free ($$); @} <*>
4368%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4369%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4370@end smallexample
4371
4372@noindent
b2a0b7ca
JD
4373guarantees that, when the parser discards any user-defined symbol that has a
4374semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4375to @code{free} by default.
ec5479ce
JD
4376However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4377prints its line number to @code{stdout}.
4378It performs only the second @code{%destructor} in this case, so it invokes
4379@code{free} only once.
12e35840
JD
4380Finally, the parser merely prints a message whenever it discards any symbol,
4381such as @code{TAGLESS}, that has no semantic type tag.
4382
4383A Bison-generated parser invokes the default @code{%destructor}s only for
4384user-defined as opposed to Bison-defined symbols.
4385For example, the parser will not invoke either kind of default
4386@code{%destructor} for the special Bison-defined symbols @code{$accept},
4387@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4388none of which you can reference in your grammar.
4389It also will not invoke either for the @code{error} token (@pxref{Table of
4390Symbols, ,error}), which is always defined by Bison regardless of whether you
4391reference it in your grammar.
4392However, it may invoke one of them for the end token (token 0) if you
4393redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4394
4395@smallexample
4396%token END 0
4397@end smallexample
4398
12e35840
JD
4399@cindex actions in mid-rule
4400@cindex mid-rule actions
4401Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4402mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4403That is, Bison does not consider a mid-rule to have a semantic value if you do
4404not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4405@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4406rule.
4407However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4408@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4409
3508ce36
JD
4410@ignore
4411@noindent
4412In the future, it may be possible to redefine the @code{error} token as a
4413nonterminal that captures the discarded symbols.
4414In that case, the parser will invoke the default destructor for it as well.
4415@end ignore
4416
e757bb10
AD
4417@sp 1
4418
4419@cindex discarded symbols
4420@dfn{Discarded symbols} are the following:
4421
4422@itemize
4423@item
4424stacked symbols popped during the first phase of error recovery,
4425@item
4426incoming terminals during the second phase of error recovery,
4427@item
742e4900 4428the current lookahead and the entire stack (except the current
9d9b8b70 4429right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4430@item
4431the start symbol, when the parser succeeds.
e757bb10
AD
4432@end itemize
4433
9d9b8b70
PE
4434The parser can @dfn{return immediately} because of an explicit call to
4435@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4436exhaustion.
4437
29553547 4438Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4439error via @code{YYERROR} are not discarded automatically. As a rule
4440of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4441the memory.
e757bb10 4442
342b8b6e 4443@node Expect Decl
bfa74976
RS
4444@subsection Suppressing Conflict Warnings
4445@cindex suppressing conflict warnings
4446@cindex preventing warnings about conflicts
4447@cindex warnings, preventing
4448@cindex conflicts, suppressing warnings of
4449@findex %expect
d6328241 4450@findex %expect-rr
bfa74976
RS
4451
4452Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4453(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4454have harmless shift/reduce conflicts which are resolved in a predictable
4455way and would be difficult to eliminate. It is desirable to suppress
4456the warning about these conflicts unless the number of conflicts
4457changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4458
4459The declaration looks like this:
4460
4461@example
4462%expect @var{n}
4463@end example
4464
035aa4a0
PE
4465Here @var{n} is a decimal integer. The declaration says there should
4466be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4467Bison reports an error if the number of shift/reduce conflicts differs
4468from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4469
035aa4a0
PE
4470For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4471serious, and should be eliminated entirely. Bison will always report
4472reduce/reduce conflicts for these parsers. With @acronym{GLR}
4473parsers, however, both kinds of conflicts are routine; otherwise,
4474there would be no need to use @acronym{GLR} parsing. Therefore, it is
4475also possible to specify an expected number of reduce/reduce conflicts
4476in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4477
4478@example
4479%expect-rr @var{n}
4480@end example
4481
bfa74976
RS
4482In general, using @code{%expect} involves these steps:
4483
4484@itemize @bullet
4485@item
4486Compile your grammar without @code{%expect}. Use the @samp{-v} option
4487to get a verbose list of where the conflicts occur. Bison will also
4488print the number of conflicts.
4489
4490@item
4491Check each of the conflicts to make sure that Bison's default
4492resolution is what you really want. If not, rewrite the grammar and
4493go back to the beginning.
4494
4495@item
4496Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4497number which Bison printed. With @acronym{GLR} parsers, add an
4498@code{%expect-rr} declaration as well.
bfa74976
RS
4499@end itemize
4500
035aa4a0
PE
4501Now Bison will warn you if you introduce an unexpected conflict, but
4502will keep silent otherwise.
bfa74976 4503
342b8b6e 4504@node Start Decl
bfa74976
RS
4505@subsection The Start-Symbol
4506@cindex declaring the start symbol
4507@cindex start symbol, declaring
4508@cindex default start symbol
4509@findex %start
4510
4511Bison assumes by default that the start symbol for the grammar is the first
4512nonterminal specified in the grammar specification section. The programmer
4513may override this restriction with the @code{%start} declaration as follows:
4514
4515@example
4516%start @var{symbol}
4517@end example
4518
342b8b6e 4519@node Pure Decl
bfa74976
RS
4520@subsection A Pure (Reentrant) Parser
4521@cindex reentrant parser
4522@cindex pure parser
d9df47b6 4523@findex %define api.pure
bfa74976
RS
4524
4525A @dfn{reentrant} program is one which does not alter in the course of
4526execution; in other words, it consists entirely of @dfn{pure} (read-only)
4527code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4528for example, a nonreentrant program may not be safe to call from a signal
4529handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4530program must be called only within interlocks.
4531
70811b85 4532Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4533suitable for most uses, and it permits compatibility with Yacc. (The
4534standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4535statically allocated variables for communication with @code{yylex},
4536including @code{yylval} and @code{yylloc}.)
bfa74976 4537
70811b85 4538Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4539declaration @code{%define api.pure} says that you want the parser to be
70811b85 4540reentrant. It looks like this:
bfa74976
RS
4541
4542@example
d9df47b6 4543%define api.pure
bfa74976
RS
4544@end example
4545
70811b85
RS
4546The result is that the communication variables @code{yylval} and
4547@code{yylloc} become local variables in @code{yyparse}, and a different
4548calling convention is used for the lexical analyzer function
4549@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4550Parsers}, for the details of this. The variable @code{yynerrs}
4551becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4552of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4553Reporting Function @code{yyerror}}). The convention for calling
4554@code{yyparse} itself is unchanged.
4555
4556Whether the parser is pure has nothing to do with the grammar rules.
4557You can generate either a pure parser or a nonreentrant parser from any
4558valid grammar.
bfa74976 4559
9987d1b3
JD
4560@node Push Decl
4561@subsection A Push Parser
4562@cindex push parser
4563@cindex push parser
c373bf8b 4564@findex %define api.push_pull
9987d1b3 4565
59da312b
JD
4566(The current push parsing interface is experimental and may evolve.
4567More user feedback will help to stabilize it.)
4568
f4101aa6
AD
4569A pull parser is called once and it takes control until all its input
4570is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4571each time a new token is made available.
4572
f4101aa6 4573A push parser is typically useful when the parser is part of a
9987d1b3 4574main event loop in the client's application. This is typically
f4101aa6
AD
4575a requirement of a GUI, when the main event loop needs to be triggered
4576within a certain time period.
9987d1b3 4577
d782395d
JD
4578Normally, Bison generates a pull parser.
4579The following Bison declaration says that you want the parser to be a push
c373bf8b 4580parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4581
4582@example
c373bf8b 4583%define api.push_pull "push"
9987d1b3
JD
4584@end example
4585
4586In almost all cases, you want to ensure that your push parser is also
4587a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4588time you should create an impure push parser is to have backwards
9987d1b3
JD
4589compatibility with the impure Yacc pull mode interface. Unless you know
4590what you are doing, your declarations should look like this:
4591
4592@example
d9df47b6 4593%define api.pure
c373bf8b 4594%define api.push_pull "push"
9987d1b3
JD
4595@end example
4596
f4101aa6
AD
4597There is a major notable functional difference between the pure push parser
4598and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4599many parser instances, of the same type of parser, in memory at the same time.
4600An impure push parser should only use one parser at a time.
4601
4602When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4603the generated parser. @code{yypstate} is a structure that the generated
4604parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4605function that will create a new parser instance. @code{yypstate_delete}
4606will free the resources associated with the corresponding parser instance.
f4101aa6 4607Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4608token is available to provide the parser. A trivial example
4609of using a pure push parser would look like this:
4610
4611@example
4612int status;
4613yypstate *ps = yypstate_new ();
4614do @{
4615 status = yypush_parse (ps, yylex (), NULL);
4616@} while (status == YYPUSH_MORE);
4617yypstate_delete (ps);
4618@end example
4619
4620If the user decided to use an impure push parser, a few things about
f4101aa6 4621the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4622a global variable instead of a variable in the @code{yypush_parse} function.
4623For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4624changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4625example would thus look like this:
4626
4627@example
4628extern int yychar;
4629int status;
4630yypstate *ps = yypstate_new ();
4631do @{
4632 yychar = yylex ();
4633 status = yypush_parse (ps);
4634@} while (status == YYPUSH_MORE);
4635yypstate_delete (ps);
4636@end example
4637
f4101aa6 4638That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4639for use by the next invocation of the @code{yypush_parse} function.
4640
f4101aa6 4641Bison also supports both the push parser interface along with the pull parser
9987d1b3 4642interface in the same generated parser. In order to get this functionality,
f4101aa6 4643you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4644@code{%define api.push_pull "both"} declaration. Doing this will create all of
4645the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4646and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4647would be used. However, the user should note that it is implemented in the
d782395d
JD
4648generated parser by calling @code{yypull_parse}.
4649This makes the @code{yyparse} function that is generated with the
c373bf8b 4650@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4651@code{yyparse} function. If the user
4652calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4653stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4654and then @code{yypull_parse} the rest of the input stream. If you would like
4655to switch back and forth between between parsing styles, you would have to
4656write your own @code{yypull_parse} function that knows when to quit looking
4657for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4658like this:
4659
4660@example
4661yypstate *ps = yypstate_new ();
4662yypull_parse (ps); /* Will call the lexer */
4663yypstate_delete (ps);
4664@end example
4665
d9df47b6 4666Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4667the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4668@code{%define api.push_pull "push"}.
9987d1b3 4669
342b8b6e 4670@node Decl Summary
bfa74976
RS
4671@subsection Bison Declaration Summary
4672@cindex Bison declaration summary
4673@cindex declaration summary
4674@cindex summary, Bison declaration
4675
d8988b2f 4676Here is a summary of the declarations used to define a grammar:
bfa74976 4677
18b519c0 4678@deffn {Directive} %union
bfa74976
RS
4679Declare the collection of data types that semantic values may have
4680(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4681@end deffn
bfa74976 4682
18b519c0 4683@deffn {Directive} %token
bfa74976
RS
4684Declare a terminal symbol (token type name) with no precedence
4685or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Directive} %right
bfa74976
RS
4689Declare a terminal symbol (token type name) that is right-associative
4690(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4691@end deffn
bfa74976 4692
18b519c0 4693@deffn {Directive} %left
bfa74976
RS
4694Declare a terminal symbol (token type name) that is left-associative
4695(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4696@end deffn
bfa74976 4697
18b519c0 4698@deffn {Directive} %nonassoc
bfa74976 4699Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4700(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4701Using it in a way that would be associative is a syntax error.
4702@end deffn
4703
91d2c560 4704@ifset defaultprec
39a06c25 4705@deffn {Directive} %default-prec
22fccf95 4706Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4707(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4708@end deffn
91d2c560 4709@end ifset
bfa74976 4710
18b519c0 4711@deffn {Directive} %type
bfa74976
RS
4712Declare the type of semantic values for a nonterminal symbol
4713(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4714@end deffn
bfa74976 4715
18b519c0 4716@deffn {Directive} %start
89cab50d
AD
4717Specify the grammar's start symbol (@pxref{Start Decl, ,The
4718Start-Symbol}).
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Directive} %expect
bfa74976
RS
4722Declare the expected number of shift-reduce conflicts
4723(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4724@end deffn
4725
bfa74976 4726
d8988b2f
AD
4727@sp 1
4728@noindent
4729In order to change the behavior of @command{bison}, use the following
4730directives:
4731
148d66d8
JD
4732@deffn {Directive} %code @{@var{code}@}
4733@findex %code
4734This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4735It inserts @var{code} verbatim at a language-dependent default location in the
4736output@footnote{The default location is actually skeleton-dependent;
4737 writers of non-standard skeletons however should choose the default location
4738 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4739
4740@cindex Prologue
8405b70c 4741For C/C++, the default location is the parser source code
148d66d8
JD
4742file after the usual contents of the parser header file.
4743Thus, @code{%code} replaces the traditional Yacc prologue,
4744@code{%@{@var{code}%@}}, for most purposes.
4745For a detailed discussion, see @ref{Prologue Alternatives}.
4746
8405b70c 4747For Java, the default location is inside the parser class.
148d66d8
JD
4748
4749(Like all the Yacc prologue alternatives, this directive is experimental.
4750More user feedback will help to determine whether it should become a permanent
4751feature.)
4752@end deffn
4753
4754@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4755This is the qualified form of the @code{%code} directive.
4756If you need to specify location-sensitive verbatim @var{code} that does not
4757belong at the default location selected by the unqualified @code{%code} form,
4758use this form instead.
4759
4760@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4761where Bison should generate it.
4762Not all values of @var{qualifier} are available for all target languages:
4763
4764@itemize @bullet
148d66d8 4765@item requires
793fbca5 4766@findex %code requires
148d66d8
JD
4767
4768@itemize @bullet
4769@item Language(s): C, C++
4770
4771@item Purpose: This is the best place to write dependency code required for
4772@code{YYSTYPE} and @code{YYLTYPE}.
4773In other words, it's the best place to define types referenced in @code{%union}
4774directives, and it's the best place to override Bison's default @code{YYSTYPE}
4775and @code{YYLTYPE} definitions.
4776
4777@item Location(s): The parser header file and the parser source code file
4778before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4779@end itemize
4780
4781@item provides
4782@findex %code provides
4783
4784@itemize @bullet
4785@item Language(s): C, C++
4786
4787@item Purpose: This is the best place to write additional definitions and
4788declarations that should be provided to other modules.
4789
4790@item Location(s): The parser header file and the parser source code file after
4791the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4792@end itemize
4793
4794@item top
4795@findex %code top
4796
4797@itemize @bullet
4798@item Language(s): C, C++
4799
4800@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4801usually be more appropriate than @code{%code top}.
4802However, occasionally it is necessary to insert code much nearer the top of the
4803parser source code file.
4804For example:
4805
4806@smallexample
4807%code top @{
4808 #define _GNU_SOURCE
4809 #include <stdio.h>
4810@}
4811@end smallexample
4812
4813@item Location(s): Near the top of the parser source code file.
4814@end itemize
8405b70c 4815
148d66d8
JD
4816@item imports
4817@findex %code imports
4818
4819@itemize @bullet
4820@item Language(s): Java
4821
4822@item Purpose: This is the best place to write Java import directives.
4823
4824@item Location(s): The parser Java file after any Java package directive and
4825before any class definitions.
4826@end itemize
148d66d8
JD
4827@end itemize
4828
4829(Like all the Yacc prologue alternatives, this directive is experimental.
4830More user feedback will help to determine whether it should become a permanent
4831feature.)
4832
4833@cindex Prologue
4834For a detailed discussion of how to use @code{%code} in place of the
4835traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4836@end deffn
4837
18b519c0 4838@deffn {Directive} %debug
4947ebdb
PE
4839In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4840already defined, so that the debugging facilities are compiled.
18b519c0 4841@end deffn
ec3bc396 4842@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4843
c1d19e10
PB
4844@deffn {Directive} %define @var{variable}
4845@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4846Define a variable to adjust Bison's behavior.
4847The possible choices for @var{variable}, as well as their meanings, depend on
4848the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4849Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4850
4851Bison will warn if a @var{variable} is defined multiple times.
4852
4853Omitting @code{"@var{value}"} is always equivalent to specifying it as
4854@code{""}.
4855
922bdd7f 4856Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4857In this case, Bison will complain if the variable definition does not meet one
4858of the following four conditions:
4859
4860@enumerate
4861@item @code{"@var{value}"} is @code{"true"}
4862
4863@item @code{"@var{value}"} is omitted (or is @code{""}).
4864This is equivalent to @code{"true"}.
4865
4866@item @code{"@var{value}"} is @code{"false"}.
4867
4868@item @var{variable} is never defined.
4869In this case, Bison selects a default value, which may depend on the selected
4870target language and/or parser skeleton.
4871@end enumerate
148d66d8 4872
793fbca5
JD
4873Some of the accepted @var{variable}s are:
4874
4875@itemize @bullet
d9df47b6
JD
4876@item api.pure
4877@findex %define api.pure
4878
4879@itemize @bullet
4880@item Language(s): C
4881
4882@item Purpose: Request a pure (reentrant) parser program.
4883@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4884
4885@item Accepted Values: Boolean
4886
4887@item Default Value: @code{"false"}
4888@end itemize
4889
c373bf8b
JD
4890@item api.push_pull
4891@findex %define api.push_pull
793fbca5
JD
4892
4893@itemize @bullet
4894@item Language(s): C (LALR(1) only)
4895
4896@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4897@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4898(The current push parsing interface is experimental and may evolve.
4899More user feedback will help to stabilize it.)
793fbca5
JD
4900
4901@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4902
4903@item Default Value: @code{"pull"}
4904@end itemize
4905
31984206
JD
4906@item lr.keep_unreachable_states
4907@findex %define lr.keep_unreachable_states
4908
4909@itemize @bullet
4910@item Language(s): all
4911
4912@item Purpose: Requests that Bison allow unreachable parser states to remain in
4913the parser tables.
4914Bison considers a state to be unreachable if there exists no sequence of
4915transitions from the start state to that state.
4916A state can become unreachable during conflict resolution if Bison disables a
4917shift action leading to it from a predecessor state.
4918Keeping unreachable states is sometimes useful for analysis purposes, but they
4919are useless in the generated parser.
4920
4921@item Accepted Values: Boolean
4922
4923@item Default Value: @code{"false"}
4924
4925@item Caveats:
4926
4927@itemize @bullet
cff03fb2
JD
4928
4929@item Unreachable states may contain conflicts and may use rules not used in
4930any other state.
31984206
JD
4931Thus, keeping unreachable states may induce warnings that are irrelevant to
4932your parser's behavior, and it may eliminate warnings that are relevant.
4933Of course, the change in warnings may actually be relevant to a parser table
4934analysis that wants to keep unreachable states, so this behavior will likely
4935remain in future Bison releases.
4936
4937@item While Bison is able to remove unreachable states, it is not guaranteed to
4938remove other kinds of useless states.
4939Specifically, when Bison disables reduce actions during conflict resolution,
4940some goto actions may become useless, and thus some additional states may
4941become useless.
4942If Bison were to compute which goto actions were useless and then disable those
4943actions, it could identify such states as unreachable and then remove those
4944states.
4945However, Bison does not compute which goto actions are useless.
4946@end itemize
4947@end itemize
4948
793fbca5
JD
4949@item namespace
4950@findex %define namespace
4951
4952@itemize
4953@item Languages(s): C++
4954
4955@item Purpose: Specifies the namespace for the parser class.
4956For example, if you specify:
4957
4958@smallexample
4959%define namespace "foo::bar"
4960@end smallexample
4961
4962Bison uses @code{foo::bar} verbatim in references such as:
4963
4964@smallexample
4965foo::bar::parser::semantic_type
4966@end smallexample
4967
4968However, to open a namespace, Bison removes any leading @code{::} and then
4969splits on any remaining occurrences:
4970
4971@smallexample
4972namespace foo @{ namespace bar @{
4973 class position;
4974 class location;
4975@} @}
4976@end smallexample
4977
4978@item Accepted Values: Any absolute or relative C++ namespace reference without
4979a trailing @code{"::"}.
4980For example, @code{"foo"} or @code{"::foo::bar"}.
4981
4982@item Default Value: The value specified by @code{%name-prefix}, which defaults
4983to @code{yy}.
4984This usage of @code{%name-prefix} is for backward compatibility and can be
4985confusing since @code{%name-prefix} also specifies the textual prefix for the
4986lexical analyzer function.
4987Thus, if you specify @code{%name-prefix}, it is best to also specify
4988@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4989lexical analyzer function.
4990For example, if you specify:
4991
4992@smallexample
4993%define namespace "foo"
4994%name-prefix "bar::"
4995@end smallexample
4996
4997The parser namespace is @code{foo} and @code{yylex} is referenced as
4998@code{bar::lex}.
4999@end itemize
5000@end itemize
5001
d782395d
JD
5002@end deffn
5003
18b519c0 5004@deffn {Directive} %defines
4bfd5e4e
PE
5005Write a header file containing macro definitions for the token type
5006names defined in the grammar as well as a few other declarations.
d8988b2f 5007If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5008is named @file{@var{name}.h}.
d8988b2f 5009
b321737f 5010For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5011@code{YYSTYPE} is already defined as a macro or you have used a
5012@code{<@var{type}>} tag without using @code{%union}.
5013Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5014(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5015require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5016or type definition
f8e1c9e5
AD
5017(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5018arrange for these definitions to be propagated to all modules, e.g., by
5019putting them in a prerequisite header that is included both by your
5020parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5021
5022Unless your parser is pure, the output header declares @code{yylval}
5023as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5024Parser}.
5025
5026If you have also used locations, the output header declares
5027@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5028the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5029Locations}.
5030
f8e1c9e5
AD
5031This output file is normally essential if you wish to put the definition
5032of @code{yylex} in a separate source file, because @code{yylex}
5033typically needs to be able to refer to the above-mentioned declarations
5034and to the token type codes. @xref{Token Values, ,Semantic Values of
5035Tokens}.
9bc0dd67 5036
16dc6a9e
JD
5037@findex %code requires
5038@findex %code provides
5039If you have declared @code{%code requires} or @code{%code provides}, the output
5040header also contains their code.
148d66d8 5041@xref{Decl Summary, ,%code}.
592d0b1e
PB
5042@end deffn
5043
02975b9a
JD
5044@deffn {Directive} %defines @var{defines-file}
5045Same as above, but save in the file @var{defines-file}.
5046@end deffn
5047
18b519c0 5048@deffn {Directive} %destructor
258b75ca 5049Specify how the parser should reclaim the memory associated to
fa7e68c3 5050discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5051@end deffn
72f889cc 5052
02975b9a 5053@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5054Specify a prefix to use for all Bison output file names. The names are
5055chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5056@end deffn
d8988b2f 5057
e6e704dc 5058@deffn {Directive} %language "@var{language}"
0e021770 5059Specify the programming language for the generated parser. Currently
59da312b 5060supported languages include C, C++, and Java.
e6e704dc 5061@var{language} is case-insensitive.
ed4d67dc
JD
5062
5063This directive is experimental and its effect may be modified in future
5064releases.
0e021770
PE
5065@end deffn
5066
18b519c0 5067@deffn {Directive} %locations
89cab50d
AD
5068Generate the code processing the locations (@pxref{Action Features,
5069,Special Features for Use in Actions}). This mode is enabled as soon as
5070the grammar uses the special @samp{@@@var{n}} tokens, but if your
5071grammar does not use it, using @samp{%locations} allows for more
6e649e65 5072accurate syntax error messages.
18b519c0 5073@end deffn
89cab50d 5074
02975b9a 5075@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5076Rename the external symbols used in the parser so that they start with
5077@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5078in C parsers
d8988b2f 5079is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5080@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5081(if locations are used) @code{yylloc}. If you use a push parser,
5082@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5083@code{yypstate_new} and @code{yypstate_delete} will
5084also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5085names become @code{c_parse}, @code{c_lex}, and so on.
5086For C++ parsers, see the @code{%define namespace} documentation in this
5087section.
aa08666d 5088@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5089@end deffn
931c7513 5090
91d2c560 5091@ifset defaultprec
22fccf95
PE
5092@deffn {Directive} %no-default-prec
5093Do not assign a precedence to rules lacking an explicit @code{%prec}
5094modifier (@pxref{Contextual Precedence, ,Context-Dependent
5095Precedence}).
5096@end deffn
91d2c560 5097@end ifset
22fccf95 5098
18b519c0 5099@deffn {Directive} %no-lines
931c7513
RS
5100Don't generate any @code{#line} preprocessor commands in the parser
5101file. Ordinarily Bison writes these commands in the parser file so that
5102the C compiler and debuggers will associate errors and object code with
5103your source file (the grammar file). This directive causes them to
5104associate errors with the parser file, treating it an independent source
5105file in its own right.
18b519c0 5106@end deffn
931c7513 5107
02975b9a 5108@deffn {Directive} %output "@var{file}"
fa4d969f 5109Specify @var{file} for the parser file.
18b519c0 5110@end deffn
6deb4447 5111
18b519c0 5112@deffn {Directive} %pure-parser
d9df47b6
JD
5113Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5114for which Bison is more careful to warn about unreasonable usage.
18b519c0 5115@end deffn
6deb4447 5116
b50d2359 5117@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5118Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5119Require a Version of Bison}.
b50d2359
AD
5120@end deffn
5121
0e021770 5122@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5123Specify the skeleton to use.
5124
ed4d67dc
JD
5125@c You probably don't need this option unless you are developing Bison.
5126@c You should use @code{%language} if you want to specify the skeleton for a
5127@c different language, because it is clearer and because it will always choose the
5128@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5129
5130If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5131file in the Bison installation directory.
5132If it does, @var{file} is an absolute file name or a file name relative to the
5133directory of the grammar file.
5134This is similar to how most shells resolve commands.
0e021770
PE
5135@end deffn
5136
18b519c0 5137@deffn {Directive} %token-table
931c7513
RS
5138Generate an array of token names in the parser file. The name of the
5139array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5140token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5141three elements of @code{yytname} correspond to the predefined tokens
5142@code{"$end"},
88bce5a2
AD
5143@code{"error"}, and @code{"$undefined"}; after these come the symbols
5144defined in the grammar file.
931c7513 5145
9e0876fb
PE
5146The name in the table includes all the characters needed to represent
5147the token in Bison. For single-character literals and literal
5148strings, this includes the surrounding quoting characters and any
5149escape sequences. For example, the Bison single-character literal
5150@code{'+'} corresponds to a three-character name, represented in C as
5151@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5152corresponds to a five-character name, represented in C as
5153@code{"\"\\\\/\""}.
931c7513 5154
8c9a50be 5155When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5156definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5157@code{YYNRULES}, and @code{YYNSTATES}:
5158
5159@table @code
5160@item YYNTOKENS
5161The highest token number, plus one.
5162@item YYNNTS
9ecbd125 5163The number of nonterminal symbols.
931c7513
RS
5164@item YYNRULES
5165The number of grammar rules,
5166@item YYNSTATES
5167The number of parser states (@pxref{Parser States}).
5168@end table
18b519c0 5169@end deffn
d8988b2f 5170
18b519c0 5171@deffn {Directive} %verbose
d8988b2f 5172Write an extra output file containing verbose descriptions of the
742e4900 5173parser states and what is done for each type of lookahead token in
72d2299c 5174that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5175information.
18b519c0 5176@end deffn
d8988b2f 5177
18b519c0 5178@deffn {Directive} %yacc
d8988b2f
AD
5179Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5180including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5181@end deffn
d8988b2f
AD
5182
5183
342b8b6e 5184@node Multiple Parsers
bfa74976
RS
5185@section Multiple Parsers in the Same Program
5186
5187Most programs that use Bison parse only one language and therefore contain
5188only one Bison parser. But what if you want to parse more than one
5189language with the same program? Then you need to avoid a name conflict
5190between different definitions of @code{yyparse}, @code{yylval}, and so on.
5191
5192The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5193(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5194functions and variables of the Bison parser to start with @var{prefix}
5195instead of @samp{yy}. You can use this to give each parser distinct
5196names that do not conflict.
bfa74976
RS
5197
5198The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5199@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5200@code{yychar} and @code{yydebug}. If you use a push parser,
5201@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5202@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5203For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5204@code{clex}, and so on.
bfa74976
RS
5205
5206@strong{All the other variables and macros associated with Bison are not
5207renamed.} These others are not global; there is no conflict if the same
5208name is used in different parsers. For example, @code{YYSTYPE} is not
5209renamed, but defining this in different ways in different parsers causes
5210no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5211
5212The @samp{-p} option works by adding macro definitions to the beginning
5213of the parser source file, defining @code{yyparse} as
5214@code{@var{prefix}parse}, and so on. This effectively substitutes one
5215name for the other in the entire parser file.
5216
342b8b6e 5217@node Interface
bfa74976
RS
5218@chapter Parser C-Language Interface
5219@cindex C-language interface
5220@cindex interface
5221
5222The Bison parser is actually a C function named @code{yyparse}. Here we
5223describe the interface conventions of @code{yyparse} and the other
5224functions that it needs to use.
5225
5226Keep in mind that the parser uses many C identifiers starting with
5227@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5228identifier (aside from those in this manual) in an action or in epilogue
5229in the grammar file, you are likely to run into trouble.
bfa74976
RS
5230
5231@menu
5232* Parser Function:: How to call @code{yyparse} and what it returns.
9987d1b3
JD
5233* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5234* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
f4101aa6 5235* Parser Create Function:: How to call @code{yypstate_new} and what it
9987d1b3 5236 returns.
f4101aa6 5237* Parser Delete Function:: How to call @code{yypstate_delete} and what it
9987d1b3 5238 returns.
13863333 5239* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
5240 which reads tokens.
5241* Error Reporting:: You must supply a function @code{yyerror}.
5242* Action Features:: Special features for use in actions.
f7ab6a50
PE
5243* Internationalization:: How to let the parser speak in the user's
5244 native language.
bfa74976
RS
5245@end menu
5246
342b8b6e 5247@node Parser Function
bfa74976
RS
5248@section The Parser Function @code{yyparse}
5249@findex yyparse
5250
5251You call the function @code{yyparse} to cause parsing to occur. This
5252function reads tokens, executes actions, and ultimately returns when it
5253encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5254write an action which directs @code{yyparse} to return immediately
5255without reading further.
bfa74976 5256
2a8d363a
AD
5257
5258@deftypefun int yyparse (void)
bfa74976
RS
5259The value returned by @code{yyparse} is 0 if parsing was successful (return
5260is due to end-of-input).
5261
b47dbebe
PE
5262The value is 1 if parsing failed because of invalid input, i.e., input
5263that contains a syntax error or that causes @code{YYABORT} to be
5264invoked.
5265
5266The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5267@end deftypefun
bfa74976
RS
5268
5269In an action, you can cause immediate return from @code{yyparse} by using
5270these macros:
5271
2a8d363a 5272@defmac YYACCEPT
bfa74976
RS
5273@findex YYACCEPT
5274Return immediately with value 0 (to report success).
2a8d363a 5275@end defmac
bfa74976 5276
2a8d363a 5277@defmac YYABORT
bfa74976
RS
5278@findex YYABORT
5279Return immediately with value 1 (to report failure).
2a8d363a
AD
5280@end defmac
5281
5282If you use a reentrant parser, you can optionally pass additional
5283parameter information to it in a reentrant way. To do so, use the
5284declaration @code{%parse-param}:
5285
feeb0eda 5286@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5287@findex %parse-param
287c78f6
PE
5288Declare that an argument declared by the braced-code
5289@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5290The @var{argument-declaration} is used when declaring
feeb0eda
PE
5291functions or prototypes. The last identifier in
5292@var{argument-declaration} must be the argument name.
2a8d363a
AD
5293@end deffn
5294
5295Here's an example. Write this in the parser:
5296
5297@example
feeb0eda
PE
5298%parse-param @{int *nastiness@}
5299%parse-param @{int *randomness@}
2a8d363a
AD
5300@end example
5301
5302@noindent
5303Then call the parser like this:
5304
5305@example
5306@{
5307 int nastiness, randomness;
5308 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5309 value = yyparse (&nastiness, &randomness);
5310 @dots{}
5311@}
5312@end example
5313
5314@noindent
5315In the grammar actions, use expressions like this to refer to the data:
5316
5317@example
5318exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5319@end example
5320
9987d1b3
JD
5321@node Push Parser Function
5322@section The Push Parser Function @code{yypush_parse}
5323@findex yypush_parse
5324
59da312b
JD
5325(The current push parsing interface is experimental and may evolve.
5326More user feedback will help to stabilize it.)
5327
f4101aa6
AD
5328You call the function @code{yypush_parse} to parse a single token. This
5329function is available if either the @code{%define api.push_pull "push"} or
5330@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5331@xref{Push Decl, ,A Push Parser}.
5332
5333@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5334The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5335following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5336is required to finish parsing the grammar.
5337@end deftypefun
5338
5339@node Pull Parser Function
5340@section The Pull Parser Function @code{yypull_parse}
5341@findex yypull_parse
5342
59da312b
JD
5343(The current push parsing interface is experimental and may evolve.
5344More user feedback will help to stabilize it.)
5345
f4101aa6
AD
5346You call the function @code{yypull_parse} to parse the rest of the input
5347stream. This function is available if the @code{%define api.push_pull "both"}
5348declaration is used.
9987d1b3
JD
5349@xref{Push Decl, ,A Push Parser}.
5350
5351@deftypefun int yypull_parse (yypstate *yyps)
5352The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5353@end deftypefun
5354
5355@node Parser Create Function
5356@section The Parser Create Function @code{yystate_new}
5357@findex yypstate_new
5358
59da312b
JD
5359(The current push parsing interface is experimental and may evolve.
5360More user feedback will help to stabilize it.)
5361
f4101aa6
AD
5362You call the function @code{yypstate_new} to create a new parser instance.
5363This function is available if either the @code{%define api.push_pull "push"} or
5364@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5365@xref{Push Decl, ,A Push Parser}.
5366
5367@deftypefun yypstate *yypstate_new (void)
5368The fuction will return a valid parser instance if there was memory available
333e670c
JD
5369or 0 if no memory was available.
5370In impure mode, it will also return 0 if a parser instance is currently
5371allocated.
9987d1b3
JD
5372@end deftypefun
5373
5374@node Parser Delete Function
5375@section The Parser Delete Function @code{yystate_delete}
5376@findex yypstate_delete
5377
59da312b
JD
5378(The current push parsing interface is experimental and may evolve.
5379More user feedback will help to stabilize it.)
5380
9987d1b3 5381You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5382function is available if either the @code{%define api.push_pull "push"} or
5383@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5384@xref{Push Decl, ,A Push Parser}.
5385
5386@deftypefun void yypstate_delete (yypstate *yyps)
5387This function will reclaim the memory associated with a parser instance.
5388After this call, you should no longer attempt to use the parser instance.
5389@end deftypefun
bfa74976 5390
342b8b6e 5391@node Lexical
bfa74976
RS
5392@section The Lexical Analyzer Function @code{yylex}
5393@findex yylex
5394@cindex lexical analyzer
5395
5396The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5397the input stream and returns them to the parser. Bison does not create
5398this function automatically; you must write it so that @code{yyparse} can
5399call it. The function is sometimes referred to as a lexical scanner.
5400
5401In simple programs, @code{yylex} is often defined at the end of the Bison
5402grammar file. If @code{yylex} is defined in a separate source file, you
5403need to arrange for the token-type macro definitions to be available there.
5404To do this, use the @samp{-d} option when you run Bison, so that it will
5405write these macro definitions into a separate header file
5406@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5407that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5408
5409@menu
5410* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5411* Token Values:: How @code{yylex} must return the semantic value
5412 of the token it has read.
95923bd6 5413* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5414 (line number, etc.) of the token, if the
5415 actions want that.
5416* Pure Calling:: How the calling convention differs
5417 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5418@end menu
5419
342b8b6e 5420@node Calling Convention
bfa74976
RS
5421@subsection Calling Convention for @code{yylex}
5422
72d2299c
PE
5423The value that @code{yylex} returns must be the positive numeric code
5424for the type of token it has just found; a zero or negative value
5425signifies end-of-input.
bfa74976
RS
5426
5427When a token is referred to in the grammar rules by a name, that name
5428in the parser file becomes a C macro whose definition is the proper
5429numeric code for that token type. So @code{yylex} can use the name
5430to indicate that type. @xref{Symbols}.
5431
5432When a token is referred to in the grammar rules by a character literal,
5433the numeric code for that character is also the code for the token type.
72d2299c
PE
5434So @code{yylex} can simply return that character code, possibly converted
5435to @code{unsigned char} to avoid sign-extension. The null character
5436must not be used this way, because its code is zero and that
bfa74976
RS
5437signifies end-of-input.
5438
5439Here is an example showing these things:
5440
5441@example
13863333
AD
5442int
5443yylex (void)
bfa74976
RS
5444@{
5445 @dots{}
72d2299c 5446 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5447 return 0;
5448 @dots{}
5449 if (c == '+' || c == '-')
72d2299c 5450 return c; /* Assume token type for `+' is '+'. */
bfa74976 5451 @dots{}
72d2299c 5452 return INT; /* Return the type of the token. */
bfa74976
RS
5453 @dots{}
5454@}
5455@end example
5456
5457@noindent
5458This interface has been designed so that the output from the @code{lex}
5459utility can be used without change as the definition of @code{yylex}.
5460
931c7513
RS
5461If the grammar uses literal string tokens, there are two ways that
5462@code{yylex} can determine the token type codes for them:
5463
5464@itemize @bullet
5465@item
5466If the grammar defines symbolic token names as aliases for the
5467literal string tokens, @code{yylex} can use these symbolic names like
5468all others. In this case, the use of the literal string tokens in
5469the grammar file has no effect on @code{yylex}.
5470
5471@item
9ecbd125 5472@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5473table. The index of the token in the table is the token type's code.
9ecbd125 5474The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5475double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5476token's characters are escaped as necessary to be suitable as input
5477to Bison.
931c7513 5478
9e0876fb
PE
5479Here's code for looking up a multicharacter token in @code{yytname},
5480assuming that the characters of the token are stored in
5481@code{token_buffer}, and assuming that the token does not contain any
5482characters like @samp{"} that require escaping.
931c7513
RS
5483
5484@smallexample
5485for (i = 0; i < YYNTOKENS; i++)
5486 @{
5487 if (yytname[i] != 0
5488 && yytname[i][0] == '"'
68449b3a
PE
5489 && ! strncmp (yytname[i] + 1, token_buffer,
5490 strlen (token_buffer))
931c7513
RS
5491 && yytname[i][strlen (token_buffer) + 1] == '"'
5492 && yytname[i][strlen (token_buffer) + 2] == 0)
5493 break;
5494 @}
5495@end smallexample
5496
5497The @code{yytname} table is generated only if you use the
8c9a50be 5498@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5499@end itemize
5500
342b8b6e 5501@node Token Values
bfa74976
RS
5502@subsection Semantic Values of Tokens
5503
5504@vindex yylval
9d9b8b70 5505In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5506be stored into the global variable @code{yylval}. When you are using
5507just one data type for semantic values, @code{yylval} has that type.
5508Thus, if the type is @code{int} (the default), you might write this in
5509@code{yylex}:
5510
5511@example
5512@group
5513 @dots{}
72d2299c
PE
5514 yylval = value; /* Put value onto Bison stack. */
5515 return INT; /* Return the type of the token. */
bfa74976
RS
5516 @dots{}
5517@end group
5518@end example
5519
5520When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5521made from the @code{%union} declaration (@pxref{Union Decl, ,The
5522Collection of Value Types}). So when you store a token's value, you
5523must use the proper member of the union. If the @code{%union}
5524declaration looks like this:
bfa74976
RS
5525
5526@example
5527@group
5528%union @{
5529 int intval;
5530 double val;
5531 symrec *tptr;
5532@}
5533@end group
5534@end example
5535
5536@noindent
5537then the code in @code{yylex} might look like this:
5538
5539@example
5540@group
5541 @dots{}
72d2299c
PE
5542 yylval.intval = value; /* Put value onto Bison stack. */
5543 return INT; /* Return the type of the token. */
bfa74976
RS
5544 @dots{}
5545@end group
5546@end example
5547
95923bd6
AD
5548@node Token Locations
5549@subsection Textual Locations of Tokens
bfa74976
RS
5550
5551@vindex yylloc
847bf1f5 5552If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5553Tracking Locations}) in actions to keep track of the textual locations
5554of tokens and groupings, then you must provide this information in
5555@code{yylex}. The function @code{yyparse} expects to find the textual
5556location of a token just parsed in the global variable @code{yylloc}.
5557So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5558
5559By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5560initialize the members that are going to be used by the actions. The
5561four members are called @code{first_line}, @code{first_column},
5562@code{last_line} and @code{last_column}. Note that the use of this
5563feature makes the parser noticeably slower.
bfa74976
RS
5564
5565@tindex YYLTYPE
5566The data type of @code{yylloc} has the name @code{YYLTYPE}.
5567
342b8b6e 5568@node Pure Calling
c656404a 5569@subsection Calling Conventions for Pure Parsers
bfa74976 5570
d9df47b6 5571When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5572pure, reentrant parser, the global communication variables @code{yylval}
5573and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5574Parser}.) In such parsers the two global variables are replaced by
5575pointers passed as arguments to @code{yylex}. You must declare them as
5576shown here, and pass the information back by storing it through those
5577pointers.
bfa74976
RS
5578
5579@example
13863333
AD
5580int
5581yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5582@{
5583 @dots{}
5584 *lvalp = value; /* Put value onto Bison stack. */
5585 return INT; /* Return the type of the token. */
5586 @dots{}
5587@}
5588@end example
5589
5590If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5591textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5592this case, omit the second argument; @code{yylex} will be called with
5593only one argument.
5594
e425e872 5595
2a8d363a
AD
5596If you wish to pass the additional parameter data to @code{yylex}, use
5597@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5598Function}).
e425e872 5599
feeb0eda 5600@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5601@findex %lex-param
287c78f6
PE
5602Declare that the braced-code @var{argument-declaration} is an
5603additional @code{yylex} argument declaration.
2a8d363a 5604@end deffn
e425e872 5605
2a8d363a 5606For instance:
e425e872
RS
5607
5608@example
feeb0eda
PE
5609%parse-param @{int *nastiness@}
5610%lex-param @{int *nastiness@}
5611%parse-param @{int *randomness@}
e425e872
RS
5612@end example
5613
5614@noindent
2a8d363a 5615results in the following signature:
e425e872
RS
5616
5617@example
2a8d363a
AD
5618int yylex (int *nastiness);
5619int yyparse (int *nastiness, int *randomness);
e425e872
RS
5620@end example
5621
d9df47b6 5622If @code{%define api.pure} is added:
c656404a
RS
5623
5624@example
2a8d363a
AD
5625int yylex (YYSTYPE *lvalp, int *nastiness);
5626int yyparse (int *nastiness, int *randomness);
c656404a
RS
5627@end example
5628
2a8d363a 5629@noindent
d9df47b6 5630and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5631
2a8d363a
AD
5632@example
5633int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5634int yyparse (int *nastiness, int *randomness);
5635@end example
931c7513 5636
342b8b6e 5637@node Error Reporting
bfa74976
RS
5638@section The Error Reporting Function @code{yyerror}
5639@cindex error reporting function
5640@findex yyerror
5641@cindex parse error
5642@cindex syntax error
5643
6e649e65 5644The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5645whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5646action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5647macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5648in Actions}).
bfa74976
RS
5649
5650The Bison parser expects to report the error by calling an error
5651reporting function named @code{yyerror}, which you must supply. It is
5652called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5653receives one argument. For a syntax error, the string is normally
5654@w{@code{"syntax error"}}.
bfa74976 5655
2a8d363a
AD
5656@findex %error-verbose
5657If you invoke the directive @code{%error-verbose} in the Bison
5658declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5659Section}), then Bison provides a more verbose and specific error message
6e649e65 5660string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5661
1a059451
PE
5662The parser can detect one other kind of error: memory exhaustion. This
5663can happen when the input contains constructions that are very deeply
bfa74976 5664nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5665parser normally extends its stack automatically up to a very large limit. But
5666if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5667fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5668
5669In some cases diagnostics like @w{@code{"syntax error"}} are
5670translated automatically from English to some other language before
5671they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5672
5673The following definition suffices in simple programs:
5674
5675@example
5676@group
13863333 5677void
38a92d50 5678yyerror (char const *s)
bfa74976
RS
5679@{
5680@end group
5681@group
5682 fprintf (stderr, "%s\n", s);
5683@}
5684@end group
5685@end example
5686
5687After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5688error recovery if you have written suitable error recovery grammar rules
5689(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5690immediately return 1.
5691
93724f13 5692Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5693an access to the current location.
5694This is indeed the case for the @acronym{GLR}
2a8d363a 5695parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5696@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5697@code{yyerror} are:
5698
5699@example
38a92d50
PE
5700void yyerror (char const *msg); /* Yacc parsers. */
5701void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5702@end example
5703
feeb0eda 5704If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5705
5706@example
b317297e
PE
5707void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5708void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5709@end example
5710
fa7e68c3 5711Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5712convention for absolutely pure parsers, i.e., when the calling
5713convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5714@code{%define api.pure} are pure.
5715I.e.:
2a8d363a
AD
5716
5717@example
5718/* Location tracking. */
5719%locations
5720/* Pure yylex. */
d9df47b6 5721%define api.pure
feeb0eda 5722%lex-param @{int *nastiness@}
2a8d363a 5723/* Pure yyparse. */
feeb0eda
PE
5724%parse-param @{int *nastiness@}
5725%parse-param @{int *randomness@}
2a8d363a
AD
5726@end example
5727
5728@noindent
5729results in the following signatures for all the parser kinds:
5730
5731@example
5732int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5733int yyparse (int *nastiness, int *randomness);
93724f13
AD
5734void yyerror (YYLTYPE *locp,
5735 int *nastiness, int *randomness,
38a92d50 5736 char const *msg);
2a8d363a
AD
5737@end example
5738
1c0c3e95 5739@noindent
38a92d50
PE
5740The prototypes are only indications of how the code produced by Bison
5741uses @code{yyerror}. Bison-generated code always ignores the returned
5742value, so @code{yyerror} can return any type, including @code{void}.
5743Also, @code{yyerror} can be a variadic function; that is why the
5744message is always passed last.
5745
5746Traditionally @code{yyerror} returns an @code{int} that is always
5747ignored, but this is purely for historical reasons, and @code{void} is
5748preferable since it more accurately describes the return type for
5749@code{yyerror}.
93724f13 5750
bfa74976
RS
5751@vindex yynerrs
5752The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5753reported so far. Normally this variable is global; but if you
704a47c4
AD
5754request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5755then it is a local variable which only the actions can access.
bfa74976 5756
342b8b6e 5757@node Action Features
bfa74976
RS
5758@section Special Features for Use in Actions
5759@cindex summary, action features
5760@cindex action features summary
5761
5762Here is a table of Bison constructs, variables and macros that
5763are useful in actions.
5764
18b519c0 5765@deffn {Variable} $$
bfa74976
RS
5766Acts like a variable that contains the semantic value for the
5767grouping made by the current rule. @xref{Actions}.
18b519c0 5768@end deffn
bfa74976 5769
18b519c0 5770@deffn {Variable} $@var{n}
bfa74976
RS
5771Acts like a variable that contains the semantic value for the
5772@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5773@end deffn
bfa74976 5774
18b519c0 5775@deffn {Variable} $<@var{typealt}>$
bfa74976 5776Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5777specified by the @code{%union} declaration. @xref{Action Types, ,Data
5778Types of Values in Actions}.
18b519c0 5779@end deffn
bfa74976 5780
18b519c0 5781@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5782Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5783union specified by the @code{%union} declaration.
e0c471a9 5784@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5785@end deffn
bfa74976 5786
18b519c0 5787@deffn {Macro} YYABORT;
bfa74976
RS
5788Return immediately from @code{yyparse}, indicating failure.
5789@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5790@end deffn
bfa74976 5791
18b519c0 5792@deffn {Macro} YYACCEPT;
bfa74976
RS
5793Return immediately from @code{yyparse}, indicating success.
5794@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5795@end deffn
bfa74976 5796
18b519c0 5797@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5798@findex YYBACKUP
5799Unshift a token. This macro is allowed only for rules that reduce
742e4900 5800a single value, and only when there is no lookahead token.
c827f760 5801It is also disallowed in @acronym{GLR} parsers.
742e4900 5802It installs a lookahead token with token type @var{token} and
bfa74976
RS
5803semantic value @var{value}; then it discards the value that was
5804going to be reduced by this rule.
5805
5806If the macro is used when it is not valid, such as when there is
742e4900 5807a lookahead token already, then it reports a syntax error with
bfa74976
RS
5808a message @samp{cannot back up} and performs ordinary error
5809recovery.
5810
5811In either case, the rest of the action is not executed.
18b519c0 5812@end deffn
bfa74976 5813
18b519c0 5814@deffn {Macro} YYEMPTY
bfa74976 5815@vindex YYEMPTY
742e4900 5816Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5817@end deffn
bfa74976 5818
32c29292
JD
5819@deffn {Macro} YYEOF
5820@vindex YYEOF
742e4900 5821Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5822stream.
5823@end deffn
5824
18b519c0 5825@deffn {Macro} YYERROR;
bfa74976
RS
5826@findex YYERROR
5827Cause an immediate syntax error. This statement initiates error
5828recovery just as if the parser itself had detected an error; however, it
5829does not call @code{yyerror}, and does not print any message. If you
5830want to print an error message, call @code{yyerror} explicitly before
5831the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5832@end deffn
bfa74976 5833
18b519c0 5834@deffn {Macro} YYRECOVERING
02103984
PE
5835@findex YYRECOVERING
5836The expression @code{YYRECOVERING ()} yields 1 when the parser
5837is recovering from a syntax error, and 0 otherwise.
bfa74976 5838@xref{Error Recovery}.
18b519c0 5839@end deffn
bfa74976 5840
18b519c0 5841@deffn {Variable} yychar
742e4900
JD
5842Variable containing either the lookahead token, or @code{YYEOF} when the
5843lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5844has been performed so the next token is not yet known.
5845Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5846Actions}).
742e4900 5847@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5848@end deffn
bfa74976 5849
18b519c0 5850@deffn {Macro} yyclearin;
742e4900 5851Discard the current lookahead token. This is useful primarily in
32c29292
JD
5852error rules.
5853Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5854Semantic Actions}).
5855@xref{Error Recovery}.
18b519c0 5856@end deffn
bfa74976 5857
18b519c0 5858@deffn {Macro} yyerrok;
bfa74976 5859Resume generating error messages immediately for subsequent syntax
13863333 5860errors. This is useful primarily in error rules.
bfa74976 5861@xref{Error Recovery}.
18b519c0 5862@end deffn
bfa74976 5863
32c29292 5864@deffn {Variable} yylloc
742e4900 5865Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5866to @code{YYEMPTY} or @code{YYEOF}.
5867Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5868Actions}).
5869@xref{Actions and Locations, ,Actions and Locations}.
5870@end deffn
5871
5872@deffn {Variable} yylval
742e4900 5873Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5874not set to @code{YYEMPTY} or @code{YYEOF}.
5875Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5876Actions}).
5877@xref{Actions, ,Actions}.
5878@end deffn
5879
18b519c0 5880@deffn {Value} @@$
847bf1f5 5881@findex @@$
95923bd6 5882Acts like a structure variable containing information on the textual location
847bf1f5
AD
5883of the grouping made by the current rule. @xref{Locations, ,
5884Tracking Locations}.
bfa74976 5885
847bf1f5
AD
5886@c Check if those paragraphs are still useful or not.
5887
5888@c @example
5889@c struct @{
5890@c int first_line, last_line;
5891@c int first_column, last_column;
5892@c @};
5893@c @end example
5894
5895@c Thus, to get the starting line number of the third component, you would
5896@c use @samp{@@3.first_line}.
bfa74976 5897
847bf1f5
AD
5898@c In order for the members of this structure to contain valid information,
5899@c you must make @code{yylex} supply this information about each token.
5900@c If you need only certain members, then @code{yylex} need only fill in
5901@c those members.
bfa74976 5902
847bf1f5 5903@c The use of this feature makes the parser noticeably slower.
18b519c0 5904@end deffn
847bf1f5 5905
18b519c0 5906@deffn {Value} @@@var{n}
847bf1f5 5907@findex @@@var{n}
95923bd6 5908Acts like a structure variable containing information on the textual location
847bf1f5
AD
5909of the @var{n}th component of the current rule. @xref{Locations, ,
5910Tracking Locations}.
18b519c0 5911@end deffn
bfa74976 5912
f7ab6a50
PE
5913@node Internationalization
5914@section Parser Internationalization
5915@cindex internationalization
5916@cindex i18n
5917@cindex NLS
5918@cindex gettext
5919@cindex bison-po
5920
5921A Bison-generated parser can print diagnostics, including error and
5922tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5923also supports outputting diagnostics in the user's native language. To
5924make this work, the user should set the usual environment variables.
5925@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5926For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5927set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5928encoding. The exact set of available locales depends on the user's
5929installation.
5930
5931The maintainer of a package that uses a Bison-generated parser enables
5932the internationalization of the parser's output through the following
5933steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5934@acronym{GNU} Automake.
5935
5936@enumerate
5937@item
30757c8c 5938@cindex bison-i18n.m4
f7ab6a50
PE
5939Into the directory containing the @acronym{GNU} Autoconf macros used
5940by the package---often called @file{m4}---copy the
5941@file{bison-i18n.m4} file installed by Bison under
5942@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5943For example:
5944
5945@example
5946cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5947@end example
5948
5949@item
30757c8c
PE
5950@findex BISON_I18N
5951@vindex BISON_LOCALEDIR
5952@vindex YYENABLE_NLS
f7ab6a50
PE
5953In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5954invocation, add an invocation of @code{BISON_I18N}. This macro is
5955defined in the file @file{bison-i18n.m4} that you copied earlier. It
5956causes @samp{configure} to find the value of the
30757c8c
PE
5957@code{BISON_LOCALEDIR} variable, and it defines the source-language
5958symbol @code{YYENABLE_NLS} to enable translations in the
5959Bison-generated parser.
f7ab6a50
PE
5960
5961@item
5962In the @code{main} function of your program, designate the directory
5963containing Bison's runtime message catalog, through a call to
5964@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5965For example:
5966
5967@example
5968bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5969@end example
5970
5971Typically this appears after any other call @code{bindtextdomain
5972(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5973@samp{BISON_LOCALEDIR} to be defined as a string through the
5974@file{Makefile}.
5975
5976@item
5977In the @file{Makefile.am} that controls the compilation of the @code{main}
5978function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5979either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5980
5981@example
5982DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5983@end example
5984
5985or:
5986
5987@example
5988AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5989@end example
5990
5991@item
5992Finally, invoke the command @command{autoreconf} to generate the build
5993infrastructure.
5994@end enumerate
5995
bfa74976 5996
342b8b6e 5997@node Algorithm
13863333
AD
5998@chapter The Bison Parser Algorithm
5999@cindex Bison parser algorithm
bfa74976
RS
6000@cindex algorithm of parser
6001@cindex shifting
6002@cindex reduction
6003@cindex parser stack
6004@cindex stack, parser
6005
6006As Bison reads tokens, it pushes them onto a stack along with their
6007semantic values. The stack is called the @dfn{parser stack}. Pushing a
6008token is traditionally called @dfn{shifting}.
6009
6010For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6011@samp{3} to come. The stack will have four elements, one for each token
6012that was shifted.
6013
6014But the stack does not always have an element for each token read. When
6015the last @var{n} tokens and groupings shifted match the components of a
6016grammar rule, they can be combined according to that rule. This is called
6017@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6018single grouping whose symbol is the result (left hand side) of that rule.
6019Running the rule's action is part of the process of reduction, because this
6020is what computes the semantic value of the resulting grouping.
6021
6022For example, if the infix calculator's parser stack contains this:
6023
6024@example
60251 + 5 * 3
6026@end example
6027
6028@noindent
6029and the next input token is a newline character, then the last three
6030elements can be reduced to 15 via the rule:
6031
6032@example
6033expr: expr '*' expr;
6034@end example
6035
6036@noindent
6037Then the stack contains just these three elements:
6038
6039@example
60401 + 15
6041@end example
6042
6043@noindent
6044At this point, another reduction can be made, resulting in the single value
604516. Then the newline token can be shifted.
6046
6047The parser tries, by shifts and reductions, to reduce the entire input down
6048to a single grouping whose symbol is the grammar's start-symbol
6049(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6050
6051This kind of parser is known in the literature as a bottom-up parser.
6052
6053@menu
742e4900 6054* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6055* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6056* Precedence:: Operator precedence works by resolving conflicts.
6057* Contextual Precedence:: When an operator's precedence depends on context.
6058* Parser States:: The parser is a finite-state-machine with stack.
6059* Reduce/Reduce:: When two rules are applicable in the same situation.
6060* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6061* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6062* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6063@end menu
6064
742e4900
JD
6065@node Lookahead
6066@section Lookahead Tokens
6067@cindex lookahead token
bfa74976
RS
6068
6069The Bison parser does @emph{not} always reduce immediately as soon as the
6070last @var{n} tokens and groupings match a rule. This is because such a
6071simple strategy is inadequate to handle most languages. Instead, when a
6072reduction is possible, the parser sometimes ``looks ahead'' at the next
6073token in order to decide what to do.
6074
6075When a token is read, it is not immediately shifted; first it becomes the
742e4900 6076@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6077perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6078the lookahead token remains off to the side. When no more reductions
6079should take place, the lookahead token is shifted onto the stack. This
bfa74976 6080does not mean that all possible reductions have been done; depending on the
742e4900 6081token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6082application.
6083
742e4900 6084Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6085expressions which contain binary addition operators and postfix unary
6086factorial operators (@samp{!}), and allow parentheses for grouping.
6087
6088@example
6089@group
6090expr: term '+' expr
6091 | term
6092 ;
6093@end group
6094
6095@group
6096term: '(' expr ')'
6097 | term '!'
6098 | NUMBER
6099 ;
6100@end group
6101@end example
6102
6103Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6104should be done? If the following token is @samp{)}, then the first three
6105tokens must be reduced to form an @code{expr}. This is the only valid
6106course, because shifting the @samp{)} would produce a sequence of symbols
6107@w{@code{term ')'}}, and no rule allows this.
6108
6109If the following token is @samp{!}, then it must be shifted immediately so
6110that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6111parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6112@code{expr}. It would then be impossible to shift the @samp{!} because
6113doing so would produce on the stack the sequence of symbols @code{expr
6114'!'}. No rule allows that sequence.
6115
6116@vindex yychar
32c29292
JD
6117@vindex yylval
6118@vindex yylloc
742e4900 6119The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6120Its semantic value and location, if any, are stored in the variables
6121@code{yylval} and @code{yylloc}.
bfa74976
RS
6122@xref{Action Features, ,Special Features for Use in Actions}.
6123
342b8b6e 6124@node Shift/Reduce
bfa74976
RS
6125@section Shift/Reduce Conflicts
6126@cindex conflicts
6127@cindex shift/reduce conflicts
6128@cindex dangling @code{else}
6129@cindex @code{else}, dangling
6130
6131Suppose we are parsing a language which has if-then and if-then-else
6132statements, with a pair of rules like this:
6133
6134@example
6135@group
6136if_stmt:
6137 IF expr THEN stmt
6138 | IF expr THEN stmt ELSE stmt
6139 ;
6140@end group
6141@end example
6142
6143@noindent
6144Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6145terminal symbols for specific keyword tokens.
6146
742e4900 6147When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6148contents of the stack (assuming the input is valid) are just right for
6149reduction by the first rule. But it is also legitimate to shift the
6150@code{ELSE}, because that would lead to eventual reduction by the second
6151rule.
6152
6153This situation, where either a shift or a reduction would be valid, is
6154called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6155these conflicts by choosing to shift, unless otherwise directed by
6156operator precedence declarations. To see the reason for this, let's
6157contrast it with the other alternative.
6158
6159Since the parser prefers to shift the @code{ELSE}, the result is to attach
6160the else-clause to the innermost if-statement, making these two inputs
6161equivalent:
6162
6163@example
6164if x then if y then win (); else lose;
6165
6166if x then do; if y then win (); else lose; end;
6167@end example
6168
6169But if the parser chose to reduce when possible rather than shift, the
6170result would be to attach the else-clause to the outermost if-statement,
6171making these two inputs equivalent:
6172
6173@example
6174if x then if y then win (); else lose;
6175
6176if x then do; if y then win (); end; else lose;
6177@end example
6178
6179The conflict exists because the grammar as written is ambiguous: either
6180parsing of the simple nested if-statement is legitimate. The established
6181convention is that these ambiguities are resolved by attaching the
6182else-clause to the innermost if-statement; this is what Bison accomplishes
6183by choosing to shift rather than reduce. (It would ideally be cleaner to
6184write an unambiguous grammar, but that is very hard to do in this case.)
6185This particular ambiguity was first encountered in the specifications of
6186Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6187
6188To avoid warnings from Bison about predictable, legitimate shift/reduce
6189conflicts, use the @code{%expect @var{n}} declaration. There will be no
6190warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6191@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6192
6193The definition of @code{if_stmt} above is solely to blame for the
6194conflict, but the conflict does not actually appear without additional
6195rules. Here is a complete Bison input file that actually manifests the
6196conflict:
6197
6198@example
6199@group
6200%token IF THEN ELSE variable
6201%%
6202@end group
6203@group
6204stmt: expr
6205 | if_stmt
6206 ;
6207@end group
6208
6209@group
6210if_stmt:
6211 IF expr THEN stmt
6212 | IF expr THEN stmt ELSE stmt
6213 ;
6214@end group
6215
6216expr: variable
6217 ;
6218@end example
6219
342b8b6e 6220@node Precedence
bfa74976
RS
6221@section Operator Precedence
6222@cindex operator precedence
6223@cindex precedence of operators
6224
6225Another situation where shift/reduce conflicts appear is in arithmetic
6226expressions. Here shifting is not always the preferred resolution; the
6227Bison declarations for operator precedence allow you to specify when to
6228shift and when to reduce.
6229
6230@menu
6231* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6232* Using Precedence:: How to specify precedence and associativity.
6233* Precedence Only:: How to specify precedence only.
bfa74976
RS
6234* Precedence Examples:: How these features are used in the previous example.
6235* How Precedence:: How they work.
6236@end menu
6237
342b8b6e 6238@node Why Precedence
bfa74976
RS
6239@subsection When Precedence is Needed
6240
6241Consider the following ambiguous grammar fragment (ambiguous because the
6242input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6243
6244@example
6245@group
6246expr: expr '-' expr
6247 | expr '*' expr
6248 | expr '<' expr
6249 | '(' expr ')'
6250 @dots{}
6251 ;
6252@end group
6253@end example
6254
6255@noindent
6256Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6257should it reduce them via the rule for the subtraction operator? It
6258depends on the next token. Of course, if the next token is @samp{)}, we
6259must reduce; shifting is invalid because no single rule can reduce the
6260token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6261the next token is @samp{*} or @samp{<}, we have a choice: either
6262shifting or reduction would allow the parse to complete, but with
6263different results.
6264
6265To decide which one Bison should do, we must consider the results. If
6266the next operator token @var{op} is shifted, then it must be reduced
6267first in order to permit another opportunity to reduce the difference.
6268The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6269hand, if the subtraction is reduced before shifting @var{op}, the result
6270is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6271reduce should depend on the relative precedence of the operators
6272@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6273@samp{<}.
bfa74976
RS
6274
6275@cindex associativity
6276What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6277@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6278operators we prefer the former, which is called @dfn{left association}.
6279The latter alternative, @dfn{right association}, is desirable for
6280assignment operators. The choice of left or right association is a
6281matter of whether the parser chooses to shift or reduce when the stack
742e4900 6282contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6283makes right-associativity.
bfa74976 6284
342b8b6e 6285@node Using Precedence
bfa74976
RS
6286@subsection Specifying Operator Precedence
6287@findex %left
bfa74976 6288@findex %nonassoc
d78f0ac9
AD
6289@findex %precedence
6290@findex %right
bfa74976
RS
6291
6292Bison allows you to specify these choices with the operator precedence
6293declarations @code{%left} and @code{%right}. Each such declaration
6294contains a list of tokens, which are operators whose precedence and
6295associativity is being declared. The @code{%left} declaration makes all
6296those operators left-associative and the @code{%right} declaration makes
6297them right-associative. A third alternative is @code{%nonassoc}, which
6298declares that it is a syntax error to find the same operator twice ``in a
6299row''.
d78f0ac9
AD
6300The last alternative, @code{%precedence}, allows to define only
6301precedence and no associativity at all. As a result, any
6302associativity-related conflict that remains will be reported as an
6303compile-time error. The directive @code{%nonassoc} creates run-time
6304error: using the operator in a associative way is a syntax error. The
6305directive @code{%precedence} creates compile-time errors: an operator
6306@emph{can} be involved in an associativity-related conflict, contrary to
6307what expected the grammar author.
bfa74976
RS
6308
6309The relative precedence of different operators is controlled by the
d78f0ac9
AD
6310order in which they are declared. The first precedence/associativity
6311declaration in the file declares the operators whose
bfa74976
RS
6312precedence is lowest, the next such declaration declares the operators
6313whose precedence is a little higher, and so on.
6314
d78f0ac9
AD
6315@node Precedence Only
6316@subsection Specifying Precedence Only
6317@findex %precedence
6318
6319Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6320@code{%nonassoc}, which all defines precedence and associativity, little
6321attention is paid to the fact that precedence cannot be defined without
6322defining associativity. Yet, sometimes, when trying to solve a
6323conflict, precedence suffices. In such a case, using @code{%left},
6324@code{%right}, or @code{%nonassoc} might hide future (associativity
6325related) conflicts that would remain hidden.
6326
6327The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6328Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6329in the following situation, where the period denotes the current parsing
6330state:
6331
6332@example
6333if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6334@end example
6335
6336The conflict involves the reduction of the rule @samp{IF expr THEN
6337stmt}, which precedence is by default that of its last token
6338(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6339disambiguation (attach the @code{else} to the closest @code{if}),
6340shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6341higher than that of @code{THEN}. But neither is expected to be involved
6342in an associativity related conflict, which can be specified as follows.
6343
6344@example
6345%precedence THEN
6346%precedence ELSE
6347@end example
6348
6349The unary-minus is another typical example where associativity is
6350usually over-specified, see @ref{Infix Calc, , Infix Notation
6351Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6352used to declare the precedence of @code{NEG}, which is more than needed
6353since it also defines its associativity. While this is harmless in the
6354traditional example, who knows how @code{NEG} might be used in future
6355evolutions of the grammar@dots{}
6356
342b8b6e 6357@node Precedence Examples
bfa74976
RS
6358@subsection Precedence Examples
6359
6360In our example, we would want the following declarations:
6361
6362@example
6363%left '<'
6364%left '-'
6365%left '*'
6366@end example
6367
6368In a more complete example, which supports other operators as well, we
6369would declare them in groups of equal precedence. For example, @code{'+'} is
6370declared with @code{'-'}:
6371
6372@example
6373%left '<' '>' '=' NE LE GE
6374%left '+' '-'
6375%left '*' '/'
6376@end example
6377
6378@noindent
6379(Here @code{NE} and so on stand for the operators for ``not equal''
6380and so on. We assume that these tokens are more than one character long
6381and therefore are represented by names, not character literals.)
6382
342b8b6e 6383@node How Precedence
bfa74976
RS
6384@subsection How Precedence Works
6385
6386The first effect of the precedence declarations is to assign precedence
6387levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6388precedence levels to certain rules: each rule gets its precedence from
6389the last terminal symbol mentioned in the components. (You can also
6390specify explicitly the precedence of a rule. @xref{Contextual
6391Precedence, ,Context-Dependent Precedence}.)
6392
6393Finally, the resolution of conflicts works by comparing the precedence
742e4900 6394of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6395token's precedence is higher, the choice is to shift. If the rule's
6396precedence is higher, the choice is to reduce. If they have equal
6397precedence, the choice is made based on the associativity of that
6398precedence level. The verbose output file made by @samp{-v}
6399(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6400resolved.
bfa74976
RS
6401
6402Not all rules and not all tokens have precedence. If either the rule or
742e4900 6403the lookahead token has no precedence, then the default is to shift.
bfa74976 6404
342b8b6e 6405@node Contextual Precedence
bfa74976
RS
6406@section Context-Dependent Precedence
6407@cindex context-dependent precedence
6408@cindex unary operator precedence
6409@cindex precedence, context-dependent
6410@cindex precedence, unary operator
6411@findex %prec
6412
6413Often the precedence of an operator depends on the context. This sounds
6414outlandish at first, but it is really very common. For example, a minus
6415sign typically has a very high precedence as a unary operator, and a
6416somewhat lower precedence (lower than multiplication) as a binary operator.
6417
d78f0ac9
AD
6418The Bison precedence declarations
6419can only be used once for a given token; so a token has
bfa74976
RS
6420only one precedence declared in this way. For context-dependent
6421precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6422modifier for rules.
bfa74976
RS
6423
6424The @code{%prec} modifier declares the precedence of a particular rule by
6425specifying a terminal symbol whose precedence should be used for that rule.
6426It's not necessary for that symbol to appear otherwise in the rule. The
6427modifier's syntax is:
6428
6429@example
6430%prec @var{terminal-symbol}
6431@end example
6432
6433@noindent
6434and it is written after the components of the rule. Its effect is to
6435assign the rule the precedence of @var{terminal-symbol}, overriding
6436the precedence that would be deduced for it in the ordinary way. The
6437altered rule precedence then affects how conflicts involving that rule
6438are resolved (@pxref{Precedence, ,Operator Precedence}).
6439
6440Here is how @code{%prec} solves the problem of unary minus. First, declare
6441a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6442are no tokens of this type, but the symbol serves to stand for its
6443precedence:
6444
6445@example
6446@dots{}
6447%left '+' '-'
6448%left '*'
6449%left UMINUS
6450@end example
6451
6452Now the precedence of @code{UMINUS} can be used in specific rules:
6453
6454@example
6455@group
6456exp: @dots{}
6457 | exp '-' exp
6458 @dots{}
6459 | '-' exp %prec UMINUS
6460@end group
6461@end example
6462
91d2c560 6463@ifset defaultprec
39a06c25
PE
6464If you forget to append @code{%prec UMINUS} to the rule for unary
6465minus, Bison silently assumes that minus has its usual precedence.
6466This kind of problem can be tricky to debug, since one typically
6467discovers the mistake only by testing the code.
6468
22fccf95 6469The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6470this kind of problem systematically. It causes rules that lack a
6471@code{%prec} modifier to have no precedence, even if the last terminal
6472symbol mentioned in their components has a declared precedence.
6473
22fccf95 6474If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6475for all rules that participate in precedence conflict resolution.
6476Then you will see any shift/reduce conflict until you tell Bison how
6477to resolve it, either by changing your grammar or by adding an
6478explicit precedence. This will probably add declarations to the
6479grammar, but it helps to protect against incorrect rule precedences.
6480
22fccf95
PE
6481The effect of @code{%no-default-prec;} can be reversed by giving
6482@code{%default-prec;}, which is the default.
91d2c560 6483@end ifset
39a06c25 6484
342b8b6e 6485@node Parser States
bfa74976
RS
6486@section Parser States
6487@cindex finite-state machine
6488@cindex parser state
6489@cindex state (of parser)
6490
6491The function @code{yyparse} is implemented using a finite-state machine.
6492The values pushed on the parser stack are not simply token type codes; they
6493represent the entire sequence of terminal and nonterminal symbols at or
6494near the top of the stack. The current state collects all the information
6495about previous input which is relevant to deciding what to do next.
6496
742e4900
JD
6497Each time a lookahead token is read, the current parser state together
6498with the type of lookahead token are looked up in a table. This table
6499entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6500specifies the new parser state, which is pushed onto the top of the
6501parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6502This means that a certain number of tokens or groupings are taken off
6503the top of the stack, and replaced by one grouping. In other words,
6504that number of states are popped from the stack, and one new state is
6505pushed.
6506
742e4900 6507There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6508is erroneous in the current state. This causes error processing to begin
6509(@pxref{Error Recovery}).
6510
342b8b6e 6511@node Reduce/Reduce
bfa74976
RS
6512@section Reduce/Reduce Conflicts
6513@cindex reduce/reduce conflict
6514@cindex conflicts, reduce/reduce
6515
6516A reduce/reduce conflict occurs if there are two or more rules that apply
6517to the same sequence of input. This usually indicates a serious error
6518in the grammar.
6519
6520For example, here is an erroneous attempt to define a sequence
6521of zero or more @code{word} groupings.
6522
6523@example
6524sequence: /* empty */
6525 @{ printf ("empty sequence\n"); @}
6526 | maybeword
6527 | sequence word
6528 @{ printf ("added word %s\n", $2); @}
6529 ;
6530
6531maybeword: /* empty */
6532 @{ printf ("empty maybeword\n"); @}
6533 | word
6534 @{ printf ("single word %s\n", $1); @}
6535 ;
6536@end example
6537
6538@noindent
6539The error is an ambiguity: there is more than one way to parse a single
6540@code{word} into a @code{sequence}. It could be reduced to a
6541@code{maybeword} and then into a @code{sequence} via the second rule.
6542Alternatively, nothing-at-all could be reduced into a @code{sequence}
6543via the first rule, and this could be combined with the @code{word}
6544using the third rule for @code{sequence}.
6545
6546There is also more than one way to reduce nothing-at-all into a
6547@code{sequence}. This can be done directly via the first rule,
6548or indirectly via @code{maybeword} and then the second rule.
6549
6550You might think that this is a distinction without a difference, because it
6551does not change whether any particular input is valid or not. But it does
6552affect which actions are run. One parsing order runs the second rule's
6553action; the other runs the first rule's action and the third rule's action.
6554In this example, the output of the program changes.
6555
6556Bison resolves a reduce/reduce conflict by choosing to use the rule that
6557appears first in the grammar, but it is very risky to rely on this. Every
6558reduce/reduce conflict must be studied and usually eliminated. Here is the
6559proper way to define @code{sequence}:
6560
6561@example
6562sequence: /* empty */
6563 @{ printf ("empty sequence\n"); @}
6564 | sequence word
6565 @{ printf ("added word %s\n", $2); @}
6566 ;
6567@end example
6568
6569Here is another common error that yields a reduce/reduce conflict:
6570
6571@example
6572sequence: /* empty */
6573 | sequence words
6574 | sequence redirects
6575 ;
6576
6577words: /* empty */
6578 | words word
6579 ;
6580
6581redirects:/* empty */
6582 | redirects redirect
6583 ;
6584@end example
6585
6586@noindent
6587The intention here is to define a sequence which can contain either
6588@code{word} or @code{redirect} groupings. The individual definitions of
6589@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6590three together make a subtle ambiguity: even an empty input can be parsed
6591in infinitely many ways!
6592
6593Consider: nothing-at-all could be a @code{words}. Or it could be two
6594@code{words} in a row, or three, or any number. It could equally well be a
6595@code{redirects}, or two, or any number. Or it could be a @code{words}
6596followed by three @code{redirects} and another @code{words}. And so on.
6597
6598Here are two ways to correct these rules. First, to make it a single level
6599of sequence:
6600
6601@example
6602sequence: /* empty */
6603 | sequence word
6604 | sequence redirect
6605 ;
6606@end example
6607
6608Second, to prevent either a @code{words} or a @code{redirects}
6609from being empty:
6610
6611@example
6612sequence: /* empty */
6613 | sequence words
6614 | sequence redirects
6615 ;
6616
6617words: word
6618 | words word
6619 ;
6620
6621redirects:redirect
6622 | redirects redirect
6623 ;
6624@end example
6625
342b8b6e 6626@node Mystery Conflicts
bfa74976
RS
6627@section Mysterious Reduce/Reduce Conflicts
6628
6629Sometimes reduce/reduce conflicts can occur that don't look warranted.
6630Here is an example:
6631
6632@example
6633@group
6634%token ID
6635
6636%%
6637def: param_spec return_spec ','
6638 ;
6639param_spec:
6640 type
6641 | name_list ':' type
6642 ;
6643@end group
6644@group
6645return_spec:
6646 type
6647 | name ':' type
6648 ;
6649@end group
6650@group
6651type: ID
6652 ;
6653@end group
6654@group
6655name: ID
6656 ;
6657name_list:
6658 name
6659 | name ',' name_list
6660 ;
6661@end group
6662@end example
6663
6664It would seem that this grammar can be parsed with only a single token
742e4900 6665of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6666a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6667@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6668
c827f760
PE
6669@cindex @acronym{LR}(1)
6670@cindex @acronym{LALR}(1)
bfa74976 6671However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6672@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6673an @code{ID}
bfa74976
RS
6674at the beginning of a @code{param_spec} and likewise at the beginning of
6675a @code{return_spec}, are similar enough that Bison assumes they are the
6676same. They appear similar because the same set of rules would be
6677active---the rule for reducing to a @code{name} and that for reducing to
6678a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6679that the rules would require different lookahead tokens in the two
bfa74976
RS
6680contexts, so it makes a single parser state for them both. Combining
6681the two contexts causes a conflict later. In parser terminology, this
c827f760 6682occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6683
6684In general, it is better to fix deficiencies than to document them. But
6685this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6686generators that can handle @acronym{LR}(1) grammars are hard to write
6687and tend to
bfa74976
RS
6688produce parsers that are very large. In practice, Bison is more useful
6689as it is now.
6690
6691When the problem arises, you can often fix it by identifying the two
a220f555
MA
6692parser states that are being confused, and adding something to make them
6693look distinct. In the above example, adding one rule to
bfa74976
RS
6694@code{return_spec} as follows makes the problem go away:
6695
6696@example
6697@group
6698%token BOGUS
6699@dots{}
6700%%
6701@dots{}
6702return_spec:
6703 type
6704 | name ':' type
6705 /* This rule is never used. */
6706 | ID BOGUS
6707 ;
6708@end group
6709@end example
6710
6711This corrects the problem because it introduces the possibility of an
6712additional active rule in the context after the @code{ID} at the beginning of
6713@code{return_spec}. This rule is not active in the corresponding context
6714in a @code{param_spec}, so the two contexts receive distinct parser states.
6715As long as the token @code{BOGUS} is never generated by @code{yylex},
6716the added rule cannot alter the way actual input is parsed.
6717
6718In this particular example, there is another way to solve the problem:
6719rewrite the rule for @code{return_spec} to use @code{ID} directly
6720instead of via @code{name}. This also causes the two confusing
6721contexts to have different sets of active rules, because the one for
6722@code{return_spec} activates the altered rule for @code{return_spec}
6723rather than the one for @code{name}.
6724
6725@example
6726param_spec:
6727 type
6728 | name_list ':' type
6729 ;
6730return_spec:
6731 type
6732 | ID ':' type
6733 ;
6734@end example
6735
e054b190
PE
6736For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6737generators, please see:
6738Frank DeRemer and Thomas Pennello, Efficient Computation of
6739@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6740Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6741pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6742
fae437e8 6743@node Generalized LR Parsing
c827f760
PE
6744@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6745@cindex @acronym{GLR} parsing
6746@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6747@cindex ambiguous grammars
9d9b8b70 6748@cindex nondeterministic parsing
676385e2 6749
fae437e8
AD
6750Bison produces @emph{deterministic} parsers that choose uniquely
6751when to reduce and which reduction to apply
742e4900 6752based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6753As a result, normal Bison handles a proper subset of the family of
6754context-free languages.
fae437e8 6755Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6756sequence of reductions cannot have deterministic parsers in this sense.
6757The same is true of languages that require more than one symbol of
742e4900 6758lookahead, since the parser lacks the information necessary to make a
676385e2 6759decision at the point it must be made in a shift-reduce parser.
fae437e8 6760Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6761there are languages where Bison's particular choice of how to
6762summarize the input seen so far loses necessary information.
6763
6764When you use the @samp{%glr-parser} declaration in your grammar file,
6765Bison generates a parser that uses a different algorithm, called
c827f760
PE
6766Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6767parser uses the same basic
676385e2
PH
6768algorithm for parsing as an ordinary Bison parser, but behaves
6769differently in cases where there is a shift-reduce conflict that has not
fae437e8 6770been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6771reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6772situation, it
fae437e8 6773effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6774shift or reduction. These parsers then proceed as usual, consuming
6775tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6776and split further, with the result that instead of a sequence of states,
c827f760 6777a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6778
6779In effect, each stack represents a guess as to what the proper parse
6780is. Additional input may indicate that a guess was wrong, in which case
6781the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6782actions generated in each stack are saved, rather than being executed
676385e2 6783immediately. When a stack disappears, its saved semantic actions never
fae437e8 6784get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6785their sets of semantic actions are both saved with the state that
6786results from the reduction. We say that two stacks are equivalent
fae437e8 6787when they both represent the same sequence of states,
676385e2
PH
6788and each pair of corresponding states represents a
6789grammar symbol that produces the same segment of the input token
6790stream.
6791
6792Whenever the parser makes a transition from having multiple
c827f760 6793states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6794algorithm, after resolving and executing the saved-up actions.
6795At this transition, some of the states on the stack will have semantic
6796values that are sets (actually multisets) of possible actions. The
6797parser tries to pick one of the actions by first finding one whose rule
6798has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6799declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6800precedence, but there the same merging function is declared for both
fae437e8 6801rules by the @samp{%merge} declaration,
676385e2
PH
6802Bison resolves and evaluates both and then calls the merge function on
6803the result. Otherwise, it reports an ambiguity.
6804
c827f760
PE
6805It is possible to use a data structure for the @acronym{GLR} parsing tree that
6806permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6807size of the input), any unambiguous (not necessarily
6808@acronym{LALR}(1)) grammar in
fae437e8 6809quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6810context-free grammar in cubic worst-case time. However, Bison currently
6811uses a simpler data structure that requires time proportional to the
6812length of the input times the maximum number of stacks required for any
9d9b8b70 6813prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6814grammars can require exponential time and space to process. Such badly
6815behaving examples, however, are not generally of practical interest.
9d9b8b70 6816Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6817doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6818structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6819grammar, in particular, it is only slightly slower than with the default
6820Bison parser.
6821
fa7e68c3 6822For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6823Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6824Generalised @acronym{LR} Parsers, Royal Holloway, University of
6825London, Department of Computer Science, TR-00-12,
6826@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6827(2000-12-24).
6828
1a059451
PE
6829@node Memory Management
6830@section Memory Management, and How to Avoid Memory Exhaustion
6831@cindex memory exhaustion
6832@cindex memory management
bfa74976
RS
6833@cindex stack overflow
6834@cindex parser stack overflow
6835@cindex overflow of parser stack
6836
1a059451 6837The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6838not reduced. When this happens, the parser function @code{yyparse}
1a059451 6839calls @code{yyerror} and then returns 2.
bfa74976 6840
c827f760 6841Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6842usually results from using a right recursion instead of a left
6843recursion, @xref{Recursion, ,Recursive Rules}.
6844
bfa74976
RS
6845@vindex YYMAXDEPTH
6846By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6847parser stack can become before memory is exhausted. Define the
bfa74976
RS
6848macro with a value that is an integer. This value is the maximum number
6849of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6850
6851The stack space allowed is not necessarily allocated. If you specify a
1a059451 6852large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6853stack at first, and then makes it bigger by stages as needed. This
6854increasing allocation happens automatically and silently. Therefore,
6855you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6856space for ordinary inputs that do not need much stack.
6857
d7e14fc0
PE
6858However, do not allow @code{YYMAXDEPTH} to be a value so large that
6859arithmetic overflow could occur when calculating the size of the stack
6860space. Also, do not allow @code{YYMAXDEPTH} to be less than
6861@code{YYINITDEPTH}.
6862
bfa74976
RS
6863@cindex default stack limit
6864The default value of @code{YYMAXDEPTH}, if you do not define it, is
686510000.
6866
6867@vindex YYINITDEPTH
6868You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6869macro @code{YYINITDEPTH} to a positive integer. For the C
6870@acronym{LALR}(1) parser, this value must be a compile-time constant
6871unless you are assuming C99 or some other target language or compiler
6872that allows variable-length arrays. The default is 200.
6873
1a059451 6874Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6875
d1a1114f 6876@c FIXME: C++ output.
c827f760 6877Because of semantical differences between C and C++, the
1a059451
PE
6878@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6879by C++ compilers. In this precise case (compiling a C parser as C++) you are
6880suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6881this deficiency in a future release.
d1a1114f 6882
342b8b6e 6883@node Error Recovery
bfa74976
RS
6884@chapter Error Recovery
6885@cindex error recovery
6886@cindex recovery from errors
6887
6e649e65 6888It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6889error. For example, a compiler should recover sufficiently to parse the
6890rest of the input file and check it for errors; a calculator should accept
6891another expression.
6892
6893In a simple interactive command parser where each input is one line, it may
6894be sufficient to allow @code{yyparse} to return 1 on error and have the
6895caller ignore the rest of the input line when that happens (and then call
6896@code{yyparse} again). But this is inadequate for a compiler, because it
6897forgets all the syntactic context leading up to the error. A syntax error
6898deep within a function in the compiler input should not cause the compiler
6899to treat the following line like the beginning of a source file.
6900
6901@findex error
6902You can define how to recover from a syntax error by writing rules to
6903recognize the special token @code{error}. This is a terminal symbol that
6904is always defined (you need not declare it) and reserved for error
6905handling. The Bison parser generates an @code{error} token whenever a
6906syntax error happens; if you have provided a rule to recognize this token
13863333 6907in the current context, the parse can continue.
bfa74976
RS
6908
6909For example:
6910
6911@example
6912stmnts: /* empty string */
6913 | stmnts '\n'
6914 | stmnts exp '\n'
6915 | stmnts error '\n'
6916@end example
6917
6918The fourth rule in this example says that an error followed by a newline
6919makes a valid addition to any @code{stmnts}.
6920
6921What happens if a syntax error occurs in the middle of an @code{exp}? The
6922error recovery rule, interpreted strictly, applies to the precise sequence
6923of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6924the middle of an @code{exp}, there will probably be some additional tokens
6925and subexpressions on the stack after the last @code{stmnts}, and there
6926will be tokens to read before the next newline. So the rule is not
6927applicable in the ordinary way.
6928
6929But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6930the semantic context and part of the input. First it discards states
6931and objects from the stack until it gets back to a state in which the
bfa74976 6932@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6933already parsed are discarded, back to the last complete @code{stmnts}.)
6934At this point the @code{error} token can be shifted. Then, if the old
742e4900 6935lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6936tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6937this example, Bison reads and discards input until the next newline so
6938that the fourth rule can apply. Note that discarded symbols are
6939possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6940Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6941
6942The choice of error rules in the grammar is a choice of strategies for
6943error recovery. A simple and useful strategy is simply to skip the rest of
6944the current input line or current statement if an error is detected:
6945
6946@example
72d2299c 6947stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6948@end example
6949
6950It is also useful to recover to the matching close-delimiter of an
6951opening-delimiter that has already been parsed. Otherwise the
6952close-delimiter will probably appear to be unmatched, and generate another,
6953spurious error message:
6954
6955@example
6956primary: '(' expr ')'
6957 | '(' error ')'
6958 @dots{}
6959 ;
6960@end example
6961
6962Error recovery strategies are necessarily guesses. When they guess wrong,
6963one syntax error often leads to another. In the above example, the error
6964recovery rule guesses that an error is due to bad input within one
6965@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6966middle of a valid @code{stmnt}. After the error recovery rule recovers
6967from the first error, another syntax error will be found straightaway,
6968since the text following the spurious semicolon is also an invalid
6969@code{stmnt}.
6970
6971To prevent an outpouring of error messages, the parser will output no error
6972message for another syntax error that happens shortly after the first; only
6973after three consecutive input tokens have been successfully shifted will
6974error messages resume.
6975
6976Note that rules which accept the @code{error} token may have actions, just
6977as any other rules can.
6978
6979@findex yyerrok
6980You can make error messages resume immediately by using the macro
6981@code{yyerrok} in an action. If you do this in the error rule's action, no
6982error messages will be suppressed. This macro requires no arguments;
6983@samp{yyerrok;} is a valid C statement.
6984
6985@findex yyclearin
742e4900 6986The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6987this is unacceptable, then the macro @code{yyclearin} may be used to clear
6988this token. Write the statement @samp{yyclearin;} in the error rule's
6989action.
32c29292 6990@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6991
6e649e65 6992For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6993called that advances the input stream to some point where parsing should
6994once again commence. The next symbol returned by the lexical scanner is
742e4900 6995probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6996with @samp{yyclearin;}.
6997
6998@vindex YYRECOVERING
02103984
PE
6999The expression @code{YYRECOVERING ()} yields 1 when the parser
7000is recovering from a syntax error, and 0 otherwise.
7001Syntax error diagnostics are suppressed while recovering from a syntax
7002error.
bfa74976 7003
342b8b6e 7004@node Context Dependency
bfa74976
RS
7005@chapter Handling Context Dependencies
7006
7007The Bison paradigm is to parse tokens first, then group them into larger
7008syntactic units. In many languages, the meaning of a token is affected by
7009its context. Although this violates the Bison paradigm, certain techniques
7010(known as @dfn{kludges}) may enable you to write Bison parsers for such
7011languages.
7012
7013@menu
7014* Semantic Tokens:: Token parsing can depend on the semantic context.
7015* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7016* Tie-in Recovery:: Lexical tie-ins have implications for how
7017 error recovery rules must be written.
7018@end menu
7019
7020(Actually, ``kludge'' means any technique that gets its job done but is
7021neither clean nor robust.)
7022
342b8b6e 7023@node Semantic Tokens
bfa74976
RS
7024@section Semantic Info in Token Types
7025
7026The C language has a context dependency: the way an identifier is used
7027depends on what its current meaning is. For example, consider this:
7028
7029@example
7030foo (x);
7031@end example
7032
7033This looks like a function call statement, but if @code{foo} is a typedef
7034name, then this is actually a declaration of @code{x}. How can a Bison
7035parser for C decide how to parse this input?
7036
c827f760 7037The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7038@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7039identifier, it looks up the current declaration of the identifier in order
7040to decide which token type to return: @code{TYPENAME} if the identifier is
7041declared as a typedef, @code{IDENTIFIER} otherwise.
7042
7043The grammar rules can then express the context dependency by the choice of
7044token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7045but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7046@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7047is @emph{not} significant, such as in declarations that can shadow a
7048typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7049accepted---there is one rule for each of the two token types.
7050
7051This technique is simple to use if the decision of which kinds of
7052identifiers to allow is made at a place close to where the identifier is
7053parsed. But in C this is not always so: C allows a declaration to
7054redeclare a typedef name provided an explicit type has been specified
7055earlier:
7056
7057@example
3a4f411f
PE
7058typedef int foo, bar;
7059int baz (void)
7060@{
7061 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7062 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7063 return foo (bar);
7064@}
bfa74976
RS
7065@end example
7066
7067Unfortunately, the name being declared is separated from the declaration
7068construct itself by a complicated syntactic structure---the ``declarator''.
7069
9ecbd125 7070As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7071all the nonterminal names changed: once for parsing a declaration in
7072which a typedef name can be redefined, and once for parsing a
7073declaration in which that can't be done. Here is a part of the
7074duplication, with actions omitted for brevity:
bfa74976
RS
7075
7076@example
7077initdcl:
7078 declarator maybeasm '='
7079 init
7080 | declarator maybeasm
7081 ;
7082
7083notype_initdcl:
7084 notype_declarator maybeasm '='
7085 init
7086 | notype_declarator maybeasm
7087 ;
7088@end example
7089
7090@noindent
7091Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7092cannot. The distinction between @code{declarator} and
7093@code{notype_declarator} is the same sort of thing.
7094
7095There is some similarity between this technique and a lexical tie-in
7096(described next), in that information which alters the lexical analysis is
7097changed during parsing by other parts of the program. The difference is
7098here the information is global, and is used for other purposes in the
7099program. A true lexical tie-in has a special-purpose flag controlled by
7100the syntactic context.
7101
342b8b6e 7102@node Lexical Tie-ins
bfa74976
RS
7103@section Lexical Tie-ins
7104@cindex lexical tie-in
7105
7106One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7107which is set by Bison actions, whose purpose is to alter the way tokens are
7108parsed.
7109
7110For example, suppose we have a language vaguely like C, but with a special
7111construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7112an expression in parentheses in which all integers are hexadecimal. In
7113particular, the token @samp{a1b} must be treated as an integer rather than
7114as an identifier if it appears in that context. Here is how you can do it:
7115
7116@example
7117@group
7118%@{
38a92d50
PE
7119 int hexflag;
7120 int yylex (void);
7121 void yyerror (char const *);
bfa74976
RS
7122%@}
7123%%
7124@dots{}
7125@end group
7126@group
7127expr: IDENTIFIER
7128 | constant
7129 | HEX '('
7130 @{ hexflag = 1; @}
7131 expr ')'
7132 @{ hexflag = 0;
7133 $$ = $4; @}
7134 | expr '+' expr
7135 @{ $$ = make_sum ($1, $3); @}
7136 @dots{}
7137 ;
7138@end group
7139
7140@group
7141constant:
7142 INTEGER
7143 | STRING
7144 ;
7145@end group
7146@end example
7147
7148@noindent
7149Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7150it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7151with letters are parsed as integers if possible.
7152
342b8b6e
AD
7153The declaration of @code{hexflag} shown in the prologue of the parser file
7154is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7155You must also write the code in @code{yylex} to obey the flag.
bfa74976 7156
342b8b6e 7157@node Tie-in Recovery
bfa74976
RS
7158@section Lexical Tie-ins and Error Recovery
7159
7160Lexical tie-ins make strict demands on any error recovery rules you have.
7161@xref{Error Recovery}.
7162
7163The reason for this is that the purpose of an error recovery rule is to
7164abort the parsing of one construct and resume in some larger construct.
7165For example, in C-like languages, a typical error recovery rule is to skip
7166tokens until the next semicolon, and then start a new statement, like this:
7167
7168@example
7169stmt: expr ';'
7170 | IF '(' expr ')' stmt @{ @dots{} @}
7171 @dots{}
7172 error ';'
7173 @{ hexflag = 0; @}
7174 ;
7175@end example
7176
7177If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7178construct, this error rule will apply, and then the action for the
7179completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7180remain set for the entire rest of the input, or until the next @code{hex}
7181keyword, causing identifiers to be misinterpreted as integers.
7182
7183To avoid this problem the error recovery rule itself clears @code{hexflag}.
7184
7185There may also be an error recovery rule that works within expressions.
7186For example, there could be a rule which applies within parentheses
7187and skips to the close-parenthesis:
7188
7189@example
7190@group
7191expr: @dots{}
7192 | '(' expr ')'
7193 @{ $$ = $2; @}
7194 | '(' error ')'
7195 @dots{}
7196@end group
7197@end example
7198
7199If this rule acts within the @code{hex} construct, it is not going to abort
7200that construct (since it applies to an inner level of parentheses within
7201the construct). Therefore, it should not clear the flag: the rest of
7202the @code{hex} construct should be parsed with the flag still in effect.
7203
7204What if there is an error recovery rule which might abort out of the
7205@code{hex} construct or might not, depending on circumstances? There is no
7206way you can write the action to determine whether a @code{hex} construct is
7207being aborted or not. So if you are using a lexical tie-in, you had better
7208make sure your error recovery rules are not of this kind. Each rule must
7209be such that you can be sure that it always will, or always won't, have to
7210clear the flag.
7211
ec3bc396
AD
7212@c ================================================== Debugging Your Parser
7213
342b8b6e 7214@node Debugging
bfa74976 7215@chapter Debugging Your Parser
ec3bc396
AD
7216
7217Developing a parser can be a challenge, especially if you don't
7218understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7219Algorithm}). Even so, sometimes a detailed description of the automaton
7220can help (@pxref{Understanding, , Understanding Your Parser}), or
7221tracing the execution of the parser can give some insight on why it
7222behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7223
7224@menu
7225* Understanding:: Understanding the structure of your parser.
7226* Tracing:: Tracing the execution of your parser.
7227@end menu
7228
7229@node Understanding
7230@section Understanding Your Parser
7231
7232As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7233Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7234frequent than one would hope), looking at this automaton is required to
7235tune or simply fix a parser. Bison provides two different
35fe0834 7236representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7237
7238The textual file is generated when the options @option{--report} or
7239@option{--verbose} are specified, see @xref{Invocation, , Invoking
7240Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7241the parser output file name, and adding @samp{.output} instead.
7242Therefore, if the input file is @file{foo.y}, then the parser file is
7243called @file{foo.tab.c} by default. As a consequence, the verbose
7244output file is called @file{foo.output}.
7245
7246The following grammar file, @file{calc.y}, will be used in the sequel:
7247
7248@example
7249%token NUM STR
7250%left '+' '-'
7251%left '*'
7252%%
7253exp: exp '+' exp
7254 | exp '-' exp
7255 | exp '*' exp
7256 | exp '/' exp
7257 | NUM
7258 ;
7259useless: STR;
7260%%
7261@end example
7262
88bce5a2
AD
7263@command{bison} reports:
7264
7265@example
cff03fb2
JD
7266calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7267calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7268calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7269calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7270@end example
7271
7272When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7273creates a file @file{calc.output} with contents detailed below. The
7274order of the output and the exact presentation might vary, but the
7275interpretation is the same.
ec3bc396
AD
7276
7277The first section includes details on conflicts that were solved thanks
7278to precedence and/or associativity:
7279
7280@example
7281Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7282Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7283Conflict in state 8 between rule 2 and token '*' resolved as shift.
7284@exdent @dots{}
7285@end example
7286
7287@noindent
7288The next section lists states that still have conflicts.
7289
7290@example
5a99098d
PE
7291State 8 conflicts: 1 shift/reduce
7292State 9 conflicts: 1 shift/reduce
7293State 10 conflicts: 1 shift/reduce
7294State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7295@end example
7296
7297@noindent
7298@cindex token, useless
7299@cindex useless token
7300@cindex nonterminal, useless
7301@cindex useless nonterminal
7302@cindex rule, useless
7303@cindex useless rule
7304The next section reports useless tokens, nonterminal and rules. Useless
7305nonterminals and rules are removed in order to produce a smaller parser,
7306but useless tokens are preserved, since they might be used by the
d80fb37a 7307scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7308below):
7309
7310@example
d80fb37a 7311Nonterminals useless in grammar:
ec3bc396
AD
7312 useless
7313
d80fb37a 7314Terminals unused in grammar:
ec3bc396
AD
7315 STR
7316
cff03fb2 7317Rules useless in grammar:
ec3bc396
AD
7318#6 useless: STR;
7319@end example
7320
7321@noindent
7322The next section reproduces the exact grammar that Bison used:
7323
7324@example
7325Grammar
7326
7327 Number, Line, Rule
88bce5a2 7328 0 5 $accept -> exp $end
ec3bc396
AD
7329 1 5 exp -> exp '+' exp
7330 2 6 exp -> exp '-' exp
7331 3 7 exp -> exp '*' exp
7332 4 8 exp -> exp '/' exp
7333 5 9 exp -> NUM
7334@end example
7335
7336@noindent
7337and reports the uses of the symbols:
7338
7339@example
7340Terminals, with rules where they appear
7341
88bce5a2 7342$end (0) 0
ec3bc396
AD
7343'*' (42) 3
7344'+' (43) 1
7345'-' (45) 2
7346'/' (47) 4
7347error (256)
7348NUM (258) 5
7349
7350Nonterminals, with rules where they appear
7351
88bce5a2 7352$accept (8)
ec3bc396
AD
7353 on left: 0
7354exp (9)
7355 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7356@end example
7357
7358@noindent
7359@cindex item
7360@cindex pointed rule
7361@cindex rule, pointed
7362Bison then proceeds onto the automaton itself, describing each state
7363with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7364item is a production rule together with a point (marked by @samp{.})
7365that the input cursor.
7366
7367@example
7368state 0
7369
88bce5a2 7370 $accept -> . exp $ (rule 0)
ec3bc396 7371
2a8d363a 7372 NUM shift, and go to state 1
ec3bc396 7373
2a8d363a 7374 exp go to state 2
ec3bc396
AD
7375@end example
7376
7377This reads as follows: ``state 0 corresponds to being at the very
7378beginning of the parsing, in the initial rule, right before the start
7379symbol (here, @code{exp}). When the parser returns to this state right
7380after having reduced a rule that produced an @code{exp}, the control
7381flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7382symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7383the parse stack, and the control flow jumps to state 1. Any other
742e4900 7384lookahead triggers a syntax error.''
ec3bc396
AD
7385
7386@cindex core, item set
7387@cindex item set core
7388@cindex kernel, item set
7389@cindex item set core
7390Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7391report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7392at the beginning of any rule deriving an @code{exp}. By default Bison
7393reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7394you want to see more detail you can invoke @command{bison} with
7395@option{--report=itemset} to list all the items, include those that can
7396be derived:
7397
7398@example
7399state 0
7400
88bce5a2 7401 $accept -> . exp $ (rule 0)
ec3bc396
AD
7402 exp -> . exp '+' exp (rule 1)
7403 exp -> . exp '-' exp (rule 2)
7404 exp -> . exp '*' exp (rule 3)
7405 exp -> . exp '/' exp (rule 4)
7406 exp -> . NUM (rule 5)
7407
7408 NUM shift, and go to state 1
7409
7410 exp go to state 2
7411@end example
7412
7413@noindent
7414In the state 1...
7415
7416@example
7417state 1
7418
7419 exp -> NUM . (rule 5)
7420
2a8d363a 7421 $default reduce using rule 5 (exp)
ec3bc396
AD
7422@end example
7423
7424@noindent
742e4900 7425the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7426(@samp{$default}), the parser will reduce it. If it was coming from
7427state 0, then, after this reduction it will return to state 0, and will
7428jump to state 2 (@samp{exp: go to state 2}).
7429
7430@example
7431state 2
7432
88bce5a2 7433 $accept -> exp . $ (rule 0)
ec3bc396
AD
7434 exp -> exp . '+' exp (rule 1)
7435 exp -> exp . '-' exp (rule 2)
7436 exp -> exp . '*' exp (rule 3)
7437 exp -> exp . '/' exp (rule 4)
7438
2a8d363a
AD
7439 $ shift, and go to state 3
7440 '+' shift, and go to state 4
7441 '-' shift, and go to state 5
7442 '*' shift, and go to state 6
7443 '/' shift, and go to state 7
ec3bc396
AD
7444@end example
7445
7446@noindent
7447In state 2, the automaton can only shift a symbol. For instance,
742e4900 7448because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7449@samp{+}, it will be shifted on the parse stack, and the automaton
7450control will jump to state 4, corresponding to the item @samp{exp -> exp
7451'+' . exp}. Since there is no default action, any other token than
6e649e65 7452those listed above will trigger a syntax error.
ec3bc396
AD
7453
7454The state 3 is named the @dfn{final state}, or the @dfn{accepting
7455state}:
7456
7457@example
7458state 3
7459
88bce5a2 7460 $accept -> exp $ . (rule 0)
ec3bc396 7461
2a8d363a 7462 $default accept
ec3bc396
AD
7463@end example
7464
7465@noindent
7466the initial rule is completed (the start symbol and the end
7467of input were read), the parsing exits successfully.
7468
7469The interpretation of states 4 to 7 is straightforward, and is left to
7470the reader.
7471
7472@example
7473state 4
7474
7475 exp -> exp '+' . exp (rule 1)
7476
2a8d363a 7477 NUM shift, and go to state 1
ec3bc396 7478
2a8d363a 7479 exp go to state 8
ec3bc396
AD
7480
7481state 5
7482
7483 exp -> exp '-' . exp (rule 2)
7484
2a8d363a 7485 NUM shift, and go to state 1
ec3bc396 7486
2a8d363a 7487 exp go to state 9
ec3bc396
AD
7488
7489state 6
7490
7491 exp -> exp '*' . exp (rule 3)
7492
2a8d363a 7493 NUM shift, and go to state 1
ec3bc396 7494
2a8d363a 7495 exp go to state 10
ec3bc396
AD
7496
7497state 7
7498
7499 exp -> exp '/' . exp (rule 4)
7500
2a8d363a 7501 NUM shift, and go to state 1
ec3bc396 7502
2a8d363a 7503 exp go to state 11
ec3bc396
AD
7504@end example
7505
5a99098d
PE
7506As was announced in beginning of the report, @samp{State 8 conflicts:
75071 shift/reduce}:
ec3bc396
AD
7508
7509@example
7510state 8
7511
7512 exp -> exp . '+' exp (rule 1)
7513 exp -> exp '+' exp . (rule 1)
7514 exp -> exp . '-' exp (rule 2)
7515 exp -> exp . '*' exp (rule 3)
7516 exp -> exp . '/' exp (rule 4)
7517
2a8d363a
AD
7518 '*' shift, and go to state 6
7519 '/' shift, and go to state 7
ec3bc396 7520
2a8d363a
AD
7521 '/' [reduce using rule 1 (exp)]
7522 $default reduce using rule 1 (exp)
ec3bc396
AD
7523@end example
7524
742e4900 7525Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7526either shifting (and going to state 7), or reducing rule 1. The
7527conflict means that either the grammar is ambiguous, or the parser lacks
7528information to make the right decision. Indeed the grammar is
7529ambiguous, as, since we did not specify the precedence of @samp{/}, the
7530sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7531NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7532NUM}, which corresponds to reducing rule 1.
7533
c827f760 7534Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7535arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7536Shift/Reduce Conflicts}. Discarded actions are reported in between
7537square brackets.
7538
7539Note that all the previous states had a single possible action: either
7540shifting the next token and going to the corresponding state, or
7541reducing a single rule. In the other cases, i.e., when shifting
7542@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7543possible, the lookahead is required to select the action. State 8 is
7544one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7545is shifting, otherwise the action is reducing rule 1. In other words,
7546the first two items, corresponding to rule 1, are not eligible when the
742e4900 7547lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7548precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7549with some set of possible lookahead tokens. When run with
7550@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7551
7552@example
7553state 8
7554
88c78747 7555 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7556 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7557 exp -> exp . '-' exp (rule 2)
7558 exp -> exp . '*' exp (rule 3)
7559 exp -> exp . '/' exp (rule 4)
7560
7561 '*' shift, and go to state 6
7562 '/' shift, and go to state 7
7563
7564 '/' [reduce using rule 1 (exp)]
7565 $default reduce using rule 1 (exp)
7566@end example
7567
7568The remaining states are similar:
7569
7570@example
7571state 9
7572
7573 exp -> exp . '+' exp (rule 1)
7574 exp -> exp . '-' exp (rule 2)
7575 exp -> exp '-' exp . (rule 2)
7576 exp -> exp . '*' exp (rule 3)
7577 exp -> exp . '/' exp (rule 4)
7578
2a8d363a
AD
7579 '*' shift, and go to state 6
7580 '/' shift, and go to state 7
ec3bc396 7581
2a8d363a
AD
7582 '/' [reduce using rule 2 (exp)]
7583 $default reduce using rule 2 (exp)
ec3bc396
AD
7584
7585state 10
7586
7587 exp -> exp . '+' exp (rule 1)
7588 exp -> exp . '-' exp (rule 2)
7589 exp -> exp . '*' exp (rule 3)
7590 exp -> exp '*' exp . (rule 3)
7591 exp -> exp . '/' exp (rule 4)
7592
2a8d363a 7593 '/' shift, and go to state 7
ec3bc396 7594
2a8d363a
AD
7595 '/' [reduce using rule 3 (exp)]
7596 $default reduce using rule 3 (exp)
ec3bc396
AD
7597
7598state 11
7599
7600 exp -> exp . '+' exp (rule 1)
7601 exp -> exp . '-' exp (rule 2)
7602 exp -> exp . '*' exp (rule 3)
7603 exp -> exp . '/' exp (rule 4)
7604 exp -> exp '/' exp . (rule 4)
7605
2a8d363a
AD
7606 '+' shift, and go to state 4
7607 '-' shift, and go to state 5
7608 '*' shift, and go to state 6
7609 '/' shift, and go to state 7
ec3bc396 7610
2a8d363a
AD
7611 '+' [reduce using rule 4 (exp)]
7612 '-' [reduce using rule 4 (exp)]
7613 '*' [reduce using rule 4 (exp)]
7614 '/' [reduce using rule 4 (exp)]
7615 $default reduce using rule 4 (exp)
ec3bc396
AD
7616@end example
7617
7618@noindent
fa7e68c3
PE
7619Observe that state 11 contains conflicts not only due to the lack of
7620precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7621@samp{*}, but also because the
ec3bc396
AD
7622associativity of @samp{/} is not specified.
7623
7624
7625@node Tracing
7626@section Tracing Your Parser
bfa74976
RS
7627@findex yydebug
7628@cindex debugging
7629@cindex tracing the parser
7630
7631If a Bison grammar compiles properly but doesn't do what you want when it
7632runs, the @code{yydebug} parser-trace feature can help you figure out why.
7633
3ded9a63
AD
7634There are several means to enable compilation of trace facilities:
7635
7636@table @asis
7637@item the macro @code{YYDEBUG}
7638@findex YYDEBUG
7639Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7640parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7641@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7642YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7643Prologue}).
7644
7645@item the option @option{-t}, @option{--debug}
7646Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7647,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7648
7649@item the directive @samp{%debug}
7650@findex %debug
7651Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7652Declaration Summary}). This is a Bison extension, which will prove
7653useful when Bison will output parsers for languages that don't use a
c827f760
PE
7654preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7655you, this is
3ded9a63
AD
7656the preferred solution.
7657@end table
7658
7659We suggest that you always enable the debug option so that debugging is
7660always possible.
bfa74976 7661
02a81e05 7662The trace facility outputs messages with macro calls of the form
e2742e46 7663@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7664@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7665arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7666define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7667and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7668
7669Once you have compiled the program with trace facilities, the way to
7670request a trace is to store a nonzero value in the variable @code{yydebug}.
7671You can do this by making the C code do it (in @code{main}, perhaps), or
7672you can alter the value with a C debugger.
7673
7674Each step taken by the parser when @code{yydebug} is nonzero produces a
7675line or two of trace information, written on @code{stderr}. The trace
7676messages tell you these things:
7677
7678@itemize @bullet
7679@item
7680Each time the parser calls @code{yylex}, what kind of token was read.
7681
7682@item
7683Each time a token is shifted, the depth and complete contents of the
7684state stack (@pxref{Parser States}).
7685
7686@item
7687Each time a rule is reduced, which rule it is, and the complete contents
7688of the state stack afterward.
7689@end itemize
7690
7691To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7692produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7693Bison}). This file shows the meaning of each state in terms of
7694positions in various rules, and also what each state will do with each
7695possible input token. As you read the successive trace messages, you
7696can see that the parser is functioning according to its specification in
7697the listing file. Eventually you will arrive at the place where
7698something undesirable happens, and you will see which parts of the
7699grammar are to blame.
bfa74976
RS
7700
7701The parser file is a C program and you can use C debuggers on it, but it's
7702not easy to interpret what it is doing. The parser function is a
7703finite-state machine interpreter, and aside from the actions it executes
7704the same code over and over. Only the values of variables show where in
7705the grammar it is working.
7706
7707@findex YYPRINT
7708The debugging information normally gives the token type of each token
7709read, but not its semantic value. You can optionally define a macro
7710named @code{YYPRINT} to provide a way to print the value. If you define
7711@code{YYPRINT}, it should take three arguments. The parser will pass a
7712standard I/O stream, the numeric code for the token type, and the token
7713value (from @code{yylval}).
7714
7715Here is an example of @code{YYPRINT} suitable for the multi-function
7716calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7717
7718@smallexample
38a92d50
PE
7719%@{
7720 static void print_token_value (FILE *, int, YYSTYPE);
7721 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7722%@}
7723
7724@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7725
7726static void
831d3c99 7727print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7728@{
7729 if (type == VAR)
d3c4e709 7730 fprintf (file, "%s", value.tptr->name);
bfa74976 7731 else if (type == NUM)
d3c4e709 7732 fprintf (file, "%d", value.val);
bfa74976
RS
7733@}
7734@end smallexample
7735
ec3bc396
AD
7736@c ================================================= Invoking Bison
7737
342b8b6e 7738@node Invocation
bfa74976
RS
7739@chapter Invoking Bison
7740@cindex invoking Bison
7741@cindex Bison invocation
7742@cindex options for invoking Bison
7743
7744The usual way to invoke Bison is as follows:
7745
7746@example
7747bison @var{infile}
7748@end example
7749
7750Here @var{infile} is the grammar file name, which usually ends in
7751@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7752with @samp{.tab.c} and removing any leading directory. Thus, the
7753@samp{bison foo.y} file name yields
7754@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7755@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7756C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7757or @file{foo.y++}. Then, the output files will take an extension like
7758the given one as input (respectively @file{foo.tab.cpp} and
7759@file{foo.tab.c++}).
fa4d969f 7760This feature takes effect with all options that manipulate file names like
234a3be3
AD
7761@samp{-o} or @samp{-d}.
7762
7763For example :
7764
7765@example
7766bison -d @var{infile.yxx}
7767@end example
84163231 7768@noindent
72d2299c 7769will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7770
7771@example
b56471a6 7772bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7773@end example
84163231 7774@noindent
234a3be3
AD
7775will produce @file{output.c++} and @file{outfile.h++}.
7776
397ec073
PE
7777For compatibility with @acronym{POSIX}, the standard Bison
7778distribution also contains a shell script called @command{yacc} that
7779invokes Bison with the @option{-y} option.
7780
bfa74976 7781@menu
13863333 7782* Bison Options:: All the options described in detail,
c827f760 7783 in alphabetical order by short options.
bfa74976 7784* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7785* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7786@end menu
7787
342b8b6e 7788@node Bison Options
bfa74976
RS
7789@section Bison Options
7790
7791Bison supports both traditional single-letter options and mnemonic long
7792option names. Long option names are indicated with @samp{--} instead of
7793@samp{-}. Abbreviations for option names are allowed as long as they
7794are unique. When a long option takes an argument, like
7795@samp{--file-prefix}, connect the option name and the argument with
7796@samp{=}.
7797
7798Here is a list of options that can be used with Bison, alphabetized by
7799short option. It is followed by a cross key alphabetized by long
7800option.
7801
89cab50d
AD
7802@c Please, keep this ordered as in `bison --help'.
7803@noindent
7804Operations modes:
7805@table @option
7806@item -h
7807@itemx --help
7808Print a summary of the command-line options to Bison and exit.
bfa74976 7809
89cab50d
AD
7810@item -V
7811@itemx --version
7812Print the version number of Bison and exit.
bfa74976 7813
f7ab6a50
PE
7814@item --print-localedir
7815Print the name of the directory containing locale-dependent data.
7816
a0de5091
JD
7817@item --print-datadir
7818Print the name of the directory containing skeletons and XSLT.
7819
89cab50d
AD
7820@item -y
7821@itemx --yacc
54662697
PE
7822Act more like the traditional Yacc command. This can cause
7823different diagnostics to be generated, and may change behavior in
7824other minor ways. Most importantly, imitate Yacc's output
7825file name conventions, so that the parser output file is called
89cab50d 7826@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7827@file{y.tab.h}.
7828Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7829statements in addition to an @code{enum} to associate token numbers with token
7830names.
7831Thus, the following shell script can substitute for Yacc, and the Bison
7832distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7833
89cab50d 7834@example
397ec073 7835#! /bin/sh
26e06a21 7836bison -y "$@@"
89cab50d 7837@end example
54662697
PE
7838
7839The @option{-y}/@option{--yacc} option is intended for use with
7840traditional Yacc grammars. If your grammar uses a Bison extension
7841like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7842this option is specified.
7843
118d4978
AD
7844@item -W
7845@itemx --warnings
7846Output warnings falling in @var{category}. @var{category} can be one
7847of:
7848@table @code
7849@item midrule-values
8e55b3aa
JD
7850Warn about mid-rule values that are set but not used within any of the actions
7851of the parent rule.
7852For example, warn about unused @code{$2} in:
118d4978
AD
7853
7854@example
7855exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7856@end example
7857
8e55b3aa
JD
7858Also warn about mid-rule values that are used but not set.
7859For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7860
7861@example
7862 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7863@end example
7864
7865These warnings are not enabled by default since they sometimes prove to
7866be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7867@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7868
7869
7870@item yacc
7871Incompatibilities with @acronym{POSIX} Yacc.
7872
7873@item all
8e55b3aa 7874All the warnings.
118d4978 7875@item none
8e55b3aa 7876Turn off all the warnings.
118d4978 7877@item error
8e55b3aa 7878Treat warnings as errors.
118d4978
AD
7879@end table
7880
7881A category can be turned off by prefixing its name with @samp{no-}. For
7882instance, @option{-Wno-syntax} will hide the warnings about unused
7883variables.
89cab50d
AD
7884@end table
7885
7886@noindent
7887Tuning the parser:
7888
7889@table @option
7890@item -t
7891@itemx --debug
4947ebdb
PE
7892In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7893already defined, so that the debugging facilities are compiled.
ec3bc396 7894@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7895
58697c6d
AD
7896@item -D @var{name}[=@var{value}]
7897@itemx --define=@var{name}[=@var{value}]
7898Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7899Summary, ,%define}).
7900
0e021770
PE
7901@item -L @var{language}
7902@itemx --language=@var{language}
7903Specify the programming language for the generated parser, as if
7904@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7905Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7906@var{language} is case-insensitive.
0e021770 7907
ed4d67dc
JD
7908This option is experimental and its effect may be modified in future
7909releases.
7910
89cab50d 7911@item --locations
d8988b2f 7912Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7913
7914@item -p @var{prefix}
7915@itemx --name-prefix=@var{prefix}
02975b9a 7916Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7917@xref{Decl Summary}.
bfa74976
RS
7918
7919@item -l
7920@itemx --no-lines
7921Don't put any @code{#line} preprocessor commands in the parser file.
7922Ordinarily Bison puts them in the parser file so that the C compiler
7923and debuggers will associate errors with your source file, the
7924grammar file. This option causes them to associate errors with the
95e742f7 7925parser file, treating it as an independent source file in its own right.
bfa74976 7926
e6e704dc
JD
7927@item -S @var{file}
7928@itemx --skeleton=@var{file}
a7867f53 7929Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7930(@pxref{Decl Summary, , Bison Declaration Summary}).
7931
ed4d67dc
JD
7932@c You probably don't need this option unless you are developing Bison.
7933@c You should use @option{--language} if you want to specify the skeleton for a
7934@c different language, because it is clearer and because it will always
7935@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 7936
a7867f53
JD
7937If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7938file in the Bison installation directory.
7939If it does, @var{file} is an absolute file name or a file name relative to the
7940current working directory.
7941This is similar to how most shells resolve commands.
7942
89cab50d
AD
7943@item -k
7944@itemx --token-table
d8988b2f 7945Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7946@end table
bfa74976 7947
89cab50d
AD
7948@noindent
7949Adjust the output:
bfa74976 7950
89cab50d 7951@table @option
8e55b3aa 7952@item --defines[=@var{file}]
d8988b2f 7953Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7954file containing macro definitions for the token type names defined in
4bfd5e4e 7955the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7956
8e55b3aa
JD
7957@item -d
7958This is the same as @code{--defines} except @code{-d} does not accept a
7959@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
7960with other short options.
342b8b6e 7961
89cab50d
AD
7962@item -b @var{file-prefix}
7963@itemx --file-prefix=@var{prefix}
9c437126 7964Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7965for all Bison output file names. @xref{Decl Summary}.
bfa74976 7966
ec3bc396
AD
7967@item -r @var{things}
7968@itemx --report=@var{things}
7969Write an extra output file containing verbose description of the comma
7970separated list of @var{things} among:
7971
7972@table @code
7973@item state
7974Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7975@acronym{LALR} automaton.
ec3bc396 7976
742e4900 7977@item lookahead
ec3bc396 7978Implies @code{state} and augments the description of the automaton with
742e4900 7979each rule's lookahead set.
ec3bc396
AD
7980
7981@item itemset
7982Implies @code{state} and augments the description of the automaton with
7983the full set of items for each state, instead of its core only.
7984@end table
7985
1bb2bd75
JD
7986@item --report-file=@var{file}
7987Specify the @var{file} for the verbose description.
7988
bfa74976
RS
7989@item -v
7990@itemx --verbose
9c437126 7991Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7992file containing verbose descriptions of the grammar and
72d2299c 7993parser. @xref{Decl Summary}.
bfa74976 7994
fa4d969f
PE
7995@item -o @var{file}
7996@itemx --output=@var{file}
7997Specify the @var{file} for the parser file.
bfa74976 7998
fa4d969f 7999The other output files' names are constructed from @var{file} as
d8988b2f 8000described under the @samp{-v} and @samp{-d} options.
342b8b6e 8001
8e55b3aa
JD
8002@item -g[@var{file}]
8003@itemx --graph[=@var{file}]
35fe0834
PE
8004Output a graphical representation of the @acronym{LALR}(1) grammar
8005automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8006@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8007@code{@var{file}} is optional.
8008If omitted and the grammar file is @file{foo.y}, the output file will be
8009@file{foo.dot}.
59da312b 8010
8e55b3aa
JD
8011@item -x[@var{file}]
8012@itemx --xml[=@var{file}]
59da312b 8013Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 8014@code{@var{file}} is optional.
59da312b
JD
8015If omitted and the grammar file is @file{foo.y}, the output file will be
8016@file{foo.xml}.
8017(The current XML schema is experimental and may evolve.
8018More user feedback will help to stabilize it.)
bfa74976
RS
8019@end table
8020
342b8b6e 8021@node Option Cross Key
bfa74976
RS
8022@section Option Cross Key
8023
aa08666d 8024@c FIXME: How about putting the directives too?
bfa74976
RS
8025Here is a list of options, alphabetized by long option, to help you find
8026the corresponding short option.
8027
aa08666d
AD
8028@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
8029@headitem Long Option @tab Short Option
f4101aa6 8030@include cross-options.texi
aa08666d 8031@end multitable
bfa74976 8032
93dd49ab
PE
8033@node Yacc Library
8034@section Yacc Library
8035
8036The Yacc library contains default implementations of the
8037@code{yyerror} and @code{main} functions. These default
8038implementations are normally not useful, but @acronym{POSIX} requires
8039them. To use the Yacc library, link your program with the
8040@option{-ly} option. Note that Bison's implementation of the Yacc
8041library is distributed under the terms of the @acronym{GNU} General
8042Public License (@pxref{Copying}).
8043
8044If you use the Yacc library's @code{yyerror} function, you should
8045declare @code{yyerror} as follows:
8046
8047@example
8048int yyerror (char const *);
8049@end example
8050
8051Bison ignores the @code{int} value returned by this @code{yyerror}.
8052If you use the Yacc library's @code{main} function, your
8053@code{yyparse} function should have the following type signature:
8054
8055@example
8056int yyparse (void);
8057@end example
8058
12545799
AD
8059@c ================================================= C++ Bison
8060
8405b70c
PB
8061@node Other Languages
8062@chapter Parsers Written In Other Languages
12545799
AD
8063
8064@menu
8065* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8066* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8067@end menu
8068
8069@node C++ Parsers
8070@section C++ Parsers
8071
8072@menu
8073* C++ Bison Interface:: Asking for C++ parser generation
8074* C++ Semantic Values:: %union vs. C++
8075* C++ Location Values:: The position and location classes
8076* C++ Parser Interface:: Instantiating and running the parser
8077* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8078* A Complete C++ Example:: Demonstrating their use
12545799
AD
8079@end menu
8080
8081@node C++ Bison Interface
8082@subsection C++ Bison Interface
ed4d67dc 8083@c - %skeleton "lalr1.cc"
12545799
AD
8084@c - Always pure
8085@c - initial action
8086
ed4d67dc
JD
8087The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8088@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8089@option{--skeleton=lalr1.c}.
e6e704dc 8090@xref{Decl Summary}.
0e021770 8091
793fbca5
JD
8092When run, @command{bison} will create several entities in the @samp{yy}
8093namespace.
8094@findex %define namespace
8095Use the @samp{%define namespace} directive to change the namespace name, see
8096@ref{Decl Summary}.
8097The various classes are generated in the following files:
aa08666d 8098
12545799
AD
8099@table @file
8100@item position.hh
8101@itemx location.hh
8102The definition of the classes @code{position} and @code{location},
8103used for location tracking. @xref{C++ Location Values}.
8104
8105@item stack.hh
8106An auxiliary class @code{stack} used by the parser.
8107
fa4d969f
PE
8108@item @var{file}.hh
8109@itemx @var{file}.cc
cd8b5791
AD
8110(Assuming the extension of the input file was @samp{.yy}.) The
8111declaration and implementation of the C++ parser class. The basename
8112and extension of these two files follow the same rules as with regular C
8113parsers (@pxref{Invocation}).
12545799 8114
cd8b5791
AD
8115The header is @emph{mandatory}; you must either pass
8116@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8117@samp{%defines} directive.
8118@end table
8119
8120All these files are documented using Doxygen; run @command{doxygen}
8121for a complete and accurate documentation.
8122
8123@node C++ Semantic Values
8124@subsection C++ Semantic Values
8125@c - No objects in unions
178e123e 8126@c - YYSTYPE
12545799
AD
8127@c - Printer and destructor
8128
8129The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8130Collection of Value Types}. In particular it produces a genuine
8131@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8132within pseudo-unions (similar to Boost variants) might be implemented to
8133alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8134@itemize @minus
8135@item
fb9712a9
AD
8136The type @code{YYSTYPE} is defined but its use is discouraged: rather
8137you should refer to the parser's encapsulated type
8138@code{yy::parser::semantic_type}.
12545799
AD
8139@item
8140Non POD (Plain Old Data) types cannot be used. C++ forbids any
8141instance of classes with constructors in unions: only @emph{pointers}
8142to such objects are allowed.
8143@end itemize
8144
8145Because objects have to be stored via pointers, memory is not
8146reclaimed automatically: using the @code{%destructor} directive is the
8147only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8148Symbols}.
8149
8150
8151@node C++ Location Values
8152@subsection C++ Location Values
8153@c - %locations
8154@c - class Position
8155@c - class Location
16dc6a9e 8156@c - %define filename_type "const symbol::Symbol"
12545799
AD
8157
8158When the directive @code{%locations} is used, the C++ parser supports
8159location tracking, see @ref{Locations, , Locations Overview}. Two
8160auxiliary classes define a @code{position}, a single point in a file,
8161and a @code{location}, a range composed of a pair of
8162@code{position}s (possibly spanning several files).
8163
fa4d969f 8164@deftypemethod {position} {std::string*} file
12545799
AD
8165The name of the file. It will always be handled as a pointer, the
8166parser will never duplicate nor deallocate it. As an experimental
8167feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8168filename_type "@var{type}"}.
12545799
AD
8169@end deftypemethod
8170
8171@deftypemethod {position} {unsigned int} line
8172The line, starting at 1.
8173@end deftypemethod
8174
8175@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8176Advance by @var{height} lines, resetting the column number.
8177@end deftypemethod
8178
8179@deftypemethod {position} {unsigned int} column
8180The column, starting at 0.
8181@end deftypemethod
8182
8183@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8184Advance by @var{width} columns, without changing the line number.
8185@end deftypemethod
8186
8187@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8188@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8189@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8190@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8191Various forms of syntactic sugar for @code{columns}.
8192@end deftypemethod
8193
8194@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8195Report @var{p} on @var{o} like this:
fa4d969f
PE
8196@samp{@var{file}:@var{line}.@var{column}}, or
8197@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8198@end deftypemethod
8199
8200@deftypemethod {location} {position} begin
8201@deftypemethodx {location} {position} end
8202The first, inclusive, position of the range, and the first beyond.
8203@end deftypemethod
8204
8205@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8206@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8207Advance the @code{end} position.
8208@end deftypemethod
8209
8210@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8211@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8212@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8213Various forms of syntactic sugar.
8214@end deftypemethod
8215
8216@deftypemethod {location} {void} step ()
8217Move @code{begin} onto @code{end}.
8218@end deftypemethod
8219
8220
8221@node C++ Parser Interface
8222@subsection C++ Parser Interface
8223@c - define parser_class_name
8224@c - Ctor
8225@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8226@c debug_stream.
8227@c - Reporting errors
8228
8229The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8230declare and define the parser class in the namespace @code{yy}. The
8231class name defaults to @code{parser}, but may be changed using
16dc6a9e 8232@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8233this class is detailed below. It can be extended using the
12545799
AD
8234@code{%parse-param} feature: its semantics is slightly changed since
8235it describes an additional member of the parser class, and an
8236additional argument for its constructor.
8237
8a0adb01
AD
8238@defcv {Type} {parser} {semantic_value_type}
8239@defcvx {Type} {parser} {location_value_type}
12545799 8240The types for semantics value and locations.
8a0adb01 8241@end defcv
12545799
AD
8242
8243@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8244Build a new parser object. There are no arguments by default, unless
8245@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8246@end deftypemethod
8247
8248@deftypemethod {parser} {int} parse ()
8249Run the syntactic analysis, and return 0 on success, 1 otherwise.
8250@end deftypemethod
8251
8252@deftypemethod {parser} {std::ostream&} debug_stream ()
8253@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8254Get or set the stream used for tracing the parsing. It defaults to
8255@code{std::cerr}.
8256@end deftypemethod
8257
8258@deftypemethod {parser} {debug_level_type} debug_level ()
8259@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8260Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8261or nonzero, full tracing.
12545799
AD
8262@end deftypemethod
8263
8264@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8265The definition for this member function must be supplied by the user:
8266the parser uses it to report a parser error occurring at @var{l},
8267described by @var{m}.
8268@end deftypemethod
8269
8270
8271@node C++ Scanner Interface
8272@subsection C++ Scanner Interface
8273@c - prefix for yylex.
8274@c - Pure interface to yylex
8275@c - %lex-param
8276
8277The parser invokes the scanner by calling @code{yylex}. Contrary to C
8278parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8279@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8280
8281@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8282Return the next token. Its type is the return value, its semantic
8283value and location being @var{yylval} and @var{yylloc}. Invocations of
8284@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8285@end deftypemethod
8286
8287
8288@node A Complete C++ Example
8405b70c 8289@subsection A Complete C++ Example
12545799
AD
8290
8291This section demonstrates the use of a C++ parser with a simple but
8292complete example. This example should be available on your system,
8293ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8294focuses on the use of Bison, therefore the design of the various C++
8295classes is very naive: no accessors, no encapsulation of members etc.
8296We will use a Lex scanner, and more precisely, a Flex scanner, to
8297demonstrate the various interaction. A hand written scanner is
8298actually easier to interface with.
8299
8300@menu
8301* Calc++ --- C++ Calculator:: The specifications
8302* Calc++ Parsing Driver:: An active parsing context
8303* Calc++ Parser:: A parser class
8304* Calc++ Scanner:: A pure C++ Flex scanner
8305* Calc++ Top Level:: Conducting the band
8306@end menu
8307
8308@node Calc++ --- C++ Calculator
8405b70c 8309@subsubsection Calc++ --- C++ Calculator
12545799
AD
8310
8311Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8312expression, possibly preceded by variable assignments. An
12545799
AD
8313environment containing possibly predefined variables such as
8314@code{one} and @code{two}, is exchanged with the parser. An example
8315of valid input follows.
8316
8317@example
8318three := 3
8319seven := one + two * three
8320seven * seven
8321@end example
8322
8323@node Calc++ Parsing Driver
8405b70c 8324@subsubsection Calc++ Parsing Driver
12545799
AD
8325@c - An env
8326@c - A place to store error messages
8327@c - A place for the result
8328
8329To support a pure interface with the parser (and the scanner) the
8330technique of the ``parsing context'' is convenient: a structure
8331containing all the data to exchange. Since, in addition to simply
8332launch the parsing, there are several auxiliary tasks to execute (open
8333the file for parsing, instantiate the parser etc.), we recommend
8334transforming the simple parsing context structure into a fully blown
8335@dfn{parsing driver} class.
8336
8337The declaration of this driver class, @file{calc++-driver.hh}, is as
8338follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8339required standard library components, and the declaration of the parser
8340class.
12545799 8341
1c59e0a1 8342@comment file: calc++-driver.hh
12545799
AD
8343@example
8344#ifndef CALCXX_DRIVER_HH
8345# define CALCXX_DRIVER_HH
8346# include <string>
8347# include <map>
fb9712a9 8348# include "calc++-parser.hh"
12545799
AD
8349@end example
8350
12545799
AD
8351
8352@noindent
8353Then comes the declaration of the scanning function. Flex expects
8354the signature of @code{yylex} to be defined in the macro
8355@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8356factor both as follows.
1c59e0a1
AD
8357
8358@comment file: calc++-driver.hh
12545799 8359@example
3dc5e96b
PE
8360// Tell Flex the lexer's prototype ...
8361# define YY_DECL \
c095d689
AD
8362 yy::calcxx_parser::token_type \
8363 yylex (yy::calcxx_parser::semantic_type* yylval, \
8364 yy::calcxx_parser::location_type* yylloc, \
8365 calcxx_driver& driver)
12545799
AD
8366// ... and declare it for the parser's sake.
8367YY_DECL;
8368@end example
8369
8370@noindent
8371The @code{calcxx_driver} class is then declared with its most obvious
8372members.
8373
1c59e0a1 8374@comment file: calc++-driver.hh
12545799
AD
8375@example
8376// Conducting the whole scanning and parsing of Calc++.
8377class calcxx_driver
8378@{
8379public:
8380 calcxx_driver ();
8381 virtual ~calcxx_driver ();
8382
8383 std::map<std::string, int> variables;
8384
8385 int result;
8386@end example
8387
8388@noindent
8389To encapsulate the coordination with the Flex scanner, it is useful to
8390have two members function to open and close the scanning phase.
12545799 8391
1c59e0a1 8392@comment file: calc++-driver.hh
12545799
AD
8393@example
8394 // Handling the scanner.
8395 void scan_begin ();
8396 void scan_end ();
8397 bool trace_scanning;
8398@end example
8399
8400@noindent
8401Similarly for the parser itself.
8402
1c59e0a1 8403@comment file: calc++-driver.hh
12545799 8404@example
bb32f4f2
AD
8405 // Run the parser. Return 0 on success.
8406 int parse (const std::string& f);
12545799
AD
8407 std::string file;
8408 bool trace_parsing;
8409@end example
8410
8411@noindent
8412To demonstrate pure handling of parse errors, instead of simply
8413dumping them on the standard error output, we will pass them to the
8414compiler driver using the following two member functions. Finally, we
8415close the class declaration and CPP guard.
8416
1c59e0a1 8417@comment file: calc++-driver.hh
12545799
AD
8418@example
8419 // Error handling.
8420 void error (const yy::location& l, const std::string& m);
8421 void error (const std::string& m);
8422@};
8423#endif // ! CALCXX_DRIVER_HH
8424@end example
8425
8426The implementation of the driver is straightforward. The @code{parse}
8427member function deserves some attention. The @code{error} functions
8428are simple stubs, they should actually register the located error
8429messages and set error state.
8430
1c59e0a1 8431@comment file: calc++-driver.cc
12545799
AD
8432@example
8433#include "calc++-driver.hh"
8434#include "calc++-parser.hh"
8435
8436calcxx_driver::calcxx_driver ()
8437 : trace_scanning (false), trace_parsing (false)
8438@{
8439 variables["one"] = 1;
8440 variables["two"] = 2;
8441@}
8442
8443calcxx_driver::~calcxx_driver ()
8444@{
8445@}
8446
bb32f4f2 8447int
12545799
AD
8448calcxx_driver::parse (const std::string &f)
8449@{
8450 file = f;
8451 scan_begin ();
8452 yy::calcxx_parser parser (*this);
8453 parser.set_debug_level (trace_parsing);
bb32f4f2 8454 int res = parser.parse ();
12545799 8455 scan_end ();
bb32f4f2 8456 return res;
12545799
AD
8457@}
8458
8459void
8460calcxx_driver::error (const yy::location& l, const std::string& m)
8461@{
8462 std::cerr << l << ": " << m << std::endl;
8463@}
8464
8465void
8466calcxx_driver::error (const std::string& m)
8467@{
8468 std::cerr << m << std::endl;
8469@}
8470@end example
8471
8472@node Calc++ Parser
8405b70c 8473@subsubsection Calc++ Parser
12545799 8474
b50d2359
AD
8475The parser definition file @file{calc++-parser.yy} starts by asking for
8476the C++ LALR(1) skeleton, the creation of the parser header file, and
8477specifies the name of the parser class. Because the C++ skeleton
8478changed several times, it is safer to require the version you designed
8479the grammar for.
1c59e0a1
AD
8480
8481@comment file: calc++-parser.yy
12545799 8482@example
ed4d67dc 8483%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8484%require "@value{VERSION}"
12545799 8485%defines
16dc6a9e 8486%define parser_class_name "calcxx_parser"
fb9712a9
AD
8487@end example
8488
8489@noindent
16dc6a9e 8490@findex %code requires
fb9712a9
AD
8491Then come the declarations/inclusions needed to define the
8492@code{%union}. Because the parser uses the parsing driver and
8493reciprocally, both cannot include the header of the other. Because the
8494driver's header needs detailed knowledge about the parser class (in
8495particular its inner types), it is the parser's header which will simply
8496use a forward declaration of the driver.
148d66d8 8497@xref{Decl Summary, ,%code}.
fb9712a9
AD
8498
8499@comment file: calc++-parser.yy
8500@example
16dc6a9e 8501%code requires @{
12545799 8502# include <string>
fb9712a9 8503class calcxx_driver;
9bc0dd67 8504@}
12545799
AD
8505@end example
8506
8507@noindent
8508The driver is passed by reference to the parser and to the scanner.
8509This provides a simple but effective pure interface, not relying on
8510global variables.
8511
1c59e0a1 8512@comment file: calc++-parser.yy
12545799
AD
8513@example
8514// The parsing context.
8515%parse-param @{ calcxx_driver& driver @}
8516%lex-param @{ calcxx_driver& driver @}
8517@end example
8518
8519@noindent
8520Then we request the location tracking feature, and initialize the
8521first location's file name. Afterwards new locations are computed
8522relatively to the previous locations: the file name will be
8523automatically propagated.
8524
1c59e0a1 8525@comment file: calc++-parser.yy
12545799
AD
8526@example
8527%locations
8528%initial-action
8529@{
8530 // Initialize the initial location.
b47dbebe 8531 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8532@};
8533@end example
8534
8535@noindent
8536Use the two following directives to enable parser tracing and verbose
8537error messages.
8538
1c59e0a1 8539@comment file: calc++-parser.yy
12545799
AD
8540@example
8541%debug
8542%error-verbose
8543@end example
8544
8545@noindent
8546Semantic values cannot use ``real'' objects, but only pointers to
8547them.
8548
1c59e0a1 8549@comment file: calc++-parser.yy
12545799
AD
8550@example
8551// Symbols.
8552%union
8553@{
8554 int ival;
8555 std::string *sval;
8556@};
8557@end example
8558
fb9712a9 8559@noindent
136a0f76
PB
8560@findex %code
8561The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8562@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8563
8564@comment file: calc++-parser.yy
8565@example
136a0f76 8566%code @{
fb9712a9 8567# include "calc++-driver.hh"
34f98f46 8568@}
fb9712a9
AD
8569@end example
8570
8571
12545799
AD
8572@noindent
8573The token numbered as 0 corresponds to end of file; the following line
8574allows for nicer error messages referring to ``end of file'' instead
8575of ``$end''. Similarly user friendly named are provided for each
8576symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8577avoid name clashes.
8578
1c59e0a1 8579@comment file: calc++-parser.yy
12545799 8580@example
fb9712a9
AD
8581%token END 0 "end of file"
8582%token ASSIGN ":="
8583%token <sval> IDENTIFIER "identifier"
8584%token <ival> NUMBER "number"
a8c2e813 8585%type <ival> exp
12545799
AD
8586@end example
8587
8588@noindent
8589To enable memory deallocation during error recovery, use
8590@code{%destructor}.
8591
287c78f6 8592@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8593@comment file: calc++-parser.yy
12545799
AD
8594@example
8595%printer @{ debug_stream () << *$$; @} "identifier"
8596%destructor @{ delete $$; @} "identifier"
8597
a8c2e813 8598%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8599@end example
8600
8601@noindent
8602The grammar itself is straightforward.
8603
1c59e0a1 8604@comment file: calc++-parser.yy
12545799
AD
8605@example
8606%%
8607%start unit;
8608unit: assignments exp @{ driver.result = $2; @};
8609
8610assignments: assignments assignment @{@}
9d9b8b70 8611 | /* Nothing. */ @{@};
12545799 8612
3dc5e96b
PE
8613assignment:
8614 "identifier" ":=" exp
8615 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8616
8617%left '+' '-';
8618%left '*' '/';
8619exp: exp '+' exp @{ $$ = $1 + $3; @}
8620 | exp '-' exp @{ $$ = $1 - $3; @}
8621 | exp '*' exp @{ $$ = $1 * $3; @}
8622 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8623 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8624 | "number" @{ $$ = $1; @};
12545799
AD
8625%%
8626@end example
8627
8628@noindent
8629Finally the @code{error} member function registers the errors to the
8630driver.
8631
1c59e0a1 8632@comment file: calc++-parser.yy
12545799
AD
8633@example
8634void
1c59e0a1
AD
8635yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8636 const std::string& m)
12545799
AD
8637@{
8638 driver.error (l, m);
8639@}
8640@end example
8641
8642@node Calc++ Scanner
8405b70c 8643@subsubsection Calc++ Scanner
12545799
AD
8644
8645The Flex scanner first includes the driver declaration, then the
8646parser's to get the set of defined tokens.
8647
1c59e0a1 8648@comment file: calc++-scanner.ll
12545799
AD
8649@example
8650%@{ /* -*- C++ -*- */
04098407
PE
8651# include <cstdlib>
8652# include <errno.h>
8653# include <limits.h>
12545799
AD
8654# include <string>
8655# include "calc++-driver.hh"
8656# include "calc++-parser.hh"
eaea13f5
PE
8657
8658/* Work around an incompatibility in flex (at least versions
8659 2.5.31 through 2.5.33): it generates code that does
8660 not conform to C89. See Debian bug 333231
8661 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8662# undef yywrap
8663# define yywrap() 1
eaea13f5 8664
c095d689
AD
8665/* By default yylex returns int, we use token_type.
8666 Unfortunately yyterminate by default returns 0, which is
8667 not of token_type. */
8c5b881d 8668#define yyterminate() return token::END
12545799
AD
8669%@}
8670@end example
8671
8672@noindent
8673Because there is no @code{#include}-like feature we don't need
8674@code{yywrap}, we don't need @code{unput} either, and we parse an
8675actual file, this is not an interactive session with the user.
8676Finally we enable the scanner tracing features.
8677
1c59e0a1 8678@comment file: calc++-scanner.ll
12545799
AD
8679@example
8680%option noyywrap nounput batch debug
8681@end example
8682
8683@noindent
8684Abbreviations allow for more readable rules.
8685
1c59e0a1 8686@comment file: calc++-scanner.ll
12545799
AD
8687@example
8688id [a-zA-Z][a-zA-Z_0-9]*
8689int [0-9]+
8690blank [ \t]
8691@end example
8692
8693@noindent
9d9b8b70 8694The following paragraph suffices to track locations accurately. Each
12545799
AD
8695time @code{yylex} is invoked, the begin position is moved onto the end
8696position. Then when a pattern is matched, the end position is
8697advanced of its width. In case it matched ends of lines, the end
8698cursor is adjusted, and each time blanks are matched, the begin cursor
8699is moved onto the end cursor to effectively ignore the blanks
8700preceding tokens. Comments would be treated equally.
8701
1c59e0a1 8702@comment file: calc++-scanner.ll
12545799 8703@example
828c373b
AD
8704%@{
8705# define YY_USER_ACTION yylloc->columns (yyleng);
8706%@}
12545799
AD
8707%%
8708%@{
8709 yylloc->step ();
12545799
AD
8710%@}
8711@{blank@}+ yylloc->step ();
8712[\n]+ yylloc->lines (yyleng); yylloc->step ();
8713@end example
8714
8715@noindent
fb9712a9
AD
8716The rules are simple, just note the use of the driver to report errors.
8717It is convenient to use a typedef to shorten
8718@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8719@code{token::identifier} for instance.
12545799 8720
1c59e0a1 8721@comment file: calc++-scanner.ll
12545799 8722@example
fb9712a9
AD
8723%@{
8724 typedef yy::calcxx_parser::token token;
8725%@}
8c5b881d 8726 /* Convert ints to the actual type of tokens. */
c095d689 8727[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8728":=" return token::ASSIGN;
04098407
PE
8729@{int@} @{
8730 errno = 0;
8731 long n = strtol (yytext, NULL, 10);
8732 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8733 driver.error (*yylloc, "integer is out of range");
8734 yylval->ival = n;
fb9712a9 8735 return token::NUMBER;
04098407 8736@}
fb9712a9 8737@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8738. driver.error (*yylloc, "invalid character");
8739%%
8740@end example
8741
8742@noindent
8743Finally, because the scanner related driver's member function depend
8744on the scanner's data, it is simpler to implement them in this file.
8745
1c59e0a1 8746@comment file: calc++-scanner.ll
12545799
AD
8747@example
8748void
8749calcxx_driver::scan_begin ()
8750@{
8751 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8752 if (file == "-")
8753 yyin = stdin;
8754 else if (!(yyin = fopen (file.c_str (), "r")))
8755 @{
8756 error (std::string ("cannot open ") + file);
8757 exit (1);
8758 @}
12545799
AD
8759@}
8760
8761void
8762calcxx_driver::scan_end ()
8763@{
8764 fclose (yyin);
8765@}
8766@end example
8767
8768@node Calc++ Top Level
8405b70c 8769@subsubsection Calc++ Top Level
12545799
AD
8770
8771The top level file, @file{calc++.cc}, poses no problem.
8772
1c59e0a1 8773@comment file: calc++.cc
12545799
AD
8774@example
8775#include <iostream>
8776#include "calc++-driver.hh"
8777
8778int
fa4d969f 8779main (int argc, char *argv[])
12545799 8780@{
414c76a4 8781 int res = 0;
12545799
AD
8782 calcxx_driver driver;
8783 for (++argv; argv[0]; ++argv)
8784 if (*argv == std::string ("-p"))
8785 driver.trace_parsing = true;
8786 else if (*argv == std::string ("-s"))
8787 driver.trace_scanning = true;
bb32f4f2
AD
8788 else if (!driver.parse (*argv))
8789 std::cout << driver.result << std::endl;
414c76a4
AD
8790 else
8791 res = 1;
8792 return res;
12545799
AD
8793@}
8794@end example
8795
8405b70c
PB
8796@node Java Parsers
8797@section Java Parsers
8798
8799@menu
8800* Java Bison Interface:: Asking for Java parser generation
8801* Java Semantic Values:: %type and %token vs. Java
8802* Java Location Values:: The position and location classes
8803* Java Parser Interface:: Instantiating and running the parser
e254a580
DJ
8804* Java Scanner Interface:: Specifying the scanner for the parser
8805* Java Action Features:: Special features for use in actions.
8405b70c 8806* Java Differences:: Differences between C/C++ and Java Grammars
e254a580 8807* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8808@end menu
8809
8810@node Java Bison Interface
8811@subsection Java Bison Interface
8812@c - %language "Java"
8405b70c 8813
59da312b
JD
8814(The current Java interface is experimental and may evolve.
8815More user feedback will help to stabilize it.)
8816
e254a580
DJ
8817The Java parser skeletons are selected using the @code{%language "Java"}
8818directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8819
e254a580
DJ
8820@c FIXME: Documented bug.
8821When generating a Java parser, @code{bison @var{basename}.y} will create
8822a single Java source file named @file{@var{basename}.java}. Using an
8823input file without a @file{.y} suffix is currently broken. The basename
8824of the output file can be changed by the @code{%file-prefix} directive
8825or the @option{-p}/@option{--name-prefix} option. The entire output file
8826name can be changed by the @code{%output} directive or the
8827@option{-o}/@option{--output} option. The output file contains a single
8828class for the parser.
8405b70c 8829
e254a580 8830You can create documentation for generated parsers using Javadoc.
8405b70c 8831
e254a580
DJ
8832Contrary to C parsers, Java parsers do not use global variables; the
8833state of the parser is always local to an instance of the parser class.
8834Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8835and @code{%define api.pure} directives does not do anything when used in
8836Java.
8405b70c 8837
e254a580
DJ
8838Push parsers are currently unsupported in Java and @code{%define
8839api.push_pull} have no effect.
01b477c6 8840
e254a580
DJ
8841@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8842@code{glr-parser} directive.
8843
8844No header file can be generated for Java parsers. Do not use the
8845@code{%defines} directive or the @option{-d}/@option{--defines} options.
8846
8847@c FIXME: Possible code change.
8848Currently, support for debugging and verbose errors are always compiled
8849in. Thus the @code{%debug} and @code{%token-table} directives and the
8850@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8851options have no effect. This may change in the future to eliminate
8852unused code in the generated parser, so use @code{%debug} and
8853@code{%verbose-error} explicitly if needed. Also, in the future the
8854@code{%token-table} directive might enable a public interface to
8855access the token names and codes.
8405b70c
PB
8856
8857@node Java Semantic Values
8858@subsection Java Semantic Values
8859@c - No %union, specify type in %type/%token.
8860@c - YYSTYPE
8861@c - Printer and destructor
8862
8863There is no @code{%union} directive in Java parsers. Instead, the
8864semantic values' types (class names) should be specified in the
8865@code{%type} or @code{%token} directive:
8866
8867@example
8868%type <Expression> expr assignment_expr term factor
8869%type <Integer> number
8870@end example
8871
8872By default, the semantic stack is declared to have @code{Object} members,
8873which means that the class types you specify can be of any class.
8874To improve the type safety of the parser, you can declare the common
e254a580
DJ
8875superclass of all the semantic values using the @code{%define stype}
8876directive. For example, after the following declaration:
8405b70c
PB
8877
8878@example
e254a580 8879%define stype "ASTNode"
8405b70c
PB
8880@end example
8881
8882@noindent
8883any @code{%type} or @code{%token} specifying a semantic type which
8884is not a subclass of ASTNode, will cause a compile-time error.
8885
e254a580 8886@c FIXME: Documented bug.
8405b70c
PB
8887Types used in the directives may be qualified with a package name.
8888Primitive data types are accepted for Java version 1.5 or later. Note
8889that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8890Generic types may not be used; this is due to a limitation in the
8891implementation of Bison, and may change in future releases.
8405b70c
PB
8892
8893Java parsers do not support @code{%destructor}, since the language
8894adopts garbage collection. The parser will try to hold references
8895to semantic values for as little time as needed.
8896
8897Java parsers do not support @code{%printer}, as @code{toString()}
8898can be used to print the semantic values. This however may change
8899(in a backwards-compatible way) in future versions of Bison.
8900
8901
8902@node Java Location Values
8903@subsection Java Location Values
8904@c - %locations
8905@c - class Position
8906@c - class Location
8907
8908When the directive @code{%locations} is used, the Java parser
8909supports location tracking, see @ref{Locations, , Locations Overview}.
8910An auxiliary user-defined class defines a @dfn{position}, a single point
8911in a file; Bison itself defines a class representing a @dfn{location},
8912a range composed of a pair of positions (possibly spanning several
8913files). The location class is an inner class of the parser; the name
e254a580
DJ
8914is @code{Location} by default, and may also be renamed using
8915@code{%define location_type "@var{class-name}}.
8405b70c
PB
8916
8917The location class treats the position as a completely opaque value.
8918By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8919with @code{%define position_type "@var{class-name}"}. This class must
8920be supplied by the user.
8405b70c
PB
8921
8922
e254a580
DJ
8923@deftypeivar {Location} {Position} begin
8924@deftypeivarx {Location} {Position} end
8405b70c 8925The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8926@end deftypeivar
8927
8928@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
8929Create a @code{Location} denoting an empty range located at a given point.
8930@end deftypeop
8405b70c 8931
e254a580
DJ
8932@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8933Create a @code{Location} from the endpoints of the range.
8934@end deftypeop
8935
8936@deftypemethod {Location} {String} toString ()
8405b70c
PB
8937Prints the range represented by the location. For this to work
8938properly, the position class should override the @code{equals} and
8939@code{toString} methods appropriately.
8940@end deftypemethod
8941
8942
8943@node Java Parser Interface
8944@subsection Java Parser Interface
8945@c - define parser_class_name
8946@c - Ctor
8947@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8948@c debug_stream.
8949@c - Reporting errors
8950
e254a580
DJ
8951The name of the generated parser class defaults to @code{YYParser}. The
8952@code{YY} prefix may be changed using the @code{%name-prefix} directive
8953or the @option{-p}/@option{--name-prefix} option. Alternatively, use
8954@code{%define parser_class_name "@var{name}"} to give a custom name to
8955the class. The interface of this class is detailed below.
8405b70c 8956
e254a580
DJ
8957By default, the parser class has package visibility. A declaration
8958@code{%define public} will change to public visibility. Remember that,
8959according to the Java language specification, the name of the @file{.java}
8960file should match the name of the class in this case. Similarly, you can
8961use @code{abstract}, @code{final} and @code{strictfp} with the
8962@code{%define} declaration to add other modifiers to the parser class.
8963
8964The Java package name of the parser class can be specified using the
8965@code{%define package} directive. The superclass and the implemented
8966interfaces of the parser class can be specified with the @code{%define
8967extends} and @code{%define implements} directives.
8968
8969The parser class defines an inner class, @code{Location}, that is used
8970for location tracking (see @ref{Java Location Values}), and a inner
8971interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
8972these inner class/interface, and the members described in the interface
8973below, all the other members and fields are preceded with a @code{yy} or
8974@code{YY} prefix to avoid clashes with user code.
8975
8976@c FIXME: The following constants and variables are still undocumented:
8977@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
8978
8979The parser class can be extended using the @code{%parse-param}
8980directive. Each occurrence of the directive will add a @code{protected
8981final} field to the parser class, and an argument to its constructor,
8982which initialize them automatically.
8983
8984Token names defined by @code{%token} and the predefined @code{EOF} token
8985name are added as constant fields to the parser class.
8986
8987@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
8988Build a new parser object with embedded @code{%code lexer}. There are
8989no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
8990used.
8991@end deftypeop
8992
8993@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
8994Build a new parser object using the specified scanner. There are no
8995additional parameters unless @code{%parse-param}s are used.
8996
8997If the scanner is defined by @code{%code lexer}, this constructor is
8998declared @code{protected} and is called automatically with a scanner
8999created with the correct @code{%lex-param}s.
9000@end deftypeop
8405b70c
PB
9001
9002@deftypemethod {YYParser} {boolean} parse ()
9003Run the syntactic analysis, and return @code{true} on success,
9004@code{false} otherwise.
9005@end deftypemethod
9006
01b477c6 9007@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9008During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9009from a syntax error.
9010@xref{Error Recovery}.
8405b70c
PB
9011@end deftypemethod
9012
9013@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9014@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9015Get or set the stream used for tracing the parsing. It defaults to
9016@code{System.err}.
9017@end deftypemethod
9018
9019@deftypemethod {YYParser} {int} getDebugLevel ()
9020@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9021Get or set the tracing level. Currently its value is either 0, no trace,
9022or nonzero, full tracing.
9023@end deftypemethod
9024
8405b70c
PB
9025
9026@node Java Scanner Interface
9027@subsection Java Scanner Interface
01b477c6 9028@c - %code lexer
8405b70c 9029@c - %lex-param
01b477c6 9030@c - Lexer interface
8405b70c 9031
e254a580
DJ
9032There are two possible ways to interface a Bison-generated Java parser
9033with a scanner: the scanner may be defined by @code{%code lexer}, or
9034defined elsewhere. In either case, the scanner has to implement the
9035@code{Lexer} inner interface of the parser class.
9036
9037In the first case, the body of the scanner class is placed in
9038@code{%code lexer} blocks. If you want to pass parameters from the
9039parser constructor to the scanner constructor, specify them with
9040@code{%lex-param}; they are passed before @code{%parse-param}s to the
9041constructor.
01b477c6 9042
59c5ac72 9043In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9044which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9045The constructor of the parser object will then accept an object
9046implementing the interface; @code{%lex-param} is not used in this
9047case.
9048
9049In both cases, the scanner has to implement the following methods.
9050
e254a580
DJ
9051@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9052This method is defined by the user to emit an error message. The first
9053parameter is omitted if location tracking is not active. Its type can be
9054changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9055@end deftypemethod
9056
e254a580 9057@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9058Return the next token. Its type is the return value, its semantic
9059value and location are saved and returned by the ther methods in the
e254a580
DJ
9060interface.
9061
9062Use @code{%define lex_throws} to specify any uncaught exceptions.
9063Default is @code{java.io.IOException}.
8405b70c
PB
9064@end deftypemethod
9065
9066@deftypemethod {Lexer} {Position} getStartPos ()
9067@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9068Return respectively the first position of the last token that
9069@code{yylex} returned, and the first position beyond it. These
9070methods are not needed unless location tracking is active.
8405b70c 9071
e254a580 9072The return type can be changed using @code{%define position_type
8405b70c
PB
9073"@var{class-name}".}
9074@end deftypemethod
9075
9076@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9077Return the semantical value of the last token that yylex returned.
8405b70c 9078
e254a580 9079The return type can be changed using @code{%define stype
8405b70c
PB
9080"@var{class-name}".}
9081@end deftypemethod
9082
9083
e254a580
DJ
9084@node Java Action Features
9085@subsection Special Features for Use in Java Actions
9086
9087The following special constructs can be uses in Java actions.
9088Other analogous C action features are currently unavailable for Java.
9089
9090Use @code{%define throws} to specify any uncaught exceptions from parser
9091actions, and initial actions specified by @code{%initial-action}.
9092
9093@defvar $@var{n}
9094The semantic value for the @var{n}th component of the current rule.
9095This may not be assigned to.
9096@xref{Java Semantic Values}.
9097@end defvar
9098
9099@defvar $<@var{typealt}>@var{n}
9100Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9101@xref{Java Semantic Values}.
9102@end defvar
9103
9104@defvar $$
9105The semantic value for the grouping made by the current rule. As a
9106value, this is in the base type (@code{Object} or as specified by
9107@code{%define stype}) as in not cast to the declared subtype because
9108casts are not allowed on the left-hand side of Java assignments.
9109Use an explicit Java cast if the correct subtype is needed.
9110@xref{Java Semantic Values}.
9111@end defvar
9112
9113@defvar $<@var{typealt}>$
9114Same as @code{$$} since Java always allow assigning to the base type.
9115Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9116for setting the value but there is currently no easy way to distinguish
9117these constructs.
9118@xref{Java Semantic Values}.
9119@end defvar
9120
9121@defvar @@@var{n}
9122The location information of the @var{n}th component of the current rule.
9123This may not be assigned to.
9124@xref{Java Location Values}.
9125@end defvar
9126
9127@defvar @@$
9128The location information of the grouping made by the current rule.
9129@xref{Java Location Values}.
9130@end defvar
9131
9132@deffn {Statement} {return YYABORT;}
9133Return immediately from the parser, indicating failure.
9134@xref{Java Parser Interface}.
9135@end deffn
8405b70c 9136
e254a580
DJ
9137@deffn {Statement} {return YYACCEPT;}
9138Return immediately from the parser, indicating success.
9139@xref{Java Parser Interface}.
9140@end deffn
8405b70c 9141
e254a580
DJ
9142@deffn {Statement} {return YYERROR;}
9143Start error recovery without printing an error message.
9144@xref{Error Recovery}.
9145@end deffn
8405b70c 9146
e254a580
DJ
9147@deffn {Statement} {return YYFAIL;}
9148Print an error message and start error recovery.
9149@xref{Error Recovery}.
9150@end deffn
8405b70c 9151
e254a580
DJ
9152@deftypefn {Function} {boolean} recovering ()
9153Return whether error recovery is being done. In this state, the parser
9154reads token until it reaches a known state, and then restarts normal
9155operation.
9156@xref{Error Recovery}.
9157@end deftypefn
8405b70c 9158
e254a580
DJ
9159@deftypefn {Function} {protected void} yyerror (String msg)
9160@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9161@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9162Print an error message using the @code{yyerror} method of the scanner
9163instance in use.
9164@end deftypefn
8405b70c 9165
8405b70c 9166
8405b70c
PB
9167@node Java Differences
9168@subsection Differences between C/C++ and Java Grammars
9169
9170The different structure of the Java language forces several differences
9171between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9172section summarizes these differences.
8405b70c
PB
9173
9174@itemize
9175@item
01b477c6 9176Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9177@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9178macros. Instead, they should be preceded by @code{return} when they
9179appear in an action. The actual definition of these symbols is
8405b70c
PB
9180opaque to the Bison grammar, and it might change in the future. The
9181only meaningful operation that you can do, is to return them.
e254a580 9182See @pxref{Java Action Features}.
8405b70c
PB
9183
9184Note that of these three symbols, only @code{YYACCEPT} and
9185@code{YYABORT} will cause a return from the @code{yyparse}
9186method@footnote{Java parsers include the actions in a separate
9187method than @code{yyparse} in order to have an intuitive syntax that
9188corresponds to these C macros.}.
9189
e254a580
DJ
9190@item
9191Java lacks unions, so @code{%union} has no effect. Instead, semantic
9192values have a common base type: @code{Object} or as specified by
9193@code{%define stype}. Angle backets on @code{%token}, @code{type},
9194@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9195an union. The type of @code{$$}, even with angle brackets, is the base
9196type since Java casts are not allow on the left-hand side of assignments.
9197Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9198left-hand side of assignments. See @pxref{Java Semantic Values} and
9199@pxref{Java Action Features}.
9200
8405b70c
PB
9201@item
9202The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9203@table @asis
9204@item @code{%code imports}
9205blocks are placed at the beginning of the Java source code. They may
9206include copyright notices. For a @code{package} declarations, it is
9207suggested to use @code{%define package} instead.
8405b70c 9208
01b477c6
PB
9209@item unqualified @code{%code}
9210blocks are placed inside the parser class.
9211
9212@item @code{%code lexer}
9213blocks, if specified, should include the implementation of the
9214scanner. If there is no such block, the scanner can be any class
9215that implements the appropriate interface (see @pxref{Java Scanner
9216Interface}).
29553547 9217@end table
8405b70c
PB
9218
9219Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9220In particular, @code{%@{ @dots{} %@}} blocks should not be used
9221and may give an error in future versions of Bison.
9222
01b477c6 9223The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9224be used to define other classes used by the parser @emph{outside}
9225the parser class.
8405b70c
PB
9226@end itemize
9227
e254a580
DJ
9228
9229@node Java Declarations Summary
9230@subsection Java Declarations Summary
9231
9232This summary only include declarations specific to Java or have special
9233meaning when used in a Java parser.
9234
9235@deffn {Directive} {%language "Java"}
9236Generate a Java class for the parser.
9237@end deffn
9238
9239@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9240A parameter for the lexer class defined by @code{%code lexer}
9241@emph{only}, added as parameters to the lexer constructor and the parser
9242constructor that @emph{creates} a lexer. Default is none.
9243@xref{Java Scanner Interface}.
9244@end deffn
9245
9246@deffn {Directive} %name-prefix "@var{prefix}"
9247The prefix of the parser class name @code{@var{prefix}Parser} if
9248@code{%define parser_class_name} is not used. Default is @code{YY}.
9249@xref{Java Bison Interface}.
9250@end deffn
9251
9252@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9253A parameter for the parser class added as parameters to constructor(s)
9254and as fields initialized by the constructor(s). Default is none.
9255@xref{Java Parser Interface}.
9256@end deffn
9257
9258@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9259Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9260@xref{Java Semantic Values}.
9261@end deffn
9262
9263@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9264Declare the type of nonterminals. Note that the angle brackets enclose
9265a Java @emph{type}.
9266@xref{Java Semantic Values}.
9267@end deffn
9268
9269@deffn {Directive} %code @{ @var{code} @dots{} @}
9270Code appended to the inside of the parser class.
9271@xref{Java Differences}.
9272@end deffn
9273
9274@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9275Code inserted just after the @code{package} declaration.
9276@xref{Java Differences}.
9277@end deffn
9278
9279@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9280Code added to the body of a inner lexer class within the parser class.
9281@xref{Java Scanner Interface}.
9282@end deffn
9283
9284@deffn {Directive} %% @var{code} @dots{}
9285Code (after the second @code{%%}) appended to the end of the file,
9286@emph{outside} the parser class.
9287@xref{Java Differences}.
9288@end deffn
9289
9290@deffn {Directive} %@{ @var{code} @dots{} %@}
9291Not supported. Use @code{%code import} instead.
9292@xref{Java Differences}.
9293@end deffn
9294
9295@deffn {Directive} {%define abstract}
9296Whether the parser class is declared @code{abstract}. Default is false.
9297@xref{Java Bison Interface}.
9298@end deffn
9299
9300@deffn {Directive} {%define extends} "@var{superclass}"
9301The superclass of the parser class. Default is none.
9302@xref{Java Bison Interface}.
9303@end deffn
9304
9305@deffn {Directive} {%define final}
9306Whether the parser class is declared @code{final}. Default is false.
9307@xref{Java Bison Interface}.
9308@end deffn
9309
9310@deffn {Directive} {%define implements} "@var{interfaces}"
9311The implemented interfaces of the parser class, a comma-separated list.
9312Default is none.
9313@xref{Java Bison Interface}.
9314@end deffn
9315
9316@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9317The exceptions thrown by the @code{yylex} method of the lexer, a
9318comma-separated list. Default is @code{java.io.IOException}.
9319@xref{Java Scanner Interface}.
9320@end deffn
9321
9322@deffn {Directive} {%define location_type} "@var{class}"
9323The name of the class used for locations (a range between two
9324positions). This class is generated as an inner class of the parser
9325class by @command{bison}. Default is @code{Location}.
9326@xref{Java Location Values}.
9327@end deffn
9328
9329@deffn {Directive} {%define package} "@var{package}"
9330The package to put the parser class in. Default is none.
9331@xref{Java Bison Interface}.
9332@end deffn
9333
9334@deffn {Directive} {%define parser_class_name} "@var{name}"
9335The name of the parser class. Default is @code{YYParser} or
9336@code{@var{name-prefix}Parser}.
9337@xref{Java Bison Interface}.
9338@end deffn
9339
9340@deffn {Directive} {%define position_type} "@var{class}"
9341The name of the class used for positions. This class must be supplied by
9342the user. Default is @code{Position}.
9343@xref{Java Location Values}.
9344@end deffn
9345
9346@deffn {Directive} {%define public}
9347Whether the parser class is declared @code{public}. Default is false.
9348@xref{Java Bison Interface}.
9349@end deffn
9350
9351@deffn {Directive} {%define stype} "@var{class}"
9352The base type of semantic values. Default is @code{Object}.
9353@xref{Java Semantic Values}.
9354@end deffn
9355
9356@deffn {Directive} {%define strictfp}
9357Whether the parser class is declared @code{strictfp}. Default is false.
9358@xref{Java Bison Interface}.
9359@end deffn
9360
9361@deffn {Directive} {%define throws} "@var{exceptions}"
9362The exceptions thrown by user-supplied parser actions and
9363@code{%initial-action}, a comma-separated list. Default is none.
9364@xref{Java Parser Interface}.
9365@end deffn
9366
9367
12545799 9368@c ================================================= FAQ
d1a1114f
AD
9369
9370@node FAQ
9371@chapter Frequently Asked Questions
9372@cindex frequently asked questions
9373@cindex questions
9374
9375Several questions about Bison come up occasionally. Here some of them
9376are addressed.
9377
9378@menu
55ba27be
AD
9379* Memory Exhausted:: Breaking the Stack Limits
9380* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9381* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9382* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9383* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9384* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9385* I can't build Bison:: Troubleshooting
9386* Where can I find help?:: Troubleshouting
9387* Bug Reports:: Troublereporting
8405b70c 9388* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9389* Beta Testing:: Experimenting development versions
9390* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9391@end menu
9392
1a059451
PE
9393@node Memory Exhausted
9394@section Memory Exhausted
d1a1114f
AD
9395
9396@display
1a059451 9397My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9398message. What can I do?
9399@end display
9400
9401This question is already addressed elsewhere, @xref{Recursion,
9402,Recursive Rules}.
9403
e64fec0a
PE
9404@node How Can I Reset the Parser
9405@section How Can I Reset the Parser
5b066063 9406
0e14ad77
PE
9407The following phenomenon has several symptoms, resulting in the
9408following typical questions:
5b066063
AD
9409
9410@display
9411I invoke @code{yyparse} several times, and on correct input it works
9412properly; but when a parse error is found, all the other calls fail
0e14ad77 9413too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9414@end display
9415
9416@noindent
9417or
9418
9419@display
0e14ad77 9420My parser includes support for an @samp{#include}-like feature, in
5b066063 9421which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9422although I did specify @code{%define api.pure}.
5b066063
AD
9423@end display
9424
0e14ad77
PE
9425These problems typically come not from Bison itself, but from
9426Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9427speed, they might not notice a change of input file. As a
9428demonstration, consider the following source file,
9429@file{first-line.l}:
9430
9431@verbatim
9432%{
9433#include <stdio.h>
9434#include <stdlib.h>
9435%}
9436%%
9437.*\n ECHO; return 1;
9438%%
9439int
0e14ad77 9440yyparse (char const *file)
5b066063
AD
9441{
9442 yyin = fopen (file, "r");
9443 if (!yyin)
9444 exit (2);
fa7e68c3 9445 /* One token only. */
5b066063 9446 yylex ();
0e14ad77 9447 if (fclose (yyin) != 0)
5b066063
AD
9448 exit (3);
9449 return 0;
9450}
9451
9452int
0e14ad77 9453main (void)
5b066063
AD
9454{
9455 yyparse ("input");
9456 yyparse ("input");
9457 return 0;
9458}
9459@end verbatim
9460
9461@noindent
9462If the file @file{input} contains
9463
9464@verbatim
9465input:1: Hello,
9466input:2: World!
9467@end verbatim
9468
9469@noindent
0e14ad77 9470then instead of getting the first line twice, you get:
5b066063
AD
9471
9472@example
9473$ @kbd{flex -ofirst-line.c first-line.l}
9474$ @kbd{gcc -ofirst-line first-line.c -ll}
9475$ @kbd{./first-line}
9476input:1: Hello,
9477input:2: World!
9478@end example
9479
0e14ad77
PE
9480Therefore, whenever you change @code{yyin}, you must tell the
9481Lex-generated scanner to discard its current buffer and switch to the
9482new one. This depends upon your implementation of Lex; see its
9483documentation for more. For Flex, it suffices to call
9484@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9485Flex-generated scanner needs to read from several input streams to
9486handle features like include files, you might consider using Flex
9487functions like @samp{yy_switch_to_buffer} that manipulate multiple
9488input buffers.
5b066063 9489
b165c324
AD
9490If your Flex-generated scanner uses start conditions (@pxref{Start
9491conditions, , Start conditions, flex, The Flex Manual}), you might
9492also want to reset the scanner's state, i.e., go back to the initial
9493start condition, through a call to @samp{BEGIN (0)}.
9494
fef4cb51
AD
9495@node Strings are Destroyed
9496@section Strings are Destroyed
9497
9498@display
c7e441b4 9499My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9500them. Instead of reporting @samp{"foo", "bar"}, it reports
9501@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9502@end display
9503
9504This error is probably the single most frequent ``bug report'' sent to
9505Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9506of the scanner. Consider the following Lex code:
fef4cb51
AD
9507
9508@verbatim
9509%{
9510#include <stdio.h>
9511char *yylval = NULL;
9512%}
9513%%
9514.* yylval = yytext; return 1;
9515\n /* IGNORE */
9516%%
9517int
9518main ()
9519{
fa7e68c3 9520 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9521 char *fst = (yylex (), yylval);
9522 char *snd = (yylex (), yylval);
9523 printf ("\"%s\", \"%s\"\n", fst, snd);
9524 return 0;
9525}
9526@end verbatim
9527
9528If you compile and run this code, you get:
9529
9530@example
9531$ @kbd{flex -osplit-lines.c split-lines.l}
9532$ @kbd{gcc -osplit-lines split-lines.c -ll}
9533$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9534"one
9535two", "two"
9536@end example
9537
9538@noindent
9539this is because @code{yytext} is a buffer provided for @emph{reading}
9540in the action, but if you want to keep it, you have to duplicate it
9541(e.g., using @code{strdup}). Note that the output may depend on how
9542your implementation of Lex handles @code{yytext}. For instance, when
9543given the Lex compatibility option @option{-l} (which triggers the
9544option @samp{%array}) Flex generates a different behavior:
9545
9546@example
9547$ @kbd{flex -l -osplit-lines.c split-lines.l}
9548$ @kbd{gcc -osplit-lines split-lines.c -ll}
9549$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9550"two", "two"
9551@end example
9552
9553
2fa09258
AD
9554@node Implementing Gotos/Loops
9555@section Implementing Gotos/Loops
a06ea4aa
AD
9556
9557@display
9558My simple calculator supports variables, assignments, and functions,
2fa09258 9559but how can I implement gotos, or loops?
a06ea4aa
AD
9560@end display
9561
9562Although very pedagogical, the examples included in the document blur
a1c84f45 9563the distinction to make between the parser---whose job is to recover
a06ea4aa 9564the structure of a text and to transmit it to subsequent modules of
a1c84f45 9565the program---and the processing (such as the execution) of this
a06ea4aa
AD
9566structure. This works well with so called straight line programs,
9567i.e., precisely those that have a straightforward execution model:
9568execute simple instructions one after the others.
9569
9570@cindex abstract syntax tree
9571@cindex @acronym{AST}
9572If you want a richer model, you will probably need to use the parser
9573to construct a tree that does represent the structure it has
9574recovered; this tree is usually called the @dfn{abstract syntax tree},
9575or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9576traversing it in various ways, will enable treatments such as its
9577execution or its translation, which will result in an interpreter or a
9578compiler.
9579
9580This topic is way beyond the scope of this manual, and the reader is
9581invited to consult the dedicated literature.
9582
9583
ed2e6384
AD
9584@node Multiple start-symbols
9585@section Multiple start-symbols
9586
9587@display
9588I have several closely related grammars, and I would like to share their
9589implementations. In fact, I could use a single grammar but with
9590multiple entry points.
9591@end display
9592
9593Bison does not support multiple start-symbols, but there is a very
9594simple means to simulate them. If @code{foo} and @code{bar} are the two
9595pseudo start-symbols, then introduce two new tokens, say
9596@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9597real start-symbol:
9598
9599@example
9600%token START_FOO START_BAR;
9601%start start;
9602start: START_FOO foo
9603 | START_BAR bar;
9604@end example
9605
9606These tokens prevents the introduction of new conflicts. As far as the
9607parser goes, that is all that is needed.
9608
9609Now the difficult part is ensuring that the scanner will send these
9610tokens first. If your scanner is hand-written, that should be
9611straightforward. If your scanner is generated by Lex, them there is
9612simple means to do it: recall that anything between @samp{%@{ ... %@}}
9613after the first @code{%%} is copied verbatim in the top of the generated
9614@code{yylex} function. Make sure a variable @code{start_token} is
9615available in the scanner (e.g., a global variable or using
9616@code{%lex-param} etc.), and use the following:
9617
9618@example
9619 /* @r{Prologue.} */
9620%%
9621%@{
9622 if (start_token)
9623 @{
9624 int t = start_token;
9625 start_token = 0;
9626 return t;
9627 @}
9628%@}
9629 /* @r{The rules.} */
9630@end example
9631
9632
55ba27be
AD
9633@node Secure? Conform?
9634@section Secure? Conform?
9635
9636@display
9637Is Bison secure? Does it conform to POSIX?
9638@end display
9639
9640If you're looking for a guarantee or certification, we don't provide it.
9641However, Bison is intended to be a reliable program that conforms to the
9642@acronym{POSIX} specification for Yacc. If you run into problems,
9643please send us a bug report.
9644
9645@node I can't build Bison
9646@section I can't build Bison
9647
9648@display
8c5b881d
PE
9649I can't build Bison because @command{make} complains that
9650@code{msgfmt} is not found.
55ba27be
AD
9651What should I do?
9652@end display
9653
9654Like most GNU packages with internationalization support, that feature
9655is turned on by default. If you have problems building in the @file{po}
9656subdirectory, it indicates that your system's internationalization
9657support is lacking. You can re-configure Bison with
9658@option{--disable-nls} to turn off this support, or you can install GNU
9659gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9660Bison. See the file @file{ABOUT-NLS} for more information.
9661
9662
9663@node Where can I find help?
9664@section Where can I find help?
9665
9666@display
9667I'm having trouble using Bison. Where can I find help?
9668@end display
9669
9670First, read this fine manual. Beyond that, you can send mail to
9671@email{help-bison@@gnu.org}. This mailing list is intended to be
9672populated with people who are willing to answer questions about using
9673and installing Bison. Please keep in mind that (most of) the people on
9674the list have aspects of their lives which are not related to Bison (!),
9675so you may not receive an answer to your question right away. This can
9676be frustrating, but please try not to honk them off; remember that any
9677help they provide is purely voluntary and out of the kindness of their
9678hearts.
9679
9680@node Bug Reports
9681@section Bug Reports
9682
9683@display
9684I found a bug. What should I include in the bug report?
9685@end display
9686
9687Before you send a bug report, make sure you are using the latest
9688version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9689mirrors. Be sure to include the version number in your bug report. If
9690the bug is present in the latest version but not in a previous version,
9691try to determine the most recent version which did not contain the bug.
9692
9693If the bug is parser-related, you should include the smallest grammar
9694you can which demonstrates the bug. The grammar file should also be
9695complete (i.e., I should be able to run it through Bison without having
9696to edit or add anything). The smaller and simpler the grammar, the
9697easier it will be to fix the bug.
9698
9699Include information about your compilation environment, including your
9700operating system's name and version and your compiler's name and
9701version. If you have trouble compiling, you should also include a
9702transcript of the build session, starting with the invocation of
9703`configure'. Depending on the nature of the bug, you may be asked to
9704send additional files as well (such as `config.h' or `config.cache').
9705
9706Patches are most welcome, but not required. That is, do not hesitate to
9707send a bug report just because you can not provide a fix.
9708
9709Send bug reports to @email{bug-bison@@gnu.org}.
9710
8405b70c
PB
9711@node More Languages
9712@section More Languages
55ba27be
AD
9713
9714@display
8405b70c 9715Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9716favorite language here}?
9717@end display
9718
8405b70c 9719C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9720languages; contributions are welcome.
9721
9722@node Beta Testing
9723@section Beta Testing
9724
9725@display
9726What is involved in being a beta tester?
9727@end display
9728
9729It's not terribly involved. Basically, you would download a test
9730release, compile it, and use it to build and run a parser or two. After
9731that, you would submit either a bug report or a message saying that
9732everything is okay. It is important to report successes as well as
9733failures because test releases eventually become mainstream releases,
9734but only if they are adequately tested. If no one tests, development is
9735essentially halted.
9736
9737Beta testers are particularly needed for operating systems to which the
9738developers do not have easy access. They currently have easy access to
9739recent GNU/Linux and Solaris versions. Reports about other operating
9740systems are especially welcome.
9741
9742@node Mailing Lists
9743@section Mailing Lists
9744
9745@display
9746How do I join the help-bison and bug-bison mailing lists?
9747@end display
9748
9749See @url{http://lists.gnu.org/}.
a06ea4aa 9750
d1a1114f
AD
9751@c ================================================= Table of Symbols
9752
342b8b6e 9753@node Table of Symbols
bfa74976
RS
9754@appendix Bison Symbols
9755@cindex Bison symbols, table of
9756@cindex symbols in Bison, table of
9757
18b519c0 9758@deffn {Variable} @@$
3ded9a63 9759In an action, the location of the left-hand side of the rule.
88bce5a2 9760@xref{Locations, , Locations Overview}.
18b519c0 9761@end deffn
3ded9a63 9762
18b519c0 9763@deffn {Variable} @@@var{n}
3ded9a63
AD
9764In an action, the location of the @var{n}-th symbol of the right-hand
9765side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9766@end deffn
3ded9a63 9767
18b519c0 9768@deffn {Variable} $$
3ded9a63
AD
9769In an action, the semantic value of the left-hand side of the rule.
9770@xref{Actions}.
18b519c0 9771@end deffn
3ded9a63 9772
18b519c0 9773@deffn {Variable} $@var{n}
3ded9a63
AD
9774In an action, the semantic value of the @var{n}-th symbol of the
9775right-hand side of the rule. @xref{Actions}.
18b519c0 9776@end deffn
3ded9a63 9777
dd8d9022
AD
9778@deffn {Delimiter} %%
9779Delimiter used to separate the grammar rule section from the
9780Bison declarations section or the epilogue.
9781@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9782@end deffn
bfa74976 9783
dd8d9022
AD
9784@c Don't insert spaces, or check the DVI output.
9785@deffn {Delimiter} %@{@var{code}%@}
9786All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9787the output file uninterpreted. Such code forms the prologue of the input
9788file. @xref{Grammar Outline, ,Outline of a Bison
9789Grammar}.
18b519c0 9790@end deffn
bfa74976 9791
dd8d9022
AD
9792@deffn {Construct} /*@dots{}*/
9793Comment delimiters, as in C.
18b519c0 9794@end deffn
bfa74976 9795
dd8d9022
AD
9796@deffn {Delimiter} :
9797Separates a rule's result from its components. @xref{Rules, ,Syntax of
9798Grammar Rules}.
18b519c0 9799@end deffn
bfa74976 9800
dd8d9022
AD
9801@deffn {Delimiter} ;
9802Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9803@end deffn
bfa74976 9804
dd8d9022
AD
9805@deffn {Delimiter} |
9806Separates alternate rules for the same result nonterminal.
9807@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9808@end deffn
bfa74976 9809
12e35840
JD
9810@deffn {Directive} <*>
9811Used to define a default tagged @code{%destructor} or default tagged
9812@code{%printer}.
85894313
JD
9813
9814This feature is experimental.
9815More user feedback will help to determine whether it should become a permanent
9816feature.
9817
12e35840
JD
9818@xref{Destructor Decl, , Freeing Discarded Symbols}.
9819@end deffn
9820
3ebecc24 9821@deffn {Directive} <>
12e35840
JD
9822Used to define a default tagless @code{%destructor} or default tagless
9823@code{%printer}.
85894313
JD
9824
9825This feature is experimental.
9826More user feedback will help to determine whether it should become a permanent
9827feature.
9828
12e35840
JD
9829@xref{Destructor Decl, , Freeing Discarded Symbols}.
9830@end deffn
9831
dd8d9022
AD
9832@deffn {Symbol} $accept
9833The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9834$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9835Start-Symbol}. It cannot be used in the grammar.
18b519c0 9836@end deffn
bfa74976 9837
136a0f76 9838@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9839@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9840Insert @var{code} verbatim into output parser source.
9841@xref{Decl Summary,,%code}.
9bc0dd67
JD
9842@end deffn
9843
9844@deffn {Directive} %debug
9845Equip the parser for debugging. @xref{Decl Summary}.
9846@end deffn
9847
18b519c0 9848@deffn {Directive} %debug
6deb4447 9849Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9850@end deffn
6deb4447 9851
91d2c560 9852@ifset defaultprec
22fccf95
PE
9853@deffn {Directive} %default-prec
9854Assign a precedence to rules that lack an explicit @samp{%prec}
9855modifier. @xref{Contextual Precedence, ,Context-Dependent
9856Precedence}.
39a06c25 9857@end deffn
91d2c560 9858@end ifset
39a06c25 9859
148d66d8
JD
9860@deffn {Directive} %define @var{define-variable}
9861@deffnx {Directive} %define @var{define-variable} @var{value}
9862Define a variable to adjust Bison's behavior.
9863@xref{Decl Summary,,%define}.
9864@end deffn
9865
18b519c0 9866@deffn {Directive} %defines
6deb4447
AD
9867Bison declaration to create a header file meant for the scanner.
9868@xref{Decl Summary}.
18b519c0 9869@end deffn
6deb4447 9870
02975b9a
JD
9871@deffn {Directive} %defines @var{defines-file}
9872Same as above, but save in the file @var{defines-file}.
9873@xref{Decl Summary}.
9874@end deffn
9875
18b519c0 9876@deffn {Directive} %destructor
258b75ca 9877Specify how the parser should reclaim the memory associated to
fa7e68c3 9878discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9879@end deffn
72f889cc 9880
18b519c0 9881@deffn {Directive} %dprec
676385e2 9882Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9883time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9884@acronym{GLR} Parsers}.
18b519c0 9885@end deffn
676385e2 9886
dd8d9022
AD
9887@deffn {Symbol} $end
9888The predefined token marking the end of the token stream. It cannot be
9889used in the grammar.
9890@end deffn
9891
9892@deffn {Symbol} error
9893A token name reserved for error recovery. This token may be used in
9894grammar rules so as to allow the Bison parser to recognize an error in
9895the grammar without halting the process. In effect, a sentence
9896containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9897token @code{error} becomes the current lookahead token. Actions
9898corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9899token is reset to the token that originally caused the violation.
9900@xref{Error Recovery}.
18d192f0
AD
9901@end deffn
9902
18b519c0 9903@deffn {Directive} %error-verbose
2a8d363a
AD
9904Bison declaration to request verbose, specific error message strings
9905when @code{yyerror} is called.
18b519c0 9906@end deffn
2a8d363a 9907
02975b9a 9908@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9909Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9910Summary}.
18b519c0 9911@end deffn
d8988b2f 9912
18b519c0 9913@deffn {Directive} %glr-parser
c827f760
PE
9914Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9915Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9916@end deffn
676385e2 9917
dd8d9022
AD
9918@deffn {Directive} %initial-action
9919Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9920@end deffn
9921
e6e704dc
JD
9922@deffn {Directive} %language
9923Specify the programming language for the generated parser.
9924@xref{Decl Summary}.
9925@end deffn
9926
18b519c0 9927@deffn {Directive} %left
d78f0ac9 9928Bison declaration to assign precedence and left associativity to token(s).
bfa74976 9929@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9930@end deffn
bfa74976 9931
feeb0eda 9932@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9933Bison declaration to specifying an additional parameter that
9934@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9935for Pure Parsers}.
18b519c0 9936@end deffn
2a8d363a 9937
18b519c0 9938@deffn {Directive} %merge
676385e2 9939Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9940reduce/reduce conflict with a rule having the same merging function, the
676385e2 9941function is applied to the two semantic values to get a single result.
c827f760 9942@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9943@end deffn
676385e2 9944
02975b9a 9945@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9946Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9947@end deffn
d8988b2f 9948
91d2c560 9949@ifset defaultprec
22fccf95
PE
9950@deffn {Directive} %no-default-prec
9951Do not assign a precedence to rules that lack an explicit @samp{%prec}
9952modifier. @xref{Contextual Precedence, ,Context-Dependent
9953Precedence}.
9954@end deffn
91d2c560 9955@end ifset
22fccf95 9956
18b519c0 9957@deffn {Directive} %no-lines
931c7513
RS
9958Bison declaration to avoid generating @code{#line} directives in the
9959parser file. @xref{Decl Summary}.
18b519c0 9960@end deffn
931c7513 9961
18b519c0 9962@deffn {Directive} %nonassoc
d78f0ac9 9963Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 9964@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9965@end deffn
bfa74976 9966
02975b9a 9967@deffn {Directive} %output "@var{file}"
72d2299c 9968Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9969Summary}.
18b519c0 9970@end deffn
d8988b2f 9971
feeb0eda 9972@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9973Bison declaration to specifying an additional parameter that
9974@code{yyparse} should accept. @xref{Parser Function,, The Parser
9975Function @code{yyparse}}.
18b519c0 9976@end deffn
2a8d363a 9977
18b519c0 9978@deffn {Directive} %prec
bfa74976
RS
9979Bison declaration to assign a precedence to a specific rule.
9980@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9981@end deffn
bfa74976 9982
d78f0ac9
AD
9983@deffn {Directive} %precedence
9984Bison declaration to assign precedence to token(s), but no associativity
9985@xref{Precedence Decl, ,Operator Precedence}.
9986@end deffn
9987
18b519c0 9988@deffn {Directive} %pure-parser
d9df47b6
JD
9989Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9990for which Bison is more careful to warn about unreasonable usage.
18b519c0 9991@end deffn
bfa74976 9992
b50d2359 9993@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9994Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9995Require a Version of Bison}.
b50d2359
AD
9996@end deffn
9997
18b519c0 9998@deffn {Directive} %right
d78f0ac9 9999Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10000@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10001@end deffn
bfa74976 10002
e6e704dc
JD
10003@deffn {Directive} %skeleton
10004Specify the skeleton to use; usually for development.
10005@xref{Decl Summary}.
10006@end deffn
10007
18b519c0 10008@deffn {Directive} %start
704a47c4
AD
10009Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10010Start-Symbol}.
18b519c0 10011@end deffn
bfa74976 10012
18b519c0 10013@deffn {Directive} %token
bfa74976
RS
10014Bison declaration to declare token(s) without specifying precedence.
10015@xref{Token Decl, ,Token Type Names}.
18b519c0 10016@end deffn
bfa74976 10017
18b519c0 10018@deffn {Directive} %token-table
931c7513
RS
10019Bison declaration to include a token name table in the parser file.
10020@xref{Decl Summary}.
18b519c0 10021@end deffn
931c7513 10022
18b519c0 10023@deffn {Directive} %type
704a47c4
AD
10024Bison declaration to declare nonterminals. @xref{Type Decl,
10025,Nonterminal Symbols}.
18b519c0 10026@end deffn
bfa74976 10027
dd8d9022
AD
10028@deffn {Symbol} $undefined
10029The predefined token onto which all undefined values returned by
10030@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10031@code{error}.
10032@end deffn
10033
18b519c0 10034@deffn {Directive} %union
bfa74976
RS
10035Bison declaration to specify several possible data types for semantic
10036values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10037@end deffn
bfa74976 10038
dd8d9022
AD
10039@deffn {Macro} YYABORT
10040Macro to pretend that an unrecoverable syntax error has occurred, by
10041making @code{yyparse} return 1 immediately. The error reporting
10042function @code{yyerror} is not called. @xref{Parser Function, ,The
10043Parser Function @code{yyparse}}.
8405b70c
PB
10044
10045For Java parsers, this functionality is invoked using @code{return YYABORT;}
10046instead.
dd8d9022 10047@end deffn
3ded9a63 10048
dd8d9022
AD
10049@deffn {Macro} YYACCEPT
10050Macro to pretend that a complete utterance of the language has been
10051read, by making @code{yyparse} return 0 immediately.
10052@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10053
10054For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10055instead.
dd8d9022 10056@end deffn
bfa74976 10057
dd8d9022 10058@deffn {Macro} YYBACKUP
742e4900 10059Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10060token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10061@end deffn
bfa74976 10062
dd8d9022 10063@deffn {Variable} yychar
32c29292 10064External integer variable that contains the integer value of the
742e4900 10065lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10066@code{yyparse}.) Error-recovery rule actions may examine this variable.
10067@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10068@end deffn
bfa74976 10069
dd8d9022
AD
10070@deffn {Variable} yyclearin
10071Macro used in error-recovery rule actions. It clears the previous
742e4900 10072lookahead token. @xref{Error Recovery}.
18b519c0 10073@end deffn
bfa74976 10074
dd8d9022
AD
10075@deffn {Macro} YYDEBUG
10076Macro to define to equip the parser with tracing code. @xref{Tracing,
10077,Tracing Your Parser}.
18b519c0 10078@end deffn
bfa74976 10079
dd8d9022
AD
10080@deffn {Variable} yydebug
10081External integer variable set to zero by default. If @code{yydebug}
10082is given a nonzero value, the parser will output information on input
10083symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10084@end deffn
bfa74976 10085
dd8d9022
AD
10086@deffn {Macro} yyerrok
10087Macro to cause parser to recover immediately to its normal mode
10088after a syntax error. @xref{Error Recovery}.
10089@end deffn
10090
10091@deffn {Macro} YYERROR
10092Macro to pretend that a syntax error has just been detected: call
10093@code{yyerror} and then perform normal error recovery if possible
10094(@pxref{Error Recovery}), or (if recovery is impossible) make
10095@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10096
10097For Java parsers, this functionality is invoked using @code{return YYERROR;}
10098instead.
dd8d9022
AD
10099@end deffn
10100
10101@deffn {Function} yyerror
10102User-supplied function to be called by @code{yyparse} on error.
10103@xref{Error Reporting, ,The Error
10104Reporting Function @code{yyerror}}.
10105@end deffn
10106
10107@deffn {Macro} YYERROR_VERBOSE
10108An obsolete macro that you define with @code{#define} in the prologue
10109to request verbose, specific error message strings
10110when @code{yyerror} is called. It doesn't matter what definition you
10111use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10112@code{%error-verbose} is preferred.
10113@end deffn
10114
10115@deffn {Macro} YYINITDEPTH
10116Macro for specifying the initial size of the parser stack.
1a059451 10117@xref{Memory Management}.
dd8d9022
AD
10118@end deffn
10119
10120@deffn {Function} yylex
10121User-supplied lexical analyzer function, called with no arguments to get
10122the next token. @xref{Lexical, ,The Lexical Analyzer Function
10123@code{yylex}}.
10124@end deffn
10125
10126@deffn {Macro} YYLEX_PARAM
10127An obsolete macro for specifying an extra argument (or list of extra
32c29292 10128arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10129macro is deprecated, and is supported only for Yacc like parsers.
10130@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10131@end deffn
10132
10133@deffn {Variable} yylloc
10134External variable in which @code{yylex} should place the line and column
10135numbers associated with a token. (In a pure parser, it is a local
10136variable within @code{yyparse}, and its address is passed to
32c29292
JD
10137@code{yylex}.)
10138You can ignore this variable if you don't use the @samp{@@} feature in the
10139grammar actions.
10140@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10141In semantic actions, it stores the location of the lookahead token.
32c29292 10142@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10143@end deffn
10144
10145@deffn {Type} YYLTYPE
10146Data type of @code{yylloc}; by default, a structure with four
10147members. @xref{Location Type, , Data Types of Locations}.
10148@end deffn
10149
10150@deffn {Variable} yylval
10151External variable in which @code{yylex} should place the semantic
10152value associated with a token. (In a pure parser, it is a local
10153variable within @code{yyparse}, and its address is passed to
32c29292
JD
10154@code{yylex}.)
10155@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10156In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10157@xref{Actions, ,Actions}.
dd8d9022
AD
10158@end deffn
10159
10160@deffn {Macro} YYMAXDEPTH
1a059451
PE
10161Macro for specifying the maximum size of the parser stack. @xref{Memory
10162Management}.
dd8d9022
AD
10163@end deffn
10164
10165@deffn {Variable} yynerrs
8a2800e7 10166Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10167(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10168pure push parser, it is a member of yypstate.)
dd8d9022
AD
10169@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10170@end deffn
10171
10172@deffn {Function} yyparse
10173The parser function produced by Bison; call this function to start
10174parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10175@end deffn
10176
9987d1b3 10177@deffn {Function} yypstate_delete
f4101aa6 10178The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10179call this function to delete the memory associated with a parser.
f4101aa6 10180@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10181@code{yypstate_delete}}.
59da312b
JD
10182(The current push parsing interface is experimental and may evolve.
10183More user feedback will help to stabilize it.)
9987d1b3
JD
10184@end deffn
10185
10186@deffn {Function} yypstate_new
f4101aa6 10187The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10188call this function to create a new parser.
f4101aa6 10189@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10190@code{yypstate_new}}.
59da312b
JD
10191(The current push parsing interface is experimental and may evolve.
10192More user feedback will help to stabilize it.)
9987d1b3
JD
10193@end deffn
10194
10195@deffn {Function} yypull_parse
f4101aa6
AD
10196The parser function produced by Bison in push mode; call this function to
10197parse the rest of the input stream.
10198@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10199@code{yypull_parse}}.
59da312b
JD
10200(The current push parsing interface is experimental and may evolve.
10201More user feedback will help to stabilize it.)
9987d1b3
JD
10202@end deffn
10203
10204@deffn {Function} yypush_parse
f4101aa6
AD
10205The parser function produced by Bison in push mode; call this function to
10206parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10207@code{yypush_parse}}.
59da312b
JD
10208(The current push parsing interface is experimental and may evolve.
10209More user feedback will help to stabilize it.)
9987d1b3
JD
10210@end deffn
10211
dd8d9022
AD
10212@deffn {Macro} YYPARSE_PARAM
10213An obsolete macro for specifying the name of a parameter that
10214@code{yyparse} should accept. The use of this macro is deprecated, and
10215is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10216Conventions for Pure Parsers}.
10217@end deffn
10218
10219@deffn {Macro} YYRECOVERING
02103984
PE
10220The expression @code{YYRECOVERING ()} yields 1 when the parser
10221is recovering from a syntax error, and 0 otherwise.
10222@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10223@end deffn
10224
10225@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10226Macro used to control the use of @code{alloca} when the C
10227@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10228the parser will use @code{malloc} to extend its stacks. If defined to
102291, the parser will use @code{alloca}. Values other than 0 and 1 are
10230reserved for future Bison extensions. If not defined,
10231@code{YYSTACK_USE_ALLOCA} defaults to 0.
10232
55289366 10233In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10234limited stack and with unreliable stack-overflow checking, you should
10235set @code{YYMAXDEPTH} to a value that cannot possibly result in
10236unchecked stack overflow on any of your target hosts when
10237@code{alloca} is called. You can inspect the code that Bison
10238generates in order to determine the proper numeric values. This will
10239require some expertise in low-level implementation details.
dd8d9022
AD
10240@end deffn
10241
10242@deffn {Type} YYSTYPE
10243Data type of semantic values; @code{int} by default.
10244@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10245@end deffn
bfa74976 10246
342b8b6e 10247@node Glossary
bfa74976
RS
10248@appendix Glossary
10249@cindex glossary
10250
10251@table @asis
c827f760
PE
10252@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10253Formal method of specifying context-free grammars originally proposed
10254by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10255committee document contributing to what became the Algol 60 report.
10256@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10257
10258@item Context-free grammars
10259Grammars specified as rules that can be applied regardless of context.
10260Thus, if there is a rule which says that an integer can be used as an
10261expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10262permitted. @xref{Language and Grammar, ,Languages and Context-Free
10263Grammars}.
bfa74976
RS
10264
10265@item Dynamic allocation
10266Allocation of memory that occurs during execution, rather than at
10267compile time or on entry to a function.
10268
10269@item Empty string
10270Analogous to the empty set in set theory, the empty string is a
10271character string of length zero.
10272
10273@item Finite-state stack machine
10274A ``machine'' that has discrete states in which it is said to exist at
10275each instant in time. As input to the machine is processed, the
10276machine moves from state to state as specified by the logic of the
10277machine. In the case of the parser, the input is the language being
10278parsed, and the states correspond to various stages in the grammar
c827f760 10279rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10280
c827f760 10281@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10282A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10283that are not @acronym{LALR}(1). It resolves situations that Bison's
10284usual @acronym{LALR}(1)
676385e2
PH
10285algorithm cannot by effectively splitting off multiple parsers, trying all
10286possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10287right context. @xref{Generalized LR Parsing, ,Generalized
10288@acronym{LR} Parsing}.
676385e2 10289
bfa74976
RS
10290@item Grouping
10291A language construct that is (in general) grammatically divisible;
c827f760 10292for example, `expression' or `declaration' in C@.
bfa74976
RS
10293@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10294
10295@item Infix operator
10296An arithmetic operator that is placed between the operands on which it
10297performs some operation.
10298
10299@item Input stream
10300A continuous flow of data between devices or programs.
10301
10302@item Language construct
10303One of the typical usage schemas of the language. For example, one of
10304the constructs of the C language is the @code{if} statement.
10305@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10306
10307@item Left associativity
10308Operators having left associativity are analyzed from left to right:
10309@samp{a+b+c} first computes @samp{a+b} and then combines with
10310@samp{c}. @xref{Precedence, ,Operator Precedence}.
10311
10312@item Left recursion
89cab50d
AD
10313A rule whose result symbol is also its first component symbol; for
10314example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10315Rules}.
bfa74976
RS
10316
10317@item Left-to-right parsing
10318Parsing a sentence of a language by analyzing it token by token from
c827f760 10319left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10320
10321@item Lexical analyzer (scanner)
10322A function that reads an input stream and returns tokens one by one.
10323@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10324
10325@item Lexical tie-in
10326A flag, set by actions in the grammar rules, which alters the way
10327tokens are parsed. @xref{Lexical Tie-ins}.
10328
931c7513 10329@item Literal string token
14ded682 10330A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10331
742e4900
JD
10332@item Lookahead token
10333A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10334Tokens}.
bfa74976 10335
c827f760 10336@item @acronym{LALR}(1)
bfa74976 10337The class of context-free grammars that Bison (like most other parser
c827f760
PE
10338generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10339Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10340
c827f760 10341@item @acronym{LR}(1)
bfa74976 10342The class of context-free grammars in which at most one token of
742e4900 10343lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10344
10345@item Nonterminal symbol
10346A grammar symbol standing for a grammatical construct that can
10347be expressed through rules in terms of smaller constructs; in other
10348words, a construct that is not a token. @xref{Symbols}.
10349
bfa74976
RS
10350@item Parser
10351A function that recognizes valid sentences of a language by analyzing
10352the syntax structure of a set of tokens passed to it from a lexical
10353analyzer.
10354
10355@item Postfix operator
10356An arithmetic operator that is placed after the operands upon which it
10357performs some operation.
10358
10359@item Reduction
10360Replacing a string of nonterminals and/or terminals with a single
89cab50d 10361nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10362Parser Algorithm}.
bfa74976
RS
10363
10364@item Reentrant
10365A reentrant subprogram is a subprogram which can be in invoked any
10366number of times in parallel, without interference between the various
10367invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10368
10369@item Reverse polish notation
10370A language in which all operators are postfix operators.
10371
10372@item Right recursion
89cab50d
AD
10373A rule whose result symbol is also its last component symbol; for
10374example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10375Rules}.
bfa74976
RS
10376
10377@item Semantics
10378In computer languages, the semantics are specified by the actions
10379taken for each instance of the language, i.e., the meaning of
10380each statement. @xref{Semantics, ,Defining Language Semantics}.
10381
10382@item Shift
10383A parser is said to shift when it makes the choice of analyzing
10384further input from the stream rather than reducing immediately some
c827f760 10385already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10386
10387@item Single-character literal
10388A single character that is recognized and interpreted as is.
10389@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10390
10391@item Start symbol
10392The nonterminal symbol that stands for a complete valid utterance in
10393the language being parsed. The start symbol is usually listed as the
13863333 10394first nonterminal symbol in a language specification.
bfa74976
RS
10395@xref{Start Decl, ,The Start-Symbol}.
10396
10397@item Symbol table
10398A data structure where symbol names and associated data are stored
10399during parsing to allow for recognition and use of existing
10400information in repeated uses of a symbol. @xref{Multi-function Calc}.
10401
6e649e65
PE
10402@item Syntax error
10403An error encountered during parsing of an input stream due to invalid
10404syntax. @xref{Error Recovery}.
10405
bfa74976
RS
10406@item Token
10407A basic, grammatically indivisible unit of a language. The symbol
10408that describes a token in the grammar is a terminal symbol.
10409The input of the Bison parser is a stream of tokens which comes from
10410the lexical analyzer. @xref{Symbols}.
10411
10412@item Terminal symbol
89cab50d
AD
10413A grammar symbol that has no rules in the grammar and therefore is
10414grammatically indivisible. The piece of text it represents is a token.
10415@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10416@end table
10417
342b8b6e 10418@node Copying This Manual
f2b5126e 10419@appendix Copying This Manual
f2b5126e
PB
10420@include fdl.texi
10421
342b8b6e 10422@node Index
bfa74976
RS
10423@unnumbered Index
10424
10425@printindex cp
10426
bfa74976 10427@bye
a06ea4aa
AD
10428
10429@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10430@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10431@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10432@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10433@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
10434@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
10435@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10436@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10437@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10438@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10439@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10440@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10441@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10442@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10443@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10444@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10445@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10446@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10447@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10448@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10449@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10450@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10451@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10452@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10453@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10454@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10455@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10456@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10457@c LocalWords: YYSTACK DVI fdl printindex