]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Fix ChangeLog.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1d5b3c08
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f5f419de
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f5f419de
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f5f419de
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f5f419de
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f5f419de
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
271* Using Precedence:: How to specify precedence and associativity.
272* Precedence Only:: How to specify precedence only.
bfa74976
RS
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f5f419de
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f5f419de
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f5f419de 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58
PE
354@dfn{Bison} is a general-purpose parser generator that converts an
355annotated context-free grammar into an @acronym{LALR}(1) or
356@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 357Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
358used in simple desk calculators to complex programming languages.
359
360Bison is upward compatible with Yacc: all properly-written Yacc grammars
361ought to work with Bison with no change. Anyone familiar with Yacc
362should be able to use Bison with little trouble. You need to be fluent in
1e137b71 363C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
364
365We begin with tutorial chapters that explain the basic concepts of using
366Bison and show three explained examples, each building on the last. If you
367don't know Bison or Yacc, start by reading these chapters. Reference
368chapters follow which describe specific aspects of Bison in detail.
369
931c7513
RS
370Bison was written primarily by Robert Corbett; Richard Stallman made it
371Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 372multi-character string literals and other features.
931c7513 373
df1af54c 374This edition corresponds to version @value{VERSION} of Bison.
bfa74976 375
342b8b6e 376@node Conditions
bfa74976
RS
377@unnumbered Conditions for Using Bison
378
193d7c70
PE
379The distribution terms for Bison-generated parsers permit using the
380parsers in nonfree programs. Before Bison version 2.2, these extra
381permissions applied only when Bison was generating @acronym{LALR}(1)
382parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 383parsers could be used only in programs that were free software.
a31239f1 384
c827f760
PE
385The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
386compiler, have never
9ecbd125 387had such a requirement. They could always be used for nonfree
a31239f1
RS
388software. The reason Bison was different was not due to a special
389policy decision; it resulted from applying the usual General Public
390License to all of the Bison source code.
391
392The output of the Bison utility---the Bison parser file---contains a
393verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
394parser's implementation. (The actions from your grammar are inserted
395into this implementation at one point, but most of the rest of the
396implementation is not changed.) When we applied the @acronym{GPL}
397terms to the skeleton code for the parser's implementation,
a31239f1
RS
398the effect was to restrict the use of Bison output to free software.
399
400We didn't change the terms because of sympathy for people who want to
401make software proprietary. @strong{Software should be free.} But we
402concluded that limiting Bison's use to free software was doing little to
403encourage people to make other software free. So we decided to make the
404practical conditions for using Bison match the practical conditions for
c827f760 405using the other @acronym{GNU} tools.
bfa74976 406
193d7c70
PE
407This exception applies when Bison is generating code for a parser.
408You can tell whether the exception applies to a Bison output file by
409inspecting the file for text beginning with ``As a special
410exception@dots{}''. The text spells out the exact terms of the
411exception.
262aa8dd 412
f16b0819
PE
413@node Copying
414@unnumbered GNU GENERAL PUBLIC LICENSE
415@include gpl-3.0.texi
bfa74976 416
342b8b6e 417@node Concepts
bfa74976
RS
418@chapter The Concepts of Bison
419
420This chapter introduces many of the basic concepts without which the
421details of Bison will not make sense. If you do not already know how to
422use Bison or Yacc, we suggest you start by reading this chapter carefully.
423
424@menu
f5f419de
DJ
425* Language and Grammar:: Languages and context-free grammars,
426 as mathematical ideas.
427* Grammar in Bison:: How we represent grammars for Bison's sake.
428* Semantic Values:: Each token or syntactic grouping can have
429 a semantic value (the value of an integer,
430 the name of an identifier, etc.).
431* Semantic Actions:: Each rule can have an action containing C code.
432* GLR Parsers:: Writing parsers for general context-free languages.
433* Locations Overview:: Tracking Locations.
434* Bison Parser:: What are Bison's input and output,
435 how is the output used?
436* Stages:: Stages in writing and running Bison grammars.
437* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
438@end menu
439
342b8b6e 440@node Language and Grammar
bfa74976
RS
441@section Languages and Context-Free Grammars
442
bfa74976
RS
443@cindex context-free grammar
444@cindex grammar, context-free
445In order for Bison to parse a language, it must be described by a
446@dfn{context-free grammar}. This means that you specify one or more
447@dfn{syntactic groupings} and give rules for constructing them from their
448parts. For example, in the C language, one kind of grouping is called an
449`expression'. One rule for making an expression might be, ``An expression
450can be made of a minus sign and another expression''. Another would be,
451``An expression can be an integer''. As you can see, rules are often
452recursive, but there must be at least one rule which leads out of the
453recursion.
454
c827f760 455@cindex @acronym{BNF}
bfa74976
RS
456@cindex Backus-Naur form
457The most common formal system for presenting such rules for humans to read
c827f760
PE
458is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
459order to specify the language Algol 60. Any grammar expressed in
460@acronym{BNF} is a context-free grammar. The input to Bison is
461essentially machine-readable @acronym{BNF}.
bfa74976 462
c827f760
PE
463@cindex @acronym{LALR}(1) grammars
464@cindex @acronym{LR}(1) grammars
676385e2
PH
465There are various important subclasses of context-free grammar. Although it
466can handle almost all context-free grammars, Bison is optimized for what
c827f760 467are called @acronym{LALR}(1) grammars.
676385e2 468In brief, in these grammars, it must be possible to
bfa74976 469tell how to parse any portion of an input string with just a single
742e4900 470token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
471@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
472restrictions that are
bfa74976 473hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
474@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
475@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
476more information on this.
bfa74976 477
c827f760
PE
478@cindex @acronym{GLR} parsing
479@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 480@cindex ambiguous grammars
9d9b8b70 481@cindex nondeterministic parsing
9501dc6e
AD
482
483Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
484roughly that the next grammar rule to apply at any point in the input is
485uniquely determined by the preceding input and a fixed, finite portion
742e4900 486(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 487grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 488apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 489grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 490lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
491With the proper declarations, Bison is also able to parse these more
492general context-free grammars, using a technique known as @acronym{GLR}
493parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
494are able to handle any context-free grammar for which the number of
495possible parses of any given string is finite.
676385e2 496
bfa74976
RS
497@cindex symbols (abstract)
498@cindex token
499@cindex syntactic grouping
500@cindex grouping, syntactic
9501dc6e
AD
501In the formal grammatical rules for a language, each kind of syntactic
502unit or grouping is named by a @dfn{symbol}. Those which are built by
503grouping smaller constructs according to grammatical rules are called
bfa74976
RS
504@dfn{nonterminal symbols}; those which can't be subdivided are called
505@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
506corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 507corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
508
509We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
510nonterminal, mean. The tokens of C are identifiers, constants (numeric
511and string), and the various keywords, arithmetic operators and
512punctuation marks. So the terminal symbols of a grammar for C include
513`identifier', `number', `string', plus one symbol for each keyword,
514operator or punctuation mark: `if', `return', `const', `static', `int',
515`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
516(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
517lexicography, not grammar.)
518
519Here is a simple C function subdivided into tokens:
520
9edcd895
AD
521@ifinfo
522@example
523int /* @r{keyword `int'} */
14d4662b 524square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
525 @r{identifier, close-paren} */
526@{ /* @r{open-brace} */
aa08666d
AD
527 return x * x; /* @r{keyword `return', identifier, asterisk,}
528 @r{identifier, semicolon} */
9edcd895
AD
529@} /* @r{close-brace} */
530@end example
531@end ifinfo
532@ifnotinfo
bfa74976
RS
533@example
534int /* @r{keyword `int'} */
14d4662b 535square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 536@{ /* @r{open-brace} */
9edcd895 537 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
538@} /* @r{close-brace} */
539@end example
9edcd895 540@end ifnotinfo
bfa74976
RS
541
542The syntactic groupings of C include the expression, the statement, the
543declaration, and the function definition. These are represented in the
544grammar of C by nonterminal symbols `expression', `statement',
545`declaration' and `function definition'. The full grammar uses dozens of
546additional language constructs, each with its own nonterminal symbol, in
547order to express the meanings of these four. The example above is a
548function definition; it contains one declaration, and one statement. In
549the statement, each @samp{x} is an expression and so is @samp{x * x}.
550
551Each nonterminal symbol must have grammatical rules showing how it is made
552out of simpler constructs. For example, one kind of C statement is the
553@code{return} statement; this would be described with a grammar rule which
554reads informally as follows:
555
556@quotation
557A `statement' can be made of a `return' keyword, an `expression' and a
558`semicolon'.
559@end quotation
560
561@noindent
562There would be many other rules for `statement', one for each kind of
563statement in C.
564
565@cindex start symbol
566One nonterminal symbol must be distinguished as the special one which
567defines a complete utterance in the language. It is called the @dfn{start
568symbol}. In a compiler, this means a complete input program. In the C
569language, the nonterminal symbol `sequence of definitions and declarations'
570plays this role.
571
572For example, @samp{1 + 2} is a valid C expression---a valid part of a C
573program---but it is not valid as an @emph{entire} C program. In the
574context-free grammar of C, this follows from the fact that `expression' is
575not the start symbol.
576
577The Bison parser reads a sequence of tokens as its input, and groups the
578tokens using the grammar rules. If the input is valid, the end result is
579that the entire token sequence reduces to a single grouping whose symbol is
580the grammar's start symbol. If we use a grammar for C, the entire input
581must be a `sequence of definitions and declarations'. If not, the parser
582reports a syntax error.
583
342b8b6e 584@node Grammar in Bison
bfa74976
RS
585@section From Formal Rules to Bison Input
586@cindex Bison grammar
587@cindex grammar, Bison
588@cindex formal grammar
589
590A formal grammar is a mathematical construct. To define the language
591for Bison, you must write a file expressing the grammar in Bison syntax:
592a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
593
594A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 595as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
596in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
597
598The Bison representation for a terminal symbol is also called a @dfn{token
599type}. Token types as well can be represented as C-like identifiers. By
600convention, these identifiers should be upper case to distinguish them from
601nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
602@code{RETURN}. A terminal symbol that stands for a particular keyword in
603the language should be named after that keyword converted to upper case.
604The terminal symbol @code{error} is reserved for error recovery.
931c7513 605@xref{Symbols}.
bfa74976
RS
606
607A terminal symbol can also be represented as a character literal, just like
608a C character constant. You should do this whenever a token is just a
609single character (parenthesis, plus-sign, etc.): use that same character in
610a literal as the terminal symbol for that token.
611
931c7513
RS
612A third way to represent a terminal symbol is with a C string constant
613containing several characters. @xref{Symbols}, for more information.
614
bfa74976
RS
615The grammar rules also have an expression in Bison syntax. For example,
616here is the Bison rule for a C @code{return} statement. The semicolon in
617quotes is a literal character token, representing part of the C syntax for
618the statement; the naked semicolon, and the colon, are Bison punctuation
619used in every rule.
620
621@example
622stmt: RETURN expr ';'
623 ;
624@end example
625
626@noindent
627@xref{Rules, ,Syntax of Grammar Rules}.
628
342b8b6e 629@node Semantic Values
bfa74976
RS
630@section Semantic Values
631@cindex semantic value
632@cindex value, semantic
633
634A formal grammar selects tokens only by their classifications: for example,
635if a rule mentions the terminal symbol `integer constant', it means that
636@emph{any} integer constant is grammatically valid in that position. The
637precise value of the constant is irrelevant to how to parse the input: if
638@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 639grammatical.
bfa74976
RS
640
641But the precise value is very important for what the input means once it is
642parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6433989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
644has both a token type and a @dfn{semantic value}. @xref{Semantics,
645,Defining Language Semantics},
bfa74976
RS
646for details.
647
648The token type is a terminal symbol defined in the grammar, such as
649@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
650you need to know to decide where the token may validly appear and how to
651group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 652except their types.
bfa74976
RS
653
654The semantic value has all the rest of the information about the
655meaning of the token, such as the value of an integer, or the name of an
656identifier. (A token such as @code{','} which is just punctuation doesn't
657need to have any semantic value.)
658
659For example, an input token might be classified as token type
660@code{INTEGER} and have the semantic value 4. Another input token might
661have the same token type @code{INTEGER} but value 3989. When a grammar
662rule says that @code{INTEGER} is allowed, either of these tokens is
663acceptable because each is an @code{INTEGER}. When the parser accepts the
664token, it keeps track of the token's semantic value.
665
666Each grouping can also have a semantic value as well as its nonterminal
667symbol. For example, in a calculator, an expression typically has a
668semantic value that is a number. In a compiler for a programming
669language, an expression typically has a semantic value that is a tree
670structure describing the meaning of the expression.
671
342b8b6e 672@node Semantic Actions
bfa74976
RS
673@section Semantic Actions
674@cindex semantic actions
675@cindex actions, semantic
676
677In order to be useful, a program must do more than parse input; it must
678also produce some output based on the input. In a Bison grammar, a grammar
679rule can have an @dfn{action} made up of C statements. Each time the
680parser recognizes a match for that rule, the action is executed.
681@xref{Actions}.
13863333 682
bfa74976
RS
683Most of the time, the purpose of an action is to compute the semantic value
684of the whole construct from the semantic values of its parts. For example,
685suppose we have a rule which says an expression can be the sum of two
686expressions. When the parser recognizes such a sum, each of the
687subexpressions has a semantic value which describes how it was built up.
688The action for this rule should create a similar sort of value for the
689newly recognized larger expression.
690
691For example, here is a rule that says an expression can be the sum of
692two subexpressions:
693
694@example
695expr: expr '+' expr @{ $$ = $1 + $3; @}
696 ;
697@end example
698
699@noindent
700The action says how to produce the semantic value of the sum expression
701from the values of the two subexpressions.
702
676385e2 703@node GLR Parsers
c827f760
PE
704@section Writing @acronym{GLR} Parsers
705@cindex @acronym{GLR} parsing
706@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
707@findex %glr-parser
708@cindex conflicts
709@cindex shift/reduce conflicts
fa7e68c3 710@cindex reduce/reduce conflicts
676385e2 711
fa7e68c3 712In some grammars, Bison's standard
9501dc6e
AD
713@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
714certain grammar rule at a given point. That is, it may not be able to
715decide (on the basis of the input read so far) which of two possible
716reductions (applications of a grammar rule) applies, or whether to apply
717a reduction or read more of the input and apply a reduction later in the
718input. These are known respectively as @dfn{reduce/reduce} conflicts
719(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
720(@pxref{Shift/Reduce}).
721
722To use a grammar that is not easily modified to be @acronym{LALR}(1), a
723more general parsing algorithm is sometimes necessary. If you include
676385e2 724@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 725(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
726(@acronym{GLR}) parser. These parsers handle Bison grammars that
727contain no unresolved conflicts (i.e., after applying precedence
728declarations) identically to @acronym{LALR}(1) parsers. However, when
729faced with unresolved shift/reduce and reduce/reduce conflicts,
730@acronym{GLR} parsers use the simple expedient of doing both,
731effectively cloning the parser to follow both possibilities. Each of
732the resulting parsers can again split, so that at any given time, there
733can be any number of possible parses being explored. The parsers
676385e2
PH
734proceed in lockstep; that is, all of them consume (shift) a given input
735symbol before any of them proceed to the next. Each of the cloned
736parsers eventually meets one of two possible fates: either it runs into
737a parsing error, in which case it simply vanishes, or it merges with
738another parser, because the two of them have reduced the input to an
739identical set of symbols.
740
741During the time that there are multiple parsers, semantic actions are
742recorded, but not performed. When a parser disappears, its recorded
743semantic actions disappear as well, and are never performed. When a
744reduction makes two parsers identical, causing them to merge, Bison
745records both sets of semantic actions. Whenever the last two parsers
746merge, reverting to the single-parser case, Bison resolves all the
747outstanding actions either by precedences given to the grammar rules
748involved, or by performing both actions, and then calling a designated
749user-defined function on the resulting values to produce an arbitrary
750merged result.
751
fa7e68c3 752@menu
f5f419de
DJ
753* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
754* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
755* GLR Semantic Actions:: Deferred semantic actions have special concerns.
756* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
757@end menu
758
759@node Simple GLR Parsers
760@subsection Using @acronym{GLR} on Unambiguous Grammars
761@cindex @acronym{GLR} parsing, unambiguous grammars
762@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
763@findex %glr-parser
764@findex %expect-rr
765@cindex conflicts
766@cindex reduce/reduce conflicts
767@cindex shift/reduce conflicts
768
769In the simplest cases, you can use the @acronym{GLR} algorithm
770to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 771Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
772or (in rare cases) fall into the category of grammars in which the
773@acronym{LALR}(1) algorithm throws away too much information (they are in
774@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
775
776Consider a problem that
777arises in the declaration of enumerated and subrange types in the
778programming language Pascal. Here are some examples:
779
780@example
781type subrange = lo .. hi;
782type enum = (a, b, c);
783@end example
784
785@noindent
786The original language standard allows only numeric
787literals and constant identifiers for the subrange bounds (@samp{lo}
788and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78910206) and many other
790Pascal implementations allow arbitrary expressions there. This gives
791rise to the following situation, containing a superfluous pair of
792parentheses:
793
794@example
795type subrange = (a) .. b;
796@end example
797
798@noindent
799Compare this to the following declaration of an enumerated
800type with only one value:
801
802@example
803type enum = (a);
804@end example
805
806@noindent
807(These declarations are contrived, but they are syntactically
808valid, and more-complicated cases can come up in practical programs.)
809
810These two declarations look identical until the @samp{..} token.
742e4900 811With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
812possible to decide between the two forms when the identifier
813@samp{a} is parsed. It is, however, desirable
814for a parser to decide this, since in the latter case
815@samp{a} must become a new identifier to represent the enumeration
816value, while in the former case @samp{a} must be evaluated with its
817current meaning, which may be a constant or even a function call.
818
819You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
820to be resolved later, but this typically requires substantial
821contortions in both semantic actions and large parts of the
822grammar, where the parentheses are nested in the recursive rules for
823expressions.
824
825You might think of using the lexer to distinguish between the two
826forms by returning different tokens for currently defined and
827undefined identifiers. But if these declarations occur in a local
828scope, and @samp{a} is defined in an outer scope, then both forms
829are possible---either locally redefining @samp{a}, or using the
830value of @samp{a} from the outer scope. So this approach cannot
831work.
832
e757bb10 833A simple solution to this problem is to declare the parser to
fa7e68c3
PE
834use the @acronym{GLR} algorithm.
835When the @acronym{GLR} parser reaches the critical state, it
836merely splits into two branches and pursues both syntax rules
837simultaneously. Sooner or later, one of them runs into a parsing
838error. If there is a @samp{..} token before the next
839@samp{;}, the rule for enumerated types fails since it cannot
840accept @samp{..} anywhere; otherwise, the subrange type rule
841fails since it requires a @samp{..} token. So one of the branches
842fails silently, and the other one continues normally, performing
843all the intermediate actions that were postponed during the split.
844
845If the input is syntactically incorrect, both branches fail and the parser
846reports a syntax error as usual.
847
848The effect of all this is that the parser seems to ``guess'' the
849correct branch to take, or in other words, it seems to use more
742e4900 850lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
851for. In this example, @acronym{LALR}(2) would suffice, but also some cases
852that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
853
854In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
855and the current Bison parser even takes exponential time and space
856for some grammars. In practice, this rarely happens, and for many
857grammars it is possible to prove that it cannot happen.
858The present example contains only one conflict between two
859rules, and the type-declaration context containing the conflict
860cannot be nested. So the number of
861branches that can exist at any time is limited by the constant 2,
862and the parsing time is still linear.
863
864Here is a Bison grammar corresponding to the example above. It
865parses a vastly simplified form of Pascal type declarations.
866
867@example
868%token TYPE DOTDOT ID
869
870@group
871%left '+' '-'
872%left '*' '/'
873@end group
874
875%%
876
877@group
878type_decl : TYPE ID '=' type ';'
879 ;
880@end group
881
882@group
883type : '(' id_list ')'
884 | expr DOTDOT expr
885 ;
886@end group
887
888@group
889id_list : ID
890 | id_list ',' ID
891 ;
892@end group
893
894@group
895expr : '(' expr ')'
896 | expr '+' expr
897 | expr '-' expr
898 | expr '*' expr
899 | expr '/' expr
900 | ID
901 ;
902@end group
903@end example
904
905When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
906about one reduce/reduce conflict. In the conflicting situation the
907parser chooses one of the alternatives, arbitrarily the one
908declared first. Therefore the following correct input is not
909recognized:
910
911@example
912type t = (a) .. b;
913@end example
914
915The parser can be turned into a @acronym{GLR} parser, while also telling Bison
916to be silent about the one known reduce/reduce conflict, by
e757bb10 917adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
918@samp{%%}):
919
920@example
921%glr-parser
922%expect-rr 1
923@end example
924
925@noindent
926No change in the grammar itself is required. Now the
927parser recognizes all valid declarations, according to the
928limited syntax above, transparently. In fact, the user does not even
929notice when the parser splits.
930
f8e1c9e5
AD
931So here we have a case where we can use the benefits of @acronym{GLR},
932almost without disadvantages. Even in simple cases like this, however,
933there are at least two potential problems to beware. First, always
934analyze the conflicts reported by Bison to make sure that @acronym{GLR}
935splitting is only done where it is intended. A @acronym{GLR} parser
936splitting inadvertently may cause problems less obvious than an
937@acronym{LALR} parser statically choosing the wrong alternative in a
938conflict. Second, consider interactions with the lexer (@pxref{Semantic
939Tokens}) with great care. Since a split parser consumes tokens without
940performing any actions during the split, the lexer cannot obtain
941information via parser actions. Some cases of lexer interactions can be
942eliminated by using @acronym{GLR} to shift the complications from the
943lexer to the parser. You must check the remaining cases for
944correctness.
945
946In our example, it would be safe for the lexer to return tokens based on
947their current meanings in some symbol table, because no new symbols are
948defined in the middle of a type declaration. Though it is possible for
949a parser to define the enumeration constants as they are parsed, before
950the type declaration is completed, it actually makes no difference since
951they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
952
953@node Merging GLR Parses
954@subsection Using @acronym{GLR} to Resolve Ambiguities
955@cindex @acronym{GLR} parsing, ambiguous grammars
956@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
957@findex %dprec
958@findex %merge
959@cindex conflicts
960@cindex reduce/reduce conflicts
961
2a8d363a 962Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
963
964@example
965%@{
38a92d50
PE
966 #include <stdio.h>
967 #define YYSTYPE char const *
968 int yylex (void);
969 void yyerror (char const *);
676385e2
PH
970%@}
971
972%token TYPENAME ID
973
974%right '='
975%left '+'
976
977%glr-parser
978
979%%
980
fae437e8 981prog :
676385e2
PH
982 | prog stmt @{ printf ("\n"); @}
983 ;
984
985stmt : expr ';' %dprec 1
986 | decl %dprec 2
987 ;
988
2a8d363a 989expr : ID @{ printf ("%s ", $$); @}
fae437e8 990 | TYPENAME '(' expr ')'
2a8d363a
AD
991 @{ printf ("%s <cast> ", $1); @}
992 | expr '+' expr @{ printf ("+ "); @}
993 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
994 ;
995
fae437e8 996decl : TYPENAME declarator ';'
2a8d363a 997 @{ printf ("%s <declare> ", $1); @}
676385e2 998 | TYPENAME declarator '=' expr ';'
2a8d363a 999 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1000 ;
1001
2a8d363a 1002declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1003 | '(' declarator ')'
1004 ;
1005@end example
1006
1007@noindent
1008This models a problematic part of the C++ grammar---the ambiguity between
1009certain declarations and statements. For example,
1010
1011@example
1012T (x) = y+z;
1013@end example
1014
1015@noindent
1016parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1017(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1018@samp{x} as an @code{ID}).
676385e2 1019Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1020@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1021time it encounters @code{x} in the example above. Since this is a
1022@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1023each choice of resolving the reduce/reduce conflict.
1024Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1025however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1026ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1027the other reduces @code{stmt : decl}, after which both parsers are in an
1028identical state: they've seen @samp{prog stmt} and have the same unprocessed
1029input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1030
1031At this point, the @acronym{GLR} parser requires a specification in the
1032grammar of how to choose between the competing parses.
1033In the example above, the two @code{%dprec}
e757bb10 1034declarations specify that Bison is to give precedence
fa7e68c3 1035to the parse that interprets the example as a
676385e2
PH
1036@code{decl}, which implies that @code{x} is a declarator.
1037The parser therefore prints
1038
1039@example
fae437e8 1040"x" y z + T <init-declare>
676385e2
PH
1041@end example
1042
fa7e68c3
PE
1043The @code{%dprec} declarations only come into play when more than one
1044parse survives. Consider a different input string for this parser:
676385e2
PH
1045
1046@example
1047T (x) + y;
1048@end example
1049
1050@noindent
e757bb10 1051This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1052construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1053Here, there is no ambiguity (this cannot be parsed as a declaration).
1054However, at the time the Bison parser encounters @code{x}, it does not
1055have enough information to resolve the reduce/reduce conflict (again,
1056between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1057case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1058into two, one assuming that @code{x} is an @code{expr}, and the other
1059assuming @code{x} is a @code{declarator}. The second of these parsers
1060then vanishes when it sees @code{+}, and the parser prints
1061
1062@example
fae437e8 1063x T <cast> y +
676385e2
PH
1064@end example
1065
1066Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1067the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1068actions of the two possible parsers, rather than choosing one over the
1069other. To do so, you could change the declaration of @code{stmt} as
1070follows:
1071
1072@example
1073stmt : expr ';' %merge <stmtMerge>
1074 | decl %merge <stmtMerge>
1075 ;
1076@end example
1077
1078@noindent
676385e2
PH
1079and define the @code{stmtMerge} function as:
1080
1081@example
38a92d50
PE
1082static YYSTYPE
1083stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1084@{
1085 printf ("<OR> ");
1086 return "";
1087@}
1088@end example
1089
1090@noindent
1091with an accompanying forward declaration
1092in the C declarations at the beginning of the file:
1093
1094@example
1095%@{
38a92d50 1096 #define YYSTYPE char const *
676385e2
PH
1097 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1098%@}
1099@end example
1100
1101@noindent
fa7e68c3
PE
1102With these declarations, the resulting parser parses the first example
1103as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1104
1105@example
fae437e8 1106"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1107@end example
1108
fa7e68c3 1109Bison requires that all of the
e757bb10 1110productions that participate in any particular merge have identical
fa7e68c3
PE
1111@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1112and the parser will report an error during any parse that results in
1113the offending merge.
9501dc6e 1114
32c29292
JD
1115@node GLR Semantic Actions
1116@subsection GLR Semantic Actions
1117
1118@cindex deferred semantic actions
1119By definition, a deferred semantic action is not performed at the same time as
1120the associated reduction.
1121This raises caveats for several Bison features you might use in a semantic
1122action in a @acronym{GLR} parser.
1123
1124@vindex yychar
1125@cindex @acronym{GLR} parsers and @code{yychar}
1126@vindex yylval
1127@cindex @acronym{GLR} parsers and @code{yylval}
1128@vindex yylloc
1129@cindex @acronym{GLR} parsers and @code{yylloc}
1130In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1131the lookahead token present at the time of the associated reduction.
32c29292
JD
1132After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1133you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1134lookahead token's semantic value and location, if any.
32c29292
JD
1135In a nondeferred semantic action, you can also modify any of these variables to
1136influence syntax analysis.
742e4900 1137@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1138
1139@findex yyclearin
1140@cindex @acronym{GLR} parsers and @code{yyclearin}
1141In a deferred semantic action, it's too late to influence syntax analysis.
1142In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1143shallow copies of the values they had at the time of the associated reduction.
1144For this reason alone, modifying them is dangerous.
1145Moreover, the result of modifying them is undefined and subject to change with
1146future versions of Bison.
1147For example, if a semantic action might be deferred, you should never write it
1148to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1149memory referenced by @code{yylval}.
1150
1151@findex YYERROR
1152@cindex @acronym{GLR} parsers and @code{YYERROR}
1153Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1154(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1155initiate error recovery.
1156During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1157the same as its effect in an @acronym{LALR}(1) parser.
1158In a deferred semantic action, its effect is undefined.
1159@c The effect is probably a syntax error at the split point.
1160
8710fc41
JD
1161Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1162describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1163
fa7e68c3
PE
1164@node Compiler Requirements
1165@subsection Considerations when Compiling @acronym{GLR} Parsers
1166@cindex @code{inline}
9501dc6e 1167@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1168
38a92d50
PE
1169The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1170later. In addition, they use the @code{inline} keyword, which is not
1171C89, but is C99 and is a common extension in pre-C99 compilers. It is
1172up to the user of these parsers to handle
9501dc6e
AD
1173portability issues. For instance, if using Autoconf and the Autoconf
1174macro @code{AC_C_INLINE}, a mere
1175
1176@example
1177%@{
38a92d50 1178 #include <config.h>
9501dc6e
AD
1179%@}
1180@end example
1181
1182@noindent
1183will suffice. Otherwise, we suggest
1184
1185@example
1186%@{
38a92d50
PE
1187 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1188 #define inline
1189 #endif
9501dc6e
AD
1190%@}
1191@end example
676385e2 1192
342b8b6e 1193@node Locations Overview
847bf1f5
AD
1194@section Locations
1195@cindex location
95923bd6
AD
1196@cindex textual location
1197@cindex location, textual
847bf1f5
AD
1198
1199Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1200and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1201the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1202Bison provides a mechanism for handling these locations.
1203
72d2299c 1204Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1205associated location, but the type of locations is the same for all tokens and
72d2299c 1206groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1207structure for storing locations (@pxref{Locations}, for more details).
1208
1209Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1210set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1211is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1212@code{@@3}.
1213
1214When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1215of its left hand side (@pxref{Actions}). In the same way, another default
1216action is used for locations. However, the action for locations is general
847bf1f5 1217enough for most cases, meaning there is usually no need to describe for each
72d2299c 1218rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1219grouping, the default behavior of the output parser is to take the beginning
1220of the first symbol, and the end of the last symbol.
1221
342b8b6e 1222@node Bison Parser
bfa74976
RS
1223@section Bison Output: the Parser File
1224@cindex Bison parser
1225@cindex Bison utility
1226@cindex lexical analyzer, purpose
1227@cindex parser
1228
1229When you run Bison, you give it a Bison grammar file as input. The output
1230is a C source file that parses the language described by the grammar.
1231This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1232utility and the Bison parser are two distinct programs: the Bison utility
1233is a program whose output is the Bison parser that becomes part of your
1234program.
1235
1236The job of the Bison parser is to group tokens into groupings according to
1237the grammar rules---for example, to build identifiers and operators into
1238expressions. As it does this, it runs the actions for the grammar rules it
1239uses.
1240
704a47c4
AD
1241The tokens come from a function called the @dfn{lexical analyzer} that
1242you must supply in some fashion (such as by writing it in C). The Bison
1243parser calls the lexical analyzer each time it wants a new token. It
1244doesn't know what is ``inside'' the tokens (though their semantic values
1245may reflect this). Typically the lexical analyzer makes the tokens by
1246parsing characters of text, but Bison does not depend on this.
1247@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1248
1249The Bison parser file is C code which defines a function named
1250@code{yyparse} which implements that grammar. This function does not make
1251a complete C program: you must supply some additional functions. One is
1252the lexical analyzer. Another is an error-reporting function which the
1253parser calls to report an error. In addition, a complete C program must
1254start with a function called @code{main}; you have to provide this, and
1255arrange for it to call @code{yyparse} or the parser will never run.
1256@xref{Interface, ,Parser C-Language Interface}.
1257
f7ab6a50 1258Aside from the token type names and the symbols in the actions you
7093d0f5 1259write, all symbols defined in the Bison parser file itself
bfa74976
RS
1260begin with @samp{yy} or @samp{YY}. This includes interface functions
1261such as the lexical analyzer function @code{yylex}, the error reporting
1262function @code{yyerror} and the parser function @code{yyparse} itself.
1263This also includes numerous identifiers used for internal purposes.
1264Therefore, you should avoid using C identifiers starting with @samp{yy}
1265or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1266this manual. Also, you should avoid using the C identifiers
1267@samp{malloc} and @samp{free} for anything other than their usual
1268meanings.
bfa74976 1269
7093d0f5
AD
1270In some cases the Bison parser file includes system headers, and in
1271those cases your code should respect the identifiers reserved by those
55289366 1272headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1273@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1274declare memory allocators and related types. @code{<libintl.h>} is
1275included if message translation is in use
1276(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1277be included if you define @code{YYDEBUG} to a nonzero value
1278(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1279
342b8b6e 1280@node Stages
bfa74976
RS
1281@section Stages in Using Bison
1282@cindex stages in using Bison
1283@cindex using Bison
1284
1285The actual language-design process using Bison, from grammar specification
1286to a working compiler or interpreter, has these parts:
1287
1288@enumerate
1289@item
1290Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1291(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1292in the language, describe the action that is to be taken when an
1293instance of that rule is recognized. The action is described by a
1294sequence of C statements.
bfa74976
RS
1295
1296@item
704a47c4
AD
1297Write a lexical analyzer to process input and pass tokens to the parser.
1298The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1299Lexical Analyzer Function @code{yylex}}). It could also be produced
1300using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1301
1302@item
1303Write a controlling function that calls the Bison-produced parser.
1304
1305@item
1306Write error-reporting routines.
1307@end enumerate
1308
1309To turn this source code as written into a runnable program, you
1310must follow these steps:
1311
1312@enumerate
1313@item
1314Run Bison on the grammar to produce the parser.
1315
1316@item
1317Compile the code output by Bison, as well as any other source files.
1318
1319@item
1320Link the object files to produce the finished product.
1321@end enumerate
1322
342b8b6e 1323@node Grammar Layout
bfa74976
RS
1324@section The Overall Layout of a Bison Grammar
1325@cindex grammar file
1326@cindex file format
1327@cindex format of grammar file
1328@cindex layout of Bison grammar
1329
1330The input file for the Bison utility is a @dfn{Bison grammar file}. The
1331general form of a Bison grammar file is as follows:
1332
1333@example
1334%@{
08e49d20 1335@var{Prologue}
bfa74976
RS
1336%@}
1337
1338@var{Bison declarations}
1339
1340%%
1341@var{Grammar rules}
1342%%
08e49d20 1343@var{Epilogue}
bfa74976
RS
1344@end example
1345
1346@noindent
1347The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1348in every Bison grammar file to separate the sections.
1349
72d2299c 1350The prologue may define types and variables used in the actions. You can
342b8b6e 1351also use preprocessor commands to define macros used there, and use
bfa74976 1352@code{#include} to include header files that do any of these things.
38a92d50
PE
1353You need to declare the lexical analyzer @code{yylex} and the error
1354printer @code{yyerror} here, along with any other global identifiers
1355used by the actions in the grammar rules.
bfa74976
RS
1356
1357The Bison declarations declare the names of the terminal and nonterminal
1358symbols, and may also describe operator precedence and the data types of
1359semantic values of various symbols.
1360
1361The grammar rules define how to construct each nonterminal symbol from its
1362parts.
1363
38a92d50
PE
1364The epilogue can contain any code you want to use. Often the
1365definitions of functions declared in the prologue go here. In a
1366simple program, all the rest of the program can go here.
bfa74976 1367
342b8b6e 1368@node Examples
bfa74976
RS
1369@chapter Examples
1370@cindex simple examples
1371@cindex examples, simple
1372
1373Now we show and explain three sample programs written using Bison: a
1374reverse polish notation calculator, an algebraic (infix) notation
1375calculator, and a multi-function calculator. All three have been tested
1376under BSD Unix 4.3; each produces a usable, though limited, interactive
1377desk-top calculator.
1378
1379These examples are simple, but Bison grammars for real programming
aa08666d
AD
1380languages are written the same way. You can copy these examples into a
1381source file to try them.
bfa74976
RS
1382
1383@menu
f5f419de
DJ
1384* RPN Calc:: Reverse polish notation calculator;
1385 a first example with no operator precedence.
1386* Infix Calc:: Infix (algebraic) notation calculator.
1387 Operator precedence is introduced.
bfa74976 1388* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1389* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1390* Multi-function Calc:: Calculator with memory and trig functions.
1391 It uses multiple data-types for semantic values.
1392* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1393@end menu
1394
342b8b6e 1395@node RPN Calc
bfa74976
RS
1396@section Reverse Polish Notation Calculator
1397@cindex reverse polish notation
1398@cindex polish notation calculator
1399@cindex @code{rpcalc}
1400@cindex calculator, simple
1401
1402The first example is that of a simple double-precision @dfn{reverse polish
1403notation} calculator (a calculator using postfix operators). This example
1404provides a good starting point, since operator precedence is not an issue.
1405The second example will illustrate how operator precedence is handled.
1406
1407The source code for this calculator is named @file{rpcalc.y}. The
1408@samp{.y} extension is a convention used for Bison input files.
1409
1410@menu
f5f419de
DJ
1411* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1412* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1413* Rpcalc Lexer:: The lexical analyzer.
1414* Rpcalc Main:: The controlling function.
1415* Rpcalc Error:: The error reporting function.
1416* Rpcalc Generate:: Running Bison on the grammar file.
1417* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1418@end menu
1419
f5f419de 1420@node Rpcalc Declarations
bfa74976
RS
1421@subsection Declarations for @code{rpcalc}
1422
1423Here are the C and Bison declarations for the reverse polish notation
1424calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1425
1426@example
72d2299c 1427/* Reverse polish notation calculator. */
bfa74976
RS
1428
1429%@{
38a92d50
PE
1430 #define YYSTYPE double
1431 #include <math.h>
1432 int yylex (void);
1433 void yyerror (char const *);
bfa74976
RS
1434%@}
1435
1436%token NUM
1437
72d2299c 1438%% /* Grammar rules and actions follow. */
bfa74976
RS
1439@end example
1440
75f5aaea 1441The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1442preprocessor directives and two forward declarations.
bfa74976
RS
1443
1444The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1445specifying the C data type for semantic values of both tokens and
1446groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1447Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1448don't define it, @code{int} is the default. Because we specify
1449@code{double}, each token and each expression has an associated value,
1450which is a floating point number.
bfa74976
RS
1451
1452The @code{#include} directive is used to declare the exponentiation
1453function @code{pow}.
1454
38a92d50
PE
1455The forward declarations for @code{yylex} and @code{yyerror} are
1456needed because the C language requires that functions be declared
1457before they are used. These functions will be defined in the
1458epilogue, but the parser calls them so they must be declared in the
1459prologue.
1460
704a47c4
AD
1461The second section, Bison declarations, provides information to Bison
1462about the token types (@pxref{Bison Declarations, ,The Bison
1463Declarations Section}). Each terminal symbol that is not a
1464single-character literal must be declared here. (Single-character
bfa74976
RS
1465literals normally don't need to be declared.) In this example, all the
1466arithmetic operators are designated by single-character literals, so the
1467only terminal symbol that needs to be declared is @code{NUM}, the token
1468type for numeric constants.
1469
342b8b6e 1470@node Rpcalc Rules
bfa74976
RS
1471@subsection Grammar Rules for @code{rpcalc}
1472
1473Here are the grammar rules for the reverse polish notation calculator.
1474
1475@example
1476input: /* empty */
1477 | input line
1478;
1479
1480line: '\n'
18b519c0 1481 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1482;
1483
18b519c0
AD
1484exp: NUM @{ $$ = $1; @}
1485 | exp exp '+' @{ $$ = $1 + $2; @}
1486 | exp exp '-' @{ $$ = $1 - $2; @}
1487 | exp exp '*' @{ $$ = $1 * $2; @}
1488 | exp exp '/' @{ $$ = $1 / $2; @}
1489 /* Exponentiation */
1490 | exp exp '^' @{ $$ = pow ($1, $2); @}
1491 /* Unary minus */
1492 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1493;
1494%%
1495@end example
1496
1497The groupings of the rpcalc ``language'' defined here are the expression
1498(given the name @code{exp}), the line of input (@code{line}), and the
1499complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1500symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1501which is read as ``or''. The following sections explain what these rules
1502mean.
1503
1504The semantics of the language is determined by the actions taken when a
1505grouping is recognized. The actions are the C code that appears inside
1506braces. @xref{Actions}.
1507
1508You must specify these actions in C, but Bison provides the means for
1509passing semantic values between the rules. In each action, the
1510pseudo-variable @code{$$} stands for the semantic value for the grouping
1511that the rule is going to construct. Assigning a value to @code{$$} is the
1512main job of most actions. The semantic values of the components of the
1513rule are referred to as @code{$1}, @code{$2}, and so on.
1514
1515@menu
13863333
AD
1516* Rpcalc Input::
1517* Rpcalc Line::
1518* Rpcalc Expr::
bfa74976
RS
1519@end menu
1520
342b8b6e 1521@node Rpcalc Input
bfa74976
RS
1522@subsubsection Explanation of @code{input}
1523
1524Consider the definition of @code{input}:
1525
1526@example
1527input: /* empty */
1528 | input line
1529;
1530@end example
1531
1532This definition reads as follows: ``A complete input is either an empty
1533string, or a complete input followed by an input line''. Notice that
1534``complete input'' is defined in terms of itself. This definition is said
1535to be @dfn{left recursive} since @code{input} appears always as the
1536leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1537
1538The first alternative is empty because there are no symbols between the
1539colon and the first @samp{|}; this means that @code{input} can match an
1540empty string of input (no tokens). We write the rules this way because it
1541is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1542It's conventional to put an empty alternative first and write the comment
1543@samp{/* empty */} in it.
1544
1545The second alternate rule (@code{input line}) handles all nontrivial input.
1546It means, ``After reading any number of lines, read one more line if
1547possible.'' The left recursion makes this rule into a loop. Since the
1548first alternative matches empty input, the loop can be executed zero or
1549more times.
1550
1551The parser function @code{yyparse} continues to process input until a
1552grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1553input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1554
342b8b6e 1555@node Rpcalc Line
bfa74976
RS
1556@subsubsection Explanation of @code{line}
1557
1558Now consider the definition of @code{line}:
1559
1560@example
1561line: '\n'
1562 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1563;
1564@end example
1565
1566The first alternative is a token which is a newline character; this means
1567that rpcalc accepts a blank line (and ignores it, since there is no
1568action). The second alternative is an expression followed by a newline.
1569This is the alternative that makes rpcalc useful. The semantic value of
1570the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1571question is the first symbol in the alternative. The action prints this
1572value, which is the result of the computation the user asked for.
1573
1574This action is unusual because it does not assign a value to @code{$$}. As
1575a consequence, the semantic value associated with the @code{line} is
1576uninitialized (its value will be unpredictable). This would be a bug if
1577that value were ever used, but we don't use it: once rpcalc has printed the
1578value of the user's input line, that value is no longer needed.
1579
342b8b6e 1580@node Rpcalc Expr
bfa74976
RS
1581@subsubsection Explanation of @code{expr}
1582
1583The @code{exp} grouping has several rules, one for each kind of expression.
1584The first rule handles the simplest expressions: those that are just numbers.
1585The second handles an addition-expression, which looks like two expressions
1586followed by a plus-sign. The third handles subtraction, and so on.
1587
1588@example
1589exp: NUM
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 @dots{}
1593 ;
1594@end example
1595
1596We have used @samp{|} to join all the rules for @code{exp}, but we could
1597equally well have written them separately:
1598
1599@example
1600exp: NUM ;
1601exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1602exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1603 @dots{}
1604@end example
1605
1606Most of the rules have actions that compute the value of the expression in
1607terms of the value of its parts. For example, in the rule for addition,
1608@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1609the second one. The third component, @code{'+'}, has no meaningful
1610associated semantic value, but if it had one you could refer to it as
1611@code{$3}. When @code{yyparse} recognizes a sum expression using this
1612rule, the sum of the two subexpressions' values is produced as the value of
1613the entire expression. @xref{Actions}.
1614
1615You don't have to give an action for every rule. When a rule has no
1616action, Bison by default copies the value of @code{$1} into @code{$$}.
1617This is what happens in the first rule (the one that uses @code{NUM}).
1618
1619The formatting shown here is the recommended convention, but Bison does
72d2299c 1620not require it. You can add or change white space as much as you wish.
bfa74976
RS
1621For example, this:
1622
1623@example
99a9344e 1624exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1625@end example
1626
1627@noindent
1628means the same thing as this:
1629
1630@example
1631exp: NUM
1632 | exp exp '+' @{ $$ = $1 + $2; @}
1633 | @dots{}
99a9344e 1634;
bfa74976
RS
1635@end example
1636
1637@noindent
1638The latter, however, is much more readable.
1639
342b8b6e 1640@node Rpcalc Lexer
bfa74976
RS
1641@subsection The @code{rpcalc} Lexical Analyzer
1642@cindex writing a lexical analyzer
1643@cindex lexical analyzer, writing
1644
704a47c4
AD
1645The lexical analyzer's job is low-level parsing: converting characters
1646or sequences of characters into tokens. The Bison parser gets its
1647tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1648Analyzer Function @code{yylex}}.
bfa74976 1649
c827f760
PE
1650Only a simple lexical analyzer is needed for the @acronym{RPN}
1651calculator. This
bfa74976
RS
1652lexical analyzer skips blanks and tabs, then reads in numbers as
1653@code{double} and returns them as @code{NUM} tokens. Any other character
1654that isn't part of a number is a separate token. Note that the token-code
1655for such a single-character token is the character itself.
1656
1657The return value of the lexical analyzer function is a numeric code which
1658represents a token type. The same text used in Bison rules to stand for
1659this token type is also a C expression for the numeric code for the type.
1660This works in two ways. If the token type is a character literal, then its
e966383b 1661numeric code is that of the character; you can use the same
bfa74976
RS
1662character literal in the lexical analyzer to express the number. If the
1663token type is an identifier, that identifier is defined by Bison as a C
1664macro whose definition is the appropriate number. In this example,
1665therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1666
1964ad8c
AD
1667The semantic value of the token (if it has one) is stored into the
1668global variable @code{yylval}, which is where the Bison parser will look
1669for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1670defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1671,Declarations for @code{rpcalc}}.)
bfa74976 1672
72d2299c
PE
1673A token type code of zero is returned if the end-of-input is encountered.
1674(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1675
1676Here is the code for the lexical analyzer:
1677
1678@example
1679@group
72d2299c 1680/* The lexical analyzer returns a double floating point
e966383b 1681 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1682 of the character read if not a number. It skips all blanks
1683 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1684
1685#include <ctype.h>
1686@end group
1687
1688@group
13863333
AD
1689int
1690yylex (void)
bfa74976
RS
1691@{
1692 int c;
1693
72d2299c 1694 /* Skip white space. */
13863333 1695 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1696 ;
1697@end group
1698@group
72d2299c 1699 /* Process numbers. */
13863333 1700 if (c == '.' || isdigit (c))
bfa74976
RS
1701 @{
1702 ungetc (c, stdin);
1703 scanf ("%lf", &yylval);
1704 return NUM;
1705 @}
1706@end group
1707@group
72d2299c 1708 /* Return end-of-input. */
13863333 1709 if (c == EOF)
bfa74976 1710 return 0;
72d2299c 1711 /* Return a single char. */
13863333 1712 return c;
bfa74976
RS
1713@}
1714@end group
1715@end example
1716
342b8b6e 1717@node Rpcalc Main
bfa74976
RS
1718@subsection The Controlling Function
1719@cindex controlling function
1720@cindex main function in simple example
1721
1722In keeping with the spirit of this example, the controlling function is
1723kept to the bare minimum. The only requirement is that it call
1724@code{yyparse} to start the process of parsing.
1725
1726@example
1727@group
13863333
AD
1728int
1729main (void)
bfa74976 1730@{
13863333 1731 return yyparse ();
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Error
bfa74976
RS
1737@subsection The Error Reporting Routine
1738@cindex error reporting routine
1739
1740When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1741function @code{yyerror} to print an error message (usually but not
6e649e65 1742always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1743@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1744here is the definition we will use:
bfa74976
RS
1745
1746@example
1747@group
1748#include <stdio.h>
1749
38a92d50 1750/* Called by yyparse on error. */
13863333 1751void
38a92d50 1752yyerror (char const *s)
bfa74976 1753@{
4e03e201 1754 fprintf (stderr, "%s\n", s);
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
1759After @code{yyerror} returns, the Bison parser may recover from the error
1760and continue parsing if the grammar contains a suitable error rule
1761(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1762have not written any error rules in this example, so any invalid input will
1763cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1764real calculator, but it is adequate for the first example.
bfa74976 1765
f5f419de 1766@node Rpcalc Generate
bfa74976
RS
1767@subsection Running Bison to Make the Parser
1768@cindex running Bison (introduction)
1769
ceed8467
AD
1770Before running Bison to produce a parser, we need to decide how to
1771arrange all the source code in one or more source files. For such a
1772simple example, the easiest thing is to put everything in one file. The
1773definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1774end, in the epilogue of the file
75f5aaea 1775(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1776
1777For a large project, you would probably have several source files, and use
1778@code{make} to arrange to recompile them.
1779
1780With all the source in a single file, you use the following command to
1781convert it into a parser file:
1782
1783@example
fa4d969f 1784bison @var{file}.y
bfa74976
RS
1785@end example
1786
1787@noindent
1788In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1789@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1790removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1791Bison contains the source code for @code{yyparse}. The additional
1792functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1793are copied verbatim to the output.
1794
342b8b6e 1795@node Rpcalc Compile
bfa74976
RS
1796@subsection Compiling the Parser File
1797@cindex compiling the parser
1798
1799Here is how to compile and run the parser file:
1800
1801@example
1802@group
1803# @r{List files in current directory.}
9edcd895 1804$ @kbd{ls}
bfa74976
RS
1805rpcalc.tab.c rpcalc.y
1806@end group
1807
1808@group
1809# @r{Compile the Bison parser.}
1810# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1811$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1812@end group
1813
1814@group
1815# @r{List files again.}
9edcd895 1816$ @kbd{ls}
bfa74976
RS
1817rpcalc rpcalc.tab.c rpcalc.y
1818@end group
1819@end example
1820
1821The file @file{rpcalc} now contains the executable code. Here is an
1822example session using @code{rpcalc}.
1823
1824@example
9edcd895
AD
1825$ @kbd{rpcalc}
1826@kbd{4 9 +}
bfa74976 182713
9edcd895 1828@kbd{3 7 + 3 4 5 *+-}
bfa74976 1829-13
9edcd895 1830@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183113
9edcd895 1832@kbd{5 6 / 4 n +}
bfa74976 1833-3.166666667
9edcd895 1834@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183581
9edcd895
AD
1836@kbd{^D} @r{End-of-file indicator}
1837$
bfa74976
RS
1838@end example
1839
342b8b6e 1840@node Infix Calc
bfa74976
RS
1841@section Infix Notation Calculator: @code{calc}
1842@cindex infix notation calculator
1843@cindex @code{calc}
1844@cindex calculator, infix notation
1845
1846We now modify rpcalc to handle infix operators instead of postfix. Infix
1847notation involves the concept of operator precedence and the need for
1848parentheses nested to arbitrary depth. Here is the Bison code for
1849@file{calc.y}, an infix desk-top calculator.
1850
1851@example
38a92d50 1852/* Infix notation calculator. */
bfa74976
RS
1853
1854%@{
38a92d50
PE
1855 #define YYSTYPE double
1856 #include <math.h>
1857 #include <stdio.h>
1858 int yylex (void);
1859 void yyerror (char const *);
bfa74976
RS
1860%@}
1861
38a92d50 1862/* Bison declarations. */
bfa74976
RS
1863%token NUM
1864%left '-' '+'
1865%left '*' '/'
d78f0ac9
AD
1866%precedence NEG /* negation--unary minus */
1867%right '^' /* exponentiation */
bfa74976 1868
38a92d50
PE
1869%% /* The grammar follows. */
1870input: /* empty */
bfa74976
RS
1871 | input line
1872;
1873
1874line: '\n'
1875 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1876;
1877
1878exp: NUM @{ $$ = $1; @}
1879 | exp '+' exp @{ $$ = $1 + $3; @}
1880 | exp '-' exp @{ $$ = $1 - $3; @}
1881 | exp '*' exp @{ $$ = $1 * $3; @}
1882 | exp '/' exp @{ $$ = $1 / $3; @}
1883 | '-' exp %prec NEG @{ $$ = -$2; @}
1884 | exp '^' exp @{ $$ = pow ($1, $3); @}
1885 | '(' exp ')' @{ $$ = $2; @}
1886;
1887%%
1888@end example
1889
1890@noindent
ceed8467
AD
1891The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1892same as before.
bfa74976
RS
1893
1894There are two important new features shown in this code.
1895
1896In the second section (Bison declarations), @code{%left} declares token
1897types and says they are left-associative operators. The declarations
1898@code{%left} and @code{%right} (right associativity) take the place of
1899@code{%token} which is used to declare a token type name without
d78f0ac9 1900associativity/precedence. (These tokens are single-character literals, which
bfa74976 1901ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1902the associativity/precedence.)
bfa74976
RS
1903
1904Operator precedence is determined by the line ordering of the
1905declarations; the higher the line number of the declaration (lower on
1906the page or screen), the higher the precedence. Hence, exponentiation
1907has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1908by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1909only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f5f419de
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f5f419de 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
d78f0ac9 2012%precedence NEG
342b8b6e
AD
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f5f419de
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f5f419de 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
d78f0ac9
AD
2260%precedence NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f5f419de 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f5f419de 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313
JD
2709(The prologue alternatives described here are experimental.
2710More user feedback will help to determine whether they should become permanent
2711features.)
2712
2cbe6b7f
JD
2713The functionality of @var{Prologue} sections can often be subtle and
2714inflexible.
8e0a5e9e
JD
2715As an alternative, Bison provides a %code directive with an explicit qualifier
2716field, which identifies the purpose of the code and thus the location(s) where
2717Bison should generate it.
2718For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2719one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2720@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2721
2722Look again at the example of the previous section:
2723
2724@smallexample
2725%@{
2726 #define _GNU_SOURCE
2727 #include <stdio.h>
2728 #include "ptypes.h"
2729%@}
2730
2731%union @{
2732 long int n;
2733 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2734@}
2735
2736%@{
2737 static void print_token_value (FILE *, int, YYSTYPE);
2738 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2739%@}
2740
2741@dots{}
2742@end smallexample
2743
2744@noindent
2745Notice that there are two @var{Prologue} sections here, but there's a subtle
2746distinction between their functionality.
2747For example, if you decide to override Bison's default definition for
2748@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2749definition?
2750You should write it in the first since Bison will insert that code into the
8e0a5e9e 2751parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2752In which @var{Prologue} section should you prototype an internal function,
2753@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2754arguments?
2755You should prototype it in the second since Bison will insert that code
2756@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2757
2758This distinction in functionality between the two @var{Prologue} sections is
2759established by the appearance of the @code{%union} between them.
a501eca9 2760This behavior raises a few questions.
2cbe6b7f
JD
2761First, why should the position of a @code{%union} affect definitions related to
2762@code{YYLTYPE} and @code{yytokentype}?
2763Second, what if there is no @code{%union}?
2764In that case, the second kind of @var{Prologue} section is not available.
2765This behavior is not intuitive.
2766
8e0a5e9e 2767To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2768@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2769Let's go ahead and add the new @code{YYLTYPE} definition and the
2770@code{trace_token} prototype at the same time:
2771
2772@smallexample
16dc6a9e 2773%code top @{
2cbe6b7f
JD
2774 #define _GNU_SOURCE
2775 #include <stdio.h>
8e0a5e9e
JD
2776
2777 /* WARNING: The following code really belongs
16dc6a9e 2778 * in a `%code requires'; see below. */
8e0a5e9e 2779
2cbe6b7f
JD
2780 #include "ptypes.h"
2781 #define YYLTYPE YYLTYPE
2782 typedef struct YYLTYPE
2783 @{
2784 int first_line;
2785 int first_column;
2786 int last_line;
2787 int last_column;
2788 char *filename;
2789 @} YYLTYPE;
2790@}
2791
2792%union @{
2793 long int n;
2794 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2795@}
2796
2797%code @{
2798 static void print_token_value (FILE *, int, YYSTYPE);
2799 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2800 static void trace_token (enum yytokentype token, YYLTYPE loc);
2801@}
2802
2803@dots{}
2804@end smallexample
2805
2806@noindent
16dc6a9e
JD
2807In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2808functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2809explicit which kind you intend.
2cbe6b7f
JD
2810Moreover, both kinds are always available even in the absence of @code{%union}.
2811
16dc6a9e 2812The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2813The first two lines before the warning need to appear near the top of the
2814parser source code file.
2815The first line after the warning is required by @code{YYSTYPE} and thus also
2816needs to appear in the parser source code file.
2cbe6b7f 2817However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2818(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2819the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2820The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2821override the default @code{YYLTYPE} definition there.
2822
16dc6a9e 2823In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2824lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2825definitions.
16dc6a9e 2826Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2827
2828@smallexample
16dc6a9e 2829%code top @{
2cbe6b7f
JD
2830 #define _GNU_SOURCE
2831 #include <stdio.h>
2832@}
2833
16dc6a9e 2834%code requires @{
9bc0dd67
JD
2835 #include "ptypes.h"
2836@}
2837%union @{
2838 long int n;
2839 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2840@}
2841
16dc6a9e 2842%code requires @{
2cbe6b7f
JD
2843 #define YYLTYPE YYLTYPE
2844 typedef struct YYLTYPE
2845 @{
2846 int first_line;
2847 int first_column;
2848 int last_line;
2849 int last_column;
2850 char *filename;
2851 @} YYLTYPE;
2852@}
2853
136a0f76 2854%code @{
2cbe6b7f
JD
2855 static void print_token_value (FILE *, int, YYSTYPE);
2856 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2857 static void trace_token (enum yytokentype token, YYLTYPE loc);
2858@}
2859
2860@dots{}
2861@end smallexample
2862
2863@noindent
2864Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2865definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2866definitions in both the parser source code file and the parser header file.
16dc6a9e 2867(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2868place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2869
a501eca9 2870When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2871should prefer @code{%code requires} over @code{%code top} regardless of whether
2872you instruct Bison to generate a parser header file.
a501eca9 2873When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2874source code file and that has no special need to appear at the top of that
16dc6a9e 2875file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2876These practices will make the purpose of each block of your code explicit to
2877Bison and to other developers reading your grammar file.
8e0a5e9e 2878Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2879@code{%code requires} to be the most important of the four @var{Prologue}
2880alternatives.
a501eca9 2881
2cbe6b7f
JD
2882At some point while developing your parser, you might decide to provide
2883@code{trace_token} to modules that are external to your parser.
2884Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2885header file and the parser source code file.
2886Since this function is not a dependency required by @code{YYSTYPE} or
2887@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2888@code{%code requires}.
2cbe6b7f 2889More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2890@code{%code requires} is not sufficient.
8e0a5e9e 2891Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2892@code{%code provides}:
2cbe6b7f
JD
2893
2894@smallexample
16dc6a9e 2895%code top @{
2cbe6b7f 2896 #define _GNU_SOURCE
136a0f76 2897 #include <stdio.h>
2cbe6b7f 2898@}
136a0f76 2899
16dc6a9e 2900%code requires @{
2cbe6b7f
JD
2901 #include "ptypes.h"
2902@}
2903%union @{
2904 long int n;
2905 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2906@}
2907
16dc6a9e 2908%code requires @{
2cbe6b7f
JD
2909 #define YYLTYPE YYLTYPE
2910 typedef struct YYLTYPE
2911 @{
2912 int first_line;
2913 int first_column;
2914 int last_line;
2915 int last_column;
2916 char *filename;
2917 @} YYLTYPE;
2918@}
2919
16dc6a9e 2920%code provides @{
2cbe6b7f
JD
2921 void trace_token (enum yytokentype token, YYLTYPE loc);
2922@}
2923
2924%code @{
9bc0dd67
JD
2925 static void print_token_value (FILE *, int, YYSTYPE);
2926 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2927@}
9bc0dd67
JD
2928
2929@dots{}
2930@end smallexample
2931
2cbe6b7f
JD
2932@noindent
2933Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2934file and the parser source code file after the definitions for
2935@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2936
2937The above examples are careful to write directives in an order that reflects
8e0a5e9e 2938the layout of the generated parser source code and header files:
16dc6a9e 2939@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2940@code{%code}.
a501eca9 2941While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2942this order, Bison does not require it.
2943Instead, Bison lets you choose an organization that makes sense to you.
2944
a501eca9 2945You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2946In that case, Bison concatenates the contained code in declaration order.
2947This is the only way in which the position of one of these directives within
2948the grammar file affects its functionality.
2949
2950The result of the previous two properties is greater flexibility in how you may
2951organize your grammar file.
2952For example, you may organize semantic-type-related directives by semantic
2953type:
2954
2955@smallexample
16dc6a9e 2956%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2957%union @{ type1 field1; @}
2958%destructor @{ type1_free ($$); @} <field1>
2959%printer @{ type1_print ($$); @} <field1>
2960
16dc6a9e 2961%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2962%union @{ type2 field2; @}
2963%destructor @{ type2_free ($$); @} <field2>
2964%printer @{ type2_print ($$); @} <field2>
2965@end smallexample
2966
2967@noindent
2968You could even place each of the above directive groups in the rules section of
2969the grammar file next to the set of rules that uses the associated semantic
2970type.
61fee93e
JD
2971(In the rules section, you must terminate each of those directives with a
2972semicolon.)
2cbe6b7f
JD
2973And you don't have to worry that some directive (like a @code{%union}) in the
2974definitions section is going to adversely affect their functionality in some
2975counter-intuitive manner just because it comes first.
2976Such an organization is not possible using @var{Prologue} sections.
2977
a501eca9 2978This section has been concerned with explaining the advantages of the four
8e0a5e9e 2979@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2980However, in most cases when using these directives, you shouldn't need to
2981think about all the low-level ordering issues discussed here.
2982Instead, you should simply use these directives to label each block of your
2983code according to its purpose and let Bison handle the ordering.
2984@code{%code} is the most generic label.
16dc6a9e
JD
2985Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2986as needed.
a501eca9 2987
342b8b6e 2988@node Bison Declarations
bfa74976
RS
2989@subsection The Bison Declarations Section
2990@cindex Bison declarations (introduction)
2991@cindex declarations, Bison (introduction)
2992
2993The @var{Bison declarations} section contains declarations that define
2994terminal and nonterminal symbols, specify precedence, and so on.
2995In some simple grammars you may not need any declarations.
2996@xref{Declarations, ,Bison Declarations}.
2997
342b8b6e 2998@node Grammar Rules
bfa74976
RS
2999@subsection The Grammar Rules Section
3000@cindex grammar rules section
3001@cindex rules section for grammar
3002
3003The @dfn{grammar rules} section contains one or more Bison grammar
3004rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3005
3006There must always be at least one grammar rule, and the first
3007@samp{%%} (which precedes the grammar rules) may never be omitted even
3008if it is the first thing in the file.
3009
38a92d50 3010@node Epilogue
75f5aaea 3011@subsection The epilogue
bfa74976 3012@cindex additional C code section
75f5aaea 3013@cindex epilogue
bfa74976
RS
3014@cindex C code, section for additional
3015
08e49d20
PE
3016The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3017the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3018place to put anything that you want to have in the parser file but which need
3019not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3020definitions of @code{yylex} and @code{yyerror} often go here. Because
3021C requires functions to be declared before being used, you often need
3022to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3023even if you define them in the Epilogue.
75f5aaea 3024@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3025
3026If the last section is empty, you may omit the @samp{%%} that separates it
3027from the grammar rules.
3028
f8e1c9e5
AD
3029The Bison parser itself contains many macros and identifiers whose names
3030start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3031any such names (except those documented in this manual) in the epilogue
3032of the grammar file.
bfa74976 3033
342b8b6e 3034@node Symbols
bfa74976
RS
3035@section Symbols, Terminal and Nonterminal
3036@cindex nonterminal symbol
3037@cindex terminal symbol
3038@cindex token type
3039@cindex symbol
3040
3041@dfn{Symbols} in Bison grammars represent the grammatical classifications
3042of the language.
3043
3044A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3045class of syntactically equivalent tokens. You use the symbol in grammar
3046rules to mean that a token in that class is allowed. The symbol is
3047represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3048function returns a token type code to indicate what kind of token has
3049been read. You don't need to know what the code value is; you can use
3050the symbol to stand for it.
bfa74976 3051
f8e1c9e5
AD
3052A @dfn{nonterminal symbol} stands for a class of syntactically
3053equivalent groupings. The symbol name is used in writing grammar rules.
3054By convention, it should be all lower case.
bfa74976
RS
3055
3056Symbol names can contain letters, digits (not at the beginning),
3057underscores and periods. Periods make sense only in nonterminals.
3058
931c7513 3059There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3060
3061@itemize @bullet
3062@item
3063A @dfn{named token type} is written with an identifier, like an
c827f760 3064identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3065such name must be defined with a Bison declaration such as
3066@code{%token}. @xref{Token Decl, ,Token Type Names}.
3067
3068@item
3069@cindex character token
3070@cindex literal token
3071@cindex single-character literal
931c7513
RS
3072A @dfn{character token type} (or @dfn{literal character token}) is
3073written in the grammar using the same syntax used in C for character
3074constants; for example, @code{'+'} is a character token type. A
3075character token type doesn't need to be declared unless you need to
3076specify its semantic value data type (@pxref{Value Type, ,Data Types of
3077Semantic Values}), associativity, or precedence (@pxref{Precedence,
3078,Operator Precedence}).
bfa74976
RS
3079
3080By convention, a character token type is used only to represent a
3081token that consists of that particular character. Thus, the token
3082type @code{'+'} is used to represent the character @samp{+} as a
3083token. Nothing enforces this convention, but if you depart from it,
3084your program will confuse other readers.
3085
3086All the usual escape sequences used in character literals in C can be
3087used in Bison as well, but you must not use the null character as a
72d2299c
PE
3088character literal because its numeric code, zero, signifies
3089end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3090for @code{yylex}}). Also, unlike standard C, trigraphs have no
3091special meaning in Bison character literals, nor is backslash-newline
3092allowed.
931c7513
RS
3093
3094@item
3095@cindex string token
3096@cindex literal string token
9ecbd125 3097@cindex multicharacter literal
931c7513
RS
3098A @dfn{literal string token} is written like a C string constant; for
3099example, @code{"<="} is a literal string token. A literal string token
3100doesn't need to be declared unless you need to specify its semantic
14ded682 3101value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3102(@pxref{Precedence}).
3103
3104You can associate the literal string token with a symbolic name as an
3105alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3106Declarations}). If you don't do that, the lexical analyzer has to
3107retrieve the token number for the literal string token from the
3108@code{yytname} table (@pxref{Calling Convention}).
3109
c827f760 3110@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3111
3112By convention, a literal string token is used only to represent a token
3113that consists of that particular string. Thus, you should use the token
3114type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3115does not enforce this convention, but if you depart from it, people who
931c7513
RS
3116read your program will be confused.
3117
3118All the escape sequences used in string literals in C can be used in
92ac3705
PE
3119Bison as well, except that you must not use a null character within a
3120string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3121meaning in Bison string literals, nor is backslash-newline allowed. A
3122literal string token must contain two or more characters; for a token
3123containing just one character, use a character token (see above).
bfa74976
RS
3124@end itemize
3125
3126How you choose to write a terminal symbol has no effect on its
3127grammatical meaning. That depends only on where it appears in rules and
3128on when the parser function returns that symbol.
3129
72d2299c
PE
3130The value returned by @code{yylex} is always one of the terminal
3131symbols, except that a zero or negative value signifies end-of-input.
3132Whichever way you write the token type in the grammar rules, you write
3133it the same way in the definition of @code{yylex}. The numeric code
3134for a character token type is simply the positive numeric code of the
3135character, so @code{yylex} can use the identical value to generate the
3136requisite code, though you may need to convert it to @code{unsigned
3137char} to avoid sign-extension on hosts where @code{char} is signed.
3138Each named token type becomes a C macro in
bfa74976 3139the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3140(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3141@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3142
3143If @code{yylex} is defined in a separate file, you need to arrange for the
3144token-type macro definitions to be available there. Use the @samp{-d}
3145option when you run Bison, so that it will write these macro definitions
3146into a separate header file @file{@var{name}.tab.h} which you can include
3147in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3148
72d2299c 3149If you want to write a grammar that is portable to any Standard C
9d9b8b70 3150host, you must use only nonnull character tokens taken from the basic
c827f760 3151execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3152digits, the 52 lower- and upper-case English letters, and the
3153characters in the following C-language string:
3154
3155@example
3156"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3157@end example
3158
f8e1c9e5
AD
3159The @code{yylex} function and Bison must use a consistent character set
3160and encoding for character tokens. For example, if you run Bison in an
3161@acronym{ASCII} environment, but then compile and run the resulting
3162program in an environment that uses an incompatible character set like
3163@acronym{EBCDIC}, the resulting program may not work because the tables
3164generated by Bison will assume @acronym{ASCII} numeric values for
3165character tokens. It is standard practice for software distributions to
3166contain C source files that were generated by Bison in an
3167@acronym{ASCII} environment, so installers on platforms that are
3168incompatible with @acronym{ASCII} must rebuild those files before
3169compiling them.
e966383b 3170
bfa74976
RS
3171The symbol @code{error} is a terminal symbol reserved for error recovery
3172(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3173In particular, @code{yylex} should never return this value. The default
3174value of the error token is 256, unless you explicitly assigned 256 to
3175one of your tokens with a @code{%token} declaration.
bfa74976 3176
342b8b6e 3177@node Rules
bfa74976
RS
3178@section Syntax of Grammar Rules
3179@cindex rule syntax
3180@cindex grammar rule syntax
3181@cindex syntax of grammar rules
3182
3183A Bison grammar rule has the following general form:
3184
3185@example
e425e872 3186@group
bfa74976
RS
3187@var{result}: @var{components}@dots{}
3188 ;
e425e872 3189@end group
bfa74976
RS
3190@end example
3191
3192@noindent
9ecbd125 3193where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3194and @var{components} are various terminal and nonterminal symbols that
13863333 3195are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3196
3197For example,
3198
3199@example
3200@group
3201exp: exp '+' exp
3202 ;
3203@end group
3204@end example
3205
3206@noindent
3207says that two groupings of type @code{exp}, with a @samp{+} token in between,
3208can be combined into a larger grouping of type @code{exp}.
3209
72d2299c
PE
3210White space in rules is significant only to separate symbols. You can add
3211extra white space as you wish.
bfa74976
RS
3212
3213Scattered among the components can be @var{actions} that determine
3214the semantics of the rule. An action looks like this:
3215
3216@example
3217@{@var{C statements}@}
3218@end example
3219
3220@noindent
287c78f6
PE
3221@cindex braced code
3222This is an example of @dfn{braced code}, that is, C code surrounded by
3223braces, much like a compound statement in C@. Braced code can contain
3224any sequence of C tokens, so long as its braces are balanced. Bison
3225does not check the braced code for correctness directly; it merely
3226copies the code to the output file, where the C compiler can check it.
3227
3228Within braced code, the balanced-brace count is not affected by braces
3229within comments, string literals, or character constants, but it is
3230affected by the C digraphs @samp{<%} and @samp{%>} that represent
3231braces. At the top level braced code must be terminated by @samp{@}}
3232and not by a digraph. Bison does not look for trigraphs, so if braced
3233code uses trigraphs you should ensure that they do not affect the
3234nesting of braces or the boundaries of comments, string literals, or
3235character constants.
3236
bfa74976
RS
3237Usually there is only one action and it follows the components.
3238@xref{Actions}.
3239
3240@findex |
3241Multiple rules for the same @var{result} can be written separately or can
3242be joined with the vertical-bar character @samp{|} as follows:
3243
bfa74976
RS
3244@example
3245@group
3246@var{result}: @var{rule1-components}@dots{}
3247 | @var{rule2-components}@dots{}
3248 @dots{}
3249 ;
3250@end group
3251@end example
bfa74976
RS
3252
3253@noindent
3254They are still considered distinct rules even when joined in this way.
3255
3256If @var{components} in a rule is empty, it means that @var{result} can
3257match the empty string. For example, here is how to define a
3258comma-separated sequence of zero or more @code{exp} groupings:
3259
3260@example
3261@group
3262expseq: /* empty */
3263 | expseq1
3264 ;
3265@end group
3266
3267@group
3268expseq1: exp
3269 | expseq1 ',' exp
3270 ;
3271@end group
3272@end example
3273
3274@noindent
3275It is customary to write a comment @samp{/* empty */} in each rule
3276with no components.
3277
342b8b6e 3278@node Recursion
bfa74976
RS
3279@section Recursive Rules
3280@cindex recursive rule
3281
f8e1c9e5
AD
3282A rule is called @dfn{recursive} when its @var{result} nonterminal
3283appears also on its right hand side. Nearly all Bison grammars need to
3284use recursion, because that is the only way to define a sequence of any
3285number of a particular thing. Consider this recursive definition of a
9ecbd125 3286comma-separated sequence of one or more expressions:
bfa74976
RS
3287
3288@example
3289@group
3290expseq1: exp
3291 | expseq1 ',' exp
3292 ;
3293@end group
3294@end example
3295
3296@cindex left recursion
3297@cindex right recursion
3298@noindent
3299Since the recursive use of @code{expseq1} is the leftmost symbol in the
3300right hand side, we call this @dfn{left recursion}. By contrast, here
3301the same construct is defined using @dfn{right recursion}:
3302
3303@example
3304@group
3305expseq1: exp
3306 | exp ',' expseq1
3307 ;
3308@end group
3309@end example
3310
3311@noindent
ec3bc396
AD
3312Any kind of sequence can be defined using either left recursion or right
3313recursion, but you should always use left recursion, because it can
3314parse a sequence of any number of elements with bounded stack space.
3315Right recursion uses up space on the Bison stack in proportion to the
3316number of elements in the sequence, because all the elements must be
3317shifted onto the stack before the rule can be applied even once.
3318@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3319of this.
bfa74976
RS
3320
3321@cindex mutual recursion
3322@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3323rule does not appear directly on its right hand side, but does appear
3324in rules for other nonterminals which do appear on its right hand
13863333 3325side.
bfa74976
RS
3326
3327For example:
3328
3329@example
3330@group
3331expr: primary
3332 | primary '+' primary
3333 ;
3334@end group
3335
3336@group
3337primary: constant
3338 | '(' expr ')'
3339 ;
3340@end group
3341@end example
3342
3343@noindent
3344defines two mutually-recursive nonterminals, since each refers to the
3345other.
3346
342b8b6e 3347@node Semantics
bfa74976
RS
3348@section Defining Language Semantics
3349@cindex defining language semantics
13863333 3350@cindex language semantics, defining
bfa74976
RS
3351
3352The grammar rules for a language determine only the syntax. The semantics
3353are determined by the semantic values associated with various tokens and
3354groupings, and by the actions taken when various groupings are recognized.
3355
3356For example, the calculator calculates properly because the value
3357associated with each expression is the proper number; it adds properly
3358because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3359the numbers associated with @var{x} and @var{y}.
3360
3361@menu
3362* Value Type:: Specifying one data type for all semantic values.
3363* Multiple Types:: Specifying several alternative data types.
3364* Actions:: An action is the semantic definition of a grammar rule.
3365* Action Types:: Specifying data types for actions to operate on.
3366* Mid-Rule Actions:: Most actions go at the end of a rule.
3367 This says when, why and how to use the exceptional
3368 action in the middle of a rule.
3369@end menu
3370
342b8b6e 3371@node Value Type
bfa74976
RS
3372@subsection Data Types of Semantic Values
3373@cindex semantic value type
3374@cindex value type, semantic
3375@cindex data types of semantic values
3376@cindex default data type
3377
3378In a simple program it may be sufficient to use the same data type for
3379the semantic values of all language constructs. This was true in the
c827f760 3380@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3381Notation Calculator}).
bfa74976 3382
ddc8ede1
PE
3383Bison normally uses the type @code{int} for semantic values if your
3384program uses the same data type for all language constructs. To
bfa74976
RS
3385specify some other type, define @code{YYSTYPE} as a macro, like this:
3386
3387@example
3388#define YYSTYPE double
3389@end example
3390
3391@noindent
50cce58e
PE
3392@code{YYSTYPE}'s replacement list should be a type name
3393that does not contain parentheses or square brackets.
342b8b6e 3394This macro definition must go in the prologue of the grammar file
75f5aaea 3395(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3396
342b8b6e 3397@node Multiple Types
bfa74976
RS
3398@subsection More Than One Value Type
3399
3400In most programs, you will need different data types for different kinds
3401of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3402@code{int} or @code{long int}, while a string constant needs type
3403@code{char *}, and an identifier might need a pointer to an entry in the
3404symbol table.
bfa74976
RS
3405
3406To use more than one data type for semantic values in one parser, Bison
3407requires you to do two things:
3408
3409@itemize @bullet
3410@item
ddc8ede1 3411Specify the entire collection of possible data types, either by using the
704a47c4 3412@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3413Value Types}), or by using a @code{typedef} or a @code{#define} to
3414define @code{YYSTYPE} to be a union type whose member names are
3415the type tags.
bfa74976
RS
3416
3417@item
14ded682
AD
3418Choose one of those types for each symbol (terminal or nonterminal) for
3419which semantic values are used. This is done for tokens with the
3420@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3421and for groupings with the @code{%type} Bison declaration (@pxref{Type
3422Decl, ,Nonterminal Symbols}).
bfa74976
RS
3423@end itemize
3424
342b8b6e 3425@node Actions
bfa74976
RS
3426@subsection Actions
3427@cindex action
3428@vindex $$
3429@vindex $@var{n}
3430
3431An action accompanies a syntactic rule and contains C code to be executed
3432each time an instance of that rule is recognized. The task of most actions
3433is to compute a semantic value for the grouping built by the rule from the
3434semantic values associated with tokens or smaller groupings.
3435
287c78f6
PE
3436An action consists of braced code containing C statements, and can be
3437placed at any position in the rule;
704a47c4
AD
3438it is executed at that position. Most rules have just one action at the
3439end of the rule, following all the components. Actions in the middle of
3440a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3441Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3442
3443The C code in an action can refer to the semantic values of the components
3444matched by the rule with the construct @code{$@var{n}}, which stands for
3445the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3446being constructed is @code{$$}. Bison translates both of these
3447constructs into expressions of the appropriate type when it copies the
3448actions into the parser file. @code{$$} is translated to a modifiable
3449lvalue, so it can be assigned to.
bfa74976
RS
3450
3451Here is a typical example:
3452
3453@example
3454@group
3455exp: @dots{}
3456 | exp '+' exp
3457 @{ $$ = $1 + $3; @}
3458@end group
3459@end example
3460
3461@noindent
3462This rule constructs an @code{exp} from two smaller @code{exp} groupings
3463connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3464refer to the semantic values of the two component @code{exp} groupings,
3465which are the first and third symbols on the right hand side of the rule.
3466The sum is stored into @code{$$} so that it becomes the semantic value of
3467the addition-expression just recognized by the rule. If there were a
3468useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3469referred to as @code{$2}.
bfa74976 3470
3ded9a63
AD
3471Note that the vertical-bar character @samp{|} is really a rule
3472separator, and actions are attached to a single rule. This is a
3473difference with tools like Flex, for which @samp{|} stands for either
3474``or'', or ``the same action as that of the next rule''. In the
3475following example, the action is triggered only when @samp{b} is found:
3476
3477@example
3478@group
3479a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3480@end group
3481@end example
3482
bfa74976
RS
3483@cindex default action
3484If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3485@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3486becomes the value of the whole rule. Of course, the default action is
3487valid only if the two data types match. There is no meaningful default
3488action for an empty rule; every empty rule must have an explicit action
3489unless the rule's value does not matter.
bfa74976
RS
3490
3491@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3492to tokens and groupings on the stack @emph{before} those that match the
3493current rule. This is a very risky practice, and to use it reliably
3494you must be certain of the context in which the rule is applied. Here
3495is a case in which you can use this reliably:
3496
3497@example
3498@group
3499foo: expr bar '+' expr @{ @dots{} @}
3500 | expr bar '-' expr @{ @dots{} @}
3501 ;
3502@end group
3503
3504@group
3505bar: /* empty */
3506 @{ previous_expr = $0; @}
3507 ;
3508@end group
3509@end example
3510
3511As long as @code{bar} is used only in the fashion shown here, @code{$0}
3512always refers to the @code{expr} which precedes @code{bar} in the
3513definition of @code{foo}.
3514
32c29292 3515@vindex yylval
742e4900 3516It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3517any, from a semantic action.
3518This semantic value is stored in @code{yylval}.
3519@xref{Action Features, ,Special Features for Use in Actions}.
3520
342b8b6e 3521@node Action Types
bfa74976
RS
3522@subsection Data Types of Values in Actions
3523@cindex action data types
3524@cindex data types in actions
3525
3526If you have chosen a single data type for semantic values, the @code{$$}
3527and @code{$@var{n}} constructs always have that data type.
3528
3529If you have used @code{%union} to specify a variety of data types, then you
3530must declare a choice among these types for each terminal or nonterminal
3531symbol that can have a semantic value. Then each time you use @code{$$} or
3532@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3533in the rule. In this example,
bfa74976
RS
3534
3535@example
3536@group
3537exp: @dots{}
3538 | exp '+' exp
3539 @{ $$ = $1 + $3; @}
3540@end group
3541@end example
3542
3543@noindent
3544@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3545have the data type declared for the nonterminal symbol @code{exp}. If
3546@code{$2} were used, it would have the data type declared for the
e0c471a9 3547terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3548
3549Alternatively, you can specify the data type when you refer to the value,
3550by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3551reference. For example, if you have defined types as shown here:
3552
3553@example
3554@group
3555%union @{
3556 int itype;
3557 double dtype;
3558@}
3559@end group
3560@end example
3561
3562@noindent
3563then you can write @code{$<itype>1} to refer to the first subunit of the
3564rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3565
342b8b6e 3566@node Mid-Rule Actions
bfa74976
RS
3567@subsection Actions in Mid-Rule
3568@cindex actions in mid-rule
3569@cindex mid-rule actions
3570
3571Occasionally it is useful to put an action in the middle of a rule.
3572These actions are written just like usual end-of-rule actions, but they
3573are executed before the parser even recognizes the following components.
3574
3575A mid-rule action may refer to the components preceding it using
3576@code{$@var{n}}, but it may not refer to subsequent components because
3577it is run before they are parsed.
3578
3579The mid-rule action itself counts as one of the components of the rule.
3580This makes a difference when there is another action later in the same rule
3581(and usually there is another at the end): you have to count the actions
3582along with the symbols when working out which number @var{n} to use in
3583@code{$@var{n}}.
3584
3585The mid-rule action can also have a semantic value. The action can set
3586its value with an assignment to @code{$$}, and actions later in the rule
3587can refer to the value using @code{$@var{n}}. Since there is no symbol
3588to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3589in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3590specify a data type each time you refer to this value.
bfa74976
RS
3591
3592There is no way to set the value of the entire rule with a mid-rule
3593action, because assignments to @code{$$} do not have that effect. The
3594only way to set the value for the entire rule is with an ordinary action
3595at the end of the rule.
3596
3597Here is an example from a hypothetical compiler, handling a @code{let}
3598statement that looks like @samp{let (@var{variable}) @var{statement}} and
3599serves to create a variable named @var{variable} temporarily for the
3600duration of @var{statement}. To parse this construct, we must put
3601@var{variable} into the symbol table while @var{statement} is parsed, then
3602remove it afterward. Here is how it is done:
3603
3604@example
3605@group
3606stmt: LET '(' var ')'
3607 @{ $<context>$ = push_context ();
3608 declare_variable ($3); @}
3609 stmt @{ $$ = $6;
3610 pop_context ($<context>5); @}
3611@end group
3612@end example
3613
3614@noindent
3615As soon as @samp{let (@var{variable})} has been recognized, the first
3616action is run. It saves a copy of the current semantic context (the
3617list of accessible variables) as its semantic value, using alternative
3618@code{context} in the data-type union. Then it calls
3619@code{declare_variable} to add the new variable to that list. Once the
3620first action is finished, the embedded statement @code{stmt} can be
3621parsed. Note that the mid-rule action is component number 5, so the
3622@samp{stmt} is component number 6.
3623
3624After the embedded statement is parsed, its semantic value becomes the
3625value of the entire @code{let}-statement. Then the semantic value from the
3626earlier action is used to restore the prior list of variables. This
3627removes the temporary @code{let}-variable from the list so that it won't
3628appear to exist while the rest of the program is parsed.
3629
841a7737
JD
3630@findex %destructor
3631@cindex discarded symbols, mid-rule actions
3632@cindex error recovery, mid-rule actions
3633In the above example, if the parser initiates error recovery (@pxref{Error
3634Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3635it might discard the previous semantic context @code{$<context>5} without
3636restoring it.
3637Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3638Discarded Symbols}).
ec5479ce
JD
3639However, Bison currently provides no means to declare a destructor specific to
3640a particular mid-rule action's semantic value.
841a7737
JD
3641
3642One solution is to bury the mid-rule action inside a nonterminal symbol and to
3643declare a destructor for that symbol:
3644
3645@example
3646@group
3647%type <context> let
3648%destructor @{ pop_context ($$); @} let
3649
3650%%
3651
3652stmt: let stmt
3653 @{ $$ = $2;
3654 pop_context ($1); @}
3655 ;
3656
3657let: LET '(' var ')'
3658 @{ $$ = push_context ();
3659 declare_variable ($3); @}
3660 ;
3661
3662@end group
3663@end example
3664
3665@noindent
3666Note that the action is now at the end of its rule.
3667Any mid-rule action can be converted to an end-of-rule action in this way, and
3668this is what Bison actually does to implement mid-rule actions.
3669
bfa74976
RS
3670Taking action before a rule is completely recognized often leads to
3671conflicts since the parser must commit to a parse in order to execute the
3672action. For example, the following two rules, without mid-rule actions,
3673can coexist in a working parser because the parser can shift the open-brace
3674token and look at what follows before deciding whether there is a
3675declaration or not:
3676
3677@example
3678@group
3679compound: '@{' declarations statements '@}'
3680 | '@{' statements '@}'
3681 ;
3682@end group
3683@end example
3684
3685@noindent
3686But when we add a mid-rule action as follows, the rules become nonfunctional:
3687
3688@example
3689@group
3690compound: @{ prepare_for_local_variables (); @}
3691 '@{' declarations statements '@}'
3692@end group
3693@group
3694 | '@{' statements '@}'
3695 ;
3696@end group
3697@end example
3698
3699@noindent
3700Now the parser is forced to decide whether to run the mid-rule action
3701when it has read no farther than the open-brace. In other words, it
3702must commit to using one rule or the other, without sufficient
3703information to do it correctly. (The open-brace token is what is called
742e4900
JD
3704the @dfn{lookahead} token at this time, since the parser is still
3705deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3706
3707You might think that you could correct the problem by putting identical
3708actions into the two rules, like this:
3709
3710@example
3711@group
3712compound: @{ prepare_for_local_variables (); @}
3713 '@{' declarations statements '@}'
3714 | @{ prepare_for_local_variables (); @}
3715 '@{' statements '@}'
3716 ;
3717@end group
3718@end example
3719
3720@noindent
3721But this does not help, because Bison does not realize that the two actions
3722are identical. (Bison never tries to understand the C code in an action.)
3723
3724If the grammar is such that a declaration can be distinguished from a
3725statement by the first token (which is true in C), then one solution which
3726does work is to put the action after the open-brace, like this:
3727
3728@example
3729@group
3730compound: '@{' @{ prepare_for_local_variables (); @}
3731 declarations statements '@}'
3732 | '@{' statements '@}'
3733 ;
3734@end group
3735@end example
3736
3737@noindent
3738Now the first token of the following declaration or statement,
3739which would in any case tell Bison which rule to use, can still do so.
3740
3741Another solution is to bury the action inside a nonterminal symbol which
3742serves as a subroutine:
3743
3744@example
3745@group
3746subroutine: /* empty */
3747 @{ prepare_for_local_variables (); @}
3748 ;
3749
3750@end group
3751
3752@group
3753compound: subroutine
3754 '@{' declarations statements '@}'
3755 | subroutine
3756 '@{' statements '@}'
3757 ;
3758@end group
3759@end example
3760
3761@noindent
3762Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3763deciding which rule for @code{compound} it will eventually use.
bfa74976 3764
342b8b6e 3765@node Locations
847bf1f5
AD
3766@section Tracking Locations
3767@cindex location
95923bd6
AD
3768@cindex textual location
3769@cindex location, textual
847bf1f5
AD
3770
3771Though grammar rules and semantic actions are enough to write a fully
72d2299c 3772functional parser, it can be useful to process some additional information,
3e259915
MA
3773especially symbol locations.
3774
704a47c4
AD
3775The way locations are handled is defined by providing a data type, and
3776actions to take when rules are matched.
847bf1f5
AD
3777
3778@menu
3779* Location Type:: Specifying a data type for locations.
3780* Actions and Locations:: Using locations in actions.
3781* Location Default Action:: Defining a general way to compute locations.
3782@end menu
3783
342b8b6e 3784@node Location Type
847bf1f5
AD
3785@subsection Data Type of Locations
3786@cindex data type of locations
3787@cindex default location type
3788
3789Defining a data type for locations is much simpler than for semantic values,
3790since all tokens and groupings always use the same type.
3791
50cce58e
PE
3792You can specify the type of locations by defining a macro called
3793@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3794defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3795When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3796four members:
3797
3798@example
6273355b 3799typedef struct YYLTYPE
847bf1f5
AD
3800@{
3801 int first_line;
3802 int first_column;
3803 int last_line;
3804 int last_column;
6273355b 3805@} YYLTYPE;
847bf1f5
AD
3806@end example
3807
cd48d21d
AD
3808At the beginning of the parsing, Bison initializes all these fields to 1
3809for @code{yylloc}.
3810
342b8b6e 3811@node Actions and Locations
847bf1f5
AD
3812@subsection Actions and Locations
3813@cindex location actions
3814@cindex actions, location
3815@vindex @@$
3816@vindex @@@var{n}
3817
3818Actions are not only useful for defining language semantics, but also for
3819describing the behavior of the output parser with locations.
3820
3821The most obvious way for building locations of syntactic groupings is very
72d2299c 3822similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3823constructs can be used to access the locations of the elements being matched.
3824The location of the @var{n}th component of the right hand side is
3825@code{@@@var{n}}, while the location of the left hand side grouping is
3826@code{@@$}.
3827
3e259915 3828Here is a basic example using the default data type for locations:
847bf1f5
AD
3829
3830@example
3831@group
3832exp: @dots{}
3e259915 3833 | exp '/' exp
847bf1f5 3834 @{
3e259915
MA
3835 @@$.first_column = @@1.first_column;
3836 @@$.first_line = @@1.first_line;
847bf1f5
AD
3837 @@$.last_column = @@3.last_column;
3838 @@$.last_line = @@3.last_line;
3e259915
MA
3839 if ($3)
3840 $$ = $1 / $3;
3841 else
3842 @{
3843 $$ = 1;
4e03e201
AD
3844 fprintf (stderr,
3845 "Division by zero, l%d,c%d-l%d,c%d",
3846 @@3.first_line, @@3.first_column,
3847 @@3.last_line, @@3.last_column);
3e259915 3848 @}
847bf1f5
AD
3849 @}
3850@end group
3851@end example
3852
3e259915 3853As for semantic values, there is a default action for locations that is
72d2299c 3854run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3855beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3856last symbol.
3e259915 3857
72d2299c 3858With this default action, the location tracking can be fully automatic. The
3e259915
MA
3859example above simply rewrites this way:
3860
3861@example
3862@group
3863exp: @dots{}
3864 | exp '/' exp
3865 @{
3866 if ($3)
3867 $$ = $1 / $3;
3868 else
3869 @{
3870 $$ = 1;
4e03e201
AD
3871 fprintf (stderr,
3872 "Division by zero, l%d,c%d-l%d,c%d",
3873 @@3.first_line, @@3.first_column,
3874 @@3.last_line, @@3.last_column);
3e259915
MA
3875 @}
3876 @}
3877@end group
3878@end example
847bf1f5 3879
32c29292 3880@vindex yylloc
742e4900 3881It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3882from a semantic action.
3883This location is stored in @code{yylloc}.
3884@xref{Action Features, ,Special Features for Use in Actions}.
3885
342b8b6e 3886@node Location Default Action
847bf1f5
AD
3887@subsection Default Action for Locations
3888@vindex YYLLOC_DEFAULT
8710fc41 3889@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3890
72d2299c 3891Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3892locations are much more general than semantic values, there is room in
3893the output parser to redefine the default action to take for each
72d2299c 3894rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3895matched, before the associated action is run. It is also invoked
3896while processing a syntax error, to compute the error's location.
8710fc41
JD
3897Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3898parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3899of that ambiguity.
847bf1f5 3900
3e259915 3901Most of the time, this macro is general enough to suppress location
79282c6c 3902dedicated code from semantic actions.
847bf1f5 3903
72d2299c 3904The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3905the location of the grouping (the result of the computation). When a
766de5eb 3906rule is matched, the second parameter identifies locations of
96b93a3d 3907all right hand side elements of the rule being matched, and the third
8710fc41
JD
3908parameter is the size of the rule's right hand side.
3909When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3910right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3911When processing a syntax error, the second parameter identifies locations
3912of the symbols that were discarded during error processing, and the third
96b93a3d 3913parameter is the number of discarded symbols.
847bf1f5 3914
766de5eb 3915By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3916
766de5eb 3917@smallexample
847bf1f5 3918@group
766de5eb
PE
3919# define YYLLOC_DEFAULT(Current, Rhs, N) \
3920 do \
3921 if (N) \
3922 @{ \
3923 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3924 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3925 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3926 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3927 @} \
3928 else \
3929 @{ \
3930 (Current).first_line = (Current).last_line = \
3931 YYRHSLOC(Rhs, 0).last_line; \
3932 (Current).first_column = (Current).last_column = \
3933 YYRHSLOC(Rhs, 0).last_column; \
3934 @} \
3935 while (0)
847bf1f5 3936@end group
766de5eb 3937@end smallexample
676385e2 3938
766de5eb
PE
3939where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3940in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3941just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3942
3e259915 3943When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3944
3e259915 3945@itemize @bullet
79282c6c 3946@item
72d2299c 3947All arguments are free of side-effects. However, only the first one (the
3e259915 3948result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3949
3e259915 3950@item
766de5eb
PE
3951For consistency with semantic actions, valid indexes within the
3952right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3953valid index, and it refers to the symbol just before the reduction.
3954During error processing @var{n} is always positive.
0ae99356
PE
3955
3956@item
3957Your macro should parenthesize its arguments, if need be, since the
3958actual arguments may not be surrounded by parentheses. Also, your
3959macro should expand to something that can be used as a single
3960statement when it is followed by a semicolon.
3e259915 3961@end itemize
847bf1f5 3962
342b8b6e 3963@node Declarations
bfa74976
RS
3964@section Bison Declarations
3965@cindex declarations, Bison
3966@cindex Bison declarations
3967
3968The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3969used in formulating the grammar and the data types of semantic values.
3970@xref{Symbols}.
3971
3972All token type names (but not single-character literal tokens such as
3973@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3974declared if you need to specify which data type to use for the semantic
3975value (@pxref{Multiple Types, ,More Than One Value Type}).
3976
3977The first rule in the file also specifies the start symbol, by default.
3978If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3979it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3980Grammars}).
bfa74976
RS
3981
3982@menu
b50d2359 3983* Require Decl:: Requiring a Bison version.
bfa74976
RS
3984* Token Decl:: Declaring terminal symbols.
3985* Precedence Decl:: Declaring terminals with precedence and associativity.
3986* Union Decl:: Declaring the set of all semantic value types.
3987* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3988* Initial Action Decl:: Code run before parsing starts.
72f889cc 3989* Destructor Decl:: Declaring how symbols are freed.
d6328241 3990* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3991* Start Decl:: Specifying the start symbol.
3992* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3993* Push Decl:: Requesting a push parser.
bfa74976
RS
3994* Decl Summary:: Table of all Bison declarations.
3995@end menu
3996
b50d2359
AD
3997@node Require Decl
3998@subsection Require a Version of Bison
3999@cindex version requirement
4000@cindex requiring a version of Bison
4001@findex %require
4002
4003You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4004the requirement is not met, @command{bison} exits with an error (exit
4005status 63).
b50d2359
AD
4006
4007@example
4008%require "@var{version}"
4009@end example
4010
342b8b6e 4011@node Token Decl
bfa74976
RS
4012@subsection Token Type Names
4013@cindex declaring token type names
4014@cindex token type names, declaring
931c7513 4015@cindex declaring literal string tokens
bfa74976
RS
4016@findex %token
4017
4018The basic way to declare a token type name (terminal symbol) is as follows:
4019
4020@example
4021%token @var{name}
4022@end example
4023
4024Bison will convert this into a @code{#define} directive in
4025the parser, so that the function @code{yylex} (if it is in this file)
4026can use the name @var{name} to stand for this token type's code.
4027
d78f0ac9
AD
4028Alternatively, you can use @code{%left}, @code{%right},
4029@code{%precedence}, or
14ded682
AD
4030@code{%nonassoc} instead of @code{%token}, if you wish to specify
4031associativity and precedence. @xref{Precedence Decl, ,Operator
4032Precedence}.
bfa74976
RS
4033
4034You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4035a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4036following the token name:
bfa74976
RS
4037
4038@example
4039%token NUM 300
1452af69 4040%token XNUM 0x12d // a GNU extension
bfa74976
RS
4041@end example
4042
4043@noindent
4044It is generally best, however, to let Bison choose the numeric codes for
4045all token types. Bison will automatically select codes that don't conflict
e966383b 4046with each other or with normal characters.
bfa74976
RS
4047
4048In the event that the stack type is a union, you must augment the
4049@code{%token} or other token declaration to include the data type
704a47c4
AD
4050alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4051Than One Value Type}).
bfa74976
RS
4052
4053For example:
4054
4055@example
4056@group
4057%union @{ /* define stack type */
4058 double val;
4059 symrec *tptr;
4060@}
4061%token <val> NUM /* define token NUM and its type */
4062@end group
4063@end example
4064
931c7513
RS
4065You can associate a literal string token with a token type name by
4066writing the literal string at the end of a @code{%token}
4067declaration which declares the name. For example:
4068
4069@example
4070%token arrow "=>"
4071@end example
4072
4073@noindent
4074For example, a grammar for the C language might specify these names with
4075equivalent literal string tokens:
4076
4077@example
4078%token <operator> OR "||"
4079%token <operator> LE 134 "<="
4080%left OR "<="
4081@end example
4082
4083@noindent
4084Once you equate the literal string and the token name, you can use them
4085interchangeably in further declarations or the grammar rules. The
4086@code{yylex} function can use the token name or the literal string to
4087obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4088Syntax error messages passed to @code{yyerror} from the parser will reference
4089the literal string instead of the token name.
4090
4091The token numbered as 0 corresponds to end of file; the following line
4092allows for nicer error messages referring to ``end of file'' instead
4093of ``$end'':
4094
4095@example
4096%token END 0 "end of file"
4097@end example
931c7513 4098
342b8b6e 4099@node Precedence Decl
bfa74976
RS
4100@subsection Operator Precedence
4101@cindex precedence declarations
4102@cindex declaring operator precedence
4103@cindex operator precedence, declaring
4104
d78f0ac9
AD
4105Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4106@code{%precedence} declaration to
bfa74976
RS
4107declare a token and specify its precedence and associativity, all at
4108once. These are called @dfn{precedence declarations}.
704a47c4
AD
4109@xref{Precedence, ,Operator Precedence}, for general information on
4110operator precedence.
bfa74976 4111
ab7f29f8 4112The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4113@code{%token}: either
4114
4115@example
4116%left @var{symbols}@dots{}
4117@end example
4118
4119@noindent
4120or
4121
4122@example
4123%left <@var{type}> @var{symbols}@dots{}
4124@end example
4125
4126And indeed any of these declarations serves the purposes of @code{%token}.
4127But in addition, they specify the associativity and relative precedence for
4128all the @var{symbols}:
4129
4130@itemize @bullet
4131@item
4132The associativity of an operator @var{op} determines how repeated uses
4133of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4134@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4135grouping @var{y} with @var{z} first. @code{%left} specifies
4136left-associativity (grouping @var{x} with @var{y} first) and
4137@code{%right} specifies right-associativity (grouping @var{y} with
4138@var{z} first). @code{%nonassoc} specifies no associativity, which
4139means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4140considered a syntax error.
4141
d78f0ac9
AD
4142@code{%precedence} gives only precedence to the @var{symbols}, and
4143defines no associativity at all. Use this to define precedence only,
4144and leave any potential conflict due to associativity enabled.
4145
bfa74976
RS
4146@item
4147The precedence of an operator determines how it nests with other operators.
4148All the tokens declared in a single precedence declaration have equal
4149precedence and nest together according to their associativity.
4150When two tokens declared in different precedence declarations associate,
4151the one declared later has the higher precedence and is grouped first.
4152@end itemize
4153
ab7f29f8
JD
4154For backward compatibility, there is a confusing difference between the
4155argument lists of @code{%token} and precedence declarations.
4156Only a @code{%token} can associate a literal string with a token type name.
4157A precedence declaration always interprets a literal string as a reference to a
4158separate token.
4159For example:
4160
4161@example
4162%left OR "<=" // Does not declare an alias.
4163%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4164@end example
4165
342b8b6e 4166@node Union Decl
bfa74976
RS
4167@subsection The Collection of Value Types
4168@cindex declaring value types
4169@cindex value types, declaring
4170@findex %union
4171
287c78f6
PE
4172The @code{%union} declaration specifies the entire collection of
4173possible data types for semantic values. The keyword @code{%union} is
4174followed by braced code containing the same thing that goes inside a
4175@code{union} in C@.
bfa74976
RS
4176
4177For example:
4178
4179@example
4180@group
4181%union @{
4182 double val;
4183 symrec *tptr;
4184@}
4185@end group
4186@end example
4187
4188@noindent
4189This says that the two alternative types are @code{double} and @code{symrec
4190*}. They are given names @code{val} and @code{tptr}; these names are used
4191in the @code{%token} and @code{%type} declarations to pick one of the types
4192for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4193
6273355b
PE
4194As an extension to @acronym{POSIX}, a tag is allowed after the
4195@code{union}. For example:
4196
4197@example
4198@group
4199%union value @{
4200 double val;
4201 symrec *tptr;
4202@}
4203@end group
4204@end example
4205
d6ca7905 4206@noindent
6273355b
PE
4207specifies the union tag @code{value}, so the corresponding C type is
4208@code{union value}. If you do not specify a tag, it defaults to
4209@code{YYSTYPE}.
4210
d6ca7905
PE
4211As another extension to @acronym{POSIX}, you may specify multiple
4212@code{%union} declarations; their contents are concatenated. However,
4213only the first @code{%union} declaration can specify a tag.
4214
6273355b 4215Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4216a semicolon after the closing brace.
4217
ddc8ede1
PE
4218Instead of @code{%union}, you can define and use your own union type
4219@code{YYSTYPE} if your grammar contains at least one
4220@samp{<@var{type}>} tag. For example, you can put the following into
4221a header file @file{parser.h}:
4222
4223@example
4224@group
4225union YYSTYPE @{
4226 double val;
4227 symrec *tptr;
4228@};
4229typedef union YYSTYPE YYSTYPE;
4230@end group
4231@end example
4232
4233@noindent
4234and then your grammar can use the following
4235instead of @code{%union}:
4236
4237@example
4238@group
4239%@{
4240#include "parser.h"
4241%@}
4242%type <val> expr
4243%token <tptr> ID
4244@end group
4245@end example
4246
342b8b6e 4247@node Type Decl
bfa74976
RS
4248@subsection Nonterminal Symbols
4249@cindex declaring value types, nonterminals
4250@cindex value types, nonterminals, declaring
4251@findex %type
4252
4253@noindent
4254When you use @code{%union} to specify multiple value types, you must
4255declare the value type of each nonterminal symbol for which values are
4256used. This is done with a @code{%type} declaration, like this:
4257
4258@example
4259%type <@var{type}> @var{nonterminal}@dots{}
4260@end example
4261
4262@noindent
704a47c4
AD
4263Here @var{nonterminal} is the name of a nonterminal symbol, and
4264@var{type} is the name given in the @code{%union} to the alternative
4265that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4266can give any number of nonterminal symbols in the same @code{%type}
4267declaration, if they have the same value type. Use spaces to separate
4268the symbol names.
bfa74976 4269
931c7513
RS
4270You can also declare the value type of a terminal symbol. To do this,
4271use the same @code{<@var{type}>} construction in a declaration for the
4272terminal symbol. All kinds of token declarations allow
4273@code{<@var{type}>}.
4274
18d192f0
AD
4275@node Initial Action Decl
4276@subsection Performing Actions before Parsing
4277@findex %initial-action
4278
4279Sometimes your parser needs to perform some initializations before
4280parsing. The @code{%initial-action} directive allows for such arbitrary
4281code.
4282
4283@deffn {Directive} %initial-action @{ @var{code} @}
4284@findex %initial-action
287c78f6 4285Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4286@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4287@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4288@code{%parse-param}.
18d192f0
AD
4289@end deffn
4290
451364ed
AD
4291For instance, if your locations use a file name, you may use
4292
4293@example
48b16bbc 4294%parse-param @{ char const *file_name @};
451364ed
AD
4295%initial-action
4296@{
4626a15d 4297 @@$.initialize (file_name);
451364ed
AD
4298@};
4299@end example
4300
18d192f0 4301
72f889cc
AD
4302@node Destructor Decl
4303@subsection Freeing Discarded Symbols
4304@cindex freeing discarded symbols
4305@findex %destructor
12e35840 4306@findex <*>
3ebecc24 4307@findex <>
a85284cf
AD
4308During error recovery (@pxref{Error Recovery}), symbols already pushed
4309on the stack and tokens coming from the rest of the file are discarded
4310until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4311or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4312symbols on the stack must be discarded. Even if the parser succeeds, it
4313must discard the start symbol.
258b75ca
PE
4314
4315When discarded symbols convey heap based information, this memory is
4316lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4317in traditional compilers, it is unacceptable for programs like shells or
4318protocol implementations that may parse and execute indefinitely.
258b75ca 4319
a85284cf
AD
4320The @code{%destructor} directive defines code that is called when a
4321symbol is automatically discarded.
72f889cc
AD
4322
4323@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4324@findex %destructor
287c78f6
PE
4325Invoke the braced @var{code} whenever the parser discards one of the
4326@var{symbols}.
4b367315 4327Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4328with the discarded symbol, and @code{@@$} designates its location.
4329The additional parser parameters are also available (@pxref{Parser Function, ,
4330The Parser Function @code{yyparse}}).
ec5479ce 4331
b2a0b7ca
JD
4332When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4333per-symbol @code{%destructor}.
4334You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4335tag among @var{symbols}.
b2a0b7ca 4336In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4337grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4338per-symbol @code{%destructor}.
4339
12e35840 4340Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4341(These default forms are experimental.
4342More user feedback will help to determine whether they should become permanent
4343features.)
3ebecc24 4344You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4345exactly one @code{%destructor} declaration in your grammar file.
4346The parser will invoke the @var{code} associated with one of these whenever it
4347discards any user-defined grammar symbol that has no per-symbol and no per-type
4348@code{%destructor}.
4349The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4350symbol for which you have formally declared a semantic type tag (@code{%type}
4351counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4352The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4353symbol that has no declared semantic type tag.
72f889cc
AD
4354@end deffn
4355
b2a0b7ca 4356@noindent
12e35840 4357For example:
72f889cc
AD
4358
4359@smallexample
ec5479ce
JD
4360%union @{ char *string; @}
4361%token <string> STRING1
4362%token <string> STRING2
4363%type <string> string1
4364%type <string> string2
b2a0b7ca
JD
4365%union @{ char character; @}
4366%token <character> CHR
4367%type <character> chr
12e35840
JD
4368%token TAGLESS
4369
b2a0b7ca 4370%destructor @{ @} <character>
12e35840
JD
4371%destructor @{ free ($$); @} <*>
4372%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4373%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4374@end smallexample
4375
4376@noindent
b2a0b7ca
JD
4377guarantees that, when the parser discards any user-defined symbol that has a
4378semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4379to @code{free} by default.
ec5479ce
JD
4380However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4381prints its line number to @code{stdout}.
4382It performs only the second @code{%destructor} in this case, so it invokes
4383@code{free} only once.
12e35840
JD
4384Finally, the parser merely prints a message whenever it discards any symbol,
4385such as @code{TAGLESS}, that has no semantic type tag.
4386
4387A Bison-generated parser invokes the default @code{%destructor}s only for
4388user-defined as opposed to Bison-defined symbols.
4389For example, the parser will not invoke either kind of default
4390@code{%destructor} for the special Bison-defined symbols @code{$accept},
4391@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4392none of which you can reference in your grammar.
4393It also will not invoke either for the @code{error} token (@pxref{Table of
4394Symbols, ,error}), which is always defined by Bison regardless of whether you
4395reference it in your grammar.
4396However, it may invoke one of them for the end token (token 0) if you
4397redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4398
4399@smallexample
4400%token END 0
4401@end smallexample
4402
12e35840
JD
4403@cindex actions in mid-rule
4404@cindex mid-rule actions
4405Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4406mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4407That is, Bison does not consider a mid-rule to have a semantic value if you do
4408not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4409@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4410rule.
4411However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4412@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4413
3508ce36
JD
4414@ignore
4415@noindent
4416In the future, it may be possible to redefine the @code{error} token as a
4417nonterminal that captures the discarded symbols.
4418In that case, the parser will invoke the default destructor for it as well.
4419@end ignore
4420
e757bb10
AD
4421@sp 1
4422
4423@cindex discarded symbols
4424@dfn{Discarded symbols} are the following:
4425
4426@itemize
4427@item
4428stacked symbols popped during the first phase of error recovery,
4429@item
4430incoming terminals during the second phase of error recovery,
4431@item
742e4900 4432the current lookahead and the entire stack (except the current
9d9b8b70 4433right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4434@item
4435the start symbol, when the parser succeeds.
e757bb10
AD
4436@end itemize
4437
9d9b8b70
PE
4438The parser can @dfn{return immediately} because of an explicit call to
4439@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4440exhaustion.
4441
29553547 4442Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4443error via @code{YYERROR} are not discarded automatically. As a rule
4444of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4445the memory.
e757bb10 4446
342b8b6e 4447@node Expect Decl
bfa74976
RS
4448@subsection Suppressing Conflict Warnings
4449@cindex suppressing conflict warnings
4450@cindex preventing warnings about conflicts
4451@cindex warnings, preventing
4452@cindex conflicts, suppressing warnings of
4453@findex %expect
d6328241 4454@findex %expect-rr
bfa74976
RS
4455
4456Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4457(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4458have harmless shift/reduce conflicts which are resolved in a predictable
4459way and would be difficult to eliminate. It is desirable to suppress
4460the warning about these conflicts unless the number of conflicts
4461changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4462
4463The declaration looks like this:
4464
4465@example
4466%expect @var{n}
4467@end example
4468
035aa4a0
PE
4469Here @var{n} is a decimal integer. The declaration says there should
4470be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4471Bison reports an error if the number of shift/reduce conflicts differs
4472from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4473
035aa4a0
PE
4474For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4475serious, and should be eliminated entirely. Bison will always report
4476reduce/reduce conflicts for these parsers. With @acronym{GLR}
4477parsers, however, both kinds of conflicts are routine; otherwise,
4478there would be no need to use @acronym{GLR} parsing. Therefore, it is
4479also possible to specify an expected number of reduce/reduce conflicts
4480in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4481
4482@example
4483%expect-rr @var{n}
4484@end example
4485
bfa74976
RS
4486In general, using @code{%expect} involves these steps:
4487
4488@itemize @bullet
4489@item
4490Compile your grammar without @code{%expect}. Use the @samp{-v} option
4491to get a verbose list of where the conflicts occur. Bison will also
4492print the number of conflicts.
4493
4494@item
4495Check each of the conflicts to make sure that Bison's default
4496resolution is what you really want. If not, rewrite the grammar and
4497go back to the beginning.
4498
4499@item
4500Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4501number which Bison printed. With @acronym{GLR} parsers, add an
4502@code{%expect-rr} declaration as well.
bfa74976
RS
4503@end itemize
4504
035aa4a0
PE
4505Now Bison will warn you if you introduce an unexpected conflict, but
4506will keep silent otherwise.
bfa74976 4507
342b8b6e 4508@node Start Decl
bfa74976
RS
4509@subsection The Start-Symbol
4510@cindex declaring the start symbol
4511@cindex start symbol, declaring
4512@cindex default start symbol
4513@findex %start
4514
4515Bison assumes by default that the start symbol for the grammar is the first
4516nonterminal specified in the grammar specification section. The programmer
4517may override this restriction with the @code{%start} declaration as follows:
4518
4519@example
4520%start @var{symbol}
4521@end example
4522
342b8b6e 4523@node Pure Decl
bfa74976
RS
4524@subsection A Pure (Reentrant) Parser
4525@cindex reentrant parser
4526@cindex pure parser
d9df47b6 4527@findex %define api.pure
bfa74976
RS
4528
4529A @dfn{reentrant} program is one which does not alter in the course of
4530execution; in other words, it consists entirely of @dfn{pure} (read-only)
4531code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4532for example, a nonreentrant program may not be safe to call from a signal
4533handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4534program must be called only within interlocks.
4535
70811b85 4536Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4537suitable for most uses, and it permits compatibility with Yacc. (The
4538standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4539statically allocated variables for communication with @code{yylex},
4540including @code{yylval} and @code{yylloc}.)
bfa74976 4541
70811b85 4542Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4543declaration @code{%define api.pure} says that you want the parser to be
70811b85 4544reentrant. It looks like this:
bfa74976
RS
4545
4546@example
d9df47b6 4547%define api.pure
bfa74976
RS
4548@end example
4549
70811b85
RS
4550The result is that the communication variables @code{yylval} and
4551@code{yylloc} become local variables in @code{yyparse}, and a different
4552calling convention is used for the lexical analyzer function
4553@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4554Parsers}, for the details of this. The variable @code{yynerrs}
4555becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4556of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4557Reporting Function @code{yyerror}}). The convention for calling
4558@code{yyparse} itself is unchanged.
4559
4560Whether the parser is pure has nothing to do with the grammar rules.
4561You can generate either a pure parser or a nonreentrant parser from any
4562valid grammar.
bfa74976 4563
9987d1b3
JD
4564@node Push Decl
4565@subsection A Push Parser
4566@cindex push parser
4567@cindex push parser
c373bf8b 4568@findex %define api.push_pull
9987d1b3 4569
59da312b
JD
4570(The current push parsing interface is experimental and may evolve.
4571More user feedback will help to stabilize it.)
4572
f4101aa6
AD
4573A pull parser is called once and it takes control until all its input
4574is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4575each time a new token is made available.
4576
f4101aa6 4577A push parser is typically useful when the parser is part of a
9987d1b3 4578main event loop in the client's application. This is typically
f4101aa6
AD
4579a requirement of a GUI, when the main event loop needs to be triggered
4580within a certain time period.
9987d1b3 4581
d782395d
JD
4582Normally, Bison generates a pull parser.
4583The following Bison declaration says that you want the parser to be a push
c373bf8b 4584parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4585
4586@example
c373bf8b 4587%define api.push_pull "push"
9987d1b3
JD
4588@end example
4589
4590In almost all cases, you want to ensure that your push parser is also
4591a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4592time you should create an impure push parser is to have backwards
9987d1b3
JD
4593compatibility with the impure Yacc pull mode interface. Unless you know
4594what you are doing, your declarations should look like this:
4595
4596@example
d9df47b6 4597%define api.pure
c373bf8b 4598%define api.push_pull "push"
9987d1b3
JD
4599@end example
4600
f4101aa6
AD
4601There is a major notable functional difference between the pure push parser
4602and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4603many parser instances, of the same type of parser, in memory at the same time.
4604An impure push parser should only use one parser at a time.
4605
4606When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4607the generated parser. @code{yypstate} is a structure that the generated
4608parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4609function that will create a new parser instance. @code{yypstate_delete}
4610will free the resources associated with the corresponding parser instance.
f4101aa6 4611Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4612token is available to provide the parser. A trivial example
4613of using a pure push parser would look like this:
4614
4615@example
4616int status;
4617yypstate *ps = yypstate_new ();
4618do @{
4619 status = yypush_parse (ps, yylex (), NULL);
4620@} while (status == YYPUSH_MORE);
4621yypstate_delete (ps);
4622@end example
4623
4624If the user decided to use an impure push parser, a few things about
f4101aa6 4625the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4626a global variable instead of a variable in the @code{yypush_parse} function.
4627For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4628changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4629example would thus look like this:
4630
4631@example
4632extern int yychar;
4633int status;
4634yypstate *ps = yypstate_new ();
4635do @{
4636 yychar = yylex ();
4637 status = yypush_parse (ps);
4638@} while (status == YYPUSH_MORE);
4639yypstate_delete (ps);
4640@end example
4641
f4101aa6 4642That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4643for use by the next invocation of the @code{yypush_parse} function.
4644
f4101aa6 4645Bison also supports both the push parser interface along with the pull parser
9987d1b3 4646interface in the same generated parser. In order to get this functionality,
f4101aa6 4647you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4648@code{%define api.push_pull "both"} declaration. Doing this will create all of
4649the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4650and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4651would be used. However, the user should note that it is implemented in the
d782395d
JD
4652generated parser by calling @code{yypull_parse}.
4653This makes the @code{yyparse} function that is generated with the
c373bf8b 4654@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4655@code{yyparse} function. If the user
4656calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4657stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4658and then @code{yypull_parse} the rest of the input stream. If you would like
4659to switch back and forth between between parsing styles, you would have to
4660write your own @code{yypull_parse} function that knows when to quit looking
4661for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4662like this:
4663
4664@example
4665yypstate *ps = yypstate_new ();
4666yypull_parse (ps); /* Will call the lexer */
4667yypstate_delete (ps);
4668@end example
4669
d9df47b6 4670Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4671the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4672@code{%define api.push_pull "push"}.
9987d1b3 4673
342b8b6e 4674@node Decl Summary
bfa74976
RS
4675@subsection Bison Declaration Summary
4676@cindex Bison declaration summary
4677@cindex declaration summary
4678@cindex summary, Bison declaration
4679
d8988b2f 4680Here is a summary of the declarations used to define a grammar:
bfa74976 4681
18b519c0 4682@deffn {Directive} %union
bfa74976
RS
4683Declare the collection of data types that semantic values may have
4684(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4685@end deffn
bfa74976 4686
18b519c0 4687@deffn {Directive} %token
bfa74976
RS
4688Declare a terminal symbol (token type name) with no precedence
4689or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4690@end deffn
bfa74976 4691
18b519c0 4692@deffn {Directive} %right
bfa74976
RS
4693Declare a terminal symbol (token type name) that is right-associative
4694(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4695@end deffn
bfa74976 4696
18b519c0 4697@deffn {Directive} %left
bfa74976
RS
4698Declare a terminal symbol (token type name) that is left-associative
4699(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4700@end deffn
bfa74976 4701
18b519c0 4702@deffn {Directive} %nonassoc
bfa74976 4703Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4704(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4705Using it in a way that would be associative is a syntax error.
4706@end deffn
4707
91d2c560 4708@ifset defaultprec
39a06c25 4709@deffn {Directive} %default-prec
22fccf95 4710Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4711(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4712@end deffn
91d2c560 4713@end ifset
bfa74976 4714
18b519c0 4715@deffn {Directive} %type
bfa74976
RS
4716Declare the type of semantic values for a nonterminal symbol
4717(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4718@end deffn
bfa74976 4719
18b519c0 4720@deffn {Directive} %start
89cab50d
AD
4721Specify the grammar's start symbol (@pxref{Start Decl, ,The
4722Start-Symbol}).
18b519c0 4723@end deffn
bfa74976 4724
18b519c0 4725@deffn {Directive} %expect
bfa74976
RS
4726Declare the expected number of shift-reduce conflicts
4727(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4728@end deffn
4729
bfa74976 4730
d8988b2f
AD
4731@sp 1
4732@noindent
4733In order to change the behavior of @command{bison}, use the following
4734directives:
4735
148d66d8
JD
4736@deffn {Directive} %code @{@var{code}@}
4737@findex %code
4738This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4739It inserts @var{code} verbatim at a language-dependent default location in the
4740output@footnote{The default location is actually skeleton-dependent;
4741 writers of non-standard skeletons however should choose the default location
4742 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4743
4744@cindex Prologue
8405b70c 4745For C/C++, the default location is the parser source code
148d66d8
JD
4746file after the usual contents of the parser header file.
4747Thus, @code{%code} replaces the traditional Yacc prologue,
4748@code{%@{@var{code}%@}}, for most purposes.
4749For a detailed discussion, see @ref{Prologue Alternatives}.
4750
8405b70c 4751For Java, the default location is inside the parser class.
148d66d8
JD
4752
4753(Like all the Yacc prologue alternatives, this directive is experimental.
4754More user feedback will help to determine whether it should become a permanent
4755feature.)
4756@end deffn
4757
4758@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4759This is the qualified form of the @code{%code} directive.
4760If you need to specify location-sensitive verbatim @var{code} that does not
4761belong at the default location selected by the unqualified @code{%code} form,
4762use this form instead.
4763
4764@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4765where Bison should generate it.
4766Not all values of @var{qualifier} are available for all target languages:
4767
4768@itemize @bullet
148d66d8 4769@item requires
793fbca5 4770@findex %code requires
148d66d8
JD
4771
4772@itemize @bullet
4773@item Language(s): C, C++
4774
4775@item Purpose: This is the best place to write dependency code required for
4776@code{YYSTYPE} and @code{YYLTYPE}.
4777In other words, it's the best place to define types referenced in @code{%union}
4778directives, and it's the best place to override Bison's default @code{YYSTYPE}
4779and @code{YYLTYPE} definitions.
4780
4781@item Location(s): The parser header file and the parser source code file
4782before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4783@end itemize
4784
4785@item provides
4786@findex %code provides
4787
4788@itemize @bullet
4789@item Language(s): C, C++
4790
4791@item Purpose: This is the best place to write additional definitions and
4792declarations that should be provided to other modules.
4793
4794@item Location(s): The parser header file and the parser source code file after
4795the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4796@end itemize
4797
4798@item top
4799@findex %code top
4800
4801@itemize @bullet
4802@item Language(s): C, C++
4803
4804@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4805usually be more appropriate than @code{%code top}.
4806However, occasionally it is necessary to insert code much nearer the top of the
4807parser source code file.
4808For example:
4809
4810@smallexample
4811%code top @{
4812 #define _GNU_SOURCE
4813 #include <stdio.h>
4814@}
4815@end smallexample
4816
4817@item Location(s): Near the top of the parser source code file.
4818@end itemize
8405b70c 4819
148d66d8
JD
4820@item imports
4821@findex %code imports
4822
4823@itemize @bullet
4824@item Language(s): Java
4825
4826@item Purpose: This is the best place to write Java import directives.
4827
4828@item Location(s): The parser Java file after any Java package directive and
4829before any class definitions.
4830@end itemize
148d66d8
JD
4831@end itemize
4832
4833(Like all the Yacc prologue alternatives, this directive is experimental.
4834More user feedback will help to determine whether it should become a permanent
4835feature.)
4836
4837@cindex Prologue
4838For a detailed discussion of how to use @code{%code} in place of the
4839traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4840@end deffn
4841
18b519c0 4842@deffn {Directive} %debug
fa819509
AD
4843Instrument the output parser for traces. Obsoleted by @samp{%define
4844parse.trace}.
ec3bc396 4845@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4846@end deffn
d8988b2f 4847
c1d19e10
PB
4848@deffn {Directive} %define @var{variable}
4849@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4850Define a variable to adjust Bison's behavior.
4851The possible choices for @var{variable}, as well as their meanings, depend on
4852the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4853Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4854
4855Bison will warn if a @var{variable} is defined multiple times.
4856
4857Omitting @code{"@var{value}"} is always equivalent to specifying it as
4858@code{""}.
4859
922bdd7f 4860Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4861In this case, Bison will complain if the variable definition does not meet one
4862of the following four conditions:
4863
4864@enumerate
4865@item @code{"@var{value}"} is @code{"true"}
4866
4867@item @code{"@var{value}"} is omitted (or is @code{""}).
4868This is equivalent to @code{"true"}.
4869
4870@item @code{"@var{value}"} is @code{"false"}.
4871
4872@item @var{variable} is never defined.
4873In this case, Bison selects a default value, which may depend on the selected
4874target language and/or parser skeleton.
4875@end enumerate
148d66d8 4876
793fbca5
JD
4877Some of the accepted @var{variable}s are:
4878
fa819509 4879@table @code
d9df47b6
JD
4880@item api.pure
4881@findex %define api.pure
4882
4883@itemize @bullet
4884@item Language(s): C
4885
4886@item Purpose: Request a pure (reentrant) parser program.
4887@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4888
4889@item Accepted Values: Boolean
4890
4891@item Default Value: @code{"false"}
4892@end itemize
4893
c373bf8b
JD
4894@item api.push_pull
4895@findex %define api.push_pull
793fbca5
JD
4896
4897@itemize @bullet
4898@item Language(s): C (LALR(1) only)
4899
4900@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4901@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4902(The current push parsing interface is experimental and may evolve.
4903More user feedback will help to stabilize it.)
793fbca5
JD
4904
4905@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4906
4907@item Default Value: @code{"pull"}
4908@end itemize
4909
31984206
JD
4910@item lr.keep_unreachable_states
4911@findex %define lr.keep_unreachable_states
4912
4913@itemize @bullet
4914@item Language(s): all
4915
4916@item Purpose: Requests that Bison allow unreachable parser states to remain in
4917the parser tables.
4918Bison considers a state to be unreachable if there exists no sequence of
4919transitions from the start state to that state.
4920A state can become unreachable during conflict resolution if Bison disables a
4921shift action leading to it from a predecessor state.
4922Keeping unreachable states is sometimes useful for analysis purposes, but they
4923are useless in the generated parser.
4924
4925@item Accepted Values: Boolean
4926
4927@item Default Value: @code{"false"}
4928
4929@item Caveats:
4930
4931@itemize @bullet
cff03fb2
JD
4932
4933@item Unreachable states may contain conflicts and may use rules not used in
4934any other state.
31984206
JD
4935Thus, keeping unreachable states may induce warnings that are irrelevant to
4936your parser's behavior, and it may eliminate warnings that are relevant.
4937Of course, the change in warnings may actually be relevant to a parser table
4938analysis that wants to keep unreachable states, so this behavior will likely
4939remain in future Bison releases.
4940
4941@item While Bison is able to remove unreachable states, it is not guaranteed to
4942remove other kinds of useless states.
4943Specifically, when Bison disables reduce actions during conflict resolution,
4944some goto actions may become useless, and thus some additional states may
4945become useless.
4946If Bison were to compute which goto actions were useless and then disable those
4947actions, it could identify such states as unreachable and then remove those
4948states.
4949However, Bison does not compute which goto actions are useless.
4950@end itemize
4951@end itemize
4952
793fbca5
JD
4953@item namespace
4954@findex %define namespace
4955
4956@itemize
4957@item Languages(s): C++
4958
4959@item Purpose: Specifies the namespace for the parser class.
4960For example, if you specify:
4961
4962@smallexample
4963%define namespace "foo::bar"
4964@end smallexample
4965
4966Bison uses @code{foo::bar} verbatim in references such as:
4967
4968@smallexample
4969foo::bar::parser::semantic_type
4970@end smallexample
4971
4972However, to open a namespace, Bison removes any leading @code{::} and then
4973splits on any remaining occurrences:
4974
4975@smallexample
4976namespace foo @{ namespace bar @{
4977 class position;
4978 class location;
4979@} @}
4980@end smallexample
4981
4982@item Accepted Values: Any absolute or relative C++ namespace reference without
4983a trailing @code{"::"}.
4984For example, @code{"foo"} or @code{"::foo::bar"}.
4985
4986@item Default Value: The value specified by @code{%name-prefix}, which defaults
4987to @code{yy}.
4988This usage of @code{%name-prefix} is for backward compatibility and can be
4989confusing since @code{%name-prefix} also specifies the textual prefix for the
4990lexical analyzer function.
4991Thus, if you specify @code{%name-prefix}, it is best to also specify
4992@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4993lexical analyzer function.
4994For example, if you specify:
4995
4996@smallexample
4997%define namespace "foo"
4998%name-prefix "bar::"
4999@end smallexample
5000
5001The parser namespace is @code{foo} and @code{yylex} is referenced as
5002@code{bar::lex}.
5003@end itemize
fa819509
AD
5004@c namespace
5005
0c90a1f5
AD
5006@item parse.assert
5007@findex %define parse.assert
5008
5009@itemize
5010@item Languages(s): C++
5011
5012@item Purpose: Issue runtime assertions to catch invalid uses.
5013In C++, when variants are used, symbols must be constructed and
5014destroyed properly. This option checks these constraints.
5015
5016@item Accepted Values: Boolean
5017
5018@item Default Value: @code{false}
5019@end itemize
5020@c parse.assert
5021
fa819509
AD
5022@item parse.trace
5023@findex %define parse.trace
5024
5025@itemize
5026@item Languages(s): C, C++
5027
5028@item Purpose: Require parser instrumentation for tracing.
5029In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5030is not already defined, so that the debugging facilities are compiled.
5031@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5032
fa819509
AD
5033@item Accepted Values: Boolean
5034
5035@item Default Value: @code{false}
5036@end itemize
5037@end table
5038@c parse.trace
d782395d 5039@end deffn
fa819509 5040@c %define
d782395d 5041
18b519c0 5042@deffn {Directive} %defines
4bfd5e4e
PE
5043Write a header file containing macro definitions for the token type
5044names defined in the grammar as well as a few other declarations.
d8988b2f 5045If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5046is named @file{@var{name}.h}.
d8988b2f 5047
b321737f 5048For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5049@code{YYSTYPE} is already defined as a macro or you have used a
5050@code{<@var{type}>} tag without using @code{%union}.
5051Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5052(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5053require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5054or type definition
f8e1c9e5
AD
5055(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5056arrange for these definitions to be propagated to all modules, e.g., by
5057putting them in a prerequisite header that is included both by your
5058parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5059
5060Unless your parser is pure, the output header declares @code{yylval}
5061as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5062Parser}.
5063
5064If you have also used locations, the output header declares
5065@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5066the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5067Locations}.
5068
f8e1c9e5
AD
5069This output file is normally essential if you wish to put the definition
5070of @code{yylex} in a separate source file, because @code{yylex}
5071typically needs to be able to refer to the above-mentioned declarations
5072and to the token type codes. @xref{Token Values, ,Semantic Values of
5073Tokens}.
9bc0dd67 5074
16dc6a9e
JD
5075@findex %code requires
5076@findex %code provides
5077If you have declared @code{%code requires} or @code{%code provides}, the output
5078header also contains their code.
148d66d8 5079@xref{Decl Summary, ,%code}.
592d0b1e
PB
5080@end deffn
5081
02975b9a
JD
5082@deffn {Directive} %defines @var{defines-file}
5083Same as above, but save in the file @var{defines-file}.
5084@end deffn
5085
18b519c0 5086@deffn {Directive} %destructor
258b75ca 5087Specify how the parser should reclaim the memory associated to
fa7e68c3 5088discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5089@end deffn
72f889cc 5090
02975b9a 5091@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5092Specify a prefix to use for all Bison output file names. The names are
5093chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5094@end deffn
d8988b2f 5095
e6e704dc 5096@deffn {Directive} %language "@var{language}"
0e021770 5097Specify the programming language for the generated parser. Currently
59da312b 5098supported languages include C, C++, and Java.
e6e704dc 5099@var{language} is case-insensitive.
ed4d67dc
JD
5100
5101This directive is experimental and its effect may be modified in future
5102releases.
0e021770
PE
5103@end deffn
5104
18b519c0 5105@deffn {Directive} %locations
89cab50d
AD
5106Generate the code processing the locations (@pxref{Action Features,
5107,Special Features for Use in Actions}). This mode is enabled as soon as
5108the grammar uses the special @samp{@@@var{n}} tokens, but if your
5109grammar does not use it, using @samp{%locations} allows for more
6e649e65 5110accurate syntax error messages.
18b519c0 5111@end deffn
89cab50d 5112
02975b9a 5113@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5114Rename the external symbols used in the parser so that they start with
5115@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5116in C parsers
d8988b2f 5117is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5118@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5119(if locations are used) @code{yylloc}. If you use a push parser,
5120@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5121@code{yypstate_new} and @code{yypstate_delete} will
5122also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5123names become @code{c_parse}, @code{c_lex}, and so on.
5124For C++ parsers, see the @code{%define namespace} documentation in this
5125section.
aa08666d 5126@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5127@end deffn
931c7513 5128
91d2c560 5129@ifset defaultprec
22fccf95
PE
5130@deffn {Directive} %no-default-prec
5131Do not assign a precedence to rules lacking an explicit @code{%prec}
5132modifier (@pxref{Contextual Precedence, ,Context-Dependent
5133Precedence}).
5134@end deffn
91d2c560 5135@end ifset
22fccf95 5136
18b519c0 5137@deffn {Directive} %no-lines
931c7513
RS
5138Don't generate any @code{#line} preprocessor commands in the parser
5139file. Ordinarily Bison writes these commands in the parser file so that
5140the C compiler and debuggers will associate errors and object code with
5141your source file (the grammar file). This directive causes them to
5142associate errors with the parser file, treating it an independent source
5143file in its own right.
18b519c0 5144@end deffn
931c7513 5145
02975b9a 5146@deffn {Directive} %output "@var{file}"
fa4d969f 5147Specify @var{file} for the parser file.
18b519c0 5148@end deffn
6deb4447 5149
18b519c0 5150@deffn {Directive} %pure-parser
d9df47b6
JD
5151Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5152for which Bison is more careful to warn about unreasonable usage.
18b519c0 5153@end deffn
6deb4447 5154
b50d2359 5155@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5156Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5157Require a Version of Bison}.
b50d2359
AD
5158@end deffn
5159
0e021770 5160@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5161Specify the skeleton to use.
5162
ed4d67dc
JD
5163@c You probably don't need this option unless you are developing Bison.
5164@c You should use @code{%language} if you want to specify the skeleton for a
5165@c different language, because it is clearer and because it will always choose the
5166@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5167
5168If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5169file in the Bison installation directory.
5170If it does, @var{file} is an absolute file name or a file name relative to the
5171directory of the grammar file.
5172This is similar to how most shells resolve commands.
0e021770
PE
5173@end deffn
5174
18b519c0 5175@deffn {Directive} %token-table
931c7513
RS
5176Generate an array of token names in the parser file. The name of the
5177array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5178token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5179three elements of @code{yytname} correspond to the predefined tokens
5180@code{"$end"},
88bce5a2
AD
5181@code{"error"}, and @code{"$undefined"}; after these come the symbols
5182defined in the grammar file.
931c7513 5183
9e0876fb
PE
5184The name in the table includes all the characters needed to represent
5185the token in Bison. For single-character literals and literal
5186strings, this includes the surrounding quoting characters and any
5187escape sequences. For example, the Bison single-character literal
5188@code{'+'} corresponds to a three-character name, represented in C as
5189@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5190corresponds to a five-character name, represented in C as
5191@code{"\"\\\\/\""}.
931c7513 5192
8c9a50be 5193When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5194definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5195@code{YYNRULES}, and @code{YYNSTATES}:
5196
5197@table @code
5198@item YYNTOKENS
5199The highest token number, plus one.
5200@item YYNNTS
9ecbd125 5201The number of nonterminal symbols.
931c7513
RS
5202@item YYNRULES
5203The number of grammar rules,
5204@item YYNSTATES
5205The number of parser states (@pxref{Parser States}).
5206@end table
18b519c0 5207@end deffn
d8988b2f 5208
18b519c0 5209@deffn {Directive} %verbose
d8988b2f 5210Write an extra output file containing verbose descriptions of the
742e4900 5211parser states and what is done for each type of lookahead token in
72d2299c 5212that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5213information.
18b519c0 5214@end deffn
d8988b2f 5215
18b519c0 5216@deffn {Directive} %yacc
d8988b2f
AD
5217Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5218including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5219@end deffn
d8988b2f
AD
5220
5221
342b8b6e 5222@node Multiple Parsers
bfa74976
RS
5223@section Multiple Parsers in the Same Program
5224
5225Most programs that use Bison parse only one language and therefore contain
5226only one Bison parser. But what if you want to parse more than one
5227language with the same program? Then you need to avoid a name conflict
5228between different definitions of @code{yyparse}, @code{yylval}, and so on.
5229
5230The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5231(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5232functions and variables of the Bison parser to start with @var{prefix}
5233instead of @samp{yy}. You can use this to give each parser distinct
5234names that do not conflict.
bfa74976
RS
5235
5236The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5237@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5238@code{yychar} and @code{yydebug}. If you use a push parser,
5239@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5240@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5241For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5242@code{clex}, and so on.
bfa74976
RS
5243
5244@strong{All the other variables and macros associated with Bison are not
5245renamed.} These others are not global; there is no conflict if the same
5246name is used in different parsers. For example, @code{YYSTYPE} is not
5247renamed, but defining this in different ways in different parsers causes
5248no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5249
5250The @samp{-p} option works by adding macro definitions to the beginning
5251of the parser source file, defining @code{yyparse} as
5252@code{@var{prefix}parse}, and so on. This effectively substitutes one
5253name for the other in the entire parser file.
5254
342b8b6e 5255@node Interface
bfa74976
RS
5256@chapter Parser C-Language Interface
5257@cindex C-language interface
5258@cindex interface
5259
5260The Bison parser is actually a C function named @code{yyparse}. Here we
5261describe the interface conventions of @code{yyparse} and the other
5262functions that it needs to use.
5263
5264Keep in mind that the parser uses many C identifiers starting with
5265@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5266identifier (aside from those in this manual) in an action or in epilogue
5267in the grammar file, you are likely to run into trouble.
bfa74976
RS
5268
5269@menu
f5f419de
DJ
5270* Parser Function:: How to call @code{yyparse} and what it returns.
5271* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5272* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5273* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5274* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5275* Lexical:: You must supply a function @code{yylex}
5276 which reads tokens.
5277* Error Reporting:: You must supply a function @code{yyerror}.
5278* Action Features:: Special features for use in actions.
5279* Internationalization:: How to let the parser speak in the user's
5280 native language.
bfa74976
RS
5281@end menu
5282
342b8b6e 5283@node Parser Function
bfa74976
RS
5284@section The Parser Function @code{yyparse}
5285@findex yyparse
5286
5287You call the function @code{yyparse} to cause parsing to occur. This
5288function reads tokens, executes actions, and ultimately returns when it
5289encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5290write an action which directs @code{yyparse} to return immediately
5291without reading further.
bfa74976 5292
2a8d363a
AD
5293
5294@deftypefun int yyparse (void)
bfa74976
RS
5295The value returned by @code{yyparse} is 0 if parsing was successful (return
5296is due to end-of-input).
5297
b47dbebe
PE
5298The value is 1 if parsing failed because of invalid input, i.e., input
5299that contains a syntax error or that causes @code{YYABORT} to be
5300invoked.
5301
5302The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5303@end deftypefun
bfa74976
RS
5304
5305In an action, you can cause immediate return from @code{yyparse} by using
5306these macros:
5307
2a8d363a 5308@defmac YYACCEPT
bfa74976
RS
5309@findex YYACCEPT
5310Return immediately with value 0 (to report success).
2a8d363a 5311@end defmac
bfa74976 5312
2a8d363a 5313@defmac YYABORT
bfa74976
RS
5314@findex YYABORT
5315Return immediately with value 1 (to report failure).
2a8d363a
AD
5316@end defmac
5317
5318If you use a reentrant parser, you can optionally pass additional
5319parameter information to it in a reentrant way. To do so, use the
5320declaration @code{%parse-param}:
5321
feeb0eda 5322@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5323@findex %parse-param
287c78f6
PE
5324Declare that an argument declared by the braced-code
5325@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5326The @var{argument-declaration} is used when declaring
feeb0eda
PE
5327functions or prototypes. The last identifier in
5328@var{argument-declaration} must be the argument name.
2a8d363a
AD
5329@end deffn
5330
5331Here's an example. Write this in the parser:
5332
5333@example
feeb0eda
PE
5334%parse-param @{int *nastiness@}
5335%parse-param @{int *randomness@}
2a8d363a
AD
5336@end example
5337
5338@noindent
5339Then call the parser like this:
5340
5341@example
5342@{
5343 int nastiness, randomness;
5344 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5345 value = yyparse (&nastiness, &randomness);
5346 @dots{}
5347@}
5348@end example
5349
5350@noindent
5351In the grammar actions, use expressions like this to refer to the data:
5352
5353@example
5354exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5355@end example
5356
9987d1b3
JD
5357@node Push Parser Function
5358@section The Push Parser Function @code{yypush_parse}
5359@findex yypush_parse
5360
59da312b
JD
5361(The current push parsing interface is experimental and may evolve.
5362More user feedback will help to stabilize it.)
5363
f4101aa6
AD
5364You call the function @code{yypush_parse} to parse a single token. This
5365function is available if either the @code{%define api.push_pull "push"} or
5366@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5367@xref{Push Decl, ,A Push Parser}.
5368
5369@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5370The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5371following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5372is required to finish parsing the grammar.
5373@end deftypefun
5374
5375@node Pull Parser Function
5376@section The Pull Parser Function @code{yypull_parse}
5377@findex yypull_parse
5378
59da312b
JD
5379(The current push parsing interface is experimental and may evolve.
5380More user feedback will help to stabilize it.)
5381
f4101aa6
AD
5382You call the function @code{yypull_parse} to parse the rest of the input
5383stream. This function is available if the @code{%define api.push_pull "both"}
5384declaration is used.
9987d1b3
JD
5385@xref{Push Decl, ,A Push Parser}.
5386
5387@deftypefun int yypull_parse (yypstate *yyps)
5388The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5389@end deftypefun
5390
5391@node Parser Create Function
5392@section The Parser Create Function @code{yystate_new}
5393@findex yypstate_new
5394
59da312b
JD
5395(The current push parsing interface is experimental and may evolve.
5396More user feedback will help to stabilize it.)
5397
f4101aa6
AD
5398You call the function @code{yypstate_new} to create a new parser instance.
5399This function is available if either the @code{%define api.push_pull "push"} or
5400@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5401@xref{Push Decl, ,A Push Parser}.
5402
5403@deftypefun yypstate *yypstate_new (void)
5404The fuction will return a valid parser instance if there was memory available
333e670c
JD
5405or 0 if no memory was available.
5406In impure mode, it will also return 0 if a parser instance is currently
5407allocated.
9987d1b3
JD
5408@end deftypefun
5409
5410@node Parser Delete Function
5411@section The Parser Delete Function @code{yystate_delete}
5412@findex yypstate_delete
5413
59da312b
JD
5414(The current push parsing interface is experimental and may evolve.
5415More user feedback will help to stabilize it.)
5416
9987d1b3 5417You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5418function is available if either the @code{%define api.push_pull "push"} or
5419@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5420@xref{Push Decl, ,A Push Parser}.
5421
5422@deftypefun void yypstate_delete (yypstate *yyps)
5423This function will reclaim the memory associated with a parser instance.
5424After this call, you should no longer attempt to use the parser instance.
5425@end deftypefun
bfa74976 5426
342b8b6e 5427@node Lexical
bfa74976
RS
5428@section The Lexical Analyzer Function @code{yylex}
5429@findex yylex
5430@cindex lexical analyzer
5431
5432The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5433the input stream and returns them to the parser. Bison does not create
5434this function automatically; you must write it so that @code{yyparse} can
5435call it. The function is sometimes referred to as a lexical scanner.
5436
5437In simple programs, @code{yylex} is often defined at the end of the Bison
5438grammar file. If @code{yylex} is defined in a separate source file, you
5439need to arrange for the token-type macro definitions to be available there.
5440To do this, use the @samp{-d} option when you run Bison, so that it will
5441write these macro definitions into a separate header file
5442@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5443that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5444
5445@menu
5446* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5447* Token Values:: How @code{yylex} must return the semantic value
5448 of the token it has read.
5449* Token Locations:: How @code{yylex} must return the text location
5450 (line number, etc.) of the token, if the
5451 actions want that.
5452* Pure Calling:: How the calling convention differs in a pure parser
5453 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5454@end menu
5455
342b8b6e 5456@node Calling Convention
bfa74976
RS
5457@subsection Calling Convention for @code{yylex}
5458
72d2299c
PE
5459The value that @code{yylex} returns must be the positive numeric code
5460for the type of token it has just found; a zero or negative value
5461signifies end-of-input.
bfa74976
RS
5462
5463When a token is referred to in the grammar rules by a name, that name
5464in the parser file becomes a C macro whose definition is the proper
5465numeric code for that token type. So @code{yylex} can use the name
5466to indicate that type. @xref{Symbols}.
5467
5468When a token is referred to in the grammar rules by a character literal,
5469the numeric code for that character is also the code for the token type.
72d2299c
PE
5470So @code{yylex} can simply return that character code, possibly converted
5471to @code{unsigned char} to avoid sign-extension. The null character
5472must not be used this way, because its code is zero and that
bfa74976
RS
5473signifies end-of-input.
5474
5475Here is an example showing these things:
5476
5477@example
13863333
AD
5478int
5479yylex (void)
bfa74976
RS
5480@{
5481 @dots{}
72d2299c 5482 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5483 return 0;
5484 @dots{}
5485 if (c == '+' || c == '-')
72d2299c 5486 return c; /* Assume token type for `+' is '+'. */
bfa74976 5487 @dots{}
72d2299c 5488 return INT; /* Return the type of the token. */
bfa74976
RS
5489 @dots{}
5490@}
5491@end example
5492
5493@noindent
5494This interface has been designed so that the output from the @code{lex}
5495utility can be used without change as the definition of @code{yylex}.
5496
931c7513
RS
5497If the grammar uses literal string tokens, there are two ways that
5498@code{yylex} can determine the token type codes for them:
5499
5500@itemize @bullet
5501@item
5502If the grammar defines symbolic token names as aliases for the
5503literal string tokens, @code{yylex} can use these symbolic names like
5504all others. In this case, the use of the literal string tokens in
5505the grammar file has no effect on @code{yylex}.
5506
5507@item
9ecbd125 5508@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5509table. The index of the token in the table is the token type's code.
9ecbd125 5510The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5511double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5512token's characters are escaped as necessary to be suitable as input
5513to Bison.
931c7513 5514
9e0876fb
PE
5515Here's code for looking up a multicharacter token in @code{yytname},
5516assuming that the characters of the token are stored in
5517@code{token_buffer}, and assuming that the token does not contain any
5518characters like @samp{"} that require escaping.
931c7513
RS
5519
5520@smallexample
5521for (i = 0; i < YYNTOKENS; i++)
5522 @{
5523 if (yytname[i] != 0
5524 && yytname[i][0] == '"'
68449b3a
PE
5525 && ! strncmp (yytname[i] + 1, token_buffer,
5526 strlen (token_buffer))
931c7513
RS
5527 && yytname[i][strlen (token_buffer) + 1] == '"'
5528 && yytname[i][strlen (token_buffer) + 2] == 0)
5529 break;
5530 @}
5531@end smallexample
5532
5533The @code{yytname} table is generated only if you use the
8c9a50be 5534@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5535@end itemize
5536
342b8b6e 5537@node Token Values
bfa74976
RS
5538@subsection Semantic Values of Tokens
5539
5540@vindex yylval
9d9b8b70 5541In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5542be stored into the global variable @code{yylval}. When you are using
5543just one data type for semantic values, @code{yylval} has that type.
5544Thus, if the type is @code{int} (the default), you might write this in
5545@code{yylex}:
5546
5547@example
5548@group
5549 @dots{}
72d2299c
PE
5550 yylval = value; /* Put value onto Bison stack. */
5551 return INT; /* Return the type of the token. */
bfa74976
RS
5552 @dots{}
5553@end group
5554@end example
5555
5556When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5557made from the @code{%union} declaration (@pxref{Union Decl, ,The
5558Collection of Value Types}). So when you store a token's value, you
5559must use the proper member of the union. If the @code{%union}
5560declaration looks like this:
bfa74976
RS
5561
5562@example
5563@group
5564%union @{
5565 int intval;
5566 double val;
5567 symrec *tptr;
5568@}
5569@end group
5570@end example
5571
5572@noindent
5573then the code in @code{yylex} might look like this:
5574
5575@example
5576@group
5577 @dots{}
72d2299c
PE
5578 yylval.intval = value; /* Put value onto Bison stack. */
5579 return INT; /* Return the type of the token. */
bfa74976
RS
5580 @dots{}
5581@end group
5582@end example
5583
95923bd6
AD
5584@node Token Locations
5585@subsection Textual Locations of Tokens
bfa74976
RS
5586
5587@vindex yylloc
847bf1f5 5588If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5589Tracking Locations}) in actions to keep track of the textual locations
5590of tokens and groupings, then you must provide this information in
5591@code{yylex}. The function @code{yyparse} expects to find the textual
5592location of a token just parsed in the global variable @code{yylloc}.
5593So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5594
5595By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5596initialize the members that are going to be used by the actions. The
5597four members are called @code{first_line}, @code{first_column},
5598@code{last_line} and @code{last_column}. Note that the use of this
5599feature makes the parser noticeably slower.
bfa74976
RS
5600
5601@tindex YYLTYPE
5602The data type of @code{yylloc} has the name @code{YYLTYPE}.
5603
342b8b6e 5604@node Pure Calling
c656404a 5605@subsection Calling Conventions for Pure Parsers
bfa74976 5606
d9df47b6 5607When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5608pure, reentrant parser, the global communication variables @code{yylval}
5609and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5610Parser}.) In such parsers the two global variables are replaced by
5611pointers passed as arguments to @code{yylex}. You must declare them as
5612shown here, and pass the information back by storing it through those
5613pointers.
bfa74976
RS
5614
5615@example
13863333
AD
5616int
5617yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5618@{
5619 @dots{}
5620 *lvalp = value; /* Put value onto Bison stack. */
5621 return INT; /* Return the type of the token. */
5622 @dots{}
5623@}
5624@end example
5625
5626If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5627textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5628this case, omit the second argument; @code{yylex} will be called with
5629only one argument.
5630
e425e872 5631
2a8d363a
AD
5632If you wish to pass the additional parameter data to @code{yylex}, use
5633@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5634Function}).
e425e872 5635
feeb0eda 5636@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5637@findex %lex-param
287c78f6
PE
5638Declare that the braced-code @var{argument-declaration} is an
5639additional @code{yylex} argument declaration.
2a8d363a 5640@end deffn
e425e872 5641
2a8d363a 5642For instance:
e425e872
RS
5643
5644@example
feeb0eda
PE
5645%parse-param @{int *nastiness@}
5646%lex-param @{int *nastiness@}
5647%parse-param @{int *randomness@}
e425e872
RS
5648@end example
5649
5650@noindent
2a8d363a 5651results in the following signature:
e425e872
RS
5652
5653@example
2a8d363a
AD
5654int yylex (int *nastiness);
5655int yyparse (int *nastiness, int *randomness);
e425e872
RS
5656@end example
5657
d9df47b6 5658If @code{%define api.pure} is added:
c656404a
RS
5659
5660@example
2a8d363a
AD
5661int yylex (YYSTYPE *lvalp, int *nastiness);
5662int yyparse (int *nastiness, int *randomness);
c656404a
RS
5663@end example
5664
2a8d363a 5665@noindent
d9df47b6 5666and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5667
2a8d363a
AD
5668@example
5669int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5670int yyparse (int *nastiness, int *randomness);
5671@end example
931c7513 5672
342b8b6e 5673@node Error Reporting
bfa74976
RS
5674@section The Error Reporting Function @code{yyerror}
5675@cindex error reporting function
5676@findex yyerror
5677@cindex parse error
5678@cindex syntax error
5679
6e649e65 5680The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5681whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5682action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5683macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5684in Actions}).
bfa74976
RS
5685
5686The Bison parser expects to report the error by calling an error
5687reporting function named @code{yyerror}, which you must supply. It is
5688called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5689receives one argument. For a syntax error, the string is normally
5690@w{@code{"syntax error"}}.
bfa74976 5691
2a8d363a
AD
5692@findex %error-verbose
5693If you invoke the directive @code{%error-verbose} in the Bison
5694declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5695Section}), then Bison provides a more verbose and specific error message
6e649e65 5696string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5697
1a059451
PE
5698The parser can detect one other kind of error: memory exhaustion. This
5699can happen when the input contains constructions that are very deeply
bfa74976 5700nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5701parser normally extends its stack automatically up to a very large limit. But
5702if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5703fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5704
5705In some cases diagnostics like @w{@code{"syntax error"}} are
5706translated automatically from English to some other language before
5707they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5708
5709The following definition suffices in simple programs:
5710
5711@example
5712@group
13863333 5713void
38a92d50 5714yyerror (char const *s)
bfa74976
RS
5715@{
5716@end group
5717@group
5718 fprintf (stderr, "%s\n", s);
5719@}
5720@end group
5721@end example
5722
5723After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5724error recovery if you have written suitable error recovery grammar rules
5725(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5726immediately return 1.
5727
93724f13 5728Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5729an access to the current location.
5730This is indeed the case for the @acronym{GLR}
2a8d363a 5731parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5732@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5733@code{yyerror} are:
5734
5735@example
38a92d50
PE
5736void yyerror (char const *msg); /* Yacc parsers. */
5737void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5738@end example
5739
feeb0eda 5740If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5741
5742@example
b317297e
PE
5743void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5744void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5745@end example
5746
fa7e68c3 5747Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5748convention for absolutely pure parsers, i.e., when the calling
5749convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5750@code{%define api.pure} are pure.
5751I.e.:
2a8d363a
AD
5752
5753@example
5754/* Location tracking. */
5755%locations
5756/* Pure yylex. */
d9df47b6 5757%define api.pure
feeb0eda 5758%lex-param @{int *nastiness@}
2a8d363a 5759/* Pure yyparse. */
feeb0eda
PE
5760%parse-param @{int *nastiness@}
5761%parse-param @{int *randomness@}
2a8d363a
AD
5762@end example
5763
5764@noindent
5765results in the following signatures for all the parser kinds:
5766
5767@example
5768int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5769int yyparse (int *nastiness, int *randomness);
93724f13
AD
5770void yyerror (YYLTYPE *locp,
5771 int *nastiness, int *randomness,
38a92d50 5772 char const *msg);
2a8d363a
AD
5773@end example
5774
1c0c3e95 5775@noindent
38a92d50
PE
5776The prototypes are only indications of how the code produced by Bison
5777uses @code{yyerror}. Bison-generated code always ignores the returned
5778value, so @code{yyerror} can return any type, including @code{void}.
5779Also, @code{yyerror} can be a variadic function; that is why the
5780message is always passed last.
5781
5782Traditionally @code{yyerror} returns an @code{int} that is always
5783ignored, but this is purely for historical reasons, and @code{void} is
5784preferable since it more accurately describes the return type for
5785@code{yyerror}.
93724f13 5786
bfa74976
RS
5787@vindex yynerrs
5788The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5789reported so far. Normally this variable is global; but if you
704a47c4
AD
5790request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5791then it is a local variable which only the actions can access.
bfa74976 5792
342b8b6e 5793@node Action Features
bfa74976
RS
5794@section Special Features for Use in Actions
5795@cindex summary, action features
5796@cindex action features summary
5797
5798Here is a table of Bison constructs, variables and macros that
5799are useful in actions.
5800
18b519c0 5801@deffn {Variable} $$
bfa74976
RS
5802Acts like a variable that contains the semantic value for the
5803grouping made by the current rule. @xref{Actions}.
18b519c0 5804@end deffn
bfa74976 5805
18b519c0 5806@deffn {Variable} $@var{n}
bfa74976
RS
5807Acts like a variable that contains the semantic value for the
5808@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5809@end deffn
bfa74976 5810
18b519c0 5811@deffn {Variable} $<@var{typealt}>$
bfa74976 5812Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5813specified by the @code{%union} declaration. @xref{Action Types, ,Data
5814Types of Values in Actions}.
18b519c0 5815@end deffn
bfa74976 5816
18b519c0 5817@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5818Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5819union specified by the @code{%union} declaration.
e0c471a9 5820@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5821@end deffn
bfa74976 5822
18b519c0 5823@deffn {Macro} YYABORT;
bfa74976
RS
5824Return immediately from @code{yyparse}, indicating failure.
5825@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5826@end deffn
bfa74976 5827
18b519c0 5828@deffn {Macro} YYACCEPT;
bfa74976
RS
5829Return immediately from @code{yyparse}, indicating success.
5830@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5831@end deffn
bfa74976 5832
18b519c0 5833@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5834@findex YYBACKUP
5835Unshift a token. This macro is allowed only for rules that reduce
742e4900 5836a single value, and only when there is no lookahead token.
c827f760 5837It is also disallowed in @acronym{GLR} parsers.
742e4900 5838It installs a lookahead token with token type @var{token} and
bfa74976
RS
5839semantic value @var{value}; then it discards the value that was
5840going to be reduced by this rule.
5841
5842If the macro is used when it is not valid, such as when there is
742e4900 5843a lookahead token already, then it reports a syntax error with
bfa74976
RS
5844a message @samp{cannot back up} and performs ordinary error
5845recovery.
5846
5847In either case, the rest of the action is not executed.
18b519c0 5848@end deffn
bfa74976 5849
18b519c0 5850@deffn {Macro} YYEMPTY
bfa74976 5851@vindex YYEMPTY
742e4900 5852Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5853@end deffn
bfa74976 5854
32c29292
JD
5855@deffn {Macro} YYEOF
5856@vindex YYEOF
742e4900 5857Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5858stream.
5859@end deffn
5860
18b519c0 5861@deffn {Macro} YYERROR;
bfa74976
RS
5862@findex YYERROR
5863Cause an immediate syntax error. This statement initiates error
5864recovery just as if the parser itself had detected an error; however, it
5865does not call @code{yyerror}, and does not print any message. If you
5866want to print an error message, call @code{yyerror} explicitly before
5867the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5868@end deffn
bfa74976 5869
18b519c0 5870@deffn {Macro} YYRECOVERING
02103984
PE
5871@findex YYRECOVERING
5872The expression @code{YYRECOVERING ()} yields 1 when the parser
5873is recovering from a syntax error, and 0 otherwise.
bfa74976 5874@xref{Error Recovery}.
18b519c0 5875@end deffn
bfa74976 5876
18b519c0 5877@deffn {Variable} yychar
742e4900
JD
5878Variable containing either the lookahead token, or @code{YYEOF} when the
5879lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5880has been performed so the next token is not yet known.
5881Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5882Actions}).
742e4900 5883@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5884@end deffn
bfa74976 5885
18b519c0 5886@deffn {Macro} yyclearin;
742e4900 5887Discard the current lookahead token. This is useful primarily in
32c29292
JD
5888error rules.
5889Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5890Semantic Actions}).
5891@xref{Error Recovery}.
18b519c0 5892@end deffn
bfa74976 5893
18b519c0 5894@deffn {Macro} yyerrok;
bfa74976 5895Resume generating error messages immediately for subsequent syntax
13863333 5896errors. This is useful primarily in error rules.
bfa74976 5897@xref{Error Recovery}.
18b519c0 5898@end deffn
bfa74976 5899
32c29292 5900@deffn {Variable} yylloc
742e4900 5901Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5902to @code{YYEMPTY} or @code{YYEOF}.
5903Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5904Actions}).
5905@xref{Actions and Locations, ,Actions and Locations}.
5906@end deffn
5907
5908@deffn {Variable} yylval
742e4900 5909Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5910not set to @code{YYEMPTY} or @code{YYEOF}.
5911Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5912Actions}).
5913@xref{Actions, ,Actions}.
5914@end deffn
5915
18b519c0 5916@deffn {Value} @@$
847bf1f5 5917@findex @@$
95923bd6 5918Acts like a structure variable containing information on the textual location
847bf1f5
AD
5919of the grouping made by the current rule. @xref{Locations, ,
5920Tracking Locations}.
bfa74976 5921
847bf1f5
AD
5922@c Check if those paragraphs are still useful or not.
5923
5924@c @example
5925@c struct @{
5926@c int first_line, last_line;
5927@c int first_column, last_column;
5928@c @};
5929@c @end example
5930
5931@c Thus, to get the starting line number of the third component, you would
5932@c use @samp{@@3.first_line}.
bfa74976 5933
847bf1f5
AD
5934@c In order for the members of this structure to contain valid information,
5935@c you must make @code{yylex} supply this information about each token.
5936@c If you need only certain members, then @code{yylex} need only fill in
5937@c those members.
bfa74976 5938
847bf1f5 5939@c The use of this feature makes the parser noticeably slower.
18b519c0 5940@end deffn
847bf1f5 5941
18b519c0 5942@deffn {Value} @@@var{n}
847bf1f5 5943@findex @@@var{n}
95923bd6 5944Acts like a structure variable containing information on the textual location
847bf1f5
AD
5945of the @var{n}th component of the current rule. @xref{Locations, ,
5946Tracking Locations}.
18b519c0 5947@end deffn
bfa74976 5948
f7ab6a50
PE
5949@node Internationalization
5950@section Parser Internationalization
5951@cindex internationalization
5952@cindex i18n
5953@cindex NLS
5954@cindex gettext
5955@cindex bison-po
5956
5957A Bison-generated parser can print diagnostics, including error and
5958tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5959also supports outputting diagnostics in the user's native language. To
5960make this work, the user should set the usual environment variables.
5961@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5962For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5963set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5964encoding. The exact set of available locales depends on the user's
5965installation.
5966
5967The maintainer of a package that uses a Bison-generated parser enables
5968the internationalization of the parser's output through the following
5969steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5970@acronym{GNU} Automake.
5971
5972@enumerate
5973@item
30757c8c 5974@cindex bison-i18n.m4
f7ab6a50
PE
5975Into the directory containing the @acronym{GNU} Autoconf macros used
5976by the package---often called @file{m4}---copy the
5977@file{bison-i18n.m4} file installed by Bison under
5978@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5979For example:
5980
5981@example
5982cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5983@end example
5984
5985@item
30757c8c
PE
5986@findex BISON_I18N
5987@vindex BISON_LOCALEDIR
5988@vindex YYENABLE_NLS
f7ab6a50
PE
5989In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5990invocation, add an invocation of @code{BISON_I18N}. This macro is
5991defined in the file @file{bison-i18n.m4} that you copied earlier. It
5992causes @samp{configure} to find the value of the
30757c8c
PE
5993@code{BISON_LOCALEDIR} variable, and it defines the source-language
5994symbol @code{YYENABLE_NLS} to enable translations in the
5995Bison-generated parser.
f7ab6a50
PE
5996
5997@item
5998In the @code{main} function of your program, designate the directory
5999containing Bison's runtime message catalog, through a call to
6000@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6001For example:
6002
6003@example
6004bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6005@end example
6006
6007Typically this appears after any other call @code{bindtextdomain
6008(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6009@samp{BISON_LOCALEDIR} to be defined as a string through the
6010@file{Makefile}.
6011
6012@item
6013In the @file{Makefile.am} that controls the compilation of the @code{main}
6014function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6015either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6016
6017@example
6018DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6019@end example
6020
6021or:
6022
6023@example
6024AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6025@end example
6026
6027@item
6028Finally, invoke the command @command{autoreconf} to generate the build
6029infrastructure.
6030@end enumerate
6031
bfa74976 6032
342b8b6e 6033@node Algorithm
13863333
AD
6034@chapter The Bison Parser Algorithm
6035@cindex Bison parser algorithm
bfa74976
RS
6036@cindex algorithm of parser
6037@cindex shifting
6038@cindex reduction
6039@cindex parser stack
6040@cindex stack, parser
6041
6042As Bison reads tokens, it pushes them onto a stack along with their
6043semantic values. The stack is called the @dfn{parser stack}. Pushing a
6044token is traditionally called @dfn{shifting}.
6045
6046For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6047@samp{3} to come. The stack will have four elements, one for each token
6048that was shifted.
6049
6050But the stack does not always have an element for each token read. When
6051the last @var{n} tokens and groupings shifted match the components of a
6052grammar rule, they can be combined according to that rule. This is called
6053@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6054single grouping whose symbol is the result (left hand side) of that rule.
6055Running the rule's action is part of the process of reduction, because this
6056is what computes the semantic value of the resulting grouping.
6057
6058For example, if the infix calculator's parser stack contains this:
6059
6060@example
60611 + 5 * 3
6062@end example
6063
6064@noindent
6065and the next input token is a newline character, then the last three
6066elements can be reduced to 15 via the rule:
6067
6068@example
6069expr: expr '*' expr;
6070@end example
6071
6072@noindent
6073Then the stack contains just these three elements:
6074
6075@example
60761 + 15
6077@end example
6078
6079@noindent
6080At this point, another reduction can be made, resulting in the single value
608116. Then the newline token can be shifted.
6082
6083The parser tries, by shifts and reductions, to reduce the entire input down
6084to a single grouping whose symbol is the grammar's start-symbol
6085(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6086
6087This kind of parser is known in the literature as a bottom-up parser.
6088
6089@menu
742e4900 6090* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6091* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6092* Precedence:: Operator precedence works by resolving conflicts.
6093* Contextual Precedence:: When an operator's precedence depends on context.
6094* Parser States:: The parser is a finite-state-machine with stack.
6095* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6096* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6097* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6098* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6099@end menu
6100
742e4900
JD
6101@node Lookahead
6102@section Lookahead Tokens
6103@cindex lookahead token
bfa74976
RS
6104
6105The Bison parser does @emph{not} always reduce immediately as soon as the
6106last @var{n} tokens and groupings match a rule. This is because such a
6107simple strategy is inadequate to handle most languages. Instead, when a
6108reduction is possible, the parser sometimes ``looks ahead'' at the next
6109token in order to decide what to do.
6110
6111When a token is read, it is not immediately shifted; first it becomes the
742e4900 6112@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6113perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6114the lookahead token remains off to the side. When no more reductions
6115should take place, the lookahead token is shifted onto the stack. This
bfa74976 6116does not mean that all possible reductions have been done; depending on the
742e4900 6117token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6118application.
6119
742e4900 6120Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6121expressions which contain binary addition operators and postfix unary
6122factorial operators (@samp{!}), and allow parentheses for grouping.
6123
6124@example
6125@group
6126expr: term '+' expr
6127 | term
6128 ;
6129@end group
6130
6131@group
6132term: '(' expr ')'
6133 | term '!'
6134 | NUMBER
6135 ;
6136@end group
6137@end example
6138
6139Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6140should be done? If the following token is @samp{)}, then the first three
6141tokens must be reduced to form an @code{expr}. This is the only valid
6142course, because shifting the @samp{)} would produce a sequence of symbols
6143@w{@code{term ')'}}, and no rule allows this.
6144
6145If the following token is @samp{!}, then it must be shifted immediately so
6146that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6147parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6148@code{expr}. It would then be impossible to shift the @samp{!} because
6149doing so would produce on the stack the sequence of symbols @code{expr
6150'!'}. No rule allows that sequence.
6151
6152@vindex yychar
32c29292
JD
6153@vindex yylval
6154@vindex yylloc
742e4900 6155The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6156Its semantic value and location, if any, are stored in the variables
6157@code{yylval} and @code{yylloc}.
bfa74976
RS
6158@xref{Action Features, ,Special Features for Use in Actions}.
6159
342b8b6e 6160@node Shift/Reduce
bfa74976
RS
6161@section Shift/Reduce Conflicts
6162@cindex conflicts
6163@cindex shift/reduce conflicts
6164@cindex dangling @code{else}
6165@cindex @code{else}, dangling
6166
6167Suppose we are parsing a language which has if-then and if-then-else
6168statements, with a pair of rules like this:
6169
6170@example
6171@group
6172if_stmt:
6173 IF expr THEN stmt
6174 | IF expr THEN stmt ELSE stmt
6175 ;
6176@end group
6177@end example
6178
6179@noindent
6180Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6181terminal symbols for specific keyword tokens.
6182
742e4900 6183When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6184contents of the stack (assuming the input is valid) are just right for
6185reduction by the first rule. But it is also legitimate to shift the
6186@code{ELSE}, because that would lead to eventual reduction by the second
6187rule.
6188
6189This situation, where either a shift or a reduction would be valid, is
6190called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6191these conflicts by choosing to shift, unless otherwise directed by
6192operator precedence declarations. To see the reason for this, let's
6193contrast it with the other alternative.
6194
6195Since the parser prefers to shift the @code{ELSE}, the result is to attach
6196the else-clause to the innermost if-statement, making these two inputs
6197equivalent:
6198
6199@example
6200if x then if y then win (); else lose;
6201
6202if x then do; if y then win (); else lose; end;
6203@end example
6204
6205But if the parser chose to reduce when possible rather than shift, the
6206result would be to attach the else-clause to the outermost if-statement,
6207making these two inputs equivalent:
6208
6209@example
6210if x then if y then win (); else lose;
6211
6212if x then do; if y then win (); end; else lose;
6213@end example
6214
6215The conflict exists because the grammar as written is ambiguous: either
6216parsing of the simple nested if-statement is legitimate. The established
6217convention is that these ambiguities are resolved by attaching the
6218else-clause to the innermost if-statement; this is what Bison accomplishes
6219by choosing to shift rather than reduce. (It would ideally be cleaner to
6220write an unambiguous grammar, but that is very hard to do in this case.)
6221This particular ambiguity was first encountered in the specifications of
6222Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6223
6224To avoid warnings from Bison about predictable, legitimate shift/reduce
6225conflicts, use the @code{%expect @var{n}} declaration. There will be no
6226warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6227@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6228
6229The definition of @code{if_stmt} above is solely to blame for the
6230conflict, but the conflict does not actually appear without additional
6231rules. Here is a complete Bison input file that actually manifests the
6232conflict:
6233
6234@example
6235@group
6236%token IF THEN ELSE variable
6237%%
6238@end group
6239@group
6240stmt: expr
6241 | if_stmt
6242 ;
6243@end group
6244
6245@group
6246if_stmt:
6247 IF expr THEN stmt
6248 | IF expr THEN stmt ELSE stmt
6249 ;
6250@end group
6251
6252expr: variable
6253 ;
6254@end example
6255
342b8b6e 6256@node Precedence
bfa74976
RS
6257@section Operator Precedence
6258@cindex operator precedence
6259@cindex precedence of operators
6260
6261Another situation where shift/reduce conflicts appear is in arithmetic
6262expressions. Here shifting is not always the preferred resolution; the
6263Bison declarations for operator precedence allow you to specify when to
6264shift and when to reduce.
6265
6266@menu
6267* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6268* Using Precedence:: How to specify precedence and associativity.
6269* Precedence Only:: How to specify precedence only.
bfa74976
RS
6270* Precedence Examples:: How these features are used in the previous example.
6271* How Precedence:: How they work.
6272@end menu
6273
342b8b6e 6274@node Why Precedence
bfa74976
RS
6275@subsection When Precedence is Needed
6276
6277Consider the following ambiguous grammar fragment (ambiguous because the
6278input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6279
6280@example
6281@group
6282expr: expr '-' expr
6283 | expr '*' expr
6284 | expr '<' expr
6285 | '(' expr ')'
6286 @dots{}
6287 ;
6288@end group
6289@end example
6290
6291@noindent
6292Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6293should it reduce them via the rule for the subtraction operator? It
6294depends on the next token. Of course, if the next token is @samp{)}, we
6295must reduce; shifting is invalid because no single rule can reduce the
6296token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6297the next token is @samp{*} or @samp{<}, we have a choice: either
6298shifting or reduction would allow the parse to complete, but with
6299different results.
6300
6301To decide which one Bison should do, we must consider the results. If
6302the next operator token @var{op} is shifted, then it must be reduced
6303first in order to permit another opportunity to reduce the difference.
6304The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6305hand, if the subtraction is reduced before shifting @var{op}, the result
6306is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6307reduce should depend on the relative precedence of the operators
6308@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6309@samp{<}.
bfa74976
RS
6310
6311@cindex associativity
6312What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6313@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6314operators we prefer the former, which is called @dfn{left association}.
6315The latter alternative, @dfn{right association}, is desirable for
6316assignment operators. The choice of left or right association is a
6317matter of whether the parser chooses to shift or reduce when the stack
742e4900 6318contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6319makes right-associativity.
bfa74976 6320
342b8b6e 6321@node Using Precedence
bfa74976
RS
6322@subsection Specifying Operator Precedence
6323@findex %left
bfa74976 6324@findex %nonassoc
d78f0ac9
AD
6325@findex %precedence
6326@findex %right
bfa74976
RS
6327
6328Bison allows you to specify these choices with the operator precedence
6329declarations @code{%left} and @code{%right}. Each such declaration
6330contains a list of tokens, which are operators whose precedence and
6331associativity is being declared. The @code{%left} declaration makes all
6332those operators left-associative and the @code{%right} declaration makes
6333them right-associative. A third alternative is @code{%nonassoc}, which
6334declares that it is a syntax error to find the same operator twice ``in a
6335row''.
d78f0ac9
AD
6336The last alternative, @code{%precedence}, allows to define only
6337precedence and no associativity at all. As a result, any
6338associativity-related conflict that remains will be reported as an
6339compile-time error. The directive @code{%nonassoc} creates run-time
6340error: using the operator in a associative way is a syntax error. The
6341directive @code{%precedence} creates compile-time errors: an operator
6342@emph{can} be involved in an associativity-related conflict, contrary to
6343what expected the grammar author.
bfa74976
RS
6344
6345The relative precedence of different operators is controlled by the
d78f0ac9
AD
6346order in which they are declared. The first precedence/associativity
6347declaration in the file declares the operators whose
bfa74976
RS
6348precedence is lowest, the next such declaration declares the operators
6349whose precedence is a little higher, and so on.
6350
d78f0ac9
AD
6351@node Precedence Only
6352@subsection Specifying Precedence Only
6353@findex %precedence
6354
6355Since @acronym{POSIX} Yacc defines only @code{%left}, @code{%right}, and
6356@code{%nonassoc}, which all defines precedence and associativity, little
6357attention is paid to the fact that precedence cannot be defined without
6358defining associativity. Yet, sometimes, when trying to solve a
6359conflict, precedence suffices. In such a case, using @code{%left},
6360@code{%right}, or @code{%nonassoc} might hide future (associativity
6361related) conflicts that would remain hidden.
6362
6363The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
6364Conflicts}) can be solved explictly. This shift/reduce conflicts occurs
6365in the following situation, where the period denotes the current parsing
6366state:
6367
6368@example
6369if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6370@end example
6371
6372The conflict involves the reduction of the rule @samp{IF expr THEN
6373stmt}, which precedence is by default that of its last token
6374(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6375disambiguation (attach the @code{else} to the closest @code{if}),
6376shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6377higher than that of @code{THEN}. But neither is expected to be involved
6378in an associativity related conflict, which can be specified as follows.
6379
6380@example
6381%precedence THEN
6382%precedence ELSE
6383@end example
6384
6385The unary-minus is another typical example where associativity is
6386usually over-specified, see @ref{Infix Calc, , Infix Notation
6387Calculator: @code{calc}}. The @code{%left} directive is traditionaly
6388used to declare the precedence of @code{NEG}, which is more than needed
6389since it also defines its associativity. While this is harmless in the
6390traditional example, who knows how @code{NEG} might be used in future
6391evolutions of the grammar@dots{}
6392
342b8b6e 6393@node Precedence Examples
bfa74976
RS
6394@subsection Precedence Examples
6395
6396In our example, we would want the following declarations:
6397
6398@example
6399%left '<'
6400%left '-'
6401%left '*'
6402@end example
6403
6404In a more complete example, which supports other operators as well, we
6405would declare them in groups of equal precedence. For example, @code{'+'} is
6406declared with @code{'-'}:
6407
6408@example
6409%left '<' '>' '=' NE LE GE
6410%left '+' '-'
6411%left '*' '/'
6412@end example
6413
6414@noindent
6415(Here @code{NE} and so on stand for the operators for ``not equal''
6416and so on. We assume that these tokens are more than one character long
6417and therefore are represented by names, not character literals.)
6418
342b8b6e 6419@node How Precedence
bfa74976
RS
6420@subsection How Precedence Works
6421
6422The first effect of the precedence declarations is to assign precedence
6423levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6424precedence levels to certain rules: each rule gets its precedence from
6425the last terminal symbol mentioned in the components. (You can also
6426specify explicitly the precedence of a rule. @xref{Contextual
6427Precedence, ,Context-Dependent Precedence}.)
6428
6429Finally, the resolution of conflicts works by comparing the precedence
742e4900 6430of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6431token's precedence is higher, the choice is to shift. If the rule's
6432precedence is higher, the choice is to reduce. If they have equal
6433precedence, the choice is made based on the associativity of that
6434precedence level. The verbose output file made by @samp{-v}
6435(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6436resolved.
bfa74976
RS
6437
6438Not all rules and not all tokens have precedence. If either the rule or
742e4900 6439the lookahead token has no precedence, then the default is to shift.
bfa74976 6440
342b8b6e 6441@node Contextual Precedence
bfa74976
RS
6442@section Context-Dependent Precedence
6443@cindex context-dependent precedence
6444@cindex unary operator precedence
6445@cindex precedence, context-dependent
6446@cindex precedence, unary operator
6447@findex %prec
6448
6449Often the precedence of an operator depends on the context. This sounds
6450outlandish at first, but it is really very common. For example, a minus
6451sign typically has a very high precedence as a unary operator, and a
6452somewhat lower precedence (lower than multiplication) as a binary operator.
6453
d78f0ac9
AD
6454The Bison precedence declarations
6455can only be used once for a given token; so a token has
bfa74976
RS
6456only one precedence declared in this way. For context-dependent
6457precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6458modifier for rules.
bfa74976
RS
6459
6460The @code{%prec} modifier declares the precedence of a particular rule by
6461specifying a terminal symbol whose precedence should be used for that rule.
6462It's not necessary for that symbol to appear otherwise in the rule. The
6463modifier's syntax is:
6464
6465@example
6466%prec @var{terminal-symbol}
6467@end example
6468
6469@noindent
6470and it is written after the components of the rule. Its effect is to
6471assign the rule the precedence of @var{terminal-symbol}, overriding
6472the precedence that would be deduced for it in the ordinary way. The
6473altered rule precedence then affects how conflicts involving that rule
6474are resolved (@pxref{Precedence, ,Operator Precedence}).
6475
6476Here is how @code{%prec} solves the problem of unary minus. First, declare
6477a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6478are no tokens of this type, but the symbol serves to stand for its
6479precedence:
6480
6481@example
6482@dots{}
6483%left '+' '-'
6484%left '*'
6485%left UMINUS
6486@end example
6487
6488Now the precedence of @code{UMINUS} can be used in specific rules:
6489
6490@example
6491@group
6492exp: @dots{}
6493 | exp '-' exp
6494 @dots{}
6495 | '-' exp %prec UMINUS
6496@end group
6497@end example
6498
91d2c560 6499@ifset defaultprec
39a06c25
PE
6500If you forget to append @code{%prec UMINUS} to the rule for unary
6501minus, Bison silently assumes that minus has its usual precedence.
6502This kind of problem can be tricky to debug, since one typically
6503discovers the mistake only by testing the code.
6504
22fccf95 6505The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6506this kind of problem systematically. It causes rules that lack a
6507@code{%prec} modifier to have no precedence, even if the last terminal
6508symbol mentioned in their components has a declared precedence.
6509
22fccf95 6510If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6511for all rules that participate in precedence conflict resolution.
6512Then you will see any shift/reduce conflict until you tell Bison how
6513to resolve it, either by changing your grammar or by adding an
6514explicit precedence. This will probably add declarations to the
6515grammar, but it helps to protect against incorrect rule precedences.
6516
22fccf95
PE
6517The effect of @code{%no-default-prec;} can be reversed by giving
6518@code{%default-prec;}, which is the default.
91d2c560 6519@end ifset
39a06c25 6520
342b8b6e 6521@node Parser States
bfa74976
RS
6522@section Parser States
6523@cindex finite-state machine
6524@cindex parser state
6525@cindex state (of parser)
6526
6527The function @code{yyparse} is implemented using a finite-state machine.
6528The values pushed on the parser stack are not simply token type codes; they
6529represent the entire sequence of terminal and nonterminal symbols at or
6530near the top of the stack. The current state collects all the information
6531about previous input which is relevant to deciding what to do next.
6532
742e4900
JD
6533Each time a lookahead token is read, the current parser state together
6534with the type of lookahead token are looked up in a table. This table
6535entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6536specifies the new parser state, which is pushed onto the top of the
6537parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6538This means that a certain number of tokens or groupings are taken off
6539the top of the stack, and replaced by one grouping. In other words,
6540that number of states are popped from the stack, and one new state is
6541pushed.
6542
742e4900 6543There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6544is erroneous in the current state. This causes error processing to begin
6545(@pxref{Error Recovery}).
6546
342b8b6e 6547@node Reduce/Reduce
bfa74976
RS
6548@section Reduce/Reduce Conflicts
6549@cindex reduce/reduce conflict
6550@cindex conflicts, reduce/reduce
6551
6552A reduce/reduce conflict occurs if there are two or more rules that apply
6553to the same sequence of input. This usually indicates a serious error
6554in the grammar.
6555
6556For example, here is an erroneous attempt to define a sequence
6557of zero or more @code{word} groupings.
6558
6559@example
6560sequence: /* empty */
6561 @{ printf ("empty sequence\n"); @}
6562 | maybeword
6563 | sequence word
6564 @{ printf ("added word %s\n", $2); @}
6565 ;
6566
6567maybeword: /* empty */
6568 @{ printf ("empty maybeword\n"); @}
6569 | word
6570 @{ printf ("single word %s\n", $1); @}
6571 ;
6572@end example
6573
6574@noindent
6575The error is an ambiguity: there is more than one way to parse a single
6576@code{word} into a @code{sequence}. It could be reduced to a
6577@code{maybeword} and then into a @code{sequence} via the second rule.
6578Alternatively, nothing-at-all could be reduced into a @code{sequence}
6579via the first rule, and this could be combined with the @code{word}
6580using the third rule for @code{sequence}.
6581
6582There is also more than one way to reduce nothing-at-all into a
6583@code{sequence}. This can be done directly via the first rule,
6584or indirectly via @code{maybeword} and then the second rule.
6585
6586You might think that this is a distinction without a difference, because it
6587does not change whether any particular input is valid or not. But it does
6588affect which actions are run. One parsing order runs the second rule's
6589action; the other runs the first rule's action and the third rule's action.
6590In this example, the output of the program changes.
6591
6592Bison resolves a reduce/reduce conflict by choosing to use the rule that
6593appears first in the grammar, but it is very risky to rely on this. Every
6594reduce/reduce conflict must be studied and usually eliminated. Here is the
6595proper way to define @code{sequence}:
6596
6597@example
6598sequence: /* empty */
6599 @{ printf ("empty sequence\n"); @}
6600 | sequence word
6601 @{ printf ("added word %s\n", $2); @}
6602 ;
6603@end example
6604
6605Here is another common error that yields a reduce/reduce conflict:
6606
6607@example
6608sequence: /* empty */
6609 | sequence words
6610 | sequence redirects
6611 ;
6612
6613words: /* empty */
6614 | words word
6615 ;
6616
6617redirects:/* empty */
6618 | redirects redirect
6619 ;
6620@end example
6621
6622@noindent
6623The intention here is to define a sequence which can contain either
6624@code{word} or @code{redirect} groupings. The individual definitions of
6625@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6626three together make a subtle ambiguity: even an empty input can be parsed
6627in infinitely many ways!
6628
6629Consider: nothing-at-all could be a @code{words}. Or it could be two
6630@code{words} in a row, or three, or any number. It could equally well be a
6631@code{redirects}, or two, or any number. Or it could be a @code{words}
6632followed by three @code{redirects} and another @code{words}. And so on.
6633
6634Here are two ways to correct these rules. First, to make it a single level
6635of sequence:
6636
6637@example
6638sequence: /* empty */
6639 | sequence word
6640 | sequence redirect
6641 ;
6642@end example
6643
6644Second, to prevent either a @code{words} or a @code{redirects}
6645from being empty:
6646
6647@example
6648sequence: /* empty */
6649 | sequence words
6650 | sequence redirects
6651 ;
6652
6653words: word
6654 | words word
6655 ;
6656
6657redirects:redirect
6658 | redirects redirect
6659 ;
6660@end example
6661
342b8b6e 6662@node Mystery Conflicts
bfa74976
RS
6663@section Mysterious Reduce/Reduce Conflicts
6664
6665Sometimes reduce/reduce conflicts can occur that don't look warranted.
6666Here is an example:
6667
6668@example
6669@group
6670%token ID
6671
6672%%
6673def: param_spec return_spec ','
6674 ;
6675param_spec:
6676 type
6677 | name_list ':' type
6678 ;
6679@end group
6680@group
6681return_spec:
6682 type
6683 | name ':' type
6684 ;
6685@end group
6686@group
6687type: ID
6688 ;
6689@end group
6690@group
6691name: ID
6692 ;
6693name_list:
6694 name
6695 | name ',' name_list
6696 ;
6697@end group
6698@end example
6699
6700It would seem that this grammar can be parsed with only a single token
742e4900 6701of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6702a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6703@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6704
c827f760
PE
6705@cindex @acronym{LR}(1)
6706@cindex @acronym{LALR}(1)
bfa74976 6707However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6708@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6709an @code{ID}
bfa74976
RS
6710at the beginning of a @code{param_spec} and likewise at the beginning of
6711a @code{return_spec}, are similar enough that Bison assumes they are the
6712same. They appear similar because the same set of rules would be
6713active---the rule for reducing to a @code{name} and that for reducing to
6714a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6715that the rules would require different lookahead tokens in the two
bfa74976
RS
6716contexts, so it makes a single parser state for them both. Combining
6717the two contexts causes a conflict later. In parser terminology, this
c827f760 6718occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6719
6720In general, it is better to fix deficiencies than to document them. But
6721this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6722generators that can handle @acronym{LR}(1) grammars are hard to write
6723and tend to
bfa74976
RS
6724produce parsers that are very large. In practice, Bison is more useful
6725as it is now.
6726
6727When the problem arises, you can often fix it by identifying the two
a220f555
MA
6728parser states that are being confused, and adding something to make them
6729look distinct. In the above example, adding one rule to
bfa74976
RS
6730@code{return_spec} as follows makes the problem go away:
6731
6732@example
6733@group
6734%token BOGUS
6735@dots{}
6736%%
6737@dots{}
6738return_spec:
6739 type
6740 | name ':' type
6741 /* This rule is never used. */
6742 | ID BOGUS
6743 ;
6744@end group
6745@end example
6746
6747This corrects the problem because it introduces the possibility of an
6748additional active rule in the context after the @code{ID} at the beginning of
6749@code{return_spec}. This rule is not active in the corresponding context
6750in a @code{param_spec}, so the two contexts receive distinct parser states.
6751As long as the token @code{BOGUS} is never generated by @code{yylex},
6752the added rule cannot alter the way actual input is parsed.
6753
6754In this particular example, there is another way to solve the problem:
6755rewrite the rule for @code{return_spec} to use @code{ID} directly
6756instead of via @code{name}. This also causes the two confusing
6757contexts to have different sets of active rules, because the one for
6758@code{return_spec} activates the altered rule for @code{return_spec}
6759rather than the one for @code{name}.
6760
6761@example
6762param_spec:
6763 type
6764 | name_list ':' type
6765 ;
6766return_spec:
6767 type
6768 | ID ':' type
6769 ;
6770@end example
6771
e054b190
PE
6772For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6773generators, please see:
6774Frank DeRemer and Thomas Pennello, Efficient Computation of
6775@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6776Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6777pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6778
fae437e8 6779@node Generalized LR Parsing
c827f760
PE
6780@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6781@cindex @acronym{GLR} parsing
6782@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6783@cindex ambiguous grammars
9d9b8b70 6784@cindex nondeterministic parsing
676385e2 6785
fae437e8
AD
6786Bison produces @emph{deterministic} parsers that choose uniquely
6787when to reduce and which reduction to apply
742e4900 6788based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6789As a result, normal Bison handles a proper subset of the family of
6790context-free languages.
fae437e8 6791Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6792sequence of reductions cannot have deterministic parsers in this sense.
6793The same is true of languages that require more than one symbol of
742e4900 6794lookahead, since the parser lacks the information necessary to make a
676385e2 6795decision at the point it must be made in a shift-reduce parser.
fae437e8 6796Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6797there are languages where Bison's particular choice of how to
6798summarize the input seen so far loses necessary information.
6799
6800When you use the @samp{%glr-parser} declaration in your grammar file,
6801Bison generates a parser that uses a different algorithm, called
c827f760
PE
6802Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6803parser uses the same basic
676385e2
PH
6804algorithm for parsing as an ordinary Bison parser, but behaves
6805differently in cases where there is a shift-reduce conflict that has not
fae437e8 6806been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6807reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6808situation, it
fae437e8 6809effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6810shift or reduction. These parsers then proceed as usual, consuming
6811tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6812and split further, with the result that instead of a sequence of states,
c827f760 6813a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6814
6815In effect, each stack represents a guess as to what the proper parse
6816is. Additional input may indicate that a guess was wrong, in which case
6817the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6818actions generated in each stack are saved, rather than being executed
676385e2 6819immediately. When a stack disappears, its saved semantic actions never
fae437e8 6820get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6821their sets of semantic actions are both saved with the state that
6822results from the reduction. We say that two stacks are equivalent
fae437e8 6823when they both represent the same sequence of states,
676385e2
PH
6824and each pair of corresponding states represents a
6825grammar symbol that produces the same segment of the input token
6826stream.
6827
6828Whenever the parser makes a transition from having multiple
c827f760 6829states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6830algorithm, after resolving and executing the saved-up actions.
6831At this transition, some of the states on the stack will have semantic
6832values that are sets (actually multisets) of possible actions. The
6833parser tries to pick one of the actions by first finding one whose rule
6834has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6835declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6836precedence, but there the same merging function is declared for both
fae437e8 6837rules by the @samp{%merge} declaration,
676385e2
PH
6838Bison resolves and evaluates both and then calls the merge function on
6839the result. Otherwise, it reports an ambiguity.
6840
c827f760
PE
6841It is possible to use a data structure for the @acronym{GLR} parsing tree that
6842permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6843size of the input), any unambiguous (not necessarily
6844@acronym{LALR}(1)) grammar in
fae437e8 6845quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6846context-free grammar in cubic worst-case time. However, Bison currently
6847uses a simpler data structure that requires time proportional to the
6848length of the input times the maximum number of stacks required for any
9d9b8b70 6849prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6850grammars can require exponential time and space to process. Such badly
6851behaving examples, however, are not generally of practical interest.
9d9b8b70 6852Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6853doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6854structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6855grammar, in particular, it is only slightly slower than with the default
6856Bison parser.
6857
fa7e68c3 6858For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6859Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6860Generalised @acronym{LR} Parsers, Royal Holloway, University of
6861London, Department of Computer Science, TR-00-12,
6862@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6863(2000-12-24).
6864
1a059451
PE
6865@node Memory Management
6866@section Memory Management, and How to Avoid Memory Exhaustion
6867@cindex memory exhaustion
6868@cindex memory management
bfa74976
RS
6869@cindex stack overflow
6870@cindex parser stack overflow
6871@cindex overflow of parser stack
6872
1a059451 6873The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6874not reduced. When this happens, the parser function @code{yyparse}
1a059451 6875calls @code{yyerror} and then returns 2.
bfa74976 6876
c827f760 6877Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6878usually results from using a right recursion instead of a left
6879recursion, @xref{Recursion, ,Recursive Rules}.
6880
bfa74976
RS
6881@vindex YYMAXDEPTH
6882By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6883parser stack can become before memory is exhausted. Define the
bfa74976
RS
6884macro with a value that is an integer. This value is the maximum number
6885of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6886
6887The stack space allowed is not necessarily allocated. If you specify a
1a059451 6888large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6889stack at first, and then makes it bigger by stages as needed. This
6890increasing allocation happens automatically and silently. Therefore,
6891you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6892space for ordinary inputs that do not need much stack.
6893
d7e14fc0
PE
6894However, do not allow @code{YYMAXDEPTH} to be a value so large that
6895arithmetic overflow could occur when calculating the size of the stack
6896space. Also, do not allow @code{YYMAXDEPTH} to be less than
6897@code{YYINITDEPTH}.
6898
bfa74976
RS
6899@cindex default stack limit
6900The default value of @code{YYMAXDEPTH}, if you do not define it, is
690110000.
6902
6903@vindex YYINITDEPTH
6904You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6905macro @code{YYINITDEPTH} to a positive integer. For the C
6906@acronym{LALR}(1) parser, this value must be a compile-time constant
6907unless you are assuming C99 or some other target language or compiler
6908that allows variable-length arrays. The default is 200.
6909
1a059451 6910Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6911
d1a1114f 6912@c FIXME: C++ output.
c827f760 6913Because of semantical differences between C and C++, the
1a059451
PE
6914@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6915by C++ compilers. In this precise case (compiling a C parser as C++) you are
6916suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6917this deficiency in a future release.
d1a1114f 6918
342b8b6e 6919@node Error Recovery
bfa74976
RS
6920@chapter Error Recovery
6921@cindex error recovery
6922@cindex recovery from errors
6923
6e649e65 6924It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6925error. For example, a compiler should recover sufficiently to parse the
6926rest of the input file and check it for errors; a calculator should accept
6927another expression.
6928
6929In a simple interactive command parser where each input is one line, it may
6930be sufficient to allow @code{yyparse} to return 1 on error and have the
6931caller ignore the rest of the input line when that happens (and then call
6932@code{yyparse} again). But this is inadequate for a compiler, because it
6933forgets all the syntactic context leading up to the error. A syntax error
6934deep within a function in the compiler input should not cause the compiler
6935to treat the following line like the beginning of a source file.
6936
6937@findex error
6938You can define how to recover from a syntax error by writing rules to
6939recognize the special token @code{error}. This is a terminal symbol that
6940is always defined (you need not declare it) and reserved for error
6941handling. The Bison parser generates an @code{error} token whenever a
6942syntax error happens; if you have provided a rule to recognize this token
13863333 6943in the current context, the parse can continue.
bfa74976
RS
6944
6945For example:
6946
6947@example
6948stmnts: /* empty string */
6949 | stmnts '\n'
6950 | stmnts exp '\n'
6951 | stmnts error '\n'
6952@end example
6953
6954The fourth rule in this example says that an error followed by a newline
6955makes a valid addition to any @code{stmnts}.
6956
6957What happens if a syntax error occurs in the middle of an @code{exp}? The
6958error recovery rule, interpreted strictly, applies to the precise sequence
6959of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6960the middle of an @code{exp}, there will probably be some additional tokens
6961and subexpressions on the stack after the last @code{stmnts}, and there
6962will be tokens to read before the next newline. So the rule is not
6963applicable in the ordinary way.
6964
6965But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6966the semantic context and part of the input. First it discards states
6967and objects from the stack until it gets back to a state in which the
bfa74976 6968@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6969already parsed are discarded, back to the last complete @code{stmnts}.)
6970At this point the @code{error} token can be shifted. Then, if the old
742e4900 6971lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6972tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6973this example, Bison reads and discards input until the next newline so
6974that the fourth rule can apply. Note that discarded symbols are
6975possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6976Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6977
6978The choice of error rules in the grammar is a choice of strategies for
6979error recovery. A simple and useful strategy is simply to skip the rest of
6980the current input line or current statement if an error is detected:
6981
6982@example
72d2299c 6983stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6984@end example
6985
6986It is also useful to recover to the matching close-delimiter of an
6987opening-delimiter that has already been parsed. Otherwise the
6988close-delimiter will probably appear to be unmatched, and generate another,
6989spurious error message:
6990
6991@example
6992primary: '(' expr ')'
6993 | '(' error ')'
6994 @dots{}
6995 ;
6996@end example
6997
6998Error recovery strategies are necessarily guesses. When they guess wrong,
6999one syntax error often leads to another. In the above example, the error
7000recovery rule guesses that an error is due to bad input within one
7001@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7002middle of a valid @code{stmnt}. After the error recovery rule recovers
7003from the first error, another syntax error will be found straightaway,
7004since the text following the spurious semicolon is also an invalid
7005@code{stmnt}.
7006
7007To prevent an outpouring of error messages, the parser will output no error
7008message for another syntax error that happens shortly after the first; only
7009after three consecutive input tokens have been successfully shifted will
7010error messages resume.
7011
7012Note that rules which accept the @code{error} token may have actions, just
7013as any other rules can.
7014
7015@findex yyerrok
7016You can make error messages resume immediately by using the macro
7017@code{yyerrok} in an action. If you do this in the error rule's action, no
7018error messages will be suppressed. This macro requires no arguments;
7019@samp{yyerrok;} is a valid C statement.
7020
7021@findex yyclearin
742e4900 7022The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7023this is unacceptable, then the macro @code{yyclearin} may be used to clear
7024this token. Write the statement @samp{yyclearin;} in the error rule's
7025action.
32c29292 7026@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7027
6e649e65 7028For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7029called that advances the input stream to some point where parsing should
7030once again commence. The next symbol returned by the lexical scanner is
742e4900 7031probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7032with @samp{yyclearin;}.
7033
7034@vindex YYRECOVERING
02103984
PE
7035The expression @code{YYRECOVERING ()} yields 1 when the parser
7036is recovering from a syntax error, and 0 otherwise.
7037Syntax error diagnostics are suppressed while recovering from a syntax
7038error.
bfa74976 7039
342b8b6e 7040@node Context Dependency
bfa74976
RS
7041@chapter Handling Context Dependencies
7042
7043The Bison paradigm is to parse tokens first, then group them into larger
7044syntactic units. In many languages, the meaning of a token is affected by
7045its context. Although this violates the Bison paradigm, certain techniques
7046(known as @dfn{kludges}) may enable you to write Bison parsers for such
7047languages.
7048
7049@menu
7050* Semantic Tokens:: Token parsing can depend on the semantic context.
7051* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7052* Tie-in Recovery:: Lexical tie-ins have implications for how
7053 error recovery rules must be written.
7054@end menu
7055
7056(Actually, ``kludge'' means any technique that gets its job done but is
7057neither clean nor robust.)
7058
342b8b6e 7059@node Semantic Tokens
bfa74976
RS
7060@section Semantic Info in Token Types
7061
7062The C language has a context dependency: the way an identifier is used
7063depends on what its current meaning is. For example, consider this:
7064
7065@example
7066foo (x);
7067@end example
7068
7069This looks like a function call statement, but if @code{foo} is a typedef
7070name, then this is actually a declaration of @code{x}. How can a Bison
7071parser for C decide how to parse this input?
7072
c827f760 7073The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7074@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7075identifier, it looks up the current declaration of the identifier in order
7076to decide which token type to return: @code{TYPENAME} if the identifier is
7077declared as a typedef, @code{IDENTIFIER} otherwise.
7078
7079The grammar rules can then express the context dependency by the choice of
7080token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7081but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7082@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7083is @emph{not} significant, such as in declarations that can shadow a
7084typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7085accepted---there is one rule for each of the two token types.
7086
7087This technique is simple to use if the decision of which kinds of
7088identifiers to allow is made at a place close to where the identifier is
7089parsed. But in C this is not always so: C allows a declaration to
7090redeclare a typedef name provided an explicit type has been specified
7091earlier:
7092
7093@example
3a4f411f
PE
7094typedef int foo, bar;
7095int baz (void)
7096@{
7097 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7098 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7099 return foo (bar);
7100@}
bfa74976
RS
7101@end example
7102
7103Unfortunately, the name being declared is separated from the declaration
7104construct itself by a complicated syntactic structure---the ``declarator''.
7105
9ecbd125 7106As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7107all the nonterminal names changed: once for parsing a declaration in
7108which a typedef name can be redefined, and once for parsing a
7109declaration in which that can't be done. Here is a part of the
7110duplication, with actions omitted for brevity:
bfa74976
RS
7111
7112@example
7113initdcl:
7114 declarator maybeasm '='
7115 init
7116 | declarator maybeasm
7117 ;
7118
7119notype_initdcl:
7120 notype_declarator maybeasm '='
7121 init
7122 | notype_declarator maybeasm
7123 ;
7124@end example
7125
7126@noindent
7127Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7128cannot. The distinction between @code{declarator} and
7129@code{notype_declarator} is the same sort of thing.
7130
7131There is some similarity between this technique and a lexical tie-in
7132(described next), in that information which alters the lexical analysis is
7133changed during parsing by other parts of the program. The difference is
7134here the information is global, and is used for other purposes in the
7135program. A true lexical tie-in has a special-purpose flag controlled by
7136the syntactic context.
7137
342b8b6e 7138@node Lexical Tie-ins
bfa74976
RS
7139@section Lexical Tie-ins
7140@cindex lexical tie-in
7141
7142One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7143which is set by Bison actions, whose purpose is to alter the way tokens are
7144parsed.
7145
7146For example, suppose we have a language vaguely like C, but with a special
7147construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7148an expression in parentheses in which all integers are hexadecimal. In
7149particular, the token @samp{a1b} must be treated as an integer rather than
7150as an identifier if it appears in that context. Here is how you can do it:
7151
7152@example
7153@group
7154%@{
38a92d50
PE
7155 int hexflag;
7156 int yylex (void);
7157 void yyerror (char const *);
bfa74976
RS
7158%@}
7159%%
7160@dots{}
7161@end group
7162@group
7163expr: IDENTIFIER
7164 | constant
7165 | HEX '('
7166 @{ hexflag = 1; @}
7167 expr ')'
7168 @{ hexflag = 0;
7169 $$ = $4; @}
7170 | expr '+' expr
7171 @{ $$ = make_sum ($1, $3); @}
7172 @dots{}
7173 ;
7174@end group
7175
7176@group
7177constant:
7178 INTEGER
7179 | STRING
7180 ;
7181@end group
7182@end example
7183
7184@noindent
7185Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7186it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7187with letters are parsed as integers if possible.
7188
342b8b6e
AD
7189The declaration of @code{hexflag} shown in the prologue of the parser file
7190is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7191You must also write the code in @code{yylex} to obey the flag.
bfa74976 7192
342b8b6e 7193@node Tie-in Recovery
bfa74976
RS
7194@section Lexical Tie-ins and Error Recovery
7195
7196Lexical tie-ins make strict demands on any error recovery rules you have.
7197@xref{Error Recovery}.
7198
7199The reason for this is that the purpose of an error recovery rule is to
7200abort the parsing of one construct and resume in some larger construct.
7201For example, in C-like languages, a typical error recovery rule is to skip
7202tokens until the next semicolon, and then start a new statement, like this:
7203
7204@example
7205stmt: expr ';'
7206 | IF '(' expr ')' stmt @{ @dots{} @}
7207 @dots{}
7208 error ';'
7209 @{ hexflag = 0; @}
7210 ;
7211@end example
7212
7213If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7214construct, this error rule will apply, and then the action for the
7215completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7216remain set for the entire rest of the input, or until the next @code{hex}
7217keyword, causing identifiers to be misinterpreted as integers.
7218
7219To avoid this problem the error recovery rule itself clears @code{hexflag}.
7220
7221There may also be an error recovery rule that works within expressions.
7222For example, there could be a rule which applies within parentheses
7223and skips to the close-parenthesis:
7224
7225@example
7226@group
7227expr: @dots{}
7228 | '(' expr ')'
7229 @{ $$ = $2; @}
7230 | '(' error ')'
7231 @dots{}
7232@end group
7233@end example
7234
7235If this rule acts within the @code{hex} construct, it is not going to abort
7236that construct (since it applies to an inner level of parentheses within
7237the construct). Therefore, it should not clear the flag: the rest of
7238the @code{hex} construct should be parsed with the flag still in effect.
7239
7240What if there is an error recovery rule which might abort out of the
7241@code{hex} construct or might not, depending on circumstances? There is no
7242way you can write the action to determine whether a @code{hex} construct is
7243being aborted or not. So if you are using a lexical tie-in, you had better
7244make sure your error recovery rules are not of this kind. Each rule must
7245be such that you can be sure that it always will, or always won't, have to
7246clear the flag.
7247
ec3bc396
AD
7248@c ================================================== Debugging Your Parser
7249
342b8b6e 7250@node Debugging
bfa74976 7251@chapter Debugging Your Parser
ec3bc396
AD
7252
7253Developing a parser can be a challenge, especially if you don't
7254understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7255Algorithm}). Even so, sometimes a detailed description of the automaton
7256can help (@pxref{Understanding, , Understanding Your Parser}), or
7257tracing the execution of the parser can give some insight on why it
7258behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7259
7260@menu
7261* Understanding:: Understanding the structure of your parser.
7262* Tracing:: Tracing the execution of your parser.
7263@end menu
7264
7265@node Understanding
7266@section Understanding Your Parser
7267
7268As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7269Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7270frequent than one would hope), looking at this automaton is required to
7271tune or simply fix a parser. Bison provides two different
35fe0834 7272representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7273
7274The textual file is generated when the options @option{--report} or
7275@option{--verbose} are specified, see @xref{Invocation, , Invoking
7276Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7277the parser output file name, and adding @samp{.output} instead.
7278Therefore, if the input file is @file{foo.y}, then the parser file is
7279called @file{foo.tab.c} by default. As a consequence, the verbose
7280output file is called @file{foo.output}.
7281
7282The following grammar file, @file{calc.y}, will be used in the sequel:
7283
7284@example
7285%token NUM STR
7286%left '+' '-'
7287%left '*'
7288%%
7289exp: exp '+' exp
7290 | exp '-' exp
7291 | exp '*' exp
7292 | exp '/' exp
7293 | NUM
7294 ;
7295useless: STR;
7296%%
7297@end example
7298
88bce5a2
AD
7299@command{bison} reports:
7300
7301@example
cff03fb2
JD
7302calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7303calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7304calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7305calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7306@end example
7307
7308When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7309creates a file @file{calc.output} with contents detailed below. The
7310order of the output and the exact presentation might vary, but the
7311interpretation is the same.
ec3bc396
AD
7312
7313The first section includes details on conflicts that were solved thanks
7314to precedence and/or associativity:
7315
7316@example
7317Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7318Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7319Conflict in state 8 between rule 2 and token '*' resolved as shift.
7320@exdent @dots{}
7321@end example
7322
7323@noindent
7324The next section lists states that still have conflicts.
7325
7326@example
5a99098d
PE
7327State 8 conflicts: 1 shift/reduce
7328State 9 conflicts: 1 shift/reduce
7329State 10 conflicts: 1 shift/reduce
7330State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7331@end example
7332
7333@noindent
7334@cindex token, useless
7335@cindex useless token
7336@cindex nonterminal, useless
7337@cindex useless nonterminal
7338@cindex rule, useless
7339@cindex useless rule
7340The next section reports useless tokens, nonterminal and rules. Useless
7341nonterminals and rules are removed in order to produce a smaller parser,
7342but useless tokens are preserved, since they might be used by the
d80fb37a 7343scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7344below):
7345
7346@example
d80fb37a 7347Nonterminals useless in grammar:
ec3bc396
AD
7348 useless
7349
d80fb37a 7350Terminals unused in grammar:
ec3bc396
AD
7351 STR
7352
cff03fb2 7353Rules useless in grammar:
ec3bc396
AD
7354#6 useless: STR;
7355@end example
7356
7357@noindent
7358The next section reproduces the exact grammar that Bison used:
7359
7360@example
7361Grammar
7362
7363 Number, Line, Rule
88bce5a2 7364 0 5 $accept -> exp $end
ec3bc396
AD
7365 1 5 exp -> exp '+' exp
7366 2 6 exp -> exp '-' exp
7367 3 7 exp -> exp '*' exp
7368 4 8 exp -> exp '/' exp
7369 5 9 exp -> NUM
7370@end example
7371
7372@noindent
7373and reports the uses of the symbols:
7374
7375@example
7376Terminals, with rules where they appear
7377
88bce5a2 7378$end (0) 0
ec3bc396
AD
7379'*' (42) 3
7380'+' (43) 1
7381'-' (45) 2
7382'/' (47) 4
7383error (256)
7384NUM (258) 5
7385
7386Nonterminals, with rules where they appear
7387
88bce5a2 7388$accept (8)
ec3bc396
AD
7389 on left: 0
7390exp (9)
7391 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7392@end example
7393
7394@noindent
7395@cindex item
7396@cindex pointed rule
7397@cindex rule, pointed
7398Bison then proceeds onto the automaton itself, describing each state
7399with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7400item is a production rule together with a point (marked by @samp{.})
7401that the input cursor.
7402
7403@example
7404state 0
7405
88bce5a2 7406 $accept -> . exp $ (rule 0)
ec3bc396 7407
2a8d363a 7408 NUM shift, and go to state 1
ec3bc396 7409
2a8d363a 7410 exp go to state 2
ec3bc396
AD
7411@end example
7412
7413This reads as follows: ``state 0 corresponds to being at the very
7414beginning of the parsing, in the initial rule, right before the start
7415symbol (here, @code{exp}). When the parser returns to this state right
7416after having reduced a rule that produced an @code{exp}, the control
7417flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7418symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7419the parse stack, and the control flow jumps to state 1. Any other
742e4900 7420lookahead triggers a syntax error.''
ec3bc396
AD
7421
7422@cindex core, item set
7423@cindex item set core
7424@cindex kernel, item set
7425@cindex item set core
7426Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7427report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7428at the beginning of any rule deriving an @code{exp}. By default Bison
7429reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7430you want to see more detail you can invoke @command{bison} with
7431@option{--report=itemset} to list all the items, include those that can
7432be derived:
7433
7434@example
7435state 0
7436
88bce5a2 7437 $accept -> . exp $ (rule 0)
ec3bc396
AD
7438 exp -> . exp '+' exp (rule 1)
7439 exp -> . exp '-' exp (rule 2)
7440 exp -> . exp '*' exp (rule 3)
7441 exp -> . exp '/' exp (rule 4)
7442 exp -> . NUM (rule 5)
7443
7444 NUM shift, and go to state 1
7445
7446 exp go to state 2
7447@end example
7448
7449@noindent
7450In the state 1...
7451
7452@example
7453state 1
7454
7455 exp -> NUM . (rule 5)
7456
2a8d363a 7457 $default reduce using rule 5 (exp)
ec3bc396
AD
7458@end example
7459
7460@noindent
742e4900 7461the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7462(@samp{$default}), the parser will reduce it. If it was coming from
7463state 0, then, after this reduction it will return to state 0, and will
7464jump to state 2 (@samp{exp: go to state 2}).
7465
7466@example
7467state 2
7468
88bce5a2 7469 $accept -> exp . $ (rule 0)
ec3bc396
AD
7470 exp -> exp . '+' exp (rule 1)
7471 exp -> exp . '-' exp (rule 2)
7472 exp -> exp . '*' exp (rule 3)
7473 exp -> exp . '/' exp (rule 4)
7474
2a8d363a
AD
7475 $ shift, and go to state 3
7476 '+' shift, and go to state 4
7477 '-' shift, and go to state 5
7478 '*' shift, and go to state 6
7479 '/' shift, and go to state 7
ec3bc396
AD
7480@end example
7481
7482@noindent
7483In state 2, the automaton can only shift a symbol. For instance,
742e4900 7484because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7485@samp{+}, it will be shifted on the parse stack, and the automaton
7486control will jump to state 4, corresponding to the item @samp{exp -> exp
7487'+' . exp}. Since there is no default action, any other token than
6e649e65 7488those listed above will trigger a syntax error.
ec3bc396
AD
7489
7490The state 3 is named the @dfn{final state}, or the @dfn{accepting
7491state}:
7492
7493@example
7494state 3
7495
88bce5a2 7496 $accept -> exp $ . (rule 0)
ec3bc396 7497
2a8d363a 7498 $default accept
ec3bc396
AD
7499@end example
7500
7501@noindent
7502the initial rule is completed (the start symbol and the end
7503of input were read), the parsing exits successfully.
7504
7505The interpretation of states 4 to 7 is straightforward, and is left to
7506the reader.
7507
7508@example
7509state 4
7510
7511 exp -> exp '+' . exp (rule 1)
7512
2a8d363a 7513 NUM shift, and go to state 1
ec3bc396 7514
2a8d363a 7515 exp go to state 8
ec3bc396
AD
7516
7517state 5
7518
7519 exp -> exp '-' . exp (rule 2)
7520
2a8d363a 7521 NUM shift, and go to state 1
ec3bc396 7522
2a8d363a 7523 exp go to state 9
ec3bc396
AD
7524
7525state 6
7526
7527 exp -> exp '*' . exp (rule 3)
7528
2a8d363a 7529 NUM shift, and go to state 1
ec3bc396 7530
2a8d363a 7531 exp go to state 10
ec3bc396
AD
7532
7533state 7
7534
7535 exp -> exp '/' . exp (rule 4)
7536
2a8d363a 7537 NUM shift, and go to state 1
ec3bc396 7538
2a8d363a 7539 exp go to state 11
ec3bc396
AD
7540@end example
7541
5a99098d
PE
7542As was announced in beginning of the report, @samp{State 8 conflicts:
75431 shift/reduce}:
ec3bc396
AD
7544
7545@example
7546state 8
7547
7548 exp -> exp . '+' exp (rule 1)
7549 exp -> exp '+' exp . (rule 1)
7550 exp -> exp . '-' exp (rule 2)
7551 exp -> exp . '*' exp (rule 3)
7552 exp -> exp . '/' exp (rule 4)
7553
2a8d363a
AD
7554 '*' shift, and go to state 6
7555 '/' shift, and go to state 7
ec3bc396 7556
2a8d363a
AD
7557 '/' [reduce using rule 1 (exp)]
7558 $default reduce using rule 1 (exp)
ec3bc396
AD
7559@end example
7560
742e4900 7561Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7562either shifting (and going to state 7), or reducing rule 1. The
7563conflict means that either the grammar is ambiguous, or the parser lacks
7564information to make the right decision. Indeed the grammar is
7565ambiguous, as, since we did not specify the precedence of @samp{/}, the
7566sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7567NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7568NUM}, which corresponds to reducing rule 1.
7569
c827f760 7570Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7571arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7572Shift/Reduce Conflicts}. Discarded actions are reported in between
7573square brackets.
7574
7575Note that all the previous states had a single possible action: either
7576shifting the next token and going to the corresponding state, or
7577reducing a single rule. In the other cases, i.e., when shifting
7578@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7579possible, the lookahead is required to select the action. State 8 is
7580one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7581is shifting, otherwise the action is reducing rule 1. In other words,
7582the first two items, corresponding to rule 1, are not eligible when the
742e4900 7583lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7584precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7585with some set of possible lookahead tokens. When run with
7586@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7587
7588@example
7589state 8
7590
88c78747 7591 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7592 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7593 exp -> exp . '-' exp (rule 2)
7594 exp -> exp . '*' exp (rule 3)
7595 exp -> exp . '/' exp (rule 4)
7596
7597 '*' shift, and go to state 6
7598 '/' shift, and go to state 7
7599
7600 '/' [reduce using rule 1 (exp)]
7601 $default reduce using rule 1 (exp)
7602@end example
7603
7604The remaining states are similar:
7605
7606@example
7607state 9
7608
7609 exp -> exp . '+' exp (rule 1)
7610 exp -> exp . '-' exp (rule 2)
7611 exp -> exp '-' exp . (rule 2)
7612 exp -> exp . '*' exp (rule 3)
7613 exp -> exp . '/' exp (rule 4)
7614
2a8d363a
AD
7615 '*' shift, and go to state 6
7616 '/' shift, and go to state 7
ec3bc396 7617
2a8d363a
AD
7618 '/' [reduce using rule 2 (exp)]
7619 $default reduce using rule 2 (exp)
ec3bc396
AD
7620
7621state 10
7622
7623 exp -> exp . '+' exp (rule 1)
7624 exp -> exp . '-' exp (rule 2)
7625 exp -> exp . '*' exp (rule 3)
7626 exp -> exp '*' exp . (rule 3)
7627 exp -> exp . '/' exp (rule 4)
7628
2a8d363a 7629 '/' shift, and go to state 7
ec3bc396 7630
2a8d363a
AD
7631 '/' [reduce using rule 3 (exp)]
7632 $default reduce using rule 3 (exp)
ec3bc396
AD
7633
7634state 11
7635
7636 exp -> exp . '+' exp (rule 1)
7637 exp -> exp . '-' exp (rule 2)
7638 exp -> exp . '*' exp (rule 3)
7639 exp -> exp . '/' exp (rule 4)
7640 exp -> exp '/' exp . (rule 4)
7641
2a8d363a
AD
7642 '+' shift, and go to state 4
7643 '-' shift, and go to state 5
7644 '*' shift, and go to state 6
7645 '/' shift, and go to state 7
ec3bc396 7646
2a8d363a
AD
7647 '+' [reduce using rule 4 (exp)]
7648 '-' [reduce using rule 4 (exp)]
7649 '*' [reduce using rule 4 (exp)]
7650 '/' [reduce using rule 4 (exp)]
7651 $default reduce using rule 4 (exp)
ec3bc396
AD
7652@end example
7653
7654@noindent
fa7e68c3
PE
7655Observe that state 11 contains conflicts not only due to the lack of
7656precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7657@samp{*}, but also because the
ec3bc396
AD
7658associativity of @samp{/} is not specified.
7659
7660
7661@node Tracing
7662@section Tracing Your Parser
bfa74976
RS
7663@findex yydebug
7664@cindex debugging
7665@cindex tracing the parser
7666
7667If a Bison grammar compiles properly but doesn't do what you want when it
7668runs, the @code{yydebug} parser-trace feature can help you figure out why.
7669
3ded9a63
AD
7670There are several means to enable compilation of trace facilities:
7671
7672@table @asis
7673@item the macro @code{YYDEBUG}
7674@findex YYDEBUG
7675Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7676parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7677@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7678YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7679Prologue}).
7680
7681@item the option @option{-t}, @option{--debug}
7682Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7683,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7684
7685@item the directive @samp{%debug}
7686@findex %debug
fa819509
AD
7687Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
7688Summary}). This Bison extension is maintained for backward
7689compatibility with previous versions of Bison.
7690
7691@item the variable @samp{parse.trace}
7692@findex %define parse.trace
7693Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
7694,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
7695(@pxref{Bison Options}). This is a Bison extension, which is especially
7696useful for languages that don't use a preprocessor. Unless
7697@acronym{POSIX} and Yacc portability matter to you, this is the
7698preferred solution.
3ded9a63
AD
7699@end table
7700
fa819509 7701We suggest that you always enable the trace option so that debugging is
3ded9a63 7702always possible.
bfa74976 7703
02a81e05 7704The trace facility outputs messages with macro calls of the form
e2742e46 7705@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7706@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7707arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7708define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7709and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7710
7711Once you have compiled the program with trace facilities, the way to
7712request a trace is to store a nonzero value in the variable @code{yydebug}.
7713You can do this by making the C code do it (in @code{main}, perhaps), or
7714you can alter the value with a C debugger.
7715
7716Each step taken by the parser when @code{yydebug} is nonzero produces a
7717line or two of trace information, written on @code{stderr}. The trace
7718messages tell you these things:
7719
7720@itemize @bullet
7721@item
7722Each time the parser calls @code{yylex}, what kind of token was read.
7723
7724@item
7725Each time a token is shifted, the depth and complete contents of the
7726state stack (@pxref{Parser States}).
7727
7728@item
7729Each time a rule is reduced, which rule it is, and the complete contents
7730of the state stack afterward.
7731@end itemize
7732
7733To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7734produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7735Bison}). This file shows the meaning of each state in terms of
7736positions in various rules, and also what each state will do with each
7737possible input token. As you read the successive trace messages, you
7738can see that the parser is functioning according to its specification in
7739the listing file. Eventually you will arrive at the place where
7740something undesirable happens, and you will see which parts of the
7741grammar are to blame.
bfa74976
RS
7742
7743The parser file is a C program and you can use C debuggers on it, but it's
7744not easy to interpret what it is doing. The parser function is a
7745finite-state machine interpreter, and aside from the actions it executes
7746the same code over and over. Only the values of variables show where in
7747the grammar it is working.
7748
7749@findex YYPRINT
7750The debugging information normally gives the token type of each token
7751read, but not its semantic value. You can optionally define a macro
7752named @code{YYPRINT} to provide a way to print the value. If you define
7753@code{YYPRINT}, it should take three arguments. The parser will pass a
7754standard I/O stream, the numeric code for the token type, and the token
7755value (from @code{yylval}).
7756
7757Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 7758calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7759
7760@smallexample
38a92d50
PE
7761%@{
7762 static void print_token_value (FILE *, int, YYSTYPE);
7763 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7764%@}
7765
7766@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7767
7768static void
831d3c99 7769print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7770@{
7771 if (type == VAR)
d3c4e709 7772 fprintf (file, "%s", value.tptr->name);
bfa74976 7773 else if (type == NUM)
d3c4e709 7774 fprintf (file, "%d", value.val);
bfa74976
RS
7775@}
7776@end smallexample
7777
ec3bc396
AD
7778@c ================================================= Invoking Bison
7779
342b8b6e 7780@node Invocation
bfa74976
RS
7781@chapter Invoking Bison
7782@cindex invoking Bison
7783@cindex Bison invocation
7784@cindex options for invoking Bison
7785
7786The usual way to invoke Bison is as follows:
7787
7788@example
7789bison @var{infile}
7790@end example
7791
7792Here @var{infile} is the grammar file name, which usually ends in
7793@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7794with @samp{.tab.c} and removing any leading directory. Thus, the
7795@samp{bison foo.y} file name yields
7796@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7797@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7798C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7799or @file{foo.y++}. Then, the output files will take an extension like
7800the given one as input (respectively @file{foo.tab.cpp} and
7801@file{foo.tab.c++}).
fa4d969f 7802This feature takes effect with all options that manipulate file names like
234a3be3
AD
7803@samp{-o} or @samp{-d}.
7804
7805For example :
7806
7807@example
7808bison -d @var{infile.yxx}
7809@end example
84163231 7810@noindent
72d2299c 7811will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7812
7813@example
b56471a6 7814bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7815@end example
84163231 7816@noindent
234a3be3
AD
7817will produce @file{output.c++} and @file{outfile.h++}.
7818
397ec073
PE
7819For compatibility with @acronym{POSIX}, the standard Bison
7820distribution also contains a shell script called @command{yacc} that
7821invokes Bison with the @option{-y} option.
7822
bfa74976 7823@menu
13863333 7824* Bison Options:: All the options described in detail,
c827f760 7825 in alphabetical order by short options.
bfa74976 7826* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7827* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7828@end menu
7829
342b8b6e 7830@node Bison Options
bfa74976
RS
7831@section Bison Options
7832
7833Bison supports both traditional single-letter options and mnemonic long
7834option names. Long option names are indicated with @samp{--} instead of
7835@samp{-}. Abbreviations for option names are allowed as long as they
7836are unique. When a long option takes an argument, like
7837@samp{--file-prefix}, connect the option name and the argument with
7838@samp{=}.
7839
7840Here is a list of options that can be used with Bison, alphabetized by
7841short option. It is followed by a cross key alphabetized by long
7842option.
7843
89cab50d
AD
7844@c Please, keep this ordered as in `bison --help'.
7845@noindent
7846Operations modes:
7847@table @option
7848@item -h
7849@itemx --help
7850Print a summary of the command-line options to Bison and exit.
bfa74976 7851
89cab50d
AD
7852@item -V
7853@itemx --version
7854Print the version number of Bison and exit.
bfa74976 7855
f7ab6a50
PE
7856@item --print-localedir
7857Print the name of the directory containing locale-dependent data.
7858
a0de5091
JD
7859@item --print-datadir
7860Print the name of the directory containing skeletons and XSLT.
7861
89cab50d
AD
7862@item -y
7863@itemx --yacc
54662697
PE
7864Act more like the traditional Yacc command. This can cause
7865different diagnostics to be generated, and may change behavior in
7866other minor ways. Most importantly, imitate Yacc's output
7867file name conventions, so that the parser output file is called
89cab50d 7868@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7869@file{y.tab.h}.
7870Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7871statements in addition to an @code{enum} to associate token numbers with token
7872names.
7873Thus, the following shell script can substitute for Yacc, and the Bison
7874distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7875
89cab50d 7876@example
397ec073 7877#! /bin/sh
26e06a21 7878bison -y "$@@"
89cab50d 7879@end example
54662697
PE
7880
7881The @option{-y}/@option{--yacc} option is intended for use with
7882traditional Yacc grammars. If your grammar uses a Bison extension
7883like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7884this option is specified.
7885
1d5b3c08
JD
7886@item -W [@var{category}]
7887@itemx --warnings[=@var{category}]
118d4978
AD
7888Output warnings falling in @var{category}. @var{category} can be one
7889of:
7890@table @code
7891@item midrule-values
8e55b3aa
JD
7892Warn about mid-rule values that are set but not used within any of the actions
7893of the parent rule.
7894For example, warn about unused @code{$2} in:
118d4978
AD
7895
7896@example
7897exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7898@end example
7899
8e55b3aa
JD
7900Also warn about mid-rule values that are used but not set.
7901For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7902
7903@example
7904 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7905@end example
7906
7907These warnings are not enabled by default since they sometimes prove to
7908be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7909@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7910
7911
7912@item yacc
7913Incompatibilities with @acronym{POSIX} Yacc.
7914
7915@item all
8e55b3aa 7916All the warnings.
118d4978 7917@item none
8e55b3aa 7918Turn off all the warnings.
118d4978 7919@item error
8e55b3aa 7920Treat warnings as errors.
118d4978
AD
7921@end table
7922
7923A category can be turned off by prefixing its name with @samp{no-}. For
7924instance, @option{-Wno-syntax} will hide the warnings about unused
7925variables.
89cab50d
AD
7926@end table
7927
7928@noindent
7929Tuning the parser:
7930
7931@table @option
7932@item -t
7933@itemx --debug
4947ebdb
PE
7934In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7935already defined, so that the debugging facilities are compiled.
ec3bc396 7936@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7937
58697c6d
AD
7938@item -D @var{name}[=@var{value}]
7939@itemx --define=@var{name}[=@var{value}]
7940Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7941Summary, ,%define}).
7942
0e021770
PE
7943@item -L @var{language}
7944@itemx --language=@var{language}
7945Specify the programming language for the generated parser, as if
7946@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7947Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7948@var{language} is case-insensitive.
0e021770 7949
ed4d67dc
JD
7950This option is experimental and its effect may be modified in future
7951releases.
7952
89cab50d 7953@item --locations
d8988b2f 7954Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7955
7956@item -p @var{prefix}
7957@itemx --name-prefix=@var{prefix}
02975b9a 7958Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7959@xref{Decl Summary}.
bfa74976
RS
7960
7961@item -l
7962@itemx --no-lines
7963Don't put any @code{#line} preprocessor commands in the parser file.
7964Ordinarily Bison puts them in the parser file so that the C compiler
7965and debuggers will associate errors with your source file, the
7966grammar file. This option causes them to associate errors with the
95e742f7 7967parser file, treating it as an independent source file in its own right.
bfa74976 7968
e6e704dc
JD
7969@item -S @var{file}
7970@itemx --skeleton=@var{file}
a7867f53 7971Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7972(@pxref{Decl Summary, , Bison Declaration Summary}).
7973
ed4d67dc
JD
7974@c You probably don't need this option unless you are developing Bison.
7975@c You should use @option{--language} if you want to specify the skeleton for a
7976@c different language, because it is clearer and because it will always
7977@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 7978
a7867f53
JD
7979If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7980file in the Bison installation directory.
7981If it does, @var{file} is an absolute file name or a file name relative to the
7982current working directory.
7983This is similar to how most shells resolve commands.
7984
89cab50d
AD
7985@item -k
7986@itemx --token-table
d8988b2f 7987Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7988@end table
bfa74976 7989
89cab50d
AD
7990@noindent
7991Adjust the output:
bfa74976 7992
89cab50d 7993@table @option
8e55b3aa 7994@item --defines[=@var{file}]
d8988b2f 7995Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7996file containing macro definitions for the token type names defined in
4bfd5e4e 7997the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7998
8e55b3aa
JD
7999@item -d
8000This is the same as @code{--defines} except @code{-d} does not accept a
8001@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8002with other short options.
342b8b6e 8003
89cab50d
AD
8004@item -b @var{file-prefix}
8005@itemx --file-prefix=@var{prefix}
9c437126 8006Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8007for all Bison output file names. @xref{Decl Summary}.
bfa74976 8008
ec3bc396
AD
8009@item -r @var{things}
8010@itemx --report=@var{things}
8011Write an extra output file containing verbose description of the comma
8012separated list of @var{things} among:
8013
8014@table @code
8015@item state
8016Description of the grammar, conflicts (resolved and unresolved), and
c827f760 8017@acronym{LALR} automaton.
ec3bc396 8018
742e4900 8019@item lookahead
ec3bc396 8020Implies @code{state} and augments the description of the automaton with
742e4900 8021each rule's lookahead set.
ec3bc396
AD
8022
8023@item itemset
8024Implies @code{state} and augments the description of the automaton with
8025the full set of items for each state, instead of its core only.
8026@end table
8027
1bb2bd75
JD
8028@item --report-file=@var{file}
8029Specify the @var{file} for the verbose description.
8030
bfa74976
RS
8031@item -v
8032@itemx --verbose
9c437126 8033Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8034file containing verbose descriptions of the grammar and
72d2299c 8035parser. @xref{Decl Summary}.
bfa74976 8036
fa4d969f
PE
8037@item -o @var{file}
8038@itemx --output=@var{file}
8039Specify the @var{file} for the parser file.
bfa74976 8040
fa4d969f 8041The other output files' names are constructed from @var{file} as
d8988b2f 8042described under the @samp{-v} and @samp{-d} options.
342b8b6e 8043
a7c09cba 8044@item -g [@var{file}]
8e55b3aa 8045@itemx --graph[=@var{file}]
35fe0834
PE
8046Output a graphical representation of the @acronym{LALR}(1) grammar
8047automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8048@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8049@code{@var{file}} is optional.
8050If omitted and the grammar file is @file{foo.y}, the output file will be
8051@file{foo.dot}.
59da312b 8052
a7c09cba 8053@item -x [@var{file}]
8e55b3aa 8054@itemx --xml[=@var{file}]
59da312b 8055Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 8056@code{@var{file}} is optional.
59da312b
JD
8057If omitted and the grammar file is @file{foo.y}, the output file will be
8058@file{foo.xml}.
8059(The current XML schema is experimental and may evolve.
8060More user feedback will help to stabilize it.)
bfa74976
RS
8061@end table
8062
342b8b6e 8063@node Option Cross Key
bfa74976
RS
8064@section Option Cross Key
8065
8066Here is a list of options, alphabetized by long option, to help you find
8067the corresponding short option.
8068
a7c09cba
DJ
8069@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
8070@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8071@include cross-options.texi
aa08666d 8072@end multitable
bfa74976 8073
93dd49ab
PE
8074@node Yacc Library
8075@section Yacc Library
8076
8077The Yacc library contains default implementations of the
8078@code{yyerror} and @code{main} functions. These default
8079implementations are normally not useful, but @acronym{POSIX} requires
8080them. To use the Yacc library, link your program with the
8081@option{-ly} option. Note that Bison's implementation of the Yacc
8082library is distributed under the terms of the @acronym{GNU} General
8083Public License (@pxref{Copying}).
8084
8085If you use the Yacc library's @code{yyerror} function, you should
8086declare @code{yyerror} as follows:
8087
8088@example
8089int yyerror (char const *);
8090@end example
8091
8092Bison ignores the @code{int} value returned by this @code{yyerror}.
8093If you use the Yacc library's @code{main} function, your
8094@code{yyparse} function should have the following type signature:
8095
8096@example
8097int yyparse (void);
8098@end example
8099
12545799
AD
8100@c ================================================= C++ Bison
8101
8405b70c
PB
8102@node Other Languages
8103@chapter Parsers Written In Other Languages
12545799
AD
8104
8105@menu
8106* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8107* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8108@end menu
8109
8110@node C++ Parsers
8111@section C++ Parsers
8112
8113@menu
8114* C++ Bison Interface:: Asking for C++ parser generation
8115* C++ Semantic Values:: %union vs. C++
8116* C++ Location Values:: The position and location classes
8117* C++ Parser Interface:: Instantiating and running the parser
8118* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8119* A Complete C++ Example:: Demonstrating their use
12545799
AD
8120@end menu
8121
8122@node C++ Bison Interface
8123@subsection C++ Bison Interface
ed4d67dc 8124@c - %skeleton "lalr1.cc"
12545799
AD
8125@c - Always pure
8126@c - initial action
8127
ed4d67dc
JD
8128The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8129@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8130@option{--skeleton=lalr1.c}.
e6e704dc 8131@xref{Decl Summary}.
0e021770 8132
793fbca5
JD
8133When run, @command{bison} will create several entities in the @samp{yy}
8134namespace.
8135@findex %define namespace
8136Use the @samp{%define namespace} directive to change the namespace name, see
8137@ref{Decl Summary}.
8138The various classes are generated in the following files:
aa08666d 8139
12545799
AD
8140@table @file
8141@item position.hh
8142@itemx location.hh
8143The definition of the classes @code{position} and @code{location},
8144used for location tracking. @xref{C++ Location Values}.
8145
8146@item stack.hh
8147An auxiliary class @code{stack} used by the parser.
8148
fa4d969f
PE
8149@item @var{file}.hh
8150@itemx @var{file}.cc
cd8b5791
AD
8151(Assuming the extension of the input file was @samp{.yy}.) The
8152declaration and implementation of the C++ parser class. The basename
8153and extension of these two files follow the same rules as with regular C
8154parsers (@pxref{Invocation}).
12545799 8155
cd8b5791
AD
8156The header is @emph{mandatory}; you must either pass
8157@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8158@samp{%defines} directive.
8159@end table
8160
8161All these files are documented using Doxygen; run @command{doxygen}
8162for a complete and accurate documentation.
8163
8164@node C++ Semantic Values
8165@subsection C++ Semantic Values
8166@c - No objects in unions
178e123e 8167@c - YYSTYPE
12545799
AD
8168@c - Printer and destructor
8169
8170The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8171Collection of Value Types}. In particular it produces a genuine
8172@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8173within pseudo-unions (similar to Boost variants) might be implemented to
8174alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8175@itemize @minus
8176@item
fb9712a9
AD
8177The type @code{YYSTYPE} is defined but its use is discouraged: rather
8178you should refer to the parser's encapsulated type
8179@code{yy::parser::semantic_type}.
12545799
AD
8180@item
8181Non POD (Plain Old Data) types cannot be used. C++ forbids any
8182instance of classes with constructors in unions: only @emph{pointers}
8183to such objects are allowed.
8184@end itemize
8185
8186Because objects have to be stored via pointers, memory is not
8187reclaimed automatically: using the @code{%destructor} directive is the
8188only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8189Symbols}.
8190
8191
8192@node C++ Location Values
8193@subsection C++ Location Values
8194@c - %locations
8195@c - class Position
8196@c - class Location
16dc6a9e 8197@c - %define filename_type "const symbol::Symbol"
12545799
AD
8198
8199When the directive @code{%locations} is used, the C++ parser supports
8200location tracking, see @ref{Locations, , Locations Overview}. Two
8201auxiliary classes define a @code{position}, a single point in a file,
8202and a @code{location}, a range composed of a pair of
8203@code{position}s (possibly spanning several files).
8204
fa4d969f 8205@deftypemethod {position} {std::string*} file
12545799
AD
8206The name of the file. It will always be handled as a pointer, the
8207parser will never duplicate nor deallocate it. As an experimental
8208feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8209filename_type "@var{type}"}.
12545799
AD
8210@end deftypemethod
8211
8212@deftypemethod {position} {unsigned int} line
8213The line, starting at 1.
8214@end deftypemethod
8215
8216@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8217Advance by @var{height} lines, resetting the column number.
8218@end deftypemethod
8219
8220@deftypemethod {position} {unsigned int} column
8221The column, starting at 0.
8222@end deftypemethod
8223
8224@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8225Advance by @var{width} columns, without changing the line number.
8226@end deftypemethod
8227
8228@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8229@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8230@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8231@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8232Various forms of syntactic sugar for @code{columns}.
8233@end deftypemethod
8234
8235@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8236Report @var{p} on @var{o} like this:
fa4d969f
PE
8237@samp{@var{file}:@var{line}.@var{column}}, or
8238@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8239@end deftypemethod
8240
8241@deftypemethod {location} {position} begin
8242@deftypemethodx {location} {position} end
8243The first, inclusive, position of the range, and the first beyond.
8244@end deftypemethod
8245
8246@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8247@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8248Advance the @code{end} position.
8249@end deftypemethod
8250
8251@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8252@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8253@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8254Various forms of syntactic sugar.
8255@end deftypemethod
8256
8257@deftypemethod {location} {void} step ()
8258Move @code{begin} onto @code{end}.
8259@end deftypemethod
8260
8261
8262@node C++ Parser Interface
8263@subsection C++ Parser Interface
8264@c - define parser_class_name
8265@c - Ctor
8266@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8267@c debug_stream.
8268@c - Reporting errors
8269
8270The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8271declare and define the parser class in the namespace @code{yy}. The
8272class name defaults to @code{parser}, but may be changed using
16dc6a9e 8273@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8274this class is detailed below. It can be extended using the
12545799
AD
8275@code{%parse-param} feature: its semantics is slightly changed since
8276it describes an additional member of the parser class, and an
8277additional argument for its constructor.
8278
8a0adb01
AD
8279@defcv {Type} {parser} {semantic_value_type}
8280@defcvx {Type} {parser} {location_value_type}
12545799 8281The types for semantics value and locations.
8a0adb01 8282@end defcv
12545799
AD
8283
8284@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8285Build a new parser object. There are no arguments by default, unless
8286@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8287@end deftypemethod
8288
8289@deftypemethod {parser} {int} parse ()
8290Run the syntactic analysis, and return 0 on success, 1 otherwise.
8291@end deftypemethod
8292
8293@deftypemethod {parser} {std::ostream&} debug_stream ()
8294@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8295Get or set the stream used for tracing the parsing. It defaults to
8296@code{std::cerr}.
8297@end deftypemethod
8298
8299@deftypemethod {parser} {debug_level_type} debug_level ()
8300@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8301Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8302or nonzero, full tracing.
12545799
AD
8303@end deftypemethod
8304
8305@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8306The definition for this member function must be supplied by the user:
8307the parser uses it to report a parser error occurring at @var{l},
8308described by @var{m}.
8309@end deftypemethod
8310
8311
8312@node C++ Scanner Interface
8313@subsection C++ Scanner Interface
8314@c - prefix for yylex.
8315@c - Pure interface to yylex
8316@c - %lex-param
8317
8318The parser invokes the scanner by calling @code{yylex}. Contrary to C
8319parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8320@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8321
8322@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8323Return the next token. Its type is the return value, its semantic
8324value and location being @var{yylval} and @var{yylloc}. Invocations of
8325@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8326@end deftypemethod
8327
8328
8329@node A Complete C++ Example
8405b70c 8330@subsection A Complete C++ Example
12545799
AD
8331
8332This section demonstrates the use of a C++ parser with a simple but
8333complete example. This example should be available on your system,
8334ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8335focuses on the use of Bison, therefore the design of the various C++
8336classes is very naive: no accessors, no encapsulation of members etc.
8337We will use a Lex scanner, and more precisely, a Flex scanner, to
8338demonstrate the various interaction. A hand written scanner is
8339actually easier to interface with.
8340
8341@menu
8342* Calc++ --- C++ Calculator:: The specifications
8343* Calc++ Parsing Driver:: An active parsing context
8344* Calc++ Parser:: A parser class
8345* Calc++ Scanner:: A pure C++ Flex scanner
8346* Calc++ Top Level:: Conducting the band
8347@end menu
8348
8349@node Calc++ --- C++ Calculator
8405b70c 8350@subsubsection Calc++ --- C++ Calculator
12545799
AD
8351
8352Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8353expression, possibly preceded by variable assignments. An
12545799
AD
8354environment containing possibly predefined variables such as
8355@code{one} and @code{two}, is exchanged with the parser. An example
8356of valid input follows.
8357
8358@example
8359three := 3
8360seven := one + two * three
8361seven * seven
8362@end example
8363
8364@node Calc++ Parsing Driver
8405b70c 8365@subsubsection Calc++ Parsing Driver
12545799
AD
8366@c - An env
8367@c - A place to store error messages
8368@c - A place for the result
8369
8370To support a pure interface with the parser (and the scanner) the
8371technique of the ``parsing context'' is convenient: a structure
8372containing all the data to exchange. Since, in addition to simply
8373launch the parsing, there are several auxiliary tasks to execute (open
8374the file for parsing, instantiate the parser etc.), we recommend
8375transforming the simple parsing context structure into a fully blown
8376@dfn{parsing driver} class.
8377
8378The declaration of this driver class, @file{calc++-driver.hh}, is as
8379follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8380required standard library components, and the declaration of the parser
8381class.
12545799 8382
1c59e0a1 8383@comment file: calc++-driver.hh
12545799
AD
8384@example
8385#ifndef CALCXX_DRIVER_HH
8386# define CALCXX_DRIVER_HH
8387# include <string>
8388# include <map>
fb9712a9 8389# include "calc++-parser.hh"
12545799
AD
8390@end example
8391
12545799
AD
8392
8393@noindent
8394Then comes the declaration of the scanning function. Flex expects
8395the signature of @code{yylex} to be defined in the macro
8396@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8397factor both as follows.
1c59e0a1
AD
8398
8399@comment file: calc++-driver.hh
12545799 8400@example
3dc5e96b
PE
8401// Tell Flex the lexer's prototype ...
8402# define YY_DECL \
c095d689
AD
8403 yy::calcxx_parser::token_type \
8404 yylex (yy::calcxx_parser::semantic_type* yylval, \
8405 yy::calcxx_parser::location_type* yylloc, \
8406 calcxx_driver& driver)
12545799
AD
8407// ... and declare it for the parser's sake.
8408YY_DECL;
8409@end example
8410
8411@noindent
8412The @code{calcxx_driver} class is then declared with its most obvious
8413members.
8414
1c59e0a1 8415@comment file: calc++-driver.hh
12545799
AD
8416@example
8417// Conducting the whole scanning and parsing of Calc++.
8418class calcxx_driver
8419@{
8420public:
8421 calcxx_driver ();
8422 virtual ~calcxx_driver ();
8423
8424 std::map<std::string, int> variables;
8425
8426 int result;
8427@end example
8428
8429@noindent
8430To encapsulate the coordination with the Flex scanner, it is useful to
8431have two members function to open and close the scanning phase.
12545799 8432
1c59e0a1 8433@comment file: calc++-driver.hh
12545799
AD
8434@example
8435 // Handling the scanner.
8436 void scan_begin ();
8437 void scan_end ();
8438 bool trace_scanning;
8439@end example
8440
8441@noindent
8442Similarly for the parser itself.
8443
1c59e0a1 8444@comment file: calc++-driver.hh
12545799 8445@example
bb32f4f2
AD
8446 // Run the parser. Return 0 on success.
8447 int parse (const std::string& f);
12545799
AD
8448 std::string file;
8449 bool trace_parsing;
8450@end example
8451
8452@noindent
8453To demonstrate pure handling of parse errors, instead of simply
8454dumping them on the standard error output, we will pass them to the
8455compiler driver using the following two member functions. Finally, we
8456close the class declaration and CPP guard.
8457
1c59e0a1 8458@comment file: calc++-driver.hh
12545799
AD
8459@example
8460 // Error handling.
8461 void error (const yy::location& l, const std::string& m);
8462 void error (const std::string& m);
8463@};
8464#endif // ! CALCXX_DRIVER_HH
8465@end example
8466
8467The implementation of the driver is straightforward. The @code{parse}
8468member function deserves some attention. The @code{error} functions
8469are simple stubs, they should actually register the located error
8470messages and set error state.
8471
1c59e0a1 8472@comment file: calc++-driver.cc
12545799
AD
8473@example
8474#include "calc++-driver.hh"
8475#include "calc++-parser.hh"
8476
8477calcxx_driver::calcxx_driver ()
8478 : trace_scanning (false), trace_parsing (false)
8479@{
8480 variables["one"] = 1;
8481 variables["two"] = 2;
8482@}
8483
8484calcxx_driver::~calcxx_driver ()
8485@{
8486@}
8487
bb32f4f2 8488int
12545799
AD
8489calcxx_driver::parse (const std::string &f)
8490@{
8491 file = f;
8492 scan_begin ();
8493 yy::calcxx_parser parser (*this);
8494 parser.set_debug_level (trace_parsing);
bb32f4f2 8495 int res = parser.parse ();
12545799 8496 scan_end ();
bb32f4f2 8497 return res;
12545799
AD
8498@}
8499
8500void
8501calcxx_driver::error (const yy::location& l, const std::string& m)
8502@{
8503 std::cerr << l << ": " << m << std::endl;
8504@}
8505
8506void
8507calcxx_driver::error (const std::string& m)
8508@{
8509 std::cerr << m << std::endl;
8510@}
8511@end example
8512
8513@node Calc++ Parser
8405b70c 8514@subsubsection Calc++ Parser
12545799 8515
b50d2359
AD
8516The parser definition file @file{calc++-parser.yy} starts by asking for
8517the C++ LALR(1) skeleton, the creation of the parser header file, and
8518specifies the name of the parser class. Because the C++ skeleton
8519changed several times, it is safer to require the version you designed
8520the grammar for.
1c59e0a1
AD
8521
8522@comment file: calc++-parser.yy
12545799 8523@example
ed4d67dc 8524%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8525%require "@value{VERSION}"
12545799 8526%defines
16dc6a9e 8527%define parser_class_name "calcxx_parser"
fb9712a9
AD
8528@end example
8529
8530@noindent
16dc6a9e 8531@findex %code requires
fb9712a9
AD
8532Then come the declarations/inclusions needed to define the
8533@code{%union}. Because the parser uses the parsing driver and
8534reciprocally, both cannot include the header of the other. Because the
8535driver's header needs detailed knowledge about the parser class (in
8536particular its inner types), it is the parser's header which will simply
8537use a forward declaration of the driver.
148d66d8 8538@xref{Decl Summary, ,%code}.
fb9712a9
AD
8539
8540@comment file: calc++-parser.yy
8541@example
16dc6a9e 8542%code requires @{
12545799 8543# include <string>
fb9712a9 8544class calcxx_driver;
9bc0dd67 8545@}
12545799
AD
8546@end example
8547
8548@noindent
8549The driver is passed by reference to the parser and to the scanner.
8550This provides a simple but effective pure interface, not relying on
8551global variables.
8552
1c59e0a1 8553@comment file: calc++-parser.yy
12545799
AD
8554@example
8555// The parsing context.
8556%parse-param @{ calcxx_driver& driver @}
8557%lex-param @{ calcxx_driver& driver @}
8558@end example
8559
8560@noindent
8561Then we request the location tracking feature, and initialize the
8562first location's file name. Afterwards new locations are computed
8563relatively to the previous locations: the file name will be
8564automatically propagated.
8565
1c59e0a1 8566@comment file: calc++-parser.yy
12545799
AD
8567@example
8568%locations
8569%initial-action
8570@{
8571 // Initialize the initial location.
b47dbebe 8572 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8573@};
8574@end example
8575
8576@noindent
8577Use the two following directives to enable parser tracing and verbose
8578error messages.
8579
1c59e0a1 8580@comment file: calc++-parser.yy
12545799 8581@example
fa819509 8582%define parse.trace
12545799
AD
8583%error-verbose
8584@end example
8585
8586@noindent
8587Semantic values cannot use ``real'' objects, but only pointers to
8588them.
8589
1c59e0a1 8590@comment file: calc++-parser.yy
12545799
AD
8591@example
8592// Symbols.
8593%union
8594@{
8595 int ival;
8596 std::string *sval;
8597@};
8598@end example
8599
fb9712a9 8600@noindent
136a0f76
PB
8601@findex %code
8602The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8603@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8604
8605@comment file: calc++-parser.yy
8606@example
136a0f76 8607%code @{
fb9712a9 8608# include "calc++-driver.hh"
34f98f46 8609@}
fb9712a9
AD
8610@end example
8611
8612
12545799
AD
8613@noindent
8614The token numbered as 0 corresponds to end of file; the following line
8615allows for nicer error messages referring to ``end of file'' instead
8616of ``$end''. Similarly user friendly named are provided for each
8617symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8618avoid name clashes.
8619
1c59e0a1 8620@comment file: calc++-parser.yy
12545799 8621@example
fb9712a9
AD
8622%token END 0 "end of file"
8623%token ASSIGN ":="
8624%token <sval> IDENTIFIER "identifier"
8625%token <ival> NUMBER "number"
a8c2e813 8626%type <ival> exp
12545799
AD
8627@end example
8628
8629@noindent
8630To enable memory deallocation during error recovery, use
8631@code{%destructor}.
8632
287c78f6 8633@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8634@comment file: calc++-parser.yy
12545799
AD
8635@example
8636%printer @{ debug_stream () << *$$; @} "identifier"
8637%destructor @{ delete $$; @} "identifier"
8638
a8c2e813 8639%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8640@end example
8641
8642@noindent
8643The grammar itself is straightforward.
8644
1c59e0a1 8645@comment file: calc++-parser.yy
12545799
AD
8646@example
8647%%
8648%start unit;
8649unit: assignments exp @{ driver.result = $2; @};
8650
8651assignments: assignments assignment @{@}
9d9b8b70 8652 | /* Nothing. */ @{@};
12545799 8653
3dc5e96b
PE
8654assignment:
8655 "identifier" ":=" exp
8656 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8657
8658%left '+' '-';
8659%left '*' '/';
8660exp: exp '+' exp @{ $$ = $1 + $3; @}
8661 | exp '-' exp @{ $$ = $1 - $3; @}
8662 | exp '*' exp @{ $$ = $1 * $3; @}
8663 | exp '/' exp @{ $$ = $1 / $3; @}
1a7a65f9 8664 | '(' exp ')' @{ $$ = $2; @}
3dc5e96b 8665 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8666 | "number" @{ $$ = $1; @};
12545799
AD
8667%%
8668@end example
8669
8670@noindent
8671Finally the @code{error} member function registers the errors to the
8672driver.
8673
1c59e0a1 8674@comment file: calc++-parser.yy
12545799
AD
8675@example
8676void
1c59e0a1
AD
8677yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8678 const std::string& m)
12545799
AD
8679@{
8680 driver.error (l, m);
8681@}
8682@end example
8683
8684@node Calc++ Scanner
8405b70c 8685@subsubsection Calc++ Scanner
12545799
AD
8686
8687The Flex scanner first includes the driver declaration, then the
8688parser's to get the set of defined tokens.
8689
1c59e0a1 8690@comment file: calc++-scanner.ll
12545799
AD
8691@example
8692%@{ /* -*- C++ -*- */
04098407
PE
8693# include <cstdlib>
8694# include <errno.h>
8695# include <limits.h>
12545799
AD
8696# include <string>
8697# include "calc++-driver.hh"
8698# include "calc++-parser.hh"
eaea13f5
PE
8699
8700/* Work around an incompatibility in flex (at least versions
8701 2.5.31 through 2.5.33): it generates code that does
8702 not conform to C89. See Debian bug 333231
8703 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8704# undef yywrap
8705# define yywrap() 1
eaea13f5 8706
c095d689
AD
8707/* By default yylex returns int, we use token_type.
8708 Unfortunately yyterminate by default returns 0, which is
8709 not of token_type. */
8c5b881d 8710#define yyterminate() return token::END
12545799
AD
8711%@}
8712@end example
8713
8714@noindent
8715Because there is no @code{#include}-like feature we don't need
8716@code{yywrap}, we don't need @code{unput} either, and we parse an
8717actual file, this is not an interactive session with the user.
8718Finally we enable the scanner tracing features.
8719
1c59e0a1 8720@comment file: calc++-scanner.ll
12545799
AD
8721@example
8722%option noyywrap nounput batch debug
8723@end example
8724
8725@noindent
8726Abbreviations allow for more readable rules.
8727
1c59e0a1 8728@comment file: calc++-scanner.ll
12545799
AD
8729@example
8730id [a-zA-Z][a-zA-Z_0-9]*
8731int [0-9]+
8732blank [ \t]
8733@end example
8734
8735@noindent
9d9b8b70 8736The following paragraph suffices to track locations accurately. Each
12545799
AD
8737time @code{yylex} is invoked, the begin position is moved onto the end
8738position. Then when a pattern is matched, the end position is
8739advanced of its width. In case it matched ends of lines, the end
8740cursor is adjusted, and each time blanks are matched, the begin cursor
8741is moved onto the end cursor to effectively ignore the blanks
8742preceding tokens. Comments would be treated equally.
8743
1c59e0a1 8744@comment file: calc++-scanner.ll
12545799 8745@example
828c373b
AD
8746%@{
8747# define YY_USER_ACTION yylloc->columns (yyleng);
8748%@}
12545799
AD
8749%%
8750%@{
8751 yylloc->step ();
12545799
AD
8752%@}
8753@{blank@}+ yylloc->step ();
8754[\n]+ yylloc->lines (yyleng); yylloc->step ();
8755@end example
8756
8757@noindent
fb9712a9
AD
8758The rules are simple, just note the use of the driver to report errors.
8759It is convenient to use a typedef to shorten
8760@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8761@code{token::identifier} for instance.
12545799 8762
1c59e0a1 8763@comment file: calc++-scanner.ll
12545799 8764@example
fb9712a9
AD
8765%@{
8766 typedef yy::calcxx_parser::token token;
8767%@}
8c5b881d 8768 /* Convert ints to the actual type of tokens. */
1a7a65f9 8769[-+*/()] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8770":=" return token::ASSIGN;
04098407
PE
8771@{int@} @{
8772 errno = 0;
8773 long n = strtol (yytext, NULL, 10);
8774 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8775 driver.error (*yylloc, "integer is out of range");
8776 yylval->ival = n;
fb9712a9 8777 return token::NUMBER;
04098407 8778@}
fb9712a9 8779@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8780. driver.error (*yylloc, "invalid character");
8781%%
8782@end example
8783
8784@noindent
8785Finally, because the scanner related driver's member function depend
8786on the scanner's data, it is simpler to implement them in this file.
8787
1c59e0a1 8788@comment file: calc++-scanner.ll
12545799
AD
8789@example
8790void
8791calcxx_driver::scan_begin ()
8792@{
8793 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8794 if (file == "-")
8795 yyin = stdin;
8796 else if (!(yyin = fopen (file.c_str (), "r")))
8797 @{
8798 error (std::string ("cannot open ") + file);
8799 exit (1);
8800 @}
12545799
AD
8801@}
8802
8803void
8804calcxx_driver::scan_end ()
8805@{
8806 fclose (yyin);
8807@}
8808@end example
8809
8810@node Calc++ Top Level
8405b70c 8811@subsubsection Calc++ Top Level
12545799
AD
8812
8813The top level file, @file{calc++.cc}, poses no problem.
8814
1c59e0a1 8815@comment file: calc++.cc
12545799
AD
8816@example
8817#include <iostream>
8818#include "calc++-driver.hh"
8819
8820int
fa4d969f 8821main (int argc, char *argv[])
12545799 8822@{
414c76a4 8823 int res = 0;
12545799
AD
8824 calcxx_driver driver;
8825 for (++argv; argv[0]; ++argv)
8826 if (*argv == std::string ("-p"))
8827 driver.trace_parsing = true;
8828 else if (*argv == std::string ("-s"))
8829 driver.trace_scanning = true;
bb32f4f2
AD
8830 else if (!driver.parse (*argv))
8831 std::cout << driver.result << std::endl;
414c76a4
AD
8832 else
8833 res = 1;
8834 return res;
12545799
AD
8835@}
8836@end example
8837
8405b70c
PB
8838@node Java Parsers
8839@section Java Parsers
8840
8841@menu
f5f419de
DJ
8842* Java Bison Interface:: Asking for Java parser generation
8843* Java Semantic Values:: %type and %token vs. Java
8844* Java Location Values:: The position and location classes
8845* Java Parser Interface:: Instantiating and running the parser
8846* Java Scanner Interface:: Specifying the scanner for the parser
8847* Java Action Features:: Special features for use in actions
8848* Java Differences:: Differences between C/C++ and Java Grammars
8849* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8850@end menu
8851
8852@node Java Bison Interface
8853@subsection Java Bison Interface
8854@c - %language "Java"
8405b70c 8855
59da312b
JD
8856(The current Java interface is experimental and may evolve.
8857More user feedback will help to stabilize it.)
8858
e254a580
DJ
8859The Java parser skeletons are selected using the @code{%language "Java"}
8860directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8861
e254a580
DJ
8862@c FIXME: Documented bug.
8863When generating a Java parser, @code{bison @var{basename}.y} will create
8864a single Java source file named @file{@var{basename}.java}. Using an
8865input file without a @file{.y} suffix is currently broken. The basename
8866of the output file can be changed by the @code{%file-prefix} directive
8867or the @option{-p}/@option{--name-prefix} option. The entire output file
8868name can be changed by the @code{%output} directive or the
8869@option{-o}/@option{--output} option. The output file contains a single
8870class for the parser.
8405b70c 8871
e254a580 8872You can create documentation for generated parsers using Javadoc.
8405b70c 8873
e254a580
DJ
8874Contrary to C parsers, Java parsers do not use global variables; the
8875state of the parser is always local to an instance of the parser class.
8876Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8877and @code{%define api.pure} directives does not do anything when used in
8878Java.
8405b70c 8879
e254a580
DJ
8880Push parsers are currently unsupported in Java and @code{%define
8881api.push_pull} have no effect.
01b477c6 8882
e254a580
DJ
8883@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8884@code{glr-parser} directive.
8885
8886No header file can be generated for Java parsers. Do not use the
8887@code{%defines} directive or the @option{-d}/@option{--defines} options.
8888
8889@c FIXME: Possible code change.
fa819509
AD
8890Currently, support for tracing is always compiled
8891in. Thus the @samp{%define parse.trace} and @samp{%token-table}
8892directives and the
e254a580
DJ
8893@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8894options have no effect. This may change in the future to eliminate
fa819509
AD
8895unused code in the generated parser, so use @samp{%define parse.trace}
8896explicitly
1979121c 8897if needed. Also, in the future the
e254a580
DJ
8898@code{%token-table} directive might enable a public interface to
8899access the token names and codes.
8405b70c 8900
09ccae9b
DJ
8901Getting a ``code too large'' error from the Java compiler means the code
8902hit the 64KB bytecode per method limination of the Java class file.
8903Try reducing the amount of code in actions and static initializers;
8904otherwise, report a bug so that the parser skeleton will be improved.
8905
8906
8405b70c
PB
8907@node Java Semantic Values
8908@subsection Java Semantic Values
8909@c - No %union, specify type in %type/%token.
8910@c - YYSTYPE
8911@c - Printer and destructor
8912
8913There is no @code{%union} directive in Java parsers. Instead, the
8914semantic values' types (class names) should be specified in the
8915@code{%type} or @code{%token} directive:
8916
8917@example
8918%type <Expression> expr assignment_expr term factor
8919%type <Integer> number
8920@end example
8921
8922By default, the semantic stack is declared to have @code{Object} members,
8923which means that the class types you specify can be of any class.
8924To improve the type safety of the parser, you can declare the common
e254a580
DJ
8925superclass of all the semantic values using the @code{%define stype}
8926directive. For example, after the following declaration:
8405b70c
PB
8927
8928@example
e254a580 8929%define stype "ASTNode"
8405b70c
PB
8930@end example
8931
8932@noindent
8933any @code{%type} or @code{%token} specifying a semantic type which
8934is not a subclass of ASTNode, will cause a compile-time error.
8935
e254a580 8936@c FIXME: Documented bug.
8405b70c
PB
8937Types used in the directives may be qualified with a package name.
8938Primitive data types are accepted for Java version 1.5 or later. Note
8939that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8940Generic types may not be used; this is due to a limitation in the
8941implementation of Bison, and may change in future releases.
8405b70c
PB
8942
8943Java parsers do not support @code{%destructor}, since the language
8944adopts garbage collection. The parser will try to hold references
8945to semantic values for as little time as needed.
8946
8947Java parsers do not support @code{%printer}, as @code{toString()}
8948can be used to print the semantic values. This however may change
8949(in a backwards-compatible way) in future versions of Bison.
8950
8951
8952@node Java Location Values
8953@subsection Java Location Values
8954@c - %locations
8955@c - class Position
8956@c - class Location
8957
8958When the directive @code{%locations} is used, the Java parser
8959supports location tracking, see @ref{Locations, , Locations Overview}.
8960An auxiliary user-defined class defines a @dfn{position}, a single point
8961in a file; Bison itself defines a class representing a @dfn{location},
8962a range composed of a pair of positions (possibly spanning several
8963files). The location class is an inner class of the parser; the name
e254a580
DJ
8964is @code{Location} by default, and may also be renamed using
8965@code{%define location_type "@var{class-name}}.
8405b70c
PB
8966
8967The location class treats the position as a completely opaque value.
8968By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8969with @code{%define position_type "@var{class-name}"}. This class must
8970be supplied by the user.
8405b70c
PB
8971
8972
e254a580
DJ
8973@deftypeivar {Location} {Position} begin
8974@deftypeivarx {Location} {Position} end
8405b70c 8975The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8976@end deftypeivar
8977
8978@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 8979Create a @code{Location} denoting an empty range located at a given point.
e254a580 8980@end deftypeop
8405b70c 8981
e254a580
DJ
8982@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8983Create a @code{Location} from the endpoints of the range.
8984@end deftypeop
8985
8986@deftypemethod {Location} {String} toString ()
8405b70c
PB
8987Prints the range represented by the location. For this to work
8988properly, the position class should override the @code{equals} and
8989@code{toString} methods appropriately.
8990@end deftypemethod
8991
8992
8993@node Java Parser Interface
8994@subsection Java Parser Interface
8995@c - define parser_class_name
8996@c - Ctor
8997@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8998@c debug_stream.
8999@c - Reporting errors
9000
e254a580
DJ
9001The name of the generated parser class defaults to @code{YYParser}. The
9002@code{YY} prefix may be changed using the @code{%name-prefix} directive
9003or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9004@code{%define parser_class_name "@var{name}"} to give a custom name to
9005the class. The interface of this class is detailed below.
8405b70c 9006
e254a580
DJ
9007By default, the parser class has package visibility. A declaration
9008@code{%define public} will change to public visibility. Remember that,
9009according to the Java language specification, the name of the @file{.java}
9010file should match the name of the class in this case. Similarly, you can
9011use @code{abstract}, @code{final} and @code{strictfp} with the
9012@code{%define} declaration to add other modifiers to the parser class.
1979121c
DJ
9013A single @code{%define annotations "@var{annotations}"} directive can
9014be used to add any number of annotations to the parser class.
e254a580
DJ
9015
9016The Java package name of the parser class can be specified using the
9017@code{%define package} directive. The superclass and the implemented
9018interfaces of the parser class can be specified with the @code{%define
9019extends} and @code{%define implements} directives.
9020
9021The parser class defines an inner class, @code{Location}, that is used
9022for location tracking (see @ref{Java Location Values}), and a inner
9023interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9024these inner class/interface, and the members described in the interface
9025below, all the other members and fields are preceded with a @code{yy} or
9026@code{YY} prefix to avoid clashes with user code.
9027
e254a580
DJ
9028The parser class can be extended using the @code{%parse-param}
9029directive. Each occurrence of the directive will add a @code{protected
9030final} field to the parser class, and an argument to its constructor,
9031which initialize them automatically.
9032
e254a580
DJ
9033@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9034Build a new parser object with embedded @code{%code lexer}. There are
9035no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9036used.
1979121c
DJ
9037
9038Use @code{%code init} for code added to the start of the constructor
9039body. This is especially useful to initialize superclasses. Use
9040@code{%define init_throws} to specify any uncatch exceptions.
e254a580
DJ
9041@end deftypeop
9042
9043@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9044Build a new parser object using the specified scanner. There are no
9045additional parameters unless @code{%parse-param}s are used.
9046
9047If the scanner is defined by @code{%code lexer}, this constructor is
9048declared @code{protected} and is called automatically with a scanner
9049created with the correct @code{%lex-param}s.
1979121c
DJ
9050
9051Use @code{%code init} for code added to the start of the constructor
9052body. This is especially useful to initialize superclasses. Use
9053@code{%define init_throws} to specify any uncatch exceptions.
e254a580 9054@end deftypeop
8405b70c
PB
9055
9056@deftypemethod {YYParser} {boolean} parse ()
9057Run the syntactic analysis, and return @code{true} on success,
9058@code{false} otherwise.
9059@end deftypemethod
9060
1979121c
DJ
9061@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9062@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9063Get or set the option to produce verbose error messages. These are only
9064available with the @code{%error-verbose} directive, which also turn on
9065verbose error messages.
9066@end deftypemethod
9067
9068@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9069@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9070@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9071Print an error message using the @code{yyerror} method of the scanner
9072instance in use. The @code{Location} and @code{Position} parameters are
9073available only if location tracking is active.
9074@end deftypemethod
9075
01b477c6 9076@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9077During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9078from a syntax error.
9079@xref{Error Recovery}.
8405b70c
PB
9080@end deftypemethod
9081
9082@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9083@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9084Get or set the stream used for tracing the parsing. It defaults to
9085@code{System.err}.
9086@end deftypemethod
9087
9088@deftypemethod {YYParser} {int} getDebugLevel ()
9089@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9090Get or set the tracing level. Currently its value is either 0, no trace,
9091or nonzero, full tracing.
9092@end deftypemethod
9093
1979121c
DJ
9094@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9095@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9096Identify the Bison version and skeleton used to generate this parser.
9097@end deftypecv
9098
8405b70c
PB
9099
9100@node Java Scanner Interface
9101@subsection Java Scanner Interface
01b477c6 9102@c - %code lexer
8405b70c 9103@c - %lex-param
01b477c6 9104@c - Lexer interface
8405b70c 9105
e254a580
DJ
9106There are two possible ways to interface a Bison-generated Java parser
9107with a scanner: the scanner may be defined by @code{%code lexer}, or
9108defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
9109@code{Lexer} inner interface of the parser class. This interface also
9110contain constants for all user-defined token names and the predefined
9111@code{EOF} token.
e254a580
DJ
9112
9113In the first case, the body of the scanner class is placed in
9114@code{%code lexer} blocks. If you want to pass parameters from the
9115parser constructor to the scanner constructor, specify them with
9116@code{%lex-param}; they are passed before @code{%parse-param}s to the
9117constructor.
01b477c6 9118
59c5ac72 9119In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9120which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9121The constructor of the parser object will then accept an object
9122implementing the interface; @code{%lex-param} is not used in this
9123case.
9124
9125In both cases, the scanner has to implement the following methods.
9126
e254a580
DJ
9127@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9128This method is defined by the user to emit an error message. The first
9129parameter is omitted if location tracking is not active. Its type can be
9130changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9131@end deftypemethod
9132
e254a580 9133@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
9134Return the next token. Its type is the return value, its semantic
9135value and location are saved and returned by the ther methods in the
e254a580
DJ
9136interface.
9137
9138Use @code{%define lex_throws} to specify any uncaught exceptions.
9139Default is @code{java.io.IOException}.
8405b70c
PB
9140@end deftypemethod
9141
9142@deftypemethod {Lexer} {Position} getStartPos ()
9143@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9144Return respectively the first position of the last token that
9145@code{yylex} returned, and the first position beyond it. These
9146methods are not needed unless location tracking is active.
8405b70c 9147
e254a580 9148The return type can be changed using @code{%define position_type
8405b70c
PB
9149"@var{class-name}".}
9150@end deftypemethod
9151
9152@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9153Return the semantical value of the last token that yylex returned.
8405b70c 9154
e254a580 9155The return type can be changed using @code{%define stype
8405b70c
PB
9156"@var{class-name}".}
9157@end deftypemethod
9158
9159
e254a580
DJ
9160@node Java Action Features
9161@subsection Special Features for Use in Java Actions
9162
9163The following special constructs can be uses in Java actions.
9164Other analogous C action features are currently unavailable for Java.
9165
9166Use @code{%define throws} to specify any uncaught exceptions from parser
9167actions, and initial actions specified by @code{%initial-action}.
9168
9169@defvar $@var{n}
9170The semantic value for the @var{n}th component of the current rule.
9171This may not be assigned to.
9172@xref{Java Semantic Values}.
9173@end defvar
9174
9175@defvar $<@var{typealt}>@var{n}
9176Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9177@xref{Java Semantic Values}.
9178@end defvar
9179
9180@defvar $$
9181The semantic value for the grouping made by the current rule. As a
9182value, this is in the base type (@code{Object} or as specified by
9183@code{%define stype}) as in not cast to the declared subtype because
9184casts are not allowed on the left-hand side of Java assignments.
9185Use an explicit Java cast if the correct subtype is needed.
9186@xref{Java Semantic Values}.
9187@end defvar
9188
9189@defvar $<@var{typealt}>$
9190Same as @code{$$} since Java always allow assigning to the base type.
9191Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9192for setting the value but there is currently no easy way to distinguish
9193these constructs.
9194@xref{Java Semantic Values}.
9195@end defvar
9196
9197@defvar @@@var{n}
9198The location information of the @var{n}th component of the current rule.
9199This may not be assigned to.
9200@xref{Java Location Values}.
9201@end defvar
9202
9203@defvar @@$
9204The location information of the grouping made by the current rule.
9205@xref{Java Location Values}.
9206@end defvar
9207
9208@deffn {Statement} {return YYABORT;}
9209Return immediately from the parser, indicating failure.
9210@xref{Java Parser Interface}.
9211@end deffn
8405b70c 9212
e254a580
DJ
9213@deffn {Statement} {return YYACCEPT;}
9214Return immediately from the parser, indicating success.
9215@xref{Java Parser Interface}.
9216@end deffn
8405b70c 9217
e254a580 9218@deffn {Statement} {return YYERROR;}
c265fd6b 9219Start error recovery without printing an error message.
e254a580
DJ
9220@xref{Error Recovery}.
9221@end deffn
8405b70c 9222
e254a580 9223@deffn {Statement} {return YYFAIL;}
c265fd6b 9224Print an error message and start error recovery.
e254a580
DJ
9225@xref{Error Recovery}.
9226@end deffn
8405b70c 9227
e254a580
DJ
9228@deftypefn {Function} {boolean} recovering ()
9229Return whether error recovery is being done. In this state, the parser
9230reads token until it reaches a known state, and then restarts normal
9231operation.
9232@xref{Error Recovery}.
9233@end deftypefn
8405b70c 9234
1979121c
DJ
9235@deftypefn {Function} {void} yyerror (String @var{msg})
9236@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
9237@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 9238Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
9239instance in use. The @code{Location} and @code{Position} parameters are
9240available only if location tracking is active.
e254a580 9241@end deftypefn
8405b70c 9242
8405b70c 9243
8405b70c
PB
9244@node Java Differences
9245@subsection Differences between C/C++ and Java Grammars
9246
9247The different structure of the Java language forces several differences
9248between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9249section summarizes these differences.
8405b70c
PB
9250
9251@itemize
9252@item
01b477c6 9253Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9254@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9255macros. Instead, they should be preceded by @code{return} when they
9256appear in an action. The actual definition of these symbols is
8405b70c
PB
9257opaque to the Bison grammar, and it might change in the future. The
9258only meaningful operation that you can do, is to return them.
e254a580 9259See @pxref{Java Action Features}.
8405b70c
PB
9260
9261Note that of these three symbols, only @code{YYACCEPT} and
9262@code{YYABORT} will cause a return from the @code{yyparse}
9263method@footnote{Java parsers include the actions in a separate
9264method than @code{yyparse} in order to have an intuitive syntax that
9265corresponds to these C macros.}.
9266
e254a580
DJ
9267@item
9268Java lacks unions, so @code{%union} has no effect. Instead, semantic
9269values have a common base type: @code{Object} or as specified by
9270@code{%define stype}. Angle backets on @code{%token}, @code{type},
9271@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9272an union. The type of @code{$$}, even with angle brackets, is the base
9273type since Java casts are not allow on the left-hand side of assignments.
9274Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9275left-hand side of assignments. See @pxref{Java Semantic Values} and
9276@pxref{Java Action Features}.
9277
8405b70c
PB
9278@item
9279The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9280@table @asis
9281@item @code{%code imports}
9282blocks are placed at the beginning of the Java source code. They may
9283include copyright notices. For a @code{package} declarations, it is
9284suggested to use @code{%define package} instead.
8405b70c 9285
01b477c6
PB
9286@item unqualified @code{%code}
9287blocks are placed inside the parser class.
9288
9289@item @code{%code lexer}
9290blocks, if specified, should include the implementation of the
9291scanner. If there is no such block, the scanner can be any class
9292that implements the appropriate interface (see @pxref{Java Scanner
9293Interface}).
29553547 9294@end table
8405b70c
PB
9295
9296Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9297In particular, @code{%@{ @dots{} %@}} blocks should not be used
9298and may give an error in future versions of Bison.
9299
01b477c6 9300The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9301be used to define other classes used by the parser @emph{outside}
9302the parser class.
8405b70c
PB
9303@end itemize
9304
e254a580
DJ
9305
9306@node Java Declarations Summary
9307@subsection Java Declarations Summary
9308
9309This summary only include declarations specific to Java or have special
9310meaning when used in a Java parser.
9311
9312@deffn {Directive} {%language "Java"}
9313Generate a Java class for the parser.
9314@end deffn
9315
9316@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9317A parameter for the lexer class defined by @code{%code lexer}
9318@emph{only}, added as parameters to the lexer constructor and the parser
9319constructor that @emph{creates} a lexer. Default is none.
9320@xref{Java Scanner Interface}.
9321@end deffn
9322
9323@deffn {Directive} %name-prefix "@var{prefix}"
9324The prefix of the parser class name @code{@var{prefix}Parser} if
9325@code{%define parser_class_name} is not used. Default is @code{YY}.
9326@xref{Java Bison Interface}.
9327@end deffn
9328
9329@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9330A parameter for the parser class added as parameters to constructor(s)
9331and as fields initialized by the constructor(s). Default is none.
9332@xref{Java Parser Interface}.
9333@end deffn
9334
9335@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9336Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9337@xref{Java Semantic Values}.
9338@end deffn
9339
9340@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9341Declare the type of nonterminals. Note that the angle brackets enclose
9342a Java @emph{type}.
9343@xref{Java Semantic Values}.
9344@end deffn
9345
9346@deffn {Directive} %code @{ @var{code} @dots{} @}
9347Code appended to the inside of the parser class.
9348@xref{Java Differences}.
9349@end deffn
9350
9351@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9352Code inserted just after the @code{package} declaration.
9353@xref{Java Differences}.
9354@end deffn
9355
1979121c
DJ
9356@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
9357Code inserted at the beginning of the parser constructor body.
9358@xref{Java Parser Interface}.
9359@end deffn
9360
e254a580
DJ
9361@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9362Code added to the body of a inner lexer class within the parser class.
9363@xref{Java Scanner Interface}.
9364@end deffn
9365
9366@deffn {Directive} %% @var{code} @dots{}
9367Code (after the second @code{%%}) appended to the end of the file,
9368@emph{outside} the parser class.
9369@xref{Java Differences}.
9370@end deffn
9371
9372@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 9373Not supported. Use @code{%code imports} instead.
e254a580
DJ
9374@xref{Java Differences}.
9375@end deffn
9376
9377@deffn {Directive} {%define abstract}
9378Whether the parser class is declared @code{abstract}. Default is false.
9379@xref{Java Bison Interface}.
9380@end deffn
9381
1979121c
DJ
9382@deffn {Directive} {%define annotations} "@var{annotations}"
9383The Java annotations for the parser class. Default is none.
9384@xref{Java Bison Interface}.
9385@end deffn
9386
e254a580
DJ
9387@deffn {Directive} {%define extends} "@var{superclass}"
9388The superclass of the parser class. Default is none.
9389@xref{Java Bison Interface}.
9390@end deffn
9391
9392@deffn {Directive} {%define final}
9393Whether the parser class is declared @code{final}. Default is false.
9394@xref{Java Bison Interface}.
9395@end deffn
9396
9397@deffn {Directive} {%define implements} "@var{interfaces}"
9398The implemented interfaces of the parser class, a comma-separated list.
9399Default is none.
9400@xref{Java Bison Interface}.
9401@end deffn
9402
1979121c
DJ
9403@deffn {Directive} {%define init_throws} "@var{exceptions}"
9404The exceptions thrown by @code{%code init} from the parser class
9405constructor. Default is none.
9406@xref{Java Parser Interface}.
9407@end deffn
9408
e254a580
DJ
9409@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9410The exceptions thrown by the @code{yylex} method of the lexer, a
9411comma-separated list. Default is @code{java.io.IOException}.
9412@xref{Java Scanner Interface}.
9413@end deffn
9414
9415@deffn {Directive} {%define location_type} "@var{class}"
9416The name of the class used for locations (a range between two
9417positions). This class is generated as an inner class of the parser
9418class by @command{bison}. Default is @code{Location}.
9419@xref{Java Location Values}.
9420@end deffn
9421
9422@deffn {Directive} {%define package} "@var{package}"
9423The package to put the parser class in. Default is none.
9424@xref{Java Bison Interface}.
9425@end deffn
9426
9427@deffn {Directive} {%define parser_class_name} "@var{name}"
9428The name of the parser class. Default is @code{YYParser} or
9429@code{@var{name-prefix}Parser}.
9430@xref{Java Bison Interface}.
9431@end deffn
9432
9433@deffn {Directive} {%define position_type} "@var{class}"
9434The name of the class used for positions. This class must be supplied by
9435the user. Default is @code{Position}.
9436@xref{Java Location Values}.
9437@end deffn
9438
9439@deffn {Directive} {%define public}
9440Whether the parser class is declared @code{public}. Default is false.
9441@xref{Java Bison Interface}.
9442@end deffn
9443
9444@deffn {Directive} {%define stype} "@var{class}"
9445The base type of semantic values. Default is @code{Object}.
9446@xref{Java Semantic Values}.
9447@end deffn
9448
9449@deffn {Directive} {%define strictfp}
9450Whether the parser class is declared @code{strictfp}. Default is false.
9451@xref{Java Bison Interface}.
9452@end deffn
9453
9454@deffn {Directive} {%define throws} "@var{exceptions}"
9455The exceptions thrown by user-supplied parser actions and
9456@code{%initial-action}, a comma-separated list. Default is none.
9457@xref{Java Parser Interface}.
9458@end deffn
9459
9460
12545799 9461@c ================================================= FAQ
d1a1114f
AD
9462
9463@node FAQ
9464@chapter Frequently Asked Questions
9465@cindex frequently asked questions
9466@cindex questions
9467
9468Several questions about Bison come up occasionally. Here some of them
9469are addressed.
9470
9471@menu
55ba27be
AD
9472* Memory Exhausted:: Breaking the Stack Limits
9473* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9474* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9475* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9476* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9477* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9478* I can't build Bison:: Troubleshooting
9479* Where can I find help?:: Troubleshouting
9480* Bug Reports:: Troublereporting
8405b70c 9481* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9482* Beta Testing:: Experimenting development versions
9483* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9484@end menu
9485
1a059451
PE
9486@node Memory Exhausted
9487@section Memory Exhausted
d1a1114f
AD
9488
9489@display
1a059451 9490My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9491message. What can I do?
9492@end display
9493
9494This question is already addressed elsewhere, @xref{Recursion,
9495,Recursive Rules}.
9496
e64fec0a
PE
9497@node How Can I Reset the Parser
9498@section How Can I Reset the Parser
5b066063 9499
0e14ad77
PE
9500The following phenomenon has several symptoms, resulting in the
9501following typical questions:
5b066063
AD
9502
9503@display
9504I invoke @code{yyparse} several times, and on correct input it works
9505properly; but when a parse error is found, all the other calls fail
0e14ad77 9506too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9507@end display
9508
9509@noindent
9510or
9511
9512@display
0e14ad77 9513My parser includes support for an @samp{#include}-like feature, in
5b066063 9514which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9515although I did specify @code{%define api.pure}.
5b066063
AD
9516@end display
9517
0e14ad77
PE
9518These problems typically come not from Bison itself, but from
9519Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9520speed, they might not notice a change of input file. As a
9521demonstration, consider the following source file,
9522@file{first-line.l}:
9523
9524@verbatim
9525%{
9526#include <stdio.h>
9527#include <stdlib.h>
9528%}
9529%%
9530.*\n ECHO; return 1;
9531%%
9532int
0e14ad77 9533yyparse (char const *file)
5b066063
AD
9534{
9535 yyin = fopen (file, "r");
9536 if (!yyin)
9537 exit (2);
fa7e68c3 9538 /* One token only. */
5b066063 9539 yylex ();
0e14ad77 9540 if (fclose (yyin) != 0)
5b066063
AD
9541 exit (3);
9542 return 0;
9543}
9544
9545int
0e14ad77 9546main (void)
5b066063
AD
9547{
9548 yyparse ("input");
9549 yyparse ("input");
9550 return 0;
9551}
9552@end verbatim
9553
9554@noindent
9555If the file @file{input} contains
9556
9557@verbatim
9558input:1: Hello,
9559input:2: World!
9560@end verbatim
9561
9562@noindent
0e14ad77 9563then instead of getting the first line twice, you get:
5b066063
AD
9564
9565@example
9566$ @kbd{flex -ofirst-line.c first-line.l}
9567$ @kbd{gcc -ofirst-line first-line.c -ll}
9568$ @kbd{./first-line}
9569input:1: Hello,
9570input:2: World!
9571@end example
9572
0e14ad77
PE
9573Therefore, whenever you change @code{yyin}, you must tell the
9574Lex-generated scanner to discard its current buffer and switch to the
9575new one. This depends upon your implementation of Lex; see its
9576documentation for more. For Flex, it suffices to call
9577@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9578Flex-generated scanner needs to read from several input streams to
9579handle features like include files, you might consider using Flex
9580functions like @samp{yy_switch_to_buffer} that manipulate multiple
9581input buffers.
5b066063 9582
b165c324
AD
9583If your Flex-generated scanner uses start conditions (@pxref{Start
9584conditions, , Start conditions, flex, The Flex Manual}), you might
9585also want to reset the scanner's state, i.e., go back to the initial
9586start condition, through a call to @samp{BEGIN (0)}.
9587
fef4cb51
AD
9588@node Strings are Destroyed
9589@section Strings are Destroyed
9590
9591@display
c7e441b4 9592My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9593them. Instead of reporting @samp{"foo", "bar"}, it reports
9594@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9595@end display
9596
9597This error is probably the single most frequent ``bug report'' sent to
9598Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9599of the scanner. Consider the following Lex code:
fef4cb51
AD
9600
9601@verbatim
9602%{
9603#include <stdio.h>
9604char *yylval = NULL;
9605%}
9606%%
9607.* yylval = yytext; return 1;
9608\n /* IGNORE */
9609%%
9610int
9611main ()
9612{
fa7e68c3 9613 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9614 char *fst = (yylex (), yylval);
9615 char *snd = (yylex (), yylval);
9616 printf ("\"%s\", \"%s\"\n", fst, snd);
9617 return 0;
9618}
9619@end verbatim
9620
9621If you compile and run this code, you get:
9622
9623@example
9624$ @kbd{flex -osplit-lines.c split-lines.l}
9625$ @kbd{gcc -osplit-lines split-lines.c -ll}
9626$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9627"one
9628two", "two"
9629@end example
9630
9631@noindent
9632this is because @code{yytext} is a buffer provided for @emph{reading}
9633in the action, but if you want to keep it, you have to duplicate it
9634(e.g., using @code{strdup}). Note that the output may depend on how
9635your implementation of Lex handles @code{yytext}. For instance, when
9636given the Lex compatibility option @option{-l} (which triggers the
9637option @samp{%array}) Flex generates a different behavior:
9638
9639@example
9640$ @kbd{flex -l -osplit-lines.c split-lines.l}
9641$ @kbd{gcc -osplit-lines split-lines.c -ll}
9642$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9643"two", "two"
9644@end example
9645
9646
2fa09258
AD
9647@node Implementing Gotos/Loops
9648@section Implementing Gotos/Loops
a06ea4aa
AD
9649
9650@display
9651My simple calculator supports variables, assignments, and functions,
2fa09258 9652but how can I implement gotos, or loops?
a06ea4aa
AD
9653@end display
9654
9655Although very pedagogical, the examples included in the document blur
a1c84f45 9656the distinction to make between the parser---whose job is to recover
a06ea4aa 9657the structure of a text and to transmit it to subsequent modules of
a1c84f45 9658the program---and the processing (such as the execution) of this
a06ea4aa
AD
9659structure. This works well with so called straight line programs,
9660i.e., precisely those that have a straightforward execution model:
9661execute simple instructions one after the others.
9662
9663@cindex abstract syntax tree
9664@cindex @acronym{AST}
9665If you want a richer model, you will probably need to use the parser
9666to construct a tree that does represent the structure it has
9667recovered; this tree is usually called the @dfn{abstract syntax tree},
9668or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9669traversing it in various ways, will enable treatments such as its
9670execution or its translation, which will result in an interpreter or a
9671compiler.
9672
9673This topic is way beyond the scope of this manual, and the reader is
9674invited to consult the dedicated literature.
9675
9676
ed2e6384
AD
9677@node Multiple start-symbols
9678@section Multiple start-symbols
9679
9680@display
9681I have several closely related grammars, and I would like to share their
9682implementations. In fact, I could use a single grammar but with
9683multiple entry points.
9684@end display
9685
9686Bison does not support multiple start-symbols, but there is a very
9687simple means to simulate them. If @code{foo} and @code{bar} are the two
9688pseudo start-symbols, then introduce two new tokens, say
9689@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9690real start-symbol:
9691
9692@example
9693%token START_FOO START_BAR;
9694%start start;
9695start: START_FOO foo
9696 | START_BAR bar;
9697@end example
9698
9699These tokens prevents the introduction of new conflicts. As far as the
9700parser goes, that is all that is needed.
9701
9702Now the difficult part is ensuring that the scanner will send these
9703tokens first. If your scanner is hand-written, that should be
9704straightforward. If your scanner is generated by Lex, them there is
9705simple means to do it: recall that anything between @samp{%@{ ... %@}}
9706after the first @code{%%} is copied verbatim in the top of the generated
9707@code{yylex} function. Make sure a variable @code{start_token} is
9708available in the scanner (e.g., a global variable or using
9709@code{%lex-param} etc.), and use the following:
9710
9711@example
9712 /* @r{Prologue.} */
9713%%
9714%@{
9715 if (start_token)
9716 @{
9717 int t = start_token;
9718 start_token = 0;
9719 return t;
9720 @}
9721%@}
9722 /* @r{The rules.} */
9723@end example
9724
9725
55ba27be
AD
9726@node Secure? Conform?
9727@section Secure? Conform?
9728
9729@display
9730Is Bison secure? Does it conform to POSIX?
9731@end display
9732
9733If you're looking for a guarantee or certification, we don't provide it.
9734However, Bison is intended to be a reliable program that conforms to the
9735@acronym{POSIX} specification for Yacc. If you run into problems,
9736please send us a bug report.
9737
9738@node I can't build Bison
9739@section I can't build Bison
9740
9741@display
8c5b881d
PE
9742I can't build Bison because @command{make} complains that
9743@code{msgfmt} is not found.
55ba27be
AD
9744What should I do?
9745@end display
9746
9747Like most GNU packages with internationalization support, that feature
9748is turned on by default. If you have problems building in the @file{po}
9749subdirectory, it indicates that your system's internationalization
9750support is lacking. You can re-configure Bison with
9751@option{--disable-nls} to turn off this support, or you can install GNU
9752gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9753Bison. See the file @file{ABOUT-NLS} for more information.
9754
9755
9756@node Where can I find help?
9757@section Where can I find help?
9758
9759@display
9760I'm having trouble using Bison. Where can I find help?
9761@end display
9762
9763First, read this fine manual. Beyond that, you can send mail to
9764@email{help-bison@@gnu.org}. This mailing list is intended to be
9765populated with people who are willing to answer questions about using
9766and installing Bison. Please keep in mind that (most of) the people on
9767the list have aspects of their lives which are not related to Bison (!),
9768so you may not receive an answer to your question right away. This can
9769be frustrating, but please try not to honk them off; remember that any
9770help they provide is purely voluntary and out of the kindness of their
9771hearts.
9772
9773@node Bug Reports
9774@section Bug Reports
9775
9776@display
9777I found a bug. What should I include in the bug report?
9778@end display
9779
9780Before you send a bug report, make sure you are using the latest
9781version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9782mirrors. Be sure to include the version number in your bug report. If
9783the bug is present in the latest version but not in a previous version,
9784try to determine the most recent version which did not contain the bug.
9785
9786If the bug is parser-related, you should include the smallest grammar
9787you can which demonstrates the bug. The grammar file should also be
9788complete (i.e., I should be able to run it through Bison without having
9789to edit or add anything). The smaller and simpler the grammar, the
9790easier it will be to fix the bug.
9791
9792Include information about your compilation environment, including your
9793operating system's name and version and your compiler's name and
9794version. If you have trouble compiling, you should also include a
9795transcript of the build session, starting with the invocation of
9796`configure'. Depending on the nature of the bug, you may be asked to
9797send additional files as well (such as `config.h' or `config.cache').
9798
9799Patches are most welcome, but not required. That is, do not hesitate to
9800send a bug report just because you can not provide a fix.
9801
9802Send bug reports to @email{bug-bison@@gnu.org}.
9803
8405b70c
PB
9804@node More Languages
9805@section More Languages
55ba27be
AD
9806
9807@display
8405b70c 9808Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9809favorite language here}?
9810@end display
9811
8405b70c 9812C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9813languages; contributions are welcome.
9814
9815@node Beta Testing
9816@section Beta Testing
9817
9818@display
9819What is involved in being a beta tester?
9820@end display
9821
9822It's not terribly involved. Basically, you would download a test
9823release, compile it, and use it to build and run a parser or two. After
9824that, you would submit either a bug report or a message saying that
9825everything is okay. It is important to report successes as well as
9826failures because test releases eventually become mainstream releases,
9827but only if they are adequately tested. If no one tests, development is
9828essentially halted.
9829
9830Beta testers are particularly needed for operating systems to which the
9831developers do not have easy access. They currently have easy access to
9832recent GNU/Linux and Solaris versions. Reports about other operating
9833systems are especially welcome.
9834
9835@node Mailing Lists
9836@section Mailing Lists
9837
9838@display
9839How do I join the help-bison and bug-bison mailing lists?
9840@end display
9841
9842See @url{http://lists.gnu.org/}.
a06ea4aa 9843
d1a1114f
AD
9844@c ================================================= Table of Symbols
9845
342b8b6e 9846@node Table of Symbols
bfa74976
RS
9847@appendix Bison Symbols
9848@cindex Bison symbols, table of
9849@cindex symbols in Bison, table of
9850
18b519c0 9851@deffn {Variable} @@$
3ded9a63 9852In an action, the location of the left-hand side of the rule.
88bce5a2 9853@xref{Locations, , Locations Overview}.
18b519c0 9854@end deffn
3ded9a63 9855
18b519c0 9856@deffn {Variable} @@@var{n}
3ded9a63
AD
9857In an action, the location of the @var{n}-th symbol of the right-hand
9858side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9859@end deffn
3ded9a63 9860
18b519c0 9861@deffn {Variable} $$
3ded9a63
AD
9862In an action, the semantic value of the left-hand side of the rule.
9863@xref{Actions}.
18b519c0 9864@end deffn
3ded9a63 9865
18b519c0 9866@deffn {Variable} $@var{n}
3ded9a63
AD
9867In an action, the semantic value of the @var{n}-th symbol of the
9868right-hand side of the rule. @xref{Actions}.
18b519c0 9869@end deffn
3ded9a63 9870
dd8d9022
AD
9871@deffn {Delimiter} %%
9872Delimiter used to separate the grammar rule section from the
9873Bison declarations section or the epilogue.
9874@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9875@end deffn
bfa74976 9876
dd8d9022
AD
9877@c Don't insert spaces, or check the DVI output.
9878@deffn {Delimiter} %@{@var{code}%@}
9879All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9880the output file uninterpreted. Such code forms the prologue of the input
9881file. @xref{Grammar Outline, ,Outline of a Bison
9882Grammar}.
18b519c0 9883@end deffn
bfa74976 9884
dd8d9022
AD
9885@deffn {Construct} /*@dots{}*/
9886Comment delimiters, as in C.
18b519c0 9887@end deffn
bfa74976 9888
dd8d9022
AD
9889@deffn {Delimiter} :
9890Separates a rule's result from its components. @xref{Rules, ,Syntax of
9891Grammar Rules}.
18b519c0 9892@end deffn
bfa74976 9893
dd8d9022
AD
9894@deffn {Delimiter} ;
9895Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9896@end deffn
bfa74976 9897
dd8d9022
AD
9898@deffn {Delimiter} |
9899Separates alternate rules for the same result nonterminal.
9900@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9901@end deffn
bfa74976 9902
12e35840
JD
9903@deffn {Directive} <*>
9904Used to define a default tagged @code{%destructor} or default tagged
9905@code{%printer}.
85894313
JD
9906
9907This feature is experimental.
9908More user feedback will help to determine whether it should become a permanent
9909feature.
9910
12e35840
JD
9911@xref{Destructor Decl, , Freeing Discarded Symbols}.
9912@end deffn
9913
3ebecc24 9914@deffn {Directive} <>
12e35840
JD
9915Used to define a default tagless @code{%destructor} or default tagless
9916@code{%printer}.
85894313
JD
9917
9918This feature is experimental.
9919More user feedback will help to determine whether it should become a permanent
9920feature.
9921
12e35840
JD
9922@xref{Destructor Decl, , Freeing Discarded Symbols}.
9923@end deffn
9924
dd8d9022
AD
9925@deffn {Symbol} $accept
9926The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9927$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9928Start-Symbol}. It cannot be used in the grammar.
18b519c0 9929@end deffn
bfa74976 9930
136a0f76 9931@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9932@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9933Insert @var{code} verbatim into output parser source.
9934@xref{Decl Summary,,%code}.
9bc0dd67
JD
9935@end deffn
9936
9937@deffn {Directive} %debug
9938Equip the parser for debugging. @xref{Decl Summary}.
9939@end deffn
9940
91d2c560 9941@ifset defaultprec
22fccf95
PE
9942@deffn {Directive} %default-prec
9943Assign a precedence to rules that lack an explicit @samp{%prec}
9944modifier. @xref{Contextual Precedence, ,Context-Dependent
9945Precedence}.
39a06c25 9946@end deffn
91d2c560 9947@end ifset
39a06c25 9948
148d66d8
JD
9949@deffn {Directive} %define @var{define-variable}
9950@deffnx {Directive} %define @var{define-variable} @var{value}
9951Define a variable to adjust Bison's behavior.
9952@xref{Decl Summary,,%define}.
9953@end deffn
9954
18b519c0 9955@deffn {Directive} %defines
6deb4447
AD
9956Bison declaration to create a header file meant for the scanner.
9957@xref{Decl Summary}.
18b519c0 9958@end deffn
6deb4447 9959
02975b9a
JD
9960@deffn {Directive} %defines @var{defines-file}
9961Same as above, but save in the file @var{defines-file}.
9962@xref{Decl Summary}.
9963@end deffn
9964
18b519c0 9965@deffn {Directive} %destructor
258b75ca 9966Specify how the parser should reclaim the memory associated to
fa7e68c3 9967discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9968@end deffn
72f889cc 9969
18b519c0 9970@deffn {Directive} %dprec
676385e2 9971Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9972time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9973@acronym{GLR} Parsers}.
18b519c0 9974@end deffn
676385e2 9975
dd8d9022
AD
9976@deffn {Symbol} $end
9977The predefined token marking the end of the token stream. It cannot be
9978used in the grammar.
9979@end deffn
9980
9981@deffn {Symbol} error
9982A token name reserved for error recovery. This token may be used in
9983grammar rules so as to allow the Bison parser to recognize an error in
9984the grammar without halting the process. In effect, a sentence
9985containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9986token @code{error} becomes the current lookahead token. Actions
9987corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9988token is reset to the token that originally caused the violation.
9989@xref{Error Recovery}.
18d192f0
AD
9990@end deffn
9991
18b519c0 9992@deffn {Directive} %error-verbose
2a8d363a
AD
9993Bison declaration to request verbose, specific error message strings
9994when @code{yyerror} is called.
18b519c0 9995@end deffn
2a8d363a 9996
02975b9a 9997@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9998Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9999Summary}.
18b519c0 10000@end deffn
d8988b2f 10001
18b519c0 10002@deffn {Directive} %glr-parser
c827f760
PE
10003Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10004Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10005@end deffn
676385e2 10006
dd8d9022
AD
10007@deffn {Directive} %initial-action
10008Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10009@end deffn
10010
e6e704dc
JD
10011@deffn {Directive} %language
10012Specify the programming language for the generated parser.
10013@xref{Decl Summary}.
10014@end deffn
10015
18b519c0 10016@deffn {Directive} %left
d78f0ac9 10017Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10018@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10019@end deffn
bfa74976 10020
feeb0eda 10021@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10022Bison declaration to specifying an additional parameter that
10023@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10024for Pure Parsers}.
18b519c0 10025@end deffn
2a8d363a 10026
18b519c0 10027@deffn {Directive} %merge
676385e2 10028Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10029reduce/reduce conflict with a rule having the same merging function, the
676385e2 10030function is applied to the two semantic values to get a single result.
c827f760 10031@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10032@end deffn
676385e2 10033
02975b9a 10034@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10035Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10036@end deffn
d8988b2f 10037
91d2c560 10038@ifset defaultprec
22fccf95
PE
10039@deffn {Directive} %no-default-prec
10040Do not assign a precedence to rules that lack an explicit @samp{%prec}
10041modifier. @xref{Contextual Precedence, ,Context-Dependent
10042Precedence}.
10043@end deffn
91d2c560 10044@end ifset
22fccf95 10045
18b519c0 10046@deffn {Directive} %no-lines
931c7513
RS
10047Bison declaration to avoid generating @code{#line} directives in the
10048parser file. @xref{Decl Summary}.
18b519c0 10049@end deffn
931c7513 10050
18b519c0 10051@deffn {Directive} %nonassoc
d78f0ac9 10052Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10053@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10054@end deffn
bfa74976 10055
02975b9a 10056@deffn {Directive} %output "@var{file}"
72d2299c 10057Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10058Summary}.
18b519c0 10059@end deffn
d8988b2f 10060
feeb0eda 10061@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10062Bison declaration to specifying an additional parameter that
10063@code{yyparse} should accept. @xref{Parser Function,, The Parser
10064Function @code{yyparse}}.
18b519c0 10065@end deffn
2a8d363a 10066
18b519c0 10067@deffn {Directive} %prec
bfa74976
RS
10068Bison declaration to assign a precedence to a specific rule.
10069@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10070@end deffn
bfa74976 10071
d78f0ac9
AD
10072@deffn {Directive} %precedence
10073Bison declaration to assign precedence to token(s), but no associativity
10074@xref{Precedence Decl, ,Operator Precedence}.
10075@end deffn
10076
18b519c0 10077@deffn {Directive} %pure-parser
d9df47b6
JD
10078Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10079for which Bison is more careful to warn about unreasonable usage.
18b519c0 10080@end deffn
bfa74976 10081
b50d2359 10082@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10083Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10084Require a Version of Bison}.
b50d2359
AD
10085@end deffn
10086
18b519c0 10087@deffn {Directive} %right
d78f0ac9 10088Bison declaration to assign precedence and right associativity to token(s).
bfa74976 10089@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10090@end deffn
bfa74976 10091
e6e704dc
JD
10092@deffn {Directive} %skeleton
10093Specify the skeleton to use; usually for development.
10094@xref{Decl Summary}.
10095@end deffn
10096
18b519c0 10097@deffn {Directive} %start
704a47c4
AD
10098Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10099Start-Symbol}.
18b519c0 10100@end deffn
bfa74976 10101
18b519c0 10102@deffn {Directive} %token
bfa74976
RS
10103Bison declaration to declare token(s) without specifying precedence.
10104@xref{Token Decl, ,Token Type Names}.
18b519c0 10105@end deffn
bfa74976 10106
18b519c0 10107@deffn {Directive} %token-table
931c7513
RS
10108Bison declaration to include a token name table in the parser file.
10109@xref{Decl Summary}.
18b519c0 10110@end deffn
931c7513 10111
18b519c0 10112@deffn {Directive} %type
704a47c4
AD
10113Bison declaration to declare nonterminals. @xref{Type Decl,
10114,Nonterminal Symbols}.
18b519c0 10115@end deffn
bfa74976 10116
dd8d9022
AD
10117@deffn {Symbol} $undefined
10118The predefined token onto which all undefined values returned by
10119@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10120@code{error}.
10121@end deffn
10122
18b519c0 10123@deffn {Directive} %union
bfa74976
RS
10124Bison declaration to specify several possible data types for semantic
10125values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10126@end deffn
bfa74976 10127
dd8d9022
AD
10128@deffn {Macro} YYABORT
10129Macro to pretend that an unrecoverable syntax error has occurred, by
10130making @code{yyparse} return 1 immediately. The error reporting
10131function @code{yyerror} is not called. @xref{Parser Function, ,The
10132Parser Function @code{yyparse}}.
8405b70c
PB
10133
10134For Java parsers, this functionality is invoked using @code{return YYABORT;}
10135instead.
dd8d9022 10136@end deffn
3ded9a63 10137
dd8d9022
AD
10138@deffn {Macro} YYACCEPT
10139Macro to pretend that a complete utterance of the language has been
10140read, by making @code{yyparse} return 0 immediately.
10141@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10142
10143For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10144instead.
dd8d9022 10145@end deffn
bfa74976 10146
dd8d9022 10147@deffn {Macro} YYBACKUP
742e4900 10148Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10149token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10150@end deffn
bfa74976 10151
dd8d9022 10152@deffn {Variable} yychar
32c29292 10153External integer variable that contains the integer value of the
742e4900 10154lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10155@code{yyparse}.) Error-recovery rule actions may examine this variable.
10156@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10157@end deffn
bfa74976 10158
dd8d9022
AD
10159@deffn {Variable} yyclearin
10160Macro used in error-recovery rule actions. It clears the previous
742e4900 10161lookahead token. @xref{Error Recovery}.
18b519c0 10162@end deffn
bfa74976 10163
dd8d9022
AD
10164@deffn {Macro} YYDEBUG
10165Macro to define to equip the parser with tracing code. @xref{Tracing,
10166,Tracing Your Parser}.
18b519c0 10167@end deffn
bfa74976 10168
dd8d9022
AD
10169@deffn {Variable} yydebug
10170External integer variable set to zero by default. If @code{yydebug}
10171is given a nonzero value, the parser will output information on input
10172symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10173@end deffn
bfa74976 10174
dd8d9022
AD
10175@deffn {Macro} yyerrok
10176Macro to cause parser to recover immediately to its normal mode
10177after a syntax error. @xref{Error Recovery}.
10178@end deffn
10179
10180@deffn {Macro} YYERROR
10181Macro to pretend that a syntax error has just been detected: call
10182@code{yyerror} and then perform normal error recovery if possible
10183(@pxref{Error Recovery}), or (if recovery is impossible) make
10184@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10185
10186For Java parsers, this functionality is invoked using @code{return YYERROR;}
10187instead.
dd8d9022
AD
10188@end deffn
10189
10190@deffn {Function} yyerror
10191User-supplied function to be called by @code{yyparse} on error.
10192@xref{Error Reporting, ,The Error
10193Reporting Function @code{yyerror}}.
10194@end deffn
10195
10196@deffn {Macro} YYERROR_VERBOSE
10197An obsolete macro that you define with @code{#define} in the prologue
10198to request verbose, specific error message strings
10199when @code{yyerror} is called. It doesn't matter what definition you
10200use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10201@code{%error-verbose} is preferred.
10202@end deffn
10203
10204@deffn {Macro} YYINITDEPTH
10205Macro for specifying the initial size of the parser stack.
1a059451 10206@xref{Memory Management}.
dd8d9022
AD
10207@end deffn
10208
10209@deffn {Function} yylex
10210User-supplied lexical analyzer function, called with no arguments to get
10211the next token. @xref{Lexical, ,The Lexical Analyzer Function
10212@code{yylex}}.
10213@end deffn
10214
10215@deffn {Macro} YYLEX_PARAM
10216An obsolete macro for specifying an extra argument (or list of extra
32c29292 10217arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10218macro is deprecated, and is supported only for Yacc like parsers.
10219@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10220@end deffn
10221
10222@deffn {Variable} yylloc
10223External variable in which @code{yylex} should place the line and column
10224numbers associated with a token. (In a pure parser, it is a local
10225variable within @code{yyparse}, and its address is passed to
32c29292
JD
10226@code{yylex}.)
10227You can ignore this variable if you don't use the @samp{@@} feature in the
10228grammar actions.
10229@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10230In semantic actions, it stores the location of the lookahead token.
32c29292 10231@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10232@end deffn
10233
10234@deffn {Type} YYLTYPE
10235Data type of @code{yylloc}; by default, a structure with four
10236members. @xref{Location Type, , Data Types of Locations}.
10237@end deffn
10238
10239@deffn {Variable} yylval
10240External variable in which @code{yylex} should place the semantic
10241value associated with a token. (In a pure parser, it is a local
10242variable within @code{yyparse}, and its address is passed to
32c29292
JD
10243@code{yylex}.)
10244@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10245In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10246@xref{Actions, ,Actions}.
dd8d9022
AD
10247@end deffn
10248
10249@deffn {Macro} YYMAXDEPTH
1a059451
PE
10250Macro for specifying the maximum size of the parser stack. @xref{Memory
10251Management}.
dd8d9022
AD
10252@end deffn
10253
10254@deffn {Variable} yynerrs
8a2800e7 10255Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10256(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10257pure push parser, it is a member of yypstate.)
dd8d9022
AD
10258@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10259@end deffn
10260
10261@deffn {Function} yyparse
10262The parser function produced by Bison; call this function to start
10263parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10264@end deffn
10265
9987d1b3 10266@deffn {Function} yypstate_delete
f4101aa6 10267The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10268call this function to delete the memory associated with a parser.
f4101aa6 10269@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10270@code{yypstate_delete}}.
59da312b
JD
10271(The current push parsing interface is experimental and may evolve.
10272More user feedback will help to stabilize it.)
9987d1b3
JD
10273@end deffn
10274
10275@deffn {Function} yypstate_new
f4101aa6 10276The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10277call this function to create a new parser.
f4101aa6 10278@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10279@code{yypstate_new}}.
59da312b
JD
10280(The current push parsing interface is experimental and may evolve.
10281More user feedback will help to stabilize it.)
9987d1b3
JD
10282@end deffn
10283
10284@deffn {Function} yypull_parse
f4101aa6
AD
10285The parser function produced by Bison in push mode; call this function to
10286parse the rest of the input stream.
10287@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10288@code{yypull_parse}}.
59da312b
JD
10289(The current push parsing interface is experimental and may evolve.
10290More user feedback will help to stabilize it.)
9987d1b3
JD
10291@end deffn
10292
10293@deffn {Function} yypush_parse
f4101aa6
AD
10294The parser function produced by Bison in push mode; call this function to
10295parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10296@code{yypush_parse}}.
59da312b
JD
10297(The current push parsing interface is experimental and may evolve.
10298More user feedback will help to stabilize it.)
9987d1b3
JD
10299@end deffn
10300
dd8d9022
AD
10301@deffn {Macro} YYPARSE_PARAM
10302An obsolete macro for specifying the name of a parameter that
10303@code{yyparse} should accept. The use of this macro is deprecated, and
10304is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10305Conventions for Pure Parsers}.
10306@end deffn
10307
10308@deffn {Macro} YYRECOVERING
02103984
PE
10309The expression @code{YYRECOVERING ()} yields 1 when the parser
10310is recovering from a syntax error, and 0 otherwise.
10311@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10312@end deffn
10313
10314@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10315Macro used to control the use of @code{alloca} when the C
10316@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10317the parser will use @code{malloc} to extend its stacks. If defined to
103181, the parser will use @code{alloca}. Values other than 0 and 1 are
10319reserved for future Bison extensions. If not defined,
10320@code{YYSTACK_USE_ALLOCA} defaults to 0.
10321
55289366 10322In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10323limited stack and with unreliable stack-overflow checking, you should
10324set @code{YYMAXDEPTH} to a value that cannot possibly result in
10325unchecked stack overflow on any of your target hosts when
10326@code{alloca} is called. You can inspect the code that Bison
10327generates in order to determine the proper numeric values. This will
10328require some expertise in low-level implementation details.
dd8d9022
AD
10329@end deffn
10330
10331@deffn {Type} YYSTYPE
10332Data type of semantic values; @code{int} by default.
10333@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10334@end deffn
bfa74976 10335
342b8b6e 10336@node Glossary
bfa74976
RS
10337@appendix Glossary
10338@cindex glossary
10339
10340@table @asis
c827f760
PE
10341@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10342Formal method of specifying context-free grammars originally proposed
10343by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10344committee document contributing to what became the Algol 60 report.
10345@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10346
10347@item Context-free grammars
10348Grammars specified as rules that can be applied regardless of context.
10349Thus, if there is a rule which says that an integer can be used as an
10350expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10351permitted. @xref{Language and Grammar, ,Languages and Context-Free
10352Grammars}.
bfa74976
RS
10353
10354@item Dynamic allocation
10355Allocation of memory that occurs during execution, rather than at
10356compile time or on entry to a function.
10357
10358@item Empty string
10359Analogous to the empty set in set theory, the empty string is a
10360character string of length zero.
10361
10362@item Finite-state stack machine
10363A ``machine'' that has discrete states in which it is said to exist at
10364each instant in time. As input to the machine is processed, the
10365machine moves from state to state as specified by the logic of the
10366machine. In the case of the parser, the input is the language being
10367parsed, and the states correspond to various stages in the grammar
c827f760 10368rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10369
c827f760 10370@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10371A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10372that are not @acronym{LALR}(1). It resolves situations that Bison's
10373usual @acronym{LALR}(1)
676385e2
PH
10374algorithm cannot by effectively splitting off multiple parsers, trying all
10375possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10376right context. @xref{Generalized LR Parsing, ,Generalized
10377@acronym{LR} Parsing}.
676385e2 10378
bfa74976
RS
10379@item Grouping
10380A language construct that is (in general) grammatically divisible;
c827f760 10381for example, `expression' or `declaration' in C@.
bfa74976
RS
10382@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10383
10384@item Infix operator
10385An arithmetic operator that is placed between the operands on which it
10386performs some operation.
10387
10388@item Input stream
10389A continuous flow of data between devices or programs.
10390
10391@item Language construct
10392One of the typical usage schemas of the language. For example, one of
10393the constructs of the C language is the @code{if} statement.
10394@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10395
10396@item Left associativity
10397Operators having left associativity are analyzed from left to right:
10398@samp{a+b+c} first computes @samp{a+b} and then combines with
10399@samp{c}. @xref{Precedence, ,Operator Precedence}.
10400
10401@item Left recursion
89cab50d
AD
10402A rule whose result symbol is also its first component symbol; for
10403example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10404Rules}.
bfa74976
RS
10405
10406@item Left-to-right parsing
10407Parsing a sentence of a language by analyzing it token by token from
c827f760 10408left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10409
10410@item Lexical analyzer (scanner)
10411A function that reads an input stream and returns tokens one by one.
10412@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10413
10414@item Lexical tie-in
10415A flag, set by actions in the grammar rules, which alters the way
10416tokens are parsed. @xref{Lexical Tie-ins}.
10417
931c7513 10418@item Literal string token
14ded682 10419A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10420
742e4900
JD
10421@item Lookahead token
10422A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10423Tokens}.
bfa74976 10424
c827f760 10425@item @acronym{LALR}(1)
bfa74976 10426The class of context-free grammars that Bison (like most other parser
c827f760
PE
10427generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10428Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10429
c827f760 10430@item @acronym{LR}(1)
bfa74976 10431The class of context-free grammars in which at most one token of
742e4900 10432lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10433
10434@item Nonterminal symbol
10435A grammar symbol standing for a grammatical construct that can
10436be expressed through rules in terms of smaller constructs; in other
10437words, a construct that is not a token. @xref{Symbols}.
10438
bfa74976
RS
10439@item Parser
10440A function that recognizes valid sentences of a language by analyzing
10441the syntax structure of a set of tokens passed to it from a lexical
10442analyzer.
10443
10444@item Postfix operator
10445An arithmetic operator that is placed after the operands upon which it
10446performs some operation.
10447
10448@item Reduction
10449Replacing a string of nonterminals and/or terminals with a single
89cab50d 10450nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10451Parser Algorithm}.
bfa74976
RS
10452
10453@item Reentrant
10454A reentrant subprogram is a subprogram which can be in invoked any
10455number of times in parallel, without interference between the various
10456invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10457
10458@item Reverse polish notation
10459A language in which all operators are postfix operators.
10460
10461@item Right recursion
89cab50d
AD
10462A rule whose result symbol is also its last component symbol; for
10463example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10464Rules}.
bfa74976
RS
10465
10466@item Semantics
10467In computer languages, the semantics are specified by the actions
10468taken for each instance of the language, i.e., the meaning of
10469each statement. @xref{Semantics, ,Defining Language Semantics}.
10470
10471@item Shift
10472A parser is said to shift when it makes the choice of analyzing
10473further input from the stream rather than reducing immediately some
c827f760 10474already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10475
10476@item Single-character literal
10477A single character that is recognized and interpreted as is.
10478@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10479
10480@item Start symbol
10481The nonterminal symbol that stands for a complete valid utterance in
10482the language being parsed. The start symbol is usually listed as the
13863333 10483first nonterminal symbol in a language specification.
bfa74976
RS
10484@xref{Start Decl, ,The Start-Symbol}.
10485
10486@item Symbol table
10487A data structure where symbol names and associated data are stored
10488during parsing to allow for recognition and use of existing
10489information in repeated uses of a symbol. @xref{Multi-function Calc}.
10490
6e649e65
PE
10491@item Syntax error
10492An error encountered during parsing of an input stream due to invalid
10493syntax. @xref{Error Recovery}.
10494
bfa74976
RS
10495@item Token
10496A basic, grammatically indivisible unit of a language. The symbol
10497that describes a token in the grammar is a terminal symbol.
10498The input of the Bison parser is a stream of tokens which comes from
10499the lexical analyzer. @xref{Symbols}.
10500
10501@item Terminal symbol
89cab50d
AD
10502A grammar symbol that has no rules in the grammar and therefore is
10503grammatically indivisible. The piece of text it represents is a token.
10504@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10505@end table
10506
342b8b6e 10507@node Copying This Manual
f2b5126e 10508@appendix Copying This Manual
f2b5126e
PB
10509@include fdl.texi
10510
342b8b6e 10511@node Index
bfa74976
RS
10512@unnumbered Index
10513
10514@printindex cp
10515
bfa74976 10516@bye
a06ea4aa
AD
10517
10518@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10519@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10520@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10521@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10522@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f5f419de 10523@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10524@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10525@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10526@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10527@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10528@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10529@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10530@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10531@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10532@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10533@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10534@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10535@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10536@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10537@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10538@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10539@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10540@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10541@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10542@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10543@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10544@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10545@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10546@c LocalWords: YYSTACK DVI fdl printindex