]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* src/gram.c: Remove comments that duplicate comments in gram.h.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
bb32f4f2 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 107* Other Languages:: Creating C++ and Java parsers.
12545799 108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
9987d1b3 227* Push Decl:: Requesting a push parser.
bfa74976
RS
228* Decl Summary:: Table of all Bison declarations.
229
230Parser C-Language Interface
231
232* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 233* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
234 which reads tokens.
235* Error Reporting:: You must supply a function @code{yyerror}.
236* Action Features:: Special features for use in actions.
f7ab6a50
PE
237* Internationalization:: How to let the parser speak in the user's
238 native language.
bfa74976
RS
239
240The Lexical Analyzer Function @code{yylex}
241
242* Calling Convention:: How @code{yyparse} calls @code{yylex}.
243* Token Values:: How @code{yylex} must return the semantic value
244 of the token it has read.
95923bd6 245* Token Locations:: How @code{yylex} must return the text location
bfa74976 246 (line number, etc.) of the token, if the
93dd49ab 247 actions want that.
bfa74976
RS
248* Pure Calling:: How the calling convention differs
249 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
250
13863333 251The Bison Parser Algorithm
bfa74976 252
742e4900 253* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
254* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
255* Precedence:: Operator precedence works by resolving conflicts.
256* Contextual Precedence:: When an operator's precedence depends on context.
257* Parser States:: The parser is a finite-state-machine with stack.
258* Reduce/Reduce:: When two rules are applicable in the same situation.
259* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 260* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 261* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
262
263Operator Precedence
264
265* Why Precedence:: An example showing why precedence is needed.
266* Using Precedence:: How to specify precedence in Bison grammars.
267* Precedence Examples:: How these features are used in the previous example.
268* How Precedence:: How they work.
269
270Handling Context Dependencies
271
272* Semantic Tokens:: Token parsing can depend on the semantic context.
273* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
274* Tie-in Recovery:: Lexical tie-ins have implications for how
275 error recovery rules must be written.
276
93dd49ab 277Debugging Your Parser
ec3bc396
AD
278
279* Understanding:: Understanding the structure of your parser.
280* Tracing:: Tracing the execution of your parser.
281
bfa74976
RS
282Invoking Bison
283
13863333 284* Bison Options:: All the options described in detail,
c827f760 285 in alphabetical order by short options.
bfa74976 286* Option Cross Key:: Alphabetical list of long options.
93dd49ab 287* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 288
8405b70c 289Parsers Written In Other Languages
12545799
AD
290
291* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 292* Java Parsers:: The interface to generate Java parser classes
12545799
AD
293
294C++ Parsers
295
296* C++ Bison Interface:: Asking for C++ parser generation
297* C++ Semantic Values:: %union vs. C++
298* C++ Location Values:: The position and location classes
299* C++ Parser Interface:: Instantiating and running the parser
300* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 301* A Complete C++ Example:: Demonstrating their use
12545799
AD
302
303A Complete C++ Example
304
305* Calc++ --- C++ Calculator:: The specifications
306* Calc++ Parsing Driver:: An active parsing context
307* Calc++ Parser:: A parser class
308* Calc++ Scanner:: A pure C++ Flex scanner
309* Calc++ Top Level:: Conducting the band
310
8405b70c
PB
311Java Parsers
312
313* Java Bison Interface:: Asking for Java parser generation
314* Java Semantic Values:: %type and %token vs. Java
315* Java Location Values:: The position and location classes
316* Java Parser Interface:: Instantiating and running the parser
317* Java Scanner Interface:: Java scanners, and pure parsers
318* Java Differences:: Differences between C/C++ and Java Grammars
319
d1a1114f
AD
320Frequently Asked Questions
321
1a059451 322* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 323* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 324* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 325* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 326* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
327* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
328* I can't build Bison:: Troubleshooting
329* Where can I find help?:: Troubleshouting
330* Bug Reports:: Troublereporting
331* Other Languages:: Parsers in Java and others
332* Beta Testing:: Experimenting development versions
333* Mailing Lists:: Meeting other Bison users
d1a1114f 334
f2b5126e
PB
335Copying This Manual
336
f16b0819 337* Copying This Manual:: License for copying this manual.
f2b5126e 338
342b8b6e 339@end detailmenu
bfa74976
RS
340@end menu
341
342b8b6e 342@node Introduction
bfa74976
RS
343@unnumbered Introduction
344@cindex introduction
345
6077da58
PE
346@dfn{Bison} is a general-purpose parser generator that converts an
347annotated context-free grammar into an @acronym{LALR}(1) or
348@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 349Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
350used in simple desk calculators to complex programming languages.
351
352Bison is upward compatible with Yacc: all properly-written Yacc grammars
353ought to work with Bison with no change. Anyone familiar with Yacc
354should be able to use Bison with little trouble. You need to be fluent in
1e137b71 355C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
356
357We begin with tutorial chapters that explain the basic concepts of using
358Bison and show three explained examples, each building on the last. If you
359don't know Bison or Yacc, start by reading these chapters. Reference
360chapters follow which describe specific aspects of Bison in detail.
361
931c7513
RS
362Bison was written primarily by Robert Corbett; Richard Stallman made it
363Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 364multi-character string literals and other features.
931c7513 365
df1af54c 366This edition corresponds to version @value{VERSION} of Bison.
bfa74976 367
342b8b6e 368@node Conditions
bfa74976
RS
369@unnumbered Conditions for Using Bison
370
193d7c70
PE
371The distribution terms for Bison-generated parsers permit using the
372parsers in nonfree programs. Before Bison version 2.2, these extra
373permissions applied only when Bison was generating @acronym{LALR}(1)
374parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 375parsers could be used only in programs that were free software.
a31239f1 376
c827f760
PE
377The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
378compiler, have never
9ecbd125 379had such a requirement. They could always be used for nonfree
a31239f1
RS
380software. The reason Bison was different was not due to a special
381policy decision; it resulted from applying the usual General Public
382License to all of the Bison source code.
383
384The output of the Bison utility---the Bison parser file---contains a
385verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
386parser's implementation. (The actions from your grammar are inserted
387into this implementation at one point, but most of the rest of the
388implementation is not changed.) When we applied the @acronym{GPL}
389terms to the skeleton code for the parser's implementation,
a31239f1
RS
390the effect was to restrict the use of Bison output to free software.
391
392We didn't change the terms because of sympathy for people who want to
393make software proprietary. @strong{Software should be free.} But we
394concluded that limiting Bison's use to free software was doing little to
395encourage people to make other software free. So we decided to make the
396practical conditions for using Bison match the practical conditions for
c827f760 397using the other @acronym{GNU} tools.
bfa74976 398
193d7c70
PE
399This exception applies when Bison is generating code for a parser.
400You can tell whether the exception applies to a Bison output file by
401inspecting the file for text beginning with ``As a special
402exception@dots{}''. The text spells out the exact terms of the
403exception.
262aa8dd 404
f16b0819
PE
405@node Copying
406@unnumbered GNU GENERAL PUBLIC LICENSE
407@include gpl-3.0.texi
bfa74976 408
342b8b6e 409@node Concepts
bfa74976
RS
410@chapter The Concepts of Bison
411
412This chapter introduces many of the basic concepts without which the
413details of Bison will not make sense. If you do not already know how to
414use Bison or Yacc, we suggest you start by reading this chapter carefully.
415
416@menu
417* Language and Grammar:: Languages and context-free grammars,
418 as mathematical ideas.
419* Grammar in Bison:: How we represent grammars for Bison's sake.
420* Semantic Values:: Each token or syntactic grouping can have
421 a semantic value (the value of an integer,
422 the name of an identifier, etc.).
423* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 424* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 425* Locations Overview:: Tracking Locations.
bfa74976
RS
426* Bison Parser:: What are Bison's input and output,
427 how is the output used?
428* Stages:: Stages in writing and running Bison grammars.
429* Grammar Layout:: Overall structure of a Bison grammar file.
430@end menu
431
342b8b6e 432@node Language and Grammar
bfa74976
RS
433@section Languages and Context-Free Grammars
434
bfa74976
RS
435@cindex context-free grammar
436@cindex grammar, context-free
437In order for Bison to parse a language, it must be described by a
438@dfn{context-free grammar}. This means that you specify one or more
439@dfn{syntactic groupings} and give rules for constructing them from their
440parts. For example, in the C language, one kind of grouping is called an
441`expression'. One rule for making an expression might be, ``An expression
442can be made of a minus sign and another expression''. Another would be,
443``An expression can be an integer''. As you can see, rules are often
444recursive, but there must be at least one rule which leads out of the
445recursion.
446
c827f760 447@cindex @acronym{BNF}
bfa74976
RS
448@cindex Backus-Naur form
449The most common formal system for presenting such rules for humans to read
c827f760
PE
450is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
451order to specify the language Algol 60. Any grammar expressed in
452@acronym{BNF} is a context-free grammar. The input to Bison is
453essentially machine-readable @acronym{BNF}.
bfa74976 454
c827f760
PE
455@cindex @acronym{LALR}(1) grammars
456@cindex @acronym{LR}(1) grammars
676385e2
PH
457There are various important subclasses of context-free grammar. Although it
458can handle almost all context-free grammars, Bison is optimized for what
c827f760 459are called @acronym{LALR}(1) grammars.
676385e2 460In brief, in these grammars, it must be possible to
bfa74976 461tell how to parse any portion of an input string with just a single
742e4900 462token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
463@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
464restrictions that are
bfa74976 465hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
466@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
467@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
468more information on this.
bfa74976 469
c827f760
PE
470@cindex @acronym{GLR} parsing
471@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 472@cindex ambiguous grammars
9d9b8b70 473@cindex nondeterministic parsing
9501dc6e
AD
474
475Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
476roughly that the next grammar rule to apply at any point in the input is
477uniquely determined by the preceding input and a fixed, finite portion
742e4900 478(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 479grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 480apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 481grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 482lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
483With the proper declarations, Bison is also able to parse these more
484general context-free grammars, using a technique known as @acronym{GLR}
485parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
486are able to handle any context-free grammar for which the number of
487possible parses of any given string is finite.
676385e2 488
bfa74976
RS
489@cindex symbols (abstract)
490@cindex token
491@cindex syntactic grouping
492@cindex grouping, syntactic
9501dc6e
AD
493In the formal grammatical rules for a language, each kind of syntactic
494unit or grouping is named by a @dfn{symbol}. Those which are built by
495grouping smaller constructs according to grammatical rules are called
bfa74976
RS
496@dfn{nonterminal symbols}; those which can't be subdivided are called
497@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
498corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 499corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
500
501We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
502nonterminal, mean. The tokens of C are identifiers, constants (numeric
503and string), and the various keywords, arithmetic operators and
504punctuation marks. So the terminal symbols of a grammar for C include
505`identifier', `number', `string', plus one symbol for each keyword,
506operator or punctuation mark: `if', `return', `const', `static', `int',
507`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
508(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
509lexicography, not grammar.)
510
511Here is a simple C function subdivided into tokens:
512
9edcd895
AD
513@ifinfo
514@example
515int /* @r{keyword `int'} */
14d4662b 516square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
517 @r{identifier, close-paren} */
518@{ /* @r{open-brace} */
aa08666d
AD
519 return x * x; /* @r{keyword `return', identifier, asterisk,}
520 @r{identifier, semicolon} */
9edcd895
AD
521@} /* @r{close-brace} */
522@end example
523@end ifinfo
524@ifnotinfo
bfa74976
RS
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 528@{ /* @r{open-brace} */
9edcd895 529 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
530@} /* @r{close-brace} */
531@end example
9edcd895 532@end ifnotinfo
bfa74976
RS
533
534The syntactic groupings of C include the expression, the statement, the
535declaration, and the function definition. These are represented in the
536grammar of C by nonterminal symbols `expression', `statement',
537`declaration' and `function definition'. The full grammar uses dozens of
538additional language constructs, each with its own nonterminal symbol, in
539order to express the meanings of these four. The example above is a
540function definition; it contains one declaration, and one statement. In
541the statement, each @samp{x} is an expression and so is @samp{x * x}.
542
543Each nonterminal symbol must have grammatical rules showing how it is made
544out of simpler constructs. For example, one kind of C statement is the
545@code{return} statement; this would be described with a grammar rule which
546reads informally as follows:
547
548@quotation
549A `statement' can be made of a `return' keyword, an `expression' and a
550`semicolon'.
551@end quotation
552
553@noindent
554There would be many other rules for `statement', one for each kind of
555statement in C.
556
557@cindex start symbol
558One nonterminal symbol must be distinguished as the special one which
559defines a complete utterance in the language. It is called the @dfn{start
560symbol}. In a compiler, this means a complete input program. In the C
561language, the nonterminal symbol `sequence of definitions and declarations'
562plays this role.
563
564For example, @samp{1 + 2} is a valid C expression---a valid part of a C
565program---but it is not valid as an @emph{entire} C program. In the
566context-free grammar of C, this follows from the fact that `expression' is
567not the start symbol.
568
569The Bison parser reads a sequence of tokens as its input, and groups the
570tokens using the grammar rules. If the input is valid, the end result is
571that the entire token sequence reduces to a single grouping whose symbol is
572the grammar's start symbol. If we use a grammar for C, the entire input
573must be a `sequence of definitions and declarations'. If not, the parser
574reports a syntax error.
575
342b8b6e 576@node Grammar in Bison
bfa74976
RS
577@section From Formal Rules to Bison Input
578@cindex Bison grammar
579@cindex grammar, Bison
580@cindex formal grammar
581
582A formal grammar is a mathematical construct. To define the language
583for Bison, you must write a file expressing the grammar in Bison syntax:
584a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
585
586A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 587as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
588in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
589
590The Bison representation for a terminal symbol is also called a @dfn{token
591type}. Token types as well can be represented as C-like identifiers. By
592convention, these identifiers should be upper case to distinguish them from
593nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
594@code{RETURN}. A terminal symbol that stands for a particular keyword in
595the language should be named after that keyword converted to upper case.
596The terminal symbol @code{error} is reserved for error recovery.
931c7513 597@xref{Symbols}.
bfa74976
RS
598
599A terminal symbol can also be represented as a character literal, just like
600a C character constant. You should do this whenever a token is just a
601single character (parenthesis, plus-sign, etc.): use that same character in
602a literal as the terminal symbol for that token.
603
931c7513
RS
604A third way to represent a terminal symbol is with a C string constant
605containing several characters. @xref{Symbols}, for more information.
606
bfa74976
RS
607The grammar rules also have an expression in Bison syntax. For example,
608here is the Bison rule for a C @code{return} statement. The semicolon in
609quotes is a literal character token, representing part of the C syntax for
610the statement; the naked semicolon, and the colon, are Bison punctuation
611used in every rule.
612
613@example
614stmt: RETURN expr ';'
615 ;
616@end example
617
618@noindent
619@xref{Rules, ,Syntax of Grammar Rules}.
620
342b8b6e 621@node Semantic Values
bfa74976
RS
622@section Semantic Values
623@cindex semantic value
624@cindex value, semantic
625
626A formal grammar selects tokens only by their classifications: for example,
627if a rule mentions the terminal symbol `integer constant', it means that
628@emph{any} integer constant is grammatically valid in that position. The
629precise value of the constant is irrelevant to how to parse the input: if
630@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 631grammatical.
bfa74976
RS
632
633But the precise value is very important for what the input means once it is
634parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6353989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
636has both a token type and a @dfn{semantic value}. @xref{Semantics,
637,Defining Language Semantics},
bfa74976
RS
638for details.
639
640The token type is a terminal symbol defined in the grammar, such as
641@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
642you need to know to decide where the token may validly appear and how to
643group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 644except their types.
bfa74976
RS
645
646The semantic value has all the rest of the information about the
647meaning of the token, such as the value of an integer, or the name of an
648identifier. (A token such as @code{','} which is just punctuation doesn't
649need to have any semantic value.)
650
651For example, an input token might be classified as token type
652@code{INTEGER} and have the semantic value 4. Another input token might
653have the same token type @code{INTEGER} but value 3989. When a grammar
654rule says that @code{INTEGER} is allowed, either of these tokens is
655acceptable because each is an @code{INTEGER}. When the parser accepts the
656token, it keeps track of the token's semantic value.
657
658Each grouping can also have a semantic value as well as its nonterminal
659symbol. For example, in a calculator, an expression typically has a
660semantic value that is a number. In a compiler for a programming
661language, an expression typically has a semantic value that is a tree
662structure describing the meaning of the expression.
663
342b8b6e 664@node Semantic Actions
bfa74976
RS
665@section Semantic Actions
666@cindex semantic actions
667@cindex actions, semantic
668
669In order to be useful, a program must do more than parse input; it must
670also produce some output based on the input. In a Bison grammar, a grammar
671rule can have an @dfn{action} made up of C statements. Each time the
672parser recognizes a match for that rule, the action is executed.
673@xref{Actions}.
13863333 674
bfa74976
RS
675Most of the time, the purpose of an action is to compute the semantic value
676of the whole construct from the semantic values of its parts. For example,
677suppose we have a rule which says an expression can be the sum of two
678expressions. When the parser recognizes such a sum, each of the
679subexpressions has a semantic value which describes how it was built up.
680The action for this rule should create a similar sort of value for the
681newly recognized larger expression.
682
683For example, here is a rule that says an expression can be the sum of
684two subexpressions:
685
686@example
687expr: expr '+' expr @{ $$ = $1 + $3; @}
688 ;
689@end example
690
691@noindent
692The action says how to produce the semantic value of the sum expression
693from the values of the two subexpressions.
694
676385e2 695@node GLR Parsers
c827f760
PE
696@section Writing @acronym{GLR} Parsers
697@cindex @acronym{GLR} parsing
698@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
699@findex %glr-parser
700@cindex conflicts
701@cindex shift/reduce conflicts
fa7e68c3 702@cindex reduce/reduce conflicts
676385e2 703
fa7e68c3 704In some grammars, Bison's standard
9501dc6e
AD
705@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
706certain grammar rule at a given point. That is, it may not be able to
707decide (on the basis of the input read so far) which of two possible
708reductions (applications of a grammar rule) applies, or whether to apply
709a reduction or read more of the input and apply a reduction later in the
710input. These are known respectively as @dfn{reduce/reduce} conflicts
711(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
712(@pxref{Shift/Reduce}).
713
714To use a grammar that is not easily modified to be @acronym{LALR}(1), a
715more general parsing algorithm is sometimes necessary. If you include
676385e2 716@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 717(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
718(@acronym{GLR}) parser. These parsers handle Bison grammars that
719contain no unresolved conflicts (i.e., after applying precedence
720declarations) identically to @acronym{LALR}(1) parsers. However, when
721faced with unresolved shift/reduce and reduce/reduce conflicts,
722@acronym{GLR} parsers use the simple expedient of doing both,
723effectively cloning the parser to follow both possibilities. Each of
724the resulting parsers can again split, so that at any given time, there
725can be any number of possible parses being explored. The parsers
676385e2
PH
726proceed in lockstep; that is, all of them consume (shift) a given input
727symbol before any of them proceed to the next. Each of the cloned
728parsers eventually meets one of two possible fates: either it runs into
729a parsing error, in which case it simply vanishes, or it merges with
730another parser, because the two of them have reduced the input to an
731identical set of symbols.
732
733During the time that there are multiple parsers, semantic actions are
734recorded, but not performed. When a parser disappears, its recorded
735semantic actions disappear as well, and are never performed. When a
736reduction makes two parsers identical, causing them to merge, Bison
737records both sets of semantic actions. Whenever the last two parsers
738merge, reverting to the single-parser case, Bison resolves all the
739outstanding actions either by precedences given to the grammar rules
740involved, or by performing both actions, and then calling a designated
741user-defined function on the resulting values to produce an arbitrary
742merged result.
743
fa7e68c3 744@menu
32c29292
JD
745* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
746* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
747* GLR Semantic Actions:: Deferred semantic actions have special concerns.
748* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
749@end menu
750
751@node Simple GLR Parsers
752@subsection Using @acronym{GLR} on Unambiguous Grammars
753@cindex @acronym{GLR} parsing, unambiguous grammars
754@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
755@findex %glr-parser
756@findex %expect-rr
757@cindex conflicts
758@cindex reduce/reduce conflicts
759@cindex shift/reduce conflicts
760
761In the simplest cases, you can use the @acronym{GLR} algorithm
762to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 763Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
764or (in rare cases) fall into the category of grammars in which the
765@acronym{LALR}(1) algorithm throws away too much information (they are in
766@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
767
768Consider a problem that
769arises in the declaration of enumerated and subrange types in the
770programming language Pascal. Here are some examples:
771
772@example
773type subrange = lo .. hi;
774type enum = (a, b, c);
775@end example
776
777@noindent
778The original language standard allows only numeric
779literals and constant identifiers for the subrange bounds (@samp{lo}
780and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78110206) and many other
782Pascal implementations allow arbitrary expressions there. This gives
783rise to the following situation, containing a superfluous pair of
784parentheses:
785
786@example
787type subrange = (a) .. b;
788@end example
789
790@noindent
791Compare this to the following declaration of an enumerated
792type with only one value:
793
794@example
795type enum = (a);
796@end example
797
798@noindent
799(These declarations are contrived, but they are syntactically
800valid, and more-complicated cases can come up in practical programs.)
801
802These two declarations look identical until the @samp{..} token.
742e4900 803With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
804possible to decide between the two forms when the identifier
805@samp{a} is parsed. It is, however, desirable
806for a parser to decide this, since in the latter case
807@samp{a} must become a new identifier to represent the enumeration
808value, while in the former case @samp{a} must be evaluated with its
809current meaning, which may be a constant or even a function call.
810
811You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
812to be resolved later, but this typically requires substantial
813contortions in both semantic actions and large parts of the
814grammar, where the parentheses are nested in the recursive rules for
815expressions.
816
817You might think of using the lexer to distinguish between the two
818forms by returning different tokens for currently defined and
819undefined identifiers. But if these declarations occur in a local
820scope, and @samp{a} is defined in an outer scope, then both forms
821are possible---either locally redefining @samp{a}, or using the
822value of @samp{a} from the outer scope. So this approach cannot
823work.
824
e757bb10 825A simple solution to this problem is to declare the parser to
fa7e68c3
PE
826use the @acronym{GLR} algorithm.
827When the @acronym{GLR} parser reaches the critical state, it
828merely splits into two branches and pursues both syntax rules
829simultaneously. Sooner or later, one of them runs into a parsing
830error. If there is a @samp{..} token before the next
831@samp{;}, the rule for enumerated types fails since it cannot
832accept @samp{..} anywhere; otherwise, the subrange type rule
833fails since it requires a @samp{..} token. So one of the branches
834fails silently, and the other one continues normally, performing
835all the intermediate actions that were postponed during the split.
836
837If the input is syntactically incorrect, both branches fail and the parser
838reports a syntax error as usual.
839
840The effect of all this is that the parser seems to ``guess'' the
841correct branch to take, or in other words, it seems to use more
742e4900 842lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
843for. In this example, @acronym{LALR}(2) would suffice, but also some cases
844that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
845
846In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
847and the current Bison parser even takes exponential time and space
848for some grammars. In practice, this rarely happens, and for many
849grammars it is possible to prove that it cannot happen.
850The present example contains only one conflict between two
851rules, and the type-declaration context containing the conflict
852cannot be nested. So the number of
853branches that can exist at any time is limited by the constant 2,
854and the parsing time is still linear.
855
856Here is a Bison grammar corresponding to the example above. It
857parses a vastly simplified form of Pascal type declarations.
858
859@example
860%token TYPE DOTDOT ID
861
862@group
863%left '+' '-'
864%left '*' '/'
865@end group
866
867%%
868
869@group
870type_decl : TYPE ID '=' type ';'
871 ;
872@end group
873
874@group
875type : '(' id_list ')'
876 | expr DOTDOT expr
877 ;
878@end group
879
880@group
881id_list : ID
882 | id_list ',' ID
883 ;
884@end group
885
886@group
887expr : '(' expr ')'
888 | expr '+' expr
889 | expr '-' expr
890 | expr '*' expr
891 | expr '/' expr
892 | ID
893 ;
894@end group
895@end example
896
897When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
898about one reduce/reduce conflict. In the conflicting situation the
899parser chooses one of the alternatives, arbitrarily the one
900declared first. Therefore the following correct input is not
901recognized:
902
903@example
904type t = (a) .. b;
905@end example
906
907The parser can be turned into a @acronym{GLR} parser, while also telling Bison
908to be silent about the one known reduce/reduce conflict, by
e757bb10 909adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
910@samp{%%}):
911
912@example
913%glr-parser
914%expect-rr 1
915@end example
916
917@noindent
918No change in the grammar itself is required. Now the
919parser recognizes all valid declarations, according to the
920limited syntax above, transparently. In fact, the user does not even
921notice when the parser splits.
922
f8e1c9e5
AD
923So here we have a case where we can use the benefits of @acronym{GLR},
924almost without disadvantages. Even in simple cases like this, however,
925there are at least two potential problems to beware. First, always
926analyze the conflicts reported by Bison to make sure that @acronym{GLR}
927splitting is only done where it is intended. A @acronym{GLR} parser
928splitting inadvertently may cause problems less obvious than an
929@acronym{LALR} parser statically choosing the wrong alternative in a
930conflict. Second, consider interactions with the lexer (@pxref{Semantic
931Tokens}) with great care. Since a split parser consumes tokens without
932performing any actions during the split, the lexer cannot obtain
933information via parser actions. Some cases of lexer interactions can be
934eliminated by using @acronym{GLR} to shift the complications from the
935lexer to the parser. You must check the remaining cases for
936correctness.
937
938In our example, it would be safe for the lexer to return tokens based on
939their current meanings in some symbol table, because no new symbols are
940defined in the middle of a type declaration. Though it is possible for
941a parser to define the enumeration constants as they are parsed, before
942the type declaration is completed, it actually makes no difference since
943they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
944
945@node Merging GLR Parses
946@subsection Using @acronym{GLR} to Resolve Ambiguities
947@cindex @acronym{GLR} parsing, ambiguous grammars
948@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
949@findex %dprec
950@findex %merge
951@cindex conflicts
952@cindex reduce/reduce conflicts
953
2a8d363a 954Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
955
956@example
957%@{
38a92d50
PE
958 #include <stdio.h>
959 #define YYSTYPE char const *
960 int yylex (void);
961 void yyerror (char const *);
676385e2
PH
962%@}
963
964%token TYPENAME ID
965
966%right '='
967%left '+'
968
969%glr-parser
970
971%%
972
fae437e8 973prog :
676385e2
PH
974 | prog stmt @{ printf ("\n"); @}
975 ;
976
977stmt : expr ';' %dprec 1
978 | decl %dprec 2
979 ;
980
2a8d363a 981expr : ID @{ printf ("%s ", $$); @}
fae437e8 982 | TYPENAME '(' expr ')'
2a8d363a
AD
983 @{ printf ("%s <cast> ", $1); @}
984 | expr '+' expr @{ printf ("+ "); @}
985 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
986 ;
987
fae437e8 988decl : TYPENAME declarator ';'
2a8d363a 989 @{ printf ("%s <declare> ", $1); @}
676385e2 990 | TYPENAME declarator '=' expr ';'
2a8d363a 991 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
992 ;
993
2a8d363a 994declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
995 | '(' declarator ')'
996 ;
997@end example
998
999@noindent
1000This models a problematic part of the C++ grammar---the ambiguity between
1001certain declarations and statements. For example,
1002
1003@example
1004T (x) = y+z;
1005@end example
1006
1007@noindent
1008parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1009(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1010@samp{x} as an @code{ID}).
676385e2 1011Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1012@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1013time it encounters @code{x} in the example above. Since this is a
1014@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1015each choice of resolving the reduce/reduce conflict.
1016Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1017however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1018ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1019the other reduces @code{stmt : decl}, after which both parsers are in an
1020identical state: they've seen @samp{prog stmt} and have the same unprocessed
1021input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1022
1023At this point, the @acronym{GLR} parser requires a specification in the
1024grammar of how to choose between the competing parses.
1025In the example above, the two @code{%dprec}
e757bb10 1026declarations specify that Bison is to give precedence
fa7e68c3 1027to the parse that interprets the example as a
676385e2
PH
1028@code{decl}, which implies that @code{x} is a declarator.
1029The parser therefore prints
1030
1031@example
fae437e8 1032"x" y z + T <init-declare>
676385e2
PH
1033@end example
1034
fa7e68c3
PE
1035The @code{%dprec} declarations only come into play when more than one
1036parse survives. Consider a different input string for this parser:
676385e2
PH
1037
1038@example
1039T (x) + y;
1040@end example
1041
1042@noindent
e757bb10 1043This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1044construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1045Here, there is no ambiguity (this cannot be parsed as a declaration).
1046However, at the time the Bison parser encounters @code{x}, it does not
1047have enough information to resolve the reduce/reduce conflict (again,
1048between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1049case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1050into two, one assuming that @code{x} is an @code{expr}, and the other
1051assuming @code{x} is a @code{declarator}. The second of these parsers
1052then vanishes when it sees @code{+}, and the parser prints
1053
1054@example
fae437e8 1055x T <cast> y +
676385e2
PH
1056@end example
1057
1058Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1059the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1060actions of the two possible parsers, rather than choosing one over the
1061other. To do so, you could change the declaration of @code{stmt} as
1062follows:
1063
1064@example
1065stmt : expr ';' %merge <stmtMerge>
1066 | decl %merge <stmtMerge>
1067 ;
1068@end example
1069
1070@noindent
676385e2
PH
1071and define the @code{stmtMerge} function as:
1072
1073@example
38a92d50
PE
1074static YYSTYPE
1075stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1076@{
1077 printf ("<OR> ");
1078 return "";
1079@}
1080@end example
1081
1082@noindent
1083with an accompanying forward declaration
1084in the C declarations at the beginning of the file:
1085
1086@example
1087%@{
38a92d50 1088 #define YYSTYPE char const *
676385e2
PH
1089 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1090%@}
1091@end example
1092
1093@noindent
fa7e68c3
PE
1094With these declarations, the resulting parser parses the first example
1095as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1096
1097@example
fae437e8 1098"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1099@end example
1100
fa7e68c3 1101Bison requires that all of the
e757bb10 1102productions that participate in any particular merge have identical
fa7e68c3
PE
1103@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1104and the parser will report an error during any parse that results in
1105the offending merge.
9501dc6e 1106
32c29292
JD
1107@node GLR Semantic Actions
1108@subsection GLR Semantic Actions
1109
1110@cindex deferred semantic actions
1111By definition, a deferred semantic action is not performed at the same time as
1112the associated reduction.
1113This raises caveats for several Bison features you might use in a semantic
1114action in a @acronym{GLR} parser.
1115
1116@vindex yychar
1117@cindex @acronym{GLR} parsers and @code{yychar}
1118@vindex yylval
1119@cindex @acronym{GLR} parsers and @code{yylval}
1120@vindex yylloc
1121@cindex @acronym{GLR} parsers and @code{yylloc}
1122In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1123the lookahead token present at the time of the associated reduction.
32c29292
JD
1124After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1125you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1126lookahead token's semantic value and location, if any.
32c29292
JD
1127In a nondeferred semantic action, you can also modify any of these variables to
1128influence syntax analysis.
742e4900 1129@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1130
1131@findex yyclearin
1132@cindex @acronym{GLR} parsers and @code{yyclearin}
1133In a deferred semantic action, it's too late to influence syntax analysis.
1134In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1135shallow copies of the values they had at the time of the associated reduction.
1136For this reason alone, modifying them is dangerous.
1137Moreover, the result of modifying them is undefined and subject to change with
1138future versions of Bison.
1139For example, if a semantic action might be deferred, you should never write it
1140to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1141memory referenced by @code{yylval}.
1142
1143@findex YYERROR
1144@cindex @acronym{GLR} parsers and @code{YYERROR}
1145Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1146(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1147initiate error recovery.
1148During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1149the same as its effect in an @acronym{LALR}(1) parser.
1150In a deferred semantic action, its effect is undefined.
1151@c The effect is probably a syntax error at the split point.
1152
8710fc41
JD
1153Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1154describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1155
fa7e68c3
PE
1156@node Compiler Requirements
1157@subsection Considerations when Compiling @acronym{GLR} Parsers
1158@cindex @code{inline}
9501dc6e 1159@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1160
38a92d50
PE
1161The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1162later. In addition, they use the @code{inline} keyword, which is not
1163C89, but is C99 and is a common extension in pre-C99 compilers. It is
1164up to the user of these parsers to handle
9501dc6e
AD
1165portability issues. For instance, if using Autoconf and the Autoconf
1166macro @code{AC_C_INLINE}, a mere
1167
1168@example
1169%@{
38a92d50 1170 #include <config.h>
9501dc6e
AD
1171%@}
1172@end example
1173
1174@noindent
1175will suffice. Otherwise, we suggest
1176
1177@example
1178%@{
38a92d50
PE
1179 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1180 #define inline
1181 #endif
9501dc6e
AD
1182%@}
1183@end example
676385e2 1184
342b8b6e 1185@node Locations Overview
847bf1f5
AD
1186@section Locations
1187@cindex location
95923bd6
AD
1188@cindex textual location
1189@cindex location, textual
847bf1f5
AD
1190
1191Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1192and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1193the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1194Bison provides a mechanism for handling these locations.
1195
72d2299c 1196Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1197associated location, but the type of locations is the same for all tokens and
72d2299c 1198groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1199structure for storing locations (@pxref{Locations}, for more details).
1200
1201Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1202set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1203is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1204@code{@@3}.
1205
1206When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1207of its left hand side (@pxref{Actions}). In the same way, another default
1208action is used for locations. However, the action for locations is general
847bf1f5 1209enough for most cases, meaning there is usually no need to describe for each
72d2299c 1210rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1211grouping, the default behavior of the output parser is to take the beginning
1212of the first symbol, and the end of the last symbol.
1213
342b8b6e 1214@node Bison Parser
bfa74976
RS
1215@section Bison Output: the Parser File
1216@cindex Bison parser
1217@cindex Bison utility
1218@cindex lexical analyzer, purpose
1219@cindex parser
1220
1221When you run Bison, you give it a Bison grammar file as input. The output
1222is a C source file that parses the language described by the grammar.
1223This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1224utility and the Bison parser are two distinct programs: the Bison utility
1225is a program whose output is the Bison parser that becomes part of your
1226program.
1227
1228The job of the Bison parser is to group tokens into groupings according to
1229the grammar rules---for example, to build identifiers and operators into
1230expressions. As it does this, it runs the actions for the grammar rules it
1231uses.
1232
704a47c4
AD
1233The tokens come from a function called the @dfn{lexical analyzer} that
1234you must supply in some fashion (such as by writing it in C). The Bison
1235parser calls the lexical analyzer each time it wants a new token. It
1236doesn't know what is ``inside'' the tokens (though their semantic values
1237may reflect this). Typically the lexical analyzer makes the tokens by
1238parsing characters of text, but Bison does not depend on this.
1239@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1240
1241The Bison parser file is C code which defines a function named
1242@code{yyparse} which implements that grammar. This function does not make
1243a complete C program: you must supply some additional functions. One is
1244the lexical analyzer. Another is an error-reporting function which the
1245parser calls to report an error. In addition, a complete C program must
1246start with a function called @code{main}; you have to provide this, and
1247arrange for it to call @code{yyparse} or the parser will never run.
1248@xref{Interface, ,Parser C-Language Interface}.
1249
f7ab6a50 1250Aside from the token type names and the symbols in the actions you
7093d0f5 1251write, all symbols defined in the Bison parser file itself
bfa74976
RS
1252begin with @samp{yy} or @samp{YY}. This includes interface functions
1253such as the lexical analyzer function @code{yylex}, the error reporting
1254function @code{yyerror} and the parser function @code{yyparse} itself.
1255This also includes numerous identifiers used for internal purposes.
1256Therefore, you should avoid using C identifiers starting with @samp{yy}
1257or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1258this manual. Also, you should avoid using the C identifiers
1259@samp{malloc} and @samp{free} for anything other than their usual
1260meanings.
bfa74976 1261
7093d0f5
AD
1262In some cases the Bison parser file includes system headers, and in
1263those cases your code should respect the identifiers reserved by those
55289366 1264headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1265@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1266declare memory allocators and related types. @code{<libintl.h>} is
1267included if message translation is in use
1268(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1269be included if you define @code{YYDEBUG} to a nonzero value
1270(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1271
342b8b6e 1272@node Stages
bfa74976
RS
1273@section Stages in Using Bison
1274@cindex stages in using Bison
1275@cindex using Bison
1276
1277The actual language-design process using Bison, from grammar specification
1278to a working compiler or interpreter, has these parts:
1279
1280@enumerate
1281@item
1282Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1283(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1284in the language, describe the action that is to be taken when an
1285instance of that rule is recognized. The action is described by a
1286sequence of C statements.
bfa74976
RS
1287
1288@item
704a47c4
AD
1289Write a lexical analyzer to process input and pass tokens to the parser.
1290The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1291Lexical Analyzer Function @code{yylex}}). It could also be produced
1292using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1293
1294@item
1295Write a controlling function that calls the Bison-produced parser.
1296
1297@item
1298Write error-reporting routines.
1299@end enumerate
1300
1301To turn this source code as written into a runnable program, you
1302must follow these steps:
1303
1304@enumerate
1305@item
1306Run Bison on the grammar to produce the parser.
1307
1308@item
1309Compile the code output by Bison, as well as any other source files.
1310
1311@item
1312Link the object files to produce the finished product.
1313@end enumerate
1314
342b8b6e 1315@node Grammar Layout
bfa74976
RS
1316@section The Overall Layout of a Bison Grammar
1317@cindex grammar file
1318@cindex file format
1319@cindex format of grammar file
1320@cindex layout of Bison grammar
1321
1322The input file for the Bison utility is a @dfn{Bison grammar file}. The
1323general form of a Bison grammar file is as follows:
1324
1325@example
1326%@{
08e49d20 1327@var{Prologue}
bfa74976
RS
1328%@}
1329
1330@var{Bison declarations}
1331
1332%%
1333@var{Grammar rules}
1334%%
08e49d20 1335@var{Epilogue}
bfa74976
RS
1336@end example
1337
1338@noindent
1339The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1340in every Bison grammar file to separate the sections.
1341
72d2299c 1342The prologue may define types and variables used in the actions. You can
342b8b6e 1343also use preprocessor commands to define macros used there, and use
bfa74976 1344@code{#include} to include header files that do any of these things.
38a92d50
PE
1345You need to declare the lexical analyzer @code{yylex} and the error
1346printer @code{yyerror} here, along with any other global identifiers
1347used by the actions in the grammar rules.
bfa74976
RS
1348
1349The Bison declarations declare the names of the terminal and nonterminal
1350symbols, and may also describe operator precedence and the data types of
1351semantic values of various symbols.
1352
1353The grammar rules define how to construct each nonterminal symbol from its
1354parts.
1355
38a92d50
PE
1356The epilogue can contain any code you want to use. Often the
1357definitions of functions declared in the prologue go here. In a
1358simple program, all the rest of the program can go here.
bfa74976 1359
342b8b6e 1360@node Examples
bfa74976
RS
1361@chapter Examples
1362@cindex simple examples
1363@cindex examples, simple
1364
1365Now we show and explain three sample programs written using Bison: a
1366reverse polish notation calculator, an algebraic (infix) notation
1367calculator, and a multi-function calculator. All three have been tested
1368under BSD Unix 4.3; each produces a usable, though limited, interactive
1369desk-top calculator.
1370
1371These examples are simple, but Bison grammars for real programming
aa08666d
AD
1372languages are written the same way. You can copy these examples into a
1373source file to try them.
bfa74976
RS
1374
1375@menu
1376* RPN Calc:: Reverse polish notation calculator;
1377 a first example with no operator precedence.
1378* Infix Calc:: Infix (algebraic) notation calculator.
1379 Operator precedence is introduced.
1380* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1381* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1382* Multi-function Calc:: Calculator with memory and trig functions.
1383 It uses multiple data-types for semantic values.
1384* Exercises:: Ideas for improving the multi-function calculator.
1385@end menu
1386
342b8b6e 1387@node RPN Calc
bfa74976
RS
1388@section Reverse Polish Notation Calculator
1389@cindex reverse polish notation
1390@cindex polish notation calculator
1391@cindex @code{rpcalc}
1392@cindex calculator, simple
1393
1394The first example is that of a simple double-precision @dfn{reverse polish
1395notation} calculator (a calculator using postfix operators). This example
1396provides a good starting point, since operator precedence is not an issue.
1397The second example will illustrate how operator precedence is handled.
1398
1399The source code for this calculator is named @file{rpcalc.y}. The
1400@samp{.y} extension is a convention used for Bison input files.
1401
1402@menu
75f5aaea 1403* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1404* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1405* Lexer: Rpcalc Lexer. The lexical analyzer.
1406* Main: Rpcalc Main. The controlling function.
1407* Error: Rpcalc Error. The error reporting function.
1408* Gen: Rpcalc Gen. Running Bison on the grammar file.
1409* Comp: Rpcalc Compile. Run the C compiler on the output code.
1410@end menu
1411
342b8b6e 1412@node Rpcalc Decls
bfa74976
RS
1413@subsection Declarations for @code{rpcalc}
1414
1415Here are the C and Bison declarations for the reverse polish notation
1416calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1417
1418@example
72d2299c 1419/* Reverse polish notation calculator. */
bfa74976
RS
1420
1421%@{
38a92d50
PE
1422 #define YYSTYPE double
1423 #include <math.h>
1424 int yylex (void);
1425 void yyerror (char const *);
bfa74976
RS
1426%@}
1427
1428%token NUM
1429
72d2299c 1430%% /* Grammar rules and actions follow. */
bfa74976
RS
1431@end example
1432
75f5aaea 1433The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1434preprocessor directives and two forward declarations.
bfa74976
RS
1435
1436The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1437specifying the C data type for semantic values of both tokens and
1438groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1439Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1440don't define it, @code{int} is the default. Because we specify
1441@code{double}, each token and each expression has an associated value,
1442which is a floating point number.
bfa74976
RS
1443
1444The @code{#include} directive is used to declare the exponentiation
1445function @code{pow}.
1446
38a92d50
PE
1447The forward declarations for @code{yylex} and @code{yyerror} are
1448needed because the C language requires that functions be declared
1449before they are used. These functions will be defined in the
1450epilogue, but the parser calls them so they must be declared in the
1451prologue.
1452
704a47c4
AD
1453The second section, Bison declarations, provides information to Bison
1454about the token types (@pxref{Bison Declarations, ,The Bison
1455Declarations Section}). Each terminal symbol that is not a
1456single-character literal must be declared here. (Single-character
bfa74976
RS
1457literals normally don't need to be declared.) In this example, all the
1458arithmetic operators are designated by single-character literals, so the
1459only terminal symbol that needs to be declared is @code{NUM}, the token
1460type for numeric constants.
1461
342b8b6e 1462@node Rpcalc Rules
bfa74976
RS
1463@subsection Grammar Rules for @code{rpcalc}
1464
1465Here are the grammar rules for the reverse polish notation calculator.
1466
1467@example
1468input: /* empty */
1469 | input line
1470;
1471
1472line: '\n'
18b519c0 1473 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1474;
1475
18b519c0
AD
1476exp: NUM @{ $$ = $1; @}
1477 | exp exp '+' @{ $$ = $1 + $2; @}
1478 | exp exp '-' @{ $$ = $1 - $2; @}
1479 | exp exp '*' @{ $$ = $1 * $2; @}
1480 | exp exp '/' @{ $$ = $1 / $2; @}
1481 /* Exponentiation */
1482 | exp exp '^' @{ $$ = pow ($1, $2); @}
1483 /* Unary minus */
1484 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1485;
1486%%
1487@end example
1488
1489The groupings of the rpcalc ``language'' defined here are the expression
1490(given the name @code{exp}), the line of input (@code{line}), and the
1491complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1492symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1493which is read as ``or''. The following sections explain what these rules
1494mean.
1495
1496The semantics of the language is determined by the actions taken when a
1497grouping is recognized. The actions are the C code that appears inside
1498braces. @xref{Actions}.
1499
1500You must specify these actions in C, but Bison provides the means for
1501passing semantic values between the rules. In each action, the
1502pseudo-variable @code{$$} stands for the semantic value for the grouping
1503that the rule is going to construct. Assigning a value to @code{$$} is the
1504main job of most actions. The semantic values of the components of the
1505rule are referred to as @code{$1}, @code{$2}, and so on.
1506
1507@menu
13863333
AD
1508* Rpcalc Input::
1509* Rpcalc Line::
1510* Rpcalc Expr::
bfa74976
RS
1511@end menu
1512
342b8b6e 1513@node Rpcalc Input
bfa74976
RS
1514@subsubsection Explanation of @code{input}
1515
1516Consider the definition of @code{input}:
1517
1518@example
1519input: /* empty */
1520 | input line
1521;
1522@end example
1523
1524This definition reads as follows: ``A complete input is either an empty
1525string, or a complete input followed by an input line''. Notice that
1526``complete input'' is defined in terms of itself. This definition is said
1527to be @dfn{left recursive} since @code{input} appears always as the
1528leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1529
1530The first alternative is empty because there are no symbols between the
1531colon and the first @samp{|}; this means that @code{input} can match an
1532empty string of input (no tokens). We write the rules this way because it
1533is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1534It's conventional to put an empty alternative first and write the comment
1535@samp{/* empty */} in it.
1536
1537The second alternate rule (@code{input line}) handles all nontrivial input.
1538It means, ``After reading any number of lines, read one more line if
1539possible.'' The left recursion makes this rule into a loop. Since the
1540first alternative matches empty input, the loop can be executed zero or
1541more times.
1542
1543The parser function @code{yyparse} continues to process input until a
1544grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1545input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1546
342b8b6e 1547@node Rpcalc Line
bfa74976
RS
1548@subsubsection Explanation of @code{line}
1549
1550Now consider the definition of @code{line}:
1551
1552@example
1553line: '\n'
1554 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1555;
1556@end example
1557
1558The first alternative is a token which is a newline character; this means
1559that rpcalc accepts a blank line (and ignores it, since there is no
1560action). The second alternative is an expression followed by a newline.
1561This is the alternative that makes rpcalc useful. The semantic value of
1562the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1563question is the first symbol in the alternative. The action prints this
1564value, which is the result of the computation the user asked for.
1565
1566This action is unusual because it does not assign a value to @code{$$}. As
1567a consequence, the semantic value associated with the @code{line} is
1568uninitialized (its value will be unpredictable). This would be a bug if
1569that value were ever used, but we don't use it: once rpcalc has printed the
1570value of the user's input line, that value is no longer needed.
1571
342b8b6e 1572@node Rpcalc Expr
bfa74976
RS
1573@subsubsection Explanation of @code{expr}
1574
1575The @code{exp} grouping has several rules, one for each kind of expression.
1576The first rule handles the simplest expressions: those that are just numbers.
1577The second handles an addition-expression, which looks like two expressions
1578followed by a plus-sign. The third handles subtraction, and so on.
1579
1580@example
1581exp: NUM
1582 | exp exp '+' @{ $$ = $1 + $2; @}
1583 | exp exp '-' @{ $$ = $1 - $2; @}
1584 @dots{}
1585 ;
1586@end example
1587
1588We have used @samp{|} to join all the rules for @code{exp}, but we could
1589equally well have written them separately:
1590
1591@example
1592exp: NUM ;
1593exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1594exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1595 @dots{}
1596@end example
1597
1598Most of the rules have actions that compute the value of the expression in
1599terms of the value of its parts. For example, in the rule for addition,
1600@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1601the second one. The third component, @code{'+'}, has no meaningful
1602associated semantic value, but if it had one you could refer to it as
1603@code{$3}. When @code{yyparse} recognizes a sum expression using this
1604rule, the sum of the two subexpressions' values is produced as the value of
1605the entire expression. @xref{Actions}.
1606
1607You don't have to give an action for every rule. When a rule has no
1608action, Bison by default copies the value of @code{$1} into @code{$$}.
1609This is what happens in the first rule (the one that uses @code{NUM}).
1610
1611The formatting shown here is the recommended convention, but Bison does
72d2299c 1612not require it. You can add or change white space as much as you wish.
bfa74976
RS
1613For example, this:
1614
1615@example
99a9344e 1616exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1617@end example
1618
1619@noindent
1620means the same thing as this:
1621
1622@example
1623exp: NUM
1624 | exp exp '+' @{ $$ = $1 + $2; @}
1625 | @dots{}
99a9344e 1626;
bfa74976
RS
1627@end example
1628
1629@noindent
1630The latter, however, is much more readable.
1631
342b8b6e 1632@node Rpcalc Lexer
bfa74976
RS
1633@subsection The @code{rpcalc} Lexical Analyzer
1634@cindex writing a lexical analyzer
1635@cindex lexical analyzer, writing
1636
704a47c4
AD
1637The lexical analyzer's job is low-level parsing: converting characters
1638or sequences of characters into tokens. The Bison parser gets its
1639tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1640Analyzer Function @code{yylex}}.
bfa74976 1641
c827f760
PE
1642Only a simple lexical analyzer is needed for the @acronym{RPN}
1643calculator. This
bfa74976
RS
1644lexical analyzer skips blanks and tabs, then reads in numbers as
1645@code{double} and returns them as @code{NUM} tokens. Any other character
1646that isn't part of a number is a separate token. Note that the token-code
1647for such a single-character token is the character itself.
1648
1649The return value of the lexical analyzer function is a numeric code which
1650represents a token type. The same text used in Bison rules to stand for
1651this token type is also a C expression for the numeric code for the type.
1652This works in two ways. If the token type is a character literal, then its
e966383b 1653numeric code is that of the character; you can use the same
bfa74976
RS
1654character literal in the lexical analyzer to express the number. If the
1655token type is an identifier, that identifier is defined by Bison as a C
1656macro whose definition is the appropriate number. In this example,
1657therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1658
1964ad8c
AD
1659The semantic value of the token (if it has one) is stored into the
1660global variable @code{yylval}, which is where the Bison parser will look
1661for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1662defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1663,Declarations for @code{rpcalc}}.)
bfa74976 1664
72d2299c
PE
1665A token type code of zero is returned if the end-of-input is encountered.
1666(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1667
1668Here is the code for the lexical analyzer:
1669
1670@example
1671@group
72d2299c 1672/* The lexical analyzer returns a double floating point
e966383b 1673 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1674 of the character read if not a number. It skips all blanks
1675 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1676
1677#include <ctype.h>
1678@end group
1679
1680@group
13863333
AD
1681int
1682yylex (void)
bfa74976
RS
1683@{
1684 int c;
1685
72d2299c 1686 /* Skip white space. */
13863333 1687 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1688 ;
1689@end group
1690@group
72d2299c 1691 /* Process numbers. */
13863333 1692 if (c == '.' || isdigit (c))
bfa74976
RS
1693 @{
1694 ungetc (c, stdin);
1695 scanf ("%lf", &yylval);
1696 return NUM;
1697 @}
1698@end group
1699@group
72d2299c 1700 /* Return end-of-input. */
13863333 1701 if (c == EOF)
bfa74976 1702 return 0;
72d2299c 1703 /* Return a single char. */
13863333 1704 return c;
bfa74976
RS
1705@}
1706@end group
1707@end example
1708
342b8b6e 1709@node Rpcalc Main
bfa74976
RS
1710@subsection The Controlling Function
1711@cindex controlling function
1712@cindex main function in simple example
1713
1714In keeping with the spirit of this example, the controlling function is
1715kept to the bare minimum. The only requirement is that it call
1716@code{yyparse} to start the process of parsing.
1717
1718@example
1719@group
13863333
AD
1720int
1721main (void)
bfa74976 1722@{
13863333 1723 return yyparse ();
bfa74976
RS
1724@}
1725@end group
1726@end example
1727
342b8b6e 1728@node Rpcalc Error
bfa74976
RS
1729@subsection The Error Reporting Routine
1730@cindex error reporting routine
1731
1732When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1733function @code{yyerror} to print an error message (usually but not
6e649e65 1734always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1735@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1736here is the definition we will use:
bfa74976
RS
1737
1738@example
1739@group
1740#include <stdio.h>
1741
38a92d50 1742/* Called by yyparse on error. */
13863333 1743void
38a92d50 1744yyerror (char const *s)
bfa74976 1745@{
4e03e201 1746 fprintf (stderr, "%s\n", s);
bfa74976
RS
1747@}
1748@end group
1749@end example
1750
1751After @code{yyerror} returns, the Bison parser may recover from the error
1752and continue parsing if the grammar contains a suitable error rule
1753(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1754have not written any error rules in this example, so any invalid input will
1755cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1756real calculator, but it is adequate for the first example.
bfa74976 1757
342b8b6e 1758@node Rpcalc Gen
bfa74976
RS
1759@subsection Running Bison to Make the Parser
1760@cindex running Bison (introduction)
1761
ceed8467
AD
1762Before running Bison to produce a parser, we need to decide how to
1763arrange all the source code in one or more source files. For such a
1764simple example, the easiest thing is to put everything in one file. The
1765definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1766end, in the epilogue of the file
75f5aaea 1767(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1768
1769For a large project, you would probably have several source files, and use
1770@code{make} to arrange to recompile them.
1771
1772With all the source in a single file, you use the following command to
1773convert it into a parser file:
1774
1775@example
fa4d969f 1776bison @var{file}.y
bfa74976
RS
1777@end example
1778
1779@noindent
1780In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1781@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1782removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1783Bison contains the source code for @code{yyparse}. The additional
1784functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1785are copied verbatim to the output.
1786
342b8b6e 1787@node Rpcalc Compile
bfa74976
RS
1788@subsection Compiling the Parser File
1789@cindex compiling the parser
1790
1791Here is how to compile and run the parser file:
1792
1793@example
1794@group
1795# @r{List files in current directory.}
9edcd895 1796$ @kbd{ls}
bfa74976
RS
1797rpcalc.tab.c rpcalc.y
1798@end group
1799
1800@group
1801# @r{Compile the Bison parser.}
1802# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1803$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1804@end group
1805
1806@group
1807# @r{List files again.}
9edcd895 1808$ @kbd{ls}
bfa74976
RS
1809rpcalc rpcalc.tab.c rpcalc.y
1810@end group
1811@end example
1812
1813The file @file{rpcalc} now contains the executable code. Here is an
1814example session using @code{rpcalc}.
1815
1816@example
9edcd895
AD
1817$ @kbd{rpcalc}
1818@kbd{4 9 +}
bfa74976 181913
9edcd895 1820@kbd{3 7 + 3 4 5 *+-}
bfa74976 1821-13
9edcd895 1822@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182313
9edcd895 1824@kbd{5 6 / 4 n +}
bfa74976 1825-3.166666667
9edcd895 1826@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182781
9edcd895
AD
1828@kbd{^D} @r{End-of-file indicator}
1829$
bfa74976
RS
1830@end example
1831
342b8b6e 1832@node Infix Calc
bfa74976
RS
1833@section Infix Notation Calculator: @code{calc}
1834@cindex infix notation calculator
1835@cindex @code{calc}
1836@cindex calculator, infix notation
1837
1838We now modify rpcalc to handle infix operators instead of postfix. Infix
1839notation involves the concept of operator precedence and the need for
1840parentheses nested to arbitrary depth. Here is the Bison code for
1841@file{calc.y}, an infix desk-top calculator.
1842
1843@example
38a92d50 1844/* Infix notation calculator. */
bfa74976
RS
1845
1846%@{
38a92d50
PE
1847 #define YYSTYPE double
1848 #include <math.h>
1849 #include <stdio.h>
1850 int yylex (void);
1851 void yyerror (char const *);
bfa74976
RS
1852%@}
1853
38a92d50 1854/* Bison declarations. */
bfa74976
RS
1855%token NUM
1856%left '-' '+'
1857%left '*' '/'
1858%left NEG /* negation--unary minus */
38a92d50 1859%right '^' /* exponentiation */
bfa74976 1860
38a92d50
PE
1861%% /* The grammar follows. */
1862input: /* empty */
bfa74976
RS
1863 | input line
1864;
1865
1866line: '\n'
1867 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1868;
1869
1870exp: NUM @{ $$ = $1; @}
1871 | exp '+' exp @{ $$ = $1 + $3; @}
1872 | exp '-' exp @{ $$ = $1 - $3; @}
1873 | exp '*' exp @{ $$ = $1 * $3; @}
1874 | exp '/' exp @{ $$ = $1 / $3; @}
1875 | '-' exp %prec NEG @{ $$ = -$2; @}
1876 | exp '^' exp @{ $$ = pow ($1, $3); @}
1877 | '(' exp ')' @{ $$ = $2; @}
1878;
1879%%
1880@end example
1881
1882@noindent
ceed8467
AD
1883The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1884same as before.
bfa74976
RS
1885
1886There are two important new features shown in this code.
1887
1888In the second section (Bison declarations), @code{%left} declares token
1889types and says they are left-associative operators. The declarations
1890@code{%left} and @code{%right} (right associativity) take the place of
1891@code{%token} which is used to declare a token type name without
1892associativity. (These tokens are single-character literals, which
1893ordinarily don't need to be declared. We declare them here to specify
1894the associativity.)
1895
1896Operator precedence is determined by the line ordering of the
1897declarations; the higher the line number of the declaration (lower on
1898the page or screen), the higher the precedence. Hence, exponentiation
1899has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1900by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1901Precedence}.
bfa74976 1902
704a47c4
AD
1903The other important new feature is the @code{%prec} in the grammar
1904section for the unary minus operator. The @code{%prec} simply instructs
1905Bison that the rule @samp{| '-' exp} has the same precedence as
1906@code{NEG}---in this case the next-to-highest. @xref{Contextual
1907Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1908
1909Here is a sample run of @file{calc.y}:
1910
1911@need 500
1912@example
9edcd895
AD
1913$ @kbd{calc}
1914@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19156.880952381
9edcd895 1916@kbd{-56 + 2}
bfa74976 1917-54
9edcd895 1918@kbd{3 ^ 2}
bfa74976
RS
19199
1920@end example
1921
342b8b6e 1922@node Simple Error Recovery
bfa74976
RS
1923@section Simple Error Recovery
1924@cindex error recovery, simple
1925
1926Up to this point, this manual has not addressed the issue of @dfn{error
1927recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1928error. All we have handled is error reporting with @code{yyerror}.
1929Recall that by default @code{yyparse} returns after calling
1930@code{yyerror}. This means that an erroneous input line causes the
1931calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1932
1933The Bison language itself includes the reserved word @code{error}, which
1934may be included in the grammar rules. In the example below it has
1935been added to one of the alternatives for @code{line}:
1936
1937@example
1938@group
1939line: '\n'
1940 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1941 | error '\n' @{ yyerrok; @}
1942;
1943@end group
1944@end example
1945
ceed8467 1946This addition to the grammar allows for simple error recovery in the
6e649e65 1947event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1948read, the error will be recognized by the third rule for @code{line},
1949and parsing will continue. (The @code{yyerror} function is still called
1950upon to print its message as well.) The action executes the statement
1951@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1952that error recovery is complete (@pxref{Error Recovery}). Note the
1953difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1954misprint.
bfa74976
RS
1955
1956This form of error recovery deals with syntax errors. There are other
1957kinds of errors; for example, division by zero, which raises an exception
1958signal that is normally fatal. A real calculator program must handle this
1959signal and use @code{longjmp} to return to @code{main} and resume parsing
1960input lines; it would also have to discard the rest of the current line of
1961input. We won't discuss this issue further because it is not specific to
1962Bison programs.
1963
342b8b6e
AD
1964@node Location Tracking Calc
1965@section Location Tracking Calculator: @code{ltcalc}
1966@cindex location tracking calculator
1967@cindex @code{ltcalc}
1968@cindex calculator, location tracking
1969
9edcd895
AD
1970This example extends the infix notation calculator with location
1971tracking. This feature will be used to improve the error messages. For
1972the sake of clarity, this example is a simple integer calculator, since
1973most of the work needed to use locations will be done in the lexical
72d2299c 1974analyzer.
342b8b6e
AD
1975
1976@menu
1977* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1978* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1979* Lexer: Ltcalc Lexer. The lexical analyzer.
1980@end menu
1981
1982@node Ltcalc Decls
1983@subsection Declarations for @code{ltcalc}
1984
9edcd895
AD
1985The C and Bison declarations for the location tracking calculator are
1986the same as the declarations for the infix notation calculator.
342b8b6e
AD
1987
1988@example
1989/* Location tracking calculator. */
1990
1991%@{
38a92d50
PE
1992 #define YYSTYPE int
1993 #include <math.h>
1994 int yylex (void);
1995 void yyerror (char const *);
342b8b6e
AD
1996%@}
1997
1998/* Bison declarations. */
1999%token NUM
2000
2001%left '-' '+'
2002%left '*' '/'
2003%left NEG
2004%right '^'
2005
38a92d50 2006%% /* The grammar follows. */
342b8b6e
AD
2007@end example
2008
9edcd895
AD
2009@noindent
2010Note there are no declarations specific to locations. Defining a data
2011type for storing locations is not needed: we will use the type provided
2012by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2013four member structure with the following integer fields:
2014@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2015@code{last_column}. By conventions, and in accordance with the GNU
2016Coding Standards and common practice, the line and column count both
2017start at 1.
342b8b6e
AD
2018
2019@node Ltcalc Rules
2020@subsection Grammar Rules for @code{ltcalc}
2021
9edcd895
AD
2022Whether handling locations or not has no effect on the syntax of your
2023language. Therefore, grammar rules for this example will be very close
2024to those of the previous example: we will only modify them to benefit
2025from the new information.
342b8b6e 2026
9edcd895
AD
2027Here, we will use locations to report divisions by zero, and locate the
2028wrong expressions or subexpressions.
342b8b6e
AD
2029
2030@example
2031@group
2032input : /* empty */
2033 | input line
2034;
2035@end group
2036
2037@group
2038line : '\n'
2039 | exp '\n' @{ printf ("%d\n", $1); @}
2040;
2041@end group
2042
2043@group
2044exp : NUM @{ $$ = $1; @}
2045 | exp '+' exp @{ $$ = $1 + $3; @}
2046 | exp '-' exp @{ $$ = $1 - $3; @}
2047 | exp '*' exp @{ $$ = $1 * $3; @}
2048@end group
342b8b6e 2049@group
9edcd895 2050 | exp '/' exp
342b8b6e
AD
2051 @{
2052 if ($3)
2053 $$ = $1 / $3;
2054 else
2055 @{
2056 $$ = 1;
9edcd895
AD
2057 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2058 @@3.first_line, @@3.first_column,
2059 @@3.last_line, @@3.last_column);
342b8b6e
AD
2060 @}
2061 @}
2062@end group
2063@group
178e123e 2064 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2065 | exp '^' exp @{ $$ = pow ($1, $3); @}
2066 | '(' exp ')' @{ $$ = $2; @}
2067@end group
2068@end example
2069
2070This code shows how to reach locations inside of semantic actions, by
2071using the pseudo-variables @code{@@@var{n}} for rule components, and the
2072pseudo-variable @code{@@$} for groupings.
2073
9edcd895
AD
2074We don't need to assign a value to @code{@@$}: the output parser does it
2075automatically. By default, before executing the C code of each action,
2076@code{@@$} is set to range from the beginning of @code{@@1} to the end
2077of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2078can be redefined (@pxref{Location Default Action, , Default Action for
2079Locations}), and for very specific rules, @code{@@$} can be computed by
2080hand.
342b8b6e
AD
2081
2082@node Ltcalc Lexer
2083@subsection The @code{ltcalc} Lexical Analyzer.
2084
9edcd895 2085Until now, we relied on Bison's defaults to enable location
72d2299c 2086tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2087able to feed the parser with the token locations, as it already does for
2088semantic values.
342b8b6e 2089
9edcd895
AD
2090To this end, we must take into account every single character of the
2091input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2092
2093@example
2094@group
2095int
2096yylex (void)
2097@{
2098 int c;
18b519c0 2099@end group
342b8b6e 2100
18b519c0 2101@group
72d2299c 2102 /* Skip white space. */
342b8b6e
AD
2103 while ((c = getchar ()) == ' ' || c == '\t')
2104 ++yylloc.last_column;
18b519c0 2105@end group
342b8b6e 2106
18b519c0 2107@group
72d2299c 2108 /* Step. */
342b8b6e
AD
2109 yylloc.first_line = yylloc.last_line;
2110 yylloc.first_column = yylloc.last_column;
2111@end group
2112
2113@group
72d2299c 2114 /* Process numbers. */
342b8b6e
AD
2115 if (isdigit (c))
2116 @{
2117 yylval = c - '0';
2118 ++yylloc.last_column;
2119 while (isdigit (c = getchar ()))
2120 @{
2121 ++yylloc.last_column;
2122 yylval = yylval * 10 + c - '0';
2123 @}
2124 ungetc (c, stdin);
2125 return NUM;
2126 @}
2127@end group
2128
72d2299c 2129 /* Return end-of-input. */
342b8b6e
AD
2130 if (c == EOF)
2131 return 0;
2132
72d2299c 2133 /* Return a single char, and update location. */
342b8b6e
AD
2134 if (c == '\n')
2135 @{
2136 ++yylloc.last_line;
2137 yylloc.last_column = 0;
2138 @}
2139 else
2140 ++yylloc.last_column;
2141 return c;
2142@}
2143@end example
2144
9edcd895
AD
2145Basically, the lexical analyzer performs the same processing as before:
2146it skips blanks and tabs, and reads numbers or single-character tokens.
2147In addition, it updates @code{yylloc}, the global variable (of type
2148@code{YYLTYPE}) containing the token's location.
342b8b6e 2149
9edcd895 2150Now, each time this function returns a token, the parser has its number
72d2299c 2151as well as its semantic value, and its location in the text. The last
9edcd895
AD
2152needed change is to initialize @code{yylloc}, for example in the
2153controlling function:
342b8b6e
AD
2154
2155@example
9edcd895 2156@group
342b8b6e
AD
2157int
2158main (void)
2159@{
2160 yylloc.first_line = yylloc.last_line = 1;
2161 yylloc.first_column = yylloc.last_column = 0;
2162 return yyparse ();
2163@}
9edcd895 2164@end group
342b8b6e
AD
2165@end example
2166
9edcd895
AD
2167Remember that computing locations is not a matter of syntax. Every
2168character must be associated to a location update, whether it is in
2169valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2170
2171@node Multi-function Calc
bfa74976
RS
2172@section Multi-Function Calculator: @code{mfcalc}
2173@cindex multi-function calculator
2174@cindex @code{mfcalc}
2175@cindex calculator, multi-function
2176
2177Now that the basics of Bison have been discussed, it is time to move on to
2178a more advanced problem. The above calculators provided only five
2179functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2180be nice to have a calculator that provides other mathematical functions such
2181as @code{sin}, @code{cos}, etc.
2182
2183It is easy to add new operators to the infix calculator as long as they are
2184only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2185back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2186adding a new operator. But we want something more flexible: built-in
2187functions whose syntax has this form:
2188
2189@example
2190@var{function_name} (@var{argument})
2191@end example
2192
2193@noindent
2194At the same time, we will add memory to the calculator, by allowing you
2195to create named variables, store values in them, and use them later.
2196Here is a sample session with the multi-function calculator:
2197
2198@example
9edcd895
AD
2199$ @kbd{mfcalc}
2200@kbd{pi = 3.141592653589}
bfa74976 22013.1415926536
9edcd895 2202@kbd{sin(pi)}
bfa74976 22030.0000000000
9edcd895 2204@kbd{alpha = beta1 = 2.3}
bfa74976 22052.3000000000
9edcd895 2206@kbd{alpha}
bfa74976 22072.3000000000
9edcd895 2208@kbd{ln(alpha)}
bfa74976 22090.8329091229
9edcd895 2210@kbd{exp(ln(beta1))}
bfa74976 22112.3000000000
9edcd895 2212$
bfa74976
RS
2213@end example
2214
2215Note that multiple assignment and nested function calls are permitted.
2216
2217@menu
2218* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2219* Rules: Mfcalc Rules. Grammar rules for the calculator.
2220* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2221@end menu
2222
342b8b6e 2223@node Mfcalc Decl
bfa74976
RS
2224@subsection Declarations for @code{mfcalc}
2225
2226Here are the C and Bison declarations for the multi-function calculator.
2227
2228@smallexample
18b519c0 2229@group
bfa74976 2230%@{
38a92d50
PE
2231 #include <math.h> /* For math functions, cos(), sin(), etc. */
2232 #include "calc.h" /* Contains definition of `symrec'. */
2233 int yylex (void);
2234 void yyerror (char const *);
bfa74976 2235%@}
18b519c0
AD
2236@end group
2237@group
bfa74976 2238%union @{
38a92d50
PE
2239 double val; /* For returning numbers. */
2240 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2241@}
18b519c0 2242@end group
38a92d50
PE
2243%token <val> NUM /* Simple double precision number. */
2244%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2245%type <val> exp
2246
18b519c0 2247@group
bfa74976
RS
2248%right '='
2249%left '-' '+'
2250%left '*' '/'
38a92d50
PE
2251%left NEG /* negation--unary minus */
2252%right '^' /* exponentiation */
18b519c0 2253@end group
38a92d50 2254%% /* The grammar follows. */
bfa74976
RS
2255@end smallexample
2256
2257The above grammar introduces only two new features of the Bison language.
2258These features allow semantic values to have various data types
2259(@pxref{Multiple Types, ,More Than One Value Type}).
2260
2261The @code{%union} declaration specifies the entire list of possible types;
2262this is instead of defining @code{YYSTYPE}. The allowable types are now
2263double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2264the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2265
2266Since values can now have various types, it is necessary to associate a
2267type with each grammar symbol whose semantic value is used. These symbols
2268are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2269declarations are augmented with information about their data type (placed
2270between angle brackets).
2271
704a47c4
AD
2272The Bison construct @code{%type} is used for declaring nonterminal
2273symbols, just as @code{%token} is used for declaring token types. We
2274have not used @code{%type} before because nonterminal symbols are
2275normally declared implicitly by the rules that define them. But
2276@code{exp} must be declared explicitly so we can specify its value type.
2277@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2278
342b8b6e 2279@node Mfcalc Rules
bfa74976
RS
2280@subsection Grammar Rules for @code{mfcalc}
2281
2282Here are the grammar rules for the multi-function calculator.
2283Most of them are copied directly from @code{calc}; three rules,
2284those which mention @code{VAR} or @code{FNCT}, are new.
2285
2286@smallexample
18b519c0 2287@group
bfa74976
RS
2288input: /* empty */
2289 | input line
2290;
18b519c0 2291@end group
bfa74976 2292
18b519c0 2293@group
bfa74976
RS
2294line:
2295 '\n'
2296 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2297 | error '\n' @{ yyerrok; @}
2298;
18b519c0 2299@end group
bfa74976 2300
18b519c0 2301@group
bfa74976
RS
2302exp: NUM @{ $$ = $1; @}
2303 | VAR @{ $$ = $1->value.var; @}
2304 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2305 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2306 | exp '+' exp @{ $$ = $1 + $3; @}
2307 | exp '-' exp @{ $$ = $1 - $3; @}
2308 | exp '*' exp @{ $$ = $1 * $3; @}
2309 | exp '/' exp @{ $$ = $1 / $3; @}
2310 | '-' exp %prec NEG @{ $$ = -$2; @}
2311 | exp '^' exp @{ $$ = pow ($1, $3); @}
2312 | '(' exp ')' @{ $$ = $2; @}
2313;
18b519c0 2314@end group
38a92d50 2315/* End of grammar. */
bfa74976
RS
2316%%
2317@end smallexample
2318
342b8b6e 2319@node Mfcalc Symtab
bfa74976
RS
2320@subsection The @code{mfcalc} Symbol Table
2321@cindex symbol table example
2322
2323The multi-function calculator requires a symbol table to keep track of the
2324names and meanings of variables and functions. This doesn't affect the
2325grammar rules (except for the actions) or the Bison declarations, but it
2326requires some additional C functions for support.
2327
2328The symbol table itself consists of a linked list of records. Its
2329definition, which is kept in the header @file{calc.h}, is as follows. It
2330provides for either functions or variables to be placed in the table.
2331
2332@smallexample
2333@group
38a92d50 2334/* Function type. */
32dfccf8 2335typedef double (*func_t) (double);
72f889cc 2336@end group
32dfccf8 2337
72f889cc 2338@group
38a92d50 2339/* Data type for links in the chain of symbols. */
bfa74976
RS
2340struct symrec
2341@{
38a92d50 2342 char *name; /* name of symbol */
bfa74976 2343 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2344 union
2345 @{
38a92d50
PE
2346 double var; /* value of a VAR */
2347 func_t fnctptr; /* value of a FNCT */
bfa74976 2348 @} value;
38a92d50 2349 struct symrec *next; /* link field */
bfa74976
RS
2350@};
2351@end group
2352
2353@group
2354typedef struct symrec symrec;
2355
38a92d50 2356/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2357extern symrec *sym_table;
2358
a730d142 2359symrec *putsym (char const *, int);
38a92d50 2360symrec *getsym (char const *);
bfa74976
RS
2361@end group
2362@end smallexample
2363
2364The new version of @code{main} includes a call to @code{init_table}, a
2365function that initializes the symbol table. Here it is, and
2366@code{init_table} as well:
2367
2368@smallexample
bfa74976
RS
2369#include <stdio.h>
2370
18b519c0 2371@group
38a92d50 2372/* Called by yyparse on error. */
13863333 2373void
38a92d50 2374yyerror (char const *s)
bfa74976
RS
2375@{
2376 printf ("%s\n", s);
2377@}
18b519c0 2378@end group
bfa74976 2379
18b519c0 2380@group
bfa74976
RS
2381struct init
2382@{
38a92d50
PE
2383 char const *fname;
2384 double (*fnct) (double);
bfa74976
RS
2385@};
2386@end group
2387
2388@group
38a92d50 2389struct init const arith_fncts[] =
13863333 2390@{
32dfccf8
AD
2391 "sin", sin,
2392 "cos", cos,
13863333 2393 "atan", atan,
32dfccf8
AD
2394 "ln", log,
2395 "exp", exp,
13863333
AD
2396 "sqrt", sqrt,
2397 0, 0
2398@};
18b519c0 2399@end group
bfa74976 2400
18b519c0 2401@group
bfa74976 2402/* The symbol table: a chain of `struct symrec'. */
38a92d50 2403symrec *sym_table;
bfa74976
RS
2404@end group
2405
2406@group
72d2299c 2407/* Put arithmetic functions in table. */
13863333
AD
2408void
2409init_table (void)
bfa74976
RS
2410@{
2411 int i;
2412 symrec *ptr;
2413 for (i = 0; arith_fncts[i].fname != 0; i++)
2414 @{
2415 ptr = putsym (arith_fncts[i].fname, FNCT);
2416 ptr->value.fnctptr = arith_fncts[i].fnct;
2417 @}
2418@}
2419@end group
38a92d50
PE
2420
2421@group
2422int
2423main (void)
2424@{
2425 init_table ();
2426 return yyparse ();
2427@}
2428@end group
bfa74976
RS
2429@end smallexample
2430
2431By simply editing the initialization list and adding the necessary include
2432files, you can add additional functions to the calculator.
2433
2434Two important functions allow look-up and installation of symbols in the
2435symbol table. The function @code{putsym} is passed a name and the type
2436(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2437linked to the front of the list, and a pointer to the object is returned.
2438The function @code{getsym} is passed the name of the symbol to look up. If
2439found, a pointer to that symbol is returned; otherwise zero is returned.
2440
2441@smallexample
2442symrec *
38a92d50 2443putsym (char const *sym_name, int sym_type)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 ptr = (symrec *) malloc (sizeof (symrec));
2447 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2448 strcpy (ptr->name,sym_name);
2449 ptr->type = sym_type;
72d2299c 2450 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2451 ptr->next = (struct symrec *)sym_table;
2452 sym_table = ptr;
2453 return ptr;
2454@}
2455
2456symrec *
38a92d50 2457getsym (char const *sym_name)
bfa74976
RS
2458@{
2459 symrec *ptr;
2460 for (ptr = sym_table; ptr != (symrec *) 0;
2461 ptr = (symrec *)ptr->next)
2462 if (strcmp (ptr->name,sym_name) == 0)
2463 return ptr;
2464 return 0;
2465@}
2466@end smallexample
2467
2468The function @code{yylex} must now recognize variables, numeric values, and
2469the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2470characters with a leading letter are recognized as either variables or
bfa74976
RS
2471functions depending on what the symbol table says about them.
2472
2473The string is passed to @code{getsym} for look up in the symbol table. If
2474the name appears in the table, a pointer to its location and its type
2475(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2476already in the table, then it is installed as a @code{VAR} using
2477@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2478returned to @code{yyparse}.
bfa74976
RS
2479
2480No change is needed in the handling of numeric values and arithmetic
2481operators in @code{yylex}.
2482
2483@smallexample
2484@group
2485#include <ctype.h>
18b519c0 2486@end group
13863333 2487
18b519c0 2488@group
13863333
AD
2489int
2490yylex (void)
bfa74976
RS
2491@{
2492 int c;
2493
72d2299c 2494 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2495 while ((c = getchar ()) == ' ' || c == '\t');
2496
2497 if (c == EOF)
2498 return 0;
2499@end group
2500
2501@group
2502 /* Char starts a number => parse the number. */
2503 if (c == '.' || isdigit (c))
2504 @{
2505 ungetc (c, stdin);
2506 scanf ("%lf", &yylval.val);
2507 return NUM;
2508 @}
2509@end group
2510
2511@group
2512 /* Char starts an identifier => read the name. */
2513 if (isalpha (c))
2514 @{
2515 symrec *s;
2516 static char *symbuf = 0;
2517 static int length = 0;
2518 int i;
2519@end group
2520
2521@group
2522 /* Initially make the buffer long enough
2523 for a 40-character symbol name. */
2524 if (length == 0)
2525 length = 40, symbuf = (char *)malloc (length + 1);
2526
2527 i = 0;
2528 do
2529@end group
2530@group
2531 @{
2532 /* If buffer is full, make it bigger. */
2533 if (i == length)
2534 @{
2535 length *= 2;
18b519c0 2536 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2537 @}
2538 /* Add this character to the buffer. */
2539 symbuf[i++] = c;
2540 /* Get another character. */
2541 c = getchar ();
2542 @}
2543@end group
2544@group
72d2299c 2545 while (isalnum (c));
bfa74976
RS
2546
2547 ungetc (c, stdin);
2548 symbuf[i] = '\0';
2549@end group
2550
2551@group
2552 s = getsym (symbuf);
2553 if (s == 0)
2554 s = putsym (symbuf, VAR);
2555 yylval.tptr = s;
2556 return s->type;
2557 @}
2558
2559 /* Any other character is a token by itself. */
2560 return c;
2561@}
2562@end group
2563@end smallexample
2564
72d2299c 2565This program is both powerful and flexible. You may easily add new
704a47c4
AD
2566functions, and it is a simple job to modify this code to install
2567predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2568
342b8b6e 2569@node Exercises
bfa74976
RS
2570@section Exercises
2571@cindex exercises
2572
2573@enumerate
2574@item
2575Add some new functions from @file{math.h} to the initialization list.
2576
2577@item
2578Add another array that contains constants and their values. Then
2579modify @code{init_table} to add these constants to the symbol table.
2580It will be easiest to give the constants type @code{VAR}.
2581
2582@item
2583Make the program report an error if the user refers to an
2584uninitialized variable in any way except to store a value in it.
2585@end enumerate
2586
342b8b6e 2587@node Grammar File
bfa74976
RS
2588@chapter Bison Grammar Files
2589
2590Bison takes as input a context-free grammar specification and produces a
2591C-language function that recognizes correct instances of the grammar.
2592
2593The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2594@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2595
2596@menu
2597* Grammar Outline:: Overall layout of the grammar file.
2598* Symbols:: Terminal and nonterminal symbols.
2599* Rules:: How to write grammar rules.
2600* Recursion:: Writing recursive rules.
2601* Semantics:: Semantic values and actions.
847bf1f5 2602* Locations:: Locations and actions.
bfa74976
RS
2603* Declarations:: All kinds of Bison declarations are described here.
2604* Multiple Parsers:: Putting more than one Bison parser in one program.
2605@end menu
2606
342b8b6e 2607@node Grammar Outline
bfa74976
RS
2608@section Outline of a Bison Grammar
2609
2610A Bison grammar file has four main sections, shown here with the
2611appropriate delimiters:
2612
2613@example
2614%@{
38a92d50 2615 @var{Prologue}
bfa74976
RS
2616%@}
2617
2618@var{Bison declarations}
2619
2620%%
2621@var{Grammar rules}
2622%%
2623
75f5aaea 2624@var{Epilogue}
bfa74976
RS
2625@end example
2626
2627Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2628As a @acronym{GNU} extension, @samp{//} introduces a comment that
2629continues until end of line.
bfa74976
RS
2630
2631@menu
75f5aaea 2632* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2633* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2634* Bison Declarations:: Syntax and usage of the Bison declarations section.
2635* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2636* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2637@end menu
2638
38a92d50 2639@node Prologue
75f5aaea
MA
2640@subsection The prologue
2641@cindex declarations section
2642@cindex Prologue
2643@cindex declarations
bfa74976 2644
f8e1c9e5
AD
2645The @var{Prologue} section contains macro definitions and declarations
2646of functions and variables that are used in the actions in the grammar
2647rules. These are copied to the beginning of the parser file so that
2648they precede the definition of @code{yyparse}. You can use
2649@samp{#include} to get the declarations from a header file. If you
2650don't need any C declarations, you may omit the @samp{%@{} and
2651@samp{%@}} delimiters that bracket this section.
bfa74976 2652
9c437126 2653The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2654of @samp{%@}} that is outside a comment, a string literal, or a
2655character constant.
2656
c732d2c6
AD
2657You may have more than one @var{Prologue} section, intermixed with the
2658@var{Bison declarations}. This allows you to have C and Bison
2659declarations that refer to each other. For example, the @code{%union}
2660declaration may use types defined in a header file, and you may wish to
2661prototype functions that take arguments of type @code{YYSTYPE}. This
2662can be done with two @var{Prologue} blocks, one before and one after the
2663@code{%union} declaration.
2664
2665@smallexample
2666%@{
aef3da86 2667 #define _GNU_SOURCE
38a92d50
PE
2668 #include <stdio.h>
2669 #include "ptypes.h"
c732d2c6
AD
2670%@}
2671
2672%union @{
779e7ceb 2673 long int n;
c732d2c6
AD
2674 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2675@}
2676
2677%@{
38a92d50
PE
2678 static void print_token_value (FILE *, int, YYSTYPE);
2679 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2680%@}
2681
2682@dots{}
2683@end smallexample
2684
aef3da86
PE
2685When in doubt, it is usually safer to put prologue code before all
2686Bison declarations, rather than after. For example, any definitions
2687of feature test macros like @code{_GNU_SOURCE} or
2688@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2689feature test macros can affect the behavior of Bison-generated
2690@code{#include} directives.
2691
2cbe6b7f
JD
2692@node Prologue Alternatives
2693@subsection Prologue Alternatives
2694@cindex Prologue Alternatives
2695
136a0f76 2696@findex %code
16dc6a9e
JD
2697@findex %code requires
2698@findex %code provides
2699@findex %code top
85894313
JD
2700(The prologue alternatives described here are experimental.
2701More user feedback will help to determine whether they should become permanent
2702features.)
2703
2cbe6b7f
JD
2704The functionality of @var{Prologue} sections can often be subtle and
2705inflexible.
8e0a5e9e
JD
2706As an alternative, Bison provides a %code directive with an explicit qualifier
2707field, which identifies the purpose of the code and thus the location(s) where
2708Bison should generate it.
2709For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2710one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2711@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2712
2713Look again at the example of the previous section:
2714
2715@smallexample
2716%@{
2717 #define _GNU_SOURCE
2718 #include <stdio.h>
2719 #include "ptypes.h"
2720%@}
2721
2722%union @{
2723 long int n;
2724 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2725@}
2726
2727%@{
2728 static void print_token_value (FILE *, int, YYSTYPE);
2729 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2730%@}
2731
2732@dots{}
2733@end smallexample
2734
2735@noindent
2736Notice that there are two @var{Prologue} sections here, but there's a subtle
2737distinction between their functionality.
2738For example, if you decide to override Bison's default definition for
2739@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2740definition?
2741You should write it in the first since Bison will insert that code into the
8e0a5e9e 2742parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2743In which @var{Prologue} section should you prototype an internal function,
2744@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2745arguments?
2746You should prototype it in the second since Bison will insert that code
2747@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2748
2749This distinction in functionality between the two @var{Prologue} sections is
2750established by the appearance of the @code{%union} between them.
a501eca9 2751This behavior raises a few questions.
2cbe6b7f
JD
2752First, why should the position of a @code{%union} affect definitions related to
2753@code{YYLTYPE} and @code{yytokentype}?
2754Second, what if there is no @code{%union}?
2755In that case, the second kind of @var{Prologue} section is not available.
2756This behavior is not intuitive.
2757
8e0a5e9e 2758To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2759@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2760Let's go ahead and add the new @code{YYLTYPE} definition and the
2761@code{trace_token} prototype at the same time:
2762
2763@smallexample
16dc6a9e 2764%code top @{
2cbe6b7f
JD
2765 #define _GNU_SOURCE
2766 #include <stdio.h>
8e0a5e9e
JD
2767
2768 /* WARNING: The following code really belongs
16dc6a9e 2769 * in a `%code requires'; see below. */
8e0a5e9e 2770
2cbe6b7f
JD
2771 #include "ptypes.h"
2772 #define YYLTYPE YYLTYPE
2773 typedef struct YYLTYPE
2774 @{
2775 int first_line;
2776 int first_column;
2777 int last_line;
2778 int last_column;
2779 char *filename;
2780 @} YYLTYPE;
2781@}
2782
2783%union @{
2784 long int n;
2785 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2786@}
2787
2788%code @{
2789 static void print_token_value (FILE *, int, YYSTYPE);
2790 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2791 static void trace_token (enum yytokentype token, YYLTYPE loc);
2792@}
2793
2794@dots{}
2795@end smallexample
2796
2797@noindent
16dc6a9e
JD
2798In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2799functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2800explicit which kind you intend.
2cbe6b7f
JD
2801Moreover, both kinds are always available even in the absence of @code{%union}.
2802
16dc6a9e 2803The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2804The first two lines before the warning need to appear near the top of the
2805parser source code file.
2806The first line after the warning is required by @code{YYSTYPE} and thus also
2807needs to appear in the parser source code file.
2cbe6b7f 2808However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2809(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2810the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2811The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2812override the default @code{YYLTYPE} definition there.
2813
16dc6a9e 2814In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2815lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2816definitions.
16dc6a9e 2817Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2818
2819@smallexample
16dc6a9e 2820%code top @{
2cbe6b7f
JD
2821 #define _GNU_SOURCE
2822 #include <stdio.h>
2823@}
2824
16dc6a9e 2825%code requires @{
9bc0dd67
JD
2826 #include "ptypes.h"
2827@}
2828%union @{
2829 long int n;
2830 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2831@}
2832
16dc6a9e 2833%code requires @{
2cbe6b7f
JD
2834 #define YYLTYPE YYLTYPE
2835 typedef struct YYLTYPE
2836 @{
2837 int first_line;
2838 int first_column;
2839 int last_line;
2840 int last_column;
2841 char *filename;
2842 @} YYLTYPE;
2843@}
2844
136a0f76 2845%code @{
2cbe6b7f
JD
2846 static void print_token_value (FILE *, int, YYSTYPE);
2847 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2848 static void trace_token (enum yytokentype token, YYLTYPE loc);
2849@}
2850
2851@dots{}
2852@end smallexample
2853
2854@noindent
2855Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2856definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2857definitions in both the parser source code file and the parser header file.
16dc6a9e 2858(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2859place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2860
a501eca9 2861When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2862should prefer @code{%code requires} over @code{%code top} regardless of whether
2863you instruct Bison to generate a parser header file.
a501eca9 2864When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2865source code file and that has no special need to appear at the top of that
16dc6a9e 2866file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2867These practices will make the purpose of each block of your code explicit to
2868Bison and to other developers reading your grammar file.
8e0a5e9e 2869Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2870@code{%code requires} to be the most important of the four @var{Prologue}
2871alternatives.
a501eca9 2872
2cbe6b7f
JD
2873At some point while developing your parser, you might decide to provide
2874@code{trace_token} to modules that are external to your parser.
2875Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2876header file and the parser source code file.
2877Since this function is not a dependency required by @code{YYSTYPE} or
2878@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2879@code{%code requires}.
2cbe6b7f 2880More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2881@code{%code requires} is not sufficient.
8e0a5e9e 2882Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2883@code{%code provides}:
2cbe6b7f
JD
2884
2885@smallexample
16dc6a9e 2886%code top @{
2cbe6b7f 2887 #define _GNU_SOURCE
136a0f76 2888 #include <stdio.h>
2cbe6b7f 2889@}
136a0f76 2890
16dc6a9e 2891%code requires @{
2cbe6b7f
JD
2892 #include "ptypes.h"
2893@}
2894%union @{
2895 long int n;
2896 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2897@}
2898
16dc6a9e 2899%code requires @{
2cbe6b7f
JD
2900 #define YYLTYPE YYLTYPE
2901 typedef struct YYLTYPE
2902 @{
2903 int first_line;
2904 int first_column;
2905 int last_line;
2906 int last_column;
2907 char *filename;
2908 @} YYLTYPE;
2909@}
2910
16dc6a9e 2911%code provides @{
2cbe6b7f
JD
2912 void trace_token (enum yytokentype token, YYLTYPE loc);
2913@}
2914
2915%code @{
9bc0dd67
JD
2916 static void print_token_value (FILE *, int, YYSTYPE);
2917 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2918@}
9bc0dd67
JD
2919
2920@dots{}
2921@end smallexample
2922
2cbe6b7f
JD
2923@noindent
2924Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2925file and the parser source code file after the definitions for
2926@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2927
2928The above examples are careful to write directives in an order that reflects
8e0a5e9e 2929the layout of the generated parser source code and header files:
16dc6a9e 2930@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2931@code{%code}.
a501eca9 2932While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2933this order, Bison does not require it.
2934Instead, Bison lets you choose an organization that makes sense to you.
2935
a501eca9 2936You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2937In that case, Bison concatenates the contained code in declaration order.
2938This is the only way in which the position of one of these directives within
2939the grammar file affects its functionality.
2940
2941The result of the previous two properties is greater flexibility in how you may
2942organize your grammar file.
2943For example, you may organize semantic-type-related directives by semantic
2944type:
2945
2946@smallexample
16dc6a9e 2947%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2948%union @{ type1 field1; @}
2949%destructor @{ type1_free ($$); @} <field1>
2950%printer @{ type1_print ($$); @} <field1>
2951
16dc6a9e 2952%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2953%union @{ type2 field2; @}
2954%destructor @{ type2_free ($$); @} <field2>
2955%printer @{ type2_print ($$); @} <field2>
2956@end smallexample
2957
2958@noindent
2959You could even place each of the above directive groups in the rules section of
2960the grammar file next to the set of rules that uses the associated semantic
2961type.
61fee93e
JD
2962(In the rules section, you must terminate each of those directives with a
2963semicolon.)
2cbe6b7f
JD
2964And you don't have to worry that some directive (like a @code{%union}) in the
2965definitions section is going to adversely affect their functionality in some
2966counter-intuitive manner just because it comes first.
2967Such an organization is not possible using @var{Prologue} sections.
2968
a501eca9 2969This section has been concerned with explaining the advantages of the four
8e0a5e9e 2970@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2971However, in most cases when using these directives, you shouldn't need to
2972think about all the low-level ordering issues discussed here.
2973Instead, you should simply use these directives to label each block of your
2974code according to its purpose and let Bison handle the ordering.
2975@code{%code} is the most generic label.
16dc6a9e
JD
2976Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2977as needed.
a501eca9 2978
342b8b6e 2979@node Bison Declarations
bfa74976
RS
2980@subsection The Bison Declarations Section
2981@cindex Bison declarations (introduction)
2982@cindex declarations, Bison (introduction)
2983
2984The @var{Bison declarations} section contains declarations that define
2985terminal and nonterminal symbols, specify precedence, and so on.
2986In some simple grammars you may not need any declarations.
2987@xref{Declarations, ,Bison Declarations}.
2988
342b8b6e 2989@node Grammar Rules
bfa74976
RS
2990@subsection The Grammar Rules Section
2991@cindex grammar rules section
2992@cindex rules section for grammar
2993
2994The @dfn{grammar rules} section contains one or more Bison grammar
2995rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2996
2997There must always be at least one grammar rule, and the first
2998@samp{%%} (which precedes the grammar rules) may never be omitted even
2999if it is the first thing in the file.
3000
38a92d50 3001@node Epilogue
75f5aaea 3002@subsection The epilogue
bfa74976 3003@cindex additional C code section
75f5aaea 3004@cindex epilogue
bfa74976
RS
3005@cindex C code, section for additional
3006
08e49d20
PE
3007The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3008the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3009place to put anything that you want to have in the parser file but which need
3010not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3011definitions of @code{yylex} and @code{yyerror} often go here. Because
3012C requires functions to be declared before being used, you often need
3013to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3014even if you define them in the Epilogue.
75f5aaea 3015@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3016
3017If the last section is empty, you may omit the @samp{%%} that separates it
3018from the grammar rules.
3019
f8e1c9e5
AD
3020The Bison parser itself contains many macros and identifiers whose names
3021start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3022any such names (except those documented in this manual) in the epilogue
3023of the grammar file.
bfa74976 3024
342b8b6e 3025@node Symbols
bfa74976
RS
3026@section Symbols, Terminal and Nonterminal
3027@cindex nonterminal symbol
3028@cindex terminal symbol
3029@cindex token type
3030@cindex symbol
3031
3032@dfn{Symbols} in Bison grammars represent the grammatical classifications
3033of the language.
3034
3035A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3036class of syntactically equivalent tokens. You use the symbol in grammar
3037rules to mean that a token in that class is allowed. The symbol is
3038represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3039function returns a token type code to indicate what kind of token has
3040been read. You don't need to know what the code value is; you can use
3041the symbol to stand for it.
bfa74976 3042
f8e1c9e5
AD
3043A @dfn{nonterminal symbol} stands for a class of syntactically
3044equivalent groupings. The symbol name is used in writing grammar rules.
3045By convention, it should be all lower case.
bfa74976
RS
3046
3047Symbol names can contain letters, digits (not at the beginning),
3048underscores and periods. Periods make sense only in nonterminals.
3049
931c7513 3050There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3051
3052@itemize @bullet
3053@item
3054A @dfn{named token type} is written with an identifier, like an
c827f760 3055identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3056such name must be defined with a Bison declaration such as
3057@code{%token}. @xref{Token Decl, ,Token Type Names}.
3058
3059@item
3060@cindex character token
3061@cindex literal token
3062@cindex single-character literal
931c7513
RS
3063A @dfn{character token type} (or @dfn{literal character token}) is
3064written in the grammar using the same syntax used in C for character
3065constants; for example, @code{'+'} is a character token type. A
3066character token type doesn't need to be declared unless you need to
3067specify its semantic value data type (@pxref{Value Type, ,Data Types of
3068Semantic Values}), associativity, or precedence (@pxref{Precedence,
3069,Operator Precedence}).
bfa74976
RS
3070
3071By convention, a character token type is used only to represent a
3072token that consists of that particular character. Thus, the token
3073type @code{'+'} is used to represent the character @samp{+} as a
3074token. Nothing enforces this convention, but if you depart from it,
3075your program will confuse other readers.
3076
3077All the usual escape sequences used in character literals in C can be
3078used in Bison as well, but you must not use the null character as a
72d2299c
PE
3079character literal because its numeric code, zero, signifies
3080end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3081for @code{yylex}}). Also, unlike standard C, trigraphs have no
3082special meaning in Bison character literals, nor is backslash-newline
3083allowed.
931c7513
RS
3084
3085@item
3086@cindex string token
3087@cindex literal string token
9ecbd125 3088@cindex multicharacter literal
931c7513
RS
3089A @dfn{literal string token} is written like a C string constant; for
3090example, @code{"<="} is a literal string token. A literal string token
3091doesn't need to be declared unless you need to specify its semantic
14ded682 3092value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3093(@pxref{Precedence}).
3094
3095You can associate the literal string token with a symbolic name as an
3096alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3097Declarations}). If you don't do that, the lexical analyzer has to
3098retrieve the token number for the literal string token from the
3099@code{yytname} table (@pxref{Calling Convention}).
3100
c827f760 3101@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3102
3103By convention, a literal string token is used only to represent a token
3104that consists of that particular string. Thus, you should use the token
3105type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3106does not enforce this convention, but if you depart from it, people who
931c7513
RS
3107read your program will be confused.
3108
3109All the escape sequences used in string literals in C can be used in
92ac3705
PE
3110Bison as well, except that you must not use a null character within a
3111string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3112meaning in Bison string literals, nor is backslash-newline allowed. A
3113literal string token must contain two or more characters; for a token
3114containing just one character, use a character token (see above).
bfa74976
RS
3115@end itemize
3116
3117How you choose to write a terminal symbol has no effect on its
3118grammatical meaning. That depends only on where it appears in rules and
3119on when the parser function returns that symbol.
3120
72d2299c
PE
3121The value returned by @code{yylex} is always one of the terminal
3122symbols, except that a zero or negative value signifies end-of-input.
3123Whichever way you write the token type in the grammar rules, you write
3124it the same way in the definition of @code{yylex}. The numeric code
3125for a character token type is simply the positive numeric code of the
3126character, so @code{yylex} can use the identical value to generate the
3127requisite code, though you may need to convert it to @code{unsigned
3128char} to avoid sign-extension on hosts where @code{char} is signed.
3129Each named token type becomes a C macro in
bfa74976 3130the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3131(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3132@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3133
3134If @code{yylex} is defined in a separate file, you need to arrange for the
3135token-type macro definitions to be available there. Use the @samp{-d}
3136option when you run Bison, so that it will write these macro definitions
3137into a separate header file @file{@var{name}.tab.h} which you can include
3138in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3139
72d2299c 3140If you want to write a grammar that is portable to any Standard C
9d9b8b70 3141host, you must use only nonnull character tokens taken from the basic
c827f760 3142execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3143digits, the 52 lower- and upper-case English letters, and the
3144characters in the following C-language string:
3145
3146@example
3147"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3148@end example
3149
f8e1c9e5
AD
3150The @code{yylex} function and Bison must use a consistent character set
3151and encoding for character tokens. For example, if you run Bison in an
3152@acronym{ASCII} environment, but then compile and run the resulting
3153program in an environment that uses an incompatible character set like
3154@acronym{EBCDIC}, the resulting program may not work because the tables
3155generated by Bison will assume @acronym{ASCII} numeric values for
3156character tokens. It is standard practice for software distributions to
3157contain C source files that were generated by Bison in an
3158@acronym{ASCII} environment, so installers on platforms that are
3159incompatible with @acronym{ASCII} must rebuild those files before
3160compiling them.
e966383b 3161
bfa74976
RS
3162The symbol @code{error} is a terminal symbol reserved for error recovery
3163(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3164In particular, @code{yylex} should never return this value. The default
3165value of the error token is 256, unless you explicitly assigned 256 to
3166one of your tokens with a @code{%token} declaration.
bfa74976 3167
342b8b6e 3168@node Rules
bfa74976
RS
3169@section Syntax of Grammar Rules
3170@cindex rule syntax
3171@cindex grammar rule syntax
3172@cindex syntax of grammar rules
3173
3174A Bison grammar rule has the following general form:
3175
3176@example
e425e872 3177@group
bfa74976
RS
3178@var{result}: @var{components}@dots{}
3179 ;
e425e872 3180@end group
bfa74976
RS
3181@end example
3182
3183@noindent
9ecbd125 3184where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3185and @var{components} are various terminal and nonterminal symbols that
13863333 3186are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3187
3188For example,
3189
3190@example
3191@group
3192exp: exp '+' exp
3193 ;
3194@end group
3195@end example
3196
3197@noindent
3198says that two groupings of type @code{exp}, with a @samp{+} token in between,
3199can be combined into a larger grouping of type @code{exp}.
3200
72d2299c
PE
3201White space in rules is significant only to separate symbols. You can add
3202extra white space as you wish.
bfa74976
RS
3203
3204Scattered among the components can be @var{actions} that determine
3205the semantics of the rule. An action looks like this:
3206
3207@example
3208@{@var{C statements}@}
3209@end example
3210
3211@noindent
287c78f6
PE
3212@cindex braced code
3213This is an example of @dfn{braced code}, that is, C code surrounded by
3214braces, much like a compound statement in C@. Braced code can contain
3215any sequence of C tokens, so long as its braces are balanced. Bison
3216does not check the braced code for correctness directly; it merely
3217copies the code to the output file, where the C compiler can check it.
3218
3219Within braced code, the balanced-brace count is not affected by braces
3220within comments, string literals, or character constants, but it is
3221affected by the C digraphs @samp{<%} and @samp{%>} that represent
3222braces. At the top level braced code must be terminated by @samp{@}}
3223and not by a digraph. Bison does not look for trigraphs, so if braced
3224code uses trigraphs you should ensure that they do not affect the
3225nesting of braces or the boundaries of comments, string literals, or
3226character constants.
3227
bfa74976
RS
3228Usually there is only one action and it follows the components.
3229@xref{Actions}.
3230
3231@findex |
3232Multiple rules for the same @var{result} can be written separately or can
3233be joined with the vertical-bar character @samp{|} as follows:
3234
bfa74976
RS
3235@example
3236@group
3237@var{result}: @var{rule1-components}@dots{}
3238 | @var{rule2-components}@dots{}
3239 @dots{}
3240 ;
3241@end group
3242@end example
bfa74976
RS
3243
3244@noindent
3245They are still considered distinct rules even when joined in this way.
3246
3247If @var{components} in a rule is empty, it means that @var{result} can
3248match the empty string. For example, here is how to define a
3249comma-separated sequence of zero or more @code{exp} groupings:
3250
3251@example
3252@group
3253expseq: /* empty */
3254 | expseq1
3255 ;
3256@end group
3257
3258@group
3259expseq1: exp
3260 | expseq1 ',' exp
3261 ;
3262@end group
3263@end example
3264
3265@noindent
3266It is customary to write a comment @samp{/* empty */} in each rule
3267with no components.
3268
342b8b6e 3269@node Recursion
bfa74976
RS
3270@section Recursive Rules
3271@cindex recursive rule
3272
f8e1c9e5
AD
3273A rule is called @dfn{recursive} when its @var{result} nonterminal
3274appears also on its right hand side. Nearly all Bison grammars need to
3275use recursion, because that is the only way to define a sequence of any
3276number of a particular thing. Consider this recursive definition of a
9ecbd125 3277comma-separated sequence of one or more expressions:
bfa74976
RS
3278
3279@example
3280@group
3281expseq1: exp
3282 | expseq1 ',' exp
3283 ;
3284@end group
3285@end example
3286
3287@cindex left recursion
3288@cindex right recursion
3289@noindent
3290Since the recursive use of @code{expseq1} is the leftmost symbol in the
3291right hand side, we call this @dfn{left recursion}. By contrast, here
3292the same construct is defined using @dfn{right recursion}:
3293
3294@example
3295@group
3296expseq1: exp
3297 | exp ',' expseq1
3298 ;
3299@end group
3300@end example
3301
3302@noindent
ec3bc396
AD
3303Any kind of sequence can be defined using either left recursion or right
3304recursion, but you should always use left recursion, because it can
3305parse a sequence of any number of elements with bounded stack space.
3306Right recursion uses up space on the Bison stack in proportion to the
3307number of elements in the sequence, because all the elements must be
3308shifted onto the stack before the rule can be applied even once.
3309@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3310of this.
bfa74976
RS
3311
3312@cindex mutual recursion
3313@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3314rule does not appear directly on its right hand side, but does appear
3315in rules for other nonterminals which do appear on its right hand
13863333 3316side.
bfa74976
RS
3317
3318For example:
3319
3320@example
3321@group
3322expr: primary
3323 | primary '+' primary
3324 ;
3325@end group
3326
3327@group
3328primary: constant
3329 | '(' expr ')'
3330 ;
3331@end group
3332@end example
3333
3334@noindent
3335defines two mutually-recursive nonterminals, since each refers to the
3336other.
3337
342b8b6e 3338@node Semantics
bfa74976
RS
3339@section Defining Language Semantics
3340@cindex defining language semantics
13863333 3341@cindex language semantics, defining
bfa74976
RS
3342
3343The grammar rules for a language determine only the syntax. The semantics
3344are determined by the semantic values associated with various tokens and
3345groupings, and by the actions taken when various groupings are recognized.
3346
3347For example, the calculator calculates properly because the value
3348associated with each expression is the proper number; it adds properly
3349because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3350the numbers associated with @var{x} and @var{y}.
3351
3352@menu
3353* Value Type:: Specifying one data type for all semantic values.
3354* Multiple Types:: Specifying several alternative data types.
3355* Actions:: An action is the semantic definition of a grammar rule.
3356* Action Types:: Specifying data types for actions to operate on.
3357* Mid-Rule Actions:: Most actions go at the end of a rule.
3358 This says when, why and how to use the exceptional
3359 action in the middle of a rule.
3360@end menu
3361
342b8b6e 3362@node Value Type
bfa74976
RS
3363@subsection Data Types of Semantic Values
3364@cindex semantic value type
3365@cindex value type, semantic
3366@cindex data types of semantic values
3367@cindex default data type
3368
3369In a simple program it may be sufficient to use the same data type for
3370the semantic values of all language constructs. This was true in the
c827f760 3371@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3372Notation Calculator}).
bfa74976 3373
ddc8ede1
PE
3374Bison normally uses the type @code{int} for semantic values if your
3375program uses the same data type for all language constructs. To
bfa74976
RS
3376specify some other type, define @code{YYSTYPE} as a macro, like this:
3377
3378@example
3379#define YYSTYPE double
3380@end example
3381
3382@noindent
50cce58e
PE
3383@code{YYSTYPE}'s replacement list should be a type name
3384that does not contain parentheses or square brackets.
342b8b6e 3385This macro definition must go in the prologue of the grammar file
75f5aaea 3386(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3387
342b8b6e 3388@node Multiple Types
bfa74976
RS
3389@subsection More Than One Value Type
3390
3391In most programs, you will need different data types for different kinds
3392of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3393@code{int} or @code{long int}, while a string constant needs type
3394@code{char *}, and an identifier might need a pointer to an entry in the
3395symbol table.
bfa74976
RS
3396
3397To use more than one data type for semantic values in one parser, Bison
3398requires you to do two things:
3399
3400@itemize @bullet
3401@item
ddc8ede1 3402Specify the entire collection of possible data types, either by using the
704a47c4 3403@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3404Value Types}), or by using a @code{typedef} or a @code{#define} to
3405define @code{YYSTYPE} to be a union type whose member names are
3406the type tags.
bfa74976
RS
3407
3408@item
14ded682
AD
3409Choose one of those types for each symbol (terminal or nonterminal) for
3410which semantic values are used. This is done for tokens with the
3411@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3412and for groupings with the @code{%type} Bison declaration (@pxref{Type
3413Decl, ,Nonterminal Symbols}).
bfa74976
RS
3414@end itemize
3415
342b8b6e 3416@node Actions
bfa74976
RS
3417@subsection Actions
3418@cindex action
3419@vindex $$
3420@vindex $@var{n}
3421
3422An action accompanies a syntactic rule and contains C code to be executed
3423each time an instance of that rule is recognized. The task of most actions
3424is to compute a semantic value for the grouping built by the rule from the
3425semantic values associated with tokens or smaller groupings.
3426
287c78f6
PE
3427An action consists of braced code containing C statements, and can be
3428placed at any position in the rule;
704a47c4
AD
3429it is executed at that position. Most rules have just one action at the
3430end of the rule, following all the components. Actions in the middle of
3431a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3432Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3433
3434The C code in an action can refer to the semantic values of the components
3435matched by the rule with the construct @code{$@var{n}}, which stands for
3436the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3437being constructed is @code{$$}. Bison translates both of these
3438constructs into expressions of the appropriate type when it copies the
3439actions into the parser file. @code{$$} is translated to a modifiable
3440lvalue, so it can be assigned to.
bfa74976
RS
3441
3442Here is a typical example:
3443
3444@example
3445@group
3446exp: @dots{}
3447 | exp '+' exp
3448 @{ $$ = $1 + $3; @}
3449@end group
3450@end example
3451
3452@noindent
3453This rule constructs an @code{exp} from two smaller @code{exp} groupings
3454connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3455refer to the semantic values of the two component @code{exp} groupings,
3456which are the first and third symbols on the right hand side of the rule.
3457The sum is stored into @code{$$} so that it becomes the semantic value of
3458the addition-expression just recognized by the rule. If there were a
3459useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3460referred to as @code{$2}.
bfa74976 3461
3ded9a63
AD
3462Note that the vertical-bar character @samp{|} is really a rule
3463separator, and actions are attached to a single rule. This is a
3464difference with tools like Flex, for which @samp{|} stands for either
3465``or'', or ``the same action as that of the next rule''. In the
3466following example, the action is triggered only when @samp{b} is found:
3467
3468@example
3469@group
3470a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3471@end group
3472@end example
3473
bfa74976
RS
3474@cindex default action
3475If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3476@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3477becomes the value of the whole rule. Of course, the default action is
3478valid only if the two data types match. There is no meaningful default
3479action for an empty rule; every empty rule must have an explicit action
3480unless the rule's value does not matter.
bfa74976
RS
3481
3482@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3483to tokens and groupings on the stack @emph{before} those that match the
3484current rule. This is a very risky practice, and to use it reliably
3485you must be certain of the context in which the rule is applied. Here
3486is a case in which you can use this reliably:
3487
3488@example
3489@group
3490foo: expr bar '+' expr @{ @dots{} @}
3491 | expr bar '-' expr @{ @dots{} @}
3492 ;
3493@end group
3494
3495@group
3496bar: /* empty */
3497 @{ previous_expr = $0; @}
3498 ;
3499@end group
3500@end example
3501
3502As long as @code{bar} is used only in the fashion shown here, @code{$0}
3503always refers to the @code{expr} which precedes @code{bar} in the
3504definition of @code{foo}.
3505
32c29292 3506@vindex yylval
742e4900 3507It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3508any, from a semantic action.
3509This semantic value is stored in @code{yylval}.
3510@xref{Action Features, ,Special Features for Use in Actions}.
3511
342b8b6e 3512@node Action Types
bfa74976
RS
3513@subsection Data Types of Values in Actions
3514@cindex action data types
3515@cindex data types in actions
3516
3517If you have chosen a single data type for semantic values, the @code{$$}
3518and @code{$@var{n}} constructs always have that data type.
3519
3520If you have used @code{%union} to specify a variety of data types, then you
3521must declare a choice among these types for each terminal or nonterminal
3522symbol that can have a semantic value. Then each time you use @code{$$} or
3523@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3524in the rule. In this example,
bfa74976
RS
3525
3526@example
3527@group
3528exp: @dots{}
3529 | exp '+' exp
3530 @{ $$ = $1 + $3; @}
3531@end group
3532@end example
3533
3534@noindent
3535@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3536have the data type declared for the nonterminal symbol @code{exp}. If
3537@code{$2} were used, it would have the data type declared for the
e0c471a9 3538terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3539
3540Alternatively, you can specify the data type when you refer to the value,
3541by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3542reference. For example, if you have defined types as shown here:
3543
3544@example
3545@group
3546%union @{
3547 int itype;
3548 double dtype;
3549@}
3550@end group
3551@end example
3552
3553@noindent
3554then you can write @code{$<itype>1} to refer to the first subunit of the
3555rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3556
342b8b6e 3557@node Mid-Rule Actions
bfa74976
RS
3558@subsection Actions in Mid-Rule
3559@cindex actions in mid-rule
3560@cindex mid-rule actions
3561
3562Occasionally it is useful to put an action in the middle of a rule.
3563These actions are written just like usual end-of-rule actions, but they
3564are executed before the parser even recognizes the following components.
3565
3566A mid-rule action may refer to the components preceding it using
3567@code{$@var{n}}, but it may not refer to subsequent components because
3568it is run before they are parsed.
3569
3570The mid-rule action itself counts as one of the components of the rule.
3571This makes a difference when there is another action later in the same rule
3572(and usually there is another at the end): you have to count the actions
3573along with the symbols when working out which number @var{n} to use in
3574@code{$@var{n}}.
3575
3576The mid-rule action can also have a semantic value. The action can set
3577its value with an assignment to @code{$$}, and actions later in the rule
3578can refer to the value using @code{$@var{n}}. Since there is no symbol
3579to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3580in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3581specify a data type each time you refer to this value.
bfa74976
RS
3582
3583There is no way to set the value of the entire rule with a mid-rule
3584action, because assignments to @code{$$} do not have that effect. The
3585only way to set the value for the entire rule is with an ordinary action
3586at the end of the rule.
3587
3588Here is an example from a hypothetical compiler, handling a @code{let}
3589statement that looks like @samp{let (@var{variable}) @var{statement}} and
3590serves to create a variable named @var{variable} temporarily for the
3591duration of @var{statement}. To parse this construct, we must put
3592@var{variable} into the symbol table while @var{statement} is parsed, then
3593remove it afterward. Here is how it is done:
3594
3595@example
3596@group
3597stmt: LET '(' var ')'
3598 @{ $<context>$ = push_context ();
3599 declare_variable ($3); @}
3600 stmt @{ $$ = $6;
3601 pop_context ($<context>5); @}
3602@end group
3603@end example
3604
3605@noindent
3606As soon as @samp{let (@var{variable})} has been recognized, the first
3607action is run. It saves a copy of the current semantic context (the
3608list of accessible variables) as its semantic value, using alternative
3609@code{context} in the data-type union. Then it calls
3610@code{declare_variable} to add the new variable to that list. Once the
3611first action is finished, the embedded statement @code{stmt} can be
3612parsed. Note that the mid-rule action is component number 5, so the
3613@samp{stmt} is component number 6.
3614
3615After the embedded statement is parsed, its semantic value becomes the
3616value of the entire @code{let}-statement. Then the semantic value from the
3617earlier action is used to restore the prior list of variables. This
3618removes the temporary @code{let}-variable from the list so that it won't
3619appear to exist while the rest of the program is parsed.
3620
841a7737
JD
3621@findex %destructor
3622@cindex discarded symbols, mid-rule actions
3623@cindex error recovery, mid-rule actions
3624In the above example, if the parser initiates error recovery (@pxref{Error
3625Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3626it might discard the previous semantic context @code{$<context>5} without
3627restoring it.
3628Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3629Discarded Symbols}).
ec5479ce
JD
3630However, Bison currently provides no means to declare a destructor specific to
3631a particular mid-rule action's semantic value.
841a7737
JD
3632
3633One solution is to bury the mid-rule action inside a nonterminal symbol and to
3634declare a destructor for that symbol:
3635
3636@example
3637@group
3638%type <context> let
3639%destructor @{ pop_context ($$); @} let
3640
3641%%
3642
3643stmt: let stmt
3644 @{ $$ = $2;
3645 pop_context ($1); @}
3646 ;
3647
3648let: LET '(' var ')'
3649 @{ $$ = push_context ();
3650 declare_variable ($3); @}
3651 ;
3652
3653@end group
3654@end example
3655
3656@noindent
3657Note that the action is now at the end of its rule.
3658Any mid-rule action can be converted to an end-of-rule action in this way, and
3659this is what Bison actually does to implement mid-rule actions.
3660
bfa74976
RS
3661Taking action before a rule is completely recognized often leads to
3662conflicts since the parser must commit to a parse in order to execute the
3663action. For example, the following two rules, without mid-rule actions,
3664can coexist in a working parser because the parser can shift the open-brace
3665token and look at what follows before deciding whether there is a
3666declaration or not:
3667
3668@example
3669@group
3670compound: '@{' declarations statements '@}'
3671 | '@{' statements '@}'
3672 ;
3673@end group
3674@end example
3675
3676@noindent
3677But when we add a mid-rule action as follows, the rules become nonfunctional:
3678
3679@example
3680@group
3681compound: @{ prepare_for_local_variables (); @}
3682 '@{' declarations statements '@}'
3683@end group
3684@group
3685 | '@{' statements '@}'
3686 ;
3687@end group
3688@end example
3689
3690@noindent
3691Now the parser is forced to decide whether to run the mid-rule action
3692when it has read no farther than the open-brace. In other words, it
3693must commit to using one rule or the other, without sufficient
3694information to do it correctly. (The open-brace token is what is called
742e4900
JD
3695the @dfn{lookahead} token at this time, since the parser is still
3696deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3697
3698You might think that you could correct the problem by putting identical
3699actions into the two rules, like this:
3700
3701@example
3702@group
3703compound: @{ prepare_for_local_variables (); @}
3704 '@{' declarations statements '@}'
3705 | @{ prepare_for_local_variables (); @}
3706 '@{' statements '@}'
3707 ;
3708@end group
3709@end example
3710
3711@noindent
3712But this does not help, because Bison does not realize that the two actions
3713are identical. (Bison never tries to understand the C code in an action.)
3714
3715If the grammar is such that a declaration can be distinguished from a
3716statement by the first token (which is true in C), then one solution which
3717does work is to put the action after the open-brace, like this:
3718
3719@example
3720@group
3721compound: '@{' @{ prepare_for_local_variables (); @}
3722 declarations statements '@}'
3723 | '@{' statements '@}'
3724 ;
3725@end group
3726@end example
3727
3728@noindent
3729Now the first token of the following declaration or statement,
3730which would in any case tell Bison which rule to use, can still do so.
3731
3732Another solution is to bury the action inside a nonterminal symbol which
3733serves as a subroutine:
3734
3735@example
3736@group
3737subroutine: /* empty */
3738 @{ prepare_for_local_variables (); @}
3739 ;
3740
3741@end group
3742
3743@group
3744compound: subroutine
3745 '@{' declarations statements '@}'
3746 | subroutine
3747 '@{' statements '@}'
3748 ;
3749@end group
3750@end example
3751
3752@noindent
3753Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3754deciding which rule for @code{compound} it will eventually use.
bfa74976 3755
342b8b6e 3756@node Locations
847bf1f5
AD
3757@section Tracking Locations
3758@cindex location
95923bd6
AD
3759@cindex textual location
3760@cindex location, textual
847bf1f5
AD
3761
3762Though grammar rules and semantic actions are enough to write a fully
72d2299c 3763functional parser, it can be useful to process some additional information,
3e259915
MA
3764especially symbol locations.
3765
704a47c4
AD
3766The way locations are handled is defined by providing a data type, and
3767actions to take when rules are matched.
847bf1f5
AD
3768
3769@menu
3770* Location Type:: Specifying a data type for locations.
3771* Actions and Locations:: Using locations in actions.
3772* Location Default Action:: Defining a general way to compute locations.
3773@end menu
3774
342b8b6e 3775@node Location Type
847bf1f5
AD
3776@subsection Data Type of Locations
3777@cindex data type of locations
3778@cindex default location type
3779
3780Defining a data type for locations is much simpler than for semantic values,
3781since all tokens and groupings always use the same type.
3782
50cce58e
PE
3783You can specify the type of locations by defining a macro called
3784@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3785defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3786When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3787four members:
3788
3789@example
6273355b 3790typedef struct YYLTYPE
847bf1f5
AD
3791@{
3792 int first_line;
3793 int first_column;
3794 int last_line;
3795 int last_column;
6273355b 3796@} YYLTYPE;
847bf1f5
AD
3797@end example
3798
cd48d21d
AD
3799At the beginning of the parsing, Bison initializes all these fields to 1
3800for @code{yylloc}.
3801
342b8b6e 3802@node Actions and Locations
847bf1f5
AD
3803@subsection Actions and Locations
3804@cindex location actions
3805@cindex actions, location
3806@vindex @@$
3807@vindex @@@var{n}
3808
3809Actions are not only useful for defining language semantics, but also for
3810describing the behavior of the output parser with locations.
3811
3812The most obvious way for building locations of syntactic groupings is very
72d2299c 3813similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3814constructs can be used to access the locations of the elements being matched.
3815The location of the @var{n}th component of the right hand side is
3816@code{@@@var{n}}, while the location of the left hand side grouping is
3817@code{@@$}.
3818
3e259915 3819Here is a basic example using the default data type for locations:
847bf1f5
AD
3820
3821@example
3822@group
3823exp: @dots{}
3e259915 3824 | exp '/' exp
847bf1f5 3825 @{
3e259915
MA
3826 @@$.first_column = @@1.first_column;
3827 @@$.first_line = @@1.first_line;
847bf1f5
AD
3828 @@$.last_column = @@3.last_column;
3829 @@$.last_line = @@3.last_line;
3e259915
MA
3830 if ($3)
3831 $$ = $1 / $3;
3832 else
3833 @{
3834 $$ = 1;
4e03e201
AD
3835 fprintf (stderr,
3836 "Division by zero, l%d,c%d-l%d,c%d",
3837 @@3.first_line, @@3.first_column,
3838 @@3.last_line, @@3.last_column);
3e259915 3839 @}
847bf1f5
AD
3840 @}
3841@end group
3842@end example
3843
3e259915 3844As for semantic values, there is a default action for locations that is
72d2299c 3845run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3846beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3847last symbol.
3e259915 3848
72d2299c 3849With this default action, the location tracking can be fully automatic. The
3e259915
MA
3850example above simply rewrites this way:
3851
3852@example
3853@group
3854exp: @dots{}
3855 | exp '/' exp
3856 @{
3857 if ($3)
3858 $$ = $1 / $3;
3859 else
3860 @{
3861 $$ = 1;
4e03e201
AD
3862 fprintf (stderr,
3863 "Division by zero, l%d,c%d-l%d,c%d",
3864 @@3.first_line, @@3.first_column,
3865 @@3.last_line, @@3.last_column);
3e259915
MA
3866 @}
3867 @}
3868@end group
3869@end example
847bf1f5 3870
32c29292 3871@vindex yylloc
742e4900 3872It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3873from a semantic action.
3874This location is stored in @code{yylloc}.
3875@xref{Action Features, ,Special Features for Use in Actions}.
3876
342b8b6e 3877@node Location Default Action
847bf1f5
AD
3878@subsection Default Action for Locations
3879@vindex YYLLOC_DEFAULT
8710fc41 3880@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3881
72d2299c 3882Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3883locations are much more general than semantic values, there is room in
3884the output parser to redefine the default action to take for each
72d2299c 3885rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3886matched, before the associated action is run. It is also invoked
3887while processing a syntax error, to compute the error's location.
8710fc41
JD
3888Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3889parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3890of that ambiguity.
847bf1f5 3891
3e259915 3892Most of the time, this macro is general enough to suppress location
79282c6c 3893dedicated code from semantic actions.
847bf1f5 3894
72d2299c 3895The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3896the location of the grouping (the result of the computation). When a
766de5eb 3897rule is matched, the second parameter identifies locations of
96b93a3d 3898all right hand side elements of the rule being matched, and the third
8710fc41
JD
3899parameter is the size of the rule's right hand side.
3900When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3901right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3902When processing a syntax error, the second parameter identifies locations
3903of the symbols that were discarded during error processing, and the third
96b93a3d 3904parameter is the number of discarded symbols.
847bf1f5 3905
766de5eb 3906By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3907
766de5eb 3908@smallexample
847bf1f5 3909@group
766de5eb
PE
3910# define YYLLOC_DEFAULT(Current, Rhs, N) \
3911 do \
3912 if (N) \
3913 @{ \
3914 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3915 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3916 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3917 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3918 @} \
3919 else \
3920 @{ \
3921 (Current).first_line = (Current).last_line = \
3922 YYRHSLOC(Rhs, 0).last_line; \
3923 (Current).first_column = (Current).last_column = \
3924 YYRHSLOC(Rhs, 0).last_column; \
3925 @} \
3926 while (0)
847bf1f5 3927@end group
766de5eb 3928@end smallexample
676385e2 3929
766de5eb
PE
3930where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3931in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3932just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3933
3e259915 3934When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3935
3e259915 3936@itemize @bullet
79282c6c 3937@item
72d2299c 3938All arguments are free of side-effects. However, only the first one (the
3e259915 3939result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3940
3e259915 3941@item
766de5eb
PE
3942For consistency with semantic actions, valid indexes within the
3943right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3944valid index, and it refers to the symbol just before the reduction.
3945During error processing @var{n} is always positive.
0ae99356
PE
3946
3947@item
3948Your macro should parenthesize its arguments, if need be, since the
3949actual arguments may not be surrounded by parentheses. Also, your
3950macro should expand to something that can be used as a single
3951statement when it is followed by a semicolon.
3e259915 3952@end itemize
847bf1f5 3953
342b8b6e 3954@node Declarations
bfa74976
RS
3955@section Bison Declarations
3956@cindex declarations, Bison
3957@cindex Bison declarations
3958
3959The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3960used in formulating the grammar and the data types of semantic values.
3961@xref{Symbols}.
3962
3963All token type names (but not single-character literal tokens such as
3964@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3965declared if you need to specify which data type to use for the semantic
3966value (@pxref{Multiple Types, ,More Than One Value Type}).
3967
3968The first rule in the file also specifies the start symbol, by default.
3969If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3970it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3971Grammars}).
bfa74976
RS
3972
3973@menu
b50d2359 3974* Require Decl:: Requiring a Bison version.
bfa74976
RS
3975* Token Decl:: Declaring terminal symbols.
3976* Precedence Decl:: Declaring terminals with precedence and associativity.
3977* Union Decl:: Declaring the set of all semantic value types.
3978* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3979* Initial Action Decl:: Code run before parsing starts.
72f889cc 3980* Destructor Decl:: Declaring how symbols are freed.
d6328241 3981* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3982* Start Decl:: Specifying the start symbol.
3983* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3984* Push Decl:: Requesting a push parser.
bfa74976
RS
3985* Decl Summary:: Table of all Bison declarations.
3986@end menu
3987
b50d2359
AD
3988@node Require Decl
3989@subsection Require a Version of Bison
3990@cindex version requirement
3991@cindex requiring a version of Bison
3992@findex %require
3993
3994You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3995the requirement is not met, @command{bison} exits with an error (exit
3996status 63).
b50d2359
AD
3997
3998@example
3999%require "@var{version}"
4000@end example
4001
342b8b6e 4002@node Token Decl
bfa74976
RS
4003@subsection Token Type Names
4004@cindex declaring token type names
4005@cindex token type names, declaring
931c7513 4006@cindex declaring literal string tokens
bfa74976
RS
4007@findex %token
4008
4009The basic way to declare a token type name (terminal symbol) is as follows:
4010
4011@example
4012%token @var{name}
4013@end example
4014
4015Bison will convert this into a @code{#define} directive in
4016the parser, so that the function @code{yylex} (if it is in this file)
4017can use the name @var{name} to stand for this token type's code.
4018
14ded682
AD
4019Alternatively, you can use @code{%left}, @code{%right}, or
4020@code{%nonassoc} instead of @code{%token}, if you wish to specify
4021associativity and precedence. @xref{Precedence Decl, ,Operator
4022Precedence}.
bfa74976
RS
4023
4024You can explicitly specify the numeric code for a token type by appending
1452af69
PE
4025a decimal or hexadecimal integer value in the field immediately
4026following the token name:
bfa74976
RS
4027
4028@example
4029%token NUM 300
1452af69 4030%token XNUM 0x12d // a GNU extension
bfa74976
RS
4031@end example
4032
4033@noindent
4034It is generally best, however, to let Bison choose the numeric codes for
4035all token types. Bison will automatically select codes that don't conflict
e966383b 4036with each other or with normal characters.
bfa74976
RS
4037
4038In the event that the stack type is a union, you must augment the
4039@code{%token} or other token declaration to include the data type
704a47c4
AD
4040alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4041Than One Value Type}).
bfa74976
RS
4042
4043For example:
4044
4045@example
4046@group
4047%union @{ /* define stack type */
4048 double val;
4049 symrec *tptr;
4050@}
4051%token <val> NUM /* define token NUM and its type */
4052@end group
4053@end example
4054
931c7513
RS
4055You can associate a literal string token with a token type name by
4056writing the literal string at the end of a @code{%token}
4057declaration which declares the name. For example:
4058
4059@example
4060%token arrow "=>"
4061@end example
4062
4063@noindent
4064For example, a grammar for the C language might specify these names with
4065equivalent literal string tokens:
4066
4067@example
4068%token <operator> OR "||"
4069%token <operator> LE 134 "<="
4070%left OR "<="
4071@end example
4072
4073@noindent
4074Once you equate the literal string and the token name, you can use them
4075interchangeably in further declarations or the grammar rules. The
4076@code{yylex} function can use the token name or the literal string to
4077obtain the token type code number (@pxref{Calling Convention}).
4078
342b8b6e 4079@node Precedence Decl
bfa74976
RS
4080@subsection Operator Precedence
4081@cindex precedence declarations
4082@cindex declaring operator precedence
4083@cindex operator precedence, declaring
4084
4085Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4086declare a token and specify its precedence and associativity, all at
4087once. These are called @dfn{precedence declarations}.
704a47c4
AD
4088@xref{Precedence, ,Operator Precedence}, for general information on
4089operator precedence.
bfa74976
RS
4090
4091The syntax of a precedence declaration is the same as that of
4092@code{%token}: either
4093
4094@example
4095%left @var{symbols}@dots{}
4096@end example
4097
4098@noindent
4099or
4100
4101@example
4102%left <@var{type}> @var{symbols}@dots{}
4103@end example
4104
4105And indeed any of these declarations serves the purposes of @code{%token}.
4106But in addition, they specify the associativity and relative precedence for
4107all the @var{symbols}:
4108
4109@itemize @bullet
4110@item
4111The associativity of an operator @var{op} determines how repeated uses
4112of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4113@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4114grouping @var{y} with @var{z} first. @code{%left} specifies
4115left-associativity (grouping @var{x} with @var{y} first) and
4116@code{%right} specifies right-associativity (grouping @var{y} with
4117@var{z} first). @code{%nonassoc} specifies no associativity, which
4118means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4119considered a syntax error.
4120
4121@item
4122The precedence of an operator determines how it nests with other operators.
4123All the tokens declared in a single precedence declaration have equal
4124precedence and nest together according to their associativity.
4125When two tokens declared in different precedence declarations associate,
4126the one declared later has the higher precedence and is grouped first.
4127@end itemize
4128
342b8b6e 4129@node Union Decl
bfa74976
RS
4130@subsection The Collection of Value Types
4131@cindex declaring value types
4132@cindex value types, declaring
4133@findex %union
4134
287c78f6
PE
4135The @code{%union} declaration specifies the entire collection of
4136possible data types for semantic values. The keyword @code{%union} is
4137followed by braced code containing the same thing that goes inside a
4138@code{union} in C@.
bfa74976
RS
4139
4140For example:
4141
4142@example
4143@group
4144%union @{
4145 double val;
4146 symrec *tptr;
4147@}
4148@end group
4149@end example
4150
4151@noindent
4152This says that the two alternative types are @code{double} and @code{symrec
4153*}. They are given names @code{val} and @code{tptr}; these names are used
4154in the @code{%token} and @code{%type} declarations to pick one of the types
4155for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4156
6273355b
PE
4157As an extension to @acronym{POSIX}, a tag is allowed after the
4158@code{union}. For example:
4159
4160@example
4161@group
4162%union value @{
4163 double val;
4164 symrec *tptr;
4165@}
4166@end group
4167@end example
4168
d6ca7905 4169@noindent
6273355b
PE
4170specifies the union tag @code{value}, so the corresponding C type is
4171@code{union value}. If you do not specify a tag, it defaults to
4172@code{YYSTYPE}.
4173
d6ca7905
PE
4174As another extension to @acronym{POSIX}, you may specify multiple
4175@code{%union} declarations; their contents are concatenated. However,
4176only the first @code{%union} declaration can specify a tag.
4177
6273355b 4178Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4179a semicolon after the closing brace.
4180
ddc8ede1
PE
4181Instead of @code{%union}, you can define and use your own union type
4182@code{YYSTYPE} if your grammar contains at least one
4183@samp{<@var{type}>} tag. For example, you can put the following into
4184a header file @file{parser.h}:
4185
4186@example
4187@group
4188union YYSTYPE @{
4189 double val;
4190 symrec *tptr;
4191@};
4192typedef union YYSTYPE YYSTYPE;
4193@end group
4194@end example
4195
4196@noindent
4197and then your grammar can use the following
4198instead of @code{%union}:
4199
4200@example
4201@group
4202%@{
4203#include "parser.h"
4204%@}
4205%type <val> expr
4206%token <tptr> ID
4207@end group
4208@end example
4209
342b8b6e 4210@node Type Decl
bfa74976
RS
4211@subsection Nonterminal Symbols
4212@cindex declaring value types, nonterminals
4213@cindex value types, nonterminals, declaring
4214@findex %type
4215
4216@noindent
4217When you use @code{%union} to specify multiple value types, you must
4218declare the value type of each nonterminal symbol for which values are
4219used. This is done with a @code{%type} declaration, like this:
4220
4221@example
4222%type <@var{type}> @var{nonterminal}@dots{}
4223@end example
4224
4225@noindent
704a47c4
AD
4226Here @var{nonterminal} is the name of a nonterminal symbol, and
4227@var{type} is the name given in the @code{%union} to the alternative
4228that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4229can give any number of nonterminal symbols in the same @code{%type}
4230declaration, if they have the same value type. Use spaces to separate
4231the symbol names.
bfa74976 4232
931c7513
RS
4233You can also declare the value type of a terminal symbol. To do this,
4234use the same @code{<@var{type}>} construction in a declaration for the
4235terminal symbol. All kinds of token declarations allow
4236@code{<@var{type}>}.
4237
18d192f0
AD
4238@node Initial Action Decl
4239@subsection Performing Actions before Parsing
4240@findex %initial-action
4241
4242Sometimes your parser needs to perform some initializations before
4243parsing. The @code{%initial-action} directive allows for such arbitrary
4244code.
4245
4246@deffn {Directive} %initial-action @{ @var{code} @}
4247@findex %initial-action
287c78f6 4248Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4249@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4250@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4251@code{%parse-param}.
18d192f0
AD
4252@end deffn
4253
451364ed
AD
4254For instance, if your locations use a file name, you may use
4255
4256@example
48b16bbc 4257%parse-param @{ char const *file_name @};
451364ed
AD
4258%initial-action
4259@{
4626a15d 4260 @@$.initialize (file_name);
451364ed
AD
4261@};
4262@end example
4263
18d192f0 4264
72f889cc
AD
4265@node Destructor Decl
4266@subsection Freeing Discarded Symbols
4267@cindex freeing discarded symbols
4268@findex %destructor
12e35840 4269@findex <*>
3ebecc24 4270@findex <>
a85284cf
AD
4271During error recovery (@pxref{Error Recovery}), symbols already pushed
4272on the stack and tokens coming from the rest of the file are discarded
4273until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4274or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4275symbols on the stack must be discarded. Even if the parser succeeds, it
4276must discard the start symbol.
258b75ca
PE
4277
4278When discarded symbols convey heap based information, this memory is
4279lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4280in traditional compilers, it is unacceptable for programs like shells or
4281protocol implementations that may parse and execute indefinitely.
258b75ca 4282
a85284cf
AD
4283The @code{%destructor} directive defines code that is called when a
4284symbol is automatically discarded.
72f889cc
AD
4285
4286@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4287@findex %destructor
287c78f6
PE
4288Invoke the braced @var{code} whenever the parser discards one of the
4289@var{symbols}.
4b367315 4290Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4291with the discarded symbol, and @code{@@$} designates its location.
4292The additional parser parameters are also available (@pxref{Parser Function, ,
4293The Parser Function @code{yyparse}}).
ec5479ce 4294
b2a0b7ca
JD
4295When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4296per-symbol @code{%destructor}.
4297You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4298tag among @var{symbols}.
b2a0b7ca 4299In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4300grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4301per-symbol @code{%destructor}.
4302
12e35840 4303Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4304(These default forms are experimental.
4305More user feedback will help to determine whether they should become permanent
4306features.)
3ebecc24 4307You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4308exactly one @code{%destructor} declaration in your grammar file.
4309The parser will invoke the @var{code} associated with one of these whenever it
4310discards any user-defined grammar symbol that has no per-symbol and no per-type
4311@code{%destructor}.
4312The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4313symbol for which you have formally declared a semantic type tag (@code{%type}
4314counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4315The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4316symbol that has no declared semantic type tag.
72f889cc
AD
4317@end deffn
4318
b2a0b7ca 4319@noindent
12e35840 4320For example:
72f889cc
AD
4321
4322@smallexample
ec5479ce
JD
4323%union @{ char *string; @}
4324%token <string> STRING1
4325%token <string> STRING2
4326%type <string> string1
4327%type <string> string2
b2a0b7ca
JD
4328%union @{ char character; @}
4329%token <character> CHR
4330%type <character> chr
12e35840
JD
4331%token TAGLESS
4332
b2a0b7ca 4333%destructor @{ @} <character>
12e35840
JD
4334%destructor @{ free ($$); @} <*>
4335%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4336%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4337@end smallexample
4338
4339@noindent
b2a0b7ca
JD
4340guarantees that, when the parser discards any user-defined symbol that has a
4341semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4342to @code{free} by default.
ec5479ce
JD
4343However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4344prints its line number to @code{stdout}.
4345It performs only the second @code{%destructor} in this case, so it invokes
4346@code{free} only once.
12e35840
JD
4347Finally, the parser merely prints a message whenever it discards any symbol,
4348such as @code{TAGLESS}, that has no semantic type tag.
4349
4350A Bison-generated parser invokes the default @code{%destructor}s only for
4351user-defined as opposed to Bison-defined symbols.
4352For example, the parser will not invoke either kind of default
4353@code{%destructor} for the special Bison-defined symbols @code{$accept},
4354@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4355none of which you can reference in your grammar.
4356It also will not invoke either for the @code{error} token (@pxref{Table of
4357Symbols, ,error}), which is always defined by Bison regardless of whether you
4358reference it in your grammar.
4359However, it may invoke one of them for the end token (token 0) if you
4360redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4361
4362@smallexample
4363%token END 0
4364@end smallexample
4365
12e35840
JD
4366@cindex actions in mid-rule
4367@cindex mid-rule actions
4368Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4369mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4370That is, Bison does not consider a mid-rule to have a semantic value if you do
4371not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4372@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4373rule.
4374However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4375@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4376
3508ce36
JD
4377@ignore
4378@noindent
4379In the future, it may be possible to redefine the @code{error} token as a
4380nonterminal that captures the discarded symbols.
4381In that case, the parser will invoke the default destructor for it as well.
4382@end ignore
4383
e757bb10
AD
4384@sp 1
4385
4386@cindex discarded symbols
4387@dfn{Discarded symbols} are the following:
4388
4389@itemize
4390@item
4391stacked symbols popped during the first phase of error recovery,
4392@item
4393incoming terminals during the second phase of error recovery,
4394@item
742e4900 4395the current lookahead and the entire stack (except the current
9d9b8b70 4396right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4397@item
4398the start symbol, when the parser succeeds.
e757bb10
AD
4399@end itemize
4400
9d9b8b70
PE
4401The parser can @dfn{return immediately} because of an explicit call to
4402@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4403exhaustion.
4404
29553547 4405Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4406error via @code{YYERROR} are not discarded automatically. As a rule
4407of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4408the memory.
e757bb10 4409
342b8b6e 4410@node Expect Decl
bfa74976
RS
4411@subsection Suppressing Conflict Warnings
4412@cindex suppressing conflict warnings
4413@cindex preventing warnings about conflicts
4414@cindex warnings, preventing
4415@cindex conflicts, suppressing warnings of
4416@findex %expect
d6328241 4417@findex %expect-rr
bfa74976
RS
4418
4419Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4420(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4421have harmless shift/reduce conflicts which are resolved in a predictable
4422way and would be difficult to eliminate. It is desirable to suppress
4423the warning about these conflicts unless the number of conflicts
4424changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4425
4426The declaration looks like this:
4427
4428@example
4429%expect @var{n}
4430@end example
4431
035aa4a0
PE
4432Here @var{n} is a decimal integer. The declaration says there should
4433be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4434Bison reports an error if the number of shift/reduce conflicts differs
4435from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4436
035aa4a0
PE
4437For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4438serious, and should be eliminated entirely. Bison will always report
4439reduce/reduce conflicts for these parsers. With @acronym{GLR}
4440parsers, however, both kinds of conflicts are routine; otherwise,
4441there would be no need to use @acronym{GLR} parsing. Therefore, it is
4442also possible to specify an expected number of reduce/reduce conflicts
4443in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4444
4445@example
4446%expect-rr @var{n}
4447@end example
4448
bfa74976
RS
4449In general, using @code{%expect} involves these steps:
4450
4451@itemize @bullet
4452@item
4453Compile your grammar without @code{%expect}. Use the @samp{-v} option
4454to get a verbose list of where the conflicts occur. Bison will also
4455print the number of conflicts.
4456
4457@item
4458Check each of the conflicts to make sure that Bison's default
4459resolution is what you really want. If not, rewrite the grammar and
4460go back to the beginning.
4461
4462@item
4463Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4464number which Bison printed. With @acronym{GLR} parsers, add an
4465@code{%expect-rr} declaration as well.
bfa74976
RS
4466@end itemize
4467
035aa4a0
PE
4468Now Bison will warn you if you introduce an unexpected conflict, but
4469will keep silent otherwise.
bfa74976 4470
342b8b6e 4471@node Start Decl
bfa74976
RS
4472@subsection The Start-Symbol
4473@cindex declaring the start symbol
4474@cindex start symbol, declaring
4475@cindex default start symbol
4476@findex %start
4477
4478Bison assumes by default that the start symbol for the grammar is the first
4479nonterminal specified in the grammar specification section. The programmer
4480may override this restriction with the @code{%start} declaration as follows:
4481
4482@example
4483%start @var{symbol}
4484@end example
4485
342b8b6e 4486@node Pure Decl
bfa74976
RS
4487@subsection A Pure (Reentrant) Parser
4488@cindex reentrant parser
4489@cindex pure parser
d9df47b6 4490@findex %define api.pure
bfa74976
RS
4491
4492A @dfn{reentrant} program is one which does not alter in the course of
4493execution; in other words, it consists entirely of @dfn{pure} (read-only)
4494code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4495for example, a nonreentrant program may not be safe to call from a signal
4496handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4497program must be called only within interlocks.
4498
70811b85 4499Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4500suitable for most uses, and it permits compatibility with Yacc. (The
4501standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4502statically allocated variables for communication with @code{yylex},
4503including @code{yylval} and @code{yylloc}.)
bfa74976 4504
70811b85 4505Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4506declaration @code{%define api.pure} says that you want the parser to be
70811b85 4507reentrant. It looks like this:
bfa74976
RS
4508
4509@example
d9df47b6 4510%define api.pure
bfa74976
RS
4511@end example
4512
70811b85
RS
4513The result is that the communication variables @code{yylval} and
4514@code{yylloc} become local variables in @code{yyparse}, and a different
4515calling convention is used for the lexical analyzer function
4516@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4517Parsers}, for the details of this. The variable @code{yynerrs}
4518becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4519of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4520Reporting Function @code{yyerror}}). The convention for calling
4521@code{yyparse} itself is unchanged.
4522
4523Whether the parser is pure has nothing to do with the grammar rules.
4524You can generate either a pure parser or a nonreentrant parser from any
4525valid grammar.
bfa74976 4526
9987d1b3
JD
4527@node Push Decl
4528@subsection A Push Parser
4529@cindex push parser
4530@cindex push parser
c373bf8b 4531@findex %define api.push_pull
9987d1b3 4532
f4101aa6
AD
4533A pull parser is called once and it takes control until all its input
4534is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4535each time a new token is made available.
4536
f4101aa6 4537A push parser is typically useful when the parser is part of a
9987d1b3 4538main event loop in the client's application. This is typically
f4101aa6
AD
4539a requirement of a GUI, when the main event loop needs to be triggered
4540within a certain time period.
9987d1b3 4541
d782395d
JD
4542Normally, Bison generates a pull parser.
4543The following Bison declaration says that you want the parser to be a push
c373bf8b 4544parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4545
4546@example
c373bf8b 4547%define api.push_pull "push"
9987d1b3
JD
4548@end example
4549
4550In almost all cases, you want to ensure that your push parser is also
4551a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4552time you should create an impure push parser is to have backwards
9987d1b3
JD
4553compatibility with the impure Yacc pull mode interface. Unless you know
4554what you are doing, your declarations should look like this:
4555
4556@example
d9df47b6 4557%define api.pure
c373bf8b 4558%define api.push_pull "push"
9987d1b3
JD
4559@end example
4560
f4101aa6
AD
4561There is a major notable functional difference between the pure push parser
4562and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4563many parser instances, of the same type of parser, in memory at the same time.
4564An impure push parser should only use one parser at a time.
4565
4566When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4567the generated parser. @code{yypstate} is a structure that the generated
4568parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4569function that will create a new parser instance. @code{yypstate_delete}
4570will free the resources associated with the corresponding parser instance.
f4101aa6 4571Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4572token is available to provide the parser. A trivial example
4573of using a pure push parser would look like this:
4574
4575@example
4576int status;
4577yypstate *ps = yypstate_new ();
4578do @{
4579 status = yypush_parse (ps, yylex (), NULL);
4580@} while (status == YYPUSH_MORE);
4581yypstate_delete (ps);
4582@end example
4583
4584If the user decided to use an impure push parser, a few things about
f4101aa6 4585the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4586a global variable instead of a variable in the @code{yypush_parse} function.
4587For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4588changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4589example would thus look like this:
4590
4591@example
4592extern int yychar;
4593int status;
4594yypstate *ps = yypstate_new ();
4595do @{
4596 yychar = yylex ();
4597 status = yypush_parse (ps);
4598@} while (status == YYPUSH_MORE);
4599yypstate_delete (ps);
4600@end example
4601
f4101aa6 4602That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4603for use by the next invocation of the @code{yypush_parse} function.
4604
f4101aa6 4605Bison also supports both the push parser interface along with the pull parser
9987d1b3 4606interface in the same generated parser. In order to get this functionality,
f4101aa6 4607you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4608@code{%define api.push_pull "both"} declaration. Doing this will create all of
4609the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4610and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4611would be used. However, the user should note that it is implemented in the
d782395d
JD
4612generated parser by calling @code{yypull_parse}.
4613This makes the @code{yyparse} function that is generated with the
c373bf8b 4614@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4615@code{yyparse} function. If the user
4616calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4617stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4618and then @code{yypull_parse} the rest of the input stream. If you would like
4619to switch back and forth between between parsing styles, you would have to
4620write your own @code{yypull_parse} function that knows when to quit looking
4621for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4622like this:
4623
4624@example
4625yypstate *ps = yypstate_new ();
4626yypull_parse (ps); /* Will call the lexer */
4627yypstate_delete (ps);
4628@end example
4629
d9df47b6 4630Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4631the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4632@code{%define api.push_pull "push"}.
9987d1b3 4633
342b8b6e 4634@node Decl Summary
bfa74976
RS
4635@subsection Bison Declaration Summary
4636@cindex Bison declaration summary
4637@cindex declaration summary
4638@cindex summary, Bison declaration
4639
d8988b2f 4640Here is a summary of the declarations used to define a grammar:
bfa74976 4641
18b519c0 4642@deffn {Directive} %union
bfa74976
RS
4643Declare the collection of data types that semantic values may have
4644(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4645@end deffn
bfa74976 4646
18b519c0 4647@deffn {Directive} %token
bfa74976
RS
4648Declare a terminal symbol (token type name) with no precedence
4649or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4650@end deffn
bfa74976 4651
18b519c0 4652@deffn {Directive} %right
bfa74976
RS
4653Declare a terminal symbol (token type name) that is right-associative
4654(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4655@end deffn
bfa74976 4656
18b519c0 4657@deffn {Directive} %left
bfa74976
RS
4658Declare a terminal symbol (token type name) that is left-associative
4659(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4660@end deffn
bfa74976 4661
18b519c0 4662@deffn {Directive} %nonassoc
bfa74976 4663Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4664(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4665Using it in a way that would be associative is a syntax error.
4666@end deffn
4667
91d2c560 4668@ifset defaultprec
39a06c25 4669@deffn {Directive} %default-prec
22fccf95 4670Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4671(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4672@end deffn
91d2c560 4673@end ifset
bfa74976 4674
18b519c0 4675@deffn {Directive} %type
bfa74976
RS
4676Declare the type of semantic values for a nonterminal symbol
4677(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4678@end deffn
bfa74976 4679
18b519c0 4680@deffn {Directive} %start
89cab50d
AD
4681Specify the grammar's start symbol (@pxref{Start Decl, ,The
4682Start-Symbol}).
18b519c0 4683@end deffn
bfa74976 4684
18b519c0 4685@deffn {Directive} %expect
bfa74976
RS
4686Declare the expected number of shift-reduce conflicts
4687(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4688@end deffn
4689
bfa74976 4690
d8988b2f
AD
4691@sp 1
4692@noindent
4693In order to change the behavior of @command{bison}, use the following
4694directives:
4695
148d66d8
JD
4696@deffn {Directive} %code @{@var{code}@}
4697@findex %code
4698This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4699It inserts @var{code} verbatim at a language-dependent default location in the
4700output@footnote{The default location is actually skeleton-dependent;
4701 writers of non-standard skeletons however should choose the default location
4702 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4703
4704@cindex Prologue
8405b70c 4705For C/C++, the default location is the parser source code
148d66d8
JD
4706file after the usual contents of the parser header file.
4707Thus, @code{%code} replaces the traditional Yacc prologue,
4708@code{%@{@var{code}%@}}, for most purposes.
4709For a detailed discussion, see @ref{Prologue Alternatives}.
4710
8405b70c 4711For Java, the default location is inside the parser class.
148d66d8
JD
4712
4713(Like all the Yacc prologue alternatives, this directive is experimental.
4714More user feedback will help to determine whether it should become a permanent
4715feature.)
4716@end deffn
4717
4718@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4719This is the qualified form of the @code{%code} directive.
4720If you need to specify location-sensitive verbatim @var{code} that does not
4721belong at the default location selected by the unqualified @code{%code} form,
4722use this form instead.
4723
4724@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4725where Bison should generate it.
4726Not all values of @var{qualifier} are available for all target languages:
4727
4728@itemize @bullet
148d66d8 4729@item requires
793fbca5 4730@findex %code requires
148d66d8
JD
4731
4732@itemize @bullet
4733@item Language(s): C, C++
4734
4735@item Purpose: This is the best place to write dependency code required for
4736@code{YYSTYPE} and @code{YYLTYPE}.
4737In other words, it's the best place to define types referenced in @code{%union}
4738directives, and it's the best place to override Bison's default @code{YYSTYPE}
4739and @code{YYLTYPE} definitions.
4740
4741@item Location(s): The parser header file and the parser source code file
4742before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4743@end itemize
4744
4745@item provides
4746@findex %code provides
4747
4748@itemize @bullet
4749@item Language(s): C, C++
4750
4751@item Purpose: This is the best place to write additional definitions and
4752declarations that should be provided to other modules.
4753
4754@item Location(s): The parser header file and the parser source code file after
4755the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4756@end itemize
4757
4758@item top
4759@findex %code top
4760
4761@itemize @bullet
4762@item Language(s): C, C++
4763
4764@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4765usually be more appropriate than @code{%code top}.
4766However, occasionally it is necessary to insert code much nearer the top of the
4767parser source code file.
4768For example:
4769
4770@smallexample
4771%code top @{
4772 #define _GNU_SOURCE
4773 #include <stdio.h>
4774@}
4775@end smallexample
4776
4777@item Location(s): Near the top of the parser source code file.
4778@end itemize
8405b70c 4779
148d66d8
JD
4780@item imports
4781@findex %code imports
4782
4783@itemize @bullet
4784@item Language(s): Java
4785
4786@item Purpose: This is the best place to write Java import directives.
4787
4788@item Location(s): The parser Java file after any Java package directive and
4789before any class definitions.
4790@end itemize
148d66d8
JD
4791@end itemize
4792
4793(Like all the Yacc prologue alternatives, this directive is experimental.
4794More user feedback will help to determine whether it should become a permanent
4795feature.)
4796
4797@cindex Prologue
4798For a detailed discussion of how to use @code{%code} in place of the
4799traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4800@end deffn
4801
18b519c0 4802@deffn {Directive} %debug
4947ebdb
PE
4803In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4804already defined, so that the debugging facilities are compiled.
18b519c0 4805@end deffn
ec3bc396 4806@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4807
c1d19e10
PB
4808@deffn {Directive} %define @var{variable}
4809@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4810Define a variable to adjust Bison's behavior.
4811The possible choices for @var{variable}, as well as their meanings, depend on
4812the selected target language and/or the parser skeleton (@pxref{Decl
4813Summary,,%language}).
4814
4815Bison will warn if a @var{variable} is defined multiple times.
4816
4817Omitting @code{"@var{value}"} is always equivalent to specifying it as
4818@code{""}.
4819
922bdd7f 4820Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4821In this case, Bison will complain if the variable definition does not meet one
4822of the following four conditions:
4823
4824@enumerate
4825@item @code{"@var{value}"} is @code{"true"}
4826
4827@item @code{"@var{value}"} is omitted (or is @code{""}).
4828This is equivalent to @code{"true"}.
4829
4830@item @code{"@var{value}"} is @code{"false"}.
4831
4832@item @var{variable} is never defined.
4833In this case, Bison selects a default value, which may depend on the selected
4834target language and/or parser skeleton.
4835@end enumerate
148d66d8 4836
793fbca5
JD
4837Some of the accepted @var{variable}s are:
4838
4839@itemize @bullet
d9df47b6
JD
4840@item api.pure
4841@findex %define api.pure
4842
4843@itemize @bullet
4844@item Language(s): C
4845
4846@item Purpose: Request a pure (reentrant) parser program.
4847@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4848
4849@item Accepted Values: Boolean
4850
4851@item Default Value: @code{"false"}
4852@end itemize
4853
c373bf8b
JD
4854@item api.push_pull
4855@findex %define api.push_pull
793fbca5
JD
4856
4857@itemize @bullet
4858@item Language(s): C (LALR(1) only)
4859
4860@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4861@xref{Push Decl, ,A Push Parser}.
793fbca5
JD
4862
4863@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4864
4865@item Default Value: @code{"pull"}
4866@end itemize
4867
31984206
JD
4868@item lr.keep_unreachable_states
4869@findex %define lr.keep_unreachable_states
4870
4871@itemize @bullet
4872@item Language(s): all
4873
4874@item Purpose: Requests that Bison allow unreachable parser states to remain in
4875the parser tables.
4876Bison considers a state to be unreachable if there exists no sequence of
4877transitions from the start state to that state.
4878A state can become unreachable during conflict resolution if Bison disables a
4879shift action leading to it from a predecessor state.
4880Keeping unreachable states is sometimes useful for analysis purposes, but they
4881are useless in the generated parser.
4882
4883@item Accepted Values: Boolean
4884
4885@item Default Value: @code{"false"}
4886
4887@item Caveats:
4888
4889@itemize @bullet
cff03fb2
JD
4890
4891@item Unreachable states may contain conflicts and may use rules not used in
4892any other state.
31984206
JD
4893Thus, keeping unreachable states may induce warnings that are irrelevant to
4894your parser's behavior, and it may eliminate warnings that are relevant.
4895Of course, the change in warnings may actually be relevant to a parser table
4896analysis that wants to keep unreachable states, so this behavior will likely
4897remain in future Bison releases.
4898
4899@item While Bison is able to remove unreachable states, it is not guaranteed to
4900remove other kinds of useless states.
4901Specifically, when Bison disables reduce actions during conflict resolution,
4902some goto actions may become useless, and thus some additional states may
4903become useless.
4904If Bison were to compute which goto actions were useless and then disable those
4905actions, it could identify such states as unreachable and then remove those
4906states.
4907However, Bison does not compute which goto actions are useless.
4908@end itemize
4909@end itemize
4910
793fbca5
JD
4911@item namespace
4912@findex %define namespace
4913
4914@itemize
4915@item Languages(s): C++
4916
4917@item Purpose: Specifies the namespace for the parser class.
4918For example, if you specify:
4919
4920@smallexample
4921%define namespace "foo::bar"
4922@end smallexample
4923
4924Bison uses @code{foo::bar} verbatim in references such as:
4925
4926@smallexample
4927foo::bar::parser::semantic_type
4928@end smallexample
4929
4930However, to open a namespace, Bison removes any leading @code{::} and then
4931splits on any remaining occurrences:
4932
4933@smallexample
4934namespace foo @{ namespace bar @{
4935 class position;
4936 class location;
4937@} @}
4938@end smallexample
4939
4940@item Accepted Values: Any absolute or relative C++ namespace reference without
4941a trailing @code{"::"}.
4942For example, @code{"foo"} or @code{"::foo::bar"}.
4943
4944@item Default Value: The value specified by @code{%name-prefix}, which defaults
4945to @code{yy}.
4946This usage of @code{%name-prefix} is for backward compatibility and can be
4947confusing since @code{%name-prefix} also specifies the textual prefix for the
4948lexical analyzer function.
4949Thus, if you specify @code{%name-prefix}, it is best to also specify
4950@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4951lexical analyzer function.
4952For example, if you specify:
4953
4954@smallexample
4955%define namespace "foo"
4956%name-prefix "bar::"
4957@end smallexample
4958
4959The parser namespace is @code{foo} and @code{yylex} is referenced as
4960@code{bar::lex}.
4961@end itemize
4962@end itemize
4963
d782395d
JD
4964@end deffn
4965
18b519c0 4966@deffn {Directive} %defines
4bfd5e4e
PE
4967Write a header file containing macro definitions for the token type
4968names defined in the grammar as well as a few other declarations.
d8988b2f 4969If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4970is named @file{@var{name}.h}.
d8988b2f 4971
b321737f 4972For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4973@code{YYSTYPE} is already defined as a macro or you have used a
4974@code{<@var{type}>} tag without using @code{%union}.
4975Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4976(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4977require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4978or type definition
f8e1c9e5
AD
4979(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4980arrange for these definitions to be propagated to all modules, e.g., by
4981putting them in a prerequisite header that is included both by your
4982parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4983
4984Unless your parser is pure, the output header declares @code{yylval}
4985as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4986Parser}.
4987
4988If you have also used locations, the output header declares
4989@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4990the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4991Locations}.
4992
f8e1c9e5
AD
4993This output file is normally essential if you wish to put the definition
4994of @code{yylex} in a separate source file, because @code{yylex}
4995typically needs to be able to refer to the above-mentioned declarations
4996and to the token type codes. @xref{Token Values, ,Semantic Values of
4997Tokens}.
9bc0dd67 4998
16dc6a9e
JD
4999@findex %code requires
5000@findex %code provides
5001If you have declared @code{%code requires} or @code{%code provides}, the output
5002header also contains their code.
148d66d8 5003@xref{Decl Summary, ,%code}.
592d0b1e
PB
5004@end deffn
5005
02975b9a
JD
5006@deffn {Directive} %defines @var{defines-file}
5007Same as above, but save in the file @var{defines-file}.
5008@end deffn
5009
18b519c0 5010@deffn {Directive} %destructor
258b75ca 5011Specify how the parser should reclaim the memory associated to
fa7e68c3 5012discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5013@end deffn
72f889cc 5014
02975b9a 5015@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5016Specify a prefix to use for all Bison output file names. The names are
5017chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5018@end deffn
d8988b2f 5019
e6e704dc 5020@deffn {Directive} %language "@var{language}"
0e021770
PE
5021Specify the programming language for the generated parser. Currently
5022supported languages include C and C++.
e6e704dc 5023@var{language} is case-insensitive.
0e021770
PE
5024@end deffn
5025
18b519c0 5026@deffn {Directive} %locations
89cab50d
AD
5027Generate the code processing the locations (@pxref{Action Features,
5028,Special Features for Use in Actions}). This mode is enabled as soon as
5029the grammar uses the special @samp{@@@var{n}} tokens, but if your
5030grammar does not use it, using @samp{%locations} allows for more
6e649e65 5031accurate syntax error messages.
18b519c0 5032@end deffn
89cab50d 5033
02975b9a 5034@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5035Rename the external symbols used in the parser so that they start with
5036@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5037in C parsers
d8988b2f 5038is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5039@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5040(if locations are used) @code{yylloc}. If you use a push parser,
5041@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5042@code{yypstate_new} and @code{yypstate_delete} will
5043also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5044names become @code{c_parse}, @code{c_lex}, and so on.
5045For C++ parsers, see the @code{%define namespace} documentation in this
5046section.
aa08666d 5047@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5048@end deffn
931c7513 5049
91d2c560 5050@ifset defaultprec
22fccf95
PE
5051@deffn {Directive} %no-default-prec
5052Do not assign a precedence to rules lacking an explicit @code{%prec}
5053modifier (@pxref{Contextual Precedence, ,Context-Dependent
5054Precedence}).
5055@end deffn
91d2c560 5056@end ifset
22fccf95 5057
18b519c0 5058@deffn {Directive} %no-lines
931c7513
RS
5059Don't generate any @code{#line} preprocessor commands in the parser
5060file. Ordinarily Bison writes these commands in the parser file so that
5061the C compiler and debuggers will associate errors and object code with
5062your source file (the grammar file). This directive causes them to
5063associate errors with the parser file, treating it an independent source
5064file in its own right.
18b519c0 5065@end deffn
931c7513 5066
02975b9a 5067@deffn {Directive} %output "@var{file}"
fa4d969f 5068Specify @var{file} for the parser file.
18b519c0 5069@end deffn
6deb4447 5070
18b519c0 5071@deffn {Directive} %pure-parser
d9df47b6
JD
5072Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5073for which Bison is more careful to warn about unreasonable usage.
18b519c0 5074@end deffn
6deb4447 5075
b50d2359 5076@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5077Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5078Require a Version of Bison}.
b50d2359
AD
5079@end deffn
5080
0e021770 5081@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5082Specify the skeleton to use.
5083
5084You probably don't need this option unless you are developing Bison.
5085You should use @code{%language} if you want to specify the skeleton for a
5086different language, because it is clearer and because it will always choose the
5087correct skeleton for non-deterministic or push parsers.
5088
5089If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5090file in the Bison installation directory.
5091If it does, @var{file} is an absolute file name or a file name relative to the
5092directory of the grammar file.
5093This is similar to how most shells resolve commands.
0e021770
PE
5094@end deffn
5095
18b519c0 5096@deffn {Directive} %token-table
931c7513
RS
5097Generate an array of token names in the parser file. The name of the
5098array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5099token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5100three elements of @code{yytname} correspond to the predefined tokens
5101@code{"$end"},
88bce5a2
AD
5102@code{"error"}, and @code{"$undefined"}; after these come the symbols
5103defined in the grammar file.
931c7513 5104
9e0876fb
PE
5105The name in the table includes all the characters needed to represent
5106the token in Bison. For single-character literals and literal
5107strings, this includes the surrounding quoting characters and any
5108escape sequences. For example, the Bison single-character literal
5109@code{'+'} corresponds to a three-character name, represented in C as
5110@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5111corresponds to a five-character name, represented in C as
5112@code{"\"\\\\/\""}.
931c7513 5113
8c9a50be 5114When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5115definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5116@code{YYNRULES}, and @code{YYNSTATES}:
5117
5118@table @code
5119@item YYNTOKENS
5120The highest token number, plus one.
5121@item YYNNTS
9ecbd125 5122The number of nonterminal symbols.
931c7513
RS
5123@item YYNRULES
5124The number of grammar rules,
5125@item YYNSTATES
5126The number of parser states (@pxref{Parser States}).
5127@end table
18b519c0 5128@end deffn
d8988b2f 5129
18b519c0 5130@deffn {Directive} %verbose
d8988b2f 5131Write an extra output file containing verbose descriptions of the
742e4900 5132parser states and what is done for each type of lookahead token in
72d2299c 5133that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5134information.
18b519c0 5135@end deffn
d8988b2f 5136
18b519c0 5137@deffn {Directive} %yacc
d8988b2f
AD
5138Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5139including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5140@end deffn
d8988b2f
AD
5141
5142
342b8b6e 5143@node Multiple Parsers
bfa74976
RS
5144@section Multiple Parsers in the Same Program
5145
5146Most programs that use Bison parse only one language and therefore contain
5147only one Bison parser. But what if you want to parse more than one
5148language with the same program? Then you need to avoid a name conflict
5149between different definitions of @code{yyparse}, @code{yylval}, and so on.
5150
5151The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5152(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5153functions and variables of the Bison parser to start with @var{prefix}
5154instead of @samp{yy}. You can use this to give each parser distinct
5155names that do not conflict.
bfa74976
RS
5156
5157The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5158@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5159@code{yychar} and @code{yydebug}. If you use a push parser,
5160@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5161@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5162For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5163@code{clex}, and so on.
bfa74976
RS
5164
5165@strong{All the other variables and macros associated with Bison are not
5166renamed.} These others are not global; there is no conflict if the same
5167name is used in different parsers. For example, @code{YYSTYPE} is not
5168renamed, but defining this in different ways in different parsers causes
5169no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5170
5171The @samp{-p} option works by adding macro definitions to the beginning
5172of the parser source file, defining @code{yyparse} as
5173@code{@var{prefix}parse}, and so on. This effectively substitutes one
5174name for the other in the entire parser file.
5175
342b8b6e 5176@node Interface
bfa74976
RS
5177@chapter Parser C-Language Interface
5178@cindex C-language interface
5179@cindex interface
5180
5181The Bison parser is actually a C function named @code{yyparse}. Here we
5182describe the interface conventions of @code{yyparse} and the other
5183functions that it needs to use.
5184
5185Keep in mind that the parser uses many C identifiers starting with
5186@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5187identifier (aside from those in this manual) in an action or in epilogue
5188in the grammar file, you are likely to run into trouble.
bfa74976
RS
5189
5190@menu
5191* Parser Function:: How to call @code{yyparse} and what it returns.
9987d1b3
JD
5192* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5193* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
f4101aa6 5194* Parser Create Function:: How to call @code{yypstate_new} and what it
9987d1b3 5195 returns.
f4101aa6 5196* Parser Delete Function:: How to call @code{yypstate_delete} and what it
9987d1b3 5197 returns.
13863333 5198* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
5199 which reads tokens.
5200* Error Reporting:: You must supply a function @code{yyerror}.
5201* Action Features:: Special features for use in actions.
f7ab6a50
PE
5202* Internationalization:: How to let the parser speak in the user's
5203 native language.
bfa74976
RS
5204@end menu
5205
342b8b6e 5206@node Parser Function
bfa74976
RS
5207@section The Parser Function @code{yyparse}
5208@findex yyparse
5209
5210You call the function @code{yyparse} to cause parsing to occur. This
5211function reads tokens, executes actions, and ultimately returns when it
5212encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5213write an action which directs @code{yyparse} to return immediately
5214without reading further.
bfa74976 5215
2a8d363a
AD
5216
5217@deftypefun int yyparse (void)
bfa74976
RS
5218The value returned by @code{yyparse} is 0 if parsing was successful (return
5219is due to end-of-input).
5220
b47dbebe
PE
5221The value is 1 if parsing failed because of invalid input, i.e., input
5222that contains a syntax error or that causes @code{YYABORT} to be
5223invoked.
5224
5225The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5226@end deftypefun
bfa74976
RS
5227
5228In an action, you can cause immediate return from @code{yyparse} by using
5229these macros:
5230
2a8d363a 5231@defmac YYACCEPT
bfa74976
RS
5232@findex YYACCEPT
5233Return immediately with value 0 (to report success).
2a8d363a 5234@end defmac
bfa74976 5235
2a8d363a 5236@defmac YYABORT
bfa74976
RS
5237@findex YYABORT
5238Return immediately with value 1 (to report failure).
2a8d363a
AD
5239@end defmac
5240
5241If you use a reentrant parser, you can optionally pass additional
5242parameter information to it in a reentrant way. To do so, use the
5243declaration @code{%parse-param}:
5244
feeb0eda 5245@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5246@findex %parse-param
287c78f6
PE
5247Declare that an argument declared by the braced-code
5248@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5249The @var{argument-declaration} is used when declaring
feeb0eda
PE
5250functions or prototypes. The last identifier in
5251@var{argument-declaration} must be the argument name.
2a8d363a
AD
5252@end deffn
5253
5254Here's an example. Write this in the parser:
5255
5256@example
feeb0eda
PE
5257%parse-param @{int *nastiness@}
5258%parse-param @{int *randomness@}
2a8d363a
AD
5259@end example
5260
5261@noindent
5262Then call the parser like this:
5263
5264@example
5265@{
5266 int nastiness, randomness;
5267 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5268 value = yyparse (&nastiness, &randomness);
5269 @dots{}
5270@}
5271@end example
5272
5273@noindent
5274In the grammar actions, use expressions like this to refer to the data:
5275
5276@example
5277exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5278@end example
5279
9987d1b3
JD
5280@node Push Parser Function
5281@section The Push Parser Function @code{yypush_parse}
5282@findex yypush_parse
5283
f4101aa6
AD
5284You call the function @code{yypush_parse} to parse a single token. This
5285function is available if either the @code{%define api.push_pull "push"} or
5286@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5287@xref{Push Decl, ,A Push Parser}.
5288
5289@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5290The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5291following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5292is required to finish parsing the grammar.
5293@end deftypefun
5294
5295@node Pull Parser Function
5296@section The Pull Parser Function @code{yypull_parse}
5297@findex yypull_parse
5298
f4101aa6
AD
5299You call the function @code{yypull_parse} to parse the rest of the input
5300stream. This function is available if the @code{%define api.push_pull "both"}
5301declaration is used.
9987d1b3
JD
5302@xref{Push Decl, ,A Push Parser}.
5303
5304@deftypefun int yypull_parse (yypstate *yyps)
5305The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5306@end deftypefun
5307
5308@node Parser Create Function
5309@section The Parser Create Function @code{yystate_new}
5310@findex yypstate_new
5311
f4101aa6
AD
5312You call the function @code{yypstate_new} to create a new parser instance.
5313This function is available if either the @code{%define api.push_pull "push"} or
5314@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5315@xref{Push Decl, ,A Push Parser}.
5316
5317@deftypefun yypstate *yypstate_new (void)
5318The fuction will return a valid parser instance if there was memory available
5319or NULL if no memory was available.
5320@end deftypefun
5321
5322@node Parser Delete Function
5323@section The Parser Delete Function @code{yystate_delete}
5324@findex yypstate_delete
5325
5326You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5327function is available if either the @code{%define api.push_pull "push"} or
5328@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5329@xref{Push Decl, ,A Push Parser}.
5330
5331@deftypefun void yypstate_delete (yypstate *yyps)
5332This function will reclaim the memory associated with a parser instance.
5333After this call, you should no longer attempt to use the parser instance.
5334@end deftypefun
bfa74976 5335
342b8b6e 5336@node Lexical
bfa74976
RS
5337@section The Lexical Analyzer Function @code{yylex}
5338@findex yylex
5339@cindex lexical analyzer
5340
5341The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5342the input stream and returns them to the parser. Bison does not create
5343this function automatically; you must write it so that @code{yyparse} can
5344call it. The function is sometimes referred to as a lexical scanner.
5345
5346In simple programs, @code{yylex} is often defined at the end of the Bison
5347grammar file. If @code{yylex} is defined in a separate source file, you
5348need to arrange for the token-type macro definitions to be available there.
5349To do this, use the @samp{-d} option when you run Bison, so that it will
5350write these macro definitions into a separate header file
5351@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5352that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5353
5354@menu
5355* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5356* Token Values:: How @code{yylex} must return the semantic value
5357 of the token it has read.
95923bd6 5358* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5359 (line number, etc.) of the token, if the
5360 actions want that.
5361* Pure Calling:: How the calling convention differs
5362 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5363@end menu
5364
342b8b6e 5365@node Calling Convention
bfa74976
RS
5366@subsection Calling Convention for @code{yylex}
5367
72d2299c
PE
5368The value that @code{yylex} returns must be the positive numeric code
5369for the type of token it has just found; a zero or negative value
5370signifies end-of-input.
bfa74976
RS
5371
5372When a token is referred to in the grammar rules by a name, that name
5373in the parser file becomes a C macro whose definition is the proper
5374numeric code for that token type. So @code{yylex} can use the name
5375to indicate that type. @xref{Symbols}.
5376
5377When a token is referred to in the grammar rules by a character literal,
5378the numeric code for that character is also the code for the token type.
72d2299c
PE
5379So @code{yylex} can simply return that character code, possibly converted
5380to @code{unsigned char} to avoid sign-extension. The null character
5381must not be used this way, because its code is zero and that
bfa74976
RS
5382signifies end-of-input.
5383
5384Here is an example showing these things:
5385
5386@example
13863333
AD
5387int
5388yylex (void)
bfa74976
RS
5389@{
5390 @dots{}
72d2299c 5391 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5392 return 0;
5393 @dots{}
5394 if (c == '+' || c == '-')
72d2299c 5395 return c; /* Assume token type for `+' is '+'. */
bfa74976 5396 @dots{}
72d2299c 5397 return INT; /* Return the type of the token. */
bfa74976
RS
5398 @dots{}
5399@}
5400@end example
5401
5402@noindent
5403This interface has been designed so that the output from the @code{lex}
5404utility can be used without change as the definition of @code{yylex}.
5405
931c7513
RS
5406If the grammar uses literal string tokens, there are two ways that
5407@code{yylex} can determine the token type codes for them:
5408
5409@itemize @bullet
5410@item
5411If the grammar defines symbolic token names as aliases for the
5412literal string tokens, @code{yylex} can use these symbolic names like
5413all others. In this case, the use of the literal string tokens in
5414the grammar file has no effect on @code{yylex}.
5415
5416@item
9ecbd125 5417@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5418table. The index of the token in the table is the token type's code.
9ecbd125 5419The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5420double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5421token's characters are escaped as necessary to be suitable as input
5422to Bison.
931c7513 5423
9e0876fb
PE
5424Here's code for looking up a multicharacter token in @code{yytname},
5425assuming that the characters of the token are stored in
5426@code{token_buffer}, and assuming that the token does not contain any
5427characters like @samp{"} that require escaping.
931c7513
RS
5428
5429@smallexample
5430for (i = 0; i < YYNTOKENS; i++)
5431 @{
5432 if (yytname[i] != 0
5433 && yytname[i][0] == '"'
68449b3a
PE
5434 && ! strncmp (yytname[i] + 1, token_buffer,
5435 strlen (token_buffer))
931c7513
RS
5436 && yytname[i][strlen (token_buffer) + 1] == '"'
5437 && yytname[i][strlen (token_buffer) + 2] == 0)
5438 break;
5439 @}
5440@end smallexample
5441
5442The @code{yytname} table is generated only if you use the
8c9a50be 5443@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5444@end itemize
5445
342b8b6e 5446@node Token Values
bfa74976
RS
5447@subsection Semantic Values of Tokens
5448
5449@vindex yylval
9d9b8b70 5450In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5451be stored into the global variable @code{yylval}. When you are using
5452just one data type for semantic values, @code{yylval} has that type.
5453Thus, if the type is @code{int} (the default), you might write this in
5454@code{yylex}:
5455
5456@example
5457@group
5458 @dots{}
72d2299c
PE
5459 yylval = value; /* Put value onto Bison stack. */
5460 return INT; /* Return the type of the token. */
bfa74976
RS
5461 @dots{}
5462@end group
5463@end example
5464
5465When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5466made from the @code{%union} declaration (@pxref{Union Decl, ,The
5467Collection of Value Types}). So when you store a token's value, you
5468must use the proper member of the union. If the @code{%union}
5469declaration looks like this:
bfa74976
RS
5470
5471@example
5472@group
5473%union @{
5474 int intval;
5475 double val;
5476 symrec *tptr;
5477@}
5478@end group
5479@end example
5480
5481@noindent
5482then the code in @code{yylex} might look like this:
5483
5484@example
5485@group
5486 @dots{}
72d2299c
PE
5487 yylval.intval = value; /* Put value onto Bison stack. */
5488 return INT; /* Return the type of the token. */
bfa74976
RS
5489 @dots{}
5490@end group
5491@end example
5492
95923bd6
AD
5493@node Token Locations
5494@subsection Textual Locations of Tokens
bfa74976
RS
5495
5496@vindex yylloc
847bf1f5 5497If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5498Tracking Locations}) in actions to keep track of the textual locations
5499of tokens and groupings, then you must provide this information in
5500@code{yylex}. The function @code{yyparse} expects to find the textual
5501location of a token just parsed in the global variable @code{yylloc}.
5502So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5503
5504By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5505initialize the members that are going to be used by the actions. The
5506four members are called @code{first_line}, @code{first_column},
5507@code{last_line} and @code{last_column}. Note that the use of this
5508feature makes the parser noticeably slower.
bfa74976
RS
5509
5510@tindex YYLTYPE
5511The data type of @code{yylloc} has the name @code{YYLTYPE}.
5512
342b8b6e 5513@node Pure Calling
c656404a 5514@subsection Calling Conventions for Pure Parsers
bfa74976 5515
d9df47b6 5516When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5517pure, reentrant parser, the global communication variables @code{yylval}
5518and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5519Parser}.) In such parsers the two global variables are replaced by
5520pointers passed as arguments to @code{yylex}. You must declare them as
5521shown here, and pass the information back by storing it through those
5522pointers.
bfa74976
RS
5523
5524@example
13863333
AD
5525int
5526yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5527@{
5528 @dots{}
5529 *lvalp = value; /* Put value onto Bison stack. */
5530 return INT; /* Return the type of the token. */
5531 @dots{}
5532@}
5533@end example
5534
5535If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5536textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5537this case, omit the second argument; @code{yylex} will be called with
5538only one argument.
5539
e425e872 5540
2a8d363a
AD
5541If you wish to pass the additional parameter data to @code{yylex}, use
5542@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5543Function}).
e425e872 5544
feeb0eda 5545@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5546@findex %lex-param
287c78f6
PE
5547Declare that the braced-code @var{argument-declaration} is an
5548additional @code{yylex} argument declaration.
2a8d363a 5549@end deffn
e425e872 5550
2a8d363a 5551For instance:
e425e872
RS
5552
5553@example
feeb0eda
PE
5554%parse-param @{int *nastiness@}
5555%lex-param @{int *nastiness@}
5556%parse-param @{int *randomness@}
e425e872
RS
5557@end example
5558
5559@noindent
2a8d363a 5560results in the following signature:
e425e872
RS
5561
5562@example
2a8d363a
AD
5563int yylex (int *nastiness);
5564int yyparse (int *nastiness, int *randomness);
e425e872
RS
5565@end example
5566
d9df47b6 5567If @code{%define api.pure} is added:
c656404a
RS
5568
5569@example
2a8d363a
AD
5570int yylex (YYSTYPE *lvalp, int *nastiness);
5571int yyparse (int *nastiness, int *randomness);
c656404a
RS
5572@end example
5573
2a8d363a 5574@noindent
d9df47b6 5575and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5576
2a8d363a
AD
5577@example
5578int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5579int yyparse (int *nastiness, int *randomness);
5580@end example
931c7513 5581
342b8b6e 5582@node Error Reporting
bfa74976
RS
5583@section The Error Reporting Function @code{yyerror}
5584@cindex error reporting function
5585@findex yyerror
5586@cindex parse error
5587@cindex syntax error
5588
6e649e65 5589The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5590whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5591action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5592macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5593in Actions}).
bfa74976
RS
5594
5595The Bison parser expects to report the error by calling an error
5596reporting function named @code{yyerror}, which you must supply. It is
5597called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5598receives one argument. For a syntax error, the string is normally
5599@w{@code{"syntax error"}}.
bfa74976 5600
2a8d363a
AD
5601@findex %error-verbose
5602If you invoke the directive @code{%error-verbose} in the Bison
5603declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5604Section}), then Bison provides a more verbose and specific error message
6e649e65 5605string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5606
1a059451
PE
5607The parser can detect one other kind of error: memory exhaustion. This
5608can happen when the input contains constructions that are very deeply
bfa74976 5609nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5610parser normally extends its stack automatically up to a very large limit. But
5611if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5612fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5613
5614In some cases diagnostics like @w{@code{"syntax error"}} are
5615translated automatically from English to some other language before
5616they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5617
5618The following definition suffices in simple programs:
5619
5620@example
5621@group
13863333 5622void
38a92d50 5623yyerror (char const *s)
bfa74976
RS
5624@{
5625@end group
5626@group
5627 fprintf (stderr, "%s\n", s);
5628@}
5629@end group
5630@end example
5631
5632After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5633error recovery if you have written suitable error recovery grammar rules
5634(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5635immediately return 1.
5636
93724f13 5637Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5638an access to the current location.
5639This is indeed the case for the @acronym{GLR}
2a8d363a 5640parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5641@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5642@code{yyerror} are:
5643
5644@example
38a92d50
PE
5645void yyerror (char const *msg); /* Yacc parsers. */
5646void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5647@end example
5648
feeb0eda 5649If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5650
5651@example
b317297e
PE
5652void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5653void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5654@end example
5655
fa7e68c3 5656Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5657convention for absolutely pure parsers, i.e., when the calling
5658convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5659@code{%define api.pure} are pure.
5660I.e.:
2a8d363a
AD
5661
5662@example
5663/* Location tracking. */
5664%locations
5665/* Pure yylex. */
d9df47b6 5666%define api.pure
feeb0eda 5667%lex-param @{int *nastiness@}
2a8d363a 5668/* Pure yyparse. */
feeb0eda
PE
5669%parse-param @{int *nastiness@}
5670%parse-param @{int *randomness@}
2a8d363a
AD
5671@end example
5672
5673@noindent
5674results in the following signatures for all the parser kinds:
5675
5676@example
5677int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5678int yyparse (int *nastiness, int *randomness);
93724f13
AD
5679void yyerror (YYLTYPE *locp,
5680 int *nastiness, int *randomness,
38a92d50 5681 char const *msg);
2a8d363a
AD
5682@end example
5683
1c0c3e95 5684@noindent
38a92d50
PE
5685The prototypes are only indications of how the code produced by Bison
5686uses @code{yyerror}. Bison-generated code always ignores the returned
5687value, so @code{yyerror} can return any type, including @code{void}.
5688Also, @code{yyerror} can be a variadic function; that is why the
5689message is always passed last.
5690
5691Traditionally @code{yyerror} returns an @code{int} that is always
5692ignored, but this is purely for historical reasons, and @code{void} is
5693preferable since it more accurately describes the return type for
5694@code{yyerror}.
93724f13 5695
bfa74976
RS
5696@vindex yynerrs
5697The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5698reported so far. Normally this variable is global; but if you
704a47c4
AD
5699request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5700then it is a local variable which only the actions can access.
bfa74976 5701
342b8b6e 5702@node Action Features
bfa74976
RS
5703@section Special Features for Use in Actions
5704@cindex summary, action features
5705@cindex action features summary
5706
5707Here is a table of Bison constructs, variables and macros that
5708are useful in actions.
5709
18b519c0 5710@deffn {Variable} $$
bfa74976
RS
5711Acts like a variable that contains the semantic value for the
5712grouping made by the current rule. @xref{Actions}.
18b519c0 5713@end deffn
bfa74976 5714
18b519c0 5715@deffn {Variable} $@var{n}
bfa74976
RS
5716Acts like a variable that contains the semantic value for the
5717@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5718@end deffn
bfa74976 5719
18b519c0 5720@deffn {Variable} $<@var{typealt}>$
bfa74976 5721Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5722specified by the @code{%union} declaration. @xref{Action Types, ,Data
5723Types of Values in Actions}.
18b519c0 5724@end deffn
bfa74976 5725
18b519c0 5726@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5727Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5728union specified by the @code{%union} declaration.
e0c471a9 5729@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5730@end deffn
bfa74976 5731
18b519c0 5732@deffn {Macro} YYABORT;
bfa74976
RS
5733Return immediately from @code{yyparse}, indicating failure.
5734@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5735@end deffn
bfa74976 5736
18b519c0 5737@deffn {Macro} YYACCEPT;
bfa74976
RS
5738Return immediately from @code{yyparse}, indicating success.
5739@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5740@end deffn
bfa74976 5741
18b519c0 5742@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5743@findex YYBACKUP
5744Unshift a token. This macro is allowed only for rules that reduce
742e4900 5745a single value, and only when there is no lookahead token.
c827f760 5746It is also disallowed in @acronym{GLR} parsers.
742e4900 5747It installs a lookahead token with token type @var{token} and
bfa74976
RS
5748semantic value @var{value}; then it discards the value that was
5749going to be reduced by this rule.
5750
5751If the macro is used when it is not valid, such as when there is
742e4900 5752a lookahead token already, then it reports a syntax error with
bfa74976
RS
5753a message @samp{cannot back up} and performs ordinary error
5754recovery.
5755
5756In either case, the rest of the action is not executed.
18b519c0 5757@end deffn
bfa74976 5758
18b519c0 5759@deffn {Macro} YYEMPTY
bfa74976 5760@vindex YYEMPTY
742e4900 5761Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5762@end deffn
bfa74976 5763
32c29292
JD
5764@deffn {Macro} YYEOF
5765@vindex YYEOF
742e4900 5766Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5767stream.
5768@end deffn
5769
18b519c0 5770@deffn {Macro} YYERROR;
bfa74976
RS
5771@findex YYERROR
5772Cause an immediate syntax error. This statement initiates error
5773recovery just as if the parser itself had detected an error; however, it
5774does not call @code{yyerror}, and does not print any message. If you
5775want to print an error message, call @code{yyerror} explicitly before
5776the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5777@end deffn
bfa74976 5778
18b519c0 5779@deffn {Macro} YYRECOVERING
02103984
PE
5780@findex YYRECOVERING
5781The expression @code{YYRECOVERING ()} yields 1 when the parser
5782is recovering from a syntax error, and 0 otherwise.
bfa74976 5783@xref{Error Recovery}.
18b519c0 5784@end deffn
bfa74976 5785
18b519c0 5786@deffn {Variable} yychar
742e4900
JD
5787Variable containing either the lookahead token, or @code{YYEOF} when the
5788lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5789has been performed so the next token is not yet known.
5790Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5791Actions}).
742e4900 5792@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5793@end deffn
bfa74976 5794
18b519c0 5795@deffn {Macro} yyclearin;
742e4900 5796Discard the current lookahead token. This is useful primarily in
32c29292
JD
5797error rules.
5798Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5799Semantic Actions}).
5800@xref{Error Recovery}.
18b519c0 5801@end deffn
bfa74976 5802
18b519c0 5803@deffn {Macro} yyerrok;
bfa74976 5804Resume generating error messages immediately for subsequent syntax
13863333 5805errors. This is useful primarily in error rules.
bfa74976 5806@xref{Error Recovery}.
18b519c0 5807@end deffn
bfa74976 5808
32c29292 5809@deffn {Variable} yylloc
742e4900 5810Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5811to @code{YYEMPTY} or @code{YYEOF}.
5812Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5813Actions}).
5814@xref{Actions and Locations, ,Actions and Locations}.
5815@end deffn
5816
5817@deffn {Variable} yylval
742e4900 5818Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5819not set to @code{YYEMPTY} or @code{YYEOF}.
5820Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5821Actions}).
5822@xref{Actions, ,Actions}.
5823@end deffn
5824
18b519c0 5825@deffn {Value} @@$
847bf1f5 5826@findex @@$
95923bd6 5827Acts like a structure variable containing information on the textual location
847bf1f5
AD
5828of the grouping made by the current rule. @xref{Locations, ,
5829Tracking Locations}.
bfa74976 5830
847bf1f5
AD
5831@c Check if those paragraphs are still useful or not.
5832
5833@c @example
5834@c struct @{
5835@c int first_line, last_line;
5836@c int first_column, last_column;
5837@c @};
5838@c @end example
5839
5840@c Thus, to get the starting line number of the third component, you would
5841@c use @samp{@@3.first_line}.
bfa74976 5842
847bf1f5
AD
5843@c In order for the members of this structure to contain valid information,
5844@c you must make @code{yylex} supply this information about each token.
5845@c If you need only certain members, then @code{yylex} need only fill in
5846@c those members.
bfa74976 5847
847bf1f5 5848@c The use of this feature makes the parser noticeably slower.
18b519c0 5849@end deffn
847bf1f5 5850
18b519c0 5851@deffn {Value} @@@var{n}
847bf1f5 5852@findex @@@var{n}
95923bd6 5853Acts like a structure variable containing information on the textual location
847bf1f5
AD
5854of the @var{n}th component of the current rule. @xref{Locations, ,
5855Tracking Locations}.
18b519c0 5856@end deffn
bfa74976 5857
f7ab6a50
PE
5858@node Internationalization
5859@section Parser Internationalization
5860@cindex internationalization
5861@cindex i18n
5862@cindex NLS
5863@cindex gettext
5864@cindex bison-po
5865
5866A Bison-generated parser can print diagnostics, including error and
5867tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5868also supports outputting diagnostics in the user's native language. To
5869make this work, the user should set the usual environment variables.
5870@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5871For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5872set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5873encoding. The exact set of available locales depends on the user's
5874installation.
5875
5876The maintainer of a package that uses a Bison-generated parser enables
5877the internationalization of the parser's output through the following
5878steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5879@acronym{GNU} Automake.
5880
5881@enumerate
5882@item
30757c8c 5883@cindex bison-i18n.m4
f7ab6a50
PE
5884Into the directory containing the @acronym{GNU} Autoconf macros used
5885by the package---often called @file{m4}---copy the
5886@file{bison-i18n.m4} file installed by Bison under
5887@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5888For example:
5889
5890@example
5891cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5892@end example
5893
5894@item
30757c8c
PE
5895@findex BISON_I18N
5896@vindex BISON_LOCALEDIR
5897@vindex YYENABLE_NLS
f7ab6a50
PE
5898In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5899invocation, add an invocation of @code{BISON_I18N}. This macro is
5900defined in the file @file{bison-i18n.m4} that you copied earlier. It
5901causes @samp{configure} to find the value of the
30757c8c
PE
5902@code{BISON_LOCALEDIR} variable, and it defines the source-language
5903symbol @code{YYENABLE_NLS} to enable translations in the
5904Bison-generated parser.
f7ab6a50
PE
5905
5906@item
5907In the @code{main} function of your program, designate the directory
5908containing Bison's runtime message catalog, through a call to
5909@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5910For example:
5911
5912@example
5913bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5914@end example
5915
5916Typically this appears after any other call @code{bindtextdomain
5917(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5918@samp{BISON_LOCALEDIR} to be defined as a string through the
5919@file{Makefile}.
5920
5921@item
5922In the @file{Makefile.am} that controls the compilation of the @code{main}
5923function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5924either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5925
5926@example
5927DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5928@end example
5929
5930or:
5931
5932@example
5933AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5934@end example
5935
5936@item
5937Finally, invoke the command @command{autoreconf} to generate the build
5938infrastructure.
5939@end enumerate
5940
bfa74976 5941
342b8b6e 5942@node Algorithm
13863333
AD
5943@chapter The Bison Parser Algorithm
5944@cindex Bison parser algorithm
bfa74976
RS
5945@cindex algorithm of parser
5946@cindex shifting
5947@cindex reduction
5948@cindex parser stack
5949@cindex stack, parser
5950
5951As Bison reads tokens, it pushes them onto a stack along with their
5952semantic values. The stack is called the @dfn{parser stack}. Pushing a
5953token is traditionally called @dfn{shifting}.
5954
5955For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5956@samp{3} to come. The stack will have four elements, one for each token
5957that was shifted.
5958
5959But the stack does not always have an element for each token read. When
5960the last @var{n} tokens and groupings shifted match the components of a
5961grammar rule, they can be combined according to that rule. This is called
5962@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5963single grouping whose symbol is the result (left hand side) of that rule.
5964Running the rule's action is part of the process of reduction, because this
5965is what computes the semantic value of the resulting grouping.
5966
5967For example, if the infix calculator's parser stack contains this:
5968
5969@example
59701 + 5 * 3
5971@end example
5972
5973@noindent
5974and the next input token is a newline character, then the last three
5975elements can be reduced to 15 via the rule:
5976
5977@example
5978expr: expr '*' expr;
5979@end example
5980
5981@noindent
5982Then the stack contains just these three elements:
5983
5984@example
59851 + 15
5986@end example
5987
5988@noindent
5989At this point, another reduction can be made, resulting in the single value
599016. Then the newline token can be shifted.
5991
5992The parser tries, by shifts and reductions, to reduce the entire input down
5993to a single grouping whose symbol is the grammar's start-symbol
5994(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5995
5996This kind of parser is known in the literature as a bottom-up parser.
5997
5998@menu
742e4900 5999* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6000* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6001* Precedence:: Operator precedence works by resolving conflicts.
6002* Contextual Precedence:: When an operator's precedence depends on context.
6003* Parser States:: The parser is a finite-state-machine with stack.
6004* Reduce/Reduce:: When two rules are applicable in the same situation.
6005* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6006* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6007* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6008@end menu
6009
742e4900
JD
6010@node Lookahead
6011@section Lookahead Tokens
6012@cindex lookahead token
bfa74976
RS
6013
6014The Bison parser does @emph{not} always reduce immediately as soon as the
6015last @var{n} tokens and groupings match a rule. This is because such a
6016simple strategy is inadequate to handle most languages. Instead, when a
6017reduction is possible, the parser sometimes ``looks ahead'' at the next
6018token in order to decide what to do.
6019
6020When a token is read, it is not immediately shifted; first it becomes the
742e4900 6021@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6022perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6023the lookahead token remains off to the side. When no more reductions
6024should take place, the lookahead token is shifted onto the stack. This
bfa74976 6025does not mean that all possible reductions have been done; depending on the
742e4900 6026token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6027application.
6028
742e4900 6029Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6030expressions which contain binary addition operators and postfix unary
6031factorial operators (@samp{!}), and allow parentheses for grouping.
6032
6033@example
6034@group
6035expr: term '+' expr
6036 | term
6037 ;
6038@end group
6039
6040@group
6041term: '(' expr ')'
6042 | term '!'
6043 | NUMBER
6044 ;
6045@end group
6046@end example
6047
6048Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6049should be done? If the following token is @samp{)}, then the first three
6050tokens must be reduced to form an @code{expr}. This is the only valid
6051course, because shifting the @samp{)} would produce a sequence of symbols
6052@w{@code{term ')'}}, and no rule allows this.
6053
6054If the following token is @samp{!}, then it must be shifted immediately so
6055that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6056parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6057@code{expr}. It would then be impossible to shift the @samp{!} because
6058doing so would produce on the stack the sequence of symbols @code{expr
6059'!'}. No rule allows that sequence.
6060
6061@vindex yychar
32c29292
JD
6062@vindex yylval
6063@vindex yylloc
742e4900 6064The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6065Its semantic value and location, if any, are stored in the variables
6066@code{yylval} and @code{yylloc}.
bfa74976
RS
6067@xref{Action Features, ,Special Features for Use in Actions}.
6068
342b8b6e 6069@node Shift/Reduce
bfa74976
RS
6070@section Shift/Reduce Conflicts
6071@cindex conflicts
6072@cindex shift/reduce conflicts
6073@cindex dangling @code{else}
6074@cindex @code{else}, dangling
6075
6076Suppose we are parsing a language which has if-then and if-then-else
6077statements, with a pair of rules like this:
6078
6079@example
6080@group
6081if_stmt:
6082 IF expr THEN stmt
6083 | IF expr THEN stmt ELSE stmt
6084 ;
6085@end group
6086@end example
6087
6088@noindent
6089Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6090terminal symbols for specific keyword tokens.
6091
742e4900 6092When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6093contents of the stack (assuming the input is valid) are just right for
6094reduction by the first rule. But it is also legitimate to shift the
6095@code{ELSE}, because that would lead to eventual reduction by the second
6096rule.
6097
6098This situation, where either a shift or a reduction would be valid, is
6099called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6100these conflicts by choosing to shift, unless otherwise directed by
6101operator precedence declarations. To see the reason for this, let's
6102contrast it with the other alternative.
6103
6104Since the parser prefers to shift the @code{ELSE}, the result is to attach
6105the else-clause to the innermost if-statement, making these two inputs
6106equivalent:
6107
6108@example
6109if x then if y then win (); else lose;
6110
6111if x then do; if y then win (); else lose; end;
6112@end example
6113
6114But if the parser chose to reduce when possible rather than shift, the
6115result would be to attach the else-clause to the outermost if-statement,
6116making these two inputs equivalent:
6117
6118@example
6119if x then if y then win (); else lose;
6120
6121if x then do; if y then win (); end; else lose;
6122@end example
6123
6124The conflict exists because the grammar as written is ambiguous: either
6125parsing of the simple nested if-statement is legitimate. The established
6126convention is that these ambiguities are resolved by attaching the
6127else-clause to the innermost if-statement; this is what Bison accomplishes
6128by choosing to shift rather than reduce. (It would ideally be cleaner to
6129write an unambiguous grammar, but that is very hard to do in this case.)
6130This particular ambiguity was first encountered in the specifications of
6131Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6132
6133To avoid warnings from Bison about predictable, legitimate shift/reduce
6134conflicts, use the @code{%expect @var{n}} declaration. There will be no
6135warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6136@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6137
6138The definition of @code{if_stmt} above is solely to blame for the
6139conflict, but the conflict does not actually appear without additional
6140rules. Here is a complete Bison input file that actually manifests the
6141conflict:
6142
6143@example
6144@group
6145%token IF THEN ELSE variable
6146%%
6147@end group
6148@group
6149stmt: expr
6150 | if_stmt
6151 ;
6152@end group
6153
6154@group
6155if_stmt:
6156 IF expr THEN stmt
6157 | IF expr THEN stmt ELSE stmt
6158 ;
6159@end group
6160
6161expr: variable
6162 ;
6163@end example
6164
342b8b6e 6165@node Precedence
bfa74976
RS
6166@section Operator Precedence
6167@cindex operator precedence
6168@cindex precedence of operators
6169
6170Another situation where shift/reduce conflicts appear is in arithmetic
6171expressions. Here shifting is not always the preferred resolution; the
6172Bison declarations for operator precedence allow you to specify when to
6173shift and when to reduce.
6174
6175@menu
6176* Why Precedence:: An example showing why precedence is needed.
6177* Using Precedence:: How to specify precedence in Bison grammars.
6178* Precedence Examples:: How these features are used in the previous example.
6179* How Precedence:: How they work.
6180@end menu
6181
342b8b6e 6182@node Why Precedence
bfa74976
RS
6183@subsection When Precedence is Needed
6184
6185Consider the following ambiguous grammar fragment (ambiguous because the
6186input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6187
6188@example
6189@group
6190expr: expr '-' expr
6191 | expr '*' expr
6192 | expr '<' expr
6193 | '(' expr ')'
6194 @dots{}
6195 ;
6196@end group
6197@end example
6198
6199@noindent
6200Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6201should it reduce them via the rule for the subtraction operator? It
6202depends on the next token. Of course, if the next token is @samp{)}, we
6203must reduce; shifting is invalid because no single rule can reduce the
6204token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6205the next token is @samp{*} or @samp{<}, we have a choice: either
6206shifting or reduction would allow the parse to complete, but with
6207different results.
6208
6209To decide which one Bison should do, we must consider the results. If
6210the next operator token @var{op} is shifted, then it must be reduced
6211first in order to permit another opportunity to reduce the difference.
6212The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6213hand, if the subtraction is reduced before shifting @var{op}, the result
6214is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6215reduce should depend on the relative precedence of the operators
6216@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6217@samp{<}.
bfa74976
RS
6218
6219@cindex associativity
6220What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6221@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6222operators we prefer the former, which is called @dfn{left association}.
6223The latter alternative, @dfn{right association}, is desirable for
6224assignment operators. The choice of left or right association is a
6225matter of whether the parser chooses to shift or reduce when the stack
742e4900 6226contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6227makes right-associativity.
bfa74976 6228
342b8b6e 6229@node Using Precedence
bfa74976
RS
6230@subsection Specifying Operator Precedence
6231@findex %left
6232@findex %right
6233@findex %nonassoc
6234
6235Bison allows you to specify these choices with the operator precedence
6236declarations @code{%left} and @code{%right}. Each such declaration
6237contains a list of tokens, which are operators whose precedence and
6238associativity is being declared. The @code{%left} declaration makes all
6239those operators left-associative and the @code{%right} declaration makes
6240them right-associative. A third alternative is @code{%nonassoc}, which
6241declares that it is a syntax error to find the same operator twice ``in a
6242row''.
6243
6244The relative precedence of different operators is controlled by the
6245order in which they are declared. The first @code{%left} or
6246@code{%right} declaration in the file declares the operators whose
6247precedence is lowest, the next such declaration declares the operators
6248whose precedence is a little higher, and so on.
6249
342b8b6e 6250@node Precedence Examples
bfa74976
RS
6251@subsection Precedence Examples
6252
6253In our example, we would want the following declarations:
6254
6255@example
6256%left '<'
6257%left '-'
6258%left '*'
6259@end example
6260
6261In a more complete example, which supports other operators as well, we
6262would declare them in groups of equal precedence. For example, @code{'+'} is
6263declared with @code{'-'}:
6264
6265@example
6266%left '<' '>' '=' NE LE GE
6267%left '+' '-'
6268%left '*' '/'
6269@end example
6270
6271@noindent
6272(Here @code{NE} and so on stand for the operators for ``not equal''
6273and so on. We assume that these tokens are more than one character long
6274and therefore are represented by names, not character literals.)
6275
342b8b6e 6276@node How Precedence
bfa74976
RS
6277@subsection How Precedence Works
6278
6279The first effect of the precedence declarations is to assign precedence
6280levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6281precedence levels to certain rules: each rule gets its precedence from
6282the last terminal symbol mentioned in the components. (You can also
6283specify explicitly the precedence of a rule. @xref{Contextual
6284Precedence, ,Context-Dependent Precedence}.)
6285
6286Finally, the resolution of conflicts works by comparing the precedence
742e4900 6287of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6288token's precedence is higher, the choice is to shift. If the rule's
6289precedence is higher, the choice is to reduce. If they have equal
6290precedence, the choice is made based on the associativity of that
6291precedence level. The verbose output file made by @samp{-v}
6292(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6293resolved.
bfa74976
RS
6294
6295Not all rules and not all tokens have precedence. If either the rule or
742e4900 6296the lookahead token has no precedence, then the default is to shift.
bfa74976 6297
342b8b6e 6298@node Contextual Precedence
bfa74976
RS
6299@section Context-Dependent Precedence
6300@cindex context-dependent precedence
6301@cindex unary operator precedence
6302@cindex precedence, context-dependent
6303@cindex precedence, unary operator
6304@findex %prec
6305
6306Often the precedence of an operator depends on the context. This sounds
6307outlandish at first, but it is really very common. For example, a minus
6308sign typically has a very high precedence as a unary operator, and a
6309somewhat lower precedence (lower than multiplication) as a binary operator.
6310
6311The Bison precedence declarations, @code{%left}, @code{%right} and
6312@code{%nonassoc}, can only be used once for a given token; so a token has
6313only one precedence declared in this way. For context-dependent
6314precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6315modifier for rules.
bfa74976
RS
6316
6317The @code{%prec} modifier declares the precedence of a particular rule by
6318specifying a terminal symbol whose precedence should be used for that rule.
6319It's not necessary for that symbol to appear otherwise in the rule. The
6320modifier's syntax is:
6321
6322@example
6323%prec @var{terminal-symbol}
6324@end example
6325
6326@noindent
6327and it is written after the components of the rule. Its effect is to
6328assign the rule the precedence of @var{terminal-symbol}, overriding
6329the precedence that would be deduced for it in the ordinary way. The
6330altered rule precedence then affects how conflicts involving that rule
6331are resolved (@pxref{Precedence, ,Operator Precedence}).
6332
6333Here is how @code{%prec} solves the problem of unary minus. First, declare
6334a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6335are no tokens of this type, but the symbol serves to stand for its
6336precedence:
6337
6338@example
6339@dots{}
6340%left '+' '-'
6341%left '*'
6342%left UMINUS
6343@end example
6344
6345Now the precedence of @code{UMINUS} can be used in specific rules:
6346
6347@example
6348@group
6349exp: @dots{}
6350 | exp '-' exp
6351 @dots{}
6352 | '-' exp %prec UMINUS
6353@end group
6354@end example
6355
91d2c560 6356@ifset defaultprec
39a06c25
PE
6357If you forget to append @code{%prec UMINUS} to the rule for unary
6358minus, Bison silently assumes that minus has its usual precedence.
6359This kind of problem can be tricky to debug, since one typically
6360discovers the mistake only by testing the code.
6361
22fccf95 6362The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6363this kind of problem systematically. It causes rules that lack a
6364@code{%prec} modifier to have no precedence, even if the last terminal
6365symbol mentioned in their components has a declared precedence.
6366
22fccf95 6367If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6368for all rules that participate in precedence conflict resolution.
6369Then you will see any shift/reduce conflict until you tell Bison how
6370to resolve it, either by changing your grammar or by adding an
6371explicit precedence. This will probably add declarations to the
6372grammar, but it helps to protect against incorrect rule precedences.
6373
22fccf95
PE
6374The effect of @code{%no-default-prec;} can be reversed by giving
6375@code{%default-prec;}, which is the default.
91d2c560 6376@end ifset
39a06c25 6377
342b8b6e 6378@node Parser States
bfa74976
RS
6379@section Parser States
6380@cindex finite-state machine
6381@cindex parser state
6382@cindex state (of parser)
6383
6384The function @code{yyparse} is implemented using a finite-state machine.
6385The values pushed on the parser stack are not simply token type codes; they
6386represent the entire sequence of terminal and nonterminal symbols at or
6387near the top of the stack. The current state collects all the information
6388about previous input which is relevant to deciding what to do next.
6389
742e4900
JD
6390Each time a lookahead token is read, the current parser state together
6391with the type of lookahead token are looked up in a table. This table
6392entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6393specifies the new parser state, which is pushed onto the top of the
6394parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6395This means that a certain number of tokens or groupings are taken off
6396the top of the stack, and replaced by one grouping. In other words,
6397that number of states are popped from the stack, and one new state is
6398pushed.
6399
742e4900 6400There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6401is erroneous in the current state. This causes error processing to begin
6402(@pxref{Error Recovery}).
6403
342b8b6e 6404@node Reduce/Reduce
bfa74976
RS
6405@section Reduce/Reduce Conflicts
6406@cindex reduce/reduce conflict
6407@cindex conflicts, reduce/reduce
6408
6409A reduce/reduce conflict occurs if there are two or more rules that apply
6410to the same sequence of input. This usually indicates a serious error
6411in the grammar.
6412
6413For example, here is an erroneous attempt to define a sequence
6414of zero or more @code{word} groupings.
6415
6416@example
6417sequence: /* empty */
6418 @{ printf ("empty sequence\n"); @}
6419 | maybeword
6420 | sequence word
6421 @{ printf ("added word %s\n", $2); @}
6422 ;
6423
6424maybeword: /* empty */
6425 @{ printf ("empty maybeword\n"); @}
6426 | word
6427 @{ printf ("single word %s\n", $1); @}
6428 ;
6429@end example
6430
6431@noindent
6432The error is an ambiguity: there is more than one way to parse a single
6433@code{word} into a @code{sequence}. It could be reduced to a
6434@code{maybeword} and then into a @code{sequence} via the second rule.
6435Alternatively, nothing-at-all could be reduced into a @code{sequence}
6436via the first rule, and this could be combined with the @code{word}
6437using the third rule for @code{sequence}.
6438
6439There is also more than one way to reduce nothing-at-all into a
6440@code{sequence}. This can be done directly via the first rule,
6441or indirectly via @code{maybeword} and then the second rule.
6442
6443You might think that this is a distinction without a difference, because it
6444does not change whether any particular input is valid or not. But it does
6445affect which actions are run. One parsing order runs the second rule's
6446action; the other runs the first rule's action and the third rule's action.
6447In this example, the output of the program changes.
6448
6449Bison resolves a reduce/reduce conflict by choosing to use the rule that
6450appears first in the grammar, but it is very risky to rely on this. Every
6451reduce/reduce conflict must be studied and usually eliminated. Here is the
6452proper way to define @code{sequence}:
6453
6454@example
6455sequence: /* empty */
6456 @{ printf ("empty sequence\n"); @}
6457 | sequence word
6458 @{ printf ("added word %s\n", $2); @}
6459 ;
6460@end example
6461
6462Here is another common error that yields a reduce/reduce conflict:
6463
6464@example
6465sequence: /* empty */
6466 | sequence words
6467 | sequence redirects
6468 ;
6469
6470words: /* empty */
6471 | words word
6472 ;
6473
6474redirects:/* empty */
6475 | redirects redirect
6476 ;
6477@end example
6478
6479@noindent
6480The intention here is to define a sequence which can contain either
6481@code{word} or @code{redirect} groupings. The individual definitions of
6482@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6483three together make a subtle ambiguity: even an empty input can be parsed
6484in infinitely many ways!
6485
6486Consider: nothing-at-all could be a @code{words}. Or it could be two
6487@code{words} in a row, or three, or any number. It could equally well be a
6488@code{redirects}, or two, or any number. Or it could be a @code{words}
6489followed by three @code{redirects} and another @code{words}. And so on.
6490
6491Here are two ways to correct these rules. First, to make it a single level
6492of sequence:
6493
6494@example
6495sequence: /* empty */
6496 | sequence word
6497 | sequence redirect
6498 ;
6499@end example
6500
6501Second, to prevent either a @code{words} or a @code{redirects}
6502from being empty:
6503
6504@example
6505sequence: /* empty */
6506 | sequence words
6507 | sequence redirects
6508 ;
6509
6510words: word
6511 | words word
6512 ;
6513
6514redirects:redirect
6515 | redirects redirect
6516 ;
6517@end example
6518
342b8b6e 6519@node Mystery Conflicts
bfa74976
RS
6520@section Mysterious Reduce/Reduce Conflicts
6521
6522Sometimes reduce/reduce conflicts can occur that don't look warranted.
6523Here is an example:
6524
6525@example
6526@group
6527%token ID
6528
6529%%
6530def: param_spec return_spec ','
6531 ;
6532param_spec:
6533 type
6534 | name_list ':' type
6535 ;
6536@end group
6537@group
6538return_spec:
6539 type
6540 | name ':' type
6541 ;
6542@end group
6543@group
6544type: ID
6545 ;
6546@end group
6547@group
6548name: ID
6549 ;
6550name_list:
6551 name
6552 | name ',' name_list
6553 ;
6554@end group
6555@end example
6556
6557It would seem that this grammar can be parsed with only a single token
742e4900 6558of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6559a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6560@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6561
c827f760
PE
6562@cindex @acronym{LR}(1)
6563@cindex @acronym{LALR}(1)
bfa74976 6564However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6565@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6566an @code{ID}
bfa74976
RS
6567at the beginning of a @code{param_spec} and likewise at the beginning of
6568a @code{return_spec}, are similar enough that Bison assumes they are the
6569same. They appear similar because the same set of rules would be
6570active---the rule for reducing to a @code{name} and that for reducing to
6571a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6572that the rules would require different lookahead tokens in the two
bfa74976
RS
6573contexts, so it makes a single parser state for them both. Combining
6574the two contexts causes a conflict later. In parser terminology, this
c827f760 6575occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6576
6577In general, it is better to fix deficiencies than to document them. But
6578this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6579generators that can handle @acronym{LR}(1) grammars are hard to write
6580and tend to
bfa74976
RS
6581produce parsers that are very large. In practice, Bison is more useful
6582as it is now.
6583
6584When the problem arises, you can often fix it by identifying the two
a220f555
MA
6585parser states that are being confused, and adding something to make them
6586look distinct. In the above example, adding one rule to
bfa74976
RS
6587@code{return_spec} as follows makes the problem go away:
6588
6589@example
6590@group
6591%token BOGUS
6592@dots{}
6593%%
6594@dots{}
6595return_spec:
6596 type
6597 | name ':' type
6598 /* This rule is never used. */
6599 | ID BOGUS
6600 ;
6601@end group
6602@end example
6603
6604This corrects the problem because it introduces the possibility of an
6605additional active rule in the context after the @code{ID} at the beginning of
6606@code{return_spec}. This rule is not active in the corresponding context
6607in a @code{param_spec}, so the two contexts receive distinct parser states.
6608As long as the token @code{BOGUS} is never generated by @code{yylex},
6609the added rule cannot alter the way actual input is parsed.
6610
6611In this particular example, there is another way to solve the problem:
6612rewrite the rule for @code{return_spec} to use @code{ID} directly
6613instead of via @code{name}. This also causes the two confusing
6614contexts to have different sets of active rules, because the one for
6615@code{return_spec} activates the altered rule for @code{return_spec}
6616rather than the one for @code{name}.
6617
6618@example
6619param_spec:
6620 type
6621 | name_list ':' type
6622 ;
6623return_spec:
6624 type
6625 | ID ':' type
6626 ;
6627@end example
6628
e054b190
PE
6629For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6630generators, please see:
6631Frank DeRemer and Thomas Pennello, Efficient Computation of
6632@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6633Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6634pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6635
fae437e8 6636@node Generalized LR Parsing
c827f760
PE
6637@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6638@cindex @acronym{GLR} parsing
6639@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6640@cindex ambiguous grammars
9d9b8b70 6641@cindex nondeterministic parsing
676385e2 6642
fae437e8
AD
6643Bison produces @emph{deterministic} parsers that choose uniquely
6644when to reduce and which reduction to apply
742e4900 6645based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6646As a result, normal Bison handles a proper subset of the family of
6647context-free languages.
fae437e8 6648Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6649sequence of reductions cannot have deterministic parsers in this sense.
6650The same is true of languages that require more than one symbol of
742e4900 6651lookahead, since the parser lacks the information necessary to make a
676385e2 6652decision at the point it must be made in a shift-reduce parser.
fae437e8 6653Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6654there are languages where Bison's particular choice of how to
6655summarize the input seen so far loses necessary information.
6656
6657When you use the @samp{%glr-parser} declaration in your grammar file,
6658Bison generates a parser that uses a different algorithm, called
c827f760
PE
6659Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6660parser uses the same basic
676385e2
PH
6661algorithm for parsing as an ordinary Bison parser, but behaves
6662differently in cases where there is a shift-reduce conflict that has not
fae437e8 6663been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6664reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6665situation, it
fae437e8 6666effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6667shift or reduction. These parsers then proceed as usual, consuming
6668tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6669and split further, with the result that instead of a sequence of states,
c827f760 6670a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6671
6672In effect, each stack represents a guess as to what the proper parse
6673is. Additional input may indicate that a guess was wrong, in which case
6674the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6675actions generated in each stack are saved, rather than being executed
676385e2 6676immediately. When a stack disappears, its saved semantic actions never
fae437e8 6677get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6678their sets of semantic actions are both saved with the state that
6679results from the reduction. We say that two stacks are equivalent
fae437e8 6680when they both represent the same sequence of states,
676385e2
PH
6681and each pair of corresponding states represents a
6682grammar symbol that produces the same segment of the input token
6683stream.
6684
6685Whenever the parser makes a transition from having multiple
c827f760 6686states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6687algorithm, after resolving and executing the saved-up actions.
6688At this transition, some of the states on the stack will have semantic
6689values that are sets (actually multisets) of possible actions. The
6690parser tries to pick one of the actions by first finding one whose rule
6691has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6692declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6693precedence, but there the same merging function is declared for both
fae437e8 6694rules by the @samp{%merge} declaration,
676385e2
PH
6695Bison resolves and evaluates both and then calls the merge function on
6696the result. Otherwise, it reports an ambiguity.
6697
c827f760
PE
6698It is possible to use a data structure for the @acronym{GLR} parsing tree that
6699permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6700size of the input), any unambiguous (not necessarily
6701@acronym{LALR}(1)) grammar in
fae437e8 6702quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6703context-free grammar in cubic worst-case time. However, Bison currently
6704uses a simpler data structure that requires time proportional to the
6705length of the input times the maximum number of stacks required for any
9d9b8b70 6706prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6707grammars can require exponential time and space to process. Such badly
6708behaving examples, however, are not generally of practical interest.
9d9b8b70 6709Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6710doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6711structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6712grammar, in particular, it is only slightly slower than with the default
6713Bison parser.
6714
fa7e68c3 6715For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6716Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6717Generalised @acronym{LR} Parsers, Royal Holloway, University of
6718London, Department of Computer Science, TR-00-12,
6719@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6720(2000-12-24).
6721
1a059451
PE
6722@node Memory Management
6723@section Memory Management, and How to Avoid Memory Exhaustion
6724@cindex memory exhaustion
6725@cindex memory management
bfa74976
RS
6726@cindex stack overflow
6727@cindex parser stack overflow
6728@cindex overflow of parser stack
6729
1a059451 6730The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6731not reduced. When this happens, the parser function @code{yyparse}
1a059451 6732calls @code{yyerror} and then returns 2.
bfa74976 6733
c827f760 6734Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6735usually results from using a right recursion instead of a left
6736recursion, @xref{Recursion, ,Recursive Rules}.
6737
bfa74976
RS
6738@vindex YYMAXDEPTH
6739By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6740parser stack can become before memory is exhausted. Define the
bfa74976
RS
6741macro with a value that is an integer. This value is the maximum number
6742of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6743
6744The stack space allowed is not necessarily allocated. If you specify a
1a059451 6745large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6746stack at first, and then makes it bigger by stages as needed. This
6747increasing allocation happens automatically and silently. Therefore,
6748you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6749space for ordinary inputs that do not need much stack.
6750
d7e14fc0
PE
6751However, do not allow @code{YYMAXDEPTH} to be a value so large that
6752arithmetic overflow could occur when calculating the size of the stack
6753space. Also, do not allow @code{YYMAXDEPTH} to be less than
6754@code{YYINITDEPTH}.
6755
bfa74976
RS
6756@cindex default stack limit
6757The default value of @code{YYMAXDEPTH}, if you do not define it, is
675810000.
6759
6760@vindex YYINITDEPTH
6761You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6762macro @code{YYINITDEPTH} to a positive integer. For the C
6763@acronym{LALR}(1) parser, this value must be a compile-time constant
6764unless you are assuming C99 or some other target language or compiler
6765that allows variable-length arrays. The default is 200.
6766
1a059451 6767Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6768
d1a1114f 6769@c FIXME: C++ output.
c827f760 6770Because of semantical differences between C and C++, the
1a059451
PE
6771@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6772by C++ compilers. In this precise case (compiling a C parser as C++) you are
6773suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6774this deficiency in a future release.
d1a1114f 6775
342b8b6e 6776@node Error Recovery
bfa74976
RS
6777@chapter Error Recovery
6778@cindex error recovery
6779@cindex recovery from errors
6780
6e649e65 6781It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6782error. For example, a compiler should recover sufficiently to parse the
6783rest of the input file and check it for errors; a calculator should accept
6784another expression.
6785
6786In a simple interactive command parser where each input is one line, it may
6787be sufficient to allow @code{yyparse} to return 1 on error and have the
6788caller ignore the rest of the input line when that happens (and then call
6789@code{yyparse} again). But this is inadequate for a compiler, because it
6790forgets all the syntactic context leading up to the error. A syntax error
6791deep within a function in the compiler input should not cause the compiler
6792to treat the following line like the beginning of a source file.
6793
6794@findex error
6795You can define how to recover from a syntax error by writing rules to
6796recognize the special token @code{error}. This is a terminal symbol that
6797is always defined (you need not declare it) and reserved for error
6798handling. The Bison parser generates an @code{error} token whenever a
6799syntax error happens; if you have provided a rule to recognize this token
13863333 6800in the current context, the parse can continue.
bfa74976
RS
6801
6802For example:
6803
6804@example
6805stmnts: /* empty string */
6806 | stmnts '\n'
6807 | stmnts exp '\n'
6808 | stmnts error '\n'
6809@end example
6810
6811The fourth rule in this example says that an error followed by a newline
6812makes a valid addition to any @code{stmnts}.
6813
6814What happens if a syntax error occurs in the middle of an @code{exp}? The
6815error recovery rule, interpreted strictly, applies to the precise sequence
6816of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6817the middle of an @code{exp}, there will probably be some additional tokens
6818and subexpressions on the stack after the last @code{stmnts}, and there
6819will be tokens to read before the next newline. So the rule is not
6820applicable in the ordinary way.
6821
6822But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6823the semantic context and part of the input. First it discards states
6824and objects from the stack until it gets back to a state in which the
bfa74976 6825@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6826already parsed are discarded, back to the last complete @code{stmnts}.)
6827At this point the @code{error} token can be shifted. Then, if the old
742e4900 6828lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6829tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6830this example, Bison reads and discards input until the next newline so
6831that the fourth rule can apply. Note that discarded symbols are
6832possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6833Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6834
6835The choice of error rules in the grammar is a choice of strategies for
6836error recovery. A simple and useful strategy is simply to skip the rest of
6837the current input line or current statement if an error is detected:
6838
6839@example
72d2299c 6840stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6841@end example
6842
6843It is also useful to recover to the matching close-delimiter of an
6844opening-delimiter that has already been parsed. Otherwise the
6845close-delimiter will probably appear to be unmatched, and generate another,
6846spurious error message:
6847
6848@example
6849primary: '(' expr ')'
6850 | '(' error ')'
6851 @dots{}
6852 ;
6853@end example
6854
6855Error recovery strategies are necessarily guesses. When they guess wrong,
6856one syntax error often leads to another. In the above example, the error
6857recovery rule guesses that an error is due to bad input within one
6858@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6859middle of a valid @code{stmnt}. After the error recovery rule recovers
6860from the first error, another syntax error will be found straightaway,
6861since the text following the spurious semicolon is also an invalid
6862@code{stmnt}.
6863
6864To prevent an outpouring of error messages, the parser will output no error
6865message for another syntax error that happens shortly after the first; only
6866after three consecutive input tokens have been successfully shifted will
6867error messages resume.
6868
6869Note that rules which accept the @code{error} token may have actions, just
6870as any other rules can.
6871
6872@findex yyerrok
6873You can make error messages resume immediately by using the macro
6874@code{yyerrok} in an action. If you do this in the error rule's action, no
6875error messages will be suppressed. This macro requires no arguments;
6876@samp{yyerrok;} is a valid C statement.
6877
6878@findex yyclearin
742e4900 6879The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6880this is unacceptable, then the macro @code{yyclearin} may be used to clear
6881this token. Write the statement @samp{yyclearin;} in the error rule's
6882action.
32c29292 6883@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6884
6e649e65 6885For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6886called that advances the input stream to some point where parsing should
6887once again commence. The next symbol returned by the lexical scanner is
742e4900 6888probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6889with @samp{yyclearin;}.
6890
6891@vindex YYRECOVERING
02103984
PE
6892The expression @code{YYRECOVERING ()} yields 1 when the parser
6893is recovering from a syntax error, and 0 otherwise.
6894Syntax error diagnostics are suppressed while recovering from a syntax
6895error.
bfa74976 6896
342b8b6e 6897@node Context Dependency
bfa74976
RS
6898@chapter Handling Context Dependencies
6899
6900The Bison paradigm is to parse tokens first, then group them into larger
6901syntactic units. In many languages, the meaning of a token is affected by
6902its context. Although this violates the Bison paradigm, certain techniques
6903(known as @dfn{kludges}) may enable you to write Bison parsers for such
6904languages.
6905
6906@menu
6907* Semantic Tokens:: Token parsing can depend on the semantic context.
6908* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6909* Tie-in Recovery:: Lexical tie-ins have implications for how
6910 error recovery rules must be written.
6911@end menu
6912
6913(Actually, ``kludge'' means any technique that gets its job done but is
6914neither clean nor robust.)
6915
342b8b6e 6916@node Semantic Tokens
bfa74976
RS
6917@section Semantic Info in Token Types
6918
6919The C language has a context dependency: the way an identifier is used
6920depends on what its current meaning is. For example, consider this:
6921
6922@example
6923foo (x);
6924@end example
6925
6926This looks like a function call statement, but if @code{foo} is a typedef
6927name, then this is actually a declaration of @code{x}. How can a Bison
6928parser for C decide how to parse this input?
6929
c827f760 6930The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6931@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6932identifier, it looks up the current declaration of the identifier in order
6933to decide which token type to return: @code{TYPENAME} if the identifier is
6934declared as a typedef, @code{IDENTIFIER} otherwise.
6935
6936The grammar rules can then express the context dependency by the choice of
6937token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6938but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6939@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6940is @emph{not} significant, such as in declarations that can shadow a
6941typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6942accepted---there is one rule for each of the two token types.
6943
6944This technique is simple to use if the decision of which kinds of
6945identifiers to allow is made at a place close to where the identifier is
6946parsed. But in C this is not always so: C allows a declaration to
6947redeclare a typedef name provided an explicit type has been specified
6948earlier:
6949
6950@example
3a4f411f
PE
6951typedef int foo, bar;
6952int baz (void)
6953@{
6954 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6955 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6956 return foo (bar);
6957@}
bfa74976
RS
6958@end example
6959
6960Unfortunately, the name being declared is separated from the declaration
6961construct itself by a complicated syntactic structure---the ``declarator''.
6962
9ecbd125 6963As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6964all the nonterminal names changed: once for parsing a declaration in
6965which a typedef name can be redefined, and once for parsing a
6966declaration in which that can't be done. Here is a part of the
6967duplication, with actions omitted for brevity:
bfa74976
RS
6968
6969@example
6970initdcl:
6971 declarator maybeasm '='
6972 init
6973 | declarator maybeasm
6974 ;
6975
6976notype_initdcl:
6977 notype_declarator maybeasm '='
6978 init
6979 | notype_declarator maybeasm
6980 ;
6981@end example
6982
6983@noindent
6984Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6985cannot. The distinction between @code{declarator} and
6986@code{notype_declarator} is the same sort of thing.
6987
6988There is some similarity between this technique and a lexical tie-in
6989(described next), in that information which alters the lexical analysis is
6990changed during parsing by other parts of the program. The difference is
6991here the information is global, and is used for other purposes in the
6992program. A true lexical tie-in has a special-purpose flag controlled by
6993the syntactic context.
6994
342b8b6e 6995@node Lexical Tie-ins
bfa74976
RS
6996@section Lexical Tie-ins
6997@cindex lexical tie-in
6998
6999One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7000which is set by Bison actions, whose purpose is to alter the way tokens are
7001parsed.
7002
7003For example, suppose we have a language vaguely like C, but with a special
7004construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7005an expression in parentheses in which all integers are hexadecimal. In
7006particular, the token @samp{a1b} must be treated as an integer rather than
7007as an identifier if it appears in that context. Here is how you can do it:
7008
7009@example
7010@group
7011%@{
38a92d50
PE
7012 int hexflag;
7013 int yylex (void);
7014 void yyerror (char const *);
bfa74976
RS
7015%@}
7016%%
7017@dots{}
7018@end group
7019@group
7020expr: IDENTIFIER
7021 | constant
7022 | HEX '('
7023 @{ hexflag = 1; @}
7024 expr ')'
7025 @{ hexflag = 0;
7026 $$ = $4; @}
7027 | expr '+' expr
7028 @{ $$ = make_sum ($1, $3); @}
7029 @dots{}
7030 ;
7031@end group
7032
7033@group
7034constant:
7035 INTEGER
7036 | STRING
7037 ;
7038@end group
7039@end example
7040
7041@noindent
7042Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7043it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7044with letters are parsed as integers if possible.
7045
342b8b6e
AD
7046The declaration of @code{hexflag} shown in the prologue of the parser file
7047is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7048You must also write the code in @code{yylex} to obey the flag.
bfa74976 7049
342b8b6e 7050@node Tie-in Recovery
bfa74976
RS
7051@section Lexical Tie-ins and Error Recovery
7052
7053Lexical tie-ins make strict demands on any error recovery rules you have.
7054@xref{Error Recovery}.
7055
7056The reason for this is that the purpose of an error recovery rule is to
7057abort the parsing of one construct and resume in some larger construct.
7058For example, in C-like languages, a typical error recovery rule is to skip
7059tokens until the next semicolon, and then start a new statement, like this:
7060
7061@example
7062stmt: expr ';'
7063 | IF '(' expr ')' stmt @{ @dots{} @}
7064 @dots{}
7065 error ';'
7066 @{ hexflag = 0; @}
7067 ;
7068@end example
7069
7070If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7071construct, this error rule will apply, and then the action for the
7072completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7073remain set for the entire rest of the input, or until the next @code{hex}
7074keyword, causing identifiers to be misinterpreted as integers.
7075
7076To avoid this problem the error recovery rule itself clears @code{hexflag}.
7077
7078There may also be an error recovery rule that works within expressions.
7079For example, there could be a rule which applies within parentheses
7080and skips to the close-parenthesis:
7081
7082@example
7083@group
7084expr: @dots{}
7085 | '(' expr ')'
7086 @{ $$ = $2; @}
7087 | '(' error ')'
7088 @dots{}
7089@end group
7090@end example
7091
7092If this rule acts within the @code{hex} construct, it is not going to abort
7093that construct (since it applies to an inner level of parentheses within
7094the construct). Therefore, it should not clear the flag: the rest of
7095the @code{hex} construct should be parsed with the flag still in effect.
7096
7097What if there is an error recovery rule which might abort out of the
7098@code{hex} construct or might not, depending on circumstances? There is no
7099way you can write the action to determine whether a @code{hex} construct is
7100being aborted or not. So if you are using a lexical tie-in, you had better
7101make sure your error recovery rules are not of this kind. Each rule must
7102be such that you can be sure that it always will, or always won't, have to
7103clear the flag.
7104
ec3bc396
AD
7105@c ================================================== Debugging Your Parser
7106
342b8b6e 7107@node Debugging
bfa74976 7108@chapter Debugging Your Parser
ec3bc396
AD
7109
7110Developing a parser can be a challenge, especially if you don't
7111understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7112Algorithm}). Even so, sometimes a detailed description of the automaton
7113can help (@pxref{Understanding, , Understanding Your Parser}), or
7114tracing the execution of the parser can give some insight on why it
7115behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7116
7117@menu
7118* Understanding:: Understanding the structure of your parser.
7119* Tracing:: Tracing the execution of your parser.
7120@end menu
7121
7122@node Understanding
7123@section Understanding Your Parser
7124
7125As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7126Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7127frequent than one would hope), looking at this automaton is required to
7128tune or simply fix a parser. Bison provides two different
35fe0834 7129representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7130
7131The textual file is generated when the options @option{--report} or
7132@option{--verbose} are specified, see @xref{Invocation, , Invoking
7133Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7134the parser output file name, and adding @samp{.output} instead.
7135Therefore, if the input file is @file{foo.y}, then the parser file is
7136called @file{foo.tab.c} by default. As a consequence, the verbose
7137output file is called @file{foo.output}.
7138
7139The following grammar file, @file{calc.y}, will be used in the sequel:
7140
7141@example
7142%token NUM STR
7143%left '+' '-'
7144%left '*'
7145%%
7146exp: exp '+' exp
7147 | exp '-' exp
7148 | exp '*' exp
7149 | exp '/' exp
7150 | NUM
7151 ;
7152useless: STR;
7153%%
7154@end example
7155
88bce5a2
AD
7156@command{bison} reports:
7157
7158@example
cff03fb2
JD
7159calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7160calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7161calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7162calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7163@end example
7164
7165When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7166creates a file @file{calc.output} with contents detailed below. The
7167order of the output and the exact presentation might vary, but the
7168interpretation is the same.
ec3bc396
AD
7169
7170The first section includes details on conflicts that were solved thanks
7171to precedence and/or associativity:
7172
7173@example
7174Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7175Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7176Conflict in state 8 between rule 2 and token '*' resolved as shift.
7177@exdent @dots{}
7178@end example
7179
7180@noindent
7181The next section lists states that still have conflicts.
7182
7183@example
5a99098d
PE
7184State 8 conflicts: 1 shift/reduce
7185State 9 conflicts: 1 shift/reduce
7186State 10 conflicts: 1 shift/reduce
7187State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7188@end example
7189
7190@noindent
7191@cindex token, useless
7192@cindex useless token
7193@cindex nonterminal, useless
7194@cindex useless nonterminal
7195@cindex rule, useless
7196@cindex useless rule
7197The next section reports useless tokens, nonterminal and rules. Useless
7198nonterminals and rules are removed in order to produce a smaller parser,
7199but useless tokens are preserved, since they might be used by the
7200scanner (note the difference between ``useless'' and ``not used''
7201below):
7202
7203@example
7204Useless nonterminals:
7205 useless
7206
7207Terminals which are not used:
7208 STR
7209
cff03fb2 7210Rules useless in grammar:
ec3bc396
AD
7211#6 useless: STR;
7212@end example
7213
7214@noindent
7215The next section reproduces the exact grammar that Bison used:
7216
7217@example
7218Grammar
7219
7220 Number, Line, Rule
88bce5a2 7221 0 5 $accept -> exp $end
ec3bc396
AD
7222 1 5 exp -> exp '+' exp
7223 2 6 exp -> exp '-' exp
7224 3 7 exp -> exp '*' exp
7225 4 8 exp -> exp '/' exp
7226 5 9 exp -> NUM
7227@end example
7228
7229@noindent
7230and reports the uses of the symbols:
7231
7232@example
7233Terminals, with rules where they appear
7234
88bce5a2 7235$end (0) 0
ec3bc396
AD
7236'*' (42) 3
7237'+' (43) 1
7238'-' (45) 2
7239'/' (47) 4
7240error (256)
7241NUM (258) 5
7242
7243Nonterminals, with rules where they appear
7244
88bce5a2 7245$accept (8)
ec3bc396
AD
7246 on left: 0
7247exp (9)
7248 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7249@end example
7250
7251@noindent
7252@cindex item
7253@cindex pointed rule
7254@cindex rule, pointed
7255Bison then proceeds onto the automaton itself, describing each state
7256with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7257item is a production rule together with a point (marked by @samp{.})
7258that the input cursor.
7259
7260@example
7261state 0
7262
88bce5a2 7263 $accept -> . exp $ (rule 0)
ec3bc396 7264
2a8d363a 7265 NUM shift, and go to state 1
ec3bc396 7266
2a8d363a 7267 exp go to state 2
ec3bc396
AD
7268@end example
7269
7270This reads as follows: ``state 0 corresponds to being at the very
7271beginning of the parsing, in the initial rule, right before the start
7272symbol (here, @code{exp}). When the parser returns to this state right
7273after having reduced a rule that produced an @code{exp}, the control
7274flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7275symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7276the parse stack, and the control flow jumps to state 1. Any other
742e4900 7277lookahead triggers a syntax error.''
ec3bc396
AD
7278
7279@cindex core, item set
7280@cindex item set core
7281@cindex kernel, item set
7282@cindex item set core
7283Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7284report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7285at the beginning of any rule deriving an @code{exp}. By default Bison
7286reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7287you want to see more detail you can invoke @command{bison} with
7288@option{--report=itemset} to list all the items, include those that can
7289be derived:
7290
7291@example
7292state 0
7293
88bce5a2 7294 $accept -> . exp $ (rule 0)
ec3bc396
AD
7295 exp -> . exp '+' exp (rule 1)
7296 exp -> . exp '-' exp (rule 2)
7297 exp -> . exp '*' exp (rule 3)
7298 exp -> . exp '/' exp (rule 4)
7299 exp -> . NUM (rule 5)
7300
7301 NUM shift, and go to state 1
7302
7303 exp go to state 2
7304@end example
7305
7306@noindent
7307In the state 1...
7308
7309@example
7310state 1
7311
7312 exp -> NUM . (rule 5)
7313
2a8d363a 7314 $default reduce using rule 5 (exp)
ec3bc396
AD
7315@end example
7316
7317@noindent
742e4900 7318the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7319(@samp{$default}), the parser will reduce it. If it was coming from
7320state 0, then, after this reduction it will return to state 0, and will
7321jump to state 2 (@samp{exp: go to state 2}).
7322
7323@example
7324state 2
7325
88bce5a2 7326 $accept -> exp . $ (rule 0)
ec3bc396
AD
7327 exp -> exp . '+' exp (rule 1)
7328 exp -> exp . '-' exp (rule 2)
7329 exp -> exp . '*' exp (rule 3)
7330 exp -> exp . '/' exp (rule 4)
7331
2a8d363a
AD
7332 $ shift, and go to state 3
7333 '+' shift, and go to state 4
7334 '-' shift, and go to state 5
7335 '*' shift, and go to state 6
7336 '/' shift, and go to state 7
ec3bc396
AD
7337@end example
7338
7339@noindent
7340In state 2, the automaton can only shift a symbol. For instance,
742e4900 7341because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7342@samp{+}, it will be shifted on the parse stack, and the automaton
7343control will jump to state 4, corresponding to the item @samp{exp -> exp
7344'+' . exp}. Since there is no default action, any other token than
6e649e65 7345those listed above will trigger a syntax error.
ec3bc396
AD
7346
7347The state 3 is named the @dfn{final state}, or the @dfn{accepting
7348state}:
7349
7350@example
7351state 3
7352
88bce5a2 7353 $accept -> exp $ . (rule 0)
ec3bc396 7354
2a8d363a 7355 $default accept
ec3bc396
AD
7356@end example
7357
7358@noindent
7359the initial rule is completed (the start symbol and the end
7360of input were read), the parsing exits successfully.
7361
7362The interpretation of states 4 to 7 is straightforward, and is left to
7363the reader.
7364
7365@example
7366state 4
7367
7368 exp -> exp '+' . exp (rule 1)
7369
2a8d363a 7370 NUM shift, and go to state 1
ec3bc396 7371
2a8d363a 7372 exp go to state 8
ec3bc396
AD
7373
7374state 5
7375
7376 exp -> exp '-' . exp (rule 2)
7377
2a8d363a 7378 NUM shift, and go to state 1
ec3bc396 7379
2a8d363a 7380 exp go to state 9
ec3bc396
AD
7381
7382state 6
7383
7384 exp -> exp '*' . exp (rule 3)
7385
2a8d363a 7386 NUM shift, and go to state 1
ec3bc396 7387
2a8d363a 7388 exp go to state 10
ec3bc396
AD
7389
7390state 7
7391
7392 exp -> exp '/' . exp (rule 4)
7393
2a8d363a 7394 NUM shift, and go to state 1
ec3bc396 7395
2a8d363a 7396 exp go to state 11
ec3bc396
AD
7397@end example
7398
5a99098d
PE
7399As was announced in beginning of the report, @samp{State 8 conflicts:
74001 shift/reduce}:
ec3bc396
AD
7401
7402@example
7403state 8
7404
7405 exp -> exp . '+' exp (rule 1)
7406 exp -> exp '+' exp . (rule 1)
7407 exp -> exp . '-' exp (rule 2)
7408 exp -> exp . '*' exp (rule 3)
7409 exp -> exp . '/' exp (rule 4)
7410
2a8d363a
AD
7411 '*' shift, and go to state 6
7412 '/' shift, and go to state 7
ec3bc396 7413
2a8d363a
AD
7414 '/' [reduce using rule 1 (exp)]
7415 $default reduce using rule 1 (exp)
ec3bc396
AD
7416@end example
7417
742e4900 7418Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7419either shifting (and going to state 7), or reducing rule 1. The
7420conflict means that either the grammar is ambiguous, or the parser lacks
7421information to make the right decision. Indeed the grammar is
7422ambiguous, as, since we did not specify the precedence of @samp{/}, the
7423sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7424NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7425NUM}, which corresponds to reducing rule 1.
7426
c827f760 7427Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7428arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7429Shift/Reduce Conflicts}. Discarded actions are reported in between
7430square brackets.
7431
7432Note that all the previous states had a single possible action: either
7433shifting the next token and going to the corresponding state, or
7434reducing a single rule. In the other cases, i.e., when shifting
7435@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7436possible, the lookahead is required to select the action. State 8 is
7437one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7438is shifting, otherwise the action is reducing rule 1. In other words,
7439the first two items, corresponding to rule 1, are not eligible when the
742e4900 7440lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7441precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7442with some set of possible lookahead tokens. When run with
7443@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7444
7445@example
7446state 8
7447
88c78747 7448 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7449 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7450 exp -> exp . '-' exp (rule 2)
7451 exp -> exp . '*' exp (rule 3)
7452 exp -> exp . '/' exp (rule 4)
7453
7454 '*' shift, and go to state 6
7455 '/' shift, and go to state 7
7456
7457 '/' [reduce using rule 1 (exp)]
7458 $default reduce using rule 1 (exp)
7459@end example
7460
7461The remaining states are similar:
7462
7463@example
7464state 9
7465
7466 exp -> exp . '+' exp (rule 1)
7467 exp -> exp . '-' exp (rule 2)
7468 exp -> exp '-' exp . (rule 2)
7469 exp -> exp . '*' exp (rule 3)
7470 exp -> exp . '/' exp (rule 4)
7471
2a8d363a
AD
7472 '*' shift, and go to state 6
7473 '/' shift, and go to state 7
ec3bc396 7474
2a8d363a
AD
7475 '/' [reduce using rule 2 (exp)]
7476 $default reduce using rule 2 (exp)
ec3bc396
AD
7477
7478state 10
7479
7480 exp -> exp . '+' exp (rule 1)
7481 exp -> exp . '-' exp (rule 2)
7482 exp -> exp . '*' exp (rule 3)
7483 exp -> exp '*' exp . (rule 3)
7484 exp -> exp . '/' exp (rule 4)
7485
2a8d363a 7486 '/' shift, and go to state 7
ec3bc396 7487
2a8d363a
AD
7488 '/' [reduce using rule 3 (exp)]
7489 $default reduce using rule 3 (exp)
ec3bc396
AD
7490
7491state 11
7492
7493 exp -> exp . '+' exp (rule 1)
7494 exp -> exp . '-' exp (rule 2)
7495 exp -> exp . '*' exp (rule 3)
7496 exp -> exp . '/' exp (rule 4)
7497 exp -> exp '/' exp . (rule 4)
7498
2a8d363a
AD
7499 '+' shift, and go to state 4
7500 '-' shift, and go to state 5
7501 '*' shift, and go to state 6
7502 '/' shift, and go to state 7
ec3bc396 7503
2a8d363a
AD
7504 '+' [reduce using rule 4 (exp)]
7505 '-' [reduce using rule 4 (exp)]
7506 '*' [reduce using rule 4 (exp)]
7507 '/' [reduce using rule 4 (exp)]
7508 $default reduce using rule 4 (exp)
ec3bc396
AD
7509@end example
7510
7511@noindent
fa7e68c3
PE
7512Observe that state 11 contains conflicts not only due to the lack of
7513precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7514@samp{*}, but also because the
ec3bc396
AD
7515associativity of @samp{/} is not specified.
7516
7517
7518@node Tracing
7519@section Tracing Your Parser
bfa74976
RS
7520@findex yydebug
7521@cindex debugging
7522@cindex tracing the parser
7523
7524If a Bison grammar compiles properly but doesn't do what you want when it
7525runs, the @code{yydebug} parser-trace feature can help you figure out why.
7526
3ded9a63
AD
7527There are several means to enable compilation of trace facilities:
7528
7529@table @asis
7530@item the macro @code{YYDEBUG}
7531@findex YYDEBUG
7532Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7533parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7534@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7535YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7536Prologue}).
7537
7538@item the option @option{-t}, @option{--debug}
7539Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7540,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7541
7542@item the directive @samp{%debug}
7543@findex %debug
7544Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7545Declaration Summary}). This is a Bison extension, which will prove
7546useful when Bison will output parsers for languages that don't use a
c827f760
PE
7547preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7548you, this is
3ded9a63
AD
7549the preferred solution.
7550@end table
7551
7552We suggest that you always enable the debug option so that debugging is
7553always possible.
bfa74976 7554
02a81e05 7555The trace facility outputs messages with macro calls of the form
e2742e46 7556@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7557@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7558arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7559define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7560and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7561
7562Once you have compiled the program with trace facilities, the way to
7563request a trace is to store a nonzero value in the variable @code{yydebug}.
7564You can do this by making the C code do it (in @code{main}, perhaps), or
7565you can alter the value with a C debugger.
7566
7567Each step taken by the parser when @code{yydebug} is nonzero produces a
7568line or two of trace information, written on @code{stderr}. The trace
7569messages tell you these things:
7570
7571@itemize @bullet
7572@item
7573Each time the parser calls @code{yylex}, what kind of token was read.
7574
7575@item
7576Each time a token is shifted, the depth and complete contents of the
7577state stack (@pxref{Parser States}).
7578
7579@item
7580Each time a rule is reduced, which rule it is, and the complete contents
7581of the state stack afterward.
7582@end itemize
7583
7584To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7585produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7586Bison}). This file shows the meaning of each state in terms of
7587positions in various rules, and also what each state will do with each
7588possible input token. As you read the successive trace messages, you
7589can see that the parser is functioning according to its specification in
7590the listing file. Eventually you will arrive at the place where
7591something undesirable happens, and you will see which parts of the
7592grammar are to blame.
bfa74976
RS
7593
7594The parser file is a C program and you can use C debuggers on it, but it's
7595not easy to interpret what it is doing. The parser function is a
7596finite-state machine interpreter, and aside from the actions it executes
7597the same code over and over. Only the values of variables show where in
7598the grammar it is working.
7599
7600@findex YYPRINT
7601The debugging information normally gives the token type of each token
7602read, but not its semantic value. You can optionally define a macro
7603named @code{YYPRINT} to provide a way to print the value. If you define
7604@code{YYPRINT}, it should take three arguments. The parser will pass a
7605standard I/O stream, the numeric code for the token type, and the token
7606value (from @code{yylval}).
7607
7608Here is an example of @code{YYPRINT} suitable for the multi-function
7609calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7610
7611@smallexample
38a92d50
PE
7612%@{
7613 static void print_token_value (FILE *, int, YYSTYPE);
7614 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7615%@}
7616
7617@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7618
7619static void
831d3c99 7620print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7621@{
7622 if (type == VAR)
d3c4e709 7623 fprintf (file, "%s", value.tptr->name);
bfa74976 7624 else if (type == NUM)
d3c4e709 7625 fprintf (file, "%d", value.val);
bfa74976
RS
7626@}
7627@end smallexample
7628
ec3bc396
AD
7629@c ================================================= Invoking Bison
7630
342b8b6e 7631@node Invocation
bfa74976
RS
7632@chapter Invoking Bison
7633@cindex invoking Bison
7634@cindex Bison invocation
7635@cindex options for invoking Bison
7636
7637The usual way to invoke Bison is as follows:
7638
7639@example
7640bison @var{infile}
7641@end example
7642
7643Here @var{infile} is the grammar file name, which usually ends in
7644@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7645with @samp{.tab.c} and removing any leading directory. Thus, the
7646@samp{bison foo.y} file name yields
7647@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7648@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7649C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7650or @file{foo.y++}. Then, the output files will take an extension like
7651the given one as input (respectively @file{foo.tab.cpp} and
7652@file{foo.tab.c++}).
fa4d969f 7653This feature takes effect with all options that manipulate file names like
234a3be3
AD
7654@samp{-o} or @samp{-d}.
7655
7656For example :
7657
7658@example
7659bison -d @var{infile.yxx}
7660@end example
84163231 7661@noindent
72d2299c 7662will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7663
7664@example
b56471a6 7665bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7666@end example
84163231 7667@noindent
234a3be3
AD
7668will produce @file{output.c++} and @file{outfile.h++}.
7669
397ec073
PE
7670For compatibility with @acronym{POSIX}, the standard Bison
7671distribution also contains a shell script called @command{yacc} that
7672invokes Bison with the @option{-y} option.
7673
bfa74976 7674@menu
13863333 7675* Bison Options:: All the options described in detail,
c827f760 7676 in alphabetical order by short options.
bfa74976 7677* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7678* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7679@end menu
7680
342b8b6e 7681@node Bison Options
bfa74976
RS
7682@section Bison Options
7683
7684Bison supports both traditional single-letter options and mnemonic long
7685option names. Long option names are indicated with @samp{--} instead of
7686@samp{-}. Abbreviations for option names are allowed as long as they
7687are unique. When a long option takes an argument, like
7688@samp{--file-prefix}, connect the option name and the argument with
7689@samp{=}.
7690
7691Here is a list of options that can be used with Bison, alphabetized by
7692short option. It is followed by a cross key alphabetized by long
7693option.
7694
89cab50d
AD
7695@c Please, keep this ordered as in `bison --help'.
7696@noindent
7697Operations modes:
7698@table @option
7699@item -h
7700@itemx --help
7701Print a summary of the command-line options to Bison and exit.
bfa74976 7702
89cab50d
AD
7703@item -V
7704@itemx --version
7705Print the version number of Bison and exit.
bfa74976 7706
f7ab6a50
PE
7707@item --print-localedir
7708Print the name of the directory containing locale-dependent data.
7709
a0de5091
JD
7710@item --print-datadir
7711Print the name of the directory containing skeletons and XSLT.
7712
89cab50d
AD
7713@item -y
7714@itemx --yacc
54662697
PE
7715Act more like the traditional Yacc command. This can cause
7716different diagnostics to be generated, and may change behavior in
7717other minor ways. Most importantly, imitate Yacc's output
7718file name conventions, so that the parser output file is called
89cab50d 7719@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7720@file{y.tab.h}.
7721Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7722statements in addition to an @code{enum} to associate token numbers with token
7723names.
7724Thus, the following shell script can substitute for Yacc, and the Bison
7725distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7726
89cab50d 7727@example
397ec073 7728#! /bin/sh
26e06a21 7729bison -y "$@@"
89cab50d 7730@end example
54662697
PE
7731
7732The @option{-y}/@option{--yacc} option is intended for use with
7733traditional Yacc grammars. If your grammar uses a Bison extension
7734like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7735this option is specified.
7736
89cab50d
AD
7737@end table
7738
7739@noindent
7740Tuning the parser:
7741
7742@table @option
7743@item -t
7744@itemx --debug
4947ebdb
PE
7745In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7746already defined, so that the debugging facilities are compiled.
ec3bc396 7747@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7748
0e021770
PE
7749@item -L @var{language}
7750@itemx --language=@var{language}
7751Specify the programming language for the generated parser, as if
7752@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7753Summary}). Currently supported languages include C and C++.
e6e704dc 7754@var{language} is case-insensitive.
0e021770 7755
89cab50d 7756@item --locations
d8988b2f 7757Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7758
7759@item -p @var{prefix}
7760@itemx --name-prefix=@var{prefix}
02975b9a 7761Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7762@xref{Decl Summary}.
bfa74976
RS
7763
7764@item -l
7765@itemx --no-lines
7766Don't put any @code{#line} preprocessor commands in the parser file.
7767Ordinarily Bison puts them in the parser file so that the C compiler
7768and debuggers will associate errors with your source file, the
7769grammar file. This option causes them to associate errors with the
95e742f7 7770parser file, treating it as an independent source file in its own right.
bfa74976 7771
e6e704dc
JD
7772@item -S @var{file}
7773@itemx --skeleton=@var{file}
a7867f53 7774Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7775(@pxref{Decl Summary, , Bison Declaration Summary}).
7776
a7867f53
JD
7777You probably don't need this option unless you are developing Bison.
7778You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7779different language, because it is clearer and because it will always
7780choose the correct skeleton for non-deterministic or push parsers.
7781
a7867f53
JD
7782If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7783file in the Bison installation directory.
7784If it does, @var{file} is an absolute file name or a file name relative to the
7785current working directory.
7786This is similar to how most shells resolve commands.
7787
89cab50d
AD
7788@item -k
7789@itemx --token-table
d8988b2f 7790Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7791@end table
bfa74976 7792
89cab50d
AD
7793@noindent
7794Adjust the output:
bfa74976 7795
89cab50d
AD
7796@table @option
7797@item -d
d8988b2f
AD
7798@itemx --defines
7799Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7800file containing macro definitions for the token type names defined in
4bfd5e4e 7801the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7802
342b8b6e 7803@item --defines=@var{defines-file}
d8988b2f 7804Same as above, but save in the file @var{defines-file}.
342b8b6e 7805
89cab50d
AD
7806@item -b @var{file-prefix}
7807@itemx --file-prefix=@var{prefix}
9c437126 7808Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7809for all Bison output file names. @xref{Decl Summary}.
bfa74976 7810
ec3bc396
AD
7811@item -r @var{things}
7812@itemx --report=@var{things}
7813Write an extra output file containing verbose description of the comma
7814separated list of @var{things} among:
7815
7816@table @code
7817@item state
7818Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7819@acronym{LALR} automaton.
ec3bc396 7820
742e4900 7821@item lookahead
ec3bc396 7822Implies @code{state} and augments the description of the automaton with
742e4900 7823each rule's lookahead set.
ec3bc396
AD
7824
7825@item itemset
7826Implies @code{state} and augments the description of the automaton with
7827the full set of items for each state, instead of its core only.
7828@end table
7829
bfa74976
RS
7830@item -v
7831@itemx --verbose
9c437126 7832Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7833file containing verbose descriptions of the grammar and
72d2299c 7834parser. @xref{Decl Summary}.
bfa74976 7835
fa4d969f
PE
7836@item -o @var{file}
7837@itemx --output=@var{file}
7838Specify the @var{file} for the parser file.
bfa74976 7839
fa4d969f 7840The other output files' names are constructed from @var{file} as
d8988b2f 7841described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7842
7843@item -g
35fe0834
PE
7844Output a graphical representation of the @acronym{LALR}(1) grammar
7845automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7846@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7847If the grammar file is @file{foo.y}, the output file will
7848be @file{foo.dot}.
342b8b6e
AD
7849
7850@item --graph=@var{graph-file}
72d2299c
PE
7851The behavior of @var{--graph} is the same than @samp{-g}. The only
7852difference is that it has an optional argument which is the name of
fa4d969f 7853the output graph file.
bfa74976
RS
7854@end table
7855
342b8b6e 7856@node Option Cross Key
bfa74976
RS
7857@section Option Cross Key
7858
aa08666d 7859@c FIXME: How about putting the directives too?
bfa74976
RS
7860Here is a list of options, alphabetized by long option, to help you find
7861the corresponding short option.
7862
aa08666d
AD
7863@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7864@headitem Long Option @tab Short Option
f4101aa6 7865@include cross-options.texi
aa08666d 7866@end multitable
bfa74976 7867
93dd49ab
PE
7868@node Yacc Library
7869@section Yacc Library
7870
7871The Yacc library contains default implementations of the
7872@code{yyerror} and @code{main} functions. These default
7873implementations are normally not useful, but @acronym{POSIX} requires
7874them. To use the Yacc library, link your program with the
7875@option{-ly} option. Note that Bison's implementation of the Yacc
7876library is distributed under the terms of the @acronym{GNU} General
7877Public License (@pxref{Copying}).
7878
7879If you use the Yacc library's @code{yyerror} function, you should
7880declare @code{yyerror} as follows:
7881
7882@example
7883int yyerror (char const *);
7884@end example
7885
7886Bison ignores the @code{int} value returned by this @code{yyerror}.
7887If you use the Yacc library's @code{main} function, your
7888@code{yyparse} function should have the following type signature:
7889
7890@example
7891int yyparse (void);
7892@end example
7893
12545799
AD
7894@c ================================================= C++ Bison
7895
8405b70c
PB
7896@node Other Languages
7897@chapter Parsers Written In Other Languages
12545799
AD
7898
7899@menu
7900* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7901* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7902@end menu
7903
7904@node C++ Parsers
7905@section C++ Parsers
7906
7907@menu
7908* C++ Bison Interface:: Asking for C++ parser generation
7909* C++ Semantic Values:: %union vs. C++
7910* C++ Location Values:: The position and location classes
7911* C++ Parser Interface:: Instantiating and running the parser
7912* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 7913* A Complete C++ Example:: Demonstrating their use
12545799
AD
7914@end menu
7915
7916@node C++ Bison Interface
7917@subsection C++ Bison Interface
0e021770 7918@c - %language "C++"
12545799
AD
7919@c - Always pure
7920@c - initial action
7921
e6e704dc
JD
7922The C++ @acronym{LALR}(1) parser is selected using the language directive,
7923@samp{%language "C++"}, or the synonymous command-line option
7924@option{--language=c++}.
7925@xref{Decl Summary}.
0e021770 7926
793fbca5
JD
7927When run, @command{bison} will create several entities in the @samp{yy}
7928namespace.
7929@findex %define namespace
7930Use the @samp{%define namespace} directive to change the namespace name, see
7931@ref{Decl Summary}.
7932The various classes are generated in the following files:
aa08666d 7933
12545799
AD
7934@table @file
7935@item position.hh
7936@itemx location.hh
7937The definition of the classes @code{position} and @code{location},
7938used for location tracking. @xref{C++ Location Values}.
7939
7940@item stack.hh
7941An auxiliary class @code{stack} used by the parser.
7942
fa4d969f
PE
7943@item @var{file}.hh
7944@itemx @var{file}.cc
cd8b5791
AD
7945(Assuming the extension of the input file was @samp{.yy}.) The
7946declaration and implementation of the C++ parser class. The basename
7947and extension of these two files follow the same rules as with regular C
7948parsers (@pxref{Invocation}).
12545799 7949
cd8b5791
AD
7950The header is @emph{mandatory}; you must either pass
7951@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7952@samp{%defines} directive.
7953@end table
7954
7955All these files are documented using Doxygen; run @command{doxygen}
7956for a complete and accurate documentation.
7957
7958@node C++ Semantic Values
7959@subsection C++ Semantic Values
7960@c - No objects in unions
178e123e 7961@c - YYSTYPE
12545799
AD
7962@c - Printer and destructor
7963
7964The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7965Collection of Value Types}. In particular it produces a genuine
7966@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7967within pseudo-unions (similar to Boost variants) might be implemented to
7968alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7969@itemize @minus
7970@item
fb9712a9
AD
7971The type @code{YYSTYPE} is defined but its use is discouraged: rather
7972you should refer to the parser's encapsulated type
7973@code{yy::parser::semantic_type}.
12545799
AD
7974@item
7975Non POD (Plain Old Data) types cannot be used. C++ forbids any
7976instance of classes with constructors in unions: only @emph{pointers}
7977to such objects are allowed.
7978@end itemize
7979
7980Because objects have to be stored via pointers, memory is not
7981reclaimed automatically: using the @code{%destructor} directive is the
7982only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7983Symbols}.
7984
7985
7986@node C++ Location Values
7987@subsection C++ Location Values
7988@c - %locations
7989@c - class Position
7990@c - class Location
16dc6a9e 7991@c - %define filename_type "const symbol::Symbol"
12545799
AD
7992
7993When the directive @code{%locations} is used, the C++ parser supports
7994location tracking, see @ref{Locations, , Locations Overview}. Two
7995auxiliary classes define a @code{position}, a single point in a file,
7996and a @code{location}, a range composed of a pair of
7997@code{position}s (possibly spanning several files).
7998
fa4d969f 7999@deftypemethod {position} {std::string*} file
12545799
AD
8000The name of the file. It will always be handled as a pointer, the
8001parser will never duplicate nor deallocate it. As an experimental
8002feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8003filename_type "@var{type}"}.
12545799
AD
8004@end deftypemethod
8005
8006@deftypemethod {position} {unsigned int} line
8007The line, starting at 1.
8008@end deftypemethod
8009
8010@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8011Advance by @var{height} lines, resetting the column number.
8012@end deftypemethod
8013
8014@deftypemethod {position} {unsigned int} column
8015The column, starting at 0.
8016@end deftypemethod
8017
8018@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8019Advance by @var{width} columns, without changing the line number.
8020@end deftypemethod
8021
8022@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8023@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8024@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8025@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8026Various forms of syntactic sugar for @code{columns}.
8027@end deftypemethod
8028
8029@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8030Report @var{p} on @var{o} like this:
fa4d969f
PE
8031@samp{@var{file}:@var{line}.@var{column}}, or
8032@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8033@end deftypemethod
8034
8035@deftypemethod {location} {position} begin
8036@deftypemethodx {location} {position} end
8037The first, inclusive, position of the range, and the first beyond.
8038@end deftypemethod
8039
8040@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8041@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8042Advance the @code{end} position.
8043@end deftypemethod
8044
8045@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8046@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8047@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8048Various forms of syntactic sugar.
8049@end deftypemethod
8050
8051@deftypemethod {location} {void} step ()
8052Move @code{begin} onto @code{end}.
8053@end deftypemethod
8054
8055
8056@node C++ Parser Interface
8057@subsection C++ Parser Interface
8058@c - define parser_class_name
8059@c - Ctor
8060@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8061@c debug_stream.
8062@c - Reporting errors
8063
8064The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8065declare and define the parser class in the namespace @code{yy}. The
8066class name defaults to @code{parser}, but may be changed using
16dc6a9e 8067@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8068this class is detailed below. It can be extended using the
12545799
AD
8069@code{%parse-param} feature: its semantics is slightly changed since
8070it describes an additional member of the parser class, and an
8071additional argument for its constructor.
8072
8a0adb01
AD
8073@defcv {Type} {parser} {semantic_value_type}
8074@defcvx {Type} {parser} {location_value_type}
12545799 8075The types for semantics value and locations.
8a0adb01 8076@end defcv
12545799
AD
8077
8078@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8079Build a new parser object. There are no arguments by default, unless
8080@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8081@end deftypemethod
8082
8083@deftypemethod {parser} {int} parse ()
8084Run the syntactic analysis, and return 0 on success, 1 otherwise.
8085@end deftypemethod
8086
8087@deftypemethod {parser} {std::ostream&} debug_stream ()
8088@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8089Get or set the stream used for tracing the parsing. It defaults to
8090@code{std::cerr}.
8091@end deftypemethod
8092
8093@deftypemethod {parser} {debug_level_type} debug_level ()
8094@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8095Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8096or nonzero, full tracing.
12545799
AD
8097@end deftypemethod
8098
8099@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8100The definition for this member function must be supplied by the user:
8101the parser uses it to report a parser error occurring at @var{l},
8102described by @var{m}.
8103@end deftypemethod
8104
8105
8106@node C++ Scanner Interface
8107@subsection C++ Scanner Interface
8108@c - prefix for yylex.
8109@c - Pure interface to yylex
8110@c - %lex-param
8111
8112The parser invokes the scanner by calling @code{yylex}. Contrary to C
8113parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8114@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8115
8116@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8117Return the next token. Its type is the return value, its semantic
8118value and location being @var{yylval} and @var{yylloc}. Invocations of
8119@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8120@end deftypemethod
8121
8122
8123@node A Complete C++ Example
8405b70c 8124@subsection A Complete C++ Example
12545799
AD
8125
8126This section demonstrates the use of a C++ parser with a simple but
8127complete example. This example should be available on your system,
8128ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8129focuses on the use of Bison, therefore the design of the various C++
8130classes is very naive: no accessors, no encapsulation of members etc.
8131We will use a Lex scanner, and more precisely, a Flex scanner, to
8132demonstrate the various interaction. A hand written scanner is
8133actually easier to interface with.
8134
8135@menu
8136* Calc++ --- C++ Calculator:: The specifications
8137* Calc++ Parsing Driver:: An active parsing context
8138* Calc++ Parser:: A parser class
8139* Calc++ Scanner:: A pure C++ Flex scanner
8140* Calc++ Top Level:: Conducting the band
8141@end menu
8142
8143@node Calc++ --- C++ Calculator
8405b70c 8144@subsubsection Calc++ --- C++ Calculator
12545799
AD
8145
8146Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8147expression, possibly preceded by variable assignments. An
12545799
AD
8148environment containing possibly predefined variables such as
8149@code{one} and @code{two}, is exchanged with the parser. An example
8150of valid input follows.
8151
8152@example
8153three := 3
8154seven := one + two * three
8155seven * seven
8156@end example
8157
8158@node Calc++ Parsing Driver
8405b70c 8159@subsubsection Calc++ Parsing Driver
12545799
AD
8160@c - An env
8161@c - A place to store error messages
8162@c - A place for the result
8163
8164To support a pure interface with the parser (and the scanner) the
8165technique of the ``parsing context'' is convenient: a structure
8166containing all the data to exchange. Since, in addition to simply
8167launch the parsing, there are several auxiliary tasks to execute (open
8168the file for parsing, instantiate the parser etc.), we recommend
8169transforming the simple parsing context structure into a fully blown
8170@dfn{parsing driver} class.
8171
8172The declaration of this driver class, @file{calc++-driver.hh}, is as
8173follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8174required standard library components, and the declaration of the parser
8175class.
12545799 8176
1c59e0a1 8177@comment file: calc++-driver.hh
12545799
AD
8178@example
8179#ifndef CALCXX_DRIVER_HH
8180# define CALCXX_DRIVER_HH
8181# include <string>
8182# include <map>
fb9712a9 8183# include "calc++-parser.hh"
12545799
AD
8184@end example
8185
12545799
AD
8186
8187@noindent
8188Then comes the declaration of the scanning function. Flex expects
8189the signature of @code{yylex} to be defined in the macro
8190@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8191factor both as follows.
1c59e0a1
AD
8192
8193@comment file: calc++-driver.hh
12545799 8194@example
3dc5e96b
PE
8195// Tell Flex the lexer's prototype ...
8196# define YY_DECL \
c095d689
AD
8197 yy::calcxx_parser::token_type \
8198 yylex (yy::calcxx_parser::semantic_type* yylval, \
8199 yy::calcxx_parser::location_type* yylloc, \
8200 calcxx_driver& driver)
12545799
AD
8201// ... and declare it for the parser's sake.
8202YY_DECL;
8203@end example
8204
8205@noindent
8206The @code{calcxx_driver} class is then declared with its most obvious
8207members.
8208
1c59e0a1 8209@comment file: calc++-driver.hh
12545799
AD
8210@example
8211// Conducting the whole scanning and parsing of Calc++.
8212class calcxx_driver
8213@{
8214public:
8215 calcxx_driver ();
8216 virtual ~calcxx_driver ();
8217
8218 std::map<std::string, int> variables;
8219
8220 int result;
8221@end example
8222
8223@noindent
8224To encapsulate the coordination with the Flex scanner, it is useful to
8225have two members function to open and close the scanning phase.
12545799 8226
1c59e0a1 8227@comment file: calc++-driver.hh
12545799
AD
8228@example
8229 // Handling the scanner.
8230 void scan_begin ();
8231 void scan_end ();
8232 bool trace_scanning;
8233@end example
8234
8235@noindent
8236Similarly for the parser itself.
8237
1c59e0a1 8238@comment file: calc++-driver.hh
12545799 8239@example
bb32f4f2
AD
8240 // Run the parser. Return 0 on success.
8241 int parse (const std::string& f);
12545799
AD
8242 std::string file;
8243 bool trace_parsing;
8244@end example
8245
8246@noindent
8247To demonstrate pure handling of parse errors, instead of simply
8248dumping them on the standard error output, we will pass them to the
8249compiler driver using the following two member functions. Finally, we
8250close the class declaration and CPP guard.
8251
1c59e0a1 8252@comment file: calc++-driver.hh
12545799
AD
8253@example
8254 // Error handling.
8255 void error (const yy::location& l, const std::string& m);
8256 void error (const std::string& m);
8257@};
8258#endif // ! CALCXX_DRIVER_HH
8259@end example
8260
8261The implementation of the driver is straightforward. The @code{parse}
8262member function deserves some attention. The @code{error} functions
8263are simple stubs, they should actually register the located error
8264messages and set error state.
8265
1c59e0a1 8266@comment file: calc++-driver.cc
12545799
AD
8267@example
8268#include "calc++-driver.hh"
8269#include "calc++-parser.hh"
8270
8271calcxx_driver::calcxx_driver ()
8272 : trace_scanning (false), trace_parsing (false)
8273@{
8274 variables["one"] = 1;
8275 variables["two"] = 2;
8276@}
8277
8278calcxx_driver::~calcxx_driver ()
8279@{
8280@}
8281
bb32f4f2 8282int
12545799
AD
8283calcxx_driver::parse (const std::string &f)
8284@{
8285 file = f;
8286 scan_begin ();
8287 yy::calcxx_parser parser (*this);
8288 parser.set_debug_level (trace_parsing);
bb32f4f2 8289 int res = parser.parse ();
12545799 8290 scan_end ();
bb32f4f2 8291 return res;
12545799
AD
8292@}
8293
8294void
8295calcxx_driver::error (const yy::location& l, const std::string& m)
8296@{
8297 std::cerr << l << ": " << m << std::endl;
8298@}
8299
8300void
8301calcxx_driver::error (const std::string& m)
8302@{
8303 std::cerr << m << std::endl;
8304@}
8305@end example
8306
8307@node Calc++ Parser
8405b70c 8308@subsubsection Calc++ Parser
12545799 8309
b50d2359
AD
8310The parser definition file @file{calc++-parser.yy} starts by asking for
8311the C++ LALR(1) skeleton, the creation of the parser header file, and
8312specifies the name of the parser class. Because the C++ skeleton
8313changed several times, it is safer to require the version you designed
8314the grammar for.
1c59e0a1
AD
8315
8316@comment file: calc++-parser.yy
12545799 8317@example
0e021770 8318%language "C++" /* -*- C++ -*- */
e6e704dc 8319%require "@value{VERSION}"
12545799 8320%defines
16dc6a9e 8321%define parser_class_name "calcxx_parser"
fb9712a9
AD
8322@end example
8323
8324@noindent
16dc6a9e 8325@findex %code requires
fb9712a9
AD
8326Then come the declarations/inclusions needed to define the
8327@code{%union}. Because the parser uses the parsing driver and
8328reciprocally, both cannot include the header of the other. Because the
8329driver's header needs detailed knowledge about the parser class (in
8330particular its inner types), it is the parser's header which will simply
8331use a forward declaration of the driver.
148d66d8 8332@xref{Decl Summary, ,%code}.
fb9712a9
AD
8333
8334@comment file: calc++-parser.yy
8335@example
16dc6a9e 8336%code requires @{
12545799 8337# include <string>
fb9712a9 8338class calcxx_driver;
9bc0dd67 8339@}
12545799
AD
8340@end example
8341
8342@noindent
8343The driver is passed by reference to the parser and to the scanner.
8344This provides a simple but effective pure interface, not relying on
8345global variables.
8346
1c59e0a1 8347@comment file: calc++-parser.yy
12545799
AD
8348@example
8349// The parsing context.
8350%parse-param @{ calcxx_driver& driver @}
8351%lex-param @{ calcxx_driver& driver @}
8352@end example
8353
8354@noindent
8355Then we request the location tracking feature, and initialize the
8356first location's file name. Afterwards new locations are computed
8357relatively to the previous locations: the file name will be
8358automatically propagated.
8359
1c59e0a1 8360@comment file: calc++-parser.yy
12545799
AD
8361@example
8362%locations
8363%initial-action
8364@{
8365 // Initialize the initial location.
b47dbebe 8366 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8367@};
8368@end example
8369
8370@noindent
8371Use the two following directives to enable parser tracing and verbose
8372error messages.
8373
1c59e0a1 8374@comment file: calc++-parser.yy
12545799
AD
8375@example
8376%debug
8377%error-verbose
8378@end example
8379
8380@noindent
8381Semantic values cannot use ``real'' objects, but only pointers to
8382them.
8383
1c59e0a1 8384@comment file: calc++-parser.yy
12545799
AD
8385@example
8386// Symbols.
8387%union
8388@{
8389 int ival;
8390 std::string *sval;
8391@};
8392@end example
8393
fb9712a9 8394@noindent
136a0f76
PB
8395@findex %code
8396The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8397@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8398
8399@comment file: calc++-parser.yy
8400@example
136a0f76 8401%code @{
fb9712a9 8402# include "calc++-driver.hh"
34f98f46 8403@}
fb9712a9
AD
8404@end example
8405
8406
12545799
AD
8407@noindent
8408The token numbered as 0 corresponds to end of file; the following line
8409allows for nicer error messages referring to ``end of file'' instead
8410of ``$end''. Similarly user friendly named are provided for each
8411symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8412avoid name clashes.
8413
1c59e0a1 8414@comment file: calc++-parser.yy
12545799 8415@example
fb9712a9
AD
8416%token END 0 "end of file"
8417%token ASSIGN ":="
8418%token <sval> IDENTIFIER "identifier"
8419%token <ival> NUMBER "number"
a8c2e813 8420%type <ival> exp
12545799
AD
8421@end example
8422
8423@noindent
8424To enable memory deallocation during error recovery, use
8425@code{%destructor}.
8426
287c78f6 8427@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8428@comment file: calc++-parser.yy
12545799
AD
8429@example
8430%printer @{ debug_stream () << *$$; @} "identifier"
8431%destructor @{ delete $$; @} "identifier"
8432
a8c2e813 8433%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8434@end example
8435
8436@noindent
8437The grammar itself is straightforward.
8438
1c59e0a1 8439@comment file: calc++-parser.yy
12545799
AD
8440@example
8441%%
8442%start unit;
8443unit: assignments exp @{ driver.result = $2; @};
8444
8445assignments: assignments assignment @{@}
9d9b8b70 8446 | /* Nothing. */ @{@};
12545799 8447
3dc5e96b
PE
8448assignment:
8449 "identifier" ":=" exp
8450 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8451
8452%left '+' '-';
8453%left '*' '/';
8454exp: exp '+' exp @{ $$ = $1 + $3; @}
8455 | exp '-' exp @{ $$ = $1 - $3; @}
8456 | exp '*' exp @{ $$ = $1 * $3; @}
8457 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8458 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8459 | "number" @{ $$ = $1; @};
12545799
AD
8460%%
8461@end example
8462
8463@noindent
8464Finally the @code{error} member function registers the errors to the
8465driver.
8466
1c59e0a1 8467@comment file: calc++-parser.yy
12545799
AD
8468@example
8469void
1c59e0a1
AD
8470yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8471 const std::string& m)
12545799
AD
8472@{
8473 driver.error (l, m);
8474@}
8475@end example
8476
8477@node Calc++ Scanner
8405b70c 8478@subsubsection Calc++ Scanner
12545799
AD
8479
8480The Flex scanner first includes the driver declaration, then the
8481parser's to get the set of defined tokens.
8482
1c59e0a1 8483@comment file: calc++-scanner.ll
12545799
AD
8484@example
8485%@{ /* -*- C++ -*- */
04098407
PE
8486# include <cstdlib>
8487# include <errno.h>
8488# include <limits.h>
12545799
AD
8489# include <string>
8490# include "calc++-driver.hh"
8491# include "calc++-parser.hh"
eaea13f5
PE
8492
8493/* Work around an incompatibility in flex (at least versions
8494 2.5.31 through 2.5.33): it generates code that does
8495 not conform to C89. See Debian bug 333231
8496 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8497# undef yywrap
8498# define yywrap() 1
eaea13f5 8499
c095d689
AD
8500/* By default yylex returns int, we use token_type.
8501 Unfortunately yyterminate by default returns 0, which is
8502 not of token_type. */
8c5b881d 8503#define yyterminate() return token::END
12545799
AD
8504%@}
8505@end example
8506
8507@noindent
8508Because there is no @code{#include}-like feature we don't need
8509@code{yywrap}, we don't need @code{unput} either, and we parse an
8510actual file, this is not an interactive session with the user.
8511Finally we enable the scanner tracing features.
8512
1c59e0a1 8513@comment file: calc++-scanner.ll
12545799
AD
8514@example
8515%option noyywrap nounput batch debug
8516@end example
8517
8518@noindent
8519Abbreviations allow for more readable rules.
8520
1c59e0a1 8521@comment file: calc++-scanner.ll
12545799
AD
8522@example
8523id [a-zA-Z][a-zA-Z_0-9]*
8524int [0-9]+
8525blank [ \t]
8526@end example
8527
8528@noindent
9d9b8b70 8529The following paragraph suffices to track locations accurately. Each
12545799
AD
8530time @code{yylex} is invoked, the begin position is moved onto the end
8531position. Then when a pattern is matched, the end position is
8532advanced of its width. In case it matched ends of lines, the end
8533cursor is adjusted, and each time blanks are matched, the begin cursor
8534is moved onto the end cursor to effectively ignore the blanks
8535preceding tokens. Comments would be treated equally.
8536
1c59e0a1 8537@comment file: calc++-scanner.ll
12545799 8538@example
828c373b
AD
8539%@{
8540# define YY_USER_ACTION yylloc->columns (yyleng);
8541%@}
12545799
AD
8542%%
8543%@{
8544 yylloc->step ();
12545799
AD
8545%@}
8546@{blank@}+ yylloc->step ();
8547[\n]+ yylloc->lines (yyleng); yylloc->step ();
8548@end example
8549
8550@noindent
fb9712a9
AD
8551The rules are simple, just note the use of the driver to report errors.
8552It is convenient to use a typedef to shorten
8553@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8554@code{token::identifier} for instance.
12545799 8555
1c59e0a1 8556@comment file: calc++-scanner.ll
12545799 8557@example
fb9712a9
AD
8558%@{
8559 typedef yy::calcxx_parser::token token;
8560%@}
8c5b881d 8561 /* Convert ints to the actual type of tokens. */
c095d689 8562[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8563":=" return token::ASSIGN;
04098407
PE
8564@{int@} @{
8565 errno = 0;
8566 long n = strtol (yytext, NULL, 10);
8567 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8568 driver.error (*yylloc, "integer is out of range");
8569 yylval->ival = n;
fb9712a9 8570 return token::NUMBER;
04098407 8571@}
fb9712a9 8572@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8573. driver.error (*yylloc, "invalid character");
8574%%
8575@end example
8576
8577@noindent
8578Finally, because the scanner related driver's member function depend
8579on the scanner's data, it is simpler to implement them in this file.
8580
1c59e0a1 8581@comment file: calc++-scanner.ll
12545799
AD
8582@example
8583void
8584calcxx_driver::scan_begin ()
8585@{
8586 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8587 if (file == "-")
8588 yyin = stdin;
8589 else if (!(yyin = fopen (file.c_str (), "r")))
8590 @{
8591 error (std::string ("cannot open ") + file);
8592 exit (1);
8593 @}
12545799
AD
8594@}
8595
8596void
8597calcxx_driver::scan_end ()
8598@{
8599 fclose (yyin);
8600@}
8601@end example
8602
8603@node Calc++ Top Level
8405b70c 8604@subsubsection Calc++ Top Level
12545799
AD
8605
8606The top level file, @file{calc++.cc}, poses no problem.
8607
1c59e0a1 8608@comment file: calc++.cc
12545799
AD
8609@example
8610#include <iostream>
8611#include "calc++-driver.hh"
8612
8613int
fa4d969f 8614main (int argc, char *argv[])
12545799
AD
8615@{
8616 calcxx_driver driver;
8617 for (++argv; argv[0]; ++argv)
8618 if (*argv == std::string ("-p"))
8619 driver.trace_parsing = true;
8620 else if (*argv == std::string ("-s"))
8621 driver.trace_scanning = true;
bb32f4f2
AD
8622 else if (!driver.parse (*argv))
8623 std::cout << driver.result << std::endl;
12545799
AD
8624@}
8625@end example
8626
8405b70c
PB
8627@node Java Parsers
8628@section Java Parsers
8629
8630@menu
8631* Java Bison Interface:: Asking for Java parser generation
8632* Java Semantic Values:: %type and %token vs. Java
8633* Java Location Values:: The position and location classes
8634* Java Parser Interface:: Instantiating and running the parser
8635* Java Scanner Interface:: Java scanners, and pure parsers
8636* Java Differences:: Differences between C/C++ and Java Grammars
8637@end menu
8638
8639@node Java Bison Interface
8640@subsection Java Bison Interface
8641@c - %language "Java"
8642@c - initial action
8643
8644The Java parser skeletons are selected using a language directive,
8645@samp{%language "Java"}, or the synonymous command-line option
8646@option{--language=java}.
8647
8648When run, @command{bison} will create several entities whose name
8649starts with @samp{YY}. Use the @samp{%name-prefix} directive to
8650change the prefix, see @ref{Decl Summary}; classes can be placed
8651in an arbitrary Java package using a @samp{%define package} section.
8652
8653The parser class defines an inner class, @code{Location}, that is used
8654for location tracking. If the parser is pure, it also defines an
8655inner interface, @code{Lexer}; see~@ref{Java Scanner Interface} for the
8656meaning of pure parsers when the Java language is chosen. Other than
8657these inner class/interface, and the members described in~@ref{Java
8658Parser Interface}, all the other members and fields are preceded
8659with a @code{yy} prefix to avoid clashes with user code.
8660
8661No header file can be generated for Java parsers; you must not pass
8662@option{-d}/@option{--defines} to @command{bison}, nor use the
8663@samp{%defines} directive.
8664
8665By default, the @samp{YYParser} class has package visibility. A
8666declaration @samp{%define "public"} will change to public visibility.
8667Remember that, according to the Java language specification, the name
8668of the @file{.java} file should match the name of the class in this
8669case.
8670
01b477c6
PB
8671Similarly, a declaration @samp{%define "abstract"} will make your
8672class abstract.
8673
8674You can create documentation for generated parsers using Javadoc.
8405b70c
PB
8675
8676@node Java Semantic Values
8677@subsection Java Semantic Values
8678@c - No %union, specify type in %type/%token.
8679@c - YYSTYPE
8680@c - Printer and destructor
8681
8682There is no @code{%union} directive in Java parsers. Instead, the
8683semantic values' types (class names) should be specified in the
8684@code{%type} or @code{%token} directive:
8685
8686@example
8687%type <Expression> expr assignment_expr term factor
8688%type <Integer> number
8689@end example
8690
8691By default, the semantic stack is declared to have @code{Object} members,
8692which means that the class types you specify can be of any class.
8693To improve the type safety of the parser, you can declare the common
8694superclass of all the semantic values using the @samp{%define} directive.
8695For example, after the following declaration:
8696
8697@example
01b477c6 8698%define "stype" "ASTNode"
8405b70c
PB
8699@end example
8700
8701@noindent
8702any @code{%type} or @code{%token} specifying a semantic type which
8703is not a subclass of ASTNode, will cause a compile-time error.
8704
8705Types used in the directives may be qualified with a package name.
8706Primitive data types are accepted for Java version 1.5 or later. Note
8707that in this case the autoboxing feature of Java 1.5 will be used.
8708
8709Java parsers do not support @code{%destructor}, since the language
8710adopts garbage collection. The parser will try to hold references
8711to semantic values for as little time as needed.
8712
8713Java parsers do not support @code{%printer}, as @code{toString()}
8714can be used to print the semantic values. This however may change
8715(in a backwards-compatible way) in future versions of Bison.
8716
8717
8718@node Java Location Values
8719@subsection Java Location Values
8720@c - %locations
8721@c - class Position
8722@c - class Location
8723
8724When the directive @code{%locations} is used, the Java parser
8725supports location tracking, see @ref{Locations, , Locations Overview}.
8726An auxiliary user-defined class defines a @dfn{position}, a single point
8727in a file; Bison itself defines a class representing a @dfn{location},
8728a range composed of a pair of positions (possibly spanning several
8729files). The location class is an inner class of the parser; the name
8730is @code{Location} by default, may also be renamed using @code{%define
8731"location_type" "@var{class-name}}.
8732
8733The location class treats the position as a completely opaque value.
8734By default, the class name is @code{Position}, but this can be changed
8735with @code{%define "position_type" "@var{class-name}"}.
8736
8737
8738@deftypemethod {Location} {Position} begin
8739@deftypemethodx {Location} {Position} end
8740The first, inclusive, position of the range, and the first beyond.
8741@end deftypemethod
8742
8743@deftypemethod {Location} {void} toString ()
8744Prints the range represented by the location. For this to work
8745properly, the position class should override the @code{equals} and
8746@code{toString} methods appropriately.
8747@end deftypemethod
8748
8749
8750@node Java Parser Interface
8751@subsection Java Parser Interface
8752@c - define parser_class_name
8753@c - Ctor
8754@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8755@c debug_stream.
8756@c - Reporting errors
8757
8758The output file defines the parser class in the package optionally
8759indicated in the @code{%define package} section. The class name defaults
8760to @code{YYParser}. The @code{YY} prefix may be changed using
8761@samp{%name-prefix}; alternatively, you can use @samp{%define
8762"parser_class_name" "@var{name}"} to give a custom name to the class.
8763The interface of this class is detailed below. It can be extended using
8764the @code{%parse-param} directive; each occurrence of the directive will
8765add a field to the parser class, and an argument to its constructor.
8766
8767@deftypemethod {YYParser} {} YYParser (@var{type1} @var{arg1}, ...)
8768Build a new parser object. There are no arguments by default, unless
8769@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8770@end deftypemethod
8771
8772@deftypemethod {YYParser} {boolean} parse ()
8773Run the syntactic analysis, and return @code{true} on success,
8774@code{false} otherwise.
8775@end deftypemethod
8776
01b477c6 8777@deftypemethod {YYParser} {boolean} recovering ()
8405b70c
PB
8778During the syntactic analysis, return @code{true} if recovering
8779from a syntax error. @xref{Error Recovery}.
8780@end deftypemethod
8781
8782@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8783@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8784Get or set the stream used for tracing the parsing. It defaults to
8785@code{System.err}.
8786@end deftypemethod
8787
8788@deftypemethod {YYParser} {int} getDebugLevel ()
8789@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8790Get or set the tracing level. Currently its value is either 0, no trace,
8791or nonzero, full tracing.
8792@end deftypemethod
8793
8794@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8795The definition for this member function must be supplied by the user
8796in the same way as the scanner interface (@pxref{Java Scanner
8797Interface}); the parser uses it to report a parser error occurring at
8798@var{l}, described by @var{m}.
8799@end deftypemethod
8800
8801
8802@node Java Scanner Interface
8803@subsection Java Scanner Interface
01b477c6 8804@c - %code lexer
8405b70c 8805@c - %lex-param
01b477c6 8806@c - Lexer interface
8405b70c 8807
8405b70c
PB
8808Contrary to C parsers, Java parsers do not use global variables; the
8809state of the parser is always local to an instance of the parser class.
01b477c6
PB
8810Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8811directive does not do anything when used in Java.
8812
8813The scanner always resides in a separate class than the parser.
8814Still, Java also two possible ways to interface a Bison-generated Java
8815parser with a scanner, that is, the scanner may reside in a separate file
8816than the Bison grammar, or in the same file. The interface
8817to the scanner is similar in the two cases.
8818
8819In the first case, where the scanner in the same file as the grammar, the
8820scanner code has to be placed in @code{%code lexer} blocks. If you want
8821to pass parameters from the parser constructor to the scanner constructor,
8822specify them with @code{%lex-param}; they are passed before
8823@code{%parse-param}s to the constructor.
8824
8825In the second case, the scanner has to implement interface @code{Lexer},
8826which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8827The constructor of the parser object will then accept an object
8828implementing the interface; @code{%lex-param} is not used in this
8829case.
8830
8831In both cases, the scanner has to implement the following methods.
8832
8833@deftypemethod {Lexer} {void} yyerror (Location @var{l}, String @var{m})
8405b70c 8834As explained in @pxref{Java Parser Interface}, this method is defined
01b477c6
PB
8835by the user to emit an error message. The first parameter is omitted
8836if location tracking is not active. Its type can be changed using
8405b70c
PB
8837@samp{%define "location_type" "@var{class-name}".}
8838@end deftypemethod
8839
8840@deftypemethod {Lexer} {int} yylex (@var{type1} @var{arg1}, ...)
8841Return the next token. Its type is the return value, its semantic
8842value and location are saved and returned by the ther methods in the
8843interface. Invocations of @samp{%lex-param @{@var{type1}
8844@var{arg1}@}} yield additional arguments.
8845@end deftypemethod
8846
8847@deftypemethod {Lexer} {Position} getStartPos ()
8848@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8849Return respectively the first position of the last token that
8850@code{yylex} returned, and the first position beyond it. These
8851methods are not needed unless location tracking is active.
8405b70c
PB
8852
8853The return type can be changed using @samp{%define "position_type"
8854"@var{class-name}".}
8855@end deftypemethod
8856
8857@deftypemethod {Lexer} {Object} getLVal ()
8858Return respectively the first position of the last token that yylex
8859returned, and the first position beyond it.
8860
01b477c6 8861The return type can be changed using @samp{%define "stype"
8405b70c
PB
8862"@var{class-name}".}
8863@end deftypemethod
8864
8865
d9df47b6
JD
8866The lexer interface resides in the same class (@code{YYParser}) as the
8867Bison-generated parser.
8868The fields and methods that are provided to this end are as follows.
8405b70c
PB
8869
8870@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8871As explained in @pxref{Java Parser Interface}, this method is defined
8872by the user to emit an error message. The first parameter is not used
8873unless location tracking is active. Its type can be changed using
8874@samp{%define "location_type" "@var{class-name}".}
8875@end deftypemethod
8876
8877@deftypemethod {YYParser} {int} yylex (@var{type1} @var{arg1}, ...)
8878Return the next token. Its type is the return value, its semantic
8879value and location are saved into @code{yylval}, @code{yystartpos},
8880@code{yyendpos}. Invocations of @samp{%lex-param @{@var{type1}
8881@var{arg1}@}} yield additional arguments.
8882@end deftypemethod
8883
8884@deftypecv {Field} {YYParser} Position yystartpos
8885@deftypecvx {Field} {YYParser} Position yyendpos
8886Contain respectively the first position of the last token that yylex
8887returned, and the first position beyond it. These methods are not
8888needed unless location tracking is active.
8889
8890The field's type can be changed using @samp{%define "position_type"
8891"@var{class-name}".}
8892@end deftypecv
8893
8894@deftypecv {Field} {YYParser} Object yylval
8895Return respectively the first position of the last token that yylex
8896returned, and the first position beyond it.
8897
01b477c6 8898The field's type can be changed using @samp{%define "stype"
8405b70c
PB
8899"@var{class-name}".}
8900@end deftypecv
8901
8405b70c
PB
8902@node Java Differences
8903@subsection Differences between C/C++ and Java Grammars
8904
8905The different structure of the Java language forces several differences
8906between C/C++ grammars, and grammars designed for Java parsers. This
29553547 8907section summarizes these differences.
8405b70c
PB
8908
8909@itemize
8910@item
01b477c6 8911Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 8912@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
8913macros. Instead, they should be preceded by @code{return} when they
8914appear in an action. The actual definition of these symbols is
8405b70c
PB
8915opaque to the Bison grammar, and it might change in the future. The
8916only meaningful operation that you can do, is to return them.
8917
8918Note that of these three symbols, only @code{YYACCEPT} and
8919@code{YYABORT} will cause a return from the @code{yyparse}
8920method@footnote{Java parsers include the actions in a separate
8921method than @code{yyparse} in order to have an intuitive syntax that
8922corresponds to these C macros.}.
8923
8924@item
8925The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
8926@table @asis
8927@item @code{%code imports}
8928blocks are placed at the beginning of the Java source code. They may
8929include copyright notices. For a @code{package} declarations, it is
8930suggested to use @code{%define package} instead.
8405b70c 8931
01b477c6
PB
8932@item unqualified @code{%code}
8933blocks are placed inside the parser class.
8934
8935@item @code{%code lexer}
8936blocks, if specified, should include the implementation of the
8937scanner. If there is no such block, the scanner can be any class
8938that implements the appropriate interface (see @pxref{Java Scanner
8939Interface}).
29553547 8940@end table
8405b70c
PB
8941
8942Other @code{%code} blocks are not supported in Java parsers.
01b477c6
PB
8943The epilogue has the same meaning as in C/C++ code and it can
8944be used to define other classes used by the parser.
8405b70c
PB
8945@end itemize
8946
12545799 8947@c ================================================= FAQ
d1a1114f
AD
8948
8949@node FAQ
8950@chapter Frequently Asked Questions
8951@cindex frequently asked questions
8952@cindex questions
8953
8954Several questions about Bison come up occasionally. Here some of them
8955are addressed.
8956
8957@menu
55ba27be
AD
8958* Memory Exhausted:: Breaking the Stack Limits
8959* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8960* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8961* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8962* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8963* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8964* I can't build Bison:: Troubleshooting
8965* Where can I find help?:: Troubleshouting
8966* Bug Reports:: Troublereporting
8405b70c 8967* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
8968* Beta Testing:: Experimenting development versions
8969* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8970@end menu
8971
1a059451
PE
8972@node Memory Exhausted
8973@section Memory Exhausted
d1a1114f
AD
8974
8975@display
1a059451 8976My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8977message. What can I do?
8978@end display
8979
8980This question is already addressed elsewhere, @xref{Recursion,
8981,Recursive Rules}.
8982
e64fec0a
PE
8983@node How Can I Reset the Parser
8984@section How Can I Reset the Parser
5b066063 8985
0e14ad77
PE
8986The following phenomenon has several symptoms, resulting in the
8987following typical questions:
5b066063
AD
8988
8989@display
8990I invoke @code{yyparse} several times, and on correct input it works
8991properly; but when a parse error is found, all the other calls fail
0e14ad77 8992too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8993@end display
8994
8995@noindent
8996or
8997
8998@display
0e14ad77 8999My parser includes support for an @samp{#include}-like feature, in
5b066063 9000which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9001although I did specify @code{%define api.pure}.
5b066063
AD
9002@end display
9003
0e14ad77
PE
9004These problems typically come not from Bison itself, but from
9005Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9006speed, they might not notice a change of input file. As a
9007demonstration, consider the following source file,
9008@file{first-line.l}:
9009
9010@verbatim
9011%{
9012#include <stdio.h>
9013#include <stdlib.h>
9014%}
9015%%
9016.*\n ECHO; return 1;
9017%%
9018int
0e14ad77 9019yyparse (char const *file)
5b066063
AD
9020{
9021 yyin = fopen (file, "r");
9022 if (!yyin)
9023 exit (2);
fa7e68c3 9024 /* One token only. */
5b066063 9025 yylex ();
0e14ad77 9026 if (fclose (yyin) != 0)
5b066063
AD
9027 exit (3);
9028 return 0;
9029}
9030
9031int
0e14ad77 9032main (void)
5b066063
AD
9033{
9034 yyparse ("input");
9035 yyparse ("input");
9036 return 0;
9037}
9038@end verbatim
9039
9040@noindent
9041If the file @file{input} contains
9042
9043@verbatim
9044input:1: Hello,
9045input:2: World!
9046@end verbatim
9047
9048@noindent
0e14ad77 9049then instead of getting the first line twice, you get:
5b066063
AD
9050
9051@example
9052$ @kbd{flex -ofirst-line.c first-line.l}
9053$ @kbd{gcc -ofirst-line first-line.c -ll}
9054$ @kbd{./first-line}
9055input:1: Hello,
9056input:2: World!
9057@end example
9058
0e14ad77
PE
9059Therefore, whenever you change @code{yyin}, you must tell the
9060Lex-generated scanner to discard its current buffer and switch to the
9061new one. This depends upon your implementation of Lex; see its
9062documentation for more. For Flex, it suffices to call
9063@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9064Flex-generated scanner needs to read from several input streams to
9065handle features like include files, you might consider using Flex
9066functions like @samp{yy_switch_to_buffer} that manipulate multiple
9067input buffers.
5b066063 9068
b165c324
AD
9069If your Flex-generated scanner uses start conditions (@pxref{Start
9070conditions, , Start conditions, flex, The Flex Manual}), you might
9071also want to reset the scanner's state, i.e., go back to the initial
9072start condition, through a call to @samp{BEGIN (0)}.
9073
fef4cb51
AD
9074@node Strings are Destroyed
9075@section Strings are Destroyed
9076
9077@display
c7e441b4 9078My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9079them. Instead of reporting @samp{"foo", "bar"}, it reports
9080@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9081@end display
9082
9083This error is probably the single most frequent ``bug report'' sent to
9084Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9085of the scanner. Consider the following Lex code:
fef4cb51
AD
9086
9087@verbatim
9088%{
9089#include <stdio.h>
9090char *yylval = NULL;
9091%}
9092%%
9093.* yylval = yytext; return 1;
9094\n /* IGNORE */
9095%%
9096int
9097main ()
9098{
fa7e68c3 9099 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9100 char *fst = (yylex (), yylval);
9101 char *snd = (yylex (), yylval);
9102 printf ("\"%s\", \"%s\"\n", fst, snd);
9103 return 0;
9104}
9105@end verbatim
9106
9107If you compile and run this code, you get:
9108
9109@example
9110$ @kbd{flex -osplit-lines.c split-lines.l}
9111$ @kbd{gcc -osplit-lines split-lines.c -ll}
9112$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9113"one
9114two", "two"
9115@end example
9116
9117@noindent
9118this is because @code{yytext} is a buffer provided for @emph{reading}
9119in the action, but if you want to keep it, you have to duplicate it
9120(e.g., using @code{strdup}). Note that the output may depend on how
9121your implementation of Lex handles @code{yytext}. For instance, when
9122given the Lex compatibility option @option{-l} (which triggers the
9123option @samp{%array}) Flex generates a different behavior:
9124
9125@example
9126$ @kbd{flex -l -osplit-lines.c split-lines.l}
9127$ @kbd{gcc -osplit-lines split-lines.c -ll}
9128$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9129"two", "two"
9130@end example
9131
9132
2fa09258
AD
9133@node Implementing Gotos/Loops
9134@section Implementing Gotos/Loops
a06ea4aa
AD
9135
9136@display
9137My simple calculator supports variables, assignments, and functions,
2fa09258 9138but how can I implement gotos, or loops?
a06ea4aa
AD
9139@end display
9140
9141Although very pedagogical, the examples included in the document blur
a1c84f45 9142the distinction to make between the parser---whose job is to recover
a06ea4aa 9143the structure of a text and to transmit it to subsequent modules of
a1c84f45 9144the program---and the processing (such as the execution) of this
a06ea4aa
AD
9145structure. This works well with so called straight line programs,
9146i.e., precisely those that have a straightforward execution model:
9147execute simple instructions one after the others.
9148
9149@cindex abstract syntax tree
9150@cindex @acronym{AST}
9151If you want a richer model, you will probably need to use the parser
9152to construct a tree that does represent the structure it has
9153recovered; this tree is usually called the @dfn{abstract syntax tree},
9154or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9155traversing it in various ways, will enable treatments such as its
9156execution or its translation, which will result in an interpreter or a
9157compiler.
9158
9159This topic is way beyond the scope of this manual, and the reader is
9160invited to consult the dedicated literature.
9161
9162
ed2e6384
AD
9163@node Multiple start-symbols
9164@section Multiple start-symbols
9165
9166@display
9167I have several closely related grammars, and I would like to share their
9168implementations. In fact, I could use a single grammar but with
9169multiple entry points.
9170@end display
9171
9172Bison does not support multiple start-symbols, but there is a very
9173simple means to simulate them. If @code{foo} and @code{bar} are the two
9174pseudo start-symbols, then introduce two new tokens, say
9175@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9176real start-symbol:
9177
9178@example
9179%token START_FOO START_BAR;
9180%start start;
9181start: START_FOO foo
9182 | START_BAR bar;
9183@end example
9184
9185These tokens prevents the introduction of new conflicts. As far as the
9186parser goes, that is all that is needed.
9187
9188Now the difficult part is ensuring that the scanner will send these
9189tokens first. If your scanner is hand-written, that should be
9190straightforward. If your scanner is generated by Lex, them there is
9191simple means to do it: recall that anything between @samp{%@{ ... %@}}
9192after the first @code{%%} is copied verbatim in the top of the generated
9193@code{yylex} function. Make sure a variable @code{start_token} is
9194available in the scanner (e.g., a global variable or using
9195@code{%lex-param} etc.), and use the following:
9196
9197@example
9198 /* @r{Prologue.} */
9199%%
9200%@{
9201 if (start_token)
9202 @{
9203 int t = start_token;
9204 start_token = 0;
9205 return t;
9206 @}
9207%@}
9208 /* @r{The rules.} */
9209@end example
9210
9211
55ba27be
AD
9212@node Secure? Conform?
9213@section Secure? Conform?
9214
9215@display
9216Is Bison secure? Does it conform to POSIX?
9217@end display
9218
9219If you're looking for a guarantee or certification, we don't provide it.
9220However, Bison is intended to be a reliable program that conforms to the
9221@acronym{POSIX} specification for Yacc. If you run into problems,
9222please send us a bug report.
9223
9224@node I can't build Bison
9225@section I can't build Bison
9226
9227@display
8c5b881d
PE
9228I can't build Bison because @command{make} complains that
9229@code{msgfmt} is not found.
55ba27be
AD
9230What should I do?
9231@end display
9232
9233Like most GNU packages with internationalization support, that feature
9234is turned on by default. If you have problems building in the @file{po}
9235subdirectory, it indicates that your system's internationalization
9236support is lacking. You can re-configure Bison with
9237@option{--disable-nls} to turn off this support, or you can install GNU
9238gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9239Bison. See the file @file{ABOUT-NLS} for more information.
9240
9241
9242@node Where can I find help?
9243@section Where can I find help?
9244
9245@display
9246I'm having trouble using Bison. Where can I find help?
9247@end display
9248
9249First, read this fine manual. Beyond that, you can send mail to
9250@email{help-bison@@gnu.org}. This mailing list is intended to be
9251populated with people who are willing to answer questions about using
9252and installing Bison. Please keep in mind that (most of) the people on
9253the list have aspects of their lives which are not related to Bison (!),
9254so you may not receive an answer to your question right away. This can
9255be frustrating, but please try not to honk them off; remember that any
9256help they provide is purely voluntary and out of the kindness of their
9257hearts.
9258
9259@node Bug Reports
9260@section Bug Reports
9261
9262@display
9263I found a bug. What should I include in the bug report?
9264@end display
9265
9266Before you send a bug report, make sure you are using the latest
9267version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9268mirrors. Be sure to include the version number in your bug report. If
9269the bug is present in the latest version but not in a previous version,
9270try to determine the most recent version which did not contain the bug.
9271
9272If the bug is parser-related, you should include the smallest grammar
9273you can which demonstrates the bug. The grammar file should also be
9274complete (i.e., I should be able to run it through Bison without having
9275to edit or add anything). The smaller and simpler the grammar, the
9276easier it will be to fix the bug.
9277
9278Include information about your compilation environment, including your
9279operating system's name and version and your compiler's name and
9280version. If you have trouble compiling, you should also include a
9281transcript of the build session, starting with the invocation of
9282`configure'. Depending on the nature of the bug, you may be asked to
9283send additional files as well (such as `config.h' or `config.cache').
9284
9285Patches are most welcome, but not required. That is, do not hesitate to
9286send a bug report just because you can not provide a fix.
9287
9288Send bug reports to @email{bug-bison@@gnu.org}.
9289
8405b70c
PB
9290@node More Languages
9291@section More Languages
55ba27be
AD
9292
9293@display
8405b70c 9294Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9295favorite language here}?
9296@end display
9297
8405b70c 9298C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9299languages; contributions are welcome.
9300
9301@node Beta Testing
9302@section Beta Testing
9303
9304@display
9305What is involved in being a beta tester?
9306@end display
9307
9308It's not terribly involved. Basically, you would download a test
9309release, compile it, and use it to build and run a parser or two. After
9310that, you would submit either a bug report or a message saying that
9311everything is okay. It is important to report successes as well as
9312failures because test releases eventually become mainstream releases,
9313but only if they are adequately tested. If no one tests, development is
9314essentially halted.
9315
9316Beta testers are particularly needed for operating systems to which the
9317developers do not have easy access. They currently have easy access to
9318recent GNU/Linux and Solaris versions. Reports about other operating
9319systems are especially welcome.
9320
9321@node Mailing Lists
9322@section Mailing Lists
9323
9324@display
9325How do I join the help-bison and bug-bison mailing lists?
9326@end display
9327
9328See @url{http://lists.gnu.org/}.
a06ea4aa 9329
d1a1114f
AD
9330@c ================================================= Table of Symbols
9331
342b8b6e 9332@node Table of Symbols
bfa74976
RS
9333@appendix Bison Symbols
9334@cindex Bison symbols, table of
9335@cindex symbols in Bison, table of
9336
18b519c0 9337@deffn {Variable} @@$
3ded9a63 9338In an action, the location of the left-hand side of the rule.
88bce5a2 9339@xref{Locations, , Locations Overview}.
18b519c0 9340@end deffn
3ded9a63 9341
18b519c0 9342@deffn {Variable} @@@var{n}
3ded9a63
AD
9343In an action, the location of the @var{n}-th symbol of the right-hand
9344side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9345@end deffn
3ded9a63 9346
18b519c0 9347@deffn {Variable} $$
3ded9a63
AD
9348In an action, the semantic value of the left-hand side of the rule.
9349@xref{Actions}.
18b519c0 9350@end deffn
3ded9a63 9351
18b519c0 9352@deffn {Variable} $@var{n}
3ded9a63
AD
9353In an action, the semantic value of the @var{n}-th symbol of the
9354right-hand side of the rule. @xref{Actions}.
18b519c0 9355@end deffn
3ded9a63 9356
dd8d9022
AD
9357@deffn {Delimiter} %%
9358Delimiter used to separate the grammar rule section from the
9359Bison declarations section or the epilogue.
9360@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9361@end deffn
bfa74976 9362
dd8d9022
AD
9363@c Don't insert spaces, or check the DVI output.
9364@deffn {Delimiter} %@{@var{code}%@}
9365All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9366the output file uninterpreted. Such code forms the prologue of the input
9367file. @xref{Grammar Outline, ,Outline of a Bison
9368Grammar}.
18b519c0 9369@end deffn
bfa74976 9370
dd8d9022
AD
9371@deffn {Construct} /*@dots{}*/
9372Comment delimiters, as in C.
18b519c0 9373@end deffn
bfa74976 9374
dd8d9022
AD
9375@deffn {Delimiter} :
9376Separates a rule's result from its components. @xref{Rules, ,Syntax of
9377Grammar Rules}.
18b519c0 9378@end deffn
bfa74976 9379
dd8d9022
AD
9380@deffn {Delimiter} ;
9381Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9382@end deffn
bfa74976 9383
dd8d9022
AD
9384@deffn {Delimiter} |
9385Separates alternate rules for the same result nonterminal.
9386@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9387@end deffn
bfa74976 9388
12e35840
JD
9389@deffn {Directive} <*>
9390Used to define a default tagged @code{%destructor} or default tagged
9391@code{%printer}.
85894313
JD
9392
9393This feature is experimental.
9394More user feedback will help to determine whether it should become a permanent
9395feature.
9396
12e35840
JD
9397@xref{Destructor Decl, , Freeing Discarded Symbols}.
9398@end deffn
9399
3ebecc24 9400@deffn {Directive} <>
12e35840
JD
9401Used to define a default tagless @code{%destructor} or default tagless
9402@code{%printer}.
85894313
JD
9403
9404This feature is experimental.
9405More user feedback will help to determine whether it should become a permanent
9406feature.
9407
12e35840
JD
9408@xref{Destructor Decl, , Freeing Discarded Symbols}.
9409@end deffn
9410
dd8d9022
AD
9411@deffn {Symbol} $accept
9412The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9413$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9414Start-Symbol}. It cannot be used in the grammar.
18b519c0 9415@end deffn
bfa74976 9416
136a0f76 9417@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9418@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9419Insert @var{code} verbatim into output parser source.
9420@xref{Decl Summary,,%code}.
9bc0dd67
JD
9421@end deffn
9422
9423@deffn {Directive} %debug
9424Equip the parser for debugging. @xref{Decl Summary}.
9425@end deffn
9426
18b519c0 9427@deffn {Directive} %debug
6deb4447 9428Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9429@end deffn
6deb4447 9430
91d2c560 9431@ifset defaultprec
22fccf95
PE
9432@deffn {Directive} %default-prec
9433Assign a precedence to rules that lack an explicit @samp{%prec}
9434modifier. @xref{Contextual Precedence, ,Context-Dependent
9435Precedence}.
39a06c25 9436@end deffn
91d2c560 9437@end ifset
39a06c25 9438
148d66d8
JD
9439@deffn {Directive} %define @var{define-variable}
9440@deffnx {Directive} %define @var{define-variable} @var{value}
9441Define a variable to adjust Bison's behavior.
9442@xref{Decl Summary,,%define}.
9443@end deffn
9444
18b519c0 9445@deffn {Directive} %defines
6deb4447
AD
9446Bison declaration to create a header file meant for the scanner.
9447@xref{Decl Summary}.
18b519c0 9448@end deffn
6deb4447 9449
02975b9a
JD
9450@deffn {Directive} %defines @var{defines-file}
9451Same as above, but save in the file @var{defines-file}.
9452@xref{Decl Summary}.
9453@end deffn
9454
18b519c0 9455@deffn {Directive} %destructor
258b75ca 9456Specify how the parser should reclaim the memory associated to
fa7e68c3 9457discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9458@end deffn
72f889cc 9459
18b519c0 9460@deffn {Directive} %dprec
676385e2 9461Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9462time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9463@acronym{GLR} Parsers}.
18b519c0 9464@end deffn
676385e2 9465
dd8d9022
AD
9466@deffn {Symbol} $end
9467The predefined token marking the end of the token stream. It cannot be
9468used in the grammar.
9469@end deffn
9470
9471@deffn {Symbol} error
9472A token name reserved for error recovery. This token may be used in
9473grammar rules so as to allow the Bison parser to recognize an error in
9474the grammar without halting the process. In effect, a sentence
9475containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9476token @code{error} becomes the current lookahead token. Actions
9477corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9478token is reset to the token that originally caused the violation.
9479@xref{Error Recovery}.
18d192f0
AD
9480@end deffn
9481
18b519c0 9482@deffn {Directive} %error-verbose
2a8d363a
AD
9483Bison declaration to request verbose, specific error message strings
9484when @code{yyerror} is called.
18b519c0 9485@end deffn
2a8d363a 9486
02975b9a 9487@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9488Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9489Summary}.
18b519c0 9490@end deffn
d8988b2f 9491
18b519c0 9492@deffn {Directive} %glr-parser
c827f760
PE
9493Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9494Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9495@end deffn
676385e2 9496
dd8d9022
AD
9497@deffn {Directive} %initial-action
9498Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9499@end deffn
9500
e6e704dc
JD
9501@deffn {Directive} %language
9502Specify the programming language for the generated parser.
9503@xref{Decl Summary}.
9504@end deffn
9505
18b519c0 9506@deffn {Directive} %left
bfa74976
RS
9507Bison declaration to assign left associativity to token(s).
9508@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9509@end deffn
bfa74976 9510
feeb0eda 9511@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9512Bison declaration to specifying an additional parameter that
9513@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9514for Pure Parsers}.
18b519c0 9515@end deffn
2a8d363a 9516
18b519c0 9517@deffn {Directive} %merge
676385e2 9518Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9519reduce/reduce conflict with a rule having the same merging function, the
676385e2 9520function is applied to the two semantic values to get a single result.
c827f760 9521@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9522@end deffn
676385e2 9523
02975b9a 9524@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9525Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9526@end deffn
d8988b2f 9527
91d2c560 9528@ifset defaultprec
22fccf95
PE
9529@deffn {Directive} %no-default-prec
9530Do not assign a precedence to rules that lack an explicit @samp{%prec}
9531modifier. @xref{Contextual Precedence, ,Context-Dependent
9532Precedence}.
9533@end deffn
91d2c560 9534@end ifset
22fccf95 9535
18b519c0 9536@deffn {Directive} %no-lines
931c7513
RS
9537Bison declaration to avoid generating @code{#line} directives in the
9538parser file. @xref{Decl Summary}.
18b519c0 9539@end deffn
931c7513 9540
18b519c0 9541@deffn {Directive} %nonassoc
9d9b8b70 9542Bison declaration to assign nonassociativity to token(s).
bfa74976 9543@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9544@end deffn
bfa74976 9545
02975b9a 9546@deffn {Directive} %output "@var{file}"
72d2299c 9547Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9548Summary}.
18b519c0 9549@end deffn
d8988b2f 9550
feeb0eda 9551@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9552Bison declaration to specifying an additional parameter that
9553@code{yyparse} should accept. @xref{Parser Function,, The Parser
9554Function @code{yyparse}}.
18b519c0 9555@end deffn
2a8d363a 9556
18b519c0 9557@deffn {Directive} %prec
bfa74976
RS
9558Bison declaration to assign a precedence to a specific rule.
9559@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9560@end deffn
bfa74976 9561
18b519c0 9562@deffn {Directive} %pure-parser
d9df47b6
JD
9563Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9564for which Bison is more careful to warn about unreasonable usage.
18b519c0 9565@end deffn
bfa74976 9566
b50d2359 9567@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9568Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9569Require a Version of Bison}.
b50d2359
AD
9570@end deffn
9571
18b519c0 9572@deffn {Directive} %right
bfa74976
RS
9573Bison declaration to assign right associativity to token(s).
9574@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9575@end deffn
bfa74976 9576
e6e704dc
JD
9577@deffn {Directive} %skeleton
9578Specify the skeleton to use; usually for development.
9579@xref{Decl Summary}.
9580@end deffn
9581
18b519c0 9582@deffn {Directive} %start
704a47c4
AD
9583Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9584Start-Symbol}.
18b519c0 9585@end deffn
bfa74976 9586
18b519c0 9587@deffn {Directive} %token
bfa74976
RS
9588Bison declaration to declare token(s) without specifying precedence.
9589@xref{Token Decl, ,Token Type Names}.
18b519c0 9590@end deffn
bfa74976 9591
18b519c0 9592@deffn {Directive} %token-table
931c7513
RS
9593Bison declaration to include a token name table in the parser file.
9594@xref{Decl Summary}.
18b519c0 9595@end deffn
931c7513 9596
18b519c0 9597@deffn {Directive} %type
704a47c4
AD
9598Bison declaration to declare nonterminals. @xref{Type Decl,
9599,Nonterminal Symbols}.
18b519c0 9600@end deffn
bfa74976 9601
dd8d9022
AD
9602@deffn {Symbol} $undefined
9603The predefined token onto which all undefined values returned by
9604@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9605@code{error}.
9606@end deffn
9607
18b519c0 9608@deffn {Directive} %union
bfa74976
RS
9609Bison declaration to specify several possible data types for semantic
9610values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9611@end deffn
bfa74976 9612
dd8d9022
AD
9613@deffn {Macro} YYABORT
9614Macro to pretend that an unrecoverable syntax error has occurred, by
9615making @code{yyparse} return 1 immediately. The error reporting
9616function @code{yyerror} is not called. @xref{Parser Function, ,The
9617Parser Function @code{yyparse}}.
8405b70c
PB
9618
9619For Java parsers, this functionality is invoked using @code{return YYABORT;}
9620instead.
dd8d9022 9621@end deffn
3ded9a63 9622
dd8d9022
AD
9623@deffn {Macro} YYACCEPT
9624Macro to pretend that a complete utterance of the language has been
9625read, by making @code{yyparse} return 0 immediately.
9626@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9627
9628For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9629instead.
dd8d9022 9630@end deffn
bfa74976 9631
dd8d9022 9632@deffn {Macro} YYBACKUP
742e4900 9633Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9634token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9635@end deffn
bfa74976 9636
dd8d9022 9637@deffn {Variable} yychar
32c29292 9638External integer variable that contains the integer value of the
742e4900 9639lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9640@code{yyparse}.) Error-recovery rule actions may examine this variable.
9641@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9642@end deffn
bfa74976 9643
dd8d9022
AD
9644@deffn {Variable} yyclearin
9645Macro used in error-recovery rule actions. It clears the previous
742e4900 9646lookahead token. @xref{Error Recovery}.
18b519c0 9647@end deffn
bfa74976 9648
dd8d9022
AD
9649@deffn {Macro} YYDEBUG
9650Macro to define to equip the parser with tracing code. @xref{Tracing,
9651,Tracing Your Parser}.
18b519c0 9652@end deffn
bfa74976 9653
dd8d9022
AD
9654@deffn {Variable} yydebug
9655External integer variable set to zero by default. If @code{yydebug}
9656is given a nonzero value, the parser will output information on input
9657symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9658@end deffn
bfa74976 9659
dd8d9022
AD
9660@deffn {Macro} yyerrok
9661Macro to cause parser to recover immediately to its normal mode
9662after a syntax error. @xref{Error Recovery}.
9663@end deffn
9664
9665@deffn {Macro} YYERROR
9666Macro to pretend that a syntax error has just been detected: call
9667@code{yyerror} and then perform normal error recovery if possible
9668(@pxref{Error Recovery}), or (if recovery is impossible) make
9669@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
9670
9671For Java parsers, this functionality is invoked using @code{return YYERROR;}
9672instead.
dd8d9022
AD
9673@end deffn
9674
9675@deffn {Function} yyerror
9676User-supplied function to be called by @code{yyparse} on error.
9677@xref{Error Reporting, ,The Error
9678Reporting Function @code{yyerror}}.
9679@end deffn
9680
9681@deffn {Macro} YYERROR_VERBOSE
9682An obsolete macro that you define with @code{#define} in the prologue
9683to request verbose, specific error message strings
9684when @code{yyerror} is called. It doesn't matter what definition you
9685use for @code{YYERROR_VERBOSE}, just whether you define it. Using
9686@code{%error-verbose} is preferred.
9687@end deffn
9688
9689@deffn {Macro} YYINITDEPTH
9690Macro for specifying the initial size of the parser stack.
1a059451 9691@xref{Memory Management}.
dd8d9022
AD
9692@end deffn
9693
9694@deffn {Function} yylex
9695User-supplied lexical analyzer function, called with no arguments to get
9696the next token. @xref{Lexical, ,The Lexical Analyzer Function
9697@code{yylex}}.
9698@end deffn
9699
9700@deffn {Macro} YYLEX_PARAM
9701An obsolete macro for specifying an extra argument (or list of extra
32c29292 9702arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9703macro is deprecated, and is supported only for Yacc like parsers.
9704@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9705@end deffn
9706
9707@deffn {Variable} yylloc
9708External variable in which @code{yylex} should place the line and column
9709numbers associated with a token. (In a pure parser, it is a local
9710variable within @code{yyparse}, and its address is passed to
32c29292
JD
9711@code{yylex}.)
9712You can ignore this variable if you don't use the @samp{@@} feature in the
9713grammar actions.
9714@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9715In semantic actions, it stores the location of the lookahead token.
32c29292 9716@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9717@end deffn
9718
9719@deffn {Type} YYLTYPE
9720Data type of @code{yylloc}; by default, a structure with four
9721members. @xref{Location Type, , Data Types of Locations}.
9722@end deffn
9723
9724@deffn {Variable} yylval
9725External variable in which @code{yylex} should place the semantic
9726value associated with a token. (In a pure parser, it is a local
9727variable within @code{yyparse}, and its address is passed to
32c29292
JD
9728@code{yylex}.)
9729@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9730In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9731@xref{Actions, ,Actions}.
dd8d9022
AD
9732@end deffn
9733
9734@deffn {Macro} YYMAXDEPTH
1a059451
PE
9735Macro for specifying the maximum size of the parser stack. @xref{Memory
9736Management}.
dd8d9022
AD
9737@end deffn
9738
9739@deffn {Variable} yynerrs
8a2800e7 9740Global variable which Bison increments each time it reports a syntax error.
f4101aa6 9741(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 9742pure push parser, it is a member of yypstate.)
dd8d9022
AD
9743@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9744@end deffn
9745
9746@deffn {Function} yyparse
9747The parser function produced by Bison; call this function to start
9748parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9749@end deffn
9750
9987d1b3 9751@deffn {Function} yypstate_delete
f4101aa6 9752The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 9753call this function to delete the memory associated with a parser.
f4101aa6 9754@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3
JD
9755@code{yypstate_delete}}.
9756@end deffn
9757
9758@deffn {Function} yypstate_new
f4101aa6 9759The function to create a parser instance, produced by Bison in push mode;
9987d1b3 9760call this function to create a new parser.
f4101aa6 9761@xref{Parser Create Function, ,The Parser Create Function
9987d1b3
JD
9762@code{yypstate_new}}.
9763@end deffn
9764
9765@deffn {Function} yypull_parse
f4101aa6
AD
9766The parser function produced by Bison in push mode; call this function to
9767parse the rest of the input stream.
9768@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3
JD
9769@code{yypull_parse}}.
9770@end deffn
9771
9772@deffn {Function} yypush_parse
f4101aa6
AD
9773The parser function produced by Bison in push mode; call this function to
9774parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3
JD
9775@code{yypush_parse}}.
9776@end deffn
9777
dd8d9022
AD
9778@deffn {Macro} YYPARSE_PARAM
9779An obsolete macro for specifying the name of a parameter that
9780@code{yyparse} should accept. The use of this macro is deprecated, and
9781is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9782Conventions for Pure Parsers}.
9783@end deffn
9784
9785@deffn {Macro} YYRECOVERING
02103984
PE
9786The expression @code{YYRECOVERING ()} yields 1 when the parser
9787is recovering from a syntax error, and 0 otherwise.
9788@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9789@end deffn
9790
9791@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9792Macro used to control the use of @code{alloca} when the C
9793@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9794the parser will use @code{malloc} to extend its stacks. If defined to
97951, the parser will use @code{alloca}. Values other than 0 and 1 are
9796reserved for future Bison extensions. If not defined,
9797@code{YYSTACK_USE_ALLOCA} defaults to 0.
9798
55289366 9799In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9800limited stack and with unreliable stack-overflow checking, you should
9801set @code{YYMAXDEPTH} to a value that cannot possibly result in
9802unchecked stack overflow on any of your target hosts when
9803@code{alloca} is called. You can inspect the code that Bison
9804generates in order to determine the proper numeric values. This will
9805require some expertise in low-level implementation details.
dd8d9022
AD
9806@end deffn
9807
9808@deffn {Type} YYSTYPE
9809Data type of semantic values; @code{int} by default.
9810@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9811@end deffn
bfa74976 9812
342b8b6e 9813@node Glossary
bfa74976
RS
9814@appendix Glossary
9815@cindex glossary
9816
9817@table @asis
c827f760
PE
9818@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9819Formal method of specifying context-free grammars originally proposed
9820by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9821committee document contributing to what became the Algol 60 report.
9822@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9823
9824@item Context-free grammars
9825Grammars specified as rules that can be applied regardless of context.
9826Thus, if there is a rule which says that an integer can be used as an
9827expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9828permitted. @xref{Language and Grammar, ,Languages and Context-Free
9829Grammars}.
bfa74976
RS
9830
9831@item Dynamic allocation
9832Allocation of memory that occurs during execution, rather than at
9833compile time or on entry to a function.
9834
9835@item Empty string
9836Analogous to the empty set in set theory, the empty string is a
9837character string of length zero.
9838
9839@item Finite-state stack machine
9840A ``machine'' that has discrete states in which it is said to exist at
9841each instant in time. As input to the machine is processed, the
9842machine moves from state to state as specified by the logic of the
9843machine. In the case of the parser, the input is the language being
9844parsed, and the states correspond to various stages in the grammar
c827f760 9845rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9846
c827f760 9847@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9848A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9849that are not @acronym{LALR}(1). It resolves situations that Bison's
9850usual @acronym{LALR}(1)
676385e2
PH
9851algorithm cannot by effectively splitting off multiple parsers, trying all
9852possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9853right context. @xref{Generalized LR Parsing, ,Generalized
9854@acronym{LR} Parsing}.
676385e2 9855
bfa74976
RS
9856@item Grouping
9857A language construct that is (in general) grammatically divisible;
c827f760 9858for example, `expression' or `declaration' in C@.
bfa74976
RS
9859@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9860
9861@item Infix operator
9862An arithmetic operator that is placed between the operands on which it
9863performs some operation.
9864
9865@item Input stream
9866A continuous flow of data between devices or programs.
9867
9868@item Language construct
9869One of the typical usage schemas of the language. For example, one of
9870the constructs of the C language is the @code{if} statement.
9871@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9872
9873@item Left associativity
9874Operators having left associativity are analyzed from left to right:
9875@samp{a+b+c} first computes @samp{a+b} and then combines with
9876@samp{c}. @xref{Precedence, ,Operator Precedence}.
9877
9878@item Left recursion
89cab50d
AD
9879A rule whose result symbol is also its first component symbol; for
9880example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9881Rules}.
bfa74976
RS
9882
9883@item Left-to-right parsing
9884Parsing a sentence of a language by analyzing it token by token from
c827f760 9885left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9886
9887@item Lexical analyzer (scanner)
9888A function that reads an input stream and returns tokens one by one.
9889@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9890
9891@item Lexical tie-in
9892A flag, set by actions in the grammar rules, which alters the way
9893tokens are parsed. @xref{Lexical Tie-ins}.
9894
931c7513 9895@item Literal string token
14ded682 9896A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9897
742e4900
JD
9898@item Lookahead token
9899A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9900Tokens}.
bfa74976 9901
c827f760 9902@item @acronym{LALR}(1)
bfa74976 9903The class of context-free grammars that Bison (like most other parser
c827f760
PE
9904generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9905Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9906
c827f760 9907@item @acronym{LR}(1)
bfa74976 9908The class of context-free grammars in which at most one token of
742e4900 9909lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9910
9911@item Nonterminal symbol
9912A grammar symbol standing for a grammatical construct that can
9913be expressed through rules in terms of smaller constructs; in other
9914words, a construct that is not a token. @xref{Symbols}.
9915
bfa74976
RS
9916@item Parser
9917A function that recognizes valid sentences of a language by analyzing
9918the syntax structure of a set of tokens passed to it from a lexical
9919analyzer.
9920
9921@item Postfix operator
9922An arithmetic operator that is placed after the operands upon which it
9923performs some operation.
9924
9925@item Reduction
9926Replacing a string of nonterminals and/or terminals with a single
89cab50d 9927nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9928Parser Algorithm}.
bfa74976
RS
9929
9930@item Reentrant
9931A reentrant subprogram is a subprogram which can be in invoked any
9932number of times in parallel, without interference between the various
9933invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9934
9935@item Reverse polish notation
9936A language in which all operators are postfix operators.
9937
9938@item Right recursion
89cab50d
AD
9939A rule whose result symbol is also its last component symbol; for
9940example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9941Rules}.
bfa74976
RS
9942
9943@item Semantics
9944In computer languages, the semantics are specified by the actions
9945taken for each instance of the language, i.e., the meaning of
9946each statement. @xref{Semantics, ,Defining Language Semantics}.
9947
9948@item Shift
9949A parser is said to shift when it makes the choice of analyzing
9950further input from the stream rather than reducing immediately some
c827f760 9951already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9952
9953@item Single-character literal
9954A single character that is recognized and interpreted as is.
9955@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9956
9957@item Start symbol
9958The nonterminal symbol that stands for a complete valid utterance in
9959the language being parsed. The start symbol is usually listed as the
13863333 9960first nonterminal symbol in a language specification.
bfa74976
RS
9961@xref{Start Decl, ,The Start-Symbol}.
9962
9963@item Symbol table
9964A data structure where symbol names and associated data are stored
9965during parsing to allow for recognition and use of existing
9966information in repeated uses of a symbol. @xref{Multi-function Calc}.
9967
6e649e65
PE
9968@item Syntax error
9969An error encountered during parsing of an input stream due to invalid
9970syntax. @xref{Error Recovery}.
9971
bfa74976
RS
9972@item Token
9973A basic, grammatically indivisible unit of a language. The symbol
9974that describes a token in the grammar is a terminal symbol.
9975The input of the Bison parser is a stream of tokens which comes from
9976the lexical analyzer. @xref{Symbols}.
9977
9978@item Terminal symbol
89cab50d
AD
9979A grammar symbol that has no rules in the grammar and therefore is
9980grammatically indivisible. The piece of text it represents is a token.
9981@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9982@end table
9983
342b8b6e 9984@node Copying This Manual
f2b5126e 9985@appendix Copying This Manual
f2b5126e
PB
9986@include fdl.texi
9987
342b8b6e 9988@node Index
bfa74976
RS
9989@unnumbered Index
9990
9991@printindex cp
9992
bfa74976 9993@bye
a06ea4aa
AD
9994
9995@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9996@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9997@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9998@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9999@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
10000@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
10001@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10002@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10003@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10004@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10005@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10006@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10007@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10008@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10009@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10010@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10011@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10012@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10013@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10014@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10015@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10016@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10017@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10018@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10019@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10020@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10021@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10022@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10023@c LocalWords: YYSTACK DVI fdl printindex