]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
2007-01-23 Paolo Bonzini <bonzini@gnu.org>
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
bb32f4f2 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
12545799
AD
288C++ Language Interface
289
290* C++ Parsers:: The interface to generate C++ parser classes
291* A Complete C++ Example:: Demonstrating their use
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
300
301A Complete C++ Example
302
303* Calc++ --- C++ Calculator:: The specifications
304* Calc++ Parsing Driver:: An active parsing context
305* Calc++ Parser:: A parser class
306* Calc++ Scanner:: A pure C++ Flex scanner
307* Calc++ Top Level:: Conducting the band
308
d1a1114f
AD
309Frequently Asked Questions
310
1a059451 311* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 312* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 313* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 314* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 315* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
316* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
317* I can't build Bison:: Troubleshooting
318* Where can I find help?:: Troubleshouting
319* Bug Reports:: Troublereporting
320* Other Languages:: Parsers in Java and others
321* Beta Testing:: Experimenting development versions
322* Mailing Lists:: Meeting other Bison users
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
6077da58
PE
335@dfn{Bison} is a general-purpose parser generator that converts an
336annotated context-free grammar into an @acronym{LALR}(1) or
337@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 338Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
1e137b71 344C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
193d7c70
PE
360The distribution terms for Bison-generated parsers permit using the
361parsers in nonfree programs. Before Bison version 2.2, these extra
362permissions applied only when Bison was generating @acronym{LALR}(1)
363parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 364parsers could be used only in programs that were free software.
a31239f1 365
c827f760
PE
366The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
367compiler, have never
9ecbd125 368had such a requirement. They could always be used for nonfree
a31239f1
RS
369software. The reason Bison was different was not due to a special
370policy decision; it resulted from applying the usual General Public
371License to all of the Bison source code.
372
373The output of the Bison utility---the Bison parser file---contains a
374verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
375parser's implementation. (The actions from your grammar are inserted
376into this implementation at one point, but most of the rest of the
377implementation is not changed.) When we applied the @acronym{GPL}
378terms to the skeleton code for the parser's implementation,
a31239f1
RS
379the effect was to restrict the use of Bison output to free software.
380
381We didn't change the terms because of sympathy for people who want to
382make software proprietary. @strong{Software should be free.} But we
383concluded that limiting Bison's use to free software was doing little to
384encourage people to make other software free. So we decided to make the
385practical conditions for using Bison match the practical conditions for
c827f760 386using the other @acronym{GNU} tools.
bfa74976 387
193d7c70
PE
388This exception applies when Bison is generating code for a parser.
389You can tell whether the exception applies to a Bison output file by
390inspecting the file for text beginning with ``As a special
391exception@dots{}''. The text spells out the exact terms of the
392exception.
262aa8dd 393
c67a198d 394@include gpl.texi
bfa74976 395
342b8b6e 396@node Concepts
bfa74976
RS
397@chapter The Concepts of Bison
398
399This chapter introduces many of the basic concepts without which the
400details of Bison will not make sense. If you do not already know how to
401use Bison or Yacc, we suggest you start by reading this chapter carefully.
402
403@menu
404* Language and Grammar:: Languages and context-free grammars,
405 as mathematical ideas.
406* Grammar in Bison:: How we represent grammars for Bison's sake.
407* Semantic Values:: Each token or syntactic grouping can have
408 a semantic value (the value of an integer,
409 the name of an identifier, etc.).
410* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 411* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 412* Locations Overview:: Tracking Locations.
bfa74976
RS
413* Bison Parser:: What are Bison's input and output,
414 how is the output used?
415* Stages:: Stages in writing and running Bison grammars.
416* Grammar Layout:: Overall structure of a Bison grammar file.
417@end menu
418
342b8b6e 419@node Language and Grammar
bfa74976
RS
420@section Languages and Context-Free Grammars
421
bfa74976
RS
422@cindex context-free grammar
423@cindex grammar, context-free
424In order for Bison to parse a language, it must be described by a
425@dfn{context-free grammar}. This means that you specify one or more
426@dfn{syntactic groupings} and give rules for constructing them from their
427parts. For example, in the C language, one kind of grouping is called an
428`expression'. One rule for making an expression might be, ``An expression
429can be made of a minus sign and another expression''. Another would be,
430``An expression can be an integer''. As you can see, rules are often
431recursive, but there must be at least one rule which leads out of the
432recursion.
433
c827f760 434@cindex @acronym{BNF}
bfa74976
RS
435@cindex Backus-Naur form
436The most common formal system for presenting such rules for humans to read
c827f760
PE
437is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
438order to specify the language Algol 60. Any grammar expressed in
439@acronym{BNF} is a context-free grammar. The input to Bison is
440essentially machine-readable @acronym{BNF}.
bfa74976 441
c827f760
PE
442@cindex @acronym{LALR}(1) grammars
443@cindex @acronym{LR}(1) grammars
676385e2
PH
444There are various important subclasses of context-free grammar. Although it
445can handle almost all context-free grammars, Bison is optimized for what
c827f760 446are called @acronym{LALR}(1) grammars.
676385e2 447In brief, in these grammars, it must be possible to
bfa74976 448tell how to parse any portion of an input string with just a single
742e4900 449token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
450@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
451restrictions that are
bfa74976 452hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
453@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
455more information on this.
bfa74976 456
c827f760
PE
457@cindex @acronym{GLR} parsing
458@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 459@cindex ambiguous grammars
9d9b8b70 460@cindex nondeterministic parsing
9501dc6e
AD
461
462Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
463roughly that the next grammar rule to apply at any point in the input is
464uniquely determined by the preceding input and a fixed, finite portion
742e4900 465(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 466grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 467apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 468grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 469lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
470With the proper declarations, Bison is also able to parse these more
471general context-free grammars, using a technique known as @acronym{GLR}
472parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
473are able to handle any context-free grammar for which the number of
474possible parses of any given string is finite.
676385e2 475
bfa74976
RS
476@cindex symbols (abstract)
477@cindex token
478@cindex syntactic grouping
479@cindex grouping, syntactic
9501dc6e
AD
480In the formal grammatical rules for a language, each kind of syntactic
481unit or grouping is named by a @dfn{symbol}. Those which are built by
482grouping smaller constructs according to grammatical rules are called
bfa74976
RS
483@dfn{nonterminal symbols}; those which can't be subdivided are called
484@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
485corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 486corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
487
488We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
489nonterminal, mean. The tokens of C are identifiers, constants (numeric
490and string), and the various keywords, arithmetic operators and
491punctuation marks. So the terminal symbols of a grammar for C include
492`identifier', `number', `string', plus one symbol for each keyword,
493operator or punctuation mark: `if', `return', `const', `static', `int',
494`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
495(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
496lexicography, not grammar.)
497
498Here is a simple C function subdivided into tokens:
499
9edcd895
AD
500@ifinfo
501@example
502int /* @r{keyword `int'} */
14d4662b 503square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
504 @r{identifier, close-paren} */
505@{ /* @r{open-brace} */
aa08666d
AD
506 return x * x; /* @r{keyword `return', identifier, asterisk,}
507 @r{identifier, semicolon} */
9edcd895
AD
508@} /* @r{close-brace} */
509@end example
510@end ifinfo
511@ifnotinfo
bfa74976
RS
512@example
513int /* @r{keyword `int'} */
14d4662b 514square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 515@{ /* @r{open-brace} */
9edcd895 516 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
517@} /* @r{close-brace} */
518@end example
9edcd895 519@end ifnotinfo
bfa74976
RS
520
521The syntactic groupings of C include the expression, the statement, the
522declaration, and the function definition. These are represented in the
523grammar of C by nonterminal symbols `expression', `statement',
524`declaration' and `function definition'. The full grammar uses dozens of
525additional language constructs, each with its own nonterminal symbol, in
526order to express the meanings of these four. The example above is a
527function definition; it contains one declaration, and one statement. In
528the statement, each @samp{x} is an expression and so is @samp{x * x}.
529
530Each nonterminal symbol must have grammatical rules showing how it is made
531out of simpler constructs. For example, one kind of C statement is the
532@code{return} statement; this would be described with a grammar rule which
533reads informally as follows:
534
535@quotation
536A `statement' can be made of a `return' keyword, an `expression' and a
537`semicolon'.
538@end quotation
539
540@noindent
541There would be many other rules for `statement', one for each kind of
542statement in C.
543
544@cindex start symbol
545One nonterminal symbol must be distinguished as the special one which
546defines a complete utterance in the language. It is called the @dfn{start
547symbol}. In a compiler, this means a complete input program. In the C
548language, the nonterminal symbol `sequence of definitions and declarations'
549plays this role.
550
551For example, @samp{1 + 2} is a valid C expression---a valid part of a C
552program---but it is not valid as an @emph{entire} C program. In the
553context-free grammar of C, this follows from the fact that `expression' is
554not the start symbol.
555
556The Bison parser reads a sequence of tokens as its input, and groups the
557tokens using the grammar rules. If the input is valid, the end result is
558that the entire token sequence reduces to a single grouping whose symbol is
559the grammar's start symbol. If we use a grammar for C, the entire input
560must be a `sequence of definitions and declarations'. If not, the parser
561reports a syntax error.
562
342b8b6e 563@node Grammar in Bison
bfa74976
RS
564@section From Formal Rules to Bison Input
565@cindex Bison grammar
566@cindex grammar, Bison
567@cindex formal grammar
568
569A formal grammar is a mathematical construct. To define the language
570for Bison, you must write a file expressing the grammar in Bison syntax:
571a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
572
573A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 574as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
575in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
576
577The Bison representation for a terminal symbol is also called a @dfn{token
578type}. Token types as well can be represented as C-like identifiers. By
579convention, these identifiers should be upper case to distinguish them from
580nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
581@code{RETURN}. A terminal symbol that stands for a particular keyword in
582the language should be named after that keyword converted to upper case.
583The terminal symbol @code{error} is reserved for error recovery.
931c7513 584@xref{Symbols}.
bfa74976
RS
585
586A terminal symbol can also be represented as a character literal, just like
587a C character constant. You should do this whenever a token is just a
588single character (parenthesis, plus-sign, etc.): use that same character in
589a literal as the terminal symbol for that token.
590
931c7513
RS
591A third way to represent a terminal symbol is with a C string constant
592containing several characters. @xref{Symbols}, for more information.
593
bfa74976
RS
594The grammar rules also have an expression in Bison syntax. For example,
595here is the Bison rule for a C @code{return} statement. The semicolon in
596quotes is a literal character token, representing part of the C syntax for
597the statement; the naked semicolon, and the colon, are Bison punctuation
598used in every rule.
599
600@example
601stmt: RETURN expr ';'
602 ;
603@end example
604
605@noindent
606@xref{Rules, ,Syntax of Grammar Rules}.
607
342b8b6e 608@node Semantic Values
bfa74976
RS
609@section Semantic Values
610@cindex semantic value
611@cindex value, semantic
612
613A formal grammar selects tokens only by their classifications: for example,
614if a rule mentions the terminal symbol `integer constant', it means that
615@emph{any} integer constant is grammatically valid in that position. The
616precise value of the constant is irrelevant to how to parse the input: if
617@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 618grammatical.
bfa74976
RS
619
620But the precise value is very important for what the input means once it is
621parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6223989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
623has both a token type and a @dfn{semantic value}. @xref{Semantics,
624,Defining Language Semantics},
bfa74976
RS
625for details.
626
627The token type is a terminal symbol defined in the grammar, such as
628@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
629you need to know to decide where the token may validly appear and how to
630group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 631except their types.
bfa74976
RS
632
633The semantic value has all the rest of the information about the
634meaning of the token, such as the value of an integer, or the name of an
635identifier. (A token such as @code{','} which is just punctuation doesn't
636need to have any semantic value.)
637
638For example, an input token might be classified as token type
639@code{INTEGER} and have the semantic value 4. Another input token might
640have the same token type @code{INTEGER} but value 3989. When a grammar
641rule says that @code{INTEGER} is allowed, either of these tokens is
642acceptable because each is an @code{INTEGER}. When the parser accepts the
643token, it keeps track of the token's semantic value.
644
645Each grouping can also have a semantic value as well as its nonterminal
646symbol. For example, in a calculator, an expression typically has a
647semantic value that is a number. In a compiler for a programming
648language, an expression typically has a semantic value that is a tree
649structure describing the meaning of the expression.
650
342b8b6e 651@node Semantic Actions
bfa74976
RS
652@section Semantic Actions
653@cindex semantic actions
654@cindex actions, semantic
655
656In order to be useful, a program must do more than parse input; it must
657also produce some output based on the input. In a Bison grammar, a grammar
658rule can have an @dfn{action} made up of C statements. Each time the
659parser recognizes a match for that rule, the action is executed.
660@xref{Actions}.
13863333 661
bfa74976
RS
662Most of the time, the purpose of an action is to compute the semantic value
663of the whole construct from the semantic values of its parts. For example,
664suppose we have a rule which says an expression can be the sum of two
665expressions. When the parser recognizes such a sum, each of the
666subexpressions has a semantic value which describes how it was built up.
667The action for this rule should create a similar sort of value for the
668newly recognized larger expression.
669
670For example, here is a rule that says an expression can be the sum of
671two subexpressions:
672
673@example
674expr: expr '+' expr @{ $$ = $1 + $3; @}
675 ;
676@end example
677
678@noindent
679The action says how to produce the semantic value of the sum expression
680from the values of the two subexpressions.
681
676385e2 682@node GLR Parsers
c827f760
PE
683@section Writing @acronym{GLR} Parsers
684@cindex @acronym{GLR} parsing
685@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
686@findex %glr-parser
687@cindex conflicts
688@cindex shift/reduce conflicts
fa7e68c3 689@cindex reduce/reduce conflicts
676385e2 690
fa7e68c3 691In some grammars, Bison's standard
9501dc6e
AD
692@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
693certain grammar rule at a given point. That is, it may not be able to
694decide (on the basis of the input read so far) which of two possible
695reductions (applications of a grammar rule) applies, or whether to apply
696a reduction or read more of the input and apply a reduction later in the
697input. These are known respectively as @dfn{reduce/reduce} conflicts
698(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
699(@pxref{Shift/Reduce}).
700
701To use a grammar that is not easily modified to be @acronym{LALR}(1), a
702more general parsing algorithm is sometimes necessary. If you include
676385e2 703@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 704(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
705(@acronym{GLR}) parser. These parsers handle Bison grammars that
706contain no unresolved conflicts (i.e., after applying precedence
707declarations) identically to @acronym{LALR}(1) parsers. However, when
708faced with unresolved shift/reduce and reduce/reduce conflicts,
709@acronym{GLR} parsers use the simple expedient of doing both,
710effectively cloning the parser to follow both possibilities. Each of
711the resulting parsers can again split, so that at any given time, there
712can be any number of possible parses being explored. The parsers
676385e2
PH
713proceed in lockstep; that is, all of them consume (shift) a given input
714symbol before any of them proceed to the next. Each of the cloned
715parsers eventually meets one of two possible fates: either it runs into
716a parsing error, in which case it simply vanishes, or it merges with
717another parser, because the two of them have reduced the input to an
718identical set of symbols.
719
720During the time that there are multiple parsers, semantic actions are
721recorded, but not performed. When a parser disappears, its recorded
722semantic actions disappear as well, and are never performed. When a
723reduction makes two parsers identical, causing them to merge, Bison
724records both sets of semantic actions. Whenever the last two parsers
725merge, reverting to the single-parser case, Bison resolves all the
726outstanding actions either by precedences given to the grammar rules
727involved, or by performing both actions, and then calling a designated
728user-defined function on the resulting values to produce an arbitrary
729merged result.
730
fa7e68c3 731@menu
32c29292
JD
732* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
733* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
734* GLR Semantic Actions:: Deferred semantic actions have special concerns.
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 750Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
742e4900 790With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
742e4900 829lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
f8e1c9e5
AD
910So here we have a case where we can use the benefits of @acronym{GLR},
911almost without disadvantages. Even in simple cases like this, however,
912there are at least two potential problems to beware. First, always
913analyze the conflicts reported by Bison to make sure that @acronym{GLR}
914splitting is only done where it is intended. A @acronym{GLR} parser
915splitting inadvertently may cause problems less obvious than an
916@acronym{LALR} parser statically choosing the wrong alternative in a
917conflict. Second, consider interactions with the lexer (@pxref{Semantic
918Tokens}) with great care. Since a split parser consumes tokens without
919performing any actions during the split, the lexer cannot obtain
920information via parser actions. Some cases of lexer interactions can be
921eliminated by using @acronym{GLR} to shift the complications from the
922lexer to the parser. You must check the remaining cases for
923correctness.
924
925In our example, it would be safe for the lexer to return tokens based on
926their current meanings in some symbol table, because no new symbols are
927defined in the middle of a type declaration. Though it is possible for
928a parser to define the enumeration constants as they are parsed, before
929the type declaration is completed, it actually makes no difference since
930they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
931
932@node Merging GLR Parses
933@subsection Using @acronym{GLR} to Resolve Ambiguities
934@cindex @acronym{GLR} parsing, ambiguous grammars
935@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
936@findex %dprec
937@findex %merge
938@cindex conflicts
939@cindex reduce/reduce conflicts
940
2a8d363a 941Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
942
943@example
944%@{
38a92d50
PE
945 #include <stdio.h>
946 #define YYSTYPE char const *
947 int yylex (void);
948 void yyerror (char const *);
676385e2
PH
949%@}
950
951%token TYPENAME ID
952
953%right '='
954%left '+'
955
956%glr-parser
957
958%%
959
fae437e8 960prog :
676385e2
PH
961 | prog stmt @{ printf ("\n"); @}
962 ;
963
964stmt : expr ';' %dprec 1
965 | decl %dprec 2
966 ;
967
2a8d363a 968expr : ID @{ printf ("%s ", $$); @}
fae437e8 969 | TYPENAME '(' expr ')'
2a8d363a
AD
970 @{ printf ("%s <cast> ", $1); @}
971 | expr '+' expr @{ printf ("+ "); @}
972 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
973 ;
974
fae437e8 975decl : TYPENAME declarator ';'
2a8d363a 976 @{ printf ("%s <declare> ", $1); @}
676385e2 977 | TYPENAME declarator '=' expr ';'
2a8d363a 978 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
979 ;
980
2a8d363a 981declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
982 | '(' declarator ')'
983 ;
984@end example
985
986@noindent
987This models a problematic part of the C++ grammar---the ambiguity between
988certain declarations and statements. For example,
989
990@example
991T (x) = y+z;
992@end example
993
994@noindent
995parses as either an @code{expr} or a @code{stmt}
c827f760
PE
996(assuming that @samp{T} is recognized as a @code{TYPENAME} and
997@samp{x} as an @code{ID}).
676385e2 998Bison detects this as a reduce/reduce conflict between the rules
fae437e8 999@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1000time it encounters @code{x} in the example above. Since this is a
1001@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1002each choice of resolving the reduce/reduce conflict.
1003Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1004however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1005ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1006the other reduces @code{stmt : decl}, after which both parsers are in an
1007identical state: they've seen @samp{prog stmt} and have the same unprocessed
1008input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1009
1010At this point, the @acronym{GLR} parser requires a specification in the
1011grammar of how to choose between the competing parses.
1012In the example above, the two @code{%dprec}
e757bb10 1013declarations specify that Bison is to give precedence
fa7e68c3 1014to the parse that interprets the example as a
676385e2
PH
1015@code{decl}, which implies that @code{x} is a declarator.
1016The parser therefore prints
1017
1018@example
fae437e8 1019"x" y z + T <init-declare>
676385e2
PH
1020@end example
1021
fa7e68c3
PE
1022The @code{%dprec} declarations only come into play when more than one
1023parse survives. Consider a different input string for this parser:
676385e2
PH
1024
1025@example
1026T (x) + y;
1027@end example
1028
1029@noindent
e757bb10 1030This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1031construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1032Here, there is no ambiguity (this cannot be parsed as a declaration).
1033However, at the time the Bison parser encounters @code{x}, it does not
1034have enough information to resolve the reduce/reduce conflict (again,
1035between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1036case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1037into two, one assuming that @code{x} is an @code{expr}, and the other
1038assuming @code{x} is a @code{declarator}. The second of these parsers
1039then vanishes when it sees @code{+}, and the parser prints
1040
1041@example
fae437e8 1042x T <cast> y +
676385e2
PH
1043@end example
1044
1045Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1046the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1047actions of the two possible parsers, rather than choosing one over the
1048other. To do so, you could change the declaration of @code{stmt} as
1049follows:
1050
1051@example
1052stmt : expr ';' %merge <stmtMerge>
1053 | decl %merge <stmtMerge>
1054 ;
1055@end example
1056
1057@noindent
676385e2
PH
1058and define the @code{stmtMerge} function as:
1059
1060@example
38a92d50
PE
1061static YYSTYPE
1062stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1063@{
1064 printf ("<OR> ");
1065 return "";
1066@}
1067@end example
1068
1069@noindent
1070with an accompanying forward declaration
1071in the C declarations at the beginning of the file:
1072
1073@example
1074%@{
38a92d50 1075 #define YYSTYPE char const *
676385e2
PH
1076 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1077%@}
1078@end example
1079
1080@noindent
fa7e68c3
PE
1081With these declarations, the resulting parser parses the first example
1082as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1083
1084@example
fae437e8 1085"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1086@end example
1087
fa7e68c3 1088Bison requires that all of the
e757bb10 1089productions that participate in any particular merge have identical
fa7e68c3
PE
1090@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1091and the parser will report an error during any parse that results in
1092the offending merge.
9501dc6e 1093
32c29292
JD
1094@node GLR Semantic Actions
1095@subsection GLR Semantic Actions
1096
1097@cindex deferred semantic actions
1098By definition, a deferred semantic action is not performed at the same time as
1099the associated reduction.
1100This raises caveats for several Bison features you might use in a semantic
1101action in a @acronym{GLR} parser.
1102
1103@vindex yychar
1104@cindex @acronym{GLR} parsers and @code{yychar}
1105@vindex yylval
1106@cindex @acronym{GLR} parsers and @code{yylval}
1107@vindex yylloc
1108@cindex @acronym{GLR} parsers and @code{yylloc}
1109In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1110the lookahead token present at the time of the associated reduction.
32c29292
JD
1111After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1112you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1113lookahead token's semantic value and location, if any.
32c29292
JD
1114In a nondeferred semantic action, you can also modify any of these variables to
1115influence syntax analysis.
742e4900 1116@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1117
1118@findex yyclearin
1119@cindex @acronym{GLR} parsers and @code{yyclearin}
1120In a deferred semantic action, it's too late to influence syntax analysis.
1121In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1122shallow copies of the values they had at the time of the associated reduction.
1123For this reason alone, modifying them is dangerous.
1124Moreover, the result of modifying them is undefined and subject to change with
1125future versions of Bison.
1126For example, if a semantic action might be deferred, you should never write it
1127to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1128memory referenced by @code{yylval}.
1129
1130@findex YYERROR
1131@cindex @acronym{GLR} parsers and @code{YYERROR}
1132Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1133(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1134initiate error recovery.
1135During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1136the same as its effect in an @acronym{LALR}(1) parser.
1137In a deferred semantic action, its effect is undefined.
1138@c The effect is probably a syntax error at the split point.
1139
8710fc41
JD
1140Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1141describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1142
fa7e68c3
PE
1143@node Compiler Requirements
1144@subsection Considerations when Compiling @acronym{GLR} Parsers
1145@cindex @code{inline}
9501dc6e 1146@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1147
38a92d50
PE
1148The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1149later. In addition, they use the @code{inline} keyword, which is not
1150C89, but is C99 and is a common extension in pre-C99 compilers. It is
1151up to the user of these parsers to handle
9501dc6e
AD
1152portability issues. For instance, if using Autoconf and the Autoconf
1153macro @code{AC_C_INLINE}, a mere
1154
1155@example
1156%@{
38a92d50 1157 #include <config.h>
9501dc6e
AD
1158%@}
1159@end example
1160
1161@noindent
1162will suffice. Otherwise, we suggest
1163
1164@example
1165%@{
38a92d50
PE
1166 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1167 #define inline
1168 #endif
9501dc6e
AD
1169%@}
1170@end example
676385e2 1171
342b8b6e 1172@node Locations Overview
847bf1f5
AD
1173@section Locations
1174@cindex location
95923bd6
AD
1175@cindex textual location
1176@cindex location, textual
847bf1f5
AD
1177
1178Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1179and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1180the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1181Bison provides a mechanism for handling these locations.
1182
72d2299c 1183Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1184associated location, but the type of locations is the same for all tokens and
72d2299c 1185groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1186structure for storing locations (@pxref{Locations}, for more details).
1187
1188Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1189set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1190is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1191@code{@@3}.
1192
1193When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1194of its left hand side (@pxref{Actions}). In the same way, another default
1195action is used for locations. However, the action for locations is general
847bf1f5 1196enough for most cases, meaning there is usually no need to describe for each
72d2299c 1197rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1198grouping, the default behavior of the output parser is to take the beginning
1199of the first symbol, and the end of the last symbol.
1200
342b8b6e 1201@node Bison Parser
bfa74976
RS
1202@section Bison Output: the Parser File
1203@cindex Bison parser
1204@cindex Bison utility
1205@cindex lexical analyzer, purpose
1206@cindex parser
1207
1208When you run Bison, you give it a Bison grammar file as input. The output
1209is a C source file that parses the language described by the grammar.
1210This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1211utility and the Bison parser are two distinct programs: the Bison utility
1212is a program whose output is the Bison parser that becomes part of your
1213program.
1214
1215The job of the Bison parser is to group tokens into groupings according to
1216the grammar rules---for example, to build identifiers and operators into
1217expressions. As it does this, it runs the actions for the grammar rules it
1218uses.
1219
704a47c4
AD
1220The tokens come from a function called the @dfn{lexical analyzer} that
1221you must supply in some fashion (such as by writing it in C). The Bison
1222parser calls the lexical analyzer each time it wants a new token. It
1223doesn't know what is ``inside'' the tokens (though their semantic values
1224may reflect this). Typically the lexical analyzer makes the tokens by
1225parsing characters of text, but Bison does not depend on this.
1226@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1227
1228The Bison parser file is C code which defines a function named
1229@code{yyparse} which implements that grammar. This function does not make
1230a complete C program: you must supply some additional functions. One is
1231the lexical analyzer. Another is an error-reporting function which the
1232parser calls to report an error. In addition, a complete C program must
1233start with a function called @code{main}; you have to provide this, and
1234arrange for it to call @code{yyparse} or the parser will never run.
1235@xref{Interface, ,Parser C-Language Interface}.
1236
f7ab6a50 1237Aside from the token type names and the symbols in the actions you
7093d0f5 1238write, all symbols defined in the Bison parser file itself
bfa74976
RS
1239begin with @samp{yy} or @samp{YY}. This includes interface functions
1240such as the lexical analyzer function @code{yylex}, the error reporting
1241function @code{yyerror} and the parser function @code{yyparse} itself.
1242This also includes numerous identifiers used for internal purposes.
1243Therefore, you should avoid using C identifiers starting with @samp{yy}
1244or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1245this manual. Also, you should avoid using the C identifiers
1246@samp{malloc} and @samp{free} for anything other than their usual
1247meanings.
bfa74976 1248
7093d0f5
AD
1249In some cases the Bison parser file includes system headers, and in
1250those cases your code should respect the identifiers reserved by those
55289366 1251headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1252@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1253declare memory allocators and related types. @code{<libintl.h>} is
1254included if message translation is in use
1255(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1256be included if you define @code{YYDEBUG} to a nonzero value
1257(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1258
342b8b6e 1259@node Stages
bfa74976
RS
1260@section Stages in Using Bison
1261@cindex stages in using Bison
1262@cindex using Bison
1263
1264The actual language-design process using Bison, from grammar specification
1265to a working compiler or interpreter, has these parts:
1266
1267@enumerate
1268@item
1269Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1270(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1271in the language, describe the action that is to be taken when an
1272instance of that rule is recognized. The action is described by a
1273sequence of C statements.
bfa74976
RS
1274
1275@item
704a47c4
AD
1276Write a lexical analyzer to process input and pass tokens to the parser.
1277The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1278Lexical Analyzer Function @code{yylex}}). It could also be produced
1279using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1280
1281@item
1282Write a controlling function that calls the Bison-produced parser.
1283
1284@item
1285Write error-reporting routines.
1286@end enumerate
1287
1288To turn this source code as written into a runnable program, you
1289must follow these steps:
1290
1291@enumerate
1292@item
1293Run Bison on the grammar to produce the parser.
1294
1295@item
1296Compile the code output by Bison, as well as any other source files.
1297
1298@item
1299Link the object files to produce the finished product.
1300@end enumerate
1301
342b8b6e 1302@node Grammar Layout
bfa74976
RS
1303@section The Overall Layout of a Bison Grammar
1304@cindex grammar file
1305@cindex file format
1306@cindex format of grammar file
1307@cindex layout of Bison grammar
1308
1309The input file for the Bison utility is a @dfn{Bison grammar file}. The
1310general form of a Bison grammar file is as follows:
1311
1312@example
1313%@{
08e49d20 1314@var{Prologue}
bfa74976
RS
1315%@}
1316
1317@var{Bison declarations}
1318
1319%%
1320@var{Grammar rules}
1321%%
08e49d20 1322@var{Epilogue}
bfa74976
RS
1323@end example
1324
1325@noindent
1326The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1327in every Bison grammar file to separate the sections.
1328
72d2299c 1329The prologue may define types and variables used in the actions. You can
342b8b6e 1330also use preprocessor commands to define macros used there, and use
bfa74976 1331@code{#include} to include header files that do any of these things.
38a92d50
PE
1332You need to declare the lexical analyzer @code{yylex} and the error
1333printer @code{yyerror} here, along with any other global identifiers
1334used by the actions in the grammar rules.
bfa74976
RS
1335
1336The Bison declarations declare the names of the terminal and nonterminal
1337symbols, and may also describe operator precedence and the data types of
1338semantic values of various symbols.
1339
1340The grammar rules define how to construct each nonterminal symbol from its
1341parts.
1342
38a92d50
PE
1343The epilogue can contain any code you want to use. Often the
1344definitions of functions declared in the prologue go here. In a
1345simple program, all the rest of the program can go here.
bfa74976 1346
342b8b6e 1347@node Examples
bfa74976
RS
1348@chapter Examples
1349@cindex simple examples
1350@cindex examples, simple
1351
1352Now we show and explain three sample programs written using Bison: a
1353reverse polish notation calculator, an algebraic (infix) notation
1354calculator, and a multi-function calculator. All three have been tested
1355under BSD Unix 4.3; each produces a usable, though limited, interactive
1356desk-top calculator.
1357
1358These examples are simple, but Bison grammars for real programming
aa08666d
AD
1359languages are written the same way. You can copy these examples into a
1360source file to try them.
bfa74976
RS
1361
1362@menu
1363* RPN Calc:: Reverse polish notation calculator;
1364 a first example with no operator precedence.
1365* Infix Calc:: Infix (algebraic) notation calculator.
1366 Operator precedence is introduced.
1367* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1368* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1369* Multi-function Calc:: Calculator with memory and trig functions.
1370 It uses multiple data-types for semantic values.
1371* Exercises:: Ideas for improving the multi-function calculator.
1372@end menu
1373
342b8b6e 1374@node RPN Calc
bfa74976
RS
1375@section Reverse Polish Notation Calculator
1376@cindex reverse polish notation
1377@cindex polish notation calculator
1378@cindex @code{rpcalc}
1379@cindex calculator, simple
1380
1381The first example is that of a simple double-precision @dfn{reverse polish
1382notation} calculator (a calculator using postfix operators). This example
1383provides a good starting point, since operator precedence is not an issue.
1384The second example will illustrate how operator precedence is handled.
1385
1386The source code for this calculator is named @file{rpcalc.y}. The
1387@samp{.y} extension is a convention used for Bison input files.
1388
1389@menu
75f5aaea 1390* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1391* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1392* Lexer: Rpcalc Lexer. The lexical analyzer.
1393* Main: Rpcalc Main. The controlling function.
1394* Error: Rpcalc Error. The error reporting function.
1395* Gen: Rpcalc Gen. Running Bison on the grammar file.
1396* Comp: Rpcalc Compile. Run the C compiler on the output code.
1397@end menu
1398
342b8b6e 1399@node Rpcalc Decls
bfa74976
RS
1400@subsection Declarations for @code{rpcalc}
1401
1402Here are the C and Bison declarations for the reverse polish notation
1403calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1404
1405@example
72d2299c 1406/* Reverse polish notation calculator. */
bfa74976
RS
1407
1408%@{
38a92d50
PE
1409 #define YYSTYPE double
1410 #include <math.h>
1411 int yylex (void);
1412 void yyerror (char const *);
bfa74976
RS
1413%@}
1414
1415%token NUM
1416
72d2299c 1417%% /* Grammar rules and actions follow. */
bfa74976
RS
1418@end example
1419
75f5aaea 1420The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1421preprocessor directives and two forward declarations.
bfa74976
RS
1422
1423The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1424specifying the C data type for semantic values of both tokens and
1425groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1426Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1427don't define it, @code{int} is the default. Because we specify
1428@code{double}, each token and each expression has an associated value,
1429which is a floating point number.
bfa74976
RS
1430
1431The @code{#include} directive is used to declare the exponentiation
1432function @code{pow}.
1433
38a92d50
PE
1434The forward declarations for @code{yylex} and @code{yyerror} are
1435needed because the C language requires that functions be declared
1436before they are used. These functions will be defined in the
1437epilogue, but the parser calls them so they must be declared in the
1438prologue.
1439
704a47c4
AD
1440The second section, Bison declarations, provides information to Bison
1441about the token types (@pxref{Bison Declarations, ,The Bison
1442Declarations Section}). Each terminal symbol that is not a
1443single-character literal must be declared here. (Single-character
bfa74976
RS
1444literals normally don't need to be declared.) In this example, all the
1445arithmetic operators are designated by single-character literals, so the
1446only terminal symbol that needs to be declared is @code{NUM}, the token
1447type for numeric constants.
1448
342b8b6e 1449@node Rpcalc Rules
bfa74976
RS
1450@subsection Grammar Rules for @code{rpcalc}
1451
1452Here are the grammar rules for the reverse polish notation calculator.
1453
1454@example
1455input: /* empty */
1456 | input line
1457;
1458
1459line: '\n'
18b519c0 1460 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1461;
1462
18b519c0
AD
1463exp: NUM @{ $$ = $1; @}
1464 | exp exp '+' @{ $$ = $1 + $2; @}
1465 | exp exp '-' @{ $$ = $1 - $2; @}
1466 | exp exp '*' @{ $$ = $1 * $2; @}
1467 | exp exp '/' @{ $$ = $1 / $2; @}
1468 /* Exponentiation */
1469 | exp exp '^' @{ $$ = pow ($1, $2); @}
1470 /* Unary minus */
1471 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1472;
1473%%
1474@end example
1475
1476The groupings of the rpcalc ``language'' defined here are the expression
1477(given the name @code{exp}), the line of input (@code{line}), and the
1478complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1479symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1480which is read as ``or''. The following sections explain what these rules
1481mean.
1482
1483The semantics of the language is determined by the actions taken when a
1484grouping is recognized. The actions are the C code that appears inside
1485braces. @xref{Actions}.
1486
1487You must specify these actions in C, but Bison provides the means for
1488passing semantic values between the rules. In each action, the
1489pseudo-variable @code{$$} stands for the semantic value for the grouping
1490that the rule is going to construct. Assigning a value to @code{$$} is the
1491main job of most actions. The semantic values of the components of the
1492rule are referred to as @code{$1}, @code{$2}, and so on.
1493
1494@menu
13863333
AD
1495* Rpcalc Input::
1496* Rpcalc Line::
1497* Rpcalc Expr::
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node Rpcalc Input
bfa74976
RS
1501@subsubsection Explanation of @code{input}
1502
1503Consider the definition of @code{input}:
1504
1505@example
1506input: /* empty */
1507 | input line
1508;
1509@end example
1510
1511This definition reads as follows: ``A complete input is either an empty
1512string, or a complete input followed by an input line''. Notice that
1513``complete input'' is defined in terms of itself. This definition is said
1514to be @dfn{left recursive} since @code{input} appears always as the
1515leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1516
1517The first alternative is empty because there are no symbols between the
1518colon and the first @samp{|}; this means that @code{input} can match an
1519empty string of input (no tokens). We write the rules this way because it
1520is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1521It's conventional to put an empty alternative first and write the comment
1522@samp{/* empty */} in it.
1523
1524The second alternate rule (@code{input line}) handles all nontrivial input.
1525It means, ``After reading any number of lines, read one more line if
1526possible.'' The left recursion makes this rule into a loop. Since the
1527first alternative matches empty input, the loop can be executed zero or
1528more times.
1529
1530The parser function @code{yyparse} continues to process input until a
1531grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1532input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1533
342b8b6e 1534@node Rpcalc Line
bfa74976
RS
1535@subsubsection Explanation of @code{line}
1536
1537Now consider the definition of @code{line}:
1538
1539@example
1540line: '\n'
1541 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1542;
1543@end example
1544
1545The first alternative is a token which is a newline character; this means
1546that rpcalc accepts a blank line (and ignores it, since there is no
1547action). The second alternative is an expression followed by a newline.
1548This is the alternative that makes rpcalc useful. The semantic value of
1549the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1550question is the first symbol in the alternative. The action prints this
1551value, which is the result of the computation the user asked for.
1552
1553This action is unusual because it does not assign a value to @code{$$}. As
1554a consequence, the semantic value associated with the @code{line} is
1555uninitialized (its value will be unpredictable). This would be a bug if
1556that value were ever used, but we don't use it: once rpcalc has printed the
1557value of the user's input line, that value is no longer needed.
1558
342b8b6e 1559@node Rpcalc Expr
bfa74976
RS
1560@subsubsection Explanation of @code{expr}
1561
1562The @code{exp} grouping has several rules, one for each kind of expression.
1563The first rule handles the simplest expressions: those that are just numbers.
1564The second handles an addition-expression, which looks like two expressions
1565followed by a plus-sign. The third handles subtraction, and so on.
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | exp exp '-' @{ $$ = $1 - $2; @}
1571 @dots{}
1572 ;
1573@end example
1574
1575We have used @samp{|} to join all the rules for @code{exp}, but we could
1576equally well have written them separately:
1577
1578@example
1579exp: NUM ;
1580exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1581exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1582 @dots{}
1583@end example
1584
1585Most of the rules have actions that compute the value of the expression in
1586terms of the value of its parts. For example, in the rule for addition,
1587@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1588the second one. The third component, @code{'+'}, has no meaningful
1589associated semantic value, but if it had one you could refer to it as
1590@code{$3}. When @code{yyparse} recognizes a sum expression using this
1591rule, the sum of the two subexpressions' values is produced as the value of
1592the entire expression. @xref{Actions}.
1593
1594You don't have to give an action for every rule. When a rule has no
1595action, Bison by default copies the value of @code{$1} into @code{$$}.
1596This is what happens in the first rule (the one that uses @code{NUM}).
1597
1598The formatting shown here is the recommended convention, but Bison does
72d2299c 1599not require it. You can add or change white space as much as you wish.
bfa74976
RS
1600For example, this:
1601
1602@example
99a9344e 1603exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1604@end example
1605
1606@noindent
1607means the same thing as this:
1608
1609@example
1610exp: NUM
1611 | exp exp '+' @{ $$ = $1 + $2; @}
1612 | @dots{}
99a9344e 1613;
bfa74976
RS
1614@end example
1615
1616@noindent
1617The latter, however, is much more readable.
1618
342b8b6e 1619@node Rpcalc Lexer
bfa74976
RS
1620@subsection The @code{rpcalc} Lexical Analyzer
1621@cindex writing a lexical analyzer
1622@cindex lexical analyzer, writing
1623
704a47c4
AD
1624The lexical analyzer's job is low-level parsing: converting characters
1625or sequences of characters into tokens. The Bison parser gets its
1626tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1627Analyzer Function @code{yylex}}.
bfa74976 1628
c827f760
PE
1629Only a simple lexical analyzer is needed for the @acronym{RPN}
1630calculator. This
bfa74976
RS
1631lexical analyzer skips blanks and tabs, then reads in numbers as
1632@code{double} and returns them as @code{NUM} tokens. Any other character
1633that isn't part of a number is a separate token. Note that the token-code
1634for such a single-character token is the character itself.
1635
1636The return value of the lexical analyzer function is a numeric code which
1637represents a token type. The same text used in Bison rules to stand for
1638this token type is also a C expression for the numeric code for the type.
1639This works in two ways. If the token type is a character literal, then its
e966383b 1640numeric code is that of the character; you can use the same
bfa74976
RS
1641character literal in the lexical analyzer to express the number. If the
1642token type is an identifier, that identifier is defined by Bison as a C
1643macro whose definition is the appropriate number. In this example,
1644therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1645
1964ad8c
AD
1646The semantic value of the token (if it has one) is stored into the
1647global variable @code{yylval}, which is where the Bison parser will look
1648for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1649defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1650,Declarations for @code{rpcalc}}.)
bfa74976 1651
72d2299c
PE
1652A token type code of zero is returned if the end-of-input is encountered.
1653(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1654
1655Here is the code for the lexical analyzer:
1656
1657@example
1658@group
72d2299c 1659/* The lexical analyzer returns a double floating point
e966383b 1660 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1661 of the character read if not a number. It skips all blanks
1662 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1663
1664#include <ctype.h>
1665@end group
1666
1667@group
13863333
AD
1668int
1669yylex (void)
bfa74976
RS
1670@{
1671 int c;
1672
72d2299c 1673 /* Skip white space. */
13863333 1674 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1675 ;
1676@end group
1677@group
72d2299c 1678 /* Process numbers. */
13863333 1679 if (c == '.' || isdigit (c))
bfa74976
RS
1680 @{
1681 ungetc (c, stdin);
1682 scanf ("%lf", &yylval);
1683 return NUM;
1684 @}
1685@end group
1686@group
72d2299c 1687 /* Return end-of-input. */
13863333 1688 if (c == EOF)
bfa74976 1689 return 0;
72d2299c 1690 /* Return a single char. */
13863333 1691 return c;
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
342b8b6e 1696@node Rpcalc Main
bfa74976
RS
1697@subsection The Controlling Function
1698@cindex controlling function
1699@cindex main function in simple example
1700
1701In keeping with the spirit of this example, the controlling function is
1702kept to the bare minimum. The only requirement is that it call
1703@code{yyparse} to start the process of parsing.
1704
1705@example
1706@group
13863333
AD
1707int
1708main (void)
bfa74976 1709@{
13863333 1710 return yyparse ();
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Error
bfa74976
RS
1716@subsection The Error Reporting Routine
1717@cindex error reporting routine
1718
1719When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1720function @code{yyerror} to print an error message (usually but not
6e649e65 1721always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1722@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1723here is the definition we will use:
bfa74976
RS
1724
1725@example
1726@group
1727#include <stdio.h>
1728
38a92d50 1729/* Called by yyparse on error. */
13863333 1730void
38a92d50 1731yyerror (char const *s)
bfa74976 1732@{
4e03e201 1733 fprintf (stderr, "%s\n", s);
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
1738After @code{yyerror} returns, the Bison parser may recover from the error
1739and continue parsing if the grammar contains a suitable error rule
1740(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1741have not written any error rules in this example, so any invalid input will
1742cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1743real calculator, but it is adequate for the first example.
bfa74976 1744
342b8b6e 1745@node Rpcalc Gen
bfa74976
RS
1746@subsection Running Bison to Make the Parser
1747@cindex running Bison (introduction)
1748
ceed8467
AD
1749Before running Bison to produce a parser, we need to decide how to
1750arrange all the source code in one or more source files. For such a
1751simple example, the easiest thing is to put everything in one file. The
1752definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1753end, in the epilogue of the file
75f5aaea 1754(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1755
1756For a large project, you would probably have several source files, and use
1757@code{make} to arrange to recompile them.
1758
1759With all the source in a single file, you use the following command to
1760convert it into a parser file:
1761
1762@example
fa4d969f 1763bison @var{file}.y
bfa74976
RS
1764@end example
1765
1766@noindent
1767In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1768@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1769removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1770Bison contains the source code for @code{yyparse}. The additional
1771functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1772are copied verbatim to the output.
1773
342b8b6e 1774@node Rpcalc Compile
bfa74976
RS
1775@subsection Compiling the Parser File
1776@cindex compiling the parser
1777
1778Here is how to compile and run the parser file:
1779
1780@example
1781@group
1782# @r{List files in current directory.}
9edcd895 1783$ @kbd{ls}
bfa74976
RS
1784rpcalc.tab.c rpcalc.y
1785@end group
1786
1787@group
1788# @r{Compile the Bison parser.}
1789# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1790$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1791@end group
1792
1793@group
1794# @r{List files again.}
9edcd895 1795$ @kbd{ls}
bfa74976
RS
1796rpcalc rpcalc.tab.c rpcalc.y
1797@end group
1798@end example
1799
1800The file @file{rpcalc} now contains the executable code. Here is an
1801example session using @code{rpcalc}.
1802
1803@example
9edcd895
AD
1804$ @kbd{rpcalc}
1805@kbd{4 9 +}
bfa74976 180613
9edcd895 1807@kbd{3 7 + 3 4 5 *+-}
bfa74976 1808-13
9edcd895 1809@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181013
9edcd895 1811@kbd{5 6 / 4 n +}
bfa74976 1812-3.166666667
9edcd895 1813@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181481
9edcd895
AD
1815@kbd{^D} @r{End-of-file indicator}
1816$
bfa74976
RS
1817@end example
1818
342b8b6e 1819@node Infix Calc
bfa74976
RS
1820@section Infix Notation Calculator: @code{calc}
1821@cindex infix notation calculator
1822@cindex @code{calc}
1823@cindex calculator, infix notation
1824
1825We now modify rpcalc to handle infix operators instead of postfix. Infix
1826notation involves the concept of operator precedence and the need for
1827parentheses nested to arbitrary depth. Here is the Bison code for
1828@file{calc.y}, an infix desk-top calculator.
1829
1830@example
38a92d50 1831/* Infix notation calculator. */
bfa74976
RS
1832
1833%@{
38a92d50
PE
1834 #define YYSTYPE double
1835 #include <math.h>
1836 #include <stdio.h>
1837 int yylex (void);
1838 void yyerror (char const *);
bfa74976
RS
1839%@}
1840
38a92d50 1841/* Bison declarations. */
bfa74976
RS
1842%token NUM
1843%left '-' '+'
1844%left '*' '/'
1845%left NEG /* negation--unary minus */
38a92d50 1846%right '^' /* exponentiation */
bfa74976 1847
38a92d50
PE
1848%% /* The grammar follows. */
1849input: /* empty */
bfa74976
RS
1850 | input line
1851;
1852
1853line: '\n'
1854 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1855;
1856
1857exp: NUM @{ $$ = $1; @}
1858 | exp '+' exp @{ $$ = $1 + $3; @}
1859 | exp '-' exp @{ $$ = $1 - $3; @}
1860 | exp '*' exp @{ $$ = $1 * $3; @}
1861 | exp '/' exp @{ $$ = $1 / $3; @}
1862 | '-' exp %prec NEG @{ $$ = -$2; @}
1863 | exp '^' exp @{ $$ = pow ($1, $3); @}
1864 | '(' exp ')' @{ $$ = $2; @}
1865;
1866%%
1867@end example
1868
1869@noindent
ceed8467
AD
1870The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1871same as before.
bfa74976
RS
1872
1873There are two important new features shown in this code.
1874
1875In the second section (Bison declarations), @code{%left} declares token
1876types and says they are left-associative operators. The declarations
1877@code{%left} and @code{%right} (right associativity) take the place of
1878@code{%token} which is used to declare a token type name without
1879associativity. (These tokens are single-character literals, which
1880ordinarily don't need to be declared. We declare them here to specify
1881the associativity.)
1882
1883Operator precedence is determined by the line ordering of the
1884declarations; the higher the line number of the declaration (lower on
1885the page or screen), the higher the precedence. Hence, exponentiation
1886has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1887by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1888Precedence}.
bfa74976 1889
704a47c4
AD
1890The other important new feature is the @code{%prec} in the grammar
1891section for the unary minus operator. The @code{%prec} simply instructs
1892Bison that the rule @samp{| '-' exp} has the same precedence as
1893@code{NEG}---in this case the next-to-highest. @xref{Contextual
1894Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1895
1896Here is a sample run of @file{calc.y}:
1897
1898@need 500
1899@example
9edcd895
AD
1900$ @kbd{calc}
1901@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19026.880952381
9edcd895 1903@kbd{-56 + 2}
bfa74976 1904-54
9edcd895 1905@kbd{3 ^ 2}
bfa74976
RS
19069
1907@end example
1908
342b8b6e 1909@node Simple Error Recovery
bfa74976
RS
1910@section Simple Error Recovery
1911@cindex error recovery, simple
1912
1913Up to this point, this manual has not addressed the issue of @dfn{error
1914recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1915error. All we have handled is error reporting with @code{yyerror}.
1916Recall that by default @code{yyparse} returns after calling
1917@code{yyerror}. This means that an erroneous input line causes the
1918calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1919
1920The Bison language itself includes the reserved word @code{error}, which
1921may be included in the grammar rules. In the example below it has
1922been added to one of the alternatives for @code{line}:
1923
1924@example
1925@group
1926line: '\n'
1927 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1928 | error '\n' @{ yyerrok; @}
1929;
1930@end group
1931@end example
1932
ceed8467 1933This addition to the grammar allows for simple error recovery in the
6e649e65 1934event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1935read, the error will be recognized by the third rule for @code{line},
1936and parsing will continue. (The @code{yyerror} function is still called
1937upon to print its message as well.) The action executes the statement
1938@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1939that error recovery is complete (@pxref{Error Recovery}). Note the
1940difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1941misprint.
bfa74976
RS
1942
1943This form of error recovery deals with syntax errors. There are other
1944kinds of errors; for example, division by zero, which raises an exception
1945signal that is normally fatal. A real calculator program must handle this
1946signal and use @code{longjmp} to return to @code{main} and resume parsing
1947input lines; it would also have to discard the rest of the current line of
1948input. We won't discuss this issue further because it is not specific to
1949Bison programs.
1950
342b8b6e
AD
1951@node Location Tracking Calc
1952@section Location Tracking Calculator: @code{ltcalc}
1953@cindex location tracking calculator
1954@cindex @code{ltcalc}
1955@cindex calculator, location tracking
1956
9edcd895
AD
1957This example extends the infix notation calculator with location
1958tracking. This feature will be used to improve the error messages. For
1959the sake of clarity, this example is a simple integer calculator, since
1960most of the work needed to use locations will be done in the lexical
72d2299c 1961analyzer.
342b8b6e
AD
1962
1963@menu
1964* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1965* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1966* Lexer: Ltcalc Lexer. The lexical analyzer.
1967@end menu
1968
1969@node Ltcalc Decls
1970@subsection Declarations for @code{ltcalc}
1971
9edcd895
AD
1972The C and Bison declarations for the location tracking calculator are
1973the same as the declarations for the infix notation calculator.
342b8b6e
AD
1974
1975@example
1976/* Location tracking calculator. */
1977
1978%@{
38a92d50
PE
1979 #define YYSTYPE int
1980 #include <math.h>
1981 int yylex (void);
1982 void yyerror (char const *);
342b8b6e
AD
1983%@}
1984
1985/* Bison declarations. */
1986%token NUM
1987
1988%left '-' '+'
1989%left '*' '/'
1990%left NEG
1991%right '^'
1992
38a92d50 1993%% /* The grammar follows. */
342b8b6e
AD
1994@end example
1995
9edcd895
AD
1996@noindent
1997Note there are no declarations specific to locations. Defining a data
1998type for storing locations is not needed: we will use the type provided
1999by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2000four member structure with the following integer fields:
2001@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2002@code{last_column}. By conventions, and in accordance with the GNU
2003Coding Standards and common practice, the line and column count both
2004start at 1.
342b8b6e
AD
2005
2006@node Ltcalc Rules
2007@subsection Grammar Rules for @code{ltcalc}
2008
9edcd895
AD
2009Whether handling locations or not has no effect on the syntax of your
2010language. Therefore, grammar rules for this example will be very close
2011to those of the previous example: we will only modify them to benefit
2012from the new information.
342b8b6e 2013
9edcd895
AD
2014Here, we will use locations to report divisions by zero, and locate the
2015wrong expressions or subexpressions.
342b8b6e
AD
2016
2017@example
2018@group
2019input : /* empty */
2020 | input line
2021;
2022@end group
2023
2024@group
2025line : '\n'
2026 | exp '\n' @{ printf ("%d\n", $1); @}
2027;
2028@end group
2029
2030@group
2031exp : NUM @{ $$ = $1; @}
2032 | exp '+' exp @{ $$ = $1 + $3; @}
2033 | exp '-' exp @{ $$ = $1 - $3; @}
2034 | exp '*' exp @{ $$ = $1 * $3; @}
2035@end group
342b8b6e 2036@group
9edcd895 2037 | exp '/' exp
342b8b6e
AD
2038 @{
2039 if ($3)
2040 $$ = $1 / $3;
2041 else
2042 @{
2043 $$ = 1;
9edcd895
AD
2044 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2045 @@3.first_line, @@3.first_column,
2046 @@3.last_line, @@3.last_column);
342b8b6e
AD
2047 @}
2048 @}
2049@end group
2050@group
178e123e 2051 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2052 | exp '^' exp @{ $$ = pow ($1, $3); @}
2053 | '(' exp ')' @{ $$ = $2; @}
2054@end group
2055@end example
2056
2057This code shows how to reach locations inside of semantic actions, by
2058using the pseudo-variables @code{@@@var{n}} for rule components, and the
2059pseudo-variable @code{@@$} for groupings.
2060
9edcd895
AD
2061We don't need to assign a value to @code{@@$}: the output parser does it
2062automatically. By default, before executing the C code of each action,
2063@code{@@$} is set to range from the beginning of @code{@@1} to the end
2064of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2065can be redefined (@pxref{Location Default Action, , Default Action for
2066Locations}), and for very specific rules, @code{@@$} can be computed by
2067hand.
342b8b6e
AD
2068
2069@node Ltcalc Lexer
2070@subsection The @code{ltcalc} Lexical Analyzer.
2071
9edcd895 2072Until now, we relied on Bison's defaults to enable location
72d2299c 2073tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2074able to feed the parser with the token locations, as it already does for
2075semantic values.
342b8b6e 2076
9edcd895
AD
2077To this end, we must take into account every single character of the
2078input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2079
2080@example
2081@group
2082int
2083yylex (void)
2084@{
2085 int c;
18b519c0 2086@end group
342b8b6e 2087
18b519c0 2088@group
72d2299c 2089 /* Skip white space. */
342b8b6e
AD
2090 while ((c = getchar ()) == ' ' || c == '\t')
2091 ++yylloc.last_column;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Step. */
342b8b6e
AD
2096 yylloc.first_line = yylloc.last_line;
2097 yylloc.first_column = yylloc.last_column;
2098@end group
2099
2100@group
72d2299c 2101 /* Process numbers. */
342b8b6e
AD
2102 if (isdigit (c))
2103 @{
2104 yylval = c - '0';
2105 ++yylloc.last_column;
2106 while (isdigit (c = getchar ()))
2107 @{
2108 ++yylloc.last_column;
2109 yylval = yylval * 10 + c - '0';
2110 @}
2111 ungetc (c, stdin);
2112 return NUM;
2113 @}
2114@end group
2115
72d2299c 2116 /* Return end-of-input. */
342b8b6e
AD
2117 if (c == EOF)
2118 return 0;
2119
72d2299c 2120 /* Return a single char, and update location. */
342b8b6e
AD
2121 if (c == '\n')
2122 @{
2123 ++yylloc.last_line;
2124 yylloc.last_column = 0;
2125 @}
2126 else
2127 ++yylloc.last_column;
2128 return c;
2129@}
2130@end example
2131
9edcd895
AD
2132Basically, the lexical analyzer performs the same processing as before:
2133it skips blanks and tabs, and reads numbers or single-character tokens.
2134In addition, it updates @code{yylloc}, the global variable (of type
2135@code{YYLTYPE}) containing the token's location.
342b8b6e 2136
9edcd895 2137Now, each time this function returns a token, the parser has its number
72d2299c 2138as well as its semantic value, and its location in the text. The last
9edcd895
AD
2139needed change is to initialize @code{yylloc}, for example in the
2140controlling function:
342b8b6e
AD
2141
2142@example
9edcd895 2143@group
342b8b6e
AD
2144int
2145main (void)
2146@{
2147 yylloc.first_line = yylloc.last_line = 1;
2148 yylloc.first_column = yylloc.last_column = 0;
2149 return yyparse ();
2150@}
9edcd895 2151@end group
342b8b6e
AD
2152@end example
2153
9edcd895
AD
2154Remember that computing locations is not a matter of syntax. Every
2155character must be associated to a location update, whether it is in
2156valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2157
2158@node Multi-function Calc
bfa74976
RS
2159@section Multi-Function Calculator: @code{mfcalc}
2160@cindex multi-function calculator
2161@cindex @code{mfcalc}
2162@cindex calculator, multi-function
2163
2164Now that the basics of Bison have been discussed, it is time to move on to
2165a more advanced problem. The above calculators provided only five
2166functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2167be nice to have a calculator that provides other mathematical functions such
2168as @code{sin}, @code{cos}, etc.
2169
2170It is easy to add new operators to the infix calculator as long as they are
2171only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2172back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2173adding a new operator. But we want something more flexible: built-in
2174functions whose syntax has this form:
2175
2176@example
2177@var{function_name} (@var{argument})
2178@end example
2179
2180@noindent
2181At the same time, we will add memory to the calculator, by allowing you
2182to create named variables, store values in them, and use them later.
2183Here is a sample session with the multi-function calculator:
2184
2185@example
9edcd895
AD
2186$ @kbd{mfcalc}
2187@kbd{pi = 3.141592653589}
bfa74976 21883.1415926536
9edcd895 2189@kbd{sin(pi)}
bfa74976 21900.0000000000
9edcd895 2191@kbd{alpha = beta1 = 2.3}
bfa74976 21922.3000000000
9edcd895 2193@kbd{alpha}
bfa74976 21942.3000000000
9edcd895 2195@kbd{ln(alpha)}
bfa74976 21960.8329091229
9edcd895 2197@kbd{exp(ln(beta1))}
bfa74976 21982.3000000000
9edcd895 2199$
bfa74976
RS
2200@end example
2201
2202Note that multiple assignment and nested function calls are permitted.
2203
2204@menu
2205* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2206* Rules: Mfcalc Rules. Grammar rules for the calculator.
2207* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2208@end menu
2209
342b8b6e 2210@node Mfcalc Decl
bfa74976
RS
2211@subsection Declarations for @code{mfcalc}
2212
2213Here are the C and Bison declarations for the multi-function calculator.
2214
2215@smallexample
18b519c0 2216@group
bfa74976 2217%@{
38a92d50
PE
2218 #include <math.h> /* For math functions, cos(), sin(), etc. */
2219 #include "calc.h" /* Contains definition of `symrec'. */
2220 int yylex (void);
2221 void yyerror (char const *);
bfa74976 2222%@}
18b519c0
AD
2223@end group
2224@group
bfa74976 2225%union @{
38a92d50
PE
2226 double val; /* For returning numbers. */
2227 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2228@}
18b519c0 2229@end group
38a92d50
PE
2230%token <val> NUM /* Simple double precision number. */
2231%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2232%type <val> exp
2233
18b519c0 2234@group
bfa74976
RS
2235%right '='
2236%left '-' '+'
2237%left '*' '/'
38a92d50
PE
2238%left NEG /* negation--unary minus */
2239%right '^' /* exponentiation */
18b519c0 2240@end group
38a92d50 2241%% /* The grammar follows. */
bfa74976
RS
2242@end smallexample
2243
2244The above grammar introduces only two new features of the Bison language.
2245These features allow semantic values to have various data types
2246(@pxref{Multiple Types, ,More Than One Value Type}).
2247
2248The @code{%union} declaration specifies the entire list of possible types;
2249this is instead of defining @code{YYSTYPE}. The allowable types are now
2250double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2251the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2252
2253Since values can now have various types, it is necessary to associate a
2254type with each grammar symbol whose semantic value is used. These symbols
2255are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2256declarations are augmented with information about their data type (placed
2257between angle brackets).
2258
704a47c4
AD
2259The Bison construct @code{%type} is used for declaring nonterminal
2260symbols, just as @code{%token} is used for declaring token types. We
2261have not used @code{%type} before because nonterminal symbols are
2262normally declared implicitly by the rules that define them. But
2263@code{exp} must be declared explicitly so we can specify its value type.
2264@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2265
342b8b6e 2266@node Mfcalc Rules
bfa74976
RS
2267@subsection Grammar Rules for @code{mfcalc}
2268
2269Here are the grammar rules for the multi-function calculator.
2270Most of them are copied directly from @code{calc}; three rules,
2271those which mention @code{VAR} or @code{FNCT}, are new.
2272
2273@smallexample
18b519c0 2274@group
bfa74976
RS
2275input: /* empty */
2276 | input line
2277;
18b519c0 2278@end group
bfa74976 2279
18b519c0 2280@group
bfa74976
RS
2281line:
2282 '\n'
2283 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2284 | error '\n' @{ yyerrok; @}
2285;
18b519c0 2286@end group
bfa74976 2287
18b519c0 2288@group
bfa74976
RS
2289exp: NUM @{ $$ = $1; @}
2290 | VAR @{ $$ = $1->value.var; @}
2291 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2292 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2293 | exp '+' exp @{ $$ = $1 + $3; @}
2294 | exp '-' exp @{ $$ = $1 - $3; @}
2295 | exp '*' exp @{ $$ = $1 * $3; @}
2296 | exp '/' exp @{ $$ = $1 / $3; @}
2297 | '-' exp %prec NEG @{ $$ = -$2; @}
2298 | exp '^' exp @{ $$ = pow ($1, $3); @}
2299 | '(' exp ')' @{ $$ = $2; @}
2300;
18b519c0 2301@end group
38a92d50 2302/* End of grammar. */
bfa74976
RS
2303%%
2304@end smallexample
2305
342b8b6e 2306@node Mfcalc Symtab
bfa74976
RS
2307@subsection The @code{mfcalc} Symbol Table
2308@cindex symbol table example
2309
2310The multi-function calculator requires a symbol table to keep track of the
2311names and meanings of variables and functions. This doesn't affect the
2312grammar rules (except for the actions) or the Bison declarations, but it
2313requires some additional C functions for support.
2314
2315The symbol table itself consists of a linked list of records. Its
2316definition, which is kept in the header @file{calc.h}, is as follows. It
2317provides for either functions or variables to be placed in the table.
2318
2319@smallexample
2320@group
38a92d50 2321/* Function type. */
32dfccf8 2322typedef double (*func_t) (double);
72f889cc 2323@end group
32dfccf8 2324
72f889cc 2325@group
38a92d50 2326/* Data type for links in the chain of symbols. */
bfa74976
RS
2327struct symrec
2328@{
38a92d50 2329 char *name; /* name of symbol */
bfa74976 2330 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2331 union
2332 @{
38a92d50
PE
2333 double var; /* value of a VAR */
2334 func_t fnctptr; /* value of a FNCT */
bfa74976 2335 @} value;
38a92d50 2336 struct symrec *next; /* link field */
bfa74976
RS
2337@};
2338@end group
2339
2340@group
2341typedef struct symrec symrec;
2342
38a92d50 2343/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2344extern symrec *sym_table;
2345
a730d142 2346symrec *putsym (char const *, int);
38a92d50 2347symrec *getsym (char const *);
bfa74976
RS
2348@end group
2349@end smallexample
2350
2351The new version of @code{main} includes a call to @code{init_table}, a
2352function that initializes the symbol table. Here it is, and
2353@code{init_table} as well:
2354
2355@smallexample
bfa74976
RS
2356#include <stdio.h>
2357
18b519c0 2358@group
38a92d50 2359/* Called by yyparse on error. */
13863333 2360void
38a92d50 2361yyerror (char const *s)
bfa74976
RS
2362@{
2363 printf ("%s\n", s);
2364@}
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976
RS
2368struct init
2369@{
38a92d50
PE
2370 char const *fname;
2371 double (*fnct) (double);
bfa74976
RS
2372@};
2373@end group
2374
2375@group
38a92d50 2376struct init const arith_fncts[] =
13863333 2377@{
32dfccf8
AD
2378 "sin", sin,
2379 "cos", cos,
13863333 2380 "atan", atan,
32dfccf8
AD
2381 "ln", log,
2382 "exp", exp,
13863333
AD
2383 "sqrt", sqrt,
2384 0, 0
2385@};
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976 2389/* The symbol table: a chain of `struct symrec'. */
38a92d50 2390symrec *sym_table;
bfa74976
RS
2391@end group
2392
2393@group
72d2299c 2394/* Put arithmetic functions in table. */
13863333
AD
2395void
2396init_table (void)
bfa74976
RS
2397@{
2398 int i;
2399 symrec *ptr;
2400 for (i = 0; arith_fncts[i].fname != 0; i++)
2401 @{
2402 ptr = putsym (arith_fncts[i].fname, FNCT);
2403 ptr->value.fnctptr = arith_fncts[i].fnct;
2404 @}
2405@}
2406@end group
38a92d50
PE
2407
2408@group
2409int
2410main (void)
2411@{
2412 init_table ();
2413 return yyparse ();
2414@}
2415@end group
bfa74976
RS
2416@end smallexample
2417
2418By simply editing the initialization list and adding the necessary include
2419files, you can add additional functions to the calculator.
2420
2421Two important functions allow look-up and installation of symbols in the
2422symbol table. The function @code{putsym} is passed a name and the type
2423(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2424linked to the front of the list, and a pointer to the object is returned.
2425The function @code{getsym} is passed the name of the symbol to look up. If
2426found, a pointer to that symbol is returned; otherwise zero is returned.
2427
2428@smallexample
2429symrec *
38a92d50 2430putsym (char const *sym_name, int sym_type)
bfa74976
RS
2431@{
2432 symrec *ptr;
2433 ptr = (symrec *) malloc (sizeof (symrec));
2434 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2435 strcpy (ptr->name,sym_name);
2436 ptr->type = sym_type;
72d2299c 2437 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2438 ptr->next = (struct symrec *)sym_table;
2439 sym_table = ptr;
2440 return ptr;
2441@}
2442
2443symrec *
38a92d50 2444getsym (char const *sym_name)
bfa74976
RS
2445@{
2446 symrec *ptr;
2447 for (ptr = sym_table; ptr != (symrec *) 0;
2448 ptr = (symrec *)ptr->next)
2449 if (strcmp (ptr->name,sym_name) == 0)
2450 return ptr;
2451 return 0;
2452@}
2453@end smallexample
2454
2455The function @code{yylex} must now recognize variables, numeric values, and
2456the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2457characters with a leading letter are recognized as either variables or
bfa74976
RS
2458functions depending on what the symbol table says about them.
2459
2460The string is passed to @code{getsym} for look up in the symbol table. If
2461the name appears in the table, a pointer to its location and its type
2462(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2463already in the table, then it is installed as a @code{VAR} using
2464@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2465returned to @code{yyparse}.
bfa74976
RS
2466
2467No change is needed in the handling of numeric values and arithmetic
2468operators in @code{yylex}.
2469
2470@smallexample
2471@group
2472#include <ctype.h>
18b519c0 2473@end group
13863333 2474
18b519c0 2475@group
13863333
AD
2476int
2477yylex (void)
bfa74976
RS
2478@{
2479 int c;
2480
72d2299c 2481 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2482 while ((c = getchar ()) == ' ' || c == '\t');
2483
2484 if (c == EOF)
2485 return 0;
2486@end group
2487
2488@group
2489 /* Char starts a number => parse the number. */
2490 if (c == '.' || isdigit (c))
2491 @{
2492 ungetc (c, stdin);
2493 scanf ("%lf", &yylval.val);
2494 return NUM;
2495 @}
2496@end group
2497
2498@group
2499 /* Char starts an identifier => read the name. */
2500 if (isalpha (c))
2501 @{
2502 symrec *s;
2503 static char *symbuf = 0;
2504 static int length = 0;
2505 int i;
2506@end group
2507
2508@group
2509 /* Initially make the buffer long enough
2510 for a 40-character symbol name. */
2511 if (length == 0)
2512 length = 40, symbuf = (char *)malloc (length + 1);
2513
2514 i = 0;
2515 do
2516@end group
2517@group
2518 @{
2519 /* If buffer is full, make it bigger. */
2520 if (i == length)
2521 @{
2522 length *= 2;
18b519c0 2523 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2524 @}
2525 /* Add this character to the buffer. */
2526 symbuf[i++] = c;
2527 /* Get another character. */
2528 c = getchar ();
2529 @}
2530@end group
2531@group
72d2299c 2532 while (isalnum (c));
bfa74976
RS
2533
2534 ungetc (c, stdin);
2535 symbuf[i] = '\0';
2536@end group
2537
2538@group
2539 s = getsym (symbuf);
2540 if (s == 0)
2541 s = putsym (symbuf, VAR);
2542 yylval.tptr = s;
2543 return s->type;
2544 @}
2545
2546 /* Any other character is a token by itself. */
2547 return c;
2548@}
2549@end group
2550@end smallexample
2551
72d2299c 2552This program is both powerful and flexible. You may easily add new
704a47c4
AD
2553functions, and it is a simple job to modify this code to install
2554predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2555
342b8b6e 2556@node Exercises
bfa74976
RS
2557@section Exercises
2558@cindex exercises
2559
2560@enumerate
2561@item
2562Add some new functions from @file{math.h} to the initialization list.
2563
2564@item
2565Add another array that contains constants and their values. Then
2566modify @code{init_table} to add these constants to the symbol table.
2567It will be easiest to give the constants type @code{VAR}.
2568
2569@item
2570Make the program report an error if the user refers to an
2571uninitialized variable in any way except to store a value in it.
2572@end enumerate
2573
342b8b6e 2574@node Grammar File
bfa74976
RS
2575@chapter Bison Grammar Files
2576
2577Bison takes as input a context-free grammar specification and produces a
2578C-language function that recognizes correct instances of the grammar.
2579
2580The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2581@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2582
2583@menu
2584* Grammar Outline:: Overall layout of the grammar file.
2585* Symbols:: Terminal and nonterminal symbols.
2586* Rules:: How to write grammar rules.
2587* Recursion:: Writing recursive rules.
2588* Semantics:: Semantic values and actions.
847bf1f5 2589* Locations:: Locations and actions.
bfa74976
RS
2590* Declarations:: All kinds of Bison declarations are described here.
2591* Multiple Parsers:: Putting more than one Bison parser in one program.
2592@end menu
2593
342b8b6e 2594@node Grammar Outline
bfa74976
RS
2595@section Outline of a Bison Grammar
2596
2597A Bison grammar file has four main sections, shown here with the
2598appropriate delimiters:
2599
2600@example
2601%@{
38a92d50 2602 @var{Prologue}
bfa74976
RS
2603%@}
2604
2605@var{Bison declarations}
2606
2607%%
2608@var{Grammar rules}
2609%%
2610
75f5aaea 2611@var{Epilogue}
bfa74976
RS
2612@end example
2613
2614Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2615As a @acronym{GNU} extension, @samp{//} introduces a comment that
2616continues until end of line.
bfa74976
RS
2617
2618@menu
75f5aaea 2619* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2620* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2621* Bison Declarations:: Syntax and usage of the Bison declarations section.
2622* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2623* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2624@end menu
2625
38a92d50 2626@node Prologue
75f5aaea
MA
2627@subsection The prologue
2628@cindex declarations section
2629@cindex Prologue
2630@cindex declarations
bfa74976 2631
f8e1c9e5
AD
2632The @var{Prologue} section contains macro definitions and declarations
2633of functions and variables that are used in the actions in the grammar
2634rules. These are copied to the beginning of the parser file so that
2635they precede the definition of @code{yyparse}. You can use
2636@samp{#include} to get the declarations from a header file. If you
2637don't need any C declarations, you may omit the @samp{%@{} and
2638@samp{%@}} delimiters that bracket this section.
bfa74976 2639
9c437126 2640The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2641of @samp{%@}} that is outside a comment, a string literal, or a
2642character constant.
2643
c732d2c6
AD
2644You may have more than one @var{Prologue} section, intermixed with the
2645@var{Bison declarations}. This allows you to have C and Bison
2646declarations that refer to each other. For example, the @code{%union}
2647declaration may use types defined in a header file, and you may wish to
2648prototype functions that take arguments of type @code{YYSTYPE}. This
2649can be done with two @var{Prologue} blocks, one before and one after the
2650@code{%union} declaration.
2651
2652@smallexample
2653%@{
aef3da86 2654 #define _GNU_SOURCE
38a92d50
PE
2655 #include <stdio.h>
2656 #include "ptypes.h"
c732d2c6
AD
2657%@}
2658
2659%union @{
779e7ceb 2660 long int n;
c732d2c6
AD
2661 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2662@}
2663
2664%@{
38a92d50
PE
2665 static void print_token_value (FILE *, int, YYSTYPE);
2666 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2667%@}
2668
2669@dots{}
2670@end smallexample
2671
aef3da86
PE
2672When in doubt, it is usually safer to put prologue code before all
2673Bison declarations, rather than after. For example, any definitions
2674of feature test macros like @code{_GNU_SOURCE} or
2675@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2676feature test macros can affect the behavior of Bison-generated
2677@code{#include} directives.
2678
2cbe6b7f
JD
2679@node Prologue Alternatives
2680@subsection Prologue Alternatives
2681@cindex Prologue Alternatives
2682
136a0f76 2683@findex %code
16dc6a9e
JD
2684@findex %code requires
2685@findex %code provides
2686@findex %code top
85894313
JD
2687(The prologue alternatives described here are experimental.
2688More user feedback will help to determine whether they should become permanent
2689features.)
2690
2cbe6b7f
JD
2691The functionality of @var{Prologue} sections can often be subtle and
2692inflexible.
8e0a5e9e
JD
2693As an alternative, Bison provides a %code directive with an explicit qualifier
2694field, which identifies the purpose of the code and thus the location(s) where
2695Bison should generate it.
2696For C/C++, the qualifier can be omitted for the default location, or it can be
16dc6a9e 2697@code{requires}, @code{provides}, or @code{top}.
a501eca9 2698@xref{Table of Symbols,,Bison Symbols}.
2cbe6b7f
JD
2699
2700Look again at the example of the previous section:
2701
2702@smallexample
2703%@{
2704 #define _GNU_SOURCE
2705 #include <stdio.h>
2706 #include "ptypes.h"
2707%@}
2708
2709%union @{
2710 long int n;
2711 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2712@}
2713
2714%@{
2715 static void print_token_value (FILE *, int, YYSTYPE);
2716 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2717%@}
2718
2719@dots{}
2720@end smallexample
2721
2722@noindent
2723Notice that there are two @var{Prologue} sections here, but there's a subtle
2724distinction between their functionality.
2725For example, if you decide to override Bison's default definition for
2726@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2727definition?
2728You should write it in the first since Bison will insert that code into the
8e0a5e9e 2729parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2730In which @var{Prologue} section should you prototype an internal function,
2731@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2732arguments?
2733You should prototype it in the second since Bison will insert that code
2734@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2735
2736This distinction in functionality between the two @var{Prologue} sections is
2737established by the appearance of the @code{%union} between them.
a501eca9 2738This behavior raises a few questions.
2cbe6b7f
JD
2739First, why should the position of a @code{%union} affect definitions related to
2740@code{YYLTYPE} and @code{yytokentype}?
2741Second, what if there is no @code{%union}?
2742In that case, the second kind of @var{Prologue} section is not available.
2743This behavior is not intuitive.
2744
8e0a5e9e 2745To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2746@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2747Let's go ahead and add the new @code{YYLTYPE} definition and the
2748@code{trace_token} prototype at the same time:
2749
2750@smallexample
16dc6a9e 2751%code top @{
2cbe6b7f
JD
2752 #define _GNU_SOURCE
2753 #include <stdio.h>
8e0a5e9e
JD
2754
2755 /* WARNING: The following code really belongs
16dc6a9e 2756 * in a `%code requires'; see below. */
8e0a5e9e 2757
2cbe6b7f
JD
2758 #include "ptypes.h"
2759 #define YYLTYPE YYLTYPE
2760 typedef struct YYLTYPE
2761 @{
2762 int first_line;
2763 int first_column;
2764 int last_line;
2765 int last_column;
2766 char *filename;
2767 @} YYLTYPE;
2768@}
2769
2770%union @{
2771 long int n;
2772 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2773@}
2774
2775%code @{
2776 static void print_token_value (FILE *, int, YYSTYPE);
2777 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2778 static void trace_token (enum yytokentype token, YYLTYPE loc);
2779@}
2780
2781@dots{}
2782@end smallexample
2783
2784@noindent
16dc6a9e
JD
2785In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2786functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2787explicit which kind you intend.
2cbe6b7f
JD
2788Moreover, both kinds are always available even in the absence of @code{%union}.
2789
16dc6a9e 2790The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2791The first two lines before the warning need to appear near the top of the
2792parser source code file.
2793The first line after the warning is required by @code{YYSTYPE} and thus also
2794needs to appear in the parser source code file.
2cbe6b7f 2795However, if you've instructed Bison to generate a parser header file
8e0a5e9e
JD
2796(@pxref{Table of Symbols, ,%defines}), you probably want that line to appear
2797before the @code{YYSTYPE} definition in that header file as well.
2798The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2799override the default @code{YYLTYPE} definition there.
2800
16dc6a9e 2801In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2802lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2803definitions.
16dc6a9e 2804Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2805
2806@smallexample
16dc6a9e 2807%code top @{
2cbe6b7f
JD
2808 #define _GNU_SOURCE
2809 #include <stdio.h>
2810@}
2811
16dc6a9e 2812%code requires @{
9bc0dd67
JD
2813 #include "ptypes.h"
2814@}
2815%union @{
2816 long int n;
2817 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2818@}
2819
16dc6a9e 2820%code requires @{
2cbe6b7f
JD
2821 #define YYLTYPE YYLTYPE
2822 typedef struct YYLTYPE
2823 @{
2824 int first_line;
2825 int first_column;
2826 int last_line;
2827 int last_column;
2828 char *filename;
2829 @} YYLTYPE;
2830@}
2831
136a0f76 2832%code @{
2cbe6b7f
JD
2833 static void print_token_value (FILE *, int, YYSTYPE);
2834 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2835 static void trace_token (enum yytokentype token, YYLTYPE loc);
2836@}
2837
2838@dots{}
2839@end smallexample
2840
2841@noindent
2842Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2843definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2844definitions in both the parser source code file and the parser header file.
16dc6a9e 2845(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2846place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2847
a501eca9 2848When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2849should prefer @code{%code requires} over @code{%code top} regardless of whether
2850you instruct Bison to generate a parser header file.
a501eca9 2851When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2852source code file and that has no special need to appear at the top of that
16dc6a9e 2853file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2854These practices will make the purpose of each block of your code explicit to
2855Bison and to other developers reading your grammar file.
8e0a5e9e 2856Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2857@code{%code requires} to be the most important of the four @var{Prologue}
2858alternatives.
a501eca9 2859
2cbe6b7f
JD
2860At some point while developing your parser, you might decide to provide
2861@code{trace_token} to modules that are external to your parser.
2862Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2863header file and the parser source code file.
2864Since this function is not a dependency required by @code{YYSTYPE} or
2865@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2866@code{%code requires}.
2cbe6b7f 2867More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2868@code{%code requires} is not sufficient.
8e0a5e9e 2869Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2870@code{%code provides}:
2cbe6b7f
JD
2871
2872@smallexample
16dc6a9e 2873%code top @{
2cbe6b7f 2874 #define _GNU_SOURCE
136a0f76 2875 #include <stdio.h>
2cbe6b7f 2876@}
136a0f76 2877
16dc6a9e 2878%code requires @{
2cbe6b7f
JD
2879 #include "ptypes.h"
2880@}
2881%union @{
2882 long int n;
2883 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2884@}
2885
16dc6a9e 2886%code requires @{
2cbe6b7f
JD
2887 #define YYLTYPE YYLTYPE
2888 typedef struct YYLTYPE
2889 @{
2890 int first_line;
2891 int first_column;
2892 int last_line;
2893 int last_column;
2894 char *filename;
2895 @} YYLTYPE;
2896@}
2897
16dc6a9e 2898%code provides @{
2cbe6b7f
JD
2899 void trace_token (enum yytokentype token, YYLTYPE loc);
2900@}
2901
2902%code @{
9bc0dd67
JD
2903 static void print_token_value (FILE *, int, YYSTYPE);
2904 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2905@}
9bc0dd67
JD
2906
2907@dots{}
2908@end smallexample
2909
2cbe6b7f
JD
2910@noindent
2911Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2912file and the parser source code file after the definitions for
2913@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2914
2915The above examples are careful to write directives in an order that reflects
8e0a5e9e 2916the layout of the generated parser source code and header files:
16dc6a9e 2917@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2918@code{%code}.
a501eca9 2919While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2920this order, Bison does not require it.
2921Instead, Bison lets you choose an organization that makes sense to you.
2922
a501eca9 2923You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2924In that case, Bison concatenates the contained code in declaration order.
2925This is the only way in which the position of one of these directives within
2926the grammar file affects its functionality.
2927
2928The result of the previous two properties is greater flexibility in how you may
2929organize your grammar file.
2930For example, you may organize semantic-type-related directives by semantic
2931type:
2932
2933@smallexample
16dc6a9e 2934%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2935%union @{ type1 field1; @}
2936%destructor @{ type1_free ($$); @} <field1>
2937%printer @{ type1_print ($$); @} <field1>
2938
16dc6a9e 2939%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2940%union @{ type2 field2; @}
2941%destructor @{ type2_free ($$); @} <field2>
2942%printer @{ type2_print ($$); @} <field2>
2943@end smallexample
2944
2945@noindent
2946You could even place each of the above directive groups in the rules section of
2947the grammar file next to the set of rules that uses the associated semantic
2948type.
2949And you don't have to worry that some directive (like a @code{%union}) in the
2950definitions section is going to adversely affect their functionality in some
2951counter-intuitive manner just because it comes first.
2952Such an organization is not possible using @var{Prologue} sections.
2953
a501eca9 2954This section has been concerned with explaining the advantages of the four
8e0a5e9e 2955@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2956However, in most cases when using these directives, you shouldn't need to
2957think about all the low-level ordering issues discussed here.
2958Instead, you should simply use these directives to label each block of your
2959code according to its purpose and let Bison handle the ordering.
2960@code{%code} is the most generic label.
16dc6a9e
JD
2961Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2962as needed.
a501eca9 2963
342b8b6e 2964@node Bison Declarations
bfa74976
RS
2965@subsection The Bison Declarations Section
2966@cindex Bison declarations (introduction)
2967@cindex declarations, Bison (introduction)
2968
2969The @var{Bison declarations} section contains declarations that define
2970terminal and nonterminal symbols, specify precedence, and so on.
2971In some simple grammars you may not need any declarations.
2972@xref{Declarations, ,Bison Declarations}.
2973
342b8b6e 2974@node Grammar Rules
bfa74976
RS
2975@subsection The Grammar Rules Section
2976@cindex grammar rules section
2977@cindex rules section for grammar
2978
2979The @dfn{grammar rules} section contains one or more Bison grammar
2980rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2981
2982There must always be at least one grammar rule, and the first
2983@samp{%%} (which precedes the grammar rules) may never be omitted even
2984if it is the first thing in the file.
2985
38a92d50 2986@node Epilogue
75f5aaea 2987@subsection The epilogue
bfa74976 2988@cindex additional C code section
75f5aaea 2989@cindex epilogue
bfa74976
RS
2990@cindex C code, section for additional
2991
08e49d20
PE
2992The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2993the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2994place to put anything that you want to have in the parser file but which need
2995not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2996definitions of @code{yylex} and @code{yyerror} often go here. Because
2997C requires functions to be declared before being used, you often need
2998to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2999even if you define them in the Epilogue.
75f5aaea 3000@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3001
3002If the last section is empty, you may omit the @samp{%%} that separates it
3003from the grammar rules.
3004
f8e1c9e5
AD
3005The Bison parser itself contains many macros and identifiers whose names
3006start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3007any such names (except those documented in this manual) in the epilogue
3008of the grammar file.
bfa74976 3009
342b8b6e 3010@node Symbols
bfa74976
RS
3011@section Symbols, Terminal and Nonterminal
3012@cindex nonterminal symbol
3013@cindex terminal symbol
3014@cindex token type
3015@cindex symbol
3016
3017@dfn{Symbols} in Bison grammars represent the grammatical classifications
3018of the language.
3019
3020A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3021class of syntactically equivalent tokens. You use the symbol in grammar
3022rules to mean that a token in that class is allowed. The symbol is
3023represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3024function returns a token type code to indicate what kind of token has
3025been read. You don't need to know what the code value is; you can use
3026the symbol to stand for it.
bfa74976 3027
f8e1c9e5
AD
3028A @dfn{nonterminal symbol} stands for a class of syntactically
3029equivalent groupings. The symbol name is used in writing grammar rules.
3030By convention, it should be all lower case.
bfa74976
RS
3031
3032Symbol names can contain letters, digits (not at the beginning),
3033underscores and periods. Periods make sense only in nonterminals.
3034
931c7513 3035There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3036
3037@itemize @bullet
3038@item
3039A @dfn{named token type} is written with an identifier, like an
c827f760 3040identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3041such name must be defined with a Bison declaration such as
3042@code{%token}. @xref{Token Decl, ,Token Type Names}.
3043
3044@item
3045@cindex character token
3046@cindex literal token
3047@cindex single-character literal
931c7513
RS
3048A @dfn{character token type} (or @dfn{literal character token}) is
3049written in the grammar using the same syntax used in C for character
3050constants; for example, @code{'+'} is a character token type. A
3051character token type doesn't need to be declared unless you need to
3052specify its semantic value data type (@pxref{Value Type, ,Data Types of
3053Semantic Values}), associativity, or precedence (@pxref{Precedence,
3054,Operator Precedence}).
bfa74976
RS
3055
3056By convention, a character token type is used only to represent a
3057token that consists of that particular character. Thus, the token
3058type @code{'+'} is used to represent the character @samp{+} as a
3059token. Nothing enforces this convention, but if you depart from it,
3060your program will confuse other readers.
3061
3062All the usual escape sequences used in character literals in C can be
3063used in Bison as well, but you must not use the null character as a
72d2299c
PE
3064character literal because its numeric code, zero, signifies
3065end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3066for @code{yylex}}). Also, unlike standard C, trigraphs have no
3067special meaning in Bison character literals, nor is backslash-newline
3068allowed.
931c7513
RS
3069
3070@item
3071@cindex string token
3072@cindex literal string token
9ecbd125 3073@cindex multicharacter literal
931c7513
RS
3074A @dfn{literal string token} is written like a C string constant; for
3075example, @code{"<="} is a literal string token. A literal string token
3076doesn't need to be declared unless you need to specify its semantic
14ded682 3077value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3078(@pxref{Precedence}).
3079
3080You can associate the literal string token with a symbolic name as an
3081alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3082Declarations}). If you don't do that, the lexical analyzer has to
3083retrieve the token number for the literal string token from the
3084@code{yytname} table (@pxref{Calling Convention}).
3085
c827f760 3086@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3087
3088By convention, a literal string token is used only to represent a token
3089that consists of that particular string. Thus, you should use the token
3090type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3091does not enforce this convention, but if you depart from it, people who
931c7513
RS
3092read your program will be confused.
3093
3094All the escape sequences used in string literals in C can be used in
92ac3705
PE
3095Bison as well, except that you must not use a null character within a
3096string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3097meaning in Bison string literals, nor is backslash-newline allowed. A
3098literal string token must contain two or more characters; for a token
3099containing just one character, use a character token (see above).
bfa74976
RS
3100@end itemize
3101
3102How you choose to write a terminal symbol has no effect on its
3103grammatical meaning. That depends only on where it appears in rules and
3104on when the parser function returns that symbol.
3105
72d2299c
PE
3106The value returned by @code{yylex} is always one of the terminal
3107symbols, except that a zero or negative value signifies end-of-input.
3108Whichever way you write the token type in the grammar rules, you write
3109it the same way in the definition of @code{yylex}. The numeric code
3110for a character token type is simply the positive numeric code of the
3111character, so @code{yylex} can use the identical value to generate the
3112requisite code, though you may need to convert it to @code{unsigned
3113char} to avoid sign-extension on hosts where @code{char} is signed.
3114Each named token type becomes a C macro in
bfa74976 3115the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3116(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3117@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3118
3119If @code{yylex} is defined in a separate file, you need to arrange for the
3120token-type macro definitions to be available there. Use the @samp{-d}
3121option when you run Bison, so that it will write these macro definitions
3122into a separate header file @file{@var{name}.tab.h} which you can include
3123in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3124
72d2299c 3125If you want to write a grammar that is portable to any Standard C
9d9b8b70 3126host, you must use only nonnull character tokens taken from the basic
c827f760 3127execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3128digits, the 52 lower- and upper-case English letters, and the
3129characters in the following C-language string:
3130
3131@example
3132"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3133@end example
3134
f8e1c9e5
AD
3135The @code{yylex} function and Bison must use a consistent character set
3136and encoding for character tokens. For example, if you run Bison in an
3137@acronym{ASCII} environment, but then compile and run the resulting
3138program in an environment that uses an incompatible character set like
3139@acronym{EBCDIC}, the resulting program may not work because the tables
3140generated by Bison will assume @acronym{ASCII} numeric values for
3141character tokens. It is standard practice for software distributions to
3142contain C source files that were generated by Bison in an
3143@acronym{ASCII} environment, so installers on platforms that are
3144incompatible with @acronym{ASCII} must rebuild those files before
3145compiling them.
e966383b 3146
bfa74976
RS
3147The symbol @code{error} is a terminal symbol reserved for error recovery
3148(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3149In particular, @code{yylex} should never return this value. The default
3150value of the error token is 256, unless you explicitly assigned 256 to
3151one of your tokens with a @code{%token} declaration.
bfa74976 3152
342b8b6e 3153@node Rules
bfa74976
RS
3154@section Syntax of Grammar Rules
3155@cindex rule syntax
3156@cindex grammar rule syntax
3157@cindex syntax of grammar rules
3158
3159A Bison grammar rule has the following general form:
3160
3161@example
e425e872 3162@group
bfa74976
RS
3163@var{result}: @var{components}@dots{}
3164 ;
e425e872 3165@end group
bfa74976
RS
3166@end example
3167
3168@noindent
9ecbd125 3169where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3170and @var{components} are various terminal and nonterminal symbols that
13863333 3171are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3172
3173For example,
3174
3175@example
3176@group
3177exp: exp '+' exp
3178 ;
3179@end group
3180@end example
3181
3182@noindent
3183says that two groupings of type @code{exp}, with a @samp{+} token in between,
3184can be combined into a larger grouping of type @code{exp}.
3185
72d2299c
PE
3186White space in rules is significant only to separate symbols. You can add
3187extra white space as you wish.
bfa74976
RS
3188
3189Scattered among the components can be @var{actions} that determine
3190the semantics of the rule. An action looks like this:
3191
3192@example
3193@{@var{C statements}@}
3194@end example
3195
3196@noindent
287c78f6
PE
3197@cindex braced code
3198This is an example of @dfn{braced code}, that is, C code surrounded by
3199braces, much like a compound statement in C@. Braced code can contain
3200any sequence of C tokens, so long as its braces are balanced. Bison
3201does not check the braced code for correctness directly; it merely
3202copies the code to the output file, where the C compiler can check it.
3203
3204Within braced code, the balanced-brace count is not affected by braces
3205within comments, string literals, or character constants, but it is
3206affected by the C digraphs @samp{<%} and @samp{%>} that represent
3207braces. At the top level braced code must be terminated by @samp{@}}
3208and not by a digraph. Bison does not look for trigraphs, so if braced
3209code uses trigraphs you should ensure that they do not affect the
3210nesting of braces or the boundaries of comments, string literals, or
3211character constants.
3212
bfa74976
RS
3213Usually there is only one action and it follows the components.
3214@xref{Actions}.
3215
3216@findex |
3217Multiple rules for the same @var{result} can be written separately or can
3218be joined with the vertical-bar character @samp{|} as follows:
3219
bfa74976
RS
3220@example
3221@group
3222@var{result}: @var{rule1-components}@dots{}
3223 | @var{rule2-components}@dots{}
3224 @dots{}
3225 ;
3226@end group
3227@end example
bfa74976
RS
3228
3229@noindent
3230They are still considered distinct rules even when joined in this way.
3231
3232If @var{components} in a rule is empty, it means that @var{result} can
3233match the empty string. For example, here is how to define a
3234comma-separated sequence of zero or more @code{exp} groupings:
3235
3236@example
3237@group
3238expseq: /* empty */
3239 | expseq1
3240 ;
3241@end group
3242
3243@group
3244expseq1: exp
3245 | expseq1 ',' exp
3246 ;
3247@end group
3248@end example
3249
3250@noindent
3251It is customary to write a comment @samp{/* empty */} in each rule
3252with no components.
3253
342b8b6e 3254@node Recursion
bfa74976
RS
3255@section Recursive Rules
3256@cindex recursive rule
3257
f8e1c9e5
AD
3258A rule is called @dfn{recursive} when its @var{result} nonterminal
3259appears also on its right hand side. Nearly all Bison grammars need to
3260use recursion, because that is the only way to define a sequence of any
3261number of a particular thing. Consider this recursive definition of a
9ecbd125 3262comma-separated sequence of one or more expressions:
bfa74976
RS
3263
3264@example
3265@group
3266expseq1: exp
3267 | expseq1 ',' exp
3268 ;
3269@end group
3270@end example
3271
3272@cindex left recursion
3273@cindex right recursion
3274@noindent
3275Since the recursive use of @code{expseq1} is the leftmost symbol in the
3276right hand side, we call this @dfn{left recursion}. By contrast, here
3277the same construct is defined using @dfn{right recursion}:
3278
3279@example
3280@group
3281expseq1: exp
3282 | exp ',' expseq1
3283 ;
3284@end group
3285@end example
3286
3287@noindent
ec3bc396
AD
3288Any kind of sequence can be defined using either left recursion or right
3289recursion, but you should always use left recursion, because it can
3290parse a sequence of any number of elements with bounded stack space.
3291Right recursion uses up space on the Bison stack in proportion to the
3292number of elements in the sequence, because all the elements must be
3293shifted onto the stack before the rule can be applied even once.
3294@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3295of this.
bfa74976
RS
3296
3297@cindex mutual recursion
3298@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3299rule does not appear directly on its right hand side, but does appear
3300in rules for other nonterminals which do appear on its right hand
13863333 3301side.
bfa74976
RS
3302
3303For example:
3304
3305@example
3306@group
3307expr: primary
3308 | primary '+' primary
3309 ;
3310@end group
3311
3312@group
3313primary: constant
3314 | '(' expr ')'
3315 ;
3316@end group
3317@end example
3318
3319@noindent
3320defines two mutually-recursive nonterminals, since each refers to the
3321other.
3322
342b8b6e 3323@node Semantics
bfa74976
RS
3324@section Defining Language Semantics
3325@cindex defining language semantics
13863333 3326@cindex language semantics, defining
bfa74976
RS
3327
3328The grammar rules for a language determine only the syntax. The semantics
3329are determined by the semantic values associated with various tokens and
3330groupings, and by the actions taken when various groupings are recognized.
3331
3332For example, the calculator calculates properly because the value
3333associated with each expression is the proper number; it adds properly
3334because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3335the numbers associated with @var{x} and @var{y}.
3336
3337@menu
3338* Value Type:: Specifying one data type for all semantic values.
3339* Multiple Types:: Specifying several alternative data types.
3340* Actions:: An action is the semantic definition of a grammar rule.
3341* Action Types:: Specifying data types for actions to operate on.
3342* Mid-Rule Actions:: Most actions go at the end of a rule.
3343 This says when, why and how to use the exceptional
3344 action in the middle of a rule.
3345@end menu
3346
342b8b6e 3347@node Value Type
bfa74976
RS
3348@subsection Data Types of Semantic Values
3349@cindex semantic value type
3350@cindex value type, semantic
3351@cindex data types of semantic values
3352@cindex default data type
3353
3354In a simple program it may be sufficient to use the same data type for
3355the semantic values of all language constructs. This was true in the
c827f760 3356@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3357Notation Calculator}).
bfa74976 3358
ddc8ede1
PE
3359Bison normally uses the type @code{int} for semantic values if your
3360program uses the same data type for all language constructs. To
bfa74976
RS
3361specify some other type, define @code{YYSTYPE} as a macro, like this:
3362
3363@example
3364#define YYSTYPE double
3365@end example
3366
3367@noindent
50cce58e
PE
3368@code{YYSTYPE}'s replacement list should be a type name
3369that does not contain parentheses or square brackets.
342b8b6e 3370This macro definition must go in the prologue of the grammar file
75f5aaea 3371(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3372
342b8b6e 3373@node Multiple Types
bfa74976
RS
3374@subsection More Than One Value Type
3375
3376In most programs, you will need different data types for different kinds
3377of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3378@code{int} or @code{long int}, while a string constant needs type
3379@code{char *}, and an identifier might need a pointer to an entry in the
3380symbol table.
bfa74976
RS
3381
3382To use more than one data type for semantic values in one parser, Bison
3383requires you to do two things:
3384
3385@itemize @bullet
3386@item
ddc8ede1 3387Specify the entire collection of possible data types, either by using the
704a47c4 3388@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3389Value Types}), or by using a @code{typedef} or a @code{#define} to
3390define @code{YYSTYPE} to be a union type whose member names are
3391the type tags.
bfa74976
RS
3392
3393@item
14ded682
AD
3394Choose one of those types for each symbol (terminal or nonterminal) for
3395which semantic values are used. This is done for tokens with the
3396@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3397and for groupings with the @code{%type} Bison declaration (@pxref{Type
3398Decl, ,Nonterminal Symbols}).
bfa74976
RS
3399@end itemize
3400
342b8b6e 3401@node Actions
bfa74976
RS
3402@subsection Actions
3403@cindex action
3404@vindex $$
3405@vindex $@var{n}
3406
3407An action accompanies a syntactic rule and contains C code to be executed
3408each time an instance of that rule is recognized. The task of most actions
3409is to compute a semantic value for the grouping built by the rule from the
3410semantic values associated with tokens or smaller groupings.
3411
287c78f6
PE
3412An action consists of braced code containing C statements, and can be
3413placed at any position in the rule;
704a47c4
AD
3414it is executed at that position. Most rules have just one action at the
3415end of the rule, following all the components. Actions in the middle of
3416a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3417Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3418
3419The C code in an action can refer to the semantic values of the components
3420matched by the rule with the construct @code{$@var{n}}, which stands for
3421the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3422being constructed is @code{$$}. Bison translates both of these
3423constructs into expressions of the appropriate type when it copies the
3424actions into the parser file. @code{$$} is translated to a modifiable
3425lvalue, so it can be assigned to.
bfa74976
RS
3426
3427Here is a typical example:
3428
3429@example
3430@group
3431exp: @dots{}
3432 | exp '+' exp
3433 @{ $$ = $1 + $3; @}
3434@end group
3435@end example
3436
3437@noindent
3438This rule constructs an @code{exp} from two smaller @code{exp} groupings
3439connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3440refer to the semantic values of the two component @code{exp} groupings,
3441which are the first and third symbols on the right hand side of the rule.
3442The sum is stored into @code{$$} so that it becomes the semantic value of
3443the addition-expression just recognized by the rule. If there were a
3444useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3445referred to as @code{$2}.
bfa74976 3446
3ded9a63
AD
3447Note that the vertical-bar character @samp{|} is really a rule
3448separator, and actions are attached to a single rule. This is a
3449difference with tools like Flex, for which @samp{|} stands for either
3450``or'', or ``the same action as that of the next rule''. In the
3451following example, the action is triggered only when @samp{b} is found:
3452
3453@example
3454@group
3455a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3456@end group
3457@end example
3458
bfa74976
RS
3459@cindex default action
3460If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3461@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3462becomes the value of the whole rule. Of course, the default action is
3463valid only if the two data types match. There is no meaningful default
3464action for an empty rule; every empty rule must have an explicit action
3465unless the rule's value does not matter.
bfa74976
RS
3466
3467@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3468to tokens and groupings on the stack @emph{before} those that match the
3469current rule. This is a very risky practice, and to use it reliably
3470you must be certain of the context in which the rule is applied. Here
3471is a case in which you can use this reliably:
3472
3473@example
3474@group
3475foo: expr bar '+' expr @{ @dots{} @}
3476 | expr bar '-' expr @{ @dots{} @}
3477 ;
3478@end group
3479
3480@group
3481bar: /* empty */
3482 @{ previous_expr = $0; @}
3483 ;
3484@end group
3485@end example
3486
3487As long as @code{bar} is used only in the fashion shown here, @code{$0}
3488always refers to the @code{expr} which precedes @code{bar} in the
3489definition of @code{foo}.
3490
32c29292 3491@vindex yylval
742e4900 3492It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3493any, from a semantic action.
3494This semantic value is stored in @code{yylval}.
3495@xref{Action Features, ,Special Features for Use in Actions}.
3496
342b8b6e 3497@node Action Types
bfa74976
RS
3498@subsection Data Types of Values in Actions
3499@cindex action data types
3500@cindex data types in actions
3501
3502If you have chosen a single data type for semantic values, the @code{$$}
3503and @code{$@var{n}} constructs always have that data type.
3504
3505If you have used @code{%union} to specify a variety of data types, then you
3506must declare a choice among these types for each terminal or nonterminal
3507symbol that can have a semantic value. Then each time you use @code{$$} or
3508@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3509in the rule. In this example,
bfa74976
RS
3510
3511@example
3512@group
3513exp: @dots{}
3514 | exp '+' exp
3515 @{ $$ = $1 + $3; @}
3516@end group
3517@end example
3518
3519@noindent
3520@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3521have the data type declared for the nonterminal symbol @code{exp}. If
3522@code{$2} were used, it would have the data type declared for the
e0c471a9 3523terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3524
3525Alternatively, you can specify the data type when you refer to the value,
3526by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3527reference. For example, if you have defined types as shown here:
3528
3529@example
3530@group
3531%union @{
3532 int itype;
3533 double dtype;
3534@}
3535@end group
3536@end example
3537
3538@noindent
3539then you can write @code{$<itype>1} to refer to the first subunit of the
3540rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3541
342b8b6e 3542@node Mid-Rule Actions
bfa74976
RS
3543@subsection Actions in Mid-Rule
3544@cindex actions in mid-rule
3545@cindex mid-rule actions
3546
3547Occasionally it is useful to put an action in the middle of a rule.
3548These actions are written just like usual end-of-rule actions, but they
3549are executed before the parser even recognizes the following components.
3550
3551A mid-rule action may refer to the components preceding it using
3552@code{$@var{n}}, but it may not refer to subsequent components because
3553it is run before they are parsed.
3554
3555The mid-rule action itself counts as one of the components of the rule.
3556This makes a difference when there is another action later in the same rule
3557(and usually there is another at the end): you have to count the actions
3558along with the symbols when working out which number @var{n} to use in
3559@code{$@var{n}}.
3560
3561The mid-rule action can also have a semantic value. The action can set
3562its value with an assignment to @code{$$}, and actions later in the rule
3563can refer to the value using @code{$@var{n}}. Since there is no symbol
3564to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3565in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3566specify a data type each time you refer to this value.
bfa74976
RS
3567
3568There is no way to set the value of the entire rule with a mid-rule
3569action, because assignments to @code{$$} do not have that effect. The
3570only way to set the value for the entire rule is with an ordinary action
3571at the end of the rule.
3572
3573Here is an example from a hypothetical compiler, handling a @code{let}
3574statement that looks like @samp{let (@var{variable}) @var{statement}} and
3575serves to create a variable named @var{variable} temporarily for the
3576duration of @var{statement}. To parse this construct, we must put
3577@var{variable} into the symbol table while @var{statement} is parsed, then
3578remove it afterward. Here is how it is done:
3579
3580@example
3581@group
3582stmt: LET '(' var ')'
3583 @{ $<context>$ = push_context ();
3584 declare_variable ($3); @}
3585 stmt @{ $$ = $6;
3586 pop_context ($<context>5); @}
3587@end group
3588@end example
3589
3590@noindent
3591As soon as @samp{let (@var{variable})} has been recognized, the first
3592action is run. It saves a copy of the current semantic context (the
3593list of accessible variables) as its semantic value, using alternative
3594@code{context} in the data-type union. Then it calls
3595@code{declare_variable} to add the new variable to that list. Once the
3596first action is finished, the embedded statement @code{stmt} can be
3597parsed. Note that the mid-rule action is component number 5, so the
3598@samp{stmt} is component number 6.
3599
3600After the embedded statement is parsed, its semantic value becomes the
3601value of the entire @code{let}-statement. Then the semantic value from the
3602earlier action is used to restore the prior list of variables. This
3603removes the temporary @code{let}-variable from the list so that it won't
3604appear to exist while the rest of the program is parsed.
3605
841a7737
JD
3606@findex %destructor
3607@cindex discarded symbols, mid-rule actions
3608@cindex error recovery, mid-rule actions
3609In the above example, if the parser initiates error recovery (@pxref{Error
3610Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3611it might discard the previous semantic context @code{$<context>5} without
3612restoring it.
3613Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3614Discarded Symbols}).
ec5479ce
JD
3615However, Bison currently provides no means to declare a destructor specific to
3616a particular mid-rule action's semantic value.
841a7737
JD
3617
3618One solution is to bury the mid-rule action inside a nonterminal symbol and to
3619declare a destructor for that symbol:
3620
3621@example
3622@group
3623%type <context> let
3624%destructor @{ pop_context ($$); @} let
3625
3626%%
3627
3628stmt: let stmt
3629 @{ $$ = $2;
3630 pop_context ($1); @}
3631 ;
3632
3633let: LET '(' var ')'
3634 @{ $$ = push_context ();
3635 declare_variable ($3); @}
3636 ;
3637
3638@end group
3639@end example
3640
3641@noindent
3642Note that the action is now at the end of its rule.
3643Any mid-rule action can be converted to an end-of-rule action in this way, and
3644this is what Bison actually does to implement mid-rule actions.
3645
bfa74976
RS
3646Taking action before a rule is completely recognized often leads to
3647conflicts since the parser must commit to a parse in order to execute the
3648action. For example, the following two rules, without mid-rule actions,
3649can coexist in a working parser because the parser can shift the open-brace
3650token and look at what follows before deciding whether there is a
3651declaration or not:
3652
3653@example
3654@group
3655compound: '@{' declarations statements '@}'
3656 | '@{' statements '@}'
3657 ;
3658@end group
3659@end example
3660
3661@noindent
3662But when we add a mid-rule action as follows, the rules become nonfunctional:
3663
3664@example
3665@group
3666compound: @{ prepare_for_local_variables (); @}
3667 '@{' declarations statements '@}'
3668@end group
3669@group
3670 | '@{' statements '@}'
3671 ;
3672@end group
3673@end example
3674
3675@noindent
3676Now the parser is forced to decide whether to run the mid-rule action
3677when it has read no farther than the open-brace. In other words, it
3678must commit to using one rule or the other, without sufficient
3679information to do it correctly. (The open-brace token is what is called
742e4900
JD
3680the @dfn{lookahead} token at this time, since the parser is still
3681deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3682
3683You might think that you could correct the problem by putting identical
3684actions into the two rules, like this:
3685
3686@example
3687@group
3688compound: @{ prepare_for_local_variables (); @}
3689 '@{' declarations statements '@}'
3690 | @{ prepare_for_local_variables (); @}
3691 '@{' statements '@}'
3692 ;
3693@end group
3694@end example
3695
3696@noindent
3697But this does not help, because Bison does not realize that the two actions
3698are identical. (Bison never tries to understand the C code in an action.)
3699
3700If the grammar is such that a declaration can be distinguished from a
3701statement by the first token (which is true in C), then one solution which
3702does work is to put the action after the open-brace, like this:
3703
3704@example
3705@group
3706compound: '@{' @{ prepare_for_local_variables (); @}
3707 declarations statements '@}'
3708 | '@{' statements '@}'
3709 ;
3710@end group
3711@end example
3712
3713@noindent
3714Now the first token of the following declaration or statement,
3715which would in any case tell Bison which rule to use, can still do so.
3716
3717Another solution is to bury the action inside a nonterminal symbol which
3718serves as a subroutine:
3719
3720@example
3721@group
3722subroutine: /* empty */
3723 @{ prepare_for_local_variables (); @}
3724 ;
3725
3726@end group
3727
3728@group
3729compound: subroutine
3730 '@{' declarations statements '@}'
3731 | subroutine
3732 '@{' statements '@}'
3733 ;
3734@end group
3735@end example
3736
3737@noindent
3738Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3739deciding which rule for @code{compound} it will eventually use.
bfa74976 3740
342b8b6e 3741@node Locations
847bf1f5
AD
3742@section Tracking Locations
3743@cindex location
95923bd6
AD
3744@cindex textual location
3745@cindex location, textual
847bf1f5
AD
3746
3747Though grammar rules and semantic actions are enough to write a fully
72d2299c 3748functional parser, it can be useful to process some additional information,
3e259915
MA
3749especially symbol locations.
3750
704a47c4
AD
3751The way locations are handled is defined by providing a data type, and
3752actions to take when rules are matched.
847bf1f5
AD
3753
3754@menu
3755* Location Type:: Specifying a data type for locations.
3756* Actions and Locations:: Using locations in actions.
3757* Location Default Action:: Defining a general way to compute locations.
3758@end menu
3759
342b8b6e 3760@node Location Type
847bf1f5
AD
3761@subsection Data Type of Locations
3762@cindex data type of locations
3763@cindex default location type
3764
3765Defining a data type for locations is much simpler than for semantic values,
3766since all tokens and groupings always use the same type.
3767
50cce58e
PE
3768You can specify the type of locations by defining a macro called
3769@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3770defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3771When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3772four members:
3773
3774@example
6273355b 3775typedef struct YYLTYPE
847bf1f5
AD
3776@{
3777 int first_line;
3778 int first_column;
3779 int last_line;
3780 int last_column;
6273355b 3781@} YYLTYPE;
847bf1f5
AD
3782@end example
3783
cd48d21d
AD
3784At the beginning of the parsing, Bison initializes all these fields to 1
3785for @code{yylloc}.
3786
342b8b6e 3787@node Actions and Locations
847bf1f5
AD
3788@subsection Actions and Locations
3789@cindex location actions
3790@cindex actions, location
3791@vindex @@$
3792@vindex @@@var{n}
3793
3794Actions are not only useful for defining language semantics, but also for
3795describing the behavior of the output parser with locations.
3796
3797The most obvious way for building locations of syntactic groupings is very
72d2299c 3798similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3799constructs can be used to access the locations of the elements being matched.
3800The location of the @var{n}th component of the right hand side is
3801@code{@@@var{n}}, while the location of the left hand side grouping is
3802@code{@@$}.
3803
3e259915 3804Here is a basic example using the default data type for locations:
847bf1f5
AD
3805
3806@example
3807@group
3808exp: @dots{}
3e259915 3809 | exp '/' exp
847bf1f5 3810 @{
3e259915
MA
3811 @@$.first_column = @@1.first_column;
3812 @@$.first_line = @@1.first_line;
847bf1f5
AD
3813 @@$.last_column = @@3.last_column;
3814 @@$.last_line = @@3.last_line;
3e259915
MA
3815 if ($3)
3816 $$ = $1 / $3;
3817 else
3818 @{
3819 $$ = 1;
4e03e201
AD
3820 fprintf (stderr,
3821 "Division by zero, l%d,c%d-l%d,c%d",
3822 @@3.first_line, @@3.first_column,
3823 @@3.last_line, @@3.last_column);
3e259915 3824 @}
847bf1f5
AD
3825 @}
3826@end group
3827@end example
3828
3e259915 3829As for semantic values, there is a default action for locations that is
72d2299c 3830run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3831beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3832last symbol.
3e259915 3833
72d2299c 3834With this default action, the location tracking can be fully automatic. The
3e259915
MA
3835example above simply rewrites this way:
3836
3837@example
3838@group
3839exp: @dots{}
3840 | exp '/' exp
3841 @{
3842 if ($3)
3843 $$ = $1 / $3;
3844 else
3845 @{
3846 $$ = 1;
4e03e201
AD
3847 fprintf (stderr,
3848 "Division by zero, l%d,c%d-l%d,c%d",
3849 @@3.first_line, @@3.first_column,
3850 @@3.last_line, @@3.last_column);
3e259915
MA
3851 @}
3852 @}
3853@end group
3854@end example
847bf1f5 3855
32c29292 3856@vindex yylloc
742e4900 3857It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3858from a semantic action.
3859This location is stored in @code{yylloc}.
3860@xref{Action Features, ,Special Features for Use in Actions}.
3861
342b8b6e 3862@node Location Default Action
847bf1f5
AD
3863@subsection Default Action for Locations
3864@vindex YYLLOC_DEFAULT
8710fc41 3865@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3866
72d2299c 3867Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3868locations are much more general than semantic values, there is room in
3869the output parser to redefine the default action to take for each
72d2299c 3870rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3871matched, before the associated action is run. It is also invoked
3872while processing a syntax error, to compute the error's location.
8710fc41
JD
3873Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3874parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3875of that ambiguity.
847bf1f5 3876
3e259915 3877Most of the time, this macro is general enough to suppress location
79282c6c 3878dedicated code from semantic actions.
847bf1f5 3879
72d2299c 3880The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3881the location of the grouping (the result of the computation). When a
766de5eb 3882rule is matched, the second parameter identifies locations of
96b93a3d 3883all right hand side elements of the rule being matched, and the third
8710fc41
JD
3884parameter is the size of the rule's right hand side.
3885When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3886right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3887When processing a syntax error, the second parameter identifies locations
3888of the symbols that were discarded during error processing, and the third
96b93a3d 3889parameter is the number of discarded symbols.
847bf1f5 3890
766de5eb 3891By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3892
766de5eb 3893@smallexample
847bf1f5 3894@group
766de5eb
PE
3895# define YYLLOC_DEFAULT(Current, Rhs, N) \
3896 do \
3897 if (N) \
3898 @{ \
3899 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3900 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3901 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3902 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3903 @} \
3904 else \
3905 @{ \
3906 (Current).first_line = (Current).last_line = \
3907 YYRHSLOC(Rhs, 0).last_line; \
3908 (Current).first_column = (Current).last_column = \
3909 YYRHSLOC(Rhs, 0).last_column; \
3910 @} \
3911 while (0)
847bf1f5 3912@end group
766de5eb 3913@end smallexample
676385e2 3914
766de5eb
PE
3915where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3916in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3917just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3918
3e259915 3919When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3920
3e259915 3921@itemize @bullet
79282c6c 3922@item
72d2299c 3923All arguments are free of side-effects. However, only the first one (the
3e259915 3924result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3925
3e259915 3926@item
766de5eb
PE
3927For consistency with semantic actions, valid indexes within the
3928right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3929valid index, and it refers to the symbol just before the reduction.
3930During error processing @var{n} is always positive.
0ae99356
PE
3931
3932@item
3933Your macro should parenthesize its arguments, if need be, since the
3934actual arguments may not be surrounded by parentheses. Also, your
3935macro should expand to something that can be used as a single
3936statement when it is followed by a semicolon.
3e259915 3937@end itemize
847bf1f5 3938
342b8b6e 3939@node Declarations
bfa74976
RS
3940@section Bison Declarations
3941@cindex declarations, Bison
3942@cindex Bison declarations
3943
3944The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3945used in formulating the grammar and the data types of semantic values.
3946@xref{Symbols}.
3947
3948All token type names (but not single-character literal tokens such as
3949@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3950declared if you need to specify which data type to use for the semantic
3951value (@pxref{Multiple Types, ,More Than One Value Type}).
3952
3953The first rule in the file also specifies the start symbol, by default.
3954If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3955it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3956Grammars}).
bfa74976
RS
3957
3958@menu
b50d2359 3959* Require Decl:: Requiring a Bison version.
bfa74976
RS
3960* Token Decl:: Declaring terminal symbols.
3961* Precedence Decl:: Declaring terminals with precedence and associativity.
3962* Union Decl:: Declaring the set of all semantic value types.
3963* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3964* Initial Action Decl:: Code run before parsing starts.
72f889cc 3965* Destructor Decl:: Declaring how symbols are freed.
d6328241 3966* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3967* Start Decl:: Specifying the start symbol.
3968* Pure Decl:: Requesting a reentrant parser.
3969* Decl Summary:: Table of all Bison declarations.
3970@end menu
3971
b50d2359
AD
3972@node Require Decl
3973@subsection Require a Version of Bison
3974@cindex version requirement
3975@cindex requiring a version of Bison
3976@findex %require
3977
3978You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3979the requirement is not met, @command{bison} exits with an error (exit
3980status 63).
b50d2359
AD
3981
3982@example
3983%require "@var{version}"
3984@end example
3985
342b8b6e 3986@node Token Decl
bfa74976
RS
3987@subsection Token Type Names
3988@cindex declaring token type names
3989@cindex token type names, declaring
931c7513 3990@cindex declaring literal string tokens
bfa74976
RS
3991@findex %token
3992
3993The basic way to declare a token type name (terminal symbol) is as follows:
3994
3995@example
3996%token @var{name}
3997@end example
3998
3999Bison will convert this into a @code{#define} directive in
4000the parser, so that the function @code{yylex} (if it is in this file)
4001can use the name @var{name} to stand for this token type's code.
4002
14ded682
AD
4003Alternatively, you can use @code{%left}, @code{%right}, or
4004@code{%nonassoc} instead of @code{%token}, if you wish to specify
4005associativity and precedence. @xref{Precedence Decl, ,Operator
4006Precedence}.
bfa74976
RS
4007
4008You can explicitly specify the numeric code for a token type by appending
1452af69
PE
4009a decimal or hexadecimal integer value in the field immediately
4010following the token name:
bfa74976
RS
4011
4012@example
4013%token NUM 300
1452af69 4014%token XNUM 0x12d // a GNU extension
bfa74976
RS
4015@end example
4016
4017@noindent
4018It is generally best, however, to let Bison choose the numeric codes for
4019all token types. Bison will automatically select codes that don't conflict
e966383b 4020with each other or with normal characters.
bfa74976
RS
4021
4022In the event that the stack type is a union, you must augment the
4023@code{%token} or other token declaration to include the data type
704a47c4
AD
4024alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4025Than One Value Type}).
bfa74976
RS
4026
4027For example:
4028
4029@example
4030@group
4031%union @{ /* define stack type */
4032 double val;
4033 symrec *tptr;
4034@}
4035%token <val> NUM /* define token NUM and its type */
4036@end group
4037@end example
4038
931c7513
RS
4039You can associate a literal string token with a token type name by
4040writing the literal string at the end of a @code{%token}
4041declaration which declares the name. For example:
4042
4043@example
4044%token arrow "=>"
4045@end example
4046
4047@noindent
4048For example, a grammar for the C language might specify these names with
4049equivalent literal string tokens:
4050
4051@example
4052%token <operator> OR "||"
4053%token <operator> LE 134 "<="
4054%left OR "<="
4055@end example
4056
4057@noindent
4058Once you equate the literal string and the token name, you can use them
4059interchangeably in further declarations or the grammar rules. The
4060@code{yylex} function can use the token name or the literal string to
4061obtain the token type code number (@pxref{Calling Convention}).
4062
342b8b6e 4063@node Precedence Decl
bfa74976
RS
4064@subsection Operator Precedence
4065@cindex precedence declarations
4066@cindex declaring operator precedence
4067@cindex operator precedence, declaring
4068
4069Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4070declare a token and specify its precedence and associativity, all at
4071once. These are called @dfn{precedence declarations}.
704a47c4
AD
4072@xref{Precedence, ,Operator Precedence}, for general information on
4073operator precedence.
bfa74976
RS
4074
4075The syntax of a precedence declaration is the same as that of
4076@code{%token}: either
4077
4078@example
4079%left @var{symbols}@dots{}
4080@end example
4081
4082@noindent
4083or
4084
4085@example
4086%left <@var{type}> @var{symbols}@dots{}
4087@end example
4088
4089And indeed any of these declarations serves the purposes of @code{%token}.
4090But in addition, they specify the associativity and relative precedence for
4091all the @var{symbols}:
4092
4093@itemize @bullet
4094@item
4095The associativity of an operator @var{op} determines how repeated uses
4096of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4097@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4098grouping @var{y} with @var{z} first. @code{%left} specifies
4099left-associativity (grouping @var{x} with @var{y} first) and
4100@code{%right} specifies right-associativity (grouping @var{y} with
4101@var{z} first). @code{%nonassoc} specifies no associativity, which
4102means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4103considered a syntax error.
4104
4105@item
4106The precedence of an operator determines how it nests with other operators.
4107All the tokens declared in a single precedence declaration have equal
4108precedence and nest together according to their associativity.
4109When two tokens declared in different precedence declarations associate,
4110the one declared later has the higher precedence and is grouped first.
4111@end itemize
4112
342b8b6e 4113@node Union Decl
bfa74976
RS
4114@subsection The Collection of Value Types
4115@cindex declaring value types
4116@cindex value types, declaring
4117@findex %union
4118
287c78f6
PE
4119The @code{%union} declaration specifies the entire collection of
4120possible data types for semantic values. The keyword @code{%union} is
4121followed by braced code containing the same thing that goes inside a
4122@code{union} in C@.
bfa74976
RS
4123
4124For example:
4125
4126@example
4127@group
4128%union @{
4129 double val;
4130 symrec *tptr;
4131@}
4132@end group
4133@end example
4134
4135@noindent
4136This says that the two alternative types are @code{double} and @code{symrec
4137*}. They are given names @code{val} and @code{tptr}; these names are used
4138in the @code{%token} and @code{%type} declarations to pick one of the types
4139for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4140
6273355b
PE
4141As an extension to @acronym{POSIX}, a tag is allowed after the
4142@code{union}. For example:
4143
4144@example
4145@group
4146%union value @{
4147 double val;
4148 symrec *tptr;
4149@}
4150@end group
4151@end example
4152
d6ca7905 4153@noindent
6273355b
PE
4154specifies the union tag @code{value}, so the corresponding C type is
4155@code{union value}. If you do not specify a tag, it defaults to
4156@code{YYSTYPE}.
4157
d6ca7905
PE
4158As another extension to @acronym{POSIX}, you may specify multiple
4159@code{%union} declarations; their contents are concatenated. However,
4160only the first @code{%union} declaration can specify a tag.
4161
6273355b 4162Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4163a semicolon after the closing brace.
4164
ddc8ede1
PE
4165Instead of @code{%union}, you can define and use your own union type
4166@code{YYSTYPE} if your grammar contains at least one
4167@samp{<@var{type}>} tag. For example, you can put the following into
4168a header file @file{parser.h}:
4169
4170@example
4171@group
4172union YYSTYPE @{
4173 double val;
4174 symrec *tptr;
4175@};
4176typedef union YYSTYPE YYSTYPE;
4177@end group
4178@end example
4179
4180@noindent
4181and then your grammar can use the following
4182instead of @code{%union}:
4183
4184@example
4185@group
4186%@{
4187#include "parser.h"
4188%@}
4189%type <val> expr
4190%token <tptr> ID
4191@end group
4192@end example
4193
342b8b6e 4194@node Type Decl
bfa74976
RS
4195@subsection Nonterminal Symbols
4196@cindex declaring value types, nonterminals
4197@cindex value types, nonterminals, declaring
4198@findex %type
4199
4200@noindent
4201When you use @code{%union} to specify multiple value types, you must
4202declare the value type of each nonterminal symbol for which values are
4203used. This is done with a @code{%type} declaration, like this:
4204
4205@example
4206%type <@var{type}> @var{nonterminal}@dots{}
4207@end example
4208
4209@noindent
704a47c4
AD
4210Here @var{nonterminal} is the name of a nonterminal symbol, and
4211@var{type} is the name given in the @code{%union} to the alternative
4212that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4213can give any number of nonterminal symbols in the same @code{%type}
4214declaration, if they have the same value type. Use spaces to separate
4215the symbol names.
bfa74976 4216
931c7513
RS
4217You can also declare the value type of a terminal symbol. To do this,
4218use the same @code{<@var{type}>} construction in a declaration for the
4219terminal symbol. All kinds of token declarations allow
4220@code{<@var{type}>}.
4221
18d192f0
AD
4222@node Initial Action Decl
4223@subsection Performing Actions before Parsing
4224@findex %initial-action
4225
4226Sometimes your parser needs to perform some initializations before
4227parsing. The @code{%initial-action} directive allows for such arbitrary
4228code.
4229
4230@deffn {Directive} %initial-action @{ @var{code} @}
4231@findex %initial-action
287c78f6 4232Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4233@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4234@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4235@code{%parse-param}.
18d192f0
AD
4236@end deffn
4237
451364ed
AD
4238For instance, if your locations use a file name, you may use
4239
4240@example
48b16bbc 4241%parse-param @{ char const *file_name @};
451364ed
AD
4242%initial-action
4243@{
4626a15d 4244 @@$.initialize (file_name);
451364ed
AD
4245@};
4246@end example
4247
18d192f0 4248
72f889cc
AD
4249@node Destructor Decl
4250@subsection Freeing Discarded Symbols
4251@cindex freeing discarded symbols
4252@findex %destructor
12e35840 4253@findex <*>
3ebecc24 4254@findex <>
a85284cf
AD
4255During error recovery (@pxref{Error Recovery}), symbols already pushed
4256on the stack and tokens coming from the rest of the file are discarded
4257until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4258or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4259symbols on the stack must be discarded. Even if the parser succeeds, it
4260must discard the start symbol.
258b75ca
PE
4261
4262When discarded symbols convey heap based information, this memory is
4263lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4264in traditional compilers, it is unacceptable for programs like shells or
4265protocol implementations that may parse and execute indefinitely.
258b75ca 4266
a85284cf
AD
4267The @code{%destructor} directive defines code that is called when a
4268symbol is automatically discarded.
72f889cc
AD
4269
4270@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4271@findex %destructor
287c78f6
PE
4272Invoke the braced @var{code} whenever the parser discards one of the
4273@var{symbols}.
4b367315 4274Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4275with the discarded symbol, and @code{@@$} designates its location.
4276The additional parser parameters are also available (@pxref{Parser Function, ,
4277The Parser Function @code{yyparse}}).
ec5479ce 4278
b2a0b7ca
JD
4279When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4280per-symbol @code{%destructor}.
4281You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4282tag among @var{symbols}.
b2a0b7ca 4283In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4284grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4285per-symbol @code{%destructor}.
4286
12e35840 4287Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4288(These default forms are experimental.
4289More user feedback will help to determine whether they should become permanent
4290features.)
3ebecc24 4291You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4292exactly one @code{%destructor} declaration in your grammar file.
4293The parser will invoke the @var{code} associated with one of these whenever it
4294discards any user-defined grammar symbol that has no per-symbol and no per-type
4295@code{%destructor}.
4296The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4297symbol for which you have formally declared a semantic type tag (@code{%type}
4298counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4299The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4300symbol that has no declared semantic type tag.
72f889cc
AD
4301@end deffn
4302
b2a0b7ca 4303@noindent
12e35840 4304For example:
72f889cc
AD
4305
4306@smallexample
ec5479ce
JD
4307%union @{ char *string; @}
4308%token <string> STRING1
4309%token <string> STRING2
4310%type <string> string1
4311%type <string> string2
b2a0b7ca
JD
4312%union @{ char character; @}
4313%token <character> CHR
4314%type <character> chr
12e35840
JD
4315%token TAGLESS
4316
b2a0b7ca 4317%destructor @{ @} <character>
12e35840
JD
4318%destructor @{ free ($$); @} <*>
4319%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4320%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4321@end smallexample
4322
4323@noindent
b2a0b7ca
JD
4324guarantees that, when the parser discards any user-defined symbol that has a
4325semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4326to @code{free} by default.
ec5479ce
JD
4327However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4328prints its line number to @code{stdout}.
4329It performs only the second @code{%destructor} in this case, so it invokes
4330@code{free} only once.
12e35840
JD
4331Finally, the parser merely prints a message whenever it discards any symbol,
4332such as @code{TAGLESS}, that has no semantic type tag.
4333
4334A Bison-generated parser invokes the default @code{%destructor}s only for
4335user-defined as opposed to Bison-defined symbols.
4336For example, the parser will not invoke either kind of default
4337@code{%destructor} for the special Bison-defined symbols @code{$accept},
4338@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4339none of which you can reference in your grammar.
4340It also will not invoke either for the @code{error} token (@pxref{Table of
4341Symbols, ,error}), which is always defined by Bison regardless of whether you
4342reference it in your grammar.
4343However, it may invoke one of them for the end token (token 0) if you
4344redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4345
4346@smallexample
4347%token END 0
4348@end smallexample
4349
12e35840
JD
4350@cindex actions in mid-rule
4351@cindex mid-rule actions
4352Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4353mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4354That is, Bison does not consider a mid-rule to have a semantic value if you do
4355not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4356@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4357rule.
4358However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4359@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4360
3508ce36
JD
4361@ignore
4362@noindent
4363In the future, it may be possible to redefine the @code{error} token as a
4364nonterminal that captures the discarded symbols.
4365In that case, the parser will invoke the default destructor for it as well.
4366@end ignore
4367
e757bb10
AD
4368@sp 1
4369
4370@cindex discarded symbols
4371@dfn{Discarded symbols} are the following:
4372
4373@itemize
4374@item
4375stacked symbols popped during the first phase of error recovery,
4376@item
4377incoming terminals during the second phase of error recovery,
4378@item
742e4900 4379the current lookahead and the entire stack (except the current
9d9b8b70 4380right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4381@item
4382the start symbol, when the parser succeeds.
e757bb10
AD
4383@end itemize
4384
9d9b8b70
PE
4385The parser can @dfn{return immediately} because of an explicit call to
4386@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4387exhaustion.
4388
4389Right-hand size symbols of a rule that explicitly triggers a syntax
4390error via @code{YYERROR} are not discarded automatically. As a rule
4391of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4392the memory.
e757bb10 4393
342b8b6e 4394@node Expect Decl
bfa74976
RS
4395@subsection Suppressing Conflict Warnings
4396@cindex suppressing conflict warnings
4397@cindex preventing warnings about conflicts
4398@cindex warnings, preventing
4399@cindex conflicts, suppressing warnings of
4400@findex %expect
d6328241 4401@findex %expect-rr
bfa74976
RS
4402
4403Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4404(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4405have harmless shift/reduce conflicts which are resolved in a predictable
4406way and would be difficult to eliminate. It is desirable to suppress
4407the warning about these conflicts unless the number of conflicts
4408changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4409
4410The declaration looks like this:
4411
4412@example
4413%expect @var{n}
4414@end example
4415
035aa4a0
PE
4416Here @var{n} is a decimal integer. The declaration says there should
4417be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4418Bison reports an error if the number of shift/reduce conflicts differs
4419from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4420
035aa4a0
PE
4421For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4422serious, and should be eliminated entirely. Bison will always report
4423reduce/reduce conflicts for these parsers. With @acronym{GLR}
4424parsers, however, both kinds of conflicts are routine; otherwise,
4425there would be no need to use @acronym{GLR} parsing. Therefore, it is
4426also possible to specify an expected number of reduce/reduce conflicts
4427in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4428
4429@example
4430%expect-rr @var{n}
4431@end example
4432
bfa74976
RS
4433In general, using @code{%expect} involves these steps:
4434
4435@itemize @bullet
4436@item
4437Compile your grammar without @code{%expect}. Use the @samp{-v} option
4438to get a verbose list of where the conflicts occur. Bison will also
4439print the number of conflicts.
4440
4441@item
4442Check each of the conflicts to make sure that Bison's default
4443resolution is what you really want. If not, rewrite the grammar and
4444go back to the beginning.
4445
4446@item
4447Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4448number which Bison printed. With @acronym{GLR} parsers, add an
4449@code{%expect-rr} declaration as well.
bfa74976
RS
4450@end itemize
4451
035aa4a0
PE
4452Now Bison will warn you if you introduce an unexpected conflict, but
4453will keep silent otherwise.
bfa74976 4454
342b8b6e 4455@node Start Decl
bfa74976
RS
4456@subsection The Start-Symbol
4457@cindex declaring the start symbol
4458@cindex start symbol, declaring
4459@cindex default start symbol
4460@findex %start
4461
4462Bison assumes by default that the start symbol for the grammar is the first
4463nonterminal specified in the grammar specification section. The programmer
4464may override this restriction with the @code{%start} declaration as follows:
4465
4466@example
4467%start @var{symbol}
4468@end example
4469
342b8b6e 4470@node Pure Decl
bfa74976
RS
4471@subsection A Pure (Reentrant) Parser
4472@cindex reentrant parser
4473@cindex pure parser
8c9a50be 4474@findex %pure-parser
bfa74976
RS
4475
4476A @dfn{reentrant} program is one which does not alter in the course of
4477execution; in other words, it consists entirely of @dfn{pure} (read-only)
4478code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4479for example, a nonreentrant program may not be safe to call from a signal
4480handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4481program must be called only within interlocks.
4482
70811b85 4483Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4484suitable for most uses, and it permits compatibility with Yacc. (The
4485standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4486statically allocated variables for communication with @code{yylex},
4487including @code{yylval} and @code{yylloc}.)
bfa74976 4488
70811b85 4489Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4490declaration @code{%pure-parser} says that you want the parser to be
70811b85 4491reentrant. It looks like this:
bfa74976
RS
4492
4493@example
8c9a50be 4494%pure-parser
bfa74976
RS
4495@end example
4496
70811b85
RS
4497The result is that the communication variables @code{yylval} and
4498@code{yylloc} become local variables in @code{yyparse}, and a different
4499calling convention is used for the lexical analyzer function
4500@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4501Parsers}, for the details of this. The variable @code{yynerrs} also
4502becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4503Reporting Function @code{yyerror}}). The convention for calling
4504@code{yyparse} itself is unchanged.
4505
4506Whether the parser is pure has nothing to do with the grammar rules.
4507You can generate either a pure parser or a nonreentrant parser from any
4508valid grammar.
bfa74976 4509
342b8b6e 4510@node Decl Summary
bfa74976
RS
4511@subsection Bison Declaration Summary
4512@cindex Bison declaration summary
4513@cindex declaration summary
4514@cindex summary, Bison declaration
4515
d8988b2f 4516Here is a summary of the declarations used to define a grammar:
bfa74976 4517
18b519c0 4518@deffn {Directive} %union
bfa74976
RS
4519Declare the collection of data types that semantic values may have
4520(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4521@end deffn
bfa74976 4522
18b519c0 4523@deffn {Directive} %token
bfa74976
RS
4524Declare a terminal symbol (token type name) with no precedence
4525or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4526@end deffn
bfa74976 4527
18b519c0 4528@deffn {Directive} %right
bfa74976
RS
4529Declare a terminal symbol (token type name) that is right-associative
4530(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4531@end deffn
bfa74976 4532
18b519c0 4533@deffn {Directive} %left
bfa74976
RS
4534Declare a terminal symbol (token type name) that is left-associative
4535(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4536@end deffn
bfa74976 4537
18b519c0 4538@deffn {Directive} %nonassoc
bfa74976 4539Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4540(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4541Using it in a way that would be associative is a syntax error.
4542@end deffn
4543
91d2c560 4544@ifset defaultprec
39a06c25 4545@deffn {Directive} %default-prec
22fccf95 4546Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4547(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4548@end deffn
91d2c560 4549@end ifset
bfa74976 4550
18b519c0 4551@deffn {Directive} %type
bfa74976
RS
4552Declare the type of semantic values for a nonterminal symbol
4553(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4554@end deffn
bfa74976 4555
18b519c0 4556@deffn {Directive} %start
89cab50d
AD
4557Specify the grammar's start symbol (@pxref{Start Decl, ,The
4558Start-Symbol}).
18b519c0 4559@end deffn
bfa74976 4560
18b519c0 4561@deffn {Directive} %expect
bfa74976
RS
4562Declare the expected number of shift-reduce conflicts
4563(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4564@end deffn
4565
bfa74976 4566
d8988b2f
AD
4567@sp 1
4568@noindent
4569In order to change the behavior of @command{bison}, use the following
4570directives:
4571
18b519c0 4572@deffn {Directive} %debug
4947ebdb
PE
4573In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4574already defined, so that the debugging facilities are compiled.
18b519c0 4575@end deffn
ec3bc396 4576@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4577
18b519c0 4578@deffn {Directive} %defines
4bfd5e4e
PE
4579Write a header file containing macro definitions for the token type
4580names defined in the grammar as well as a few other declarations.
d8988b2f 4581If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4582is named @file{@var{name}.h}.
d8988b2f 4583
b321737f 4584For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4585@code{YYSTYPE} is already defined as a macro or you have used a
4586@code{<@var{type}>} tag without using @code{%union}.
4587Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4588(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4589require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4590or type definition
f8e1c9e5
AD
4591(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4592arrange for these definitions to be propagated to all modules, e.g., by
4593putting them in a prerequisite header that is included both by your
4594parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4595
4596Unless your parser is pure, the output header declares @code{yylval}
4597as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4598Parser}.
4599
4600If you have also used locations, the output header declares
4601@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4602the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4603Locations}.
4604
f8e1c9e5
AD
4605This output file is normally essential if you wish to put the definition
4606of @code{yylex} in a separate source file, because @code{yylex}
4607typically needs to be able to refer to the above-mentioned declarations
4608and to the token type codes. @xref{Token Values, ,Semantic Values of
4609Tokens}.
9bc0dd67 4610
16dc6a9e
JD
4611@findex %code requires
4612@findex %code provides
4613If you have declared @code{%code requires} or @code{%code provides}, the output
4614header also contains their code.
8e0a5e9e 4615@xref{Table of Symbols, ,%code}.
18b519c0 4616@end deffn
d8988b2f 4617
592d0b1e
PB
4618@deffn {Directive} %define @var{define-variable}
4619@deffnx {Directive} %define @var{define-variable} @var{value}
4620Define a variable to be used by the skeleton in order to adjust its
4621behavior. The @var{value} can be omitted for boolean variables; for
4622boolean variables, the skeletons will treat a @var{value} of @samp{0}
4623or @samp{false} as the boolean variable being false, and anything else
4624as true.
4625@end deffn
4626
02975b9a
JD
4627@deffn {Directive} %defines @var{defines-file}
4628Same as above, but save in the file @var{defines-file}.
4629@end deffn
4630
18b519c0 4631@deffn {Directive} %destructor
258b75ca 4632Specify how the parser should reclaim the memory associated to
fa7e68c3 4633discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4634@end deffn
72f889cc 4635
02975b9a 4636@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
4637Specify a prefix to use for all Bison output file names. The names are
4638chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4639@end deffn
d8988b2f 4640
e6e704dc 4641@deffn {Directive} %language "@var{language}"
0e021770
PE
4642Specify the programming language for the generated parser. Currently
4643supported languages include C and C++.
e6e704dc 4644@var{language} is case-insensitive.
0e021770
PE
4645@end deffn
4646
18b519c0 4647@deffn {Directive} %locations
89cab50d
AD
4648Generate the code processing the locations (@pxref{Action Features,
4649,Special Features for Use in Actions}). This mode is enabled as soon as
4650the grammar uses the special @samp{@@@var{n}} tokens, but if your
4651grammar does not use it, using @samp{%locations} allows for more
6e649e65 4652accurate syntax error messages.
18b519c0 4653@end deffn
89cab50d 4654
02975b9a 4655@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
4656Rename the external symbols used in the parser so that they start with
4657@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4658in C parsers
d8988b2f 4659is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4660@code{yylval}, @code{yychar}, @code{yydebug}, and
4661(if locations are used) @code{yylloc}. For example, if you use
02975b9a 4662@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4663and so on. In C++ parsers, it is only the surrounding namespace which is
4664named @var{prefix} instead of @samp{yy}.
4665@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4666@end deffn
931c7513 4667
91d2c560 4668@ifset defaultprec
22fccf95
PE
4669@deffn {Directive} %no-default-prec
4670Do not assign a precedence to rules lacking an explicit @code{%prec}
4671modifier (@pxref{Contextual Precedence, ,Context-Dependent
4672Precedence}).
4673@end deffn
91d2c560 4674@end ifset
22fccf95 4675
18b519c0 4676@deffn {Directive} %no-parser
6deb4447
AD
4677Do not include any C code in the parser file; generate tables only. The
4678parser file contains just @code{#define} directives and static variable
4679declarations.
4680
4681This option also tells Bison to write the C code for the grammar actions
fa4d969f 4682into a file named @file{@var{file}.act}, in the form of a
6deb4447 4683brace-surrounded body fit for a @code{switch} statement.
18b519c0 4684@end deffn
6deb4447 4685
18b519c0 4686@deffn {Directive} %no-lines
931c7513
RS
4687Don't generate any @code{#line} preprocessor commands in the parser
4688file. Ordinarily Bison writes these commands in the parser file so that
4689the C compiler and debuggers will associate errors and object code with
4690your source file (the grammar file). This directive causes them to
4691associate errors with the parser file, treating it an independent source
4692file in its own right.
18b519c0 4693@end deffn
931c7513 4694
02975b9a 4695@deffn {Directive} %output "@var{file}"
fa4d969f 4696Specify @var{file} for the parser file.
18b519c0 4697@end deffn
6deb4447 4698
18b519c0 4699@deffn {Directive} %pure-parser
d8988b2f
AD
4700Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4701(Reentrant) Parser}).
18b519c0 4702@end deffn
6deb4447 4703
b50d2359 4704@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4705Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4706Require a Version of Bison}.
b50d2359
AD
4707@end deffn
4708
0e021770 4709@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
4710Specify the skeleton to use.
4711
4712You probably don't need this option unless you are developing Bison.
4713You should use @code{%language} if you want to specify the skeleton for a
4714different language, because it is clearer and because it will always choose the
4715correct skeleton for non-deterministic or push parsers.
4716
4717If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
4718file in the Bison installation directory.
4719If it does, @var{file} is an absolute file name or a file name relative to the
4720directory of the grammar file.
4721This is similar to how most shells resolve commands.
0e021770
PE
4722@end deffn
4723
18b519c0 4724@deffn {Directive} %token-table
931c7513
RS
4725Generate an array of token names in the parser file. The name of the
4726array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4727token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4728three elements of @code{yytname} correspond to the predefined tokens
4729@code{"$end"},
88bce5a2
AD
4730@code{"error"}, and @code{"$undefined"}; after these come the symbols
4731defined in the grammar file.
931c7513 4732
9e0876fb
PE
4733The name in the table includes all the characters needed to represent
4734the token in Bison. For single-character literals and literal
4735strings, this includes the surrounding quoting characters and any
4736escape sequences. For example, the Bison single-character literal
4737@code{'+'} corresponds to a three-character name, represented in C as
4738@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4739corresponds to a five-character name, represented in C as
4740@code{"\"\\\\/\""}.
931c7513 4741
8c9a50be 4742When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4743definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4744@code{YYNRULES}, and @code{YYNSTATES}:
4745
4746@table @code
4747@item YYNTOKENS
4748The highest token number, plus one.
4749@item YYNNTS
9ecbd125 4750The number of nonterminal symbols.
931c7513
RS
4751@item YYNRULES
4752The number of grammar rules,
4753@item YYNSTATES
4754The number of parser states (@pxref{Parser States}).
4755@end table
18b519c0 4756@end deffn
d8988b2f 4757
18b519c0 4758@deffn {Directive} %verbose
d8988b2f 4759Write an extra output file containing verbose descriptions of the
742e4900 4760parser states and what is done for each type of lookahead token in
72d2299c 4761that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4762information.
18b519c0 4763@end deffn
d8988b2f 4764
18b519c0 4765@deffn {Directive} %yacc
d8988b2f
AD
4766Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4767including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4768@end deffn
d8988b2f
AD
4769
4770
342b8b6e 4771@node Multiple Parsers
bfa74976
RS
4772@section Multiple Parsers in the Same Program
4773
4774Most programs that use Bison parse only one language and therefore contain
4775only one Bison parser. But what if you want to parse more than one
4776language with the same program? Then you need to avoid a name conflict
4777between different definitions of @code{yyparse}, @code{yylval}, and so on.
4778
4779The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4780(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4781functions and variables of the Bison parser to start with @var{prefix}
4782instead of @samp{yy}. You can use this to give each parser distinct
4783names that do not conflict.
bfa74976
RS
4784
4785The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4786@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4787@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4788the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4789
4790@strong{All the other variables and macros associated with Bison are not
4791renamed.} These others are not global; there is no conflict if the same
4792name is used in different parsers. For example, @code{YYSTYPE} is not
4793renamed, but defining this in different ways in different parsers causes
4794no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4795
4796The @samp{-p} option works by adding macro definitions to the beginning
4797of the parser source file, defining @code{yyparse} as
4798@code{@var{prefix}parse}, and so on. This effectively substitutes one
4799name for the other in the entire parser file.
4800
342b8b6e 4801@node Interface
bfa74976
RS
4802@chapter Parser C-Language Interface
4803@cindex C-language interface
4804@cindex interface
4805
4806The Bison parser is actually a C function named @code{yyparse}. Here we
4807describe the interface conventions of @code{yyparse} and the other
4808functions that it needs to use.
4809
4810Keep in mind that the parser uses many C identifiers starting with
4811@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4812identifier (aside from those in this manual) in an action or in epilogue
4813in the grammar file, you are likely to run into trouble.
bfa74976
RS
4814
4815@menu
4816* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4817* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4818 which reads tokens.
4819* Error Reporting:: You must supply a function @code{yyerror}.
4820* Action Features:: Special features for use in actions.
f7ab6a50
PE
4821* Internationalization:: How to let the parser speak in the user's
4822 native language.
bfa74976
RS
4823@end menu
4824
342b8b6e 4825@node Parser Function
bfa74976
RS
4826@section The Parser Function @code{yyparse}
4827@findex yyparse
4828
4829You call the function @code{yyparse} to cause parsing to occur. This
4830function reads tokens, executes actions, and ultimately returns when it
4831encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4832write an action which directs @code{yyparse} to return immediately
4833without reading further.
bfa74976 4834
2a8d363a
AD
4835
4836@deftypefun int yyparse (void)
bfa74976
RS
4837The value returned by @code{yyparse} is 0 if parsing was successful (return
4838is due to end-of-input).
4839
b47dbebe
PE
4840The value is 1 if parsing failed because of invalid input, i.e., input
4841that contains a syntax error or that causes @code{YYABORT} to be
4842invoked.
4843
4844The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4845@end deftypefun
bfa74976
RS
4846
4847In an action, you can cause immediate return from @code{yyparse} by using
4848these macros:
4849
2a8d363a 4850@defmac YYACCEPT
bfa74976
RS
4851@findex YYACCEPT
4852Return immediately with value 0 (to report success).
2a8d363a 4853@end defmac
bfa74976 4854
2a8d363a 4855@defmac YYABORT
bfa74976
RS
4856@findex YYABORT
4857Return immediately with value 1 (to report failure).
2a8d363a
AD
4858@end defmac
4859
4860If you use a reentrant parser, you can optionally pass additional
4861parameter information to it in a reentrant way. To do so, use the
4862declaration @code{%parse-param}:
4863
feeb0eda 4864@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4865@findex %parse-param
287c78f6
PE
4866Declare that an argument declared by the braced-code
4867@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4868The @var{argument-declaration} is used when declaring
feeb0eda
PE
4869functions or prototypes. The last identifier in
4870@var{argument-declaration} must be the argument name.
2a8d363a
AD
4871@end deffn
4872
4873Here's an example. Write this in the parser:
4874
4875@example
feeb0eda
PE
4876%parse-param @{int *nastiness@}
4877%parse-param @{int *randomness@}
2a8d363a
AD
4878@end example
4879
4880@noindent
4881Then call the parser like this:
4882
4883@example
4884@{
4885 int nastiness, randomness;
4886 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4887 value = yyparse (&nastiness, &randomness);
4888 @dots{}
4889@}
4890@end example
4891
4892@noindent
4893In the grammar actions, use expressions like this to refer to the data:
4894
4895@example
4896exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4897@end example
4898
bfa74976 4899
342b8b6e 4900@node Lexical
bfa74976
RS
4901@section The Lexical Analyzer Function @code{yylex}
4902@findex yylex
4903@cindex lexical analyzer
4904
4905The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4906the input stream and returns them to the parser. Bison does not create
4907this function automatically; you must write it so that @code{yyparse} can
4908call it. The function is sometimes referred to as a lexical scanner.
4909
4910In simple programs, @code{yylex} is often defined at the end of the Bison
4911grammar file. If @code{yylex} is defined in a separate source file, you
4912need to arrange for the token-type macro definitions to be available there.
4913To do this, use the @samp{-d} option when you run Bison, so that it will
4914write these macro definitions into a separate header file
4915@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4916that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4917
4918@menu
4919* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4920* Token Values:: How @code{yylex} must return the semantic value
4921 of the token it has read.
95923bd6 4922* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4923 (line number, etc.) of the token, if the
4924 actions want that.
4925* Pure Calling:: How the calling convention differs
4926 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4927@end menu
4928
342b8b6e 4929@node Calling Convention
bfa74976
RS
4930@subsection Calling Convention for @code{yylex}
4931
72d2299c
PE
4932The value that @code{yylex} returns must be the positive numeric code
4933for the type of token it has just found; a zero or negative value
4934signifies end-of-input.
bfa74976
RS
4935
4936When a token is referred to in the grammar rules by a name, that name
4937in the parser file becomes a C macro whose definition is the proper
4938numeric code for that token type. So @code{yylex} can use the name
4939to indicate that type. @xref{Symbols}.
4940
4941When a token is referred to in the grammar rules by a character literal,
4942the numeric code for that character is also the code for the token type.
72d2299c
PE
4943So @code{yylex} can simply return that character code, possibly converted
4944to @code{unsigned char} to avoid sign-extension. The null character
4945must not be used this way, because its code is zero and that
bfa74976
RS
4946signifies end-of-input.
4947
4948Here is an example showing these things:
4949
4950@example
13863333
AD
4951int
4952yylex (void)
bfa74976
RS
4953@{
4954 @dots{}
72d2299c 4955 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4956 return 0;
4957 @dots{}
4958 if (c == '+' || c == '-')
72d2299c 4959 return c; /* Assume token type for `+' is '+'. */
bfa74976 4960 @dots{}
72d2299c 4961 return INT; /* Return the type of the token. */
bfa74976
RS
4962 @dots{}
4963@}
4964@end example
4965
4966@noindent
4967This interface has been designed so that the output from the @code{lex}
4968utility can be used without change as the definition of @code{yylex}.
4969
931c7513
RS
4970If the grammar uses literal string tokens, there are two ways that
4971@code{yylex} can determine the token type codes for them:
4972
4973@itemize @bullet
4974@item
4975If the grammar defines symbolic token names as aliases for the
4976literal string tokens, @code{yylex} can use these symbolic names like
4977all others. In this case, the use of the literal string tokens in
4978the grammar file has no effect on @code{yylex}.
4979
4980@item
9ecbd125 4981@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4982table. The index of the token in the table is the token type's code.
9ecbd125 4983The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4984double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4985token's characters are escaped as necessary to be suitable as input
4986to Bison.
931c7513 4987
9e0876fb
PE
4988Here's code for looking up a multicharacter token in @code{yytname},
4989assuming that the characters of the token are stored in
4990@code{token_buffer}, and assuming that the token does not contain any
4991characters like @samp{"} that require escaping.
931c7513
RS
4992
4993@smallexample
4994for (i = 0; i < YYNTOKENS; i++)
4995 @{
4996 if (yytname[i] != 0
4997 && yytname[i][0] == '"'
68449b3a
PE
4998 && ! strncmp (yytname[i] + 1, token_buffer,
4999 strlen (token_buffer))
931c7513
RS
5000 && yytname[i][strlen (token_buffer) + 1] == '"'
5001 && yytname[i][strlen (token_buffer) + 2] == 0)
5002 break;
5003 @}
5004@end smallexample
5005
5006The @code{yytname} table is generated only if you use the
8c9a50be 5007@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5008@end itemize
5009
342b8b6e 5010@node Token Values
bfa74976
RS
5011@subsection Semantic Values of Tokens
5012
5013@vindex yylval
9d9b8b70 5014In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5015be stored into the global variable @code{yylval}. When you are using
5016just one data type for semantic values, @code{yylval} has that type.
5017Thus, if the type is @code{int} (the default), you might write this in
5018@code{yylex}:
5019
5020@example
5021@group
5022 @dots{}
72d2299c
PE
5023 yylval = value; /* Put value onto Bison stack. */
5024 return INT; /* Return the type of the token. */
bfa74976
RS
5025 @dots{}
5026@end group
5027@end example
5028
5029When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5030made from the @code{%union} declaration (@pxref{Union Decl, ,The
5031Collection of Value Types}). So when you store a token's value, you
5032must use the proper member of the union. If the @code{%union}
5033declaration looks like this:
bfa74976
RS
5034
5035@example
5036@group
5037%union @{
5038 int intval;
5039 double val;
5040 symrec *tptr;
5041@}
5042@end group
5043@end example
5044
5045@noindent
5046then the code in @code{yylex} might look like this:
5047
5048@example
5049@group
5050 @dots{}
72d2299c
PE
5051 yylval.intval = value; /* Put value onto Bison stack. */
5052 return INT; /* Return the type of the token. */
bfa74976
RS
5053 @dots{}
5054@end group
5055@end example
5056
95923bd6
AD
5057@node Token Locations
5058@subsection Textual Locations of Tokens
bfa74976
RS
5059
5060@vindex yylloc
847bf1f5 5061If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5062Tracking Locations}) in actions to keep track of the textual locations
5063of tokens and groupings, then you must provide this information in
5064@code{yylex}. The function @code{yyparse} expects to find the textual
5065location of a token just parsed in the global variable @code{yylloc}.
5066So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5067
5068By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5069initialize the members that are going to be used by the actions. The
5070four members are called @code{first_line}, @code{first_column},
5071@code{last_line} and @code{last_column}. Note that the use of this
5072feature makes the parser noticeably slower.
bfa74976
RS
5073
5074@tindex YYLTYPE
5075The data type of @code{yylloc} has the name @code{YYLTYPE}.
5076
342b8b6e 5077@node Pure Calling
c656404a 5078@subsection Calling Conventions for Pure Parsers
bfa74976 5079
8c9a50be 5080When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5081pure, reentrant parser, the global communication variables @code{yylval}
5082and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5083Parser}.) In such parsers the two global variables are replaced by
5084pointers passed as arguments to @code{yylex}. You must declare them as
5085shown here, and pass the information back by storing it through those
5086pointers.
bfa74976
RS
5087
5088@example
13863333
AD
5089int
5090yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5091@{
5092 @dots{}
5093 *lvalp = value; /* Put value onto Bison stack. */
5094 return INT; /* Return the type of the token. */
5095 @dots{}
5096@}
5097@end example
5098
5099If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5100textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5101this case, omit the second argument; @code{yylex} will be called with
5102only one argument.
5103
e425e872 5104
2a8d363a
AD
5105If you wish to pass the additional parameter data to @code{yylex}, use
5106@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5107Function}).
e425e872 5108
feeb0eda 5109@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5110@findex %lex-param
287c78f6
PE
5111Declare that the braced-code @var{argument-declaration} is an
5112additional @code{yylex} argument declaration.
2a8d363a 5113@end deffn
e425e872 5114
2a8d363a 5115For instance:
e425e872
RS
5116
5117@example
feeb0eda
PE
5118%parse-param @{int *nastiness@}
5119%lex-param @{int *nastiness@}
5120%parse-param @{int *randomness@}
e425e872
RS
5121@end example
5122
5123@noindent
2a8d363a 5124results in the following signature:
e425e872
RS
5125
5126@example
2a8d363a
AD
5127int yylex (int *nastiness);
5128int yyparse (int *nastiness, int *randomness);
e425e872
RS
5129@end example
5130
2a8d363a 5131If @code{%pure-parser} is added:
c656404a
RS
5132
5133@example
2a8d363a
AD
5134int yylex (YYSTYPE *lvalp, int *nastiness);
5135int yyparse (int *nastiness, int *randomness);
c656404a
RS
5136@end example
5137
2a8d363a
AD
5138@noindent
5139and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5140
2a8d363a
AD
5141@example
5142int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5143int yyparse (int *nastiness, int *randomness);
5144@end example
931c7513 5145
342b8b6e 5146@node Error Reporting
bfa74976
RS
5147@section The Error Reporting Function @code{yyerror}
5148@cindex error reporting function
5149@findex yyerror
5150@cindex parse error
5151@cindex syntax error
5152
6e649e65 5153The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5154whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5155action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5156macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5157in Actions}).
bfa74976
RS
5158
5159The Bison parser expects to report the error by calling an error
5160reporting function named @code{yyerror}, which you must supply. It is
5161called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5162receives one argument. For a syntax error, the string is normally
5163@w{@code{"syntax error"}}.
bfa74976 5164
2a8d363a
AD
5165@findex %error-verbose
5166If you invoke the directive @code{%error-verbose} in the Bison
5167declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5168Section}), then Bison provides a more verbose and specific error message
6e649e65 5169string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5170
1a059451
PE
5171The parser can detect one other kind of error: memory exhaustion. This
5172can happen when the input contains constructions that are very deeply
bfa74976 5173nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5174parser normally extends its stack automatically up to a very large limit. But
5175if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5176fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5177
5178In some cases diagnostics like @w{@code{"syntax error"}} are
5179translated automatically from English to some other language before
5180they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5181
5182The following definition suffices in simple programs:
5183
5184@example
5185@group
13863333 5186void
38a92d50 5187yyerror (char const *s)
bfa74976
RS
5188@{
5189@end group
5190@group
5191 fprintf (stderr, "%s\n", s);
5192@}
5193@end group
5194@end example
5195
5196After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5197error recovery if you have written suitable error recovery grammar rules
5198(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5199immediately return 1.
5200
93724f13 5201Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5202an access to the current location.
5203This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5204parsers, but not for the Yacc parser, for historical reasons. I.e., if
5205@samp{%locations %pure-parser} is passed then the prototypes for
5206@code{yyerror} are:
5207
5208@example
38a92d50
PE
5209void yyerror (char const *msg); /* Yacc parsers. */
5210void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5211@end example
5212
feeb0eda 5213If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5214
5215@example
b317297e
PE
5216void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5217void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5218@end example
5219
fa7e68c3 5220Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5221convention for absolutely pure parsers, i.e., when the calling
5222convention of @code{yylex} @emph{and} the calling convention of
5223@code{%pure-parser} are pure. I.e.:
5224
5225@example
5226/* Location tracking. */
5227%locations
5228/* Pure yylex. */
5229%pure-parser
feeb0eda 5230%lex-param @{int *nastiness@}
2a8d363a 5231/* Pure yyparse. */
feeb0eda
PE
5232%parse-param @{int *nastiness@}
5233%parse-param @{int *randomness@}
2a8d363a
AD
5234@end example
5235
5236@noindent
5237results in the following signatures for all the parser kinds:
5238
5239@example
5240int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5241int yyparse (int *nastiness, int *randomness);
93724f13
AD
5242void yyerror (YYLTYPE *locp,
5243 int *nastiness, int *randomness,
38a92d50 5244 char const *msg);
2a8d363a
AD
5245@end example
5246
1c0c3e95 5247@noindent
38a92d50
PE
5248The prototypes are only indications of how the code produced by Bison
5249uses @code{yyerror}. Bison-generated code always ignores the returned
5250value, so @code{yyerror} can return any type, including @code{void}.
5251Also, @code{yyerror} can be a variadic function; that is why the
5252message is always passed last.
5253
5254Traditionally @code{yyerror} returns an @code{int} that is always
5255ignored, but this is purely for historical reasons, and @code{void} is
5256preferable since it more accurately describes the return type for
5257@code{yyerror}.
93724f13 5258
bfa74976
RS
5259@vindex yynerrs
5260The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5261reported so far. Normally this variable is global; but if you
704a47c4
AD
5262request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5263then it is a local variable which only the actions can access.
bfa74976 5264
342b8b6e 5265@node Action Features
bfa74976
RS
5266@section Special Features for Use in Actions
5267@cindex summary, action features
5268@cindex action features summary
5269
5270Here is a table of Bison constructs, variables and macros that
5271are useful in actions.
5272
18b519c0 5273@deffn {Variable} $$
bfa74976
RS
5274Acts like a variable that contains the semantic value for the
5275grouping made by the current rule. @xref{Actions}.
18b519c0 5276@end deffn
bfa74976 5277
18b519c0 5278@deffn {Variable} $@var{n}
bfa74976
RS
5279Acts like a variable that contains the semantic value for the
5280@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5281@end deffn
bfa74976 5282
18b519c0 5283@deffn {Variable} $<@var{typealt}>$
bfa74976 5284Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5285specified by the @code{%union} declaration. @xref{Action Types, ,Data
5286Types of Values in Actions}.
18b519c0 5287@end deffn
bfa74976 5288
18b519c0 5289@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5290Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5291union specified by the @code{%union} declaration.
e0c471a9 5292@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5293@end deffn
bfa74976 5294
18b519c0 5295@deffn {Macro} YYABORT;
bfa74976
RS
5296Return immediately from @code{yyparse}, indicating failure.
5297@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5298@end deffn
bfa74976 5299
18b519c0 5300@deffn {Macro} YYACCEPT;
bfa74976
RS
5301Return immediately from @code{yyparse}, indicating success.
5302@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5303@end deffn
bfa74976 5304
18b519c0 5305@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5306@findex YYBACKUP
5307Unshift a token. This macro is allowed only for rules that reduce
742e4900 5308a single value, and only when there is no lookahead token.
c827f760 5309It is also disallowed in @acronym{GLR} parsers.
742e4900 5310It installs a lookahead token with token type @var{token} and
bfa74976
RS
5311semantic value @var{value}; then it discards the value that was
5312going to be reduced by this rule.
5313
5314If the macro is used when it is not valid, such as when there is
742e4900 5315a lookahead token already, then it reports a syntax error with
bfa74976
RS
5316a message @samp{cannot back up} and performs ordinary error
5317recovery.
5318
5319In either case, the rest of the action is not executed.
18b519c0 5320@end deffn
bfa74976 5321
18b519c0 5322@deffn {Macro} YYEMPTY
bfa74976 5323@vindex YYEMPTY
742e4900 5324Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5325@end deffn
bfa74976 5326
32c29292
JD
5327@deffn {Macro} YYEOF
5328@vindex YYEOF
742e4900 5329Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5330stream.
5331@end deffn
5332
18b519c0 5333@deffn {Macro} YYERROR;
bfa74976
RS
5334@findex YYERROR
5335Cause an immediate syntax error. This statement initiates error
5336recovery just as if the parser itself had detected an error; however, it
5337does not call @code{yyerror}, and does not print any message. If you
5338want to print an error message, call @code{yyerror} explicitly before
5339the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5340@end deffn
bfa74976 5341
18b519c0 5342@deffn {Macro} YYRECOVERING
02103984
PE
5343@findex YYRECOVERING
5344The expression @code{YYRECOVERING ()} yields 1 when the parser
5345is recovering from a syntax error, and 0 otherwise.
bfa74976 5346@xref{Error Recovery}.
18b519c0 5347@end deffn
bfa74976 5348
18b519c0 5349@deffn {Variable} yychar
742e4900
JD
5350Variable containing either the lookahead token, or @code{YYEOF} when the
5351lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5352has been performed so the next token is not yet known.
5353Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5354Actions}).
742e4900 5355@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5356@end deffn
bfa74976 5357
18b519c0 5358@deffn {Macro} yyclearin;
742e4900 5359Discard the current lookahead token. This is useful primarily in
32c29292
JD
5360error rules.
5361Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5362Semantic Actions}).
5363@xref{Error Recovery}.
18b519c0 5364@end deffn
bfa74976 5365
18b519c0 5366@deffn {Macro} yyerrok;
bfa74976 5367Resume generating error messages immediately for subsequent syntax
13863333 5368errors. This is useful primarily in error rules.
bfa74976 5369@xref{Error Recovery}.
18b519c0 5370@end deffn
bfa74976 5371
32c29292 5372@deffn {Variable} yylloc
742e4900 5373Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5374to @code{YYEMPTY} or @code{YYEOF}.
5375Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5376Actions}).
5377@xref{Actions and Locations, ,Actions and Locations}.
5378@end deffn
5379
5380@deffn {Variable} yylval
742e4900 5381Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5382not set to @code{YYEMPTY} or @code{YYEOF}.
5383Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5384Actions}).
5385@xref{Actions, ,Actions}.
5386@end deffn
5387
18b519c0 5388@deffn {Value} @@$
847bf1f5 5389@findex @@$
95923bd6 5390Acts like a structure variable containing information on the textual location
847bf1f5
AD
5391of the grouping made by the current rule. @xref{Locations, ,
5392Tracking Locations}.
bfa74976 5393
847bf1f5
AD
5394@c Check if those paragraphs are still useful or not.
5395
5396@c @example
5397@c struct @{
5398@c int first_line, last_line;
5399@c int first_column, last_column;
5400@c @};
5401@c @end example
5402
5403@c Thus, to get the starting line number of the third component, you would
5404@c use @samp{@@3.first_line}.
bfa74976 5405
847bf1f5
AD
5406@c In order for the members of this structure to contain valid information,
5407@c you must make @code{yylex} supply this information about each token.
5408@c If you need only certain members, then @code{yylex} need only fill in
5409@c those members.
bfa74976 5410
847bf1f5 5411@c The use of this feature makes the parser noticeably slower.
18b519c0 5412@end deffn
847bf1f5 5413
18b519c0 5414@deffn {Value} @@@var{n}
847bf1f5 5415@findex @@@var{n}
95923bd6 5416Acts like a structure variable containing information on the textual location
847bf1f5
AD
5417of the @var{n}th component of the current rule. @xref{Locations, ,
5418Tracking Locations}.
18b519c0 5419@end deffn
bfa74976 5420
f7ab6a50
PE
5421@node Internationalization
5422@section Parser Internationalization
5423@cindex internationalization
5424@cindex i18n
5425@cindex NLS
5426@cindex gettext
5427@cindex bison-po
5428
5429A Bison-generated parser can print diagnostics, including error and
5430tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5431also supports outputting diagnostics in the user's native language. To
5432make this work, the user should set the usual environment variables.
5433@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5434For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5435set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5436encoding. The exact set of available locales depends on the user's
5437installation.
5438
5439The maintainer of a package that uses a Bison-generated parser enables
5440the internationalization of the parser's output through the following
5441steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5442@acronym{GNU} Automake.
5443
5444@enumerate
5445@item
30757c8c 5446@cindex bison-i18n.m4
f7ab6a50
PE
5447Into the directory containing the @acronym{GNU} Autoconf macros used
5448by the package---often called @file{m4}---copy the
5449@file{bison-i18n.m4} file installed by Bison under
5450@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5451For example:
5452
5453@example
5454cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5455@end example
5456
5457@item
30757c8c
PE
5458@findex BISON_I18N
5459@vindex BISON_LOCALEDIR
5460@vindex YYENABLE_NLS
f7ab6a50
PE
5461In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5462invocation, add an invocation of @code{BISON_I18N}. This macro is
5463defined in the file @file{bison-i18n.m4} that you copied earlier. It
5464causes @samp{configure} to find the value of the
30757c8c
PE
5465@code{BISON_LOCALEDIR} variable, and it defines the source-language
5466symbol @code{YYENABLE_NLS} to enable translations in the
5467Bison-generated parser.
f7ab6a50
PE
5468
5469@item
5470In the @code{main} function of your program, designate the directory
5471containing Bison's runtime message catalog, through a call to
5472@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5473For example:
5474
5475@example
5476bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5477@end example
5478
5479Typically this appears after any other call @code{bindtextdomain
5480(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5481@samp{BISON_LOCALEDIR} to be defined as a string through the
5482@file{Makefile}.
5483
5484@item
5485In the @file{Makefile.am} that controls the compilation of the @code{main}
5486function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5487either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5488
5489@example
5490DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5491@end example
5492
5493or:
5494
5495@example
5496AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5497@end example
5498
5499@item
5500Finally, invoke the command @command{autoreconf} to generate the build
5501infrastructure.
5502@end enumerate
5503
bfa74976 5504
342b8b6e 5505@node Algorithm
13863333
AD
5506@chapter The Bison Parser Algorithm
5507@cindex Bison parser algorithm
bfa74976
RS
5508@cindex algorithm of parser
5509@cindex shifting
5510@cindex reduction
5511@cindex parser stack
5512@cindex stack, parser
5513
5514As Bison reads tokens, it pushes them onto a stack along with their
5515semantic values. The stack is called the @dfn{parser stack}. Pushing a
5516token is traditionally called @dfn{shifting}.
5517
5518For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5519@samp{3} to come. The stack will have four elements, one for each token
5520that was shifted.
5521
5522But the stack does not always have an element for each token read. When
5523the last @var{n} tokens and groupings shifted match the components of a
5524grammar rule, they can be combined according to that rule. This is called
5525@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5526single grouping whose symbol is the result (left hand side) of that rule.
5527Running the rule's action is part of the process of reduction, because this
5528is what computes the semantic value of the resulting grouping.
5529
5530For example, if the infix calculator's parser stack contains this:
5531
5532@example
55331 + 5 * 3
5534@end example
5535
5536@noindent
5537and the next input token is a newline character, then the last three
5538elements can be reduced to 15 via the rule:
5539
5540@example
5541expr: expr '*' expr;
5542@end example
5543
5544@noindent
5545Then the stack contains just these three elements:
5546
5547@example
55481 + 15
5549@end example
5550
5551@noindent
5552At this point, another reduction can be made, resulting in the single value
555316. Then the newline token can be shifted.
5554
5555The parser tries, by shifts and reductions, to reduce the entire input down
5556to a single grouping whose symbol is the grammar's start-symbol
5557(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5558
5559This kind of parser is known in the literature as a bottom-up parser.
5560
5561@menu
742e4900 5562* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5563* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5564* Precedence:: Operator precedence works by resolving conflicts.
5565* Contextual Precedence:: When an operator's precedence depends on context.
5566* Parser States:: The parser is a finite-state-machine with stack.
5567* Reduce/Reduce:: When two rules are applicable in the same situation.
5568* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5569* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5570* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5571@end menu
5572
742e4900
JD
5573@node Lookahead
5574@section Lookahead Tokens
5575@cindex lookahead token
bfa74976
RS
5576
5577The Bison parser does @emph{not} always reduce immediately as soon as the
5578last @var{n} tokens and groupings match a rule. This is because such a
5579simple strategy is inadequate to handle most languages. Instead, when a
5580reduction is possible, the parser sometimes ``looks ahead'' at the next
5581token in order to decide what to do.
5582
5583When a token is read, it is not immediately shifted; first it becomes the
742e4900 5584@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5585perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5586the lookahead token remains off to the side. When no more reductions
5587should take place, the lookahead token is shifted onto the stack. This
bfa74976 5588does not mean that all possible reductions have been done; depending on the
742e4900 5589token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5590application.
5591
742e4900 5592Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5593expressions which contain binary addition operators and postfix unary
5594factorial operators (@samp{!}), and allow parentheses for grouping.
5595
5596@example
5597@group
5598expr: term '+' expr
5599 | term
5600 ;
5601@end group
5602
5603@group
5604term: '(' expr ')'
5605 | term '!'
5606 | NUMBER
5607 ;
5608@end group
5609@end example
5610
5611Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5612should be done? If the following token is @samp{)}, then the first three
5613tokens must be reduced to form an @code{expr}. This is the only valid
5614course, because shifting the @samp{)} would produce a sequence of symbols
5615@w{@code{term ')'}}, and no rule allows this.
5616
5617If the following token is @samp{!}, then it must be shifted immediately so
5618that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5619parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5620@code{expr}. It would then be impossible to shift the @samp{!} because
5621doing so would produce on the stack the sequence of symbols @code{expr
5622'!'}. No rule allows that sequence.
5623
5624@vindex yychar
32c29292
JD
5625@vindex yylval
5626@vindex yylloc
742e4900 5627The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5628Its semantic value and location, if any, are stored in the variables
5629@code{yylval} and @code{yylloc}.
bfa74976
RS
5630@xref{Action Features, ,Special Features for Use in Actions}.
5631
342b8b6e 5632@node Shift/Reduce
bfa74976
RS
5633@section Shift/Reduce Conflicts
5634@cindex conflicts
5635@cindex shift/reduce conflicts
5636@cindex dangling @code{else}
5637@cindex @code{else}, dangling
5638
5639Suppose we are parsing a language which has if-then and if-then-else
5640statements, with a pair of rules like this:
5641
5642@example
5643@group
5644if_stmt:
5645 IF expr THEN stmt
5646 | IF expr THEN stmt ELSE stmt
5647 ;
5648@end group
5649@end example
5650
5651@noindent
5652Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5653terminal symbols for specific keyword tokens.
5654
742e4900 5655When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5656contents of the stack (assuming the input is valid) are just right for
5657reduction by the first rule. But it is also legitimate to shift the
5658@code{ELSE}, because that would lead to eventual reduction by the second
5659rule.
5660
5661This situation, where either a shift or a reduction would be valid, is
5662called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5663these conflicts by choosing to shift, unless otherwise directed by
5664operator precedence declarations. To see the reason for this, let's
5665contrast it with the other alternative.
5666
5667Since the parser prefers to shift the @code{ELSE}, the result is to attach
5668the else-clause to the innermost if-statement, making these two inputs
5669equivalent:
5670
5671@example
5672if x then if y then win (); else lose;
5673
5674if x then do; if y then win (); else lose; end;
5675@end example
5676
5677But if the parser chose to reduce when possible rather than shift, the
5678result would be to attach the else-clause to the outermost if-statement,
5679making these two inputs equivalent:
5680
5681@example
5682if x then if y then win (); else lose;
5683
5684if x then do; if y then win (); end; else lose;
5685@end example
5686
5687The conflict exists because the grammar as written is ambiguous: either
5688parsing of the simple nested if-statement is legitimate. The established
5689convention is that these ambiguities are resolved by attaching the
5690else-clause to the innermost if-statement; this is what Bison accomplishes
5691by choosing to shift rather than reduce. (It would ideally be cleaner to
5692write an unambiguous grammar, but that is very hard to do in this case.)
5693This particular ambiguity was first encountered in the specifications of
5694Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5695
5696To avoid warnings from Bison about predictable, legitimate shift/reduce
5697conflicts, use the @code{%expect @var{n}} declaration. There will be no
5698warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5699@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5700
5701The definition of @code{if_stmt} above is solely to blame for the
5702conflict, but the conflict does not actually appear without additional
5703rules. Here is a complete Bison input file that actually manifests the
5704conflict:
5705
5706@example
5707@group
5708%token IF THEN ELSE variable
5709%%
5710@end group
5711@group
5712stmt: expr
5713 | if_stmt
5714 ;
5715@end group
5716
5717@group
5718if_stmt:
5719 IF expr THEN stmt
5720 | IF expr THEN stmt ELSE stmt
5721 ;
5722@end group
5723
5724expr: variable
5725 ;
5726@end example
5727
342b8b6e 5728@node Precedence
bfa74976
RS
5729@section Operator Precedence
5730@cindex operator precedence
5731@cindex precedence of operators
5732
5733Another situation where shift/reduce conflicts appear is in arithmetic
5734expressions. Here shifting is not always the preferred resolution; the
5735Bison declarations for operator precedence allow you to specify when to
5736shift and when to reduce.
5737
5738@menu
5739* Why Precedence:: An example showing why precedence is needed.
5740* Using Precedence:: How to specify precedence in Bison grammars.
5741* Precedence Examples:: How these features are used in the previous example.
5742* How Precedence:: How they work.
5743@end menu
5744
342b8b6e 5745@node Why Precedence
bfa74976
RS
5746@subsection When Precedence is Needed
5747
5748Consider the following ambiguous grammar fragment (ambiguous because the
5749input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5750
5751@example
5752@group
5753expr: expr '-' expr
5754 | expr '*' expr
5755 | expr '<' expr
5756 | '(' expr ')'
5757 @dots{}
5758 ;
5759@end group
5760@end example
5761
5762@noindent
5763Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5764should it reduce them via the rule for the subtraction operator? It
5765depends on the next token. Of course, if the next token is @samp{)}, we
5766must reduce; shifting is invalid because no single rule can reduce the
5767token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5768the next token is @samp{*} or @samp{<}, we have a choice: either
5769shifting or reduction would allow the parse to complete, but with
5770different results.
5771
5772To decide which one Bison should do, we must consider the results. If
5773the next operator token @var{op} is shifted, then it must be reduced
5774first in order to permit another opportunity to reduce the difference.
5775The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5776hand, if the subtraction is reduced before shifting @var{op}, the result
5777is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5778reduce should depend on the relative precedence of the operators
5779@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5780@samp{<}.
bfa74976
RS
5781
5782@cindex associativity
5783What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5784@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5785operators we prefer the former, which is called @dfn{left association}.
5786The latter alternative, @dfn{right association}, is desirable for
5787assignment operators. The choice of left or right association is a
5788matter of whether the parser chooses to shift or reduce when the stack
742e4900 5789contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5790makes right-associativity.
bfa74976 5791
342b8b6e 5792@node Using Precedence
bfa74976
RS
5793@subsection Specifying Operator Precedence
5794@findex %left
5795@findex %right
5796@findex %nonassoc
5797
5798Bison allows you to specify these choices with the operator precedence
5799declarations @code{%left} and @code{%right}. Each such declaration
5800contains a list of tokens, which are operators whose precedence and
5801associativity is being declared. The @code{%left} declaration makes all
5802those operators left-associative and the @code{%right} declaration makes
5803them right-associative. A third alternative is @code{%nonassoc}, which
5804declares that it is a syntax error to find the same operator twice ``in a
5805row''.
5806
5807The relative precedence of different operators is controlled by the
5808order in which they are declared. The first @code{%left} or
5809@code{%right} declaration in the file declares the operators whose
5810precedence is lowest, the next such declaration declares the operators
5811whose precedence is a little higher, and so on.
5812
342b8b6e 5813@node Precedence Examples
bfa74976
RS
5814@subsection Precedence Examples
5815
5816In our example, we would want the following declarations:
5817
5818@example
5819%left '<'
5820%left '-'
5821%left '*'
5822@end example
5823
5824In a more complete example, which supports other operators as well, we
5825would declare them in groups of equal precedence. For example, @code{'+'} is
5826declared with @code{'-'}:
5827
5828@example
5829%left '<' '>' '=' NE LE GE
5830%left '+' '-'
5831%left '*' '/'
5832@end example
5833
5834@noindent
5835(Here @code{NE} and so on stand for the operators for ``not equal''
5836and so on. We assume that these tokens are more than one character long
5837and therefore are represented by names, not character literals.)
5838
342b8b6e 5839@node How Precedence
bfa74976
RS
5840@subsection How Precedence Works
5841
5842The first effect of the precedence declarations is to assign precedence
5843levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5844precedence levels to certain rules: each rule gets its precedence from
5845the last terminal symbol mentioned in the components. (You can also
5846specify explicitly the precedence of a rule. @xref{Contextual
5847Precedence, ,Context-Dependent Precedence}.)
5848
5849Finally, the resolution of conflicts works by comparing the precedence
742e4900 5850of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5851token's precedence is higher, the choice is to shift. If the rule's
5852precedence is higher, the choice is to reduce. If they have equal
5853precedence, the choice is made based on the associativity of that
5854precedence level. The verbose output file made by @samp{-v}
5855(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5856resolved.
bfa74976
RS
5857
5858Not all rules and not all tokens have precedence. If either the rule or
742e4900 5859the lookahead token has no precedence, then the default is to shift.
bfa74976 5860
342b8b6e 5861@node Contextual Precedence
bfa74976
RS
5862@section Context-Dependent Precedence
5863@cindex context-dependent precedence
5864@cindex unary operator precedence
5865@cindex precedence, context-dependent
5866@cindex precedence, unary operator
5867@findex %prec
5868
5869Often the precedence of an operator depends on the context. This sounds
5870outlandish at first, but it is really very common. For example, a minus
5871sign typically has a very high precedence as a unary operator, and a
5872somewhat lower precedence (lower than multiplication) as a binary operator.
5873
5874The Bison precedence declarations, @code{%left}, @code{%right} and
5875@code{%nonassoc}, can only be used once for a given token; so a token has
5876only one precedence declared in this way. For context-dependent
5877precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5878modifier for rules.
bfa74976
RS
5879
5880The @code{%prec} modifier declares the precedence of a particular rule by
5881specifying a terminal symbol whose precedence should be used for that rule.
5882It's not necessary for that symbol to appear otherwise in the rule. The
5883modifier's syntax is:
5884
5885@example
5886%prec @var{terminal-symbol}
5887@end example
5888
5889@noindent
5890and it is written after the components of the rule. Its effect is to
5891assign the rule the precedence of @var{terminal-symbol}, overriding
5892the precedence that would be deduced for it in the ordinary way. The
5893altered rule precedence then affects how conflicts involving that rule
5894are resolved (@pxref{Precedence, ,Operator Precedence}).
5895
5896Here is how @code{%prec} solves the problem of unary minus. First, declare
5897a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5898are no tokens of this type, but the symbol serves to stand for its
5899precedence:
5900
5901@example
5902@dots{}
5903%left '+' '-'
5904%left '*'
5905%left UMINUS
5906@end example
5907
5908Now the precedence of @code{UMINUS} can be used in specific rules:
5909
5910@example
5911@group
5912exp: @dots{}
5913 | exp '-' exp
5914 @dots{}
5915 | '-' exp %prec UMINUS
5916@end group
5917@end example
5918
91d2c560 5919@ifset defaultprec
39a06c25
PE
5920If you forget to append @code{%prec UMINUS} to the rule for unary
5921minus, Bison silently assumes that minus has its usual precedence.
5922This kind of problem can be tricky to debug, since one typically
5923discovers the mistake only by testing the code.
5924
22fccf95 5925The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5926this kind of problem systematically. It causes rules that lack a
5927@code{%prec} modifier to have no precedence, even if the last terminal
5928symbol mentioned in their components has a declared precedence.
5929
22fccf95 5930If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5931for all rules that participate in precedence conflict resolution.
5932Then you will see any shift/reduce conflict until you tell Bison how
5933to resolve it, either by changing your grammar or by adding an
5934explicit precedence. This will probably add declarations to the
5935grammar, but it helps to protect against incorrect rule precedences.
5936
22fccf95
PE
5937The effect of @code{%no-default-prec;} can be reversed by giving
5938@code{%default-prec;}, which is the default.
91d2c560 5939@end ifset
39a06c25 5940
342b8b6e 5941@node Parser States
bfa74976
RS
5942@section Parser States
5943@cindex finite-state machine
5944@cindex parser state
5945@cindex state (of parser)
5946
5947The function @code{yyparse} is implemented using a finite-state machine.
5948The values pushed on the parser stack are not simply token type codes; they
5949represent the entire sequence of terminal and nonterminal symbols at or
5950near the top of the stack. The current state collects all the information
5951about previous input which is relevant to deciding what to do next.
5952
742e4900
JD
5953Each time a lookahead token is read, the current parser state together
5954with the type of lookahead token are looked up in a table. This table
5955entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5956specifies the new parser state, which is pushed onto the top of the
5957parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5958This means that a certain number of tokens or groupings are taken off
5959the top of the stack, and replaced by one grouping. In other words,
5960that number of states are popped from the stack, and one new state is
5961pushed.
5962
742e4900 5963There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5964is erroneous in the current state. This causes error processing to begin
5965(@pxref{Error Recovery}).
5966
342b8b6e 5967@node Reduce/Reduce
bfa74976
RS
5968@section Reduce/Reduce Conflicts
5969@cindex reduce/reduce conflict
5970@cindex conflicts, reduce/reduce
5971
5972A reduce/reduce conflict occurs if there are two or more rules that apply
5973to the same sequence of input. This usually indicates a serious error
5974in the grammar.
5975
5976For example, here is an erroneous attempt to define a sequence
5977of zero or more @code{word} groupings.
5978
5979@example
5980sequence: /* empty */
5981 @{ printf ("empty sequence\n"); @}
5982 | maybeword
5983 | sequence word
5984 @{ printf ("added word %s\n", $2); @}
5985 ;
5986
5987maybeword: /* empty */
5988 @{ printf ("empty maybeword\n"); @}
5989 | word
5990 @{ printf ("single word %s\n", $1); @}
5991 ;
5992@end example
5993
5994@noindent
5995The error is an ambiguity: there is more than one way to parse a single
5996@code{word} into a @code{sequence}. It could be reduced to a
5997@code{maybeword} and then into a @code{sequence} via the second rule.
5998Alternatively, nothing-at-all could be reduced into a @code{sequence}
5999via the first rule, and this could be combined with the @code{word}
6000using the third rule for @code{sequence}.
6001
6002There is also more than one way to reduce nothing-at-all into a
6003@code{sequence}. This can be done directly via the first rule,
6004or indirectly via @code{maybeword} and then the second rule.
6005
6006You might think that this is a distinction without a difference, because it
6007does not change whether any particular input is valid or not. But it does
6008affect which actions are run. One parsing order runs the second rule's
6009action; the other runs the first rule's action and the third rule's action.
6010In this example, the output of the program changes.
6011
6012Bison resolves a reduce/reduce conflict by choosing to use the rule that
6013appears first in the grammar, but it is very risky to rely on this. Every
6014reduce/reduce conflict must be studied and usually eliminated. Here is the
6015proper way to define @code{sequence}:
6016
6017@example
6018sequence: /* empty */
6019 @{ printf ("empty sequence\n"); @}
6020 | sequence word
6021 @{ printf ("added word %s\n", $2); @}
6022 ;
6023@end example
6024
6025Here is another common error that yields a reduce/reduce conflict:
6026
6027@example
6028sequence: /* empty */
6029 | sequence words
6030 | sequence redirects
6031 ;
6032
6033words: /* empty */
6034 | words word
6035 ;
6036
6037redirects:/* empty */
6038 | redirects redirect
6039 ;
6040@end example
6041
6042@noindent
6043The intention here is to define a sequence which can contain either
6044@code{word} or @code{redirect} groupings. The individual definitions of
6045@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6046three together make a subtle ambiguity: even an empty input can be parsed
6047in infinitely many ways!
6048
6049Consider: nothing-at-all could be a @code{words}. Or it could be two
6050@code{words} in a row, or three, or any number. It could equally well be a
6051@code{redirects}, or two, or any number. Or it could be a @code{words}
6052followed by three @code{redirects} and another @code{words}. And so on.
6053
6054Here are two ways to correct these rules. First, to make it a single level
6055of sequence:
6056
6057@example
6058sequence: /* empty */
6059 | sequence word
6060 | sequence redirect
6061 ;
6062@end example
6063
6064Second, to prevent either a @code{words} or a @code{redirects}
6065from being empty:
6066
6067@example
6068sequence: /* empty */
6069 | sequence words
6070 | sequence redirects
6071 ;
6072
6073words: word
6074 | words word
6075 ;
6076
6077redirects:redirect
6078 | redirects redirect
6079 ;
6080@end example
6081
342b8b6e 6082@node Mystery Conflicts
bfa74976
RS
6083@section Mysterious Reduce/Reduce Conflicts
6084
6085Sometimes reduce/reduce conflicts can occur that don't look warranted.
6086Here is an example:
6087
6088@example
6089@group
6090%token ID
6091
6092%%
6093def: param_spec return_spec ','
6094 ;
6095param_spec:
6096 type
6097 | name_list ':' type
6098 ;
6099@end group
6100@group
6101return_spec:
6102 type
6103 | name ':' type
6104 ;
6105@end group
6106@group
6107type: ID
6108 ;
6109@end group
6110@group
6111name: ID
6112 ;
6113name_list:
6114 name
6115 | name ',' name_list
6116 ;
6117@end group
6118@end example
6119
6120It would seem that this grammar can be parsed with only a single token
742e4900 6121of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6122a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6123@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6124
c827f760
PE
6125@cindex @acronym{LR}(1)
6126@cindex @acronym{LALR}(1)
bfa74976 6127However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6128@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6129an @code{ID}
bfa74976
RS
6130at the beginning of a @code{param_spec} and likewise at the beginning of
6131a @code{return_spec}, are similar enough that Bison assumes they are the
6132same. They appear similar because the same set of rules would be
6133active---the rule for reducing to a @code{name} and that for reducing to
6134a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6135that the rules would require different lookahead tokens in the two
bfa74976
RS
6136contexts, so it makes a single parser state for them both. Combining
6137the two contexts causes a conflict later. In parser terminology, this
c827f760 6138occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6139
6140In general, it is better to fix deficiencies than to document them. But
6141this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6142generators that can handle @acronym{LR}(1) grammars are hard to write
6143and tend to
bfa74976
RS
6144produce parsers that are very large. In practice, Bison is more useful
6145as it is now.
6146
6147When the problem arises, you can often fix it by identifying the two
a220f555
MA
6148parser states that are being confused, and adding something to make them
6149look distinct. In the above example, adding one rule to
bfa74976
RS
6150@code{return_spec} as follows makes the problem go away:
6151
6152@example
6153@group
6154%token BOGUS
6155@dots{}
6156%%
6157@dots{}
6158return_spec:
6159 type
6160 | name ':' type
6161 /* This rule is never used. */
6162 | ID BOGUS
6163 ;
6164@end group
6165@end example
6166
6167This corrects the problem because it introduces the possibility of an
6168additional active rule in the context after the @code{ID} at the beginning of
6169@code{return_spec}. This rule is not active in the corresponding context
6170in a @code{param_spec}, so the two contexts receive distinct parser states.
6171As long as the token @code{BOGUS} is never generated by @code{yylex},
6172the added rule cannot alter the way actual input is parsed.
6173
6174In this particular example, there is another way to solve the problem:
6175rewrite the rule for @code{return_spec} to use @code{ID} directly
6176instead of via @code{name}. This also causes the two confusing
6177contexts to have different sets of active rules, because the one for
6178@code{return_spec} activates the altered rule for @code{return_spec}
6179rather than the one for @code{name}.
6180
6181@example
6182param_spec:
6183 type
6184 | name_list ':' type
6185 ;
6186return_spec:
6187 type
6188 | ID ':' type
6189 ;
6190@end example
6191
e054b190
PE
6192For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6193generators, please see:
6194Frank DeRemer and Thomas Pennello, Efficient Computation of
6195@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6196Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6197pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6198
fae437e8 6199@node Generalized LR Parsing
c827f760
PE
6200@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6201@cindex @acronym{GLR} parsing
6202@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6203@cindex ambiguous grammars
9d9b8b70 6204@cindex nondeterministic parsing
676385e2 6205
fae437e8
AD
6206Bison produces @emph{deterministic} parsers that choose uniquely
6207when to reduce and which reduction to apply
742e4900 6208based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6209As a result, normal Bison handles a proper subset of the family of
6210context-free languages.
fae437e8 6211Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6212sequence of reductions cannot have deterministic parsers in this sense.
6213The same is true of languages that require more than one symbol of
742e4900 6214lookahead, since the parser lacks the information necessary to make a
676385e2 6215decision at the point it must be made in a shift-reduce parser.
fae437e8 6216Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6217there are languages where Bison's particular choice of how to
6218summarize the input seen so far loses necessary information.
6219
6220When you use the @samp{%glr-parser} declaration in your grammar file,
6221Bison generates a parser that uses a different algorithm, called
c827f760
PE
6222Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6223parser uses the same basic
676385e2
PH
6224algorithm for parsing as an ordinary Bison parser, but behaves
6225differently in cases where there is a shift-reduce conflict that has not
fae437e8 6226been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6227reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6228situation, it
fae437e8 6229effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6230shift or reduction. These parsers then proceed as usual, consuming
6231tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6232and split further, with the result that instead of a sequence of states,
c827f760 6233a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6234
6235In effect, each stack represents a guess as to what the proper parse
6236is. Additional input may indicate that a guess was wrong, in which case
6237the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6238actions generated in each stack are saved, rather than being executed
676385e2 6239immediately. When a stack disappears, its saved semantic actions never
fae437e8 6240get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6241their sets of semantic actions are both saved with the state that
6242results from the reduction. We say that two stacks are equivalent
fae437e8 6243when they both represent the same sequence of states,
676385e2
PH
6244and each pair of corresponding states represents a
6245grammar symbol that produces the same segment of the input token
6246stream.
6247
6248Whenever the parser makes a transition from having multiple
c827f760 6249states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6250algorithm, after resolving and executing the saved-up actions.
6251At this transition, some of the states on the stack will have semantic
6252values that are sets (actually multisets) of possible actions. The
6253parser tries to pick one of the actions by first finding one whose rule
6254has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6255declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6256precedence, but there the same merging function is declared for both
fae437e8 6257rules by the @samp{%merge} declaration,
676385e2
PH
6258Bison resolves and evaluates both and then calls the merge function on
6259the result. Otherwise, it reports an ambiguity.
6260
c827f760
PE
6261It is possible to use a data structure for the @acronym{GLR} parsing tree that
6262permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6263size of the input), any unambiguous (not necessarily
6264@acronym{LALR}(1)) grammar in
fae437e8 6265quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6266context-free grammar in cubic worst-case time. However, Bison currently
6267uses a simpler data structure that requires time proportional to the
6268length of the input times the maximum number of stacks required for any
9d9b8b70 6269prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6270grammars can require exponential time and space to process. Such badly
6271behaving examples, however, are not generally of practical interest.
9d9b8b70 6272Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6273doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6274structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6275grammar, in particular, it is only slightly slower than with the default
6276Bison parser.
6277
fa7e68c3 6278For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6279Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6280Generalised @acronym{LR} Parsers, Royal Holloway, University of
6281London, Department of Computer Science, TR-00-12,
6282@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6283(2000-12-24).
6284
1a059451
PE
6285@node Memory Management
6286@section Memory Management, and How to Avoid Memory Exhaustion
6287@cindex memory exhaustion
6288@cindex memory management
bfa74976
RS
6289@cindex stack overflow
6290@cindex parser stack overflow
6291@cindex overflow of parser stack
6292
1a059451 6293The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6294not reduced. When this happens, the parser function @code{yyparse}
1a059451 6295calls @code{yyerror} and then returns 2.
bfa74976 6296
c827f760 6297Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6298usually results from using a right recursion instead of a left
6299recursion, @xref{Recursion, ,Recursive Rules}.
6300
bfa74976
RS
6301@vindex YYMAXDEPTH
6302By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6303parser stack can become before memory is exhausted. Define the
bfa74976
RS
6304macro with a value that is an integer. This value is the maximum number
6305of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6306
6307The stack space allowed is not necessarily allocated. If you specify a
1a059451 6308large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6309stack at first, and then makes it bigger by stages as needed. This
6310increasing allocation happens automatically and silently. Therefore,
6311you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6312space for ordinary inputs that do not need much stack.
6313
d7e14fc0
PE
6314However, do not allow @code{YYMAXDEPTH} to be a value so large that
6315arithmetic overflow could occur when calculating the size of the stack
6316space. Also, do not allow @code{YYMAXDEPTH} to be less than
6317@code{YYINITDEPTH}.
6318
bfa74976
RS
6319@cindex default stack limit
6320The default value of @code{YYMAXDEPTH}, if you do not define it, is
632110000.
6322
6323@vindex YYINITDEPTH
6324You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6325macro @code{YYINITDEPTH} to a positive integer. For the C
6326@acronym{LALR}(1) parser, this value must be a compile-time constant
6327unless you are assuming C99 or some other target language or compiler
6328that allows variable-length arrays. The default is 200.
6329
1a059451 6330Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6331
d1a1114f 6332@c FIXME: C++ output.
c827f760 6333Because of semantical differences between C and C++, the
1a059451
PE
6334@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6335by C++ compilers. In this precise case (compiling a C parser as C++) you are
6336suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6337this deficiency in a future release.
d1a1114f 6338
342b8b6e 6339@node Error Recovery
bfa74976
RS
6340@chapter Error Recovery
6341@cindex error recovery
6342@cindex recovery from errors
6343
6e649e65 6344It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6345error. For example, a compiler should recover sufficiently to parse the
6346rest of the input file and check it for errors; a calculator should accept
6347another expression.
6348
6349In a simple interactive command parser where each input is one line, it may
6350be sufficient to allow @code{yyparse} to return 1 on error and have the
6351caller ignore the rest of the input line when that happens (and then call
6352@code{yyparse} again). But this is inadequate for a compiler, because it
6353forgets all the syntactic context leading up to the error. A syntax error
6354deep within a function in the compiler input should not cause the compiler
6355to treat the following line like the beginning of a source file.
6356
6357@findex error
6358You can define how to recover from a syntax error by writing rules to
6359recognize the special token @code{error}. This is a terminal symbol that
6360is always defined (you need not declare it) and reserved for error
6361handling. The Bison parser generates an @code{error} token whenever a
6362syntax error happens; if you have provided a rule to recognize this token
13863333 6363in the current context, the parse can continue.
bfa74976
RS
6364
6365For example:
6366
6367@example
6368stmnts: /* empty string */
6369 | stmnts '\n'
6370 | stmnts exp '\n'
6371 | stmnts error '\n'
6372@end example
6373
6374The fourth rule in this example says that an error followed by a newline
6375makes a valid addition to any @code{stmnts}.
6376
6377What happens if a syntax error occurs in the middle of an @code{exp}? The
6378error recovery rule, interpreted strictly, applies to the precise sequence
6379of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6380the middle of an @code{exp}, there will probably be some additional tokens
6381and subexpressions on the stack after the last @code{stmnts}, and there
6382will be tokens to read before the next newline. So the rule is not
6383applicable in the ordinary way.
6384
6385But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6386the semantic context and part of the input. First it discards states
6387and objects from the stack until it gets back to a state in which the
bfa74976 6388@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6389already parsed are discarded, back to the last complete @code{stmnts}.)
6390At this point the @code{error} token can be shifted. Then, if the old
742e4900 6391lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6392tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6393this example, Bison reads and discards input until the next newline so
6394that the fourth rule can apply. Note that discarded symbols are
6395possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6396Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6397
6398The choice of error rules in the grammar is a choice of strategies for
6399error recovery. A simple and useful strategy is simply to skip the rest of
6400the current input line or current statement if an error is detected:
6401
6402@example
72d2299c 6403stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6404@end example
6405
6406It is also useful to recover to the matching close-delimiter of an
6407opening-delimiter that has already been parsed. Otherwise the
6408close-delimiter will probably appear to be unmatched, and generate another,
6409spurious error message:
6410
6411@example
6412primary: '(' expr ')'
6413 | '(' error ')'
6414 @dots{}
6415 ;
6416@end example
6417
6418Error recovery strategies are necessarily guesses. When they guess wrong,
6419one syntax error often leads to another. In the above example, the error
6420recovery rule guesses that an error is due to bad input within one
6421@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6422middle of a valid @code{stmnt}. After the error recovery rule recovers
6423from the first error, another syntax error will be found straightaway,
6424since the text following the spurious semicolon is also an invalid
6425@code{stmnt}.
6426
6427To prevent an outpouring of error messages, the parser will output no error
6428message for another syntax error that happens shortly after the first; only
6429after three consecutive input tokens have been successfully shifted will
6430error messages resume.
6431
6432Note that rules which accept the @code{error} token may have actions, just
6433as any other rules can.
6434
6435@findex yyerrok
6436You can make error messages resume immediately by using the macro
6437@code{yyerrok} in an action. If you do this in the error rule's action, no
6438error messages will be suppressed. This macro requires no arguments;
6439@samp{yyerrok;} is a valid C statement.
6440
6441@findex yyclearin
742e4900 6442The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6443this is unacceptable, then the macro @code{yyclearin} may be used to clear
6444this token. Write the statement @samp{yyclearin;} in the error rule's
6445action.
32c29292 6446@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6447
6e649e65 6448For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6449called that advances the input stream to some point where parsing should
6450once again commence. The next symbol returned by the lexical scanner is
742e4900 6451probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6452with @samp{yyclearin;}.
6453
6454@vindex YYRECOVERING
02103984
PE
6455The expression @code{YYRECOVERING ()} yields 1 when the parser
6456is recovering from a syntax error, and 0 otherwise.
6457Syntax error diagnostics are suppressed while recovering from a syntax
6458error.
bfa74976 6459
342b8b6e 6460@node Context Dependency
bfa74976
RS
6461@chapter Handling Context Dependencies
6462
6463The Bison paradigm is to parse tokens first, then group them into larger
6464syntactic units. In many languages, the meaning of a token is affected by
6465its context. Although this violates the Bison paradigm, certain techniques
6466(known as @dfn{kludges}) may enable you to write Bison parsers for such
6467languages.
6468
6469@menu
6470* Semantic Tokens:: Token parsing can depend on the semantic context.
6471* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6472* Tie-in Recovery:: Lexical tie-ins have implications for how
6473 error recovery rules must be written.
6474@end menu
6475
6476(Actually, ``kludge'' means any technique that gets its job done but is
6477neither clean nor robust.)
6478
342b8b6e 6479@node Semantic Tokens
bfa74976
RS
6480@section Semantic Info in Token Types
6481
6482The C language has a context dependency: the way an identifier is used
6483depends on what its current meaning is. For example, consider this:
6484
6485@example
6486foo (x);
6487@end example
6488
6489This looks like a function call statement, but if @code{foo} is a typedef
6490name, then this is actually a declaration of @code{x}. How can a Bison
6491parser for C decide how to parse this input?
6492
c827f760 6493The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6494@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6495identifier, it looks up the current declaration of the identifier in order
6496to decide which token type to return: @code{TYPENAME} if the identifier is
6497declared as a typedef, @code{IDENTIFIER} otherwise.
6498
6499The grammar rules can then express the context dependency by the choice of
6500token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6501but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6502@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6503is @emph{not} significant, such as in declarations that can shadow a
6504typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6505accepted---there is one rule for each of the two token types.
6506
6507This technique is simple to use if the decision of which kinds of
6508identifiers to allow is made at a place close to where the identifier is
6509parsed. But in C this is not always so: C allows a declaration to
6510redeclare a typedef name provided an explicit type has been specified
6511earlier:
6512
6513@example
3a4f411f
PE
6514typedef int foo, bar;
6515int baz (void)
6516@{
6517 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6518 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6519 return foo (bar);
6520@}
bfa74976
RS
6521@end example
6522
6523Unfortunately, the name being declared is separated from the declaration
6524construct itself by a complicated syntactic structure---the ``declarator''.
6525
9ecbd125 6526As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6527all the nonterminal names changed: once for parsing a declaration in
6528which a typedef name can be redefined, and once for parsing a
6529declaration in which that can't be done. Here is a part of the
6530duplication, with actions omitted for brevity:
bfa74976
RS
6531
6532@example
6533initdcl:
6534 declarator maybeasm '='
6535 init
6536 | declarator maybeasm
6537 ;
6538
6539notype_initdcl:
6540 notype_declarator maybeasm '='
6541 init
6542 | notype_declarator maybeasm
6543 ;
6544@end example
6545
6546@noindent
6547Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6548cannot. The distinction between @code{declarator} and
6549@code{notype_declarator} is the same sort of thing.
6550
6551There is some similarity between this technique and a lexical tie-in
6552(described next), in that information which alters the lexical analysis is
6553changed during parsing by other parts of the program. The difference is
6554here the information is global, and is used for other purposes in the
6555program. A true lexical tie-in has a special-purpose flag controlled by
6556the syntactic context.
6557
342b8b6e 6558@node Lexical Tie-ins
bfa74976
RS
6559@section Lexical Tie-ins
6560@cindex lexical tie-in
6561
6562One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6563which is set by Bison actions, whose purpose is to alter the way tokens are
6564parsed.
6565
6566For example, suppose we have a language vaguely like C, but with a special
6567construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6568an expression in parentheses in which all integers are hexadecimal. In
6569particular, the token @samp{a1b} must be treated as an integer rather than
6570as an identifier if it appears in that context. Here is how you can do it:
6571
6572@example
6573@group
6574%@{
38a92d50
PE
6575 int hexflag;
6576 int yylex (void);
6577 void yyerror (char const *);
bfa74976
RS
6578%@}
6579%%
6580@dots{}
6581@end group
6582@group
6583expr: IDENTIFIER
6584 | constant
6585 | HEX '('
6586 @{ hexflag = 1; @}
6587 expr ')'
6588 @{ hexflag = 0;
6589 $$ = $4; @}
6590 | expr '+' expr
6591 @{ $$ = make_sum ($1, $3); @}
6592 @dots{}
6593 ;
6594@end group
6595
6596@group
6597constant:
6598 INTEGER
6599 | STRING
6600 ;
6601@end group
6602@end example
6603
6604@noindent
6605Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6606it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6607with letters are parsed as integers if possible.
6608
342b8b6e
AD
6609The declaration of @code{hexflag} shown in the prologue of the parser file
6610is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6611You must also write the code in @code{yylex} to obey the flag.
bfa74976 6612
342b8b6e 6613@node Tie-in Recovery
bfa74976
RS
6614@section Lexical Tie-ins and Error Recovery
6615
6616Lexical tie-ins make strict demands on any error recovery rules you have.
6617@xref{Error Recovery}.
6618
6619The reason for this is that the purpose of an error recovery rule is to
6620abort the parsing of one construct and resume in some larger construct.
6621For example, in C-like languages, a typical error recovery rule is to skip
6622tokens until the next semicolon, and then start a new statement, like this:
6623
6624@example
6625stmt: expr ';'
6626 | IF '(' expr ')' stmt @{ @dots{} @}
6627 @dots{}
6628 error ';'
6629 @{ hexflag = 0; @}
6630 ;
6631@end example
6632
6633If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6634construct, this error rule will apply, and then the action for the
6635completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6636remain set for the entire rest of the input, or until the next @code{hex}
6637keyword, causing identifiers to be misinterpreted as integers.
6638
6639To avoid this problem the error recovery rule itself clears @code{hexflag}.
6640
6641There may also be an error recovery rule that works within expressions.
6642For example, there could be a rule which applies within parentheses
6643and skips to the close-parenthesis:
6644
6645@example
6646@group
6647expr: @dots{}
6648 | '(' expr ')'
6649 @{ $$ = $2; @}
6650 | '(' error ')'
6651 @dots{}
6652@end group
6653@end example
6654
6655If this rule acts within the @code{hex} construct, it is not going to abort
6656that construct (since it applies to an inner level of parentheses within
6657the construct). Therefore, it should not clear the flag: the rest of
6658the @code{hex} construct should be parsed with the flag still in effect.
6659
6660What if there is an error recovery rule which might abort out of the
6661@code{hex} construct or might not, depending on circumstances? There is no
6662way you can write the action to determine whether a @code{hex} construct is
6663being aborted or not. So if you are using a lexical tie-in, you had better
6664make sure your error recovery rules are not of this kind. Each rule must
6665be such that you can be sure that it always will, or always won't, have to
6666clear the flag.
6667
ec3bc396
AD
6668@c ================================================== Debugging Your Parser
6669
342b8b6e 6670@node Debugging
bfa74976 6671@chapter Debugging Your Parser
ec3bc396
AD
6672
6673Developing a parser can be a challenge, especially if you don't
6674understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6675Algorithm}). Even so, sometimes a detailed description of the automaton
6676can help (@pxref{Understanding, , Understanding Your Parser}), or
6677tracing the execution of the parser can give some insight on why it
6678behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6679
6680@menu
6681* Understanding:: Understanding the structure of your parser.
6682* Tracing:: Tracing the execution of your parser.
6683@end menu
6684
6685@node Understanding
6686@section Understanding Your Parser
6687
6688As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6689Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6690frequent than one would hope), looking at this automaton is required to
6691tune or simply fix a parser. Bison provides two different
35fe0834 6692representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6693
6694The textual file is generated when the options @option{--report} or
6695@option{--verbose} are specified, see @xref{Invocation, , Invoking
6696Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6697the parser output file name, and adding @samp{.output} instead.
6698Therefore, if the input file is @file{foo.y}, then the parser file is
6699called @file{foo.tab.c} by default. As a consequence, the verbose
6700output file is called @file{foo.output}.
6701
6702The following grammar file, @file{calc.y}, will be used in the sequel:
6703
6704@example
6705%token NUM STR
6706%left '+' '-'
6707%left '*'
6708%%
6709exp: exp '+' exp
6710 | exp '-' exp
6711 | exp '*' exp
6712 | exp '/' exp
6713 | NUM
6714 ;
6715useless: STR;
6716%%
6717@end example
6718
88bce5a2
AD
6719@command{bison} reports:
6720
6721@example
6722calc.y: warning: 1 useless nonterminal and 1 useless rule
6723calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6724calc.y:11.10-12: warning: useless rule: useless: STR
6725calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6726@end example
6727
6728When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6729creates a file @file{calc.output} with contents detailed below. The
6730order of the output and the exact presentation might vary, but the
6731interpretation is the same.
ec3bc396
AD
6732
6733The first section includes details on conflicts that were solved thanks
6734to precedence and/or associativity:
6735
6736@example
6737Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6738Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6739Conflict in state 8 between rule 2 and token '*' resolved as shift.
6740@exdent @dots{}
6741@end example
6742
6743@noindent
6744The next section lists states that still have conflicts.
6745
6746@example
5a99098d
PE
6747State 8 conflicts: 1 shift/reduce
6748State 9 conflicts: 1 shift/reduce
6749State 10 conflicts: 1 shift/reduce
6750State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6751@end example
6752
6753@noindent
6754@cindex token, useless
6755@cindex useless token
6756@cindex nonterminal, useless
6757@cindex useless nonterminal
6758@cindex rule, useless
6759@cindex useless rule
6760The next section reports useless tokens, nonterminal and rules. Useless
6761nonterminals and rules are removed in order to produce a smaller parser,
6762but useless tokens are preserved, since they might be used by the
6763scanner (note the difference between ``useless'' and ``not used''
6764below):
6765
6766@example
6767Useless nonterminals:
6768 useless
6769
6770Terminals which are not used:
6771 STR
6772
6773Useless rules:
6774#6 useless: STR;
6775@end example
6776
6777@noindent
6778The next section reproduces the exact grammar that Bison used:
6779
6780@example
6781Grammar
6782
6783 Number, Line, Rule
88bce5a2 6784 0 5 $accept -> exp $end
ec3bc396
AD
6785 1 5 exp -> exp '+' exp
6786 2 6 exp -> exp '-' exp
6787 3 7 exp -> exp '*' exp
6788 4 8 exp -> exp '/' exp
6789 5 9 exp -> NUM
6790@end example
6791
6792@noindent
6793and reports the uses of the symbols:
6794
6795@example
6796Terminals, with rules where they appear
6797
88bce5a2 6798$end (0) 0
ec3bc396
AD
6799'*' (42) 3
6800'+' (43) 1
6801'-' (45) 2
6802'/' (47) 4
6803error (256)
6804NUM (258) 5
6805
6806Nonterminals, with rules where they appear
6807
88bce5a2 6808$accept (8)
ec3bc396
AD
6809 on left: 0
6810exp (9)
6811 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6812@end example
6813
6814@noindent
6815@cindex item
6816@cindex pointed rule
6817@cindex rule, pointed
6818Bison then proceeds onto the automaton itself, describing each state
6819with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6820item is a production rule together with a point (marked by @samp{.})
6821that the input cursor.
6822
6823@example
6824state 0
6825
88bce5a2 6826 $accept -> . exp $ (rule 0)
ec3bc396 6827
2a8d363a 6828 NUM shift, and go to state 1
ec3bc396 6829
2a8d363a 6830 exp go to state 2
ec3bc396
AD
6831@end example
6832
6833This reads as follows: ``state 0 corresponds to being at the very
6834beginning of the parsing, in the initial rule, right before the start
6835symbol (here, @code{exp}). When the parser returns to this state right
6836after having reduced a rule that produced an @code{exp}, the control
6837flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6838symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6839the parse stack, and the control flow jumps to state 1. Any other
742e4900 6840lookahead triggers a syntax error.''
ec3bc396
AD
6841
6842@cindex core, item set
6843@cindex item set core
6844@cindex kernel, item set
6845@cindex item set core
6846Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6847report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6848at the beginning of any rule deriving an @code{exp}. By default Bison
6849reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6850you want to see more detail you can invoke @command{bison} with
6851@option{--report=itemset} to list all the items, include those that can
6852be derived:
6853
6854@example
6855state 0
6856
88bce5a2 6857 $accept -> . exp $ (rule 0)
ec3bc396
AD
6858 exp -> . exp '+' exp (rule 1)
6859 exp -> . exp '-' exp (rule 2)
6860 exp -> . exp '*' exp (rule 3)
6861 exp -> . exp '/' exp (rule 4)
6862 exp -> . NUM (rule 5)
6863
6864 NUM shift, and go to state 1
6865
6866 exp go to state 2
6867@end example
6868
6869@noindent
6870In the state 1...
6871
6872@example
6873state 1
6874
6875 exp -> NUM . (rule 5)
6876
2a8d363a 6877 $default reduce using rule 5 (exp)
ec3bc396
AD
6878@end example
6879
6880@noindent
742e4900 6881the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6882(@samp{$default}), the parser will reduce it. If it was coming from
6883state 0, then, after this reduction it will return to state 0, and will
6884jump to state 2 (@samp{exp: go to state 2}).
6885
6886@example
6887state 2
6888
88bce5a2 6889 $accept -> exp . $ (rule 0)
ec3bc396
AD
6890 exp -> exp . '+' exp (rule 1)
6891 exp -> exp . '-' exp (rule 2)
6892 exp -> exp . '*' exp (rule 3)
6893 exp -> exp . '/' exp (rule 4)
6894
2a8d363a
AD
6895 $ shift, and go to state 3
6896 '+' shift, and go to state 4
6897 '-' shift, and go to state 5
6898 '*' shift, and go to state 6
6899 '/' shift, and go to state 7
ec3bc396
AD
6900@end example
6901
6902@noindent
6903In state 2, the automaton can only shift a symbol. For instance,
742e4900 6904because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6905@samp{+}, it will be shifted on the parse stack, and the automaton
6906control will jump to state 4, corresponding to the item @samp{exp -> exp
6907'+' . exp}. Since there is no default action, any other token than
6e649e65 6908those listed above will trigger a syntax error.
ec3bc396
AD
6909
6910The state 3 is named the @dfn{final state}, or the @dfn{accepting
6911state}:
6912
6913@example
6914state 3
6915
88bce5a2 6916 $accept -> exp $ . (rule 0)
ec3bc396 6917
2a8d363a 6918 $default accept
ec3bc396
AD
6919@end example
6920
6921@noindent
6922the initial rule is completed (the start symbol and the end
6923of input were read), the parsing exits successfully.
6924
6925The interpretation of states 4 to 7 is straightforward, and is left to
6926the reader.
6927
6928@example
6929state 4
6930
6931 exp -> exp '+' . exp (rule 1)
6932
2a8d363a 6933 NUM shift, and go to state 1
ec3bc396 6934
2a8d363a 6935 exp go to state 8
ec3bc396
AD
6936
6937state 5
6938
6939 exp -> exp '-' . exp (rule 2)
6940
2a8d363a 6941 NUM shift, and go to state 1
ec3bc396 6942
2a8d363a 6943 exp go to state 9
ec3bc396
AD
6944
6945state 6
6946
6947 exp -> exp '*' . exp (rule 3)
6948
2a8d363a 6949 NUM shift, and go to state 1
ec3bc396 6950
2a8d363a 6951 exp go to state 10
ec3bc396
AD
6952
6953state 7
6954
6955 exp -> exp '/' . exp (rule 4)
6956
2a8d363a 6957 NUM shift, and go to state 1
ec3bc396 6958
2a8d363a 6959 exp go to state 11
ec3bc396
AD
6960@end example
6961
5a99098d
PE
6962As was announced in beginning of the report, @samp{State 8 conflicts:
69631 shift/reduce}:
ec3bc396
AD
6964
6965@example
6966state 8
6967
6968 exp -> exp . '+' exp (rule 1)
6969 exp -> exp '+' exp . (rule 1)
6970 exp -> exp . '-' exp (rule 2)
6971 exp -> exp . '*' exp (rule 3)
6972 exp -> exp . '/' exp (rule 4)
6973
2a8d363a
AD
6974 '*' shift, and go to state 6
6975 '/' shift, and go to state 7
ec3bc396 6976
2a8d363a
AD
6977 '/' [reduce using rule 1 (exp)]
6978 $default reduce using rule 1 (exp)
ec3bc396
AD
6979@end example
6980
742e4900 6981Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6982either shifting (and going to state 7), or reducing rule 1. The
6983conflict means that either the grammar is ambiguous, or the parser lacks
6984information to make the right decision. Indeed the grammar is
6985ambiguous, as, since we did not specify the precedence of @samp{/}, the
6986sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6987NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6988NUM}, which corresponds to reducing rule 1.
6989
c827f760 6990Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6991arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6992Shift/Reduce Conflicts}. Discarded actions are reported in between
6993square brackets.
6994
6995Note that all the previous states had a single possible action: either
6996shifting the next token and going to the corresponding state, or
6997reducing a single rule. In the other cases, i.e., when shifting
6998@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6999possible, the lookahead is required to select the action. State 8 is
7000one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7001is shifting, otherwise the action is reducing rule 1. In other words,
7002the first two items, corresponding to rule 1, are not eligible when the
742e4900 7003lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7004precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7005with some set of possible lookahead tokens. When run with
7006@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7007
7008@example
7009state 8
7010
7011 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
7012 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7013 exp -> exp . '-' exp (rule 2)
7014 exp -> exp . '*' exp (rule 3)
7015 exp -> exp . '/' exp (rule 4)
7016
7017 '*' shift, and go to state 6
7018 '/' shift, and go to state 7
7019
7020 '/' [reduce using rule 1 (exp)]
7021 $default reduce using rule 1 (exp)
7022@end example
7023
7024The remaining states are similar:
7025
7026@example
7027state 9
7028
7029 exp -> exp . '+' exp (rule 1)
7030 exp -> exp . '-' exp (rule 2)
7031 exp -> exp '-' exp . (rule 2)
7032 exp -> exp . '*' exp (rule 3)
7033 exp -> exp . '/' exp (rule 4)
7034
2a8d363a
AD
7035 '*' shift, and go to state 6
7036 '/' shift, and go to state 7
ec3bc396 7037
2a8d363a
AD
7038 '/' [reduce using rule 2 (exp)]
7039 $default reduce using rule 2 (exp)
ec3bc396
AD
7040
7041state 10
7042
7043 exp -> exp . '+' exp (rule 1)
7044 exp -> exp . '-' exp (rule 2)
7045 exp -> exp . '*' exp (rule 3)
7046 exp -> exp '*' exp . (rule 3)
7047 exp -> exp . '/' exp (rule 4)
7048
2a8d363a 7049 '/' shift, and go to state 7
ec3bc396 7050
2a8d363a
AD
7051 '/' [reduce using rule 3 (exp)]
7052 $default reduce using rule 3 (exp)
ec3bc396
AD
7053
7054state 11
7055
7056 exp -> exp . '+' exp (rule 1)
7057 exp -> exp . '-' exp (rule 2)
7058 exp -> exp . '*' exp (rule 3)
7059 exp -> exp . '/' exp (rule 4)
7060 exp -> exp '/' exp . (rule 4)
7061
2a8d363a
AD
7062 '+' shift, and go to state 4
7063 '-' shift, and go to state 5
7064 '*' shift, and go to state 6
7065 '/' shift, and go to state 7
ec3bc396 7066
2a8d363a
AD
7067 '+' [reduce using rule 4 (exp)]
7068 '-' [reduce using rule 4 (exp)]
7069 '*' [reduce using rule 4 (exp)]
7070 '/' [reduce using rule 4 (exp)]
7071 $default reduce using rule 4 (exp)
ec3bc396
AD
7072@end example
7073
7074@noindent
fa7e68c3
PE
7075Observe that state 11 contains conflicts not only due to the lack of
7076precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7077@samp{*}, but also because the
ec3bc396
AD
7078associativity of @samp{/} is not specified.
7079
7080
7081@node Tracing
7082@section Tracing Your Parser
bfa74976
RS
7083@findex yydebug
7084@cindex debugging
7085@cindex tracing the parser
7086
7087If a Bison grammar compiles properly but doesn't do what you want when it
7088runs, the @code{yydebug} parser-trace feature can help you figure out why.
7089
3ded9a63
AD
7090There are several means to enable compilation of trace facilities:
7091
7092@table @asis
7093@item the macro @code{YYDEBUG}
7094@findex YYDEBUG
7095Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7096parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7097@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7098YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7099Prologue}).
7100
7101@item the option @option{-t}, @option{--debug}
7102Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7103,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7104
7105@item the directive @samp{%debug}
7106@findex %debug
7107Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7108Declaration Summary}). This is a Bison extension, which will prove
7109useful when Bison will output parsers for languages that don't use a
c827f760
PE
7110preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7111you, this is
3ded9a63
AD
7112the preferred solution.
7113@end table
7114
7115We suggest that you always enable the debug option so that debugging is
7116always possible.
bfa74976 7117
02a81e05 7118The trace facility outputs messages with macro calls of the form
e2742e46 7119@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 7120@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
7121arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7122define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7123and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7124
7125Once you have compiled the program with trace facilities, the way to
7126request a trace is to store a nonzero value in the variable @code{yydebug}.
7127You can do this by making the C code do it (in @code{main}, perhaps), or
7128you can alter the value with a C debugger.
7129
7130Each step taken by the parser when @code{yydebug} is nonzero produces a
7131line or two of trace information, written on @code{stderr}. The trace
7132messages tell you these things:
7133
7134@itemize @bullet
7135@item
7136Each time the parser calls @code{yylex}, what kind of token was read.
7137
7138@item
7139Each time a token is shifted, the depth and complete contents of the
7140state stack (@pxref{Parser States}).
7141
7142@item
7143Each time a rule is reduced, which rule it is, and the complete contents
7144of the state stack afterward.
7145@end itemize
7146
7147To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7148produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7149Bison}). This file shows the meaning of each state in terms of
7150positions in various rules, and also what each state will do with each
7151possible input token. As you read the successive trace messages, you
7152can see that the parser is functioning according to its specification in
7153the listing file. Eventually you will arrive at the place where
7154something undesirable happens, and you will see which parts of the
7155grammar are to blame.
bfa74976
RS
7156
7157The parser file is a C program and you can use C debuggers on it, but it's
7158not easy to interpret what it is doing. The parser function is a
7159finite-state machine interpreter, and aside from the actions it executes
7160the same code over and over. Only the values of variables show where in
7161the grammar it is working.
7162
7163@findex YYPRINT
7164The debugging information normally gives the token type of each token
7165read, but not its semantic value. You can optionally define a macro
7166named @code{YYPRINT} to provide a way to print the value. If you define
7167@code{YYPRINT}, it should take three arguments. The parser will pass a
7168standard I/O stream, the numeric code for the token type, and the token
7169value (from @code{yylval}).
7170
7171Here is an example of @code{YYPRINT} suitable for the multi-function
7172calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7173
7174@smallexample
38a92d50
PE
7175%@{
7176 static void print_token_value (FILE *, int, YYSTYPE);
7177 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7178%@}
7179
7180@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7181
7182static void
831d3c99 7183print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7184@{
7185 if (type == VAR)
d3c4e709 7186 fprintf (file, "%s", value.tptr->name);
bfa74976 7187 else if (type == NUM)
d3c4e709 7188 fprintf (file, "%d", value.val);
bfa74976
RS
7189@}
7190@end smallexample
7191
ec3bc396
AD
7192@c ================================================= Invoking Bison
7193
342b8b6e 7194@node Invocation
bfa74976
RS
7195@chapter Invoking Bison
7196@cindex invoking Bison
7197@cindex Bison invocation
7198@cindex options for invoking Bison
7199
7200The usual way to invoke Bison is as follows:
7201
7202@example
7203bison @var{infile}
7204@end example
7205
7206Here @var{infile} is the grammar file name, which usually ends in
7207@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7208with @samp{.tab.c} and removing any leading directory. Thus, the
7209@samp{bison foo.y} file name yields
7210@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7211@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7212C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7213or @file{foo.y++}. Then, the output files will take an extension like
7214the given one as input (respectively @file{foo.tab.cpp} and
7215@file{foo.tab.c++}).
fa4d969f 7216This feature takes effect with all options that manipulate file names like
234a3be3
AD
7217@samp{-o} or @samp{-d}.
7218
7219For example :
7220
7221@example
7222bison -d @var{infile.yxx}
7223@end example
84163231 7224@noindent
72d2299c 7225will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7226
7227@example
b56471a6 7228bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7229@end example
84163231 7230@noindent
234a3be3
AD
7231will produce @file{output.c++} and @file{outfile.h++}.
7232
397ec073
PE
7233For compatibility with @acronym{POSIX}, the standard Bison
7234distribution also contains a shell script called @command{yacc} that
7235invokes Bison with the @option{-y} option.
7236
bfa74976 7237@menu
13863333 7238* Bison Options:: All the options described in detail,
c827f760 7239 in alphabetical order by short options.
bfa74976 7240* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7241* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7242@end menu
7243
342b8b6e 7244@node Bison Options
bfa74976
RS
7245@section Bison Options
7246
7247Bison supports both traditional single-letter options and mnemonic long
7248option names. Long option names are indicated with @samp{--} instead of
7249@samp{-}. Abbreviations for option names are allowed as long as they
7250are unique. When a long option takes an argument, like
7251@samp{--file-prefix}, connect the option name and the argument with
7252@samp{=}.
7253
7254Here is a list of options that can be used with Bison, alphabetized by
7255short option. It is followed by a cross key alphabetized by long
7256option.
7257
89cab50d
AD
7258@c Please, keep this ordered as in `bison --help'.
7259@noindent
7260Operations modes:
7261@table @option
7262@item -h
7263@itemx --help
7264Print a summary of the command-line options to Bison and exit.
bfa74976 7265
89cab50d
AD
7266@item -V
7267@itemx --version
7268Print the version number of Bison and exit.
bfa74976 7269
f7ab6a50
PE
7270@item --print-localedir
7271Print the name of the directory containing locale-dependent data.
7272
89cab50d
AD
7273@item -y
7274@itemx --yacc
54662697
PE
7275Act more like the traditional Yacc command. This can cause
7276different diagnostics to be generated, and may change behavior in
7277other minor ways. Most importantly, imitate Yacc's output
7278file name conventions, so that the parser output file is called
89cab50d 7279@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7280@file{y.tab.h}.
7281Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7282statements in addition to an @code{enum} to associate token numbers with token
7283names.
7284Thus, the following shell script can substitute for Yacc, and the Bison
7285distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7286
89cab50d 7287@example
397ec073 7288#! /bin/sh
26e06a21 7289bison -y "$@@"
89cab50d 7290@end example
54662697
PE
7291
7292The @option{-y}/@option{--yacc} option is intended for use with
7293traditional Yacc grammars. If your grammar uses a Bison extension
7294like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7295this option is specified.
7296
89cab50d
AD
7297@end table
7298
7299@noindent
7300Tuning the parser:
7301
7302@table @option
7303@item -t
7304@itemx --debug
4947ebdb
PE
7305In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7306already defined, so that the debugging facilities are compiled.
ec3bc396 7307@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7308
0e021770
PE
7309@item -L @var{language}
7310@itemx --language=@var{language}
7311Specify the programming language for the generated parser, as if
7312@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7313Summary}). Currently supported languages include C and C++.
e6e704dc 7314@var{language} is case-insensitive.
0e021770 7315
89cab50d 7316@item --locations
d8988b2f 7317Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7318
7319@item -p @var{prefix}
7320@itemx --name-prefix=@var{prefix}
02975b9a 7321Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7322@xref{Decl Summary}.
bfa74976
RS
7323
7324@item -l
7325@itemx --no-lines
7326Don't put any @code{#line} preprocessor commands in the parser file.
7327Ordinarily Bison puts them in the parser file so that the C compiler
7328and debuggers will associate errors with your source file, the
7329grammar file. This option causes them to associate errors with the
95e742f7 7330parser file, treating it as an independent source file in its own right.
bfa74976 7331
931c7513
RS
7332@item -n
7333@itemx --no-parser
d8988b2f 7334Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7335
e6e704dc
JD
7336@item -S @var{file}
7337@itemx --skeleton=@var{file}
a7867f53 7338Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7339(@pxref{Decl Summary, , Bison Declaration Summary}).
7340
a7867f53
JD
7341You probably don't need this option unless you are developing Bison.
7342You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7343different language, because it is clearer and because it will always
7344choose the correct skeleton for non-deterministic or push parsers.
7345
a7867f53
JD
7346If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7347file in the Bison installation directory.
7348If it does, @var{file} is an absolute file name or a file name relative to the
7349current working directory.
7350This is similar to how most shells resolve commands.
7351
89cab50d
AD
7352@item -k
7353@itemx --token-table
d8988b2f 7354Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7355@end table
bfa74976 7356
89cab50d
AD
7357@noindent
7358Adjust the output:
bfa74976 7359
89cab50d
AD
7360@table @option
7361@item -d
d8988b2f
AD
7362@itemx --defines
7363Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7364file containing macro definitions for the token type names defined in
4bfd5e4e 7365the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7366
342b8b6e 7367@item --defines=@var{defines-file}
d8988b2f 7368Same as above, but save in the file @var{defines-file}.
342b8b6e 7369
89cab50d
AD
7370@item -b @var{file-prefix}
7371@itemx --file-prefix=@var{prefix}
9c437126 7372Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7373for all Bison output file names. @xref{Decl Summary}.
bfa74976 7374
ec3bc396
AD
7375@item -r @var{things}
7376@itemx --report=@var{things}
7377Write an extra output file containing verbose description of the comma
7378separated list of @var{things} among:
7379
7380@table @code
7381@item state
7382Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7383@acronym{LALR} automaton.
ec3bc396 7384
742e4900 7385@item lookahead
ec3bc396 7386Implies @code{state} and augments the description of the automaton with
742e4900 7387each rule's lookahead set.
ec3bc396
AD
7388
7389@item itemset
7390Implies @code{state} and augments the description of the automaton with
7391the full set of items for each state, instead of its core only.
7392@end table
7393
bfa74976
RS
7394@item -v
7395@itemx --verbose
9c437126 7396Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7397file containing verbose descriptions of the grammar and
72d2299c 7398parser. @xref{Decl Summary}.
bfa74976 7399
fa4d969f
PE
7400@item -o @var{file}
7401@itemx --output=@var{file}
7402Specify the @var{file} for the parser file.
bfa74976 7403
fa4d969f 7404The other output files' names are constructed from @var{file} as
d8988b2f 7405described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7406
7407@item -g
35fe0834
PE
7408Output a graphical representation of the @acronym{LALR}(1) grammar
7409automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7410@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7411If the grammar file is @file{foo.y}, the output file will
7412be @file{foo.dot}.
342b8b6e
AD
7413
7414@item --graph=@var{graph-file}
72d2299c
PE
7415The behavior of @var{--graph} is the same than @samp{-g}. The only
7416difference is that it has an optional argument which is the name of
fa4d969f 7417the output graph file.
bfa74976
RS
7418@end table
7419
342b8b6e 7420@node Option Cross Key
bfa74976
RS
7421@section Option Cross Key
7422
aa08666d 7423@c FIXME: How about putting the directives too?
bfa74976
RS
7424Here is a list of options, alphabetized by long option, to help you find
7425the corresponding short option.
7426
aa08666d
AD
7427@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7428@headitem Long Option @tab Short Option
7429@item @option{--debug} @tab @option{-t}
7430@item @option{--defines=@var{defines-file}} @tab @option{-d}
7431@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7432@item @option{--graph=@var{graph-file}} @tab @option{-d}
7433@item @option{--help} @tab @option{-h}
7434@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7435@item @option{--no-lines} @tab @option{-l}
7436@item @option{--no-parser} @tab @option{-n}
7437@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7438@item @option{--print-localedir} @tab
7439@item @option{--token-table} @tab @option{-k}
7440@item @option{--verbose} @tab @option{-v}
7441@item @option{--version} @tab @option{-V}
7442@item @option{--yacc} @tab @option{-y}
7443@end multitable
bfa74976 7444
93dd49ab
PE
7445@node Yacc Library
7446@section Yacc Library
7447
7448The Yacc library contains default implementations of the
7449@code{yyerror} and @code{main} functions. These default
7450implementations are normally not useful, but @acronym{POSIX} requires
7451them. To use the Yacc library, link your program with the
7452@option{-ly} option. Note that Bison's implementation of the Yacc
7453library is distributed under the terms of the @acronym{GNU} General
7454Public License (@pxref{Copying}).
7455
7456If you use the Yacc library's @code{yyerror} function, you should
7457declare @code{yyerror} as follows:
7458
7459@example
7460int yyerror (char const *);
7461@end example
7462
7463Bison ignores the @code{int} value returned by this @code{yyerror}.
7464If you use the Yacc library's @code{main} function, your
7465@code{yyparse} function should have the following type signature:
7466
7467@example
7468int yyparse (void);
7469@end example
7470
12545799
AD
7471@c ================================================= C++ Bison
7472
7473@node C++ Language Interface
7474@chapter C++ Language Interface
7475
7476@menu
7477* C++ Parsers:: The interface to generate C++ parser classes
7478* A Complete C++ Example:: Demonstrating their use
7479@end menu
7480
7481@node C++ Parsers
7482@section C++ Parsers
7483
7484@menu
7485* C++ Bison Interface:: Asking for C++ parser generation
7486* C++ Semantic Values:: %union vs. C++
7487* C++ Location Values:: The position and location classes
7488* C++ Parser Interface:: Instantiating and running the parser
7489* C++ Scanner Interface:: Exchanges between yylex and parse
7490@end menu
7491
7492@node C++ Bison Interface
7493@subsection C++ Bison Interface
0e021770 7494@c - %language "C++"
12545799
AD
7495@c - Always pure
7496@c - initial action
7497
e6e704dc
JD
7498The C++ @acronym{LALR}(1) parser is selected using the language directive,
7499@samp{%language "C++"}, or the synonymous command-line option
7500@option{--language=c++}.
7501@xref{Decl Summary}.
0e021770
PE
7502
7503When run, @command{bison} will create several
aa08666d
AD
7504entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7505directive to change the namespace name, see @ref{Decl Summary}. The
7506various classes are generated in the following files:
7507
12545799
AD
7508@table @file
7509@item position.hh
7510@itemx location.hh
7511The definition of the classes @code{position} and @code{location},
7512used for location tracking. @xref{C++ Location Values}.
7513
7514@item stack.hh
7515An auxiliary class @code{stack} used by the parser.
7516
fa4d969f
PE
7517@item @var{file}.hh
7518@itemx @var{file}.cc
cd8b5791
AD
7519(Assuming the extension of the input file was @samp{.yy}.) The
7520declaration and implementation of the C++ parser class. The basename
7521and extension of these two files follow the same rules as with regular C
7522parsers (@pxref{Invocation}).
12545799 7523
cd8b5791
AD
7524The header is @emph{mandatory}; you must either pass
7525@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7526@samp{%defines} directive.
7527@end table
7528
7529All these files are documented using Doxygen; run @command{doxygen}
7530for a complete and accurate documentation.
7531
7532@node C++ Semantic Values
7533@subsection C++ Semantic Values
7534@c - No objects in unions
178e123e 7535@c - YYSTYPE
12545799
AD
7536@c - Printer and destructor
7537
7538The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7539Collection of Value Types}. In particular it produces a genuine
7540@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7541within pseudo-unions (similar to Boost variants) might be implemented to
7542alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7543@itemize @minus
7544@item
fb9712a9
AD
7545The type @code{YYSTYPE} is defined but its use is discouraged: rather
7546you should refer to the parser's encapsulated type
7547@code{yy::parser::semantic_type}.
12545799
AD
7548@item
7549Non POD (Plain Old Data) types cannot be used. C++ forbids any
7550instance of classes with constructors in unions: only @emph{pointers}
7551to such objects are allowed.
7552@end itemize
7553
7554Because objects have to be stored via pointers, memory is not
7555reclaimed automatically: using the @code{%destructor} directive is the
7556only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7557Symbols}.
7558
7559
7560@node C++ Location Values
7561@subsection C++ Location Values
7562@c - %locations
7563@c - class Position
7564@c - class Location
16dc6a9e 7565@c - %define filename_type "const symbol::Symbol"
12545799
AD
7566
7567When the directive @code{%locations} is used, the C++ parser supports
7568location tracking, see @ref{Locations, , Locations Overview}. Two
7569auxiliary classes define a @code{position}, a single point in a file,
7570and a @code{location}, a range composed of a pair of
7571@code{position}s (possibly spanning several files).
7572
fa4d969f 7573@deftypemethod {position} {std::string*} file
12545799
AD
7574The name of the file. It will always be handled as a pointer, the
7575parser will never duplicate nor deallocate it. As an experimental
7576feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 7577filename_type "@var{type}"}.
12545799
AD
7578@end deftypemethod
7579
7580@deftypemethod {position} {unsigned int} line
7581The line, starting at 1.
7582@end deftypemethod
7583
7584@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7585Advance by @var{height} lines, resetting the column number.
7586@end deftypemethod
7587
7588@deftypemethod {position} {unsigned int} column
7589The column, starting at 0.
7590@end deftypemethod
7591
7592@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7593Advance by @var{width} columns, without changing the line number.
7594@end deftypemethod
7595
7596@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7597@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7598@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7599@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7600Various forms of syntactic sugar for @code{columns}.
7601@end deftypemethod
7602
7603@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7604Report @var{p} on @var{o} like this:
fa4d969f
PE
7605@samp{@var{file}:@var{line}.@var{column}}, or
7606@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7607@end deftypemethod
7608
7609@deftypemethod {location} {position} begin
7610@deftypemethodx {location} {position} end
7611The first, inclusive, position of the range, and the first beyond.
7612@end deftypemethod
7613
7614@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7615@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7616Advance the @code{end} position.
7617@end deftypemethod
7618
7619@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7620@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7621@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7622Various forms of syntactic sugar.
7623@end deftypemethod
7624
7625@deftypemethod {location} {void} step ()
7626Move @code{begin} onto @code{end}.
7627@end deftypemethod
7628
7629
7630@node C++ Parser Interface
7631@subsection C++ Parser Interface
7632@c - define parser_class_name
7633@c - Ctor
7634@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7635@c debug_stream.
7636@c - Reporting errors
7637
7638The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7639declare and define the parser class in the namespace @code{yy}. The
7640class name defaults to @code{parser}, but may be changed using
16dc6a9e 7641@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 7642this class is detailed below. It can be extended using the
12545799
AD
7643@code{%parse-param} feature: its semantics is slightly changed since
7644it describes an additional member of the parser class, and an
7645additional argument for its constructor.
7646
8a0adb01
AD
7647@defcv {Type} {parser} {semantic_value_type}
7648@defcvx {Type} {parser} {location_value_type}
12545799 7649The types for semantics value and locations.
8a0adb01 7650@end defcv
12545799
AD
7651
7652@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7653Build a new parser object. There are no arguments by default, unless
7654@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7655@end deftypemethod
7656
7657@deftypemethod {parser} {int} parse ()
7658Run the syntactic analysis, and return 0 on success, 1 otherwise.
7659@end deftypemethod
7660
7661@deftypemethod {parser} {std::ostream&} debug_stream ()
7662@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7663Get or set the stream used for tracing the parsing. It defaults to
7664@code{std::cerr}.
7665@end deftypemethod
7666
7667@deftypemethod {parser} {debug_level_type} debug_level ()
7668@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7669Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7670or nonzero, full tracing.
12545799
AD
7671@end deftypemethod
7672
7673@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7674The definition for this member function must be supplied by the user:
7675the parser uses it to report a parser error occurring at @var{l},
7676described by @var{m}.
7677@end deftypemethod
7678
7679
7680@node C++ Scanner Interface
7681@subsection C++ Scanner Interface
7682@c - prefix for yylex.
7683@c - Pure interface to yylex
7684@c - %lex-param
7685
7686The parser invokes the scanner by calling @code{yylex}. Contrary to C
7687parsers, C++ parsers are always pure: there is no point in using the
7688@code{%pure-parser} directive. Therefore the interface is as follows.
7689
7690@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7691Return the next token. Its type is the return value, its semantic
7692value and location being @var{yylval} and @var{yylloc}. Invocations of
7693@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7694@end deftypemethod
7695
7696
7697@node A Complete C++ Example
7698@section A Complete C++ Example
7699
7700This section demonstrates the use of a C++ parser with a simple but
7701complete example. This example should be available on your system,
7702ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7703focuses on the use of Bison, therefore the design of the various C++
7704classes is very naive: no accessors, no encapsulation of members etc.
7705We will use a Lex scanner, and more precisely, a Flex scanner, to
7706demonstrate the various interaction. A hand written scanner is
7707actually easier to interface with.
7708
7709@menu
7710* Calc++ --- C++ Calculator:: The specifications
7711* Calc++ Parsing Driver:: An active parsing context
7712* Calc++ Parser:: A parser class
7713* Calc++ Scanner:: A pure C++ Flex scanner
7714* Calc++ Top Level:: Conducting the band
7715@end menu
7716
7717@node Calc++ --- C++ Calculator
7718@subsection Calc++ --- C++ Calculator
7719
7720Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7721expression, possibly preceded by variable assignments. An
12545799
AD
7722environment containing possibly predefined variables such as
7723@code{one} and @code{two}, is exchanged with the parser. An example
7724of valid input follows.
7725
7726@example
7727three := 3
7728seven := one + two * three
7729seven * seven
7730@end example
7731
7732@node Calc++ Parsing Driver
7733@subsection Calc++ Parsing Driver
7734@c - An env
7735@c - A place to store error messages
7736@c - A place for the result
7737
7738To support a pure interface with the parser (and the scanner) the
7739technique of the ``parsing context'' is convenient: a structure
7740containing all the data to exchange. Since, in addition to simply
7741launch the parsing, there are several auxiliary tasks to execute (open
7742the file for parsing, instantiate the parser etc.), we recommend
7743transforming the simple parsing context structure into a fully blown
7744@dfn{parsing driver} class.
7745
7746The declaration of this driver class, @file{calc++-driver.hh}, is as
7747follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7748required standard library components, and the declaration of the parser
7749class.
12545799 7750
1c59e0a1 7751@comment file: calc++-driver.hh
12545799
AD
7752@example
7753#ifndef CALCXX_DRIVER_HH
7754# define CALCXX_DRIVER_HH
7755# include <string>
7756# include <map>
fb9712a9 7757# include "calc++-parser.hh"
12545799
AD
7758@end example
7759
12545799
AD
7760
7761@noindent
7762Then comes the declaration of the scanning function. Flex expects
7763the signature of @code{yylex} to be defined in the macro
7764@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7765factor both as follows.
1c59e0a1
AD
7766
7767@comment file: calc++-driver.hh
12545799 7768@example
3dc5e96b
PE
7769// Tell Flex the lexer's prototype ...
7770# define YY_DECL \
c095d689
AD
7771 yy::calcxx_parser::token_type \
7772 yylex (yy::calcxx_parser::semantic_type* yylval, \
7773 yy::calcxx_parser::location_type* yylloc, \
7774 calcxx_driver& driver)
12545799
AD
7775// ... and declare it for the parser's sake.
7776YY_DECL;
7777@end example
7778
7779@noindent
7780The @code{calcxx_driver} class is then declared with its most obvious
7781members.
7782
1c59e0a1 7783@comment file: calc++-driver.hh
12545799
AD
7784@example
7785// Conducting the whole scanning and parsing of Calc++.
7786class calcxx_driver
7787@{
7788public:
7789 calcxx_driver ();
7790 virtual ~calcxx_driver ();
7791
7792 std::map<std::string, int> variables;
7793
7794 int result;
7795@end example
7796
7797@noindent
7798To encapsulate the coordination with the Flex scanner, it is useful to
7799have two members function to open and close the scanning phase.
12545799 7800
1c59e0a1 7801@comment file: calc++-driver.hh
12545799
AD
7802@example
7803 // Handling the scanner.
7804 void scan_begin ();
7805 void scan_end ();
7806 bool trace_scanning;
7807@end example
7808
7809@noindent
7810Similarly for the parser itself.
7811
1c59e0a1 7812@comment file: calc++-driver.hh
12545799 7813@example
bb32f4f2
AD
7814 // Run the parser. Return 0 on success.
7815 int parse (const std::string& f);
12545799
AD
7816 std::string file;
7817 bool trace_parsing;
7818@end example
7819
7820@noindent
7821To demonstrate pure handling of parse errors, instead of simply
7822dumping them on the standard error output, we will pass them to the
7823compiler driver using the following two member functions. Finally, we
7824close the class declaration and CPP guard.
7825
1c59e0a1 7826@comment file: calc++-driver.hh
12545799
AD
7827@example
7828 // Error handling.
7829 void error (const yy::location& l, const std::string& m);
7830 void error (const std::string& m);
7831@};
7832#endif // ! CALCXX_DRIVER_HH
7833@end example
7834
7835The implementation of the driver is straightforward. The @code{parse}
7836member function deserves some attention. The @code{error} functions
7837are simple stubs, they should actually register the located error
7838messages and set error state.
7839
1c59e0a1 7840@comment file: calc++-driver.cc
12545799
AD
7841@example
7842#include "calc++-driver.hh"
7843#include "calc++-parser.hh"
7844
7845calcxx_driver::calcxx_driver ()
7846 : trace_scanning (false), trace_parsing (false)
7847@{
7848 variables["one"] = 1;
7849 variables["two"] = 2;
7850@}
7851
7852calcxx_driver::~calcxx_driver ()
7853@{
7854@}
7855
bb32f4f2 7856int
12545799
AD
7857calcxx_driver::parse (const std::string &f)
7858@{
7859 file = f;
7860 scan_begin ();
7861 yy::calcxx_parser parser (*this);
7862 parser.set_debug_level (trace_parsing);
bb32f4f2 7863 int res = parser.parse ();
12545799 7864 scan_end ();
bb32f4f2 7865 return res;
12545799
AD
7866@}
7867
7868void
7869calcxx_driver::error (const yy::location& l, const std::string& m)
7870@{
7871 std::cerr << l << ": " << m << std::endl;
7872@}
7873
7874void
7875calcxx_driver::error (const std::string& m)
7876@{
7877 std::cerr << m << std::endl;
7878@}
7879@end example
7880
7881@node Calc++ Parser
7882@subsection Calc++ Parser
7883
b50d2359
AD
7884The parser definition file @file{calc++-parser.yy} starts by asking for
7885the C++ LALR(1) skeleton, the creation of the parser header file, and
7886specifies the name of the parser class. Because the C++ skeleton
7887changed several times, it is safer to require the version you designed
7888the grammar for.
1c59e0a1
AD
7889
7890@comment file: calc++-parser.yy
12545799 7891@example
0e021770 7892%language "C++" /* -*- C++ -*- */
e6e704dc 7893%require "@value{VERSION}"
12545799 7894%defines
16dc6a9e 7895%define parser_class_name "calcxx_parser"
fb9712a9
AD
7896@end example
7897
7898@noindent
16dc6a9e 7899@findex %code requires
fb9712a9
AD
7900Then come the declarations/inclusions needed to define the
7901@code{%union}. Because the parser uses the parsing driver and
7902reciprocally, both cannot include the header of the other. Because the
7903driver's header needs detailed knowledge about the parser class (in
7904particular its inner types), it is the parser's header which will simply
7905use a forward declaration of the driver.
8e0a5e9e 7906@xref{Table of Symbols, ,%code}.
fb9712a9
AD
7907
7908@comment file: calc++-parser.yy
7909@example
16dc6a9e 7910%code requires @{
12545799 7911# include <string>
fb9712a9 7912class calcxx_driver;
9bc0dd67 7913@}
12545799
AD
7914@end example
7915
7916@noindent
7917The driver is passed by reference to the parser and to the scanner.
7918This provides a simple but effective pure interface, not relying on
7919global variables.
7920
1c59e0a1 7921@comment file: calc++-parser.yy
12545799
AD
7922@example
7923// The parsing context.
7924%parse-param @{ calcxx_driver& driver @}
7925%lex-param @{ calcxx_driver& driver @}
7926@end example
7927
7928@noindent
7929Then we request the location tracking feature, and initialize the
7930first location's file name. Afterwards new locations are computed
7931relatively to the previous locations: the file name will be
7932automatically propagated.
7933
1c59e0a1 7934@comment file: calc++-parser.yy
12545799
AD
7935@example
7936%locations
7937%initial-action
7938@{
7939 // Initialize the initial location.
b47dbebe 7940 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7941@};
7942@end example
7943
7944@noindent
7945Use the two following directives to enable parser tracing and verbose
7946error messages.
7947
1c59e0a1 7948@comment file: calc++-parser.yy
12545799
AD
7949@example
7950%debug
7951%error-verbose
7952@end example
7953
7954@noindent
7955Semantic values cannot use ``real'' objects, but only pointers to
7956them.
7957
1c59e0a1 7958@comment file: calc++-parser.yy
12545799
AD
7959@example
7960// Symbols.
7961%union
7962@{
7963 int ival;
7964 std::string *sval;
7965@};
7966@end example
7967
fb9712a9 7968@noindent
136a0f76
PB
7969@findex %code
7970The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7971@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7972
7973@comment file: calc++-parser.yy
7974@example
136a0f76 7975%code @{
fb9712a9 7976# include "calc++-driver.hh"
34f98f46 7977@}
fb9712a9
AD
7978@end example
7979
7980
12545799
AD
7981@noindent
7982The token numbered as 0 corresponds to end of file; the following line
7983allows for nicer error messages referring to ``end of file'' instead
7984of ``$end''. Similarly user friendly named are provided for each
7985symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7986avoid name clashes.
7987
1c59e0a1 7988@comment file: calc++-parser.yy
12545799 7989@example
fb9712a9
AD
7990%token END 0 "end of file"
7991%token ASSIGN ":="
7992%token <sval> IDENTIFIER "identifier"
7993%token <ival> NUMBER "number"
a8c2e813 7994%type <ival> exp
12545799
AD
7995@end example
7996
7997@noindent
7998To enable memory deallocation during error recovery, use
7999@code{%destructor}.
8000
287c78f6 8001@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8002@comment file: calc++-parser.yy
12545799
AD
8003@example
8004%printer @{ debug_stream () << *$$; @} "identifier"
8005%destructor @{ delete $$; @} "identifier"
8006
a8c2e813 8007%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8008@end example
8009
8010@noindent
8011The grammar itself is straightforward.
8012
1c59e0a1 8013@comment file: calc++-parser.yy
12545799
AD
8014@example
8015%%
8016%start unit;
8017unit: assignments exp @{ driver.result = $2; @};
8018
8019assignments: assignments assignment @{@}
9d9b8b70 8020 | /* Nothing. */ @{@};
12545799 8021
3dc5e96b
PE
8022assignment:
8023 "identifier" ":=" exp
8024 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8025
8026%left '+' '-';
8027%left '*' '/';
8028exp: exp '+' exp @{ $$ = $1 + $3; @}
8029 | exp '-' exp @{ $$ = $1 - $3; @}
8030 | exp '*' exp @{ $$ = $1 * $3; @}
8031 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8032 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8033 | "number" @{ $$ = $1; @};
12545799
AD
8034%%
8035@end example
8036
8037@noindent
8038Finally the @code{error} member function registers the errors to the
8039driver.
8040
1c59e0a1 8041@comment file: calc++-parser.yy
12545799
AD
8042@example
8043void
1c59e0a1
AD
8044yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8045 const std::string& m)
12545799
AD
8046@{
8047 driver.error (l, m);
8048@}
8049@end example
8050
8051@node Calc++ Scanner
8052@subsection Calc++ Scanner
8053
8054The Flex scanner first includes the driver declaration, then the
8055parser's to get the set of defined tokens.
8056
1c59e0a1 8057@comment file: calc++-scanner.ll
12545799
AD
8058@example
8059%@{ /* -*- C++ -*- */
04098407
PE
8060# include <cstdlib>
8061# include <errno.h>
8062# include <limits.h>
12545799
AD
8063# include <string>
8064# include "calc++-driver.hh"
8065# include "calc++-parser.hh"
eaea13f5
PE
8066
8067/* Work around an incompatibility in flex (at least versions
8068 2.5.31 through 2.5.33): it generates code that does
8069 not conform to C89. See Debian bug 333231
8070 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8071# undef yywrap
8072# define yywrap() 1
eaea13f5 8073
c095d689
AD
8074/* By default yylex returns int, we use token_type.
8075 Unfortunately yyterminate by default returns 0, which is
8076 not of token_type. */
8c5b881d 8077#define yyterminate() return token::END
12545799
AD
8078%@}
8079@end example
8080
8081@noindent
8082Because there is no @code{#include}-like feature we don't need
8083@code{yywrap}, we don't need @code{unput} either, and we parse an
8084actual file, this is not an interactive session with the user.
8085Finally we enable the scanner tracing features.
8086
1c59e0a1 8087@comment file: calc++-scanner.ll
12545799
AD
8088@example
8089%option noyywrap nounput batch debug
8090@end example
8091
8092@noindent
8093Abbreviations allow for more readable rules.
8094
1c59e0a1 8095@comment file: calc++-scanner.ll
12545799
AD
8096@example
8097id [a-zA-Z][a-zA-Z_0-9]*
8098int [0-9]+
8099blank [ \t]
8100@end example
8101
8102@noindent
9d9b8b70 8103The following paragraph suffices to track locations accurately. Each
12545799
AD
8104time @code{yylex} is invoked, the begin position is moved onto the end
8105position. Then when a pattern is matched, the end position is
8106advanced of its width. In case it matched ends of lines, the end
8107cursor is adjusted, and each time blanks are matched, the begin cursor
8108is moved onto the end cursor to effectively ignore the blanks
8109preceding tokens. Comments would be treated equally.
8110
1c59e0a1 8111@comment file: calc++-scanner.ll
12545799 8112@example
828c373b
AD
8113%@{
8114# define YY_USER_ACTION yylloc->columns (yyleng);
8115%@}
12545799
AD
8116%%
8117%@{
8118 yylloc->step ();
12545799
AD
8119%@}
8120@{blank@}+ yylloc->step ();
8121[\n]+ yylloc->lines (yyleng); yylloc->step ();
8122@end example
8123
8124@noindent
fb9712a9
AD
8125The rules are simple, just note the use of the driver to report errors.
8126It is convenient to use a typedef to shorten
8127@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8128@code{token::identifier} for instance.
12545799 8129
1c59e0a1 8130@comment file: calc++-scanner.ll
12545799 8131@example
fb9712a9
AD
8132%@{
8133 typedef yy::calcxx_parser::token token;
8134%@}
8c5b881d 8135 /* Convert ints to the actual type of tokens. */
c095d689 8136[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8137":=" return token::ASSIGN;
04098407
PE
8138@{int@} @{
8139 errno = 0;
8140 long n = strtol (yytext, NULL, 10);
8141 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8142 driver.error (*yylloc, "integer is out of range");
8143 yylval->ival = n;
fb9712a9 8144 return token::NUMBER;
04098407 8145@}
fb9712a9 8146@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8147. driver.error (*yylloc, "invalid character");
8148%%
8149@end example
8150
8151@noindent
8152Finally, because the scanner related driver's member function depend
8153on the scanner's data, it is simpler to implement them in this file.
8154
1c59e0a1 8155@comment file: calc++-scanner.ll
12545799
AD
8156@example
8157void
8158calcxx_driver::scan_begin ()
8159@{
8160 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8161 if (file == "-")
8162 yyin = stdin;
8163 else if (!(yyin = fopen (file.c_str (), "r")))
8164 @{
8165 error (std::string ("cannot open ") + file);
8166 exit (1);
8167 @}
12545799
AD
8168@}
8169
8170void
8171calcxx_driver::scan_end ()
8172@{
8173 fclose (yyin);
8174@}
8175@end example
8176
8177@node Calc++ Top Level
8178@subsection Calc++ Top Level
8179
8180The top level file, @file{calc++.cc}, poses no problem.
8181
1c59e0a1 8182@comment file: calc++.cc
12545799
AD
8183@example
8184#include <iostream>
8185#include "calc++-driver.hh"
8186
8187int
fa4d969f 8188main (int argc, char *argv[])
12545799
AD
8189@{
8190 calcxx_driver driver;
8191 for (++argv; argv[0]; ++argv)
8192 if (*argv == std::string ("-p"))
8193 driver.trace_parsing = true;
8194 else if (*argv == std::string ("-s"))
8195 driver.trace_scanning = true;
bb32f4f2
AD
8196 else if (!driver.parse (*argv))
8197 std::cout << driver.result << std::endl;
12545799
AD
8198@}
8199@end example
8200
8201@c ================================================= FAQ
d1a1114f
AD
8202
8203@node FAQ
8204@chapter Frequently Asked Questions
8205@cindex frequently asked questions
8206@cindex questions
8207
8208Several questions about Bison come up occasionally. Here some of them
8209are addressed.
8210
8211@menu
55ba27be
AD
8212* Memory Exhausted:: Breaking the Stack Limits
8213* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8214* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8215* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8216* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8217* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8218* I can't build Bison:: Troubleshooting
8219* Where can I find help?:: Troubleshouting
8220* Bug Reports:: Troublereporting
8221* Other Languages:: Parsers in Java and others
8222* Beta Testing:: Experimenting development versions
8223* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8224@end menu
8225
1a059451
PE
8226@node Memory Exhausted
8227@section Memory Exhausted
d1a1114f
AD
8228
8229@display
1a059451 8230My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8231message. What can I do?
8232@end display
8233
8234This question is already addressed elsewhere, @xref{Recursion,
8235,Recursive Rules}.
8236
e64fec0a
PE
8237@node How Can I Reset the Parser
8238@section How Can I Reset the Parser
5b066063 8239
0e14ad77
PE
8240The following phenomenon has several symptoms, resulting in the
8241following typical questions:
5b066063
AD
8242
8243@display
8244I invoke @code{yyparse} several times, and on correct input it works
8245properly; but when a parse error is found, all the other calls fail
0e14ad77 8246too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8247@end display
8248
8249@noindent
8250or
8251
8252@display
0e14ad77 8253My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8254which case I run @code{yyparse} from @code{yyparse}. This fails
8255although I did specify I needed a @code{%pure-parser}.
8256@end display
8257
0e14ad77
PE
8258These problems typically come not from Bison itself, but from
8259Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8260speed, they might not notice a change of input file. As a
8261demonstration, consider the following source file,
8262@file{first-line.l}:
8263
8264@verbatim
8265%{
8266#include <stdio.h>
8267#include <stdlib.h>
8268%}
8269%%
8270.*\n ECHO; return 1;
8271%%
8272int
0e14ad77 8273yyparse (char const *file)
5b066063
AD
8274{
8275 yyin = fopen (file, "r");
8276 if (!yyin)
8277 exit (2);
fa7e68c3 8278 /* One token only. */
5b066063 8279 yylex ();
0e14ad77 8280 if (fclose (yyin) != 0)
5b066063
AD
8281 exit (3);
8282 return 0;
8283}
8284
8285int
0e14ad77 8286main (void)
5b066063
AD
8287{
8288 yyparse ("input");
8289 yyparse ("input");
8290 return 0;
8291}
8292@end verbatim
8293
8294@noindent
8295If the file @file{input} contains
8296
8297@verbatim
8298input:1: Hello,
8299input:2: World!
8300@end verbatim
8301
8302@noindent
0e14ad77 8303then instead of getting the first line twice, you get:
5b066063
AD
8304
8305@example
8306$ @kbd{flex -ofirst-line.c first-line.l}
8307$ @kbd{gcc -ofirst-line first-line.c -ll}
8308$ @kbd{./first-line}
8309input:1: Hello,
8310input:2: World!
8311@end example
8312
0e14ad77
PE
8313Therefore, whenever you change @code{yyin}, you must tell the
8314Lex-generated scanner to discard its current buffer and switch to the
8315new one. This depends upon your implementation of Lex; see its
8316documentation for more. For Flex, it suffices to call
8317@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8318Flex-generated scanner needs to read from several input streams to
8319handle features like include files, you might consider using Flex
8320functions like @samp{yy_switch_to_buffer} that manipulate multiple
8321input buffers.
5b066063 8322
b165c324
AD
8323If your Flex-generated scanner uses start conditions (@pxref{Start
8324conditions, , Start conditions, flex, The Flex Manual}), you might
8325also want to reset the scanner's state, i.e., go back to the initial
8326start condition, through a call to @samp{BEGIN (0)}.
8327
fef4cb51
AD
8328@node Strings are Destroyed
8329@section Strings are Destroyed
8330
8331@display
c7e441b4 8332My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8333them. Instead of reporting @samp{"foo", "bar"}, it reports
8334@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8335@end display
8336
8337This error is probably the single most frequent ``bug report'' sent to
8338Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8339of the scanner. Consider the following Lex code:
fef4cb51
AD
8340
8341@verbatim
8342%{
8343#include <stdio.h>
8344char *yylval = NULL;
8345%}
8346%%
8347.* yylval = yytext; return 1;
8348\n /* IGNORE */
8349%%
8350int
8351main ()
8352{
fa7e68c3 8353 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8354 char *fst = (yylex (), yylval);
8355 char *snd = (yylex (), yylval);
8356 printf ("\"%s\", \"%s\"\n", fst, snd);
8357 return 0;
8358}
8359@end verbatim
8360
8361If you compile and run this code, you get:
8362
8363@example
8364$ @kbd{flex -osplit-lines.c split-lines.l}
8365$ @kbd{gcc -osplit-lines split-lines.c -ll}
8366$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8367"one
8368two", "two"
8369@end example
8370
8371@noindent
8372this is because @code{yytext} is a buffer provided for @emph{reading}
8373in the action, but if you want to keep it, you have to duplicate it
8374(e.g., using @code{strdup}). Note that the output may depend on how
8375your implementation of Lex handles @code{yytext}. For instance, when
8376given the Lex compatibility option @option{-l} (which triggers the
8377option @samp{%array}) Flex generates a different behavior:
8378
8379@example
8380$ @kbd{flex -l -osplit-lines.c split-lines.l}
8381$ @kbd{gcc -osplit-lines split-lines.c -ll}
8382$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8383"two", "two"
8384@end example
8385
8386
2fa09258
AD
8387@node Implementing Gotos/Loops
8388@section Implementing Gotos/Loops
a06ea4aa
AD
8389
8390@display
8391My simple calculator supports variables, assignments, and functions,
2fa09258 8392but how can I implement gotos, or loops?
a06ea4aa
AD
8393@end display
8394
8395Although very pedagogical, the examples included in the document blur
a1c84f45 8396the distinction to make between the parser---whose job is to recover
a06ea4aa 8397the structure of a text and to transmit it to subsequent modules of
a1c84f45 8398the program---and the processing (such as the execution) of this
a06ea4aa
AD
8399structure. This works well with so called straight line programs,
8400i.e., precisely those that have a straightforward execution model:
8401execute simple instructions one after the others.
8402
8403@cindex abstract syntax tree
8404@cindex @acronym{AST}
8405If you want a richer model, you will probably need to use the parser
8406to construct a tree that does represent the structure it has
8407recovered; this tree is usually called the @dfn{abstract syntax tree},
8408or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8409traversing it in various ways, will enable treatments such as its
8410execution or its translation, which will result in an interpreter or a
8411compiler.
8412
8413This topic is way beyond the scope of this manual, and the reader is
8414invited to consult the dedicated literature.
8415
8416
ed2e6384
AD
8417@node Multiple start-symbols
8418@section Multiple start-symbols
8419
8420@display
8421I have several closely related grammars, and I would like to share their
8422implementations. In fact, I could use a single grammar but with
8423multiple entry points.
8424@end display
8425
8426Bison does not support multiple start-symbols, but there is a very
8427simple means to simulate them. If @code{foo} and @code{bar} are the two
8428pseudo start-symbols, then introduce two new tokens, say
8429@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8430real start-symbol:
8431
8432@example
8433%token START_FOO START_BAR;
8434%start start;
8435start: START_FOO foo
8436 | START_BAR bar;
8437@end example
8438
8439These tokens prevents the introduction of new conflicts. As far as the
8440parser goes, that is all that is needed.
8441
8442Now the difficult part is ensuring that the scanner will send these
8443tokens first. If your scanner is hand-written, that should be
8444straightforward. If your scanner is generated by Lex, them there is
8445simple means to do it: recall that anything between @samp{%@{ ... %@}}
8446after the first @code{%%} is copied verbatim in the top of the generated
8447@code{yylex} function. Make sure a variable @code{start_token} is
8448available in the scanner (e.g., a global variable or using
8449@code{%lex-param} etc.), and use the following:
8450
8451@example
8452 /* @r{Prologue.} */
8453%%
8454%@{
8455 if (start_token)
8456 @{
8457 int t = start_token;
8458 start_token = 0;
8459 return t;
8460 @}
8461%@}
8462 /* @r{The rules.} */
8463@end example
8464
8465
55ba27be
AD
8466@node Secure? Conform?
8467@section Secure? Conform?
8468
8469@display
8470Is Bison secure? Does it conform to POSIX?
8471@end display
8472
8473If you're looking for a guarantee or certification, we don't provide it.
8474However, Bison is intended to be a reliable program that conforms to the
8475@acronym{POSIX} specification for Yacc. If you run into problems,
8476please send us a bug report.
8477
8478@node I can't build Bison
8479@section I can't build Bison
8480
8481@display
8c5b881d
PE
8482I can't build Bison because @command{make} complains that
8483@code{msgfmt} is not found.
55ba27be
AD
8484What should I do?
8485@end display
8486
8487Like most GNU packages with internationalization support, that feature
8488is turned on by default. If you have problems building in the @file{po}
8489subdirectory, it indicates that your system's internationalization
8490support is lacking. You can re-configure Bison with
8491@option{--disable-nls} to turn off this support, or you can install GNU
8492gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8493Bison. See the file @file{ABOUT-NLS} for more information.
8494
8495
8496@node Where can I find help?
8497@section Where can I find help?
8498
8499@display
8500I'm having trouble using Bison. Where can I find help?
8501@end display
8502
8503First, read this fine manual. Beyond that, you can send mail to
8504@email{help-bison@@gnu.org}. This mailing list is intended to be
8505populated with people who are willing to answer questions about using
8506and installing Bison. Please keep in mind that (most of) the people on
8507the list have aspects of their lives which are not related to Bison (!),
8508so you may not receive an answer to your question right away. This can
8509be frustrating, but please try not to honk them off; remember that any
8510help they provide is purely voluntary and out of the kindness of their
8511hearts.
8512
8513@node Bug Reports
8514@section Bug Reports
8515
8516@display
8517I found a bug. What should I include in the bug report?
8518@end display
8519
8520Before you send a bug report, make sure you are using the latest
8521version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8522mirrors. Be sure to include the version number in your bug report. If
8523the bug is present in the latest version but not in a previous version,
8524try to determine the most recent version which did not contain the bug.
8525
8526If the bug is parser-related, you should include the smallest grammar
8527you can which demonstrates the bug. The grammar file should also be
8528complete (i.e., I should be able to run it through Bison without having
8529to edit or add anything). The smaller and simpler the grammar, the
8530easier it will be to fix the bug.
8531
8532Include information about your compilation environment, including your
8533operating system's name and version and your compiler's name and
8534version. If you have trouble compiling, you should also include a
8535transcript of the build session, starting with the invocation of
8536`configure'. Depending on the nature of the bug, you may be asked to
8537send additional files as well (such as `config.h' or `config.cache').
8538
8539Patches are most welcome, but not required. That is, do not hesitate to
8540send a bug report just because you can not provide a fix.
8541
8542Send bug reports to @email{bug-bison@@gnu.org}.
8543
8544@node Other Languages
8545@section Other Languages
8546
8547@display
8548Will Bison ever have C++ support? How about Java or @var{insert your
8549favorite language here}?
8550@end display
8551
8552C++ support is there now, and is documented. We'd love to add other
8553languages; contributions are welcome.
8554
8555@node Beta Testing
8556@section Beta Testing
8557
8558@display
8559What is involved in being a beta tester?
8560@end display
8561
8562It's not terribly involved. Basically, you would download a test
8563release, compile it, and use it to build and run a parser or two. After
8564that, you would submit either a bug report or a message saying that
8565everything is okay. It is important to report successes as well as
8566failures because test releases eventually become mainstream releases,
8567but only if they are adequately tested. If no one tests, development is
8568essentially halted.
8569
8570Beta testers are particularly needed for operating systems to which the
8571developers do not have easy access. They currently have easy access to
8572recent GNU/Linux and Solaris versions. Reports about other operating
8573systems are especially welcome.
8574
8575@node Mailing Lists
8576@section Mailing Lists
8577
8578@display
8579How do I join the help-bison and bug-bison mailing lists?
8580@end display
8581
8582See @url{http://lists.gnu.org/}.
a06ea4aa 8583
d1a1114f
AD
8584@c ================================================= Table of Symbols
8585
342b8b6e 8586@node Table of Symbols
bfa74976
RS
8587@appendix Bison Symbols
8588@cindex Bison symbols, table of
8589@cindex symbols in Bison, table of
8590
18b519c0 8591@deffn {Variable} @@$
3ded9a63 8592In an action, the location of the left-hand side of the rule.
88bce5a2 8593@xref{Locations, , Locations Overview}.
18b519c0 8594@end deffn
3ded9a63 8595
18b519c0 8596@deffn {Variable} @@@var{n}
3ded9a63
AD
8597In an action, the location of the @var{n}-th symbol of the right-hand
8598side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8599@end deffn
3ded9a63 8600
18b519c0 8601@deffn {Variable} $$
3ded9a63
AD
8602In an action, the semantic value of the left-hand side of the rule.
8603@xref{Actions}.
18b519c0 8604@end deffn
3ded9a63 8605
18b519c0 8606@deffn {Variable} $@var{n}
3ded9a63
AD
8607In an action, the semantic value of the @var{n}-th symbol of the
8608right-hand side of the rule. @xref{Actions}.
18b519c0 8609@end deffn
3ded9a63 8610
dd8d9022
AD
8611@deffn {Delimiter} %%
8612Delimiter used to separate the grammar rule section from the
8613Bison declarations section or the epilogue.
8614@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8615@end deffn
bfa74976 8616
dd8d9022
AD
8617@c Don't insert spaces, or check the DVI output.
8618@deffn {Delimiter} %@{@var{code}%@}
8619All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8620the output file uninterpreted. Such code forms the prologue of the input
8621file. @xref{Grammar Outline, ,Outline of a Bison
8622Grammar}.
18b519c0 8623@end deffn
bfa74976 8624
dd8d9022
AD
8625@deffn {Construct} /*@dots{}*/
8626Comment delimiters, as in C.
18b519c0 8627@end deffn
bfa74976 8628
dd8d9022
AD
8629@deffn {Delimiter} :
8630Separates a rule's result from its components. @xref{Rules, ,Syntax of
8631Grammar Rules}.
18b519c0 8632@end deffn
bfa74976 8633
dd8d9022
AD
8634@deffn {Delimiter} ;
8635Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8636@end deffn
bfa74976 8637
dd8d9022
AD
8638@deffn {Delimiter} |
8639Separates alternate rules for the same result nonterminal.
8640@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8641@end deffn
bfa74976 8642
12e35840
JD
8643@deffn {Directive} <*>
8644Used to define a default tagged @code{%destructor} or default tagged
8645@code{%printer}.
85894313
JD
8646
8647This feature is experimental.
8648More user feedback will help to determine whether it should become a permanent
8649feature.
8650
12e35840
JD
8651@xref{Destructor Decl, , Freeing Discarded Symbols}.
8652@end deffn
8653
3ebecc24 8654@deffn {Directive} <>
12e35840
JD
8655Used to define a default tagless @code{%destructor} or default tagless
8656@code{%printer}.
85894313
JD
8657
8658This feature is experimental.
8659More user feedback will help to determine whether it should become a permanent
8660feature.
8661
12e35840
JD
8662@xref{Destructor Decl, , Freeing Discarded Symbols}.
8663@end deffn
8664
dd8d9022
AD
8665@deffn {Symbol} $accept
8666The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8667$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8668Start-Symbol}. It cannot be used in the grammar.
18b519c0 8669@end deffn
bfa74976 8670
136a0f76 8671@deffn {Directive} %code @{@var{code}@}
8e0a5e9e
JD
8672@findex %code
8673This is the unqualified form of the @code{%code} directive.
8674It inserts @var{code} verbatim at the default location in the output.
8675That default location is determined by the selected target language and/or
8676parser skeleton.
9bc0dd67
JD
8677
8678@cindex Prologue
8e0a5e9e
JD
8679For the current C/C++ skeletons, the default location is the parser source code
8680file after the usual contents of the parser header file.
8681Thus, @code{%code} replaces the traditional Yacc prologue,
8682@code{%@{@var{code}%@}}, for most purposes.
8683For a detailed discussion, see @ref{Prologue Alternatives}.
8684
8685@comment For Java, the default location is inside the parser class.
8686
8687(Like all the Yacc prologue alternatives, this directive is experimental.
85894313
JD
8688More user feedback will help to determine whether it should become a permanent
8689feature.)
2cbe6b7f
JD
8690@end deffn
8691
16dc6a9e 8692@deffn {Directive} %code @var{qualifier} @{@var{code}@}
8e0a5e9e
JD
8693This is the qualified form of the @code{%code} directive.
8694If you need to specify location-sensitive verbatim @var{code} that does not
8695belong at the default location selected by the unqualified @code{%code} form,
8696use this form instead.
8697
8698@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
8699where Bison should generate it.
8700Not all values of @var{qualifier} are available for all target languages:
8701
8702@itemize @bullet
16dc6a9e
JD
8703@findex %code requires
8704@item requires
8e0a5e9e
JD
8705
8706@itemize @bullet
8707@item Language(s): C, C++
8708
8709@item Purpose: This is the best place to write dependency code required for
8710@code{YYSTYPE} and @code{YYLTYPE}.
8711In other words, it's the best place to define types referenced in @code{%union}
8712directives, and it's the best place to override Bison's default @code{YYSTYPE}
8713and @code{YYLTYPE} definitions.
8714
8715@item Location(s): The parser header file and the parser source code file
8716before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
8717@end itemize
8718
16dc6a9e
JD
8719@item provides
8720@findex %code provides
8e0a5e9e
JD
8721
8722@itemize @bullet
8723@item Language(s): C, C++
8724
8725@item Purpose: This is the best place to write additional definitions and
8726declarations that should be provided to other modules.
8727
8728@item Location(s): The parser header file and the parser source code file after
8729the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
8730@end itemize
8731
16dc6a9e
JD
8732@item top
8733@findex %code top
8e0a5e9e
JD
8734
8735@itemize @bullet
8736@item Language(s): C, C++
8737
16dc6a9e
JD
8738@item Purpose: The unqualified @code{%code} or @code{%code requires} should
8739usually be more appropriate than @code{%code top}.
8e0a5e9e
JD
8740However, occasionally it is necessary to insert code much nearer the top of the
8741parser source code file.
2cbe6b7f 8742For example:
9bc0dd67
JD
8743
8744@smallexample
16dc6a9e 8745%code top @{
2cbe6b7f
JD
8746 #define _GNU_SOURCE
8747 #include <stdio.h>
9bc0dd67 8748@}
9bc0dd67
JD
8749@end smallexample
8750
8e0a5e9e
JD
8751@item Location(s): Near the top of the parser source code file.
8752@end itemize
8753@ignore
16dc6a9e
JD
8754@item imports
8755@findex %code imports
2cbe6b7f 8756
8e0a5e9e
JD
8757@itemize @bullet
8758@item Language(s): Java
8759
8760@item Purpose: This is the best place to write Java import directives.
8761
8762@item Location(s): The parser Java file after any Java package directive and
8763before any class definitions.
8764@end itemize
8765@end ignore
8766@end itemize
8767
8768(Like all the Yacc prologue alternatives, this directive is experimental.
85894313
JD
8769More user feedback will help to determine whether it should become a permanent
8770feature.)
8771
8e0a5e9e
JD
8772@cindex Prologue
8773For a detailed discussion of how to use @code{%code} in place of the
8774traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
9bc0dd67
JD
8775@end deffn
8776
8777@deffn {Directive} %debug
8778Equip the parser for debugging. @xref{Decl Summary}.
8779@end deffn
8780
18b519c0 8781@deffn {Directive} %debug
6deb4447 8782Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8783@end deffn
6deb4447 8784
91d2c560 8785@ifset defaultprec
22fccf95
PE
8786@deffn {Directive} %default-prec
8787Assign a precedence to rules that lack an explicit @samp{%prec}
8788modifier. @xref{Contextual Precedence, ,Context-Dependent
8789Precedence}.
39a06c25 8790@end deffn
91d2c560 8791@end ifset
39a06c25 8792
18b519c0 8793@deffn {Directive} %defines
6deb4447
AD
8794Bison declaration to create a header file meant for the scanner.
8795@xref{Decl Summary}.
18b519c0 8796@end deffn
6deb4447 8797
02975b9a
JD
8798@deffn {Directive} %defines @var{defines-file}
8799Same as above, but save in the file @var{defines-file}.
8800@xref{Decl Summary}.
8801@end deffn
8802
18b519c0 8803@deffn {Directive} %destructor
258b75ca 8804Specify how the parser should reclaim the memory associated to
fa7e68c3 8805discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8806@end deffn
72f889cc 8807
18b519c0 8808@deffn {Directive} %dprec
676385e2 8809Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8810time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8811@acronym{GLR} Parsers}.
18b519c0 8812@end deffn
676385e2 8813
dd8d9022
AD
8814@deffn {Symbol} $end
8815The predefined token marking the end of the token stream. It cannot be
8816used in the grammar.
8817@end deffn
8818
8819@deffn {Symbol} error
8820A token name reserved for error recovery. This token may be used in
8821grammar rules so as to allow the Bison parser to recognize an error in
8822the grammar without halting the process. In effect, a sentence
8823containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8824token @code{error} becomes the current lookahead token. Actions
8825corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8826token is reset to the token that originally caused the violation.
8827@xref{Error Recovery}.
18d192f0
AD
8828@end deffn
8829
18b519c0 8830@deffn {Directive} %error-verbose
2a8d363a
AD
8831Bison declaration to request verbose, specific error message strings
8832when @code{yyerror} is called.
18b519c0 8833@end deffn
2a8d363a 8834
02975b9a 8835@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 8836Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8837Summary}.
18b519c0 8838@end deffn
d8988b2f 8839
18b519c0 8840@deffn {Directive} %glr-parser
c827f760
PE
8841Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8842Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8843@end deffn
676385e2 8844
dd8d9022
AD
8845@deffn {Directive} %initial-action
8846Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8847@end deffn
8848
e6e704dc
JD
8849@deffn {Directive} %language
8850Specify the programming language for the generated parser.
8851@xref{Decl Summary}.
8852@end deffn
8853
18b519c0 8854@deffn {Directive} %left
bfa74976
RS
8855Bison declaration to assign left associativity to token(s).
8856@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8857@end deffn
bfa74976 8858
feeb0eda 8859@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8860Bison declaration to specifying an additional parameter that
8861@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8862for Pure Parsers}.
18b519c0 8863@end deffn
2a8d363a 8864
18b519c0 8865@deffn {Directive} %merge
676385e2 8866Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8867reduce/reduce conflict with a rule having the same merging function, the
676385e2 8868function is applied to the two semantic values to get a single result.
c827f760 8869@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8870@end deffn
676385e2 8871
02975b9a 8872@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 8873Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8874@end deffn
d8988b2f 8875
91d2c560 8876@ifset defaultprec
22fccf95
PE
8877@deffn {Directive} %no-default-prec
8878Do not assign a precedence to rules that lack an explicit @samp{%prec}
8879modifier. @xref{Contextual Precedence, ,Context-Dependent
8880Precedence}.
8881@end deffn
91d2c560 8882@end ifset
22fccf95 8883
18b519c0 8884@deffn {Directive} %no-lines
931c7513
RS
8885Bison declaration to avoid generating @code{#line} directives in the
8886parser file. @xref{Decl Summary}.
18b519c0 8887@end deffn
931c7513 8888
18b519c0 8889@deffn {Directive} %nonassoc
9d9b8b70 8890Bison declaration to assign nonassociativity to token(s).
bfa74976 8891@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8892@end deffn
bfa74976 8893
02975b9a 8894@deffn {Directive} %output "@var{file}"
72d2299c 8895Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8896Summary}.
18b519c0 8897@end deffn
d8988b2f 8898
feeb0eda 8899@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8900Bison declaration to specifying an additional parameter that
8901@code{yyparse} should accept. @xref{Parser Function,, The Parser
8902Function @code{yyparse}}.
18b519c0 8903@end deffn
2a8d363a 8904
18b519c0 8905@deffn {Directive} %prec
bfa74976
RS
8906Bison declaration to assign a precedence to a specific rule.
8907@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8908@end deffn
bfa74976 8909
18b519c0 8910@deffn {Directive} %pure-parser
bfa74976
RS
8911Bison declaration to request a pure (reentrant) parser.
8912@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8913@end deffn
bfa74976 8914
b50d2359 8915@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8916Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8917Require a Version of Bison}.
b50d2359
AD
8918@end deffn
8919
18b519c0 8920@deffn {Directive} %right
bfa74976
RS
8921Bison declaration to assign right associativity to token(s).
8922@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8923@end deffn
bfa74976 8924
e6e704dc
JD
8925@deffn {Directive} %skeleton
8926Specify the skeleton to use; usually for development.
8927@xref{Decl Summary}.
8928@end deffn
8929
18b519c0 8930@deffn {Directive} %start
704a47c4
AD
8931Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8932Start-Symbol}.
18b519c0 8933@end deffn
bfa74976 8934
18b519c0 8935@deffn {Directive} %token
bfa74976
RS
8936Bison declaration to declare token(s) without specifying precedence.
8937@xref{Token Decl, ,Token Type Names}.
18b519c0 8938@end deffn
bfa74976 8939
18b519c0 8940@deffn {Directive} %token-table
931c7513
RS
8941Bison declaration to include a token name table in the parser file.
8942@xref{Decl Summary}.
18b519c0 8943@end deffn
931c7513 8944
18b519c0 8945@deffn {Directive} %type
704a47c4
AD
8946Bison declaration to declare nonterminals. @xref{Type Decl,
8947,Nonterminal Symbols}.
18b519c0 8948@end deffn
bfa74976 8949
dd8d9022
AD
8950@deffn {Symbol} $undefined
8951The predefined token onto which all undefined values returned by
8952@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8953@code{error}.
8954@end deffn
8955
18b519c0 8956@deffn {Directive} %union
bfa74976
RS
8957Bison declaration to specify several possible data types for semantic
8958values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8959@end deffn
bfa74976 8960
dd8d9022
AD
8961@deffn {Macro} YYABORT
8962Macro to pretend that an unrecoverable syntax error has occurred, by
8963making @code{yyparse} return 1 immediately. The error reporting
8964function @code{yyerror} is not called. @xref{Parser Function, ,The
8965Parser Function @code{yyparse}}.
8966@end deffn
3ded9a63 8967
dd8d9022
AD
8968@deffn {Macro} YYACCEPT
8969Macro to pretend that a complete utterance of the language has been
8970read, by making @code{yyparse} return 0 immediately.
8971@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8972@end deffn
bfa74976 8973
dd8d9022 8974@deffn {Macro} YYBACKUP
742e4900 8975Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8976token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8977@end deffn
bfa74976 8978
dd8d9022 8979@deffn {Variable} yychar
32c29292 8980External integer variable that contains the integer value of the
742e4900 8981lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8982@code{yyparse}.) Error-recovery rule actions may examine this variable.
8983@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8984@end deffn
bfa74976 8985
dd8d9022
AD
8986@deffn {Variable} yyclearin
8987Macro used in error-recovery rule actions. It clears the previous
742e4900 8988lookahead token. @xref{Error Recovery}.
18b519c0 8989@end deffn
bfa74976 8990
dd8d9022
AD
8991@deffn {Macro} YYDEBUG
8992Macro to define to equip the parser with tracing code. @xref{Tracing,
8993,Tracing Your Parser}.
18b519c0 8994@end deffn
bfa74976 8995
dd8d9022
AD
8996@deffn {Variable} yydebug
8997External integer variable set to zero by default. If @code{yydebug}
8998is given a nonzero value, the parser will output information on input
8999symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9000@end deffn
bfa74976 9001
dd8d9022
AD
9002@deffn {Macro} yyerrok
9003Macro to cause parser to recover immediately to its normal mode
9004after a syntax error. @xref{Error Recovery}.
9005@end deffn
9006
9007@deffn {Macro} YYERROR
9008Macro to pretend that a syntax error has just been detected: call
9009@code{yyerror} and then perform normal error recovery if possible
9010(@pxref{Error Recovery}), or (if recovery is impossible) make
9011@code{yyparse} return 1. @xref{Error Recovery}.
9012@end deffn
9013
9014@deffn {Function} yyerror
9015User-supplied function to be called by @code{yyparse} on error.
9016@xref{Error Reporting, ,The Error
9017Reporting Function @code{yyerror}}.
9018@end deffn
9019
9020@deffn {Macro} YYERROR_VERBOSE
9021An obsolete macro that you define with @code{#define} in the prologue
9022to request verbose, specific error message strings
9023when @code{yyerror} is called. It doesn't matter what definition you
9024use for @code{YYERROR_VERBOSE}, just whether you define it. Using
9025@code{%error-verbose} is preferred.
9026@end deffn
9027
9028@deffn {Macro} YYINITDEPTH
9029Macro for specifying the initial size of the parser stack.
1a059451 9030@xref{Memory Management}.
dd8d9022
AD
9031@end deffn
9032
9033@deffn {Function} yylex
9034User-supplied lexical analyzer function, called with no arguments to get
9035the next token. @xref{Lexical, ,The Lexical Analyzer Function
9036@code{yylex}}.
9037@end deffn
9038
9039@deffn {Macro} YYLEX_PARAM
9040An obsolete macro for specifying an extra argument (or list of extra
32c29292 9041arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9042macro is deprecated, and is supported only for Yacc like parsers.
9043@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9044@end deffn
9045
9046@deffn {Variable} yylloc
9047External variable in which @code{yylex} should place the line and column
9048numbers associated with a token. (In a pure parser, it is a local
9049variable within @code{yyparse}, and its address is passed to
32c29292
JD
9050@code{yylex}.)
9051You can ignore this variable if you don't use the @samp{@@} feature in the
9052grammar actions.
9053@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9054In semantic actions, it stores the location of the lookahead token.
32c29292 9055@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9056@end deffn
9057
9058@deffn {Type} YYLTYPE
9059Data type of @code{yylloc}; by default, a structure with four
9060members. @xref{Location Type, , Data Types of Locations}.
9061@end deffn
9062
9063@deffn {Variable} yylval
9064External variable in which @code{yylex} should place the semantic
9065value associated with a token. (In a pure parser, it is a local
9066variable within @code{yyparse}, and its address is passed to
32c29292
JD
9067@code{yylex}.)
9068@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9069In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9070@xref{Actions, ,Actions}.
dd8d9022
AD
9071@end deffn
9072
9073@deffn {Macro} YYMAXDEPTH
1a059451
PE
9074Macro for specifying the maximum size of the parser stack. @xref{Memory
9075Management}.
dd8d9022
AD
9076@end deffn
9077
9078@deffn {Variable} yynerrs
8a2800e7 9079Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
9080(In a pure parser, it is a local variable within @code{yyparse}.)
9081@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9082@end deffn
9083
9084@deffn {Function} yyparse
9085The parser function produced by Bison; call this function to start
9086parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9087@end deffn
9088
9089@deffn {Macro} YYPARSE_PARAM
9090An obsolete macro for specifying the name of a parameter that
9091@code{yyparse} should accept. The use of this macro is deprecated, and
9092is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9093Conventions for Pure Parsers}.
9094@end deffn
9095
9096@deffn {Macro} YYRECOVERING
02103984
PE
9097The expression @code{YYRECOVERING ()} yields 1 when the parser
9098is recovering from a syntax error, and 0 otherwise.
9099@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9100@end deffn
9101
9102@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9103Macro used to control the use of @code{alloca} when the C
9104@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9105the parser will use @code{malloc} to extend its stacks. If defined to
91061, the parser will use @code{alloca}. Values other than 0 and 1 are
9107reserved for future Bison extensions. If not defined,
9108@code{YYSTACK_USE_ALLOCA} defaults to 0.
9109
55289366 9110In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9111limited stack and with unreliable stack-overflow checking, you should
9112set @code{YYMAXDEPTH} to a value that cannot possibly result in
9113unchecked stack overflow on any of your target hosts when
9114@code{alloca} is called. You can inspect the code that Bison
9115generates in order to determine the proper numeric values. This will
9116require some expertise in low-level implementation details.
dd8d9022
AD
9117@end deffn
9118
9119@deffn {Type} YYSTYPE
9120Data type of semantic values; @code{int} by default.
9121@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9122@end deffn
bfa74976 9123
342b8b6e 9124@node Glossary
bfa74976
RS
9125@appendix Glossary
9126@cindex glossary
9127
9128@table @asis
c827f760
PE
9129@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9130Formal method of specifying context-free grammars originally proposed
9131by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9132committee document contributing to what became the Algol 60 report.
9133@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9134
9135@item Context-free grammars
9136Grammars specified as rules that can be applied regardless of context.
9137Thus, if there is a rule which says that an integer can be used as an
9138expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9139permitted. @xref{Language and Grammar, ,Languages and Context-Free
9140Grammars}.
bfa74976
RS
9141
9142@item Dynamic allocation
9143Allocation of memory that occurs during execution, rather than at
9144compile time or on entry to a function.
9145
9146@item Empty string
9147Analogous to the empty set in set theory, the empty string is a
9148character string of length zero.
9149
9150@item Finite-state stack machine
9151A ``machine'' that has discrete states in which it is said to exist at
9152each instant in time. As input to the machine is processed, the
9153machine moves from state to state as specified by the logic of the
9154machine. In the case of the parser, the input is the language being
9155parsed, and the states correspond to various stages in the grammar
c827f760 9156rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9157
c827f760 9158@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9159A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9160that are not @acronym{LALR}(1). It resolves situations that Bison's
9161usual @acronym{LALR}(1)
676385e2
PH
9162algorithm cannot by effectively splitting off multiple parsers, trying all
9163possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9164right context. @xref{Generalized LR Parsing, ,Generalized
9165@acronym{LR} Parsing}.
676385e2 9166
bfa74976
RS
9167@item Grouping
9168A language construct that is (in general) grammatically divisible;
c827f760 9169for example, `expression' or `declaration' in C@.
bfa74976
RS
9170@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9171
9172@item Infix operator
9173An arithmetic operator that is placed between the operands on which it
9174performs some operation.
9175
9176@item Input stream
9177A continuous flow of data between devices or programs.
9178
9179@item Language construct
9180One of the typical usage schemas of the language. For example, one of
9181the constructs of the C language is the @code{if} statement.
9182@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9183
9184@item Left associativity
9185Operators having left associativity are analyzed from left to right:
9186@samp{a+b+c} first computes @samp{a+b} and then combines with
9187@samp{c}. @xref{Precedence, ,Operator Precedence}.
9188
9189@item Left recursion
89cab50d
AD
9190A rule whose result symbol is also its first component symbol; for
9191example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9192Rules}.
bfa74976
RS
9193
9194@item Left-to-right parsing
9195Parsing a sentence of a language by analyzing it token by token from
c827f760 9196left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9197
9198@item Lexical analyzer (scanner)
9199A function that reads an input stream and returns tokens one by one.
9200@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9201
9202@item Lexical tie-in
9203A flag, set by actions in the grammar rules, which alters the way
9204tokens are parsed. @xref{Lexical Tie-ins}.
9205
931c7513 9206@item Literal string token
14ded682 9207A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9208
742e4900
JD
9209@item Lookahead token
9210A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9211Tokens}.
bfa74976 9212
c827f760 9213@item @acronym{LALR}(1)
bfa74976 9214The class of context-free grammars that Bison (like most other parser
c827f760
PE
9215generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9216Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9217
c827f760 9218@item @acronym{LR}(1)
bfa74976 9219The class of context-free grammars in which at most one token of
742e4900 9220lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9221
9222@item Nonterminal symbol
9223A grammar symbol standing for a grammatical construct that can
9224be expressed through rules in terms of smaller constructs; in other
9225words, a construct that is not a token. @xref{Symbols}.
9226
bfa74976
RS
9227@item Parser
9228A function that recognizes valid sentences of a language by analyzing
9229the syntax structure of a set of tokens passed to it from a lexical
9230analyzer.
9231
9232@item Postfix operator
9233An arithmetic operator that is placed after the operands upon which it
9234performs some operation.
9235
9236@item Reduction
9237Replacing a string of nonterminals and/or terminals with a single
89cab50d 9238nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9239Parser Algorithm}.
bfa74976
RS
9240
9241@item Reentrant
9242A reentrant subprogram is a subprogram which can be in invoked any
9243number of times in parallel, without interference between the various
9244invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9245
9246@item Reverse polish notation
9247A language in which all operators are postfix operators.
9248
9249@item Right recursion
89cab50d
AD
9250A rule whose result symbol is also its last component symbol; for
9251example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9252Rules}.
bfa74976
RS
9253
9254@item Semantics
9255In computer languages, the semantics are specified by the actions
9256taken for each instance of the language, i.e., the meaning of
9257each statement. @xref{Semantics, ,Defining Language Semantics}.
9258
9259@item Shift
9260A parser is said to shift when it makes the choice of analyzing
9261further input from the stream rather than reducing immediately some
c827f760 9262already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9263
9264@item Single-character literal
9265A single character that is recognized and interpreted as is.
9266@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9267
9268@item Start symbol
9269The nonterminal symbol that stands for a complete valid utterance in
9270the language being parsed. The start symbol is usually listed as the
13863333 9271first nonterminal symbol in a language specification.
bfa74976
RS
9272@xref{Start Decl, ,The Start-Symbol}.
9273
9274@item Symbol table
9275A data structure where symbol names and associated data are stored
9276during parsing to allow for recognition and use of existing
9277information in repeated uses of a symbol. @xref{Multi-function Calc}.
9278
6e649e65
PE
9279@item Syntax error
9280An error encountered during parsing of an input stream due to invalid
9281syntax. @xref{Error Recovery}.
9282
bfa74976
RS
9283@item Token
9284A basic, grammatically indivisible unit of a language. The symbol
9285that describes a token in the grammar is a terminal symbol.
9286The input of the Bison parser is a stream of tokens which comes from
9287the lexical analyzer. @xref{Symbols}.
9288
9289@item Terminal symbol
89cab50d
AD
9290A grammar symbol that has no rules in the grammar and therefore is
9291grammatically indivisible. The piece of text it represents is a token.
9292@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9293@end table
9294
342b8b6e 9295@node Copying This Manual
f2b5126e 9296@appendix Copying This Manual
f9a8293a 9297
f2b5126e
PB
9298@menu
9299* GNU Free Documentation License:: License for copying this manual.
9300@end menu
f9a8293a 9301
f2b5126e
PB
9302@include fdl.texi
9303
342b8b6e 9304@node Index
bfa74976
RS
9305@unnumbered Index
9306
9307@printindex cp
9308
bfa74976 9309@bye
a06ea4aa
AD
9310
9311@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9312@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9313@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9314@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9315@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9316@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9317@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9318@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9319@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9320@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9321@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9322@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 9323@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
9324@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9325@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9326@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9327@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 9328@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
9329@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9330@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9331@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9332@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9333@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9334@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9335@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9336@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 9337@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 9338@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 9339@c LocalWords: YYSTACK DVI fdl printindex