]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
DJGPP spefic issue. Inhibit the use of disallowed characters for
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
bb32f4f2 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 107* Other Languages:: Creating C++ and Java parsers.
12545799 108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
8405b70c 288Parsers Written In Other Languages
12545799
AD
289
290* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 291* Java Parsers:: The interface to generate Java parser classes
12545799
AD
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 300* A Complete C++ Example:: Demonstrating their use
12545799
AD
301
302A Complete C++ Example
303
304* Calc++ --- C++ Calculator:: The specifications
305* Calc++ Parsing Driver:: An active parsing context
306* Calc++ Parser:: A parser class
307* Calc++ Scanner:: A pure C++ Flex scanner
308* Calc++ Top Level:: Conducting the band
309
8405b70c
PB
310Java Parsers
311
312* Java Bison Interface:: Asking for Java parser generation
313* Java Semantic Values:: %type and %token vs. Java
314* Java Location Values:: The position and location classes
315* Java Parser Interface:: Instantiating and running the parser
316* Java Scanner Interface:: Java scanners, and pure parsers
317* Java Differences:: Differences between C/C++ and Java Grammars
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 325* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
326* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
327* I can't build Bison:: Troubleshooting
328* Where can I find help?:: Troubleshouting
329* Bug Reports:: Troublereporting
330* Other Languages:: Parsers in Java and others
331* Beta Testing:: Experimenting development versions
332* Mailing Lists:: Meeting other Bison users
d1a1114f 333
f2b5126e
PB
334Copying This Manual
335
336* GNU Free Documentation License:: License for copying this manual.
337
342b8b6e 338@end detailmenu
bfa74976
RS
339@end menu
340
342b8b6e 341@node Introduction
bfa74976
RS
342@unnumbered Introduction
343@cindex introduction
344
6077da58
PE
345@dfn{Bison} is a general-purpose parser generator that converts an
346annotated context-free grammar into an @acronym{LALR}(1) or
347@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 348Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
349used in simple desk calculators to complex programming languages.
350
351Bison is upward compatible with Yacc: all properly-written Yacc grammars
352ought to work with Bison with no change. Anyone familiar with Yacc
353should be able to use Bison with little trouble. You need to be fluent in
1e137b71 354C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
355
356We begin with tutorial chapters that explain the basic concepts of using
357Bison and show three explained examples, each building on the last. If you
358don't know Bison or Yacc, start by reading these chapters. Reference
359chapters follow which describe specific aspects of Bison in detail.
360
931c7513
RS
361Bison was written primarily by Robert Corbett; Richard Stallman made it
362Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 363multi-character string literals and other features.
931c7513 364
df1af54c 365This edition corresponds to version @value{VERSION} of Bison.
bfa74976 366
342b8b6e 367@node Conditions
bfa74976
RS
368@unnumbered Conditions for Using Bison
369
193d7c70
PE
370The distribution terms for Bison-generated parsers permit using the
371parsers in nonfree programs. Before Bison version 2.2, these extra
372permissions applied only when Bison was generating @acronym{LALR}(1)
373parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 374parsers could be used only in programs that were free software.
a31239f1 375
c827f760
PE
376The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
377compiler, have never
9ecbd125 378had such a requirement. They could always be used for nonfree
a31239f1
RS
379software. The reason Bison was different was not due to a special
380policy decision; it resulted from applying the usual General Public
381License to all of the Bison source code.
382
383The output of the Bison utility---the Bison parser file---contains a
384verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
385parser's implementation. (The actions from your grammar are inserted
386into this implementation at one point, but most of the rest of the
387implementation is not changed.) When we applied the @acronym{GPL}
388terms to the skeleton code for the parser's implementation,
a31239f1
RS
389the effect was to restrict the use of Bison output to free software.
390
391We didn't change the terms because of sympathy for people who want to
392make software proprietary. @strong{Software should be free.} But we
393concluded that limiting Bison's use to free software was doing little to
394encourage people to make other software free. So we decided to make the
395practical conditions for using Bison match the practical conditions for
c827f760 396using the other @acronym{GNU} tools.
bfa74976 397
193d7c70
PE
398This exception applies when Bison is generating code for a parser.
399You can tell whether the exception applies to a Bison output file by
400inspecting the file for text beginning with ``As a special
401exception@dots{}''. The text spells out the exact terms of the
402exception.
262aa8dd 403
c67a198d 404@include gpl.texi
bfa74976 405
342b8b6e 406@node Concepts
bfa74976
RS
407@chapter The Concepts of Bison
408
409This chapter introduces many of the basic concepts without which the
410details of Bison will not make sense. If you do not already know how to
411use Bison or Yacc, we suggest you start by reading this chapter carefully.
412
413@menu
414* Language and Grammar:: Languages and context-free grammars,
415 as mathematical ideas.
416* Grammar in Bison:: How we represent grammars for Bison's sake.
417* Semantic Values:: Each token or syntactic grouping can have
418 a semantic value (the value of an integer,
419 the name of an identifier, etc.).
420* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 421* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 422* Locations Overview:: Tracking Locations.
bfa74976
RS
423* Bison Parser:: What are Bison's input and output,
424 how is the output used?
425* Stages:: Stages in writing and running Bison grammars.
426* Grammar Layout:: Overall structure of a Bison grammar file.
427@end menu
428
342b8b6e 429@node Language and Grammar
bfa74976
RS
430@section Languages and Context-Free Grammars
431
bfa74976
RS
432@cindex context-free grammar
433@cindex grammar, context-free
434In order for Bison to parse a language, it must be described by a
435@dfn{context-free grammar}. This means that you specify one or more
436@dfn{syntactic groupings} and give rules for constructing them from their
437parts. For example, in the C language, one kind of grouping is called an
438`expression'. One rule for making an expression might be, ``An expression
439can be made of a minus sign and another expression''. Another would be,
440``An expression can be an integer''. As you can see, rules are often
441recursive, but there must be at least one rule which leads out of the
442recursion.
443
c827f760 444@cindex @acronym{BNF}
bfa74976
RS
445@cindex Backus-Naur form
446The most common formal system for presenting such rules for humans to read
c827f760
PE
447is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
448order to specify the language Algol 60. Any grammar expressed in
449@acronym{BNF} is a context-free grammar. The input to Bison is
450essentially machine-readable @acronym{BNF}.
bfa74976 451
c827f760
PE
452@cindex @acronym{LALR}(1) grammars
453@cindex @acronym{LR}(1) grammars
676385e2
PH
454There are various important subclasses of context-free grammar. Although it
455can handle almost all context-free grammars, Bison is optimized for what
c827f760 456are called @acronym{LALR}(1) grammars.
676385e2 457In brief, in these grammars, it must be possible to
bfa74976 458tell how to parse any portion of an input string with just a single
742e4900 459token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
460@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
461restrictions that are
bfa74976 462hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
463@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
464@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
465more information on this.
bfa74976 466
c827f760
PE
467@cindex @acronym{GLR} parsing
468@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 469@cindex ambiguous grammars
9d9b8b70 470@cindex nondeterministic parsing
9501dc6e
AD
471
472Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
473roughly that the next grammar rule to apply at any point in the input is
474uniquely determined by the preceding input and a fixed, finite portion
742e4900 475(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 476grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 477apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 478grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 479lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
480With the proper declarations, Bison is also able to parse these more
481general context-free grammars, using a technique known as @acronym{GLR}
482parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
483are able to handle any context-free grammar for which the number of
484possible parses of any given string is finite.
676385e2 485
bfa74976
RS
486@cindex symbols (abstract)
487@cindex token
488@cindex syntactic grouping
489@cindex grouping, syntactic
9501dc6e
AD
490In the formal grammatical rules for a language, each kind of syntactic
491unit or grouping is named by a @dfn{symbol}. Those which are built by
492grouping smaller constructs according to grammatical rules are called
bfa74976
RS
493@dfn{nonterminal symbols}; those which can't be subdivided are called
494@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
495corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 496corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
497
498We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
499nonterminal, mean. The tokens of C are identifiers, constants (numeric
500and string), and the various keywords, arithmetic operators and
501punctuation marks. So the terminal symbols of a grammar for C include
502`identifier', `number', `string', plus one symbol for each keyword,
503operator or punctuation mark: `if', `return', `const', `static', `int',
504`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
505(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
506lexicography, not grammar.)
507
508Here is a simple C function subdivided into tokens:
509
9edcd895
AD
510@ifinfo
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
514 @r{identifier, close-paren} */
515@{ /* @r{open-brace} */
aa08666d
AD
516 return x * x; /* @r{keyword `return', identifier, asterisk,}
517 @r{identifier, semicolon} */
9edcd895
AD
518@} /* @r{close-brace} */
519@end example
520@end ifinfo
521@ifnotinfo
bfa74976
RS
522@example
523int /* @r{keyword `int'} */
14d4662b 524square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 525@{ /* @r{open-brace} */
9edcd895 526 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
527@} /* @r{close-brace} */
528@end example
9edcd895 529@end ifnotinfo
bfa74976
RS
530
531The syntactic groupings of C include the expression, the statement, the
532declaration, and the function definition. These are represented in the
533grammar of C by nonterminal symbols `expression', `statement',
534`declaration' and `function definition'. The full grammar uses dozens of
535additional language constructs, each with its own nonterminal symbol, in
536order to express the meanings of these four. The example above is a
537function definition; it contains one declaration, and one statement. In
538the statement, each @samp{x} is an expression and so is @samp{x * x}.
539
540Each nonterminal symbol must have grammatical rules showing how it is made
541out of simpler constructs. For example, one kind of C statement is the
542@code{return} statement; this would be described with a grammar rule which
543reads informally as follows:
544
545@quotation
546A `statement' can be made of a `return' keyword, an `expression' and a
547`semicolon'.
548@end quotation
549
550@noindent
551There would be many other rules for `statement', one for each kind of
552statement in C.
553
554@cindex start symbol
555One nonterminal symbol must be distinguished as the special one which
556defines a complete utterance in the language. It is called the @dfn{start
557symbol}. In a compiler, this means a complete input program. In the C
558language, the nonterminal symbol `sequence of definitions and declarations'
559plays this role.
560
561For example, @samp{1 + 2} is a valid C expression---a valid part of a C
562program---but it is not valid as an @emph{entire} C program. In the
563context-free grammar of C, this follows from the fact that `expression' is
564not the start symbol.
565
566The Bison parser reads a sequence of tokens as its input, and groups the
567tokens using the grammar rules. If the input is valid, the end result is
568that the entire token sequence reduces to a single grouping whose symbol is
569the grammar's start symbol. If we use a grammar for C, the entire input
570must be a `sequence of definitions and declarations'. If not, the parser
571reports a syntax error.
572
342b8b6e 573@node Grammar in Bison
bfa74976
RS
574@section From Formal Rules to Bison Input
575@cindex Bison grammar
576@cindex grammar, Bison
577@cindex formal grammar
578
579A formal grammar is a mathematical construct. To define the language
580for Bison, you must write a file expressing the grammar in Bison syntax:
581a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
582
583A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 584as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
585in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
586
587The Bison representation for a terminal symbol is also called a @dfn{token
588type}. Token types as well can be represented as C-like identifiers. By
589convention, these identifiers should be upper case to distinguish them from
590nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
591@code{RETURN}. A terminal symbol that stands for a particular keyword in
592the language should be named after that keyword converted to upper case.
593The terminal symbol @code{error} is reserved for error recovery.
931c7513 594@xref{Symbols}.
bfa74976
RS
595
596A terminal symbol can also be represented as a character literal, just like
597a C character constant. You should do this whenever a token is just a
598single character (parenthesis, plus-sign, etc.): use that same character in
599a literal as the terminal symbol for that token.
600
931c7513
RS
601A third way to represent a terminal symbol is with a C string constant
602containing several characters. @xref{Symbols}, for more information.
603
bfa74976
RS
604The grammar rules also have an expression in Bison syntax. For example,
605here is the Bison rule for a C @code{return} statement. The semicolon in
606quotes is a literal character token, representing part of the C syntax for
607the statement; the naked semicolon, and the colon, are Bison punctuation
608used in every rule.
609
610@example
611stmt: RETURN expr ';'
612 ;
613@end example
614
615@noindent
616@xref{Rules, ,Syntax of Grammar Rules}.
617
342b8b6e 618@node Semantic Values
bfa74976
RS
619@section Semantic Values
620@cindex semantic value
621@cindex value, semantic
622
623A formal grammar selects tokens only by their classifications: for example,
624if a rule mentions the terminal symbol `integer constant', it means that
625@emph{any} integer constant is grammatically valid in that position. The
626precise value of the constant is irrelevant to how to parse the input: if
627@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 628grammatical.
bfa74976
RS
629
630But the precise value is very important for what the input means once it is
631parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6323989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
633has both a token type and a @dfn{semantic value}. @xref{Semantics,
634,Defining Language Semantics},
bfa74976
RS
635for details.
636
637The token type is a terminal symbol defined in the grammar, such as
638@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
639you need to know to decide where the token may validly appear and how to
640group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 641except their types.
bfa74976
RS
642
643The semantic value has all the rest of the information about the
644meaning of the token, such as the value of an integer, or the name of an
645identifier. (A token such as @code{','} which is just punctuation doesn't
646need to have any semantic value.)
647
648For example, an input token might be classified as token type
649@code{INTEGER} and have the semantic value 4. Another input token might
650have the same token type @code{INTEGER} but value 3989. When a grammar
651rule says that @code{INTEGER} is allowed, either of these tokens is
652acceptable because each is an @code{INTEGER}. When the parser accepts the
653token, it keeps track of the token's semantic value.
654
655Each grouping can also have a semantic value as well as its nonterminal
656symbol. For example, in a calculator, an expression typically has a
657semantic value that is a number. In a compiler for a programming
658language, an expression typically has a semantic value that is a tree
659structure describing the meaning of the expression.
660
342b8b6e 661@node Semantic Actions
bfa74976
RS
662@section Semantic Actions
663@cindex semantic actions
664@cindex actions, semantic
665
666In order to be useful, a program must do more than parse input; it must
667also produce some output based on the input. In a Bison grammar, a grammar
668rule can have an @dfn{action} made up of C statements. Each time the
669parser recognizes a match for that rule, the action is executed.
670@xref{Actions}.
13863333 671
bfa74976
RS
672Most of the time, the purpose of an action is to compute the semantic value
673of the whole construct from the semantic values of its parts. For example,
674suppose we have a rule which says an expression can be the sum of two
675expressions. When the parser recognizes such a sum, each of the
676subexpressions has a semantic value which describes how it was built up.
677The action for this rule should create a similar sort of value for the
678newly recognized larger expression.
679
680For example, here is a rule that says an expression can be the sum of
681two subexpressions:
682
683@example
684expr: expr '+' expr @{ $$ = $1 + $3; @}
685 ;
686@end example
687
688@noindent
689The action says how to produce the semantic value of the sum expression
690from the values of the two subexpressions.
691
676385e2 692@node GLR Parsers
c827f760
PE
693@section Writing @acronym{GLR} Parsers
694@cindex @acronym{GLR} parsing
695@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
696@findex %glr-parser
697@cindex conflicts
698@cindex shift/reduce conflicts
fa7e68c3 699@cindex reduce/reduce conflicts
676385e2 700
fa7e68c3 701In some grammars, Bison's standard
9501dc6e
AD
702@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
703certain grammar rule at a given point. That is, it may not be able to
704decide (on the basis of the input read so far) which of two possible
705reductions (applications of a grammar rule) applies, or whether to apply
706a reduction or read more of the input and apply a reduction later in the
707input. These are known respectively as @dfn{reduce/reduce} conflicts
708(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
709(@pxref{Shift/Reduce}).
710
711To use a grammar that is not easily modified to be @acronym{LALR}(1), a
712more general parsing algorithm is sometimes necessary. If you include
676385e2 713@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 714(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
715(@acronym{GLR}) parser. These parsers handle Bison grammars that
716contain no unresolved conflicts (i.e., after applying precedence
717declarations) identically to @acronym{LALR}(1) parsers. However, when
718faced with unresolved shift/reduce and reduce/reduce conflicts,
719@acronym{GLR} parsers use the simple expedient of doing both,
720effectively cloning the parser to follow both possibilities. Each of
721the resulting parsers can again split, so that at any given time, there
722can be any number of possible parses being explored. The parsers
676385e2
PH
723proceed in lockstep; that is, all of them consume (shift) a given input
724symbol before any of them proceed to the next. Each of the cloned
725parsers eventually meets one of two possible fates: either it runs into
726a parsing error, in which case it simply vanishes, or it merges with
727another parser, because the two of them have reduced the input to an
728identical set of symbols.
729
730During the time that there are multiple parsers, semantic actions are
731recorded, but not performed. When a parser disappears, its recorded
732semantic actions disappear as well, and are never performed. When a
733reduction makes two parsers identical, causing them to merge, Bison
734records both sets of semantic actions. Whenever the last two parsers
735merge, reverting to the single-parser case, Bison resolves all the
736outstanding actions either by precedences given to the grammar rules
737involved, or by performing both actions, and then calling a designated
738user-defined function on the resulting values to produce an arbitrary
739merged result.
740
fa7e68c3 741@menu
32c29292
JD
742* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
743* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
744* GLR Semantic Actions:: Deferred semantic actions have special concerns.
745* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
746@end menu
747
748@node Simple GLR Parsers
749@subsection Using @acronym{GLR} on Unambiguous Grammars
750@cindex @acronym{GLR} parsing, unambiguous grammars
751@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
752@findex %glr-parser
753@findex %expect-rr
754@cindex conflicts
755@cindex reduce/reduce conflicts
756@cindex shift/reduce conflicts
757
758In the simplest cases, you can use the @acronym{GLR} algorithm
759to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 760Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
761or (in rare cases) fall into the category of grammars in which the
762@acronym{LALR}(1) algorithm throws away too much information (they are in
763@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
764
765Consider a problem that
766arises in the declaration of enumerated and subrange types in the
767programming language Pascal. Here are some examples:
768
769@example
770type subrange = lo .. hi;
771type enum = (a, b, c);
772@end example
773
774@noindent
775The original language standard allows only numeric
776literals and constant identifiers for the subrange bounds (@samp{lo}
777and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77810206) and many other
779Pascal implementations allow arbitrary expressions there. This gives
780rise to the following situation, containing a superfluous pair of
781parentheses:
782
783@example
784type subrange = (a) .. b;
785@end example
786
787@noindent
788Compare this to the following declaration of an enumerated
789type with only one value:
790
791@example
792type enum = (a);
793@end example
794
795@noindent
796(These declarations are contrived, but they are syntactically
797valid, and more-complicated cases can come up in practical programs.)
798
799These two declarations look identical until the @samp{..} token.
742e4900 800With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
801possible to decide between the two forms when the identifier
802@samp{a} is parsed. It is, however, desirable
803for a parser to decide this, since in the latter case
804@samp{a} must become a new identifier to represent the enumeration
805value, while in the former case @samp{a} must be evaluated with its
806current meaning, which may be a constant or even a function call.
807
808You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
809to be resolved later, but this typically requires substantial
810contortions in both semantic actions and large parts of the
811grammar, where the parentheses are nested in the recursive rules for
812expressions.
813
814You might think of using the lexer to distinguish between the two
815forms by returning different tokens for currently defined and
816undefined identifiers. But if these declarations occur in a local
817scope, and @samp{a} is defined in an outer scope, then both forms
818are possible---either locally redefining @samp{a}, or using the
819value of @samp{a} from the outer scope. So this approach cannot
820work.
821
e757bb10 822A simple solution to this problem is to declare the parser to
fa7e68c3
PE
823use the @acronym{GLR} algorithm.
824When the @acronym{GLR} parser reaches the critical state, it
825merely splits into two branches and pursues both syntax rules
826simultaneously. Sooner or later, one of them runs into a parsing
827error. If there is a @samp{..} token before the next
828@samp{;}, the rule for enumerated types fails since it cannot
829accept @samp{..} anywhere; otherwise, the subrange type rule
830fails since it requires a @samp{..} token. So one of the branches
831fails silently, and the other one continues normally, performing
832all the intermediate actions that were postponed during the split.
833
834If the input is syntactically incorrect, both branches fail and the parser
835reports a syntax error as usual.
836
837The effect of all this is that the parser seems to ``guess'' the
838correct branch to take, or in other words, it seems to use more
742e4900 839lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
840for. In this example, @acronym{LALR}(2) would suffice, but also some cases
841that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
842
843In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
844and the current Bison parser even takes exponential time and space
845for some grammars. In practice, this rarely happens, and for many
846grammars it is possible to prove that it cannot happen.
847The present example contains only one conflict between two
848rules, and the type-declaration context containing the conflict
849cannot be nested. So the number of
850branches that can exist at any time is limited by the constant 2,
851and the parsing time is still linear.
852
853Here is a Bison grammar corresponding to the example above. It
854parses a vastly simplified form of Pascal type declarations.
855
856@example
857%token TYPE DOTDOT ID
858
859@group
860%left '+' '-'
861%left '*' '/'
862@end group
863
864%%
865
866@group
867type_decl : TYPE ID '=' type ';'
868 ;
869@end group
870
871@group
872type : '(' id_list ')'
873 | expr DOTDOT expr
874 ;
875@end group
876
877@group
878id_list : ID
879 | id_list ',' ID
880 ;
881@end group
882
883@group
884expr : '(' expr ')'
885 | expr '+' expr
886 | expr '-' expr
887 | expr '*' expr
888 | expr '/' expr
889 | ID
890 ;
891@end group
892@end example
893
894When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
895about one reduce/reduce conflict. In the conflicting situation the
896parser chooses one of the alternatives, arbitrarily the one
897declared first. Therefore the following correct input is not
898recognized:
899
900@example
901type t = (a) .. b;
902@end example
903
904The parser can be turned into a @acronym{GLR} parser, while also telling Bison
905to be silent about the one known reduce/reduce conflict, by
e757bb10 906adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
907@samp{%%}):
908
909@example
910%glr-parser
911%expect-rr 1
912@end example
913
914@noindent
915No change in the grammar itself is required. Now the
916parser recognizes all valid declarations, according to the
917limited syntax above, transparently. In fact, the user does not even
918notice when the parser splits.
919
f8e1c9e5
AD
920So here we have a case where we can use the benefits of @acronym{GLR},
921almost without disadvantages. Even in simple cases like this, however,
922there are at least two potential problems to beware. First, always
923analyze the conflicts reported by Bison to make sure that @acronym{GLR}
924splitting is only done where it is intended. A @acronym{GLR} parser
925splitting inadvertently may cause problems less obvious than an
926@acronym{LALR} parser statically choosing the wrong alternative in a
927conflict. Second, consider interactions with the lexer (@pxref{Semantic
928Tokens}) with great care. Since a split parser consumes tokens without
929performing any actions during the split, the lexer cannot obtain
930information via parser actions. Some cases of lexer interactions can be
931eliminated by using @acronym{GLR} to shift the complications from the
932lexer to the parser. You must check the remaining cases for
933correctness.
934
935In our example, it would be safe for the lexer to return tokens based on
936their current meanings in some symbol table, because no new symbols are
937defined in the middle of a type declaration. Though it is possible for
938a parser to define the enumeration constants as they are parsed, before
939the type declaration is completed, it actually makes no difference since
940they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
941
942@node Merging GLR Parses
943@subsection Using @acronym{GLR} to Resolve Ambiguities
944@cindex @acronym{GLR} parsing, ambiguous grammars
945@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
946@findex %dprec
947@findex %merge
948@cindex conflicts
949@cindex reduce/reduce conflicts
950
2a8d363a 951Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
952
953@example
954%@{
38a92d50
PE
955 #include <stdio.h>
956 #define YYSTYPE char const *
957 int yylex (void);
958 void yyerror (char const *);
676385e2
PH
959%@}
960
961%token TYPENAME ID
962
963%right '='
964%left '+'
965
966%glr-parser
967
968%%
969
fae437e8 970prog :
676385e2
PH
971 | prog stmt @{ printf ("\n"); @}
972 ;
973
974stmt : expr ';' %dprec 1
975 | decl %dprec 2
976 ;
977
2a8d363a 978expr : ID @{ printf ("%s ", $$); @}
fae437e8 979 | TYPENAME '(' expr ')'
2a8d363a
AD
980 @{ printf ("%s <cast> ", $1); @}
981 | expr '+' expr @{ printf ("+ "); @}
982 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
983 ;
984
fae437e8 985decl : TYPENAME declarator ';'
2a8d363a 986 @{ printf ("%s <declare> ", $1); @}
676385e2 987 | TYPENAME declarator '=' expr ';'
2a8d363a 988 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
989 ;
990
2a8d363a 991declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
992 | '(' declarator ')'
993 ;
994@end example
995
996@noindent
997This models a problematic part of the C++ grammar---the ambiguity between
998certain declarations and statements. For example,
999
1000@example
1001T (x) = y+z;
1002@end example
1003
1004@noindent
1005parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1006(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1007@samp{x} as an @code{ID}).
676385e2 1008Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1009@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1010time it encounters @code{x} in the example above. Since this is a
1011@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1012each choice of resolving the reduce/reduce conflict.
1013Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1014however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1015ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1016the other reduces @code{stmt : decl}, after which both parsers are in an
1017identical state: they've seen @samp{prog stmt} and have the same unprocessed
1018input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1019
1020At this point, the @acronym{GLR} parser requires a specification in the
1021grammar of how to choose between the competing parses.
1022In the example above, the two @code{%dprec}
e757bb10 1023declarations specify that Bison is to give precedence
fa7e68c3 1024to the parse that interprets the example as a
676385e2
PH
1025@code{decl}, which implies that @code{x} is a declarator.
1026The parser therefore prints
1027
1028@example
fae437e8 1029"x" y z + T <init-declare>
676385e2
PH
1030@end example
1031
fa7e68c3
PE
1032The @code{%dprec} declarations only come into play when more than one
1033parse survives. Consider a different input string for this parser:
676385e2
PH
1034
1035@example
1036T (x) + y;
1037@end example
1038
1039@noindent
e757bb10 1040This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1041construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1042Here, there is no ambiguity (this cannot be parsed as a declaration).
1043However, at the time the Bison parser encounters @code{x}, it does not
1044have enough information to resolve the reduce/reduce conflict (again,
1045between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1046case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1047into two, one assuming that @code{x} is an @code{expr}, and the other
1048assuming @code{x} is a @code{declarator}. The second of these parsers
1049then vanishes when it sees @code{+}, and the parser prints
1050
1051@example
fae437e8 1052x T <cast> y +
676385e2
PH
1053@end example
1054
1055Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1056the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1057actions of the two possible parsers, rather than choosing one over the
1058other. To do so, you could change the declaration of @code{stmt} as
1059follows:
1060
1061@example
1062stmt : expr ';' %merge <stmtMerge>
1063 | decl %merge <stmtMerge>
1064 ;
1065@end example
1066
1067@noindent
676385e2
PH
1068and define the @code{stmtMerge} function as:
1069
1070@example
38a92d50
PE
1071static YYSTYPE
1072stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1073@{
1074 printf ("<OR> ");
1075 return "";
1076@}
1077@end example
1078
1079@noindent
1080with an accompanying forward declaration
1081in the C declarations at the beginning of the file:
1082
1083@example
1084%@{
38a92d50 1085 #define YYSTYPE char const *
676385e2
PH
1086 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1087%@}
1088@end example
1089
1090@noindent
fa7e68c3
PE
1091With these declarations, the resulting parser parses the first example
1092as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1093
1094@example
fae437e8 1095"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1096@end example
1097
fa7e68c3 1098Bison requires that all of the
e757bb10 1099productions that participate in any particular merge have identical
fa7e68c3
PE
1100@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1101and the parser will report an error during any parse that results in
1102the offending merge.
9501dc6e 1103
32c29292
JD
1104@node GLR Semantic Actions
1105@subsection GLR Semantic Actions
1106
1107@cindex deferred semantic actions
1108By definition, a deferred semantic action is not performed at the same time as
1109the associated reduction.
1110This raises caveats for several Bison features you might use in a semantic
1111action in a @acronym{GLR} parser.
1112
1113@vindex yychar
1114@cindex @acronym{GLR} parsers and @code{yychar}
1115@vindex yylval
1116@cindex @acronym{GLR} parsers and @code{yylval}
1117@vindex yylloc
1118@cindex @acronym{GLR} parsers and @code{yylloc}
1119In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1120the lookahead token present at the time of the associated reduction.
32c29292
JD
1121After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1122you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1123lookahead token's semantic value and location, if any.
32c29292
JD
1124In a nondeferred semantic action, you can also modify any of these variables to
1125influence syntax analysis.
742e4900 1126@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1127
1128@findex yyclearin
1129@cindex @acronym{GLR} parsers and @code{yyclearin}
1130In a deferred semantic action, it's too late to influence syntax analysis.
1131In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1132shallow copies of the values they had at the time of the associated reduction.
1133For this reason alone, modifying them is dangerous.
1134Moreover, the result of modifying them is undefined and subject to change with
1135future versions of Bison.
1136For example, if a semantic action might be deferred, you should never write it
1137to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1138memory referenced by @code{yylval}.
1139
1140@findex YYERROR
1141@cindex @acronym{GLR} parsers and @code{YYERROR}
1142Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1143(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1144initiate error recovery.
1145During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1146the same as its effect in an @acronym{LALR}(1) parser.
1147In a deferred semantic action, its effect is undefined.
1148@c The effect is probably a syntax error at the split point.
1149
8710fc41
JD
1150Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1151describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1152
fa7e68c3
PE
1153@node Compiler Requirements
1154@subsection Considerations when Compiling @acronym{GLR} Parsers
1155@cindex @code{inline}
9501dc6e 1156@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1157
38a92d50
PE
1158The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1159later. In addition, they use the @code{inline} keyword, which is not
1160C89, but is C99 and is a common extension in pre-C99 compilers. It is
1161up to the user of these parsers to handle
9501dc6e
AD
1162portability issues. For instance, if using Autoconf and the Autoconf
1163macro @code{AC_C_INLINE}, a mere
1164
1165@example
1166%@{
38a92d50 1167 #include <config.h>
9501dc6e
AD
1168%@}
1169@end example
1170
1171@noindent
1172will suffice. Otherwise, we suggest
1173
1174@example
1175%@{
38a92d50
PE
1176 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1177 #define inline
1178 #endif
9501dc6e
AD
1179%@}
1180@end example
676385e2 1181
342b8b6e 1182@node Locations Overview
847bf1f5
AD
1183@section Locations
1184@cindex location
95923bd6
AD
1185@cindex textual location
1186@cindex location, textual
847bf1f5
AD
1187
1188Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1189and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1190the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1191Bison provides a mechanism for handling these locations.
1192
72d2299c 1193Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1194associated location, but the type of locations is the same for all tokens and
72d2299c 1195groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1196structure for storing locations (@pxref{Locations}, for more details).
1197
1198Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1199set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1200is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1201@code{@@3}.
1202
1203When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1204of its left hand side (@pxref{Actions}). In the same way, another default
1205action is used for locations. However, the action for locations is general
847bf1f5 1206enough for most cases, meaning there is usually no need to describe for each
72d2299c 1207rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1208grouping, the default behavior of the output parser is to take the beginning
1209of the first symbol, and the end of the last symbol.
1210
342b8b6e 1211@node Bison Parser
bfa74976
RS
1212@section Bison Output: the Parser File
1213@cindex Bison parser
1214@cindex Bison utility
1215@cindex lexical analyzer, purpose
1216@cindex parser
1217
1218When you run Bison, you give it a Bison grammar file as input. The output
1219is a C source file that parses the language described by the grammar.
1220This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1221utility and the Bison parser are two distinct programs: the Bison utility
1222is a program whose output is the Bison parser that becomes part of your
1223program.
1224
1225The job of the Bison parser is to group tokens into groupings according to
1226the grammar rules---for example, to build identifiers and operators into
1227expressions. As it does this, it runs the actions for the grammar rules it
1228uses.
1229
704a47c4
AD
1230The tokens come from a function called the @dfn{lexical analyzer} that
1231you must supply in some fashion (such as by writing it in C). The Bison
1232parser calls the lexical analyzer each time it wants a new token. It
1233doesn't know what is ``inside'' the tokens (though their semantic values
1234may reflect this). Typically the lexical analyzer makes the tokens by
1235parsing characters of text, but Bison does not depend on this.
1236@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1237
1238The Bison parser file is C code which defines a function named
1239@code{yyparse} which implements that grammar. This function does not make
1240a complete C program: you must supply some additional functions. One is
1241the lexical analyzer. Another is an error-reporting function which the
1242parser calls to report an error. In addition, a complete C program must
1243start with a function called @code{main}; you have to provide this, and
1244arrange for it to call @code{yyparse} or the parser will never run.
1245@xref{Interface, ,Parser C-Language Interface}.
1246
f7ab6a50 1247Aside from the token type names and the symbols in the actions you
7093d0f5 1248write, all symbols defined in the Bison parser file itself
bfa74976
RS
1249begin with @samp{yy} or @samp{YY}. This includes interface functions
1250such as the lexical analyzer function @code{yylex}, the error reporting
1251function @code{yyerror} and the parser function @code{yyparse} itself.
1252This also includes numerous identifiers used for internal purposes.
1253Therefore, you should avoid using C identifiers starting with @samp{yy}
1254or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1255this manual. Also, you should avoid using the C identifiers
1256@samp{malloc} and @samp{free} for anything other than their usual
1257meanings.
bfa74976 1258
7093d0f5
AD
1259In some cases the Bison parser file includes system headers, and in
1260those cases your code should respect the identifiers reserved by those
55289366 1261headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1262@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1263declare memory allocators and related types. @code{<libintl.h>} is
1264included if message translation is in use
1265(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1266be included if you define @code{YYDEBUG} to a nonzero value
1267(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1268
342b8b6e 1269@node Stages
bfa74976
RS
1270@section Stages in Using Bison
1271@cindex stages in using Bison
1272@cindex using Bison
1273
1274The actual language-design process using Bison, from grammar specification
1275to a working compiler or interpreter, has these parts:
1276
1277@enumerate
1278@item
1279Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1280(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1281in the language, describe the action that is to be taken when an
1282instance of that rule is recognized. The action is described by a
1283sequence of C statements.
bfa74976
RS
1284
1285@item
704a47c4
AD
1286Write a lexical analyzer to process input and pass tokens to the parser.
1287The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1288Lexical Analyzer Function @code{yylex}}). It could also be produced
1289using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1290
1291@item
1292Write a controlling function that calls the Bison-produced parser.
1293
1294@item
1295Write error-reporting routines.
1296@end enumerate
1297
1298To turn this source code as written into a runnable program, you
1299must follow these steps:
1300
1301@enumerate
1302@item
1303Run Bison on the grammar to produce the parser.
1304
1305@item
1306Compile the code output by Bison, as well as any other source files.
1307
1308@item
1309Link the object files to produce the finished product.
1310@end enumerate
1311
342b8b6e 1312@node Grammar Layout
bfa74976
RS
1313@section The Overall Layout of a Bison Grammar
1314@cindex grammar file
1315@cindex file format
1316@cindex format of grammar file
1317@cindex layout of Bison grammar
1318
1319The input file for the Bison utility is a @dfn{Bison grammar file}. The
1320general form of a Bison grammar file is as follows:
1321
1322@example
1323%@{
08e49d20 1324@var{Prologue}
bfa74976
RS
1325%@}
1326
1327@var{Bison declarations}
1328
1329%%
1330@var{Grammar rules}
1331%%
08e49d20 1332@var{Epilogue}
bfa74976
RS
1333@end example
1334
1335@noindent
1336The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1337in every Bison grammar file to separate the sections.
1338
72d2299c 1339The prologue may define types and variables used in the actions. You can
342b8b6e 1340also use preprocessor commands to define macros used there, and use
bfa74976 1341@code{#include} to include header files that do any of these things.
38a92d50
PE
1342You need to declare the lexical analyzer @code{yylex} and the error
1343printer @code{yyerror} here, along with any other global identifiers
1344used by the actions in the grammar rules.
bfa74976
RS
1345
1346The Bison declarations declare the names of the terminal and nonterminal
1347symbols, and may also describe operator precedence and the data types of
1348semantic values of various symbols.
1349
1350The grammar rules define how to construct each nonterminal symbol from its
1351parts.
1352
38a92d50
PE
1353The epilogue can contain any code you want to use. Often the
1354definitions of functions declared in the prologue go here. In a
1355simple program, all the rest of the program can go here.
bfa74976 1356
342b8b6e 1357@node Examples
bfa74976
RS
1358@chapter Examples
1359@cindex simple examples
1360@cindex examples, simple
1361
1362Now we show and explain three sample programs written using Bison: a
1363reverse polish notation calculator, an algebraic (infix) notation
1364calculator, and a multi-function calculator. All three have been tested
1365under BSD Unix 4.3; each produces a usable, though limited, interactive
1366desk-top calculator.
1367
1368These examples are simple, but Bison grammars for real programming
aa08666d
AD
1369languages are written the same way. You can copy these examples into a
1370source file to try them.
bfa74976
RS
1371
1372@menu
1373* RPN Calc:: Reverse polish notation calculator;
1374 a first example with no operator precedence.
1375* Infix Calc:: Infix (algebraic) notation calculator.
1376 Operator precedence is introduced.
1377* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1378* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1379* Multi-function Calc:: Calculator with memory and trig functions.
1380 It uses multiple data-types for semantic values.
1381* Exercises:: Ideas for improving the multi-function calculator.
1382@end menu
1383
342b8b6e 1384@node RPN Calc
bfa74976
RS
1385@section Reverse Polish Notation Calculator
1386@cindex reverse polish notation
1387@cindex polish notation calculator
1388@cindex @code{rpcalc}
1389@cindex calculator, simple
1390
1391The first example is that of a simple double-precision @dfn{reverse polish
1392notation} calculator (a calculator using postfix operators). This example
1393provides a good starting point, since operator precedence is not an issue.
1394The second example will illustrate how operator precedence is handled.
1395
1396The source code for this calculator is named @file{rpcalc.y}. The
1397@samp{.y} extension is a convention used for Bison input files.
1398
1399@menu
75f5aaea 1400* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1401* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1402* Lexer: Rpcalc Lexer. The lexical analyzer.
1403* Main: Rpcalc Main. The controlling function.
1404* Error: Rpcalc Error. The error reporting function.
1405* Gen: Rpcalc Gen. Running Bison on the grammar file.
1406* Comp: Rpcalc Compile. Run the C compiler on the output code.
1407@end menu
1408
342b8b6e 1409@node Rpcalc Decls
bfa74976
RS
1410@subsection Declarations for @code{rpcalc}
1411
1412Here are the C and Bison declarations for the reverse polish notation
1413calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1414
1415@example
72d2299c 1416/* Reverse polish notation calculator. */
bfa74976
RS
1417
1418%@{
38a92d50
PE
1419 #define YYSTYPE double
1420 #include <math.h>
1421 int yylex (void);
1422 void yyerror (char const *);
bfa74976
RS
1423%@}
1424
1425%token NUM
1426
72d2299c 1427%% /* Grammar rules and actions follow. */
bfa74976
RS
1428@end example
1429
75f5aaea 1430The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1431preprocessor directives and two forward declarations.
bfa74976
RS
1432
1433The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1434specifying the C data type for semantic values of both tokens and
1435groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1436Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1437don't define it, @code{int} is the default. Because we specify
1438@code{double}, each token and each expression has an associated value,
1439which is a floating point number.
bfa74976
RS
1440
1441The @code{#include} directive is used to declare the exponentiation
1442function @code{pow}.
1443
38a92d50
PE
1444The forward declarations for @code{yylex} and @code{yyerror} are
1445needed because the C language requires that functions be declared
1446before they are used. These functions will be defined in the
1447epilogue, but the parser calls them so they must be declared in the
1448prologue.
1449
704a47c4
AD
1450The second section, Bison declarations, provides information to Bison
1451about the token types (@pxref{Bison Declarations, ,The Bison
1452Declarations Section}). Each terminal symbol that is not a
1453single-character literal must be declared here. (Single-character
bfa74976
RS
1454literals normally don't need to be declared.) In this example, all the
1455arithmetic operators are designated by single-character literals, so the
1456only terminal symbol that needs to be declared is @code{NUM}, the token
1457type for numeric constants.
1458
342b8b6e 1459@node Rpcalc Rules
bfa74976
RS
1460@subsection Grammar Rules for @code{rpcalc}
1461
1462Here are the grammar rules for the reverse polish notation calculator.
1463
1464@example
1465input: /* empty */
1466 | input line
1467;
1468
1469line: '\n'
18b519c0 1470 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1471;
1472
18b519c0
AD
1473exp: NUM @{ $$ = $1; @}
1474 | exp exp '+' @{ $$ = $1 + $2; @}
1475 | exp exp '-' @{ $$ = $1 - $2; @}
1476 | exp exp '*' @{ $$ = $1 * $2; @}
1477 | exp exp '/' @{ $$ = $1 / $2; @}
1478 /* Exponentiation */
1479 | exp exp '^' @{ $$ = pow ($1, $2); @}
1480 /* Unary minus */
1481 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1482;
1483%%
1484@end example
1485
1486The groupings of the rpcalc ``language'' defined here are the expression
1487(given the name @code{exp}), the line of input (@code{line}), and the
1488complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1489symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1490which is read as ``or''. The following sections explain what these rules
1491mean.
1492
1493The semantics of the language is determined by the actions taken when a
1494grouping is recognized. The actions are the C code that appears inside
1495braces. @xref{Actions}.
1496
1497You must specify these actions in C, but Bison provides the means for
1498passing semantic values between the rules. In each action, the
1499pseudo-variable @code{$$} stands for the semantic value for the grouping
1500that the rule is going to construct. Assigning a value to @code{$$} is the
1501main job of most actions. The semantic values of the components of the
1502rule are referred to as @code{$1}, @code{$2}, and so on.
1503
1504@menu
13863333
AD
1505* Rpcalc Input::
1506* Rpcalc Line::
1507* Rpcalc Expr::
bfa74976
RS
1508@end menu
1509
342b8b6e 1510@node Rpcalc Input
bfa74976
RS
1511@subsubsection Explanation of @code{input}
1512
1513Consider the definition of @code{input}:
1514
1515@example
1516input: /* empty */
1517 | input line
1518;
1519@end example
1520
1521This definition reads as follows: ``A complete input is either an empty
1522string, or a complete input followed by an input line''. Notice that
1523``complete input'' is defined in terms of itself. This definition is said
1524to be @dfn{left recursive} since @code{input} appears always as the
1525leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1526
1527The first alternative is empty because there are no symbols between the
1528colon and the first @samp{|}; this means that @code{input} can match an
1529empty string of input (no tokens). We write the rules this way because it
1530is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1531It's conventional to put an empty alternative first and write the comment
1532@samp{/* empty */} in it.
1533
1534The second alternate rule (@code{input line}) handles all nontrivial input.
1535It means, ``After reading any number of lines, read one more line if
1536possible.'' The left recursion makes this rule into a loop. Since the
1537first alternative matches empty input, the loop can be executed zero or
1538more times.
1539
1540The parser function @code{yyparse} continues to process input until a
1541grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1542input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1543
342b8b6e 1544@node Rpcalc Line
bfa74976
RS
1545@subsubsection Explanation of @code{line}
1546
1547Now consider the definition of @code{line}:
1548
1549@example
1550line: '\n'
1551 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1552;
1553@end example
1554
1555The first alternative is a token which is a newline character; this means
1556that rpcalc accepts a blank line (and ignores it, since there is no
1557action). The second alternative is an expression followed by a newline.
1558This is the alternative that makes rpcalc useful. The semantic value of
1559the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1560question is the first symbol in the alternative. The action prints this
1561value, which is the result of the computation the user asked for.
1562
1563This action is unusual because it does not assign a value to @code{$$}. As
1564a consequence, the semantic value associated with the @code{line} is
1565uninitialized (its value will be unpredictable). This would be a bug if
1566that value were ever used, but we don't use it: once rpcalc has printed the
1567value of the user's input line, that value is no longer needed.
1568
342b8b6e 1569@node Rpcalc Expr
bfa74976
RS
1570@subsubsection Explanation of @code{expr}
1571
1572The @code{exp} grouping has several rules, one for each kind of expression.
1573The first rule handles the simplest expressions: those that are just numbers.
1574The second handles an addition-expression, which looks like two expressions
1575followed by a plus-sign. The third handles subtraction, and so on.
1576
1577@example
1578exp: NUM
1579 | exp exp '+' @{ $$ = $1 + $2; @}
1580 | exp exp '-' @{ $$ = $1 - $2; @}
1581 @dots{}
1582 ;
1583@end example
1584
1585We have used @samp{|} to join all the rules for @code{exp}, but we could
1586equally well have written them separately:
1587
1588@example
1589exp: NUM ;
1590exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1591exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1592 @dots{}
1593@end example
1594
1595Most of the rules have actions that compute the value of the expression in
1596terms of the value of its parts. For example, in the rule for addition,
1597@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1598the second one. The third component, @code{'+'}, has no meaningful
1599associated semantic value, but if it had one you could refer to it as
1600@code{$3}. When @code{yyparse} recognizes a sum expression using this
1601rule, the sum of the two subexpressions' values is produced as the value of
1602the entire expression. @xref{Actions}.
1603
1604You don't have to give an action for every rule. When a rule has no
1605action, Bison by default copies the value of @code{$1} into @code{$$}.
1606This is what happens in the first rule (the one that uses @code{NUM}).
1607
1608The formatting shown here is the recommended convention, but Bison does
72d2299c 1609not require it. You can add or change white space as much as you wish.
bfa74976
RS
1610For example, this:
1611
1612@example
99a9344e 1613exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1614@end example
1615
1616@noindent
1617means the same thing as this:
1618
1619@example
1620exp: NUM
1621 | exp exp '+' @{ $$ = $1 + $2; @}
1622 | @dots{}
99a9344e 1623;
bfa74976
RS
1624@end example
1625
1626@noindent
1627The latter, however, is much more readable.
1628
342b8b6e 1629@node Rpcalc Lexer
bfa74976
RS
1630@subsection The @code{rpcalc} Lexical Analyzer
1631@cindex writing a lexical analyzer
1632@cindex lexical analyzer, writing
1633
704a47c4
AD
1634The lexical analyzer's job is low-level parsing: converting characters
1635or sequences of characters into tokens. The Bison parser gets its
1636tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1637Analyzer Function @code{yylex}}.
bfa74976 1638
c827f760
PE
1639Only a simple lexical analyzer is needed for the @acronym{RPN}
1640calculator. This
bfa74976
RS
1641lexical analyzer skips blanks and tabs, then reads in numbers as
1642@code{double} and returns them as @code{NUM} tokens. Any other character
1643that isn't part of a number is a separate token. Note that the token-code
1644for such a single-character token is the character itself.
1645
1646The return value of the lexical analyzer function is a numeric code which
1647represents a token type. The same text used in Bison rules to stand for
1648this token type is also a C expression for the numeric code for the type.
1649This works in two ways. If the token type is a character literal, then its
e966383b 1650numeric code is that of the character; you can use the same
bfa74976
RS
1651character literal in the lexical analyzer to express the number. If the
1652token type is an identifier, that identifier is defined by Bison as a C
1653macro whose definition is the appropriate number. In this example,
1654therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1655
1964ad8c
AD
1656The semantic value of the token (if it has one) is stored into the
1657global variable @code{yylval}, which is where the Bison parser will look
1658for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1659defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1660,Declarations for @code{rpcalc}}.)
bfa74976 1661
72d2299c
PE
1662A token type code of zero is returned if the end-of-input is encountered.
1663(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1664
1665Here is the code for the lexical analyzer:
1666
1667@example
1668@group
72d2299c 1669/* The lexical analyzer returns a double floating point
e966383b 1670 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1671 of the character read if not a number. It skips all blanks
1672 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1673
1674#include <ctype.h>
1675@end group
1676
1677@group
13863333
AD
1678int
1679yylex (void)
bfa74976
RS
1680@{
1681 int c;
1682
72d2299c 1683 /* Skip white space. */
13863333 1684 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1685 ;
1686@end group
1687@group
72d2299c 1688 /* Process numbers. */
13863333 1689 if (c == '.' || isdigit (c))
bfa74976
RS
1690 @{
1691 ungetc (c, stdin);
1692 scanf ("%lf", &yylval);
1693 return NUM;
1694 @}
1695@end group
1696@group
72d2299c 1697 /* Return end-of-input. */
13863333 1698 if (c == EOF)
bfa74976 1699 return 0;
72d2299c 1700 /* Return a single char. */
13863333 1701 return c;
bfa74976
RS
1702@}
1703@end group
1704@end example
1705
342b8b6e 1706@node Rpcalc Main
bfa74976
RS
1707@subsection The Controlling Function
1708@cindex controlling function
1709@cindex main function in simple example
1710
1711In keeping with the spirit of this example, the controlling function is
1712kept to the bare minimum. The only requirement is that it call
1713@code{yyparse} to start the process of parsing.
1714
1715@example
1716@group
13863333
AD
1717int
1718main (void)
bfa74976 1719@{
13863333 1720 return yyparse ();
bfa74976
RS
1721@}
1722@end group
1723@end example
1724
342b8b6e 1725@node Rpcalc Error
bfa74976
RS
1726@subsection The Error Reporting Routine
1727@cindex error reporting routine
1728
1729When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1730function @code{yyerror} to print an error message (usually but not
6e649e65 1731always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1732@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1733here is the definition we will use:
bfa74976
RS
1734
1735@example
1736@group
1737#include <stdio.h>
1738
38a92d50 1739/* Called by yyparse on error. */
13863333 1740void
38a92d50 1741yyerror (char const *s)
bfa74976 1742@{
4e03e201 1743 fprintf (stderr, "%s\n", s);
bfa74976
RS
1744@}
1745@end group
1746@end example
1747
1748After @code{yyerror} returns, the Bison parser may recover from the error
1749and continue parsing if the grammar contains a suitable error rule
1750(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1751have not written any error rules in this example, so any invalid input will
1752cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1753real calculator, but it is adequate for the first example.
bfa74976 1754
342b8b6e 1755@node Rpcalc Gen
bfa74976
RS
1756@subsection Running Bison to Make the Parser
1757@cindex running Bison (introduction)
1758
ceed8467
AD
1759Before running Bison to produce a parser, we need to decide how to
1760arrange all the source code in one or more source files. For such a
1761simple example, the easiest thing is to put everything in one file. The
1762definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1763end, in the epilogue of the file
75f5aaea 1764(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1765
1766For a large project, you would probably have several source files, and use
1767@code{make} to arrange to recompile them.
1768
1769With all the source in a single file, you use the following command to
1770convert it into a parser file:
1771
1772@example
fa4d969f 1773bison @var{file}.y
bfa74976
RS
1774@end example
1775
1776@noindent
1777In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1778@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1779removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1780Bison contains the source code for @code{yyparse}. The additional
1781functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1782are copied verbatim to the output.
1783
342b8b6e 1784@node Rpcalc Compile
bfa74976
RS
1785@subsection Compiling the Parser File
1786@cindex compiling the parser
1787
1788Here is how to compile and run the parser file:
1789
1790@example
1791@group
1792# @r{List files in current directory.}
9edcd895 1793$ @kbd{ls}
bfa74976
RS
1794rpcalc.tab.c rpcalc.y
1795@end group
1796
1797@group
1798# @r{Compile the Bison parser.}
1799# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1800$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1801@end group
1802
1803@group
1804# @r{List files again.}
9edcd895 1805$ @kbd{ls}
bfa74976
RS
1806rpcalc rpcalc.tab.c rpcalc.y
1807@end group
1808@end example
1809
1810The file @file{rpcalc} now contains the executable code. Here is an
1811example session using @code{rpcalc}.
1812
1813@example
9edcd895
AD
1814$ @kbd{rpcalc}
1815@kbd{4 9 +}
bfa74976 181613
9edcd895 1817@kbd{3 7 + 3 4 5 *+-}
bfa74976 1818-13
9edcd895 1819@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182013
9edcd895 1821@kbd{5 6 / 4 n +}
bfa74976 1822-3.166666667
9edcd895 1823@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182481
9edcd895
AD
1825@kbd{^D} @r{End-of-file indicator}
1826$
bfa74976
RS
1827@end example
1828
342b8b6e 1829@node Infix Calc
bfa74976
RS
1830@section Infix Notation Calculator: @code{calc}
1831@cindex infix notation calculator
1832@cindex @code{calc}
1833@cindex calculator, infix notation
1834
1835We now modify rpcalc to handle infix operators instead of postfix. Infix
1836notation involves the concept of operator precedence and the need for
1837parentheses nested to arbitrary depth. Here is the Bison code for
1838@file{calc.y}, an infix desk-top calculator.
1839
1840@example
38a92d50 1841/* Infix notation calculator. */
bfa74976
RS
1842
1843%@{
38a92d50
PE
1844 #define YYSTYPE double
1845 #include <math.h>
1846 #include <stdio.h>
1847 int yylex (void);
1848 void yyerror (char const *);
bfa74976
RS
1849%@}
1850
38a92d50 1851/* Bison declarations. */
bfa74976
RS
1852%token NUM
1853%left '-' '+'
1854%left '*' '/'
1855%left NEG /* negation--unary minus */
38a92d50 1856%right '^' /* exponentiation */
bfa74976 1857
38a92d50
PE
1858%% /* The grammar follows. */
1859input: /* empty */
bfa74976
RS
1860 | input line
1861;
1862
1863line: '\n'
1864 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1865;
1866
1867exp: NUM @{ $$ = $1; @}
1868 | exp '+' exp @{ $$ = $1 + $3; @}
1869 | exp '-' exp @{ $$ = $1 - $3; @}
1870 | exp '*' exp @{ $$ = $1 * $3; @}
1871 | exp '/' exp @{ $$ = $1 / $3; @}
1872 | '-' exp %prec NEG @{ $$ = -$2; @}
1873 | exp '^' exp @{ $$ = pow ($1, $3); @}
1874 | '(' exp ')' @{ $$ = $2; @}
1875;
1876%%
1877@end example
1878
1879@noindent
ceed8467
AD
1880The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1881same as before.
bfa74976
RS
1882
1883There are two important new features shown in this code.
1884
1885In the second section (Bison declarations), @code{%left} declares token
1886types and says they are left-associative operators. The declarations
1887@code{%left} and @code{%right} (right associativity) take the place of
1888@code{%token} which is used to declare a token type name without
1889associativity. (These tokens are single-character literals, which
1890ordinarily don't need to be declared. We declare them here to specify
1891the associativity.)
1892
1893Operator precedence is determined by the line ordering of the
1894declarations; the higher the line number of the declaration (lower on
1895the page or screen), the higher the precedence. Hence, exponentiation
1896has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1897by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1898Precedence}.
bfa74976 1899
704a47c4
AD
1900The other important new feature is the @code{%prec} in the grammar
1901section for the unary minus operator. The @code{%prec} simply instructs
1902Bison that the rule @samp{| '-' exp} has the same precedence as
1903@code{NEG}---in this case the next-to-highest. @xref{Contextual
1904Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1905
1906Here is a sample run of @file{calc.y}:
1907
1908@need 500
1909@example
9edcd895
AD
1910$ @kbd{calc}
1911@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19126.880952381
9edcd895 1913@kbd{-56 + 2}
bfa74976 1914-54
9edcd895 1915@kbd{3 ^ 2}
bfa74976
RS
19169
1917@end example
1918
342b8b6e 1919@node Simple Error Recovery
bfa74976
RS
1920@section Simple Error Recovery
1921@cindex error recovery, simple
1922
1923Up to this point, this manual has not addressed the issue of @dfn{error
1924recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1925error. All we have handled is error reporting with @code{yyerror}.
1926Recall that by default @code{yyparse} returns after calling
1927@code{yyerror}. This means that an erroneous input line causes the
1928calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1929
1930The Bison language itself includes the reserved word @code{error}, which
1931may be included in the grammar rules. In the example below it has
1932been added to one of the alternatives for @code{line}:
1933
1934@example
1935@group
1936line: '\n'
1937 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1938 | error '\n' @{ yyerrok; @}
1939;
1940@end group
1941@end example
1942
ceed8467 1943This addition to the grammar allows for simple error recovery in the
6e649e65 1944event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1945read, the error will be recognized by the third rule for @code{line},
1946and parsing will continue. (The @code{yyerror} function is still called
1947upon to print its message as well.) The action executes the statement
1948@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1949that error recovery is complete (@pxref{Error Recovery}). Note the
1950difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1951misprint.
bfa74976
RS
1952
1953This form of error recovery deals with syntax errors. There are other
1954kinds of errors; for example, division by zero, which raises an exception
1955signal that is normally fatal. A real calculator program must handle this
1956signal and use @code{longjmp} to return to @code{main} and resume parsing
1957input lines; it would also have to discard the rest of the current line of
1958input. We won't discuss this issue further because it is not specific to
1959Bison programs.
1960
342b8b6e
AD
1961@node Location Tracking Calc
1962@section Location Tracking Calculator: @code{ltcalc}
1963@cindex location tracking calculator
1964@cindex @code{ltcalc}
1965@cindex calculator, location tracking
1966
9edcd895
AD
1967This example extends the infix notation calculator with location
1968tracking. This feature will be used to improve the error messages. For
1969the sake of clarity, this example is a simple integer calculator, since
1970most of the work needed to use locations will be done in the lexical
72d2299c 1971analyzer.
342b8b6e
AD
1972
1973@menu
1974* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1975* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1976* Lexer: Ltcalc Lexer. The lexical analyzer.
1977@end menu
1978
1979@node Ltcalc Decls
1980@subsection Declarations for @code{ltcalc}
1981
9edcd895
AD
1982The C and Bison declarations for the location tracking calculator are
1983the same as the declarations for the infix notation calculator.
342b8b6e
AD
1984
1985@example
1986/* Location tracking calculator. */
1987
1988%@{
38a92d50
PE
1989 #define YYSTYPE int
1990 #include <math.h>
1991 int yylex (void);
1992 void yyerror (char const *);
342b8b6e
AD
1993%@}
1994
1995/* Bison declarations. */
1996%token NUM
1997
1998%left '-' '+'
1999%left '*' '/'
2000%left NEG
2001%right '^'
2002
38a92d50 2003%% /* The grammar follows. */
342b8b6e
AD
2004@end example
2005
9edcd895
AD
2006@noindent
2007Note there are no declarations specific to locations. Defining a data
2008type for storing locations is not needed: we will use the type provided
2009by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2010four member structure with the following integer fields:
2011@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2012@code{last_column}. By conventions, and in accordance with the GNU
2013Coding Standards and common practice, the line and column count both
2014start at 1.
342b8b6e
AD
2015
2016@node Ltcalc Rules
2017@subsection Grammar Rules for @code{ltcalc}
2018
9edcd895
AD
2019Whether handling locations or not has no effect on the syntax of your
2020language. Therefore, grammar rules for this example will be very close
2021to those of the previous example: we will only modify them to benefit
2022from the new information.
342b8b6e 2023
9edcd895
AD
2024Here, we will use locations to report divisions by zero, and locate the
2025wrong expressions or subexpressions.
342b8b6e
AD
2026
2027@example
2028@group
2029input : /* empty */
2030 | input line
2031;
2032@end group
2033
2034@group
2035line : '\n'
2036 | exp '\n' @{ printf ("%d\n", $1); @}
2037;
2038@end group
2039
2040@group
2041exp : NUM @{ $$ = $1; @}
2042 | exp '+' exp @{ $$ = $1 + $3; @}
2043 | exp '-' exp @{ $$ = $1 - $3; @}
2044 | exp '*' exp @{ $$ = $1 * $3; @}
2045@end group
342b8b6e 2046@group
9edcd895 2047 | exp '/' exp
342b8b6e
AD
2048 @{
2049 if ($3)
2050 $$ = $1 / $3;
2051 else
2052 @{
2053 $$ = 1;
9edcd895
AD
2054 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2055 @@3.first_line, @@3.first_column,
2056 @@3.last_line, @@3.last_column);
342b8b6e
AD
2057 @}
2058 @}
2059@end group
2060@group
178e123e 2061 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2062 | exp '^' exp @{ $$ = pow ($1, $3); @}
2063 | '(' exp ')' @{ $$ = $2; @}
2064@end group
2065@end example
2066
2067This code shows how to reach locations inside of semantic actions, by
2068using the pseudo-variables @code{@@@var{n}} for rule components, and the
2069pseudo-variable @code{@@$} for groupings.
2070
9edcd895
AD
2071We don't need to assign a value to @code{@@$}: the output parser does it
2072automatically. By default, before executing the C code of each action,
2073@code{@@$} is set to range from the beginning of @code{@@1} to the end
2074of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2075can be redefined (@pxref{Location Default Action, , Default Action for
2076Locations}), and for very specific rules, @code{@@$} can be computed by
2077hand.
342b8b6e
AD
2078
2079@node Ltcalc Lexer
2080@subsection The @code{ltcalc} Lexical Analyzer.
2081
9edcd895 2082Until now, we relied on Bison's defaults to enable location
72d2299c 2083tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2084able to feed the parser with the token locations, as it already does for
2085semantic values.
342b8b6e 2086
9edcd895
AD
2087To this end, we must take into account every single character of the
2088input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2089
2090@example
2091@group
2092int
2093yylex (void)
2094@{
2095 int c;
18b519c0 2096@end group
342b8b6e 2097
18b519c0 2098@group
72d2299c 2099 /* Skip white space. */
342b8b6e
AD
2100 while ((c = getchar ()) == ' ' || c == '\t')
2101 ++yylloc.last_column;
18b519c0 2102@end group
342b8b6e 2103
18b519c0 2104@group
72d2299c 2105 /* Step. */
342b8b6e
AD
2106 yylloc.first_line = yylloc.last_line;
2107 yylloc.first_column = yylloc.last_column;
2108@end group
2109
2110@group
72d2299c 2111 /* Process numbers. */
342b8b6e
AD
2112 if (isdigit (c))
2113 @{
2114 yylval = c - '0';
2115 ++yylloc.last_column;
2116 while (isdigit (c = getchar ()))
2117 @{
2118 ++yylloc.last_column;
2119 yylval = yylval * 10 + c - '0';
2120 @}
2121 ungetc (c, stdin);
2122 return NUM;
2123 @}
2124@end group
2125
72d2299c 2126 /* Return end-of-input. */
342b8b6e
AD
2127 if (c == EOF)
2128 return 0;
2129
72d2299c 2130 /* Return a single char, and update location. */
342b8b6e
AD
2131 if (c == '\n')
2132 @{
2133 ++yylloc.last_line;
2134 yylloc.last_column = 0;
2135 @}
2136 else
2137 ++yylloc.last_column;
2138 return c;
2139@}
2140@end example
2141
9edcd895
AD
2142Basically, the lexical analyzer performs the same processing as before:
2143it skips blanks and tabs, and reads numbers or single-character tokens.
2144In addition, it updates @code{yylloc}, the global variable (of type
2145@code{YYLTYPE}) containing the token's location.
342b8b6e 2146
9edcd895 2147Now, each time this function returns a token, the parser has its number
72d2299c 2148as well as its semantic value, and its location in the text. The last
9edcd895
AD
2149needed change is to initialize @code{yylloc}, for example in the
2150controlling function:
342b8b6e
AD
2151
2152@example
9edcd895 2153@group
342b8b6e
AD
2154int
2155main (void)
2156@{
2157 yylloc.first_line = yylloc.last_line = 1;
2158 yylloc.first_column = yylloc.last_column = 0;
2159 return yyparse ();
2160@}
9edcd895 2161@end group
342b8b6e
AD
2162@end example
2163
9edcd895
AD
2164Remember that computing locations is not a matter of syntax. Every
2165character must be associated to a location update, whether it is in
2166valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2167
2168@node Multi-function Calc
bfa74976
RS
2169@section Multi-Function Calculator: @code{mfcalc}
2170@cindex multi-function calculator
2171@cindex @code{mfcalc}
2172@cindex calculator, multi-function
2173
2174Now that the basics of Bison have been discussed, it is time to move on to
2175a more advanced problem. The above calculators provided only five
2176functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2177be nice to have a calculator that provides other mathematical functions such
2178as @code{sin}, @code{cos}, etc.
2179
2180It is easy to add new operators to the infix calculator as long as they are
2181only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2182back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2183adding a new operator. But we want something more flexible: built-in
2184functions whose syntax has this form:
2185
2186@example
2187@var{function_name} (@var{argument})
2188@end example
2189
2190@noindent
2191At the same time, we will add memory to the calculator, by allowing you
2192to create named variables, store values in them, and use them later.
2193Here is a sample session with the multi-function calculator:
2194
2195@example
9edcd895
AD
2196$ @kbd{mfcalc}
2197@kbd{pi = 3.141592653589}
bfa74976 21983.1415926536
9edcd895 2199@kbd{sin(pi)}
bfa74976 22000.0000000000
9edcd895 2201@kbd{alpha = beta1 = 2.3}
bfa74976 22022.3000000000
9edcd895 2203@kbd{alpha}
bfa74976 22042.3000000000
9edcd895 2205@kbd{ln(alpha)}
bfa74976 22060.8329091229
9edcd895 2207@kbd{exp(ln(beta1))}
bfa74976 22082.3000000000
9edcd895 2209$
bfa74976
RS
2210@end example
2211
2212Note that multiple assignment and nested function calls are permitted.
2213
2214@menu
2215* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2216* Rules: Mfcalc Rules. Grammar rules for the calculator.
2217* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2218@end menu
2219
342b8b6e 2220@node Mfcalc Decl
bfa74976
RS
2221@subsection Declarations for @code{mfcalc}
2222
2223Here are the C and Bison declarations for the multi-function calculator.
2224
2225@smallexample
18b519c0 2226@group
bfa74976 2227%@{
38a92d50
PE
2228 #include <math.h> /* For math functions, cos(), sin(), etc. */
2229 #include "calc.h" /* Contains definition of `symrec'. */
2230 int yylex (void);
2231 void yyerror (char const *);
bfa74976 2232%@}
18b519c0
AD
2233@end group
2234@group
bfa74976 2235%union @{
38a92d50
PE
2236 double val; /* For returning numbers. */
2237 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2238@}
18b519c0 2239@end group
38a92d50
PE
2240%token <val> NUM /* Simple double precision number. */
2241%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2242%type <val> exp
2243
18b519c0 2244@group
bfa74976
RS
2245%right '='
2246%left '-' '+'
2247%left '*' '/'
38a92d50
PE
2248%left NEG /* negation--unary minus */
2249%right '^' /* exponentiation */
18b519c0 2250@end group
38a92d50 2251%% /* The grammar follows. */
bfa74976
RS
2252@end smallexample
2253
2254The above grammar introduces only two new features of the Bison language.
2255These features allow semantic values to have various data types
2256(@pxref{Multiple Types, ,More Than One Value Type}).
2257
2258The @code{%union} declaration specifies the entire list of possible types;
2259this is instead of defining @code{YYSTYPE}. The allowable types are now
2260double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2261the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2262
2263Since values can now have various types, it is necessary to associate a
2264type with each grammar symbol whose semantic value is used. These symbols
2265are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2266declarations are augmented with information about their data type (placed
2267between angle brackets).
2268
704a47c4
AD
2269The Bison construct @code{%type} is used for declaring nonterminal
2270symbols, just as @code{%token} is used for declaring token types. We
2271have not used @code{%type} before because nonterminal symbols are
2272normally declared implicitly by the rules that define them. But
2273@code{exp} must be declared explicitly so we can specify its value type.
2274@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2275
342b8b6e 2276@node Mfcalc Rules
bfa74976
RS
2277@subsection Grammar Rules for @code{mfcalc}
2278
2279Here are the grammar rules for the multi-function calculator.
2280Most of them are copied directly from @code{calc}; three rules,
2281those which mention @code{VAR} or @code{FNCT}, are new.
2282
2283@smallexample
18b519c0 2284@group
bfa74976
RS
2285input: /* empty */
2286 | input line
2287;
18b519c0 2288@end group
bfa74976 2289
18b519c0 2290@group
bfa74976
RS
2291line:
2292 '\n'
2293 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2294 | error '\n' @{ yyerrok; @}
2295;
18b519c0 2296@end group
bfa74976 2297
18b519c0 2298@group
bfa74976
RS
2299exp: NUM @{ $$ = $1; @}
2300 | VAR @{ $$ = $1->value.var; @}
2301 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2302 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2303 | exp '+' exp @{ $$ = $1 + $3; @}
2304 | exp '-' exp @{ $$ = $1 - $3; @}
2305 | exp '*' exp @{ $$ = $1 * $3; @}
2306 | exp '/' exp @{ $$ = $1 / $3; @}
2307 | '-' exp %prec NEG @{ $$ = -$2; @}
2308 | exp '^' exp @{ $$ = pow ($1, $3); @}
2309 | '(' exp ')' @{ $$ = $2; @}
2310;
18b519c0 2311@end group
38a92d50 2312/* End of grammar. */
bfa74976
RS
2313%%
2314@end smallexample
2315
342b8b6e 2316@node Mfcalc Symtab
bfa74976
RS
2317@subsection The @code{mfcalc} Symbol Table
2318@cindex symbol table example
2319
2320The multi-function calculator requires a symbol table to keep track of the
2321names and meanings of variables and functions. This doesn't affect the
2322grammar rules (except for the actions) or the Bison declarations, but it
2323requires some additional C functions for support.
2324
2325The symbol table itself consists of a linked list of records. Its
2326definition, which is kept in the header @file{calc.h}, is as follows. It
2327provides for either functions or variables to be placed in the table.
2328
2329@smallexample
2330@group
38a92d50 2331/* Function type. */
32dfccf8 2332typedef double (*func_t) (double);
72f889cc 2333@end group
32dfccf8 2334
72f889cc 2335@group
38a92d50 2336/* Data type for links in the chain of symbols. */
bfa74976
RS
2337struct symrec
2338@{
38a92d50 2339 char *name; /* name of symbol */
bfa74976 2340 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2341 union
2342 @{
38a92d50
PE
2343 double var; /* value of a VAR */
2344 func_t fnctptr; /* value of a FNCT */
bfa74976 2345 @} value;
38a92d50 2346 struct symrec *next; /* link field */
bfa74976
RS
2347@};
2348@end group
2349
2350@group
2351typedef struct symrec symrec;
2352
38a92d50 2353/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2354extern symrec *sym_table;
2355
a730d142 2356symrec *putsym (char const *, int);
38a92d50 2357symrec *getsym (char const *);
bfa74976
RS
2358@end group
2359@end smallexample
2360
2361The new version of @code{main} includes a call to @code{init_table}, a
2362function that initializes the symbol table. Here it is, and
2363@code{init_table} as well:
2364
2365@smallexample
bfa74976
RS
2366#include <stdio.h>
2367
18b519c0 2368@group
38a92d50 2369/* Called by yyparse on error. */
13863333 2370void
38a92d50 2371yyerror (char const *s)
bfa74976
RS
2372@{
2373 printf ("%s\n", s);
2374@}
18b519c0 2375@end group
bfa74976 2376
18b519c0 2377@group
bfa74976
RS
2378struct init
2379@{
38a92d50
PE
2380 char const *fname;
2381 double (*fnct) (double);
bfa74976
RS
2382@};
2383@end group
2384
2385@group
38a92d50 2386struct init const arith_fncts[] =
13863333 2387@{
32dfccf8
AD
2388 "sin", sin,
2389 "cos", cos,
13863333 2390 "atan", atan,
32dfccf8
AD
2391 "ln", log,
2392 "exp", exp,
13863333
AD
2393 "sqrt", sqrt,
2394 0, 0
2395@};
18b519c0 2396@end group
bfa74976 2397
18b519c0 2398@group
bfa74976 2399/* The symbol table: a chain of `struct symrec'. */
38a92d50 2400symrec *sym_table;
bfa74976
RS
2401@end group
2402
2403@group
72d2299c 2404/* Put arithmetic functions in table. */
13863333
AD
2405void
2406init_table (void)
bfa74976
RS
2407@{
2408 int i;
2409 symrec *ptr;
2410 for (i = 0; arith_fncts[i].fname != 0; i++)
2411 @{
2412 ptr = putsym (arith_fncts[i].fname, FNCT);
2413 ptr->value.fnctptr = arith_fncts[i].fnct;
2414 @}
2415@}
2416@end group
38a92d50
PE
2417
2418@group
2419int
2420main (void)
2421@{
2422 init_table ();
2423 return yyparse ();
2424@}
2425@end group
bfa74976
RS
2426@end smallexample
2427
2428By simply editing the initialization list and adding the necessary include
2429files, you can add additional functions to the calculator.
2430
2431Two important functions allow look-up and installation of symbols in the
2432symbol table. The function @code{putsym} is passed a name and the type
2433(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2434linked to the front of the list, and a pointer to the object is returned.
2435The function @code{getsym} is passed the name of the symbol to look up. If
2436found, a pointer to that symbol is returned; otherwise zero is returned.
2437
2438@smallexample
2439symrec *
38a92d50 2440putsym (char const *sym_name, int sym_type)
bfa74976
RS
2441@{
2442 symrec *ptr;
2443 ptr = (symrec *) malloc (sizeof (symrec));
2444 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2445 strcpy (ptr->name,sym_name);
2446 ptr->type = sym_type;
72d2299c 2447 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2448 ptr->next = (struct symrec *)sym_table;
2449 sym_table = ptr;
2450 return ptr;
2451@}
2452
2453symrec *
38a92d50 2454getsym (char const *sym_name)
bfa74976
RS
2455@{
2456 symrec *ptr;
2457 for (ptr = sym_table; ptr != (symrec *) 0;
2458 ptr = (symrec *)ptr->next)
2459 if (strcmp (ptr->name,sym_name) == 0)
2460 return ptr;
2461 return 0;
2462@}
2463@end smallexample
2464
2465The function @code{yylex} must now recognize variables, numeric values, and
2466the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2467characters with a leading letter are recognized as either variables or
bfa74976
RS
2468functions depending on what the symbol table says about them.
2469
2470The string is passed to @code{getsym} for look up in the symbol table. If
2471the name appears in the table, a pointer to its location and its type
2472(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2473already in the table, then it is installed as a @code{VAR} using
2474@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2475returned to @code{yyparse}.
bfa74976
RS
2476
2477No change is needed in the handling of numeric values and arithmetic
2478operators in @code{yylex}.
2479
2480@smallexample
2481@group
2482#include <ctype.h>
18b519c0 2483@end group
13863333 2484
18b519c0 2485@group
13863333
AD
2486int
2487yylex (void)
bfa74976
RS
2488@{
2489 int c;
2490
72d2299c 2491 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2492 while ((c = getchar ()) == ' ' || c == '\t');
2493
2494 if (c == EOF)
2495 return 0;
2496@end group
2497
2498@group
2499 /* Char starts a number => parse the number. */
2500 if (c == '.' || isdigit (c))
2501 @{
2502 ungetc (c, stdin);
2503 scanf ("%lf", &yylval.val);
2504 return NUM;
2505 @}
2506@end group
2507
2508@group
2509 /* Char starts an identifier => read the name. */
2510 if (isalpha (c))
2511 @{
2512 symrec *s;
2513 static char *symbuf = 0;
2514 static int length = 0;
2515 int i;
2516@end group
2517
2518@group
2519 /* Initially make the buffer long enough
2520 for a 40-character symbol name. */
2521 if (length == 0)
2522 length = 40, symbuf = (char *)malloc (length + 1);
2523
2524 i = 0;
2525 do
2526@end group
2527@group
2528 @{
2529 /* If buffer is full, make it bigger. */
2530 if (i == length)
2531 @{
2532 length *= 2;
18b519c0 2533 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2534 @}
2535 /* Add this character to the buffer. */
2536 symbuf[i++] = c;
2537 /* Get another character. */
2538 c = getchar ();
2539 @}
2540@end group
2541@group
72d2299c 2542 while (isalnum (c));
bfa74976
RS
2543
2544 ungetc (c, stdin);
2545 symbuf[i] = '\0';
2546@end group
2547
2548@group
2549 s = getsym (symbuf);
2550 if (s == 0)
2551 s = putsym (symbuf, VAR);
2552 yylval.tptr = s;
2553 return s->type;
2554 @}
2555
2556 /* Any other character is a token by itself. */
2557 return c;
2558@}
2559@end group
2560@end smallexample
2561
72d2299c 2562This program is both powerful and flexible. You may easily add new
704a47c4
AD
2563functions, and it is a simple job to modify this code to install
2564predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2565
342b8b6e 2566@node Exercises
bfa74976
RS
2567@section Exercises
2568@cindex exercises
2569
2570@enumerate
2571@item
2572Add some new functions from @file{math.h} to the initialization list.
2573
2574@item
2575Add another array that contains constants and their values. Then
2576modify @code{init_table} to add these constants to the symbol table.
2577It will be easiest to give the constants type @code{VAR}.
2578
2579@item
2580Make the program report an error if the user refers to an
2581uninitialized variable in any way except to store a value in it.
2582@end enumerate
2583
342b8b6e 2584@node Grammar File
bfa74976
RS
2585@chapter Bison Grammar Files
2586
2587Bison takes as input a context-free grammar specification and produces a
2588C-language function that recognizes correct instances of the grammar.
2589
2590The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2591@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2592
2593@menu
2594* Grammar Outline:: Overall layout of the grammar file.
2595* Symbols:: Terminal and nonterminal symbols.
2596* Rules:: How to write grammar rules.
2597* Recursion:: Writing recursive rules.
2598* Semantics:: Semantic values and actions.
847bf1f5 2599* Locations:: Locations and actions.
bfa74976
RS
2600* Declarations:: All kinds of Bison declarations are described here.
2601* Multiple Parsers:: Putting more than one Bison parser in one program.
2602@end menu
2603
342b8b6e 2604@node Grammar Outline
bfa74976
RS
2605@section Outline of a Bison Grammar
2606
2607A Bison grammar file has four main sections, shown here with the
2608appropriate delimiters:
2609
2610@example
2611%@{
38a92d50 2612 @var{Prologue}
bfa74976
RS
2613%@}
2614
2615@var{Bison declarations}
2616
2617%%
2618@var{Grammar rules}
2619%%
2620
75f5aaea 2621@var{Epilogue}
bfa74976
RS
2622@end example
2623
2624Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2625As a @acronym{GNU} extension, @samp{//} introduces a comment that
2626continues until end of line.
bfa74976
RS
2627
2628@menu
75f5aaea 2629* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2630* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2631* Bison Declarations:: Syntax and usage of the Bison declarations section.
2632* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2633* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2634@end menu
2635
38a92d50 2636@node Prologue
75f5aaea
MA
2637@subsection The prologue
2638@cindex declarations section
2639@cindex Prologue
2640@cindex declarations
bfa74976 2641
f8e1c9e5
AD
2642The @var{Prologue} section contains macro definitions and declarations
2643of functions and variables that are used in the actions in the grammar
2644rules. These are copied to the beginning of the parser file so that
2645they precede the definition of @code{yyparse}. You can use
2646@samp{#include} to get the declarations from a header file. If you
2647don't need any C declarations, you may omit the @samp{%@{} and
2648@samp{%@}} delimiters that bracket this section.
bfa74976 2649
9c437126 2650The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2651of @samp{%@}} that is outside a comment, a string literal, or a
2652character constant.
2653
c732d2c6
AD
2654You may have more than one @var{Prologue} section, intermixed with the
2655@var{Bison declarations}. This allows you to have C and Bison
2656declarations that refer to each other. For example, the @code{%union}
2657declaration may use types defined in a header file, and you may wish to
2658prototype functions that take arguments of type @code{YYSTYPE}. This
2659can be done with two @var{Prologue} blocks, one before and one after the
2660@code{%union} declaration.
2661
2662@smallexample
2663%@{
aef3da86 2664 #define _GNU_SOURCE
38a92d50
PE
2665 #include <stdio.h>
2666 #include "ptypes.h"
c732d2c6
AD
2667%@}
2668
2669%union @{
779e7ceb 2670 long int n;
c732d2c6
AD
2671 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2672@}
2673
2674%@{
38a92d50
PE
2675 static void print_token_value (FILE *, int, YYSTYPE);
2676 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2677%@}
2678
2679@dots{}
2680@end smallexample
2681
aef3da86
PE
2682When in doubt, it is usually safer to put prologue code before all
2683Bison declarations, rather than after. For example, any definitions
2684of feature test macros like @code{_GNU_SOURCE} or
2685@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2686feature test macros can affect the behavior of Bison-generated
2687@code{#include} directives.
2688
2cbe6b7f
JD
2689@node Prologue Alternatives
2690@subsection Prologue Alternatives
2691@cindex Prologue Alternatives
2692
136a0f76 2693@findex %code
16dc6a9e
JD
2694@findex %code requires
2695@findex %code provides
2696@findex %code top
85894313
JD
2697(The prologue alternatives described here are experimental.
2698More user feedback will help to determine whether they should become permanent
2699features.)
2700
2cbe6b7f
JD
2701The functionality of @var{Prologue} sections can often be subtle and
2702inflexible.
8e0a5e9e
JD
2703As an alternative, Bison provides a %code directive with an explicit qualifier
2704field, which identifies the purpose of the code and thus the location(s) where
2705Bison should generate it.
2706For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2707one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2708@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2709
2710Look again at the example of the previous section:
2711
2712@smallexample
2713%@{
2714 #define _GNU_SOURCE
2715 #include <stdio.h>
2716 #include "ptypes.h"
2717%@}
2718
2719%union @{
2720 long int n;
2721 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2722@}
2723
2724%@{
2725 static void print_token_value (FILE *, int, YYSTYPE);
2726 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2727%@}
2728
2729@dots{}
2730@end smallexample
2731
2732@noindent
2733Notice that there are two @var{Prologue} sections here, but there's a subtle
2734distinction between their functionality.
2735For example, if you decide to override Bison's default definition for
2736@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2737definition?
2738You should write it in the first since Bison will insert that code into the
8e0a5e9e 2739parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2740In which @var{Prologue} section should you prototype an internal function,
2741@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2742arguments?
2743You should prototype it in the second since Bison will insert that code
2744@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2745
2746This distinction in functionality between the two @var{Prologue} sections is
2747established by the appearance of the @code{%union} between them.
a501eca9 2748This behavior raises a few questions.
2cbe6b7f
JD
2749First, why should the position of a @code{%union} affect definitions related to
2750@code{YYLTYPE} and @code{yytokentype}?
2751Second, what if there is no @code{%union}?
2752In that case, the second kind of @var{Prologue} section is not available.
2753This behavior is not intuitive.
2754
8e0a5e9e 2755To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2756@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2757Let's go ahead and add the new @code{YYLTYPE} definition and the
2758@code{trace_token} prototype at the same time:
2759
2760@smallexample
16dc6a9e 2761%code top @{
2cbe6b7f
JD
2762 #define _GNU_SOURCE
2763 #include <stdio.h>
8e0a5e9e
JD
2764
2765 /* WARNING: The following code really belongs
16dc6a9e 2766 * in a `%code requires'; see below. */
8e0a5e9e 2767
2cbe6b7f
JD
2768 #include "ptypes.h"
2769 #define YYLTYPE YYLTYPE
2770 typedef struct YYLTYPE
2771 @{
2772 int first_line;
2773 int first_column;
2774 int last_line;
2775 int last_column;
2776 char *filename;
2777 @} YYLTYPE;
2778@}
2779
2780%union @{
2781 long int n;
2782 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2783@}
2784
2785%code @{
2786 static void print_token_value (FILE *, int, YYSTYPE);
2787 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2788 static void trace_token (enum yytokentype token, YYLTYPE loc);
2789@}
2790
2791@dots{}
2792@end smallexample
2793
2794@noindent
16dc6a9e
JD
2795In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2796functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2797explicit which kind you intend.
2cbe6b7f
JD
2798Moreover, both kinds are always available even in the absence of @code{%union}.
2799
16dc6a9e 2800The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2801The first two lines before the warning need to appear near the top of the
2802parser source code file.
2803The first line after the warning is required by @code{YYSTYPE} and thus also
2804needs to appear in the parser source code file.
2cbe6b7f 2805However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2806(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2807the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2808The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2809override the default @code{YYLTYPE} definition there.
2810
16dc6a9e 2811In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2812lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2813definitions.
16dc6a9e 2814Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2815
2816@smallexample
16dc6a9e 2817%code top @{
2cbe6b7f
JD
2818 #define _GNU_SOURCE
2819 #include <stdio.h>
2820@}
2821
16dc6a9e 2822%code requires @{
9bc0dd67
JD
2823 #include "ptypes.h"
2824@}
2825%union @{
2826 long int n;
2827 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2828@}
2829
16dc6a9e 2830%code requires @{
2cbe6b7f
JD
2831 #define YYLTYPE YYLTYPE
2832 typedef struct YYLTYPE
2833 @{
2834 int first_line;
2835 int first_column;
2836 int last_line;
2837 int last_column;
2838 char *filename;
2839 @} YYLTYPE;
2840@}
2841
136a0f76 2842%code @{
2cbe6b7f
JD
2843 static void print_token_value (FILE *, int, YYSTYPE);
2844 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2845 static void trace_token (enum yytokentype token, YYLTYPE loc);
2846@}
2847
2848@dots{}
2849@end smallexample
2850
2851@noindent
2852Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2853definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2854definitions in both the parser source code file and the parser header file.
16dc6a9e 2855(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2856place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2857
a501eca9 2858When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2859should prefer @code{%code requires} over @code{%code top} regardless of whether
2860you instruct Bison to generate a parser header file.
a501eca9 2861When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2862source code file and that has no special need to appear at the top of that
16dc6a9e 2863file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2864These practices will make the purpose of each block of your code explicit to
2865Bison and to other developers reading your grammar file.
8e0a5e9e 2866Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2867@code{%code requires} to be the most important of the four @var{Prologue}
2868alternatives.
a501eca9 2869
2cbe6b7f
JD
2870At some point while developing your parser, you might decide to provide
2871@code{trace_token} to modules that are external to your parser.
2872Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2873header file and the parser source code file.
2874Since this function is not a dependency required by @code{YYSTYPE} or
2875@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2876@code{%code requires}.
2cbe6b7f 2877More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2878@code{%code requires} is not sufficient.
8e0a5e9e 2879Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2880@code{%code provides}:
2cbe6b7f
JD
2881
2882@smallexample
16dc6a9e 2883%code top @{
2cbe6b7f 2884 #define _GNU_SOURCE
136a0f76 2885 #include <stdio.h>
2cbe6b7f 2886@}
136a0f76 2887
16dc6a9e 2888%code requires @{
2cbe6b7f
JD
2889 #include "ptypes.h"
2890@}
2891%union @{
2892 long int n;
2893 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2894@}
2895
16dc6a9e 2896%code requires @{
2cbe6b7f
JD
2897 #define YYLTYPE YYLTYPE
2898 typedef struct YYLTYPE
2899 @{
2900 int first_line;
2901 int first_column;
2902 int last_line;
2903 int last_column;
2904 char *filename;
2905 @} YYLTYPE;
2906@}
2907
16dc6a9e 2908%code provides @{
2cbe6b7f
JD
2909 void trace_token (enum yytokentype token, YYLTYPE loc);
2910@}
2911
2912%code @{
9bc0dd67
JD
2913 static void print_token_value (FILE *, int, YYSTYPE);
2914 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2915@}
9bc0dd67
JD
2916
2917@dots{}
2918@end smallexample
2919
2cbe6b7f
JD
2920@noindent
2921Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2922file and the parser source code file after the definitions for
2923@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2924
2925The above examples are careful to write directives in an order that reflects
8e0a5e9e 2926the layout of the generated parser source code and header files:
16dc6a9e 2927@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2928@code{%code}.
a501eca9 2929While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2930this order, Bison does not require it.
2931Instead, Bison lets you choose an organization that makes sense to you.
2932
a501eca9 2933You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2934In that case, Bison concatenates the contained code in declaration order.
2935This is the only way in which the position of one of these directives within
2936the grammar file affects its functionality.
2937
2938The result of the previous two properties is greater flexibility in how you may
2939organize your grammar file.
2940For example, you may organize semantic-type-related directives by semantic
2941type:
2942
2943@smallexample
16dc6a9e 2944%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2945%union @{ type1 field1; @}
2946%destructor @{ type1_free ($$); @} <field1>
2947%printer @{ type1_print ($$); @} <field1>
2948
16dc6a9e 2949%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2950%union @{ type2 field2; @}
2951%destructor @{ type2_free ($$); @} <field2>
2952%printer @{ type2_print ($$); @} <field2>
2953@end smallexample
2954
2955@noindent
2956You could even place each of the above directive groups in the rules section of
2957the grammar file next to the set of rules that uses the associated semantic
2958type.
2959And you don't have to worry that some directive (like a @code{%union}) in the
2960definitions section is going to adversely affect their functionality in some
2961counter-intuitive manner just because it comes first.
2962Such an organization is not possible using @var{Prologue} sections.
2963
a501eca9 2964This section has been concerned with explaining the advantages of the four
8e0a5e9e 2965@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2966However, in most cases when using these directives, you shouldn't need to
2967think about all the low-level ordering issues discussed here.
2968Instead, you should simply use these directives to label each block of your
2969code according to its purpose and let Bison handle the ordering.
2970@code{%code} is the most generic label.
16dc6a9e
JD
2971Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2972as needed.
a501eca9 2973
342b8b6e 2974@node Bison Declarations
bfa74976
RS
2975@subsection The Bison Declarations Section
2976@cindex Bison declarations (introduction)
2977@cindex declarations, Bison (introduction)
2978
2979The @var{Bison declarations} section contains declarations that define
2980terminal and nonterminal symbols, specify precedence, and so on.
2981In some simple grammars you may not need any declarations.
2982@xref{Declarations, ,Bison Declarations}.
2983
342b8b6e 2984@node Grammar Rules
bfa74976
RS
2985@subsection The Grammar Rules Section
2986@cindex grammar rules section
2987@cindex rules section for grammar
2988
2989The @dfn{grammar rules} section contains one or more Bison grammar
2990rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2991
2992There must always be at least one grammar rule, and the first
2993@samp{%%} (which precedes the grammar rules) may never be omitted even
2994if it is the first thing in the file.
2995
38a92d50 2996@node Epilogue
75f5aaea 2997@subsection The epilogue
bfa74976 2998@cindex additional C code section
75f5aaea 2999@cindex epilogue
bfa74976
RS
3000@cindex C code, section for additional
3001
08e49d20
PE
3002The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3003the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3004place to put anything that you want to have in the parser file but which need
3005not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3006definitions of @code{yylex} and @code{yyerror} often go here. Because
3007C requires functions to be declared before being used, you often need
3008to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3009even if you define them in the Epilogue.
75f5aaea 3010@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3011
3012If the last section is empty, you may omit the @samp{%%} that separates it
3013from the grammar rules.
3014
f8e1c9e5
AD
3015The Bison parser itself contains many macros and identifiers whose names
3016start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3017any such names (except those documented in this manual) in the epilogue
3018of the grammar file.
bfa74976 3019
342b8b6e 3020@node Symbols
bfa74976
RS
3021@section Symbols, Terminal and Nonterminal
3022@cindex nonterminal symbol
3023@cindex terminal symbol
3024@cindex token type
3025@cindex symbol
3026
3027@dfn{Symbols} in Bison grammars represent the grammatical classifications
3028of the language.
3029
3030A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3031class of syntactically equivalent tokens. You use the symbol in grammar
3032rules to mean that a token in that class is allowed. The symbol is
3033represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3034function returns a token type code to indicate what kind of token has
3035been read. You don't need to know what the code value is; you can use
3036the symbol to stand for it.
bfa74976 3037
f8e1c9e5
AD
3038A @dfn{nonterminal symbol} stands for a class of syntactically
3039equivalent groupings. The symbol name is used in writing grammar rules.
3040By convention, it should be all lower case.
bfa74976
RS
3041
3042Symbol names can contain letters, digits (not at the beginning),
3043underscores and periods. Periods make sense only in nonterminals.
3044
931c7513 3045There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3046
3047@itemize @bullet
3048@item
3049A @dfn{named token type} is written with an identifier, like an
c827f760 3050identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3051such name must be defined with a Bison declaration such as
3052@code{%token}. @xref{Token Decl, ,Token Type Names}.
3053
3054@item
3055@cindex character token
3056@cindex literal token
3057@cindex single-character literal
931c7513
RS
3058A @dfn{character token type} (or @dfn{literal character token}) is
3059written in the grammar using the same syntax used in C for character
3060constants; for example, @code{'+'} is a character token type. A
3061character token type doesn't need to be declared unless you need to
3062specify its semantic value data type (@pxref{Value Type, ,Data Types of
3063Semantic Values}), associativity, or precedence (@pxref{Precedence,
3064,Operator Precedence}).
bfa74976
RS
3065
3066By convention, a character token type is used only to represent a
3067token that consists of that particular character. Thus, the token
3068type @code{'+'} is used to represent the character @samp{+} as a
3069token. Nothing enforces this convention, but if you depart from it,
3070your program will confuse other readers.
3071
3072All the usual escape sequences used in character literals in C can be
3073used in Bison as well, but you must not use the null character as a
72d2299c
PE
3074character literal because its numeric code, zero, signifies
3075end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3076for @code{yylex}}). Also, unlike standard C, trigraphs have no
3077special meaning in Bison character literals, nor is backslash-newline
3078allowed.
931c7513
RS
3079
3080@item
3081@cindex string token
3082@cindex literal string token
9ecbd125 3083@cindex multicharacter literal
931c7513
RS
3084A @dfn{literal string token} is written like a C string constant; for
3085example, @code{"<="} is a literal string token. A literal string token
3086doesn't need to be declared unless you need to specify its semantic
14ded682 3087value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3088(@pxref{Precedence}).
3089
3090You can associate the literal string token with a symbolic name as an
3091alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3092Declarations}). If you don't do that, the lexical analyzer has to
3093retrieve the token number for the literal string token from the
3094@code{yytname} table (@pxref{Calling Convention}).
3095
c827f760 3096@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3097
3098By convention, a literal string token is used only to represent a token
3099that consists of that particular string. Thus, you should use the token
3100type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3101does not enforce this convention, but if you depart from it, people who
931c7513
RS
3102read your program will be confused.
3103
3104All the escape sequences used in string literals in C can be used in
92ac3705
PE
3105Bison as well, except that you must not use a null character within a
3106string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3107meaning in Bison string literals, nor is backslash-newline allowed. A
3108literal string token must contain two or more characters; for a token
3109containing just one character, use a character token (see above).
bfa74976
RS
3110@end itemize
3111
3112How you choose to write a terminal symbol has no effect on its
3113grammatical meaning. That depends only on where it appears in rules and
3114on when the parser function returns that symbol.
3115
72d2299c
PE
3116The value returned by @code{yylex} is always one of the terminal
3117symbols, except that a zero or negative value signifies end-of-input.
3118Whichever way you write the token type in the grammar rules, you write
3119it the same way in the definition of @code{yylex}. The numeric code
3120for a character token type is simply the positive numeric code of the
3121character, so @code{yylex} can use the identical value to generate the
3122requisite code, though you may need to convert it to @code{unsigned
3123char} to avoid sign-extension on hosts where @code{char} is signed.
3124Each named token type becomes a C macro in
bfa74976 3125the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3126(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3127@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3128
3129If @code{yylex} is defined in a separate file, you need to arrange for the
3130token-type macro definitions to be available there. Use the @samp{-d}
3131option when you run Bison, so that it will write these macro definitions
3132into a separate header file @file{@var{name}.tab.h} which you can include
3133in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3134
72d2299c 3135If you want to write a grammar that is portable to any Standard C
9d9b8b70 3136host, you must use only nonnull character tokens taken from the basic
c827f760 3137execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3138digits, the 52 lower- and upper-case English letters, and the
3139characters in the following C-language string:
3140
3141@example
3142"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3143@end example
3144
f8e1c9e5
AD
3145The @code{yylex} function and Bison must use a consistent character set
3146and encoding for character tokens. For example, if you run Bison in an
3147@acronym{ASCII} environment, but then compile and run the resulting
3148program in an environment that uses an incompatible character set like
3149@acronym{EBCDIC}, the resulting program may not work because the tables
3150generated by Bison will assume @acronym{ASCII} numeric values for
3151character tokens. It is standard practice for software distributions to
3152contain C source files that were generated by Bison in an
3153@acronym{ASCII} environment, so installers on platforms that are
3154incompatible with @acronym{ASCII} must rebuild those files before
3155compiling them.
e966383b 3156
bfa74976
RS
3157The symbol @code{error} is a terminal symbol reserved for error recovery
3158(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3159In particular, @code{yylex} should never return this value. The default
3160value of the error token is 256, unless you explicitly assigned 256 to
3161one of your tokens with a @code{%token} declaration.
bfa74976 3162
342b8b6e 3163@node Rules
bfa74976
RS
3164@section Syntax of Grammar Rules
3165@cindex rule syntax
3166@cindex grammar rule syntax
3167@cindex syntax of grammar rules
3168
3169A Bison grammar rule has the following general form:
3170
3171@example
e425e872 3172@group
bfa74976
RS
3173@var{result}: @var{components}@dots{}
3174 ;
e425e872 3175@end group
bfa74976
RS
3176@end example
3177
3178@noindent
9ecbd125 3179where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3180and @var{components} are various terminal and nonterminal symbols that
13863333 3181are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3182
3183For example,
3184
3185@example
3186@group
3187exp: exp '+' exp
3188 ;
3189@end group
3190@end example
3191
3192@noindent
3193says that two groupings of type @code{exp}, with a @samp{+} token in between,
3194can be combined into a larger grouping of type @code{exp}.
3195
72d2299c
PE
3196White space in rules is significant only to separate symbols. You can add
3197extra white space as you wish.
bfa74976
RS
3198
3199Scattered among the components can be @var{actions} that determine
3200the semantics of the rule. An action looks like this:
3201
3202@example
3203@{@var{C statements}@}
3204@end example
3205
3206@noindent
287c78f6
PE
3207@cindex braced code
3208This is an example of @dfn{braced code}, that is, C code surrounded by
3209braces, much like a compound statement in C@. Braced code can contain
3210any sequence of C tokens, so long as its braces are balanced. Bison
3211does not check the braced code for correctness directly; it merely
3212copies the code to the output file, where the C compiler can check it.
3213
3214Within braced code, the balanced-brace count is not affected by braces
3215within comments, string literals, or character constants, but it is
3216affected by the C digraphs @samp{<%} and @samp{%>} that represent
3217braces. At the top level braced code must be terminated by @samp{@}}
3218and not by a digraph. Bison does not look for trigraphs, so if braced
3219code uses trigraphs you should ensure that they do not affect the
3220nesting of braces or the boundaries of comments, string literals, or
3221character constants.
3222
bfa74976
RS
3223Usually there is only one action and it follows the components.
3224@xref{Actions}.
3225
3226@findex |
3227Multiple rules for the same @var{result} can be written separately or can
3228be joined with the vertical-bar character @samp{|} as follows:
3229
bfa74976
RS
3230@example
3231@group
3232@var{result}: @var{rule1-components}@dots{}
3233 | @var{rule2-components}@dots{}
3234 @dots{}
3235 ;
3236@end group
3237@end example
bfa74976
RS
3238
3239@noindent
3240They are still considered distinct rules even when joined in this way.
3241
3242If @var{components} in a rule is empty, it means that @var{result} can
3243match the empty string. For example, here is how to define a
3244comma-separated sequence of zero or more @code{exp} groupings:
3245
3246@example
3247@group
3248expseq: /* empty */
3249 | expseq1
3250 ;
3251@end group
3252
3253@group
3254expseq1: exp
3255 | expseq1 ',' exp
3256 ;
3257@end group
3258@end example
3259
3260@noindent
3261It is customary to write a comment @samp{/* empty */} in each rule
3262with no components.
3263
342b8b6e 3264@node Recursion
bfa74976
RS
3265@section Recursive Rules
3266@cindex recursive rule
3267
f8e1c9e5
AD
3268A rule is called @dfn{recursive} when its @var{result} nonterminal
3269appears also on its right hand side. Nearly all Bison grammars need to
3270use recursion, because that is the only way to define a sequence of any
3271number of a particular thing. Consider this recursive definition of a
9ecbd125 3272comma-separated sequence of one or more expressions:
bfa74976
RS
3273
3274@example
3275@group
3276expseq1: exp
3277 | expseq1 ',' exp
3278 ;
3279@end group
3280@end example
3281
3282@cindex left recursion
3283@cindex right recursion
3284@noindent
3285Since the recursive use of @code{expseq1} is the leftmost symbol in the
3286right hand side, we call this @dfn{left recursion}. By contrast, here
3287the same construct is defined using @dfn{right recursion}:
3288
3289@example
3290@group
3291expseq1: exp
3292 | exp ',' expseq1
3293 ;
3294@end group
3295@end example
3296
3297@noindent
ec3bc396
AD
3298Any kind of sequence can be defined using either left recursion or right
3299recursion, but you should always use left recursion, because it can
3300parse a sequence of any number of elements with bounded stack space.
3301Right recursion uses up space on the Bison stack in proportion to the
3302number of elements in the sequence, because all the elements must be
3303shifted onto the stack before the rule can be applied even once.
3304@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3305of this.
bfa74976
RS
3306
3307@cindex mutual recursion
3308@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3309rule does not appear directly on its right hand side, but does appear
3310in rules for other nonterminals which do appear on its right hand
13863333 3311side.
bfa74976
RS
3312
3313For example:
3314
3315@example
3316@group
3317expr: primary
3318 | primary '+' primary
3319 ;
3320@end group
3321
3322@group
3323primary: constant
3324 | '(' expr ')'
3325 ;
3326@end group
3327@end example
3328
3329@noindent
3330defines two mutually-recursive nonterminals, since each refers to the
3331other.
3332
342b8b6e 3333@node Semantics
bfa74976
RS
3334@section Defining Language Semantics
3335@cindex defining language semantics
13863333 3336@cindex language semantics, defining
bfa74976
RS
3337
3338The grammar rules for a language determine only the syntax. The semantics
3339are determined by the semantic values associated with various tokens and
3340groupings, and by the actions taken when various groupings are recognized.
3341
3342For example, the calculator calculates properly because the value
3343associated with each expression is the proper number; it adds properly
3344because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3345the numbers associated with @var{x} and @var{y}.
3346
3347@menu
3348* Value Type:: Specifying one data type for all semantic values.
3349* Multiple Types:: Specifying several alternative data types.
3350* Actions:: An action is the semantic definition of a grammar rule.
3351* Action Types:: Specifying data types for actions to operate on.
3352* Mid-Rule Actions:: Most actions go at the end of a rule.
3353 This says when, why and how to use the exceptional
3354 action in the middle of a rule.
3355@end menu
3356
342b8b6e 3357@node Value Type
bfa74976
RS
3358@subsection Data Types of Semantic Values
3359@cindex semantic value type
3360@cindex value type, semantic
3361@cindex data types of semantic values
3362@cindex default data type
3363
3364In a simple program it may be sufficient to use the same data type for
3365the semantic values of all language constructs. This was true in the
c827f760 3366@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3367Notation Calculator}).
bfa74976 3368
ddc8ede1
PE
3369Bison normally uses the type @code{int} for semantic values if your
3370program uses the same data type for all language constructs. To
bfa74976
RS
3371specify some other type, define @code{YYSTYPE} as a macro, like this:
3372
3373@example
3374#define YYSTYPE double
3375@end example
3376
3377@noindent
50cce58e
PE
3378@code{YYSTYPE}'s replacement list should be a type name
3379that does not contain parentheses or square brackets.
342b8b6e 3380This macro definition must go in the prologue of the grammar file
75f5aaea 3381(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3382
342b8b6e 3383@node Multiple Types
bfa74976
RS
3384@subsection More Than One Value Type
3385
3386In most programs, you will need different data types for different kinds
3387of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3388@code{int} or @code{long int}, while a string constant needs type
3389@code{char *}, and an identifier might need a pointer to an entry in the
3390symbol table.
bfa74976
RS
3391
3392To use more than one data type for semantic values in one parser, Bison
3393requires you to do two things:
3394
3395@itemize @bullet
3396@item
ddc8ede1 3397Specify the entire collection of possible data types, either by using the
704a47c4 3398@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3399Value Types}), or by using a @code{typedef} or a @code{#define} to
3400define @code{YYSTYPE} to be a union type whose member names are
3401the type tags.
bfa74976
RS
3402
3403@item
14ded682
AD
3404Choose one of those types for each symbol (terminal or nonterminal) for
3405which semantic values are used. This is done for tokens with the
3406@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3407and for groupings with the @code{%type} Bison declaration (@pxref{Type
3408Decl, ,Nonterminal Symbols}).
bfa74976
RS
3409@end itemize
3410
342b8b6e 3411@node Actions
bfa74976
RS
3412@subsection Actions
3413@cindex action
3414@vindex $$
3415@vindex $@var{n}
3416
3417An action accompanies a syntactic rule and contains C code to be executed
3418each time an instance of that rule is recognized. The task of most actions
3419is to compute a semantic value for the grouping built by the rule from the
3420semantic values associated with tokens or smaller groupings.
3421
287c78f6
PE
3422An action consists of braced code containing C statements, and can be
3423placed at any position in the rule;
704a47c4
AD
3424it is executed at that position. Most rules have just one action at the
3425end of the rule, following all the components. Actions in the middle of
3426a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3427Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3428
3429The C code in an action can refer to the semantic values of the components
3430matched by the rule with the construct @code{$@var{n}}, which stands for
3431the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3432being constructed is @code{$$}. Bison translates both of these
3433constructs into expressions of the appropriate type when it copies the
3434actions into the parser file. @code{$$} is translated to a modifiable
3435lvalue, so it can be assigned to.
bfa74976
RS
3436
3437Here is a typical example:
3438
3439@example
3440@group
3441exp: @dots{}
3442 | exp '+' exp
3443 @{ $$ = $1 + $3; @}
3444@end group
3445@end example
3446
3447@noindent
3448This rule constructs an @code{exp} from two smaller @code{exp} groupings
3449connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3450refer to the semantic values of the two component @code{exp} groupings,
3451which are the first and third symbols on the right hand side of the rule.
3452The sum is stored into @code{$$} so that it becomes the semantic value of
3453the addition-expression just recognized by the rule. If there were a
3454useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3455referred to as @code{$2}.
bfa74976 3456
3ded9a63
AD
3457Note that the vertical-bar character @samp{|} is really a rule
3458separator, and actions are attached to a single rule. This is a
3459difference with tools like Flex, for which @samp{|} stands for either
3460``or'', or ``the same action as that of the next rule''. In the
3461following example, the action is triggered only when @samp{b} is found:
3462
3463@example
3464@group
3465a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3466@end group
3467@end example
3468
bfa74976
RS
3469@cindex default action
3470If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3471@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3472becomes the value of the whole rule. Of course, the default action is
3473valid only if the two data types match. There is no meaningful default
3474action for an empty rule; every empty rule must have an explicit action
3475unless the rule's value does not matter.
bfa74976
RS
3476
3477@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3478to tokens and groupings on the stack @emph{before} those that match the
3479current rule. This is a very risky practice, and to use it reliably
3480you must be certain of the context in which the rule is applied. Here
3481is a case in which you can use this reliably:
3482
3483@example
3484@group
3485foo: expr bar '+' expr @{ @dots{} @}
3486 | expr bar '-' expr @{ @dots{} @}
3487 ;
3488@end group
3489
3490@group
3491bar: /* empty */
3492 @{ previous_expr = $0; @}
3493 ;
3494@end group
3495@end example
3496
3497As long as @code{bar} is used only in the fashion shown here, @code{$0}
3498always refers to the @code{expr} which precedes @code{bar} in the
3499definition of @code{foo}.
3500
32c29292 3501@vindex yylval
742e4900 3502It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3503any, from a semantic action.
3504This semantic value is stored in @code{yylval}.
3505@xref{Action Features, ,Special Features for Use in Actions}.
3506
342b8b6e 3507@node Action Types
bfa74976
RS
3508@subsection Data Types of Values in Actions
3509@cindex action data types
3510@cindex data types in actions
3511
3512If you have chosen a single data type for semantic values, the @code{$$}
3513and @code{$@var{n}} constructs always have that data type.
3514
3515If you have used @code{%union} to specify a variety of data types, then you
3516must declare a choice among these types for each terminal or nonterminal
3517symbol that can have a semantic value. Then each time you use @code{$$} or
3518@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3519in the rule. In this example,
bfa74976
RS
3520
3521@example
3522@group
3523exp: @dots{}
3524 | exp '+' exp
3525 @{ $$ = $1 + $3; @}
3526@end group
3527@end example
3528
3529@noindent
3530@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3531have the data type declared for the nonterminal symbol @code{exp}. If
3532@code{$2} were used, it would have the data type declared for the
e0c471a9 3533terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3534
3535Alternatively, you can specify the data type when you refer to the value,
3536by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3537reference. For example, if you have defined types as shown here:
3538
3539@example
3540@group
3541%union @{
3542 int itype;
3543 double dtype;
3544@}
3545@end group
3546@end example
3547
3548@noindent
3549then you can write @code{$<itype>1} to refer to the first subunit of the
3550rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3551
342b8b6e 3552@node Mid-Rule Actions
bfa74976
RS
3553@subsection Actions in Mid-Rule
3554@cindex actions in mid-rule
3555@cindex mid-rule actions
3556
3557Occasionally it is useful to put an action in the middle of a rule.
3558These actions are written just like usual end-of-rule actions, but they
3559are executed before the parser even recognizes the following components.
3560
3561A mid-rule action may refer to the components preceding it using
3562@code{$@var{n}}, but it may not refer to subsequent components because
3563it is run before they are parsed.
3564
3565The mid-rule action itself counts as one of the components of the rule.
3566This makes a difference when there is another action later in the same rule
3567(and usually there is another at the end): you have to count the actions
3568along with the symbols when working out which number @var{n} to use in
3569@code{$@var{n}}.
3570
3571The mid-rule action can also have a semantic value. The action can set
3572its value with an assignment to @code{$$}, and actions later in the rule
3573can refer to the value using @code{$@var{n}}. Since there is no symbol
3574to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3575in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3576specify a data type each time you refer to this value.
bfa74976
RS
3577
3578There is no way to set the value of the entire rule with a mid-rule
3579action, because assignments to @code{$$} do not have that effect. The
3580only way to set the value for the entire rule is with an ordinary action
3581at the end of the rule.
3582
3583Here is an example from a hypothetical compiler, handling a @code{let}
3584statement that looks like @samp{let (@var{variable}) @var{statement}} and
3585serves to create a variable named @var{variable} temporarily for the
3586duration of @var{statement}. To parse this construct, we must put
3587@var{variable} into the symbol table while @var{statement} is parsed, then
3588remove it afterward. Here is how it is done:
3589
3590@example
3591@group
3592stmt: LET '(' var ')'
3593 @{ $<context>$ = push_context ();
3594 declare_variable ($3); @}
3595 stmt @{ $$ = $6;
3596 pop_context ($<context>5); @}
3597@end group
3598@end example
3599
3600@noindent
3601As soon as @samp{let (@var{variable})} has been recognized, the first
3602action is run. It saves a copy of the current semantic context (the
3603list of accessible variables) as its semantic value, using alternative
3604@code{context} in the data-type union. Then it calls
3605@code{declare_variable} to add the new variable to that list. Once the
3606first action is finished, the embedded statement @code{stmt} can be
3607parsed. Note that the mid-rule action is component number 5, so the
3608@samp{stmt} is component number 6.
3609
3610After the embedded statement is parsed, its semantic value becomes the
3611value of the entire @code{let}-statement. Then the semantic value from the
3612earlier action is used to restore the prior list of variables. This
3613removes the temporary @code{let}-variable from the list so that it won't
3614appear to exist while the rest of the program is parsed.
3615
841a7737
JD
3616@findex %destructor
3617@cindex discarded symbols, mid-rule actions
3618@cindex error recovery, mid-rule actions
3619In the above example, if the parser initiates error recovery (@pxref{Error
3620Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3621it might discard the previous semantic context @code{$<context>5} without
3622restoring it.
3623Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3624Discarded Symbols}).
ec5479ce
JD
3625However, Bison currently provides no means to declare a destructor specific to
3626a particular mid-rule action's semantic value.
841a7737
JD
3627
3628One solution is to bury the mid-rule action inside a nonterminal symbol and to
3629declare a destructor for that symbol:
3630
3631@example
3632@group
3633%type <context> let
3634%destructor @{ pop_context ($$); @} let
3635
3636%%
3637
3638stmt: let stmt
3639 @{ $$ = $2;
3640 pop_context ($1); @}
3641 ;
3642
3643let: LET '(' var ')'
3644 @{ $$ = push_context ();
3645 declare_variable ($3); @}
3646 ;
3647
3648@end group
3649@end example
3650
3651@noindent
3652Note that the action is now at the end of its rule.
3653Any mid-rule action can be converted to an end-of-rule action in this way, and
3654this is what Bison actually does to implement mid-rule actions.
3655
bfa74976
RS
3656Taking action before a rule is completely recognized often leads to
3657conflicts since the parser must commit to a parse in order to execute the
3658action. For example, the following two rules, without mid-rule actions,
3659can coexist in a working parser because the parser can shift the open-brace
3660token and look at what follows before deciding whether there is a
3661declaration or not:
3662
3663@example
3664@group
3665compound: '@{' declarations statements '@}'
3666 | '@{' statements '@}'
3667 ;
3668@end group
3669@end example
3670
3671@noindent
3672But when we add a mid-rule action as follows, the rules become nonfunctional:
3673
3674@example
3675@group
3676compound: @{ prepare_for_local_variables (); @}
3677 '@{' declarations statements '@}'
3678@end group
3679@group
3680 | '@{' statements '@}'
3681 ;
3682@end group
3683@end example
3684
3685@noindent
3686Now the parser is forced to decide whether to run the mid-rule action
3687when it has read no farther than the open-brace. In other words, it
3688must commit to using one rule or the other, without sufficient
3689information to do it correctly. (The open-brace token is what is called
742e4900
JD
3690the @dfn{lookahead} token at this time, since the parser is still
3691deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3692
3693You might think that you could correct the problem by putting identical
3694actions into the two rules, like this:
3695
3696@example
3697@group
3698compound: @{ prepare_for_local_variables (); @}
3699 '@{' declarations statements '@}'
3700 | @{ prepare_for_local_variables (); @}
3701 '@{' statements '@}'
3702 ;
3703@end group
3704@end example
3705
3706@noindent
3707But this does not help, because Bison does not realize that the two actions
3708are identical. (Bison never tries to understand the C code in an action.)
3709
3710If the grammar is such that a declaration can be distinguished from a
3711statement by the first token (which is true in C), then one solution which
3712does work is to put the action after the open-brace, like this:
3713
3714@example
3715@group
3716compound: '@{' @{ prepare_for_local_variables (); @}
3717 declarations statements '@}'
3718 | '@{' statements '@}'
3719 ;
3720@end group
3721@end example
3722
3723@noindent
3724Now the first token of the following declaration or statement,
3725which would in any case tell Bison which rule to use, can still do so.
3726
3727Another solution is to bury the action inside a nonterminal symbol which
3728serves as a subroutine:
3729
3730@example
3731@group
3732subroutine: /* empty */
3733 @{ prepare_for_local_variables (); @}
3734 ;
3735
3736@end group
3737
3738@group
3739compound: subroutine
3740 '@{' declarations statements '@}'
3741 | subroutine
3742 '@{' statements '@}'
3743 ;
3744@end group
3745@end example
3746
3747@noindent
3748Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3749deciding which rule for @code{compound} it will eventually use.
bfa74976 3750
342b8b6e 3751@node Locations
847bf1f5
AD
3752@section Tracking Locations
3753@cindex location
95923bd6
AD
3754@cindex textual location
3755@cindex location, textual
847bf1f5
AD
3756
3757Though grammar rules and semantic actions are enough to write a fully
72d2299c 3758functional parser, it can be useful to process some additional information,
3e259915
MA
3759especially symbol locations.
3760
704a47c4
AD
3761The way locations are handled is defined by providing a data type, and
3762actions to take when rules are matched.
847bf1f5
AD
3763
3764@menu
3765* Location Type:: Specifying a data type for locations.
3766* Actions and Locations:: Using locations in actions.
3767* Location Default Action:: Defining a general way to compute locations.
3768@end menu
3769
342b8b6e 3770@node Location Type
847bf1f5
AD
3771@subsection Data Type of Locations
3772@cindex data type of locations
3773@cindex default location type
3774
3775Defining a data type for locations is much simpler than for semantic values,
3776since all tokens and groupings always use the same type.
3777
50cce58e
PE
3778You can specify the type of locations by defining a macro called
3779@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3780defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3781When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3782four members:
3783
3784@example
6273355b 3785typedef struct YYLTYPE
847bf1f5
AD
3786@{
3787 int first_line;
3788 int first_column;
3789 int last_line;
3790 int last_column;
6273355b 3791@} YYLTYPE;
847bf1f5
AD
3792@end example
3793
cd48d21d
AD
3794At the beginning of the parsing, Bison initializes all these fields to 1
3795for @code{yylloc}.
3796
342b8b6e 3797@node Actions and Locations
847bf1f5
AD
3798@subsection Actions and Locations
3799@cindex location actions
3800@cindex actions, location
3801@vindex @@$
3802@vindex @@@var{n}
3803
3804Actions are not only useful for defining language semantics, but also for
3805describing the behavior of the output parser with locations.
3806
3807The most obvious way for building locations of syntactic groupings is very
72d2299c 3808similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3809constructs can be used to access the locations of the elements being matched.
3810The location of the @var{n}th component of the right hand side is
3811@code{@@@var{n}}, while the location of the left hand side grouping is
3812@code{@@$}.
3813
3e259915 3814Here is a basic example using the default data type for locations:
847bf1f5
AD
3815
3816@example
3817@group
3818exp: @dots{}
3e259915 3819 | exp '/' exp
847bf1f5 3820 @{
3e259915
MA
3821 @@$.first_column = @@1.first_column;
3822 @@$.first_line = @@1.first_line;
847bf1f5
AD
3823 @@$.last_column = @@3.last_column;
3824 @@$.last_line = @@3.last_line;
3e259915
MA
3825 if ($3)
3826 $$ = $1 / $3;
3827 else
3828 @{
3829 $$ = 1;
4e03e201
AD
3830 fprintf (stderr,
3831 "Division by zero, l%d,c%d-l%d,c%d",
3832 @@3.first_line, @@3.first_column,
3833 @@3.last_line, @@3.last_column);
3e259915 3834 @}
847bf1f5
AD
3835 @}
3836@end group
3837@end example
3838
3e259915 3839As for semantic values, there is a default action for locations that is
72d2299c 3840run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3841beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3842last symbol.
3e259915 3843
72d2299c 3844With this default action, the location tracking can be fully automatic. The
3e259915
MA
3845example above simply rewrites this way:
3846
3847@example
3848@group
3849exp: @dots{}
3850 | exp '/' exp
3851 @{
3852 if ($3)
3853 $$ = $1 / $3;
3854 else
3855 @{
3856 $$ = 1;
4e03e201
AD
3857 fprintf (stderr,
3858 "Division by zero, l%d,c%d-l%d,c%d",
3859 @@3.first_line, @@3.first_column,
3860 @@3.last_line, @@3.last_column);
3e259915
MA
3861 @}
3862 @}
3863@end group
3864@end example
847bf1f5 3865
32c29292 3866@vindex yylloc
742e4900 3867It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3868from a semantic action.
3869This location is stored in @code{yylloc}.
3870@xref{Action Features, ,Special Features for Use in Actions}.
3871
342b8b6e 3872@node Location Default Action
847bf1f5
AD
3873@subsection Default Action for Locations
3874@vindex YYLLOC_DEFAULT
8710fc41 3875@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3876
72d2299c 3877Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3878locations are much more general than semantic values, there is room in
3879the output parser to redefine the default action to take for each
72d2299c 3880rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3881matched, before the associated action is run. It is also invoked
3882while processing a syntax error, to compute the error's location.
8710fc41
JD
3883Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3884parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3885of that ambiguity.
847bf1f5 3886
3e259915 3887Most of the time, this macro is general enough to suppress location
79282c6c 3888dedicated code from semantic actions.
847bf1f5 3889
72d2299c 3890The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3891the location of the grouping (the result of the computation). When a
766de5eb 3892rule is matched, the second parameter identifies locations of
96b93a3d 3893all right hand side elements of the rule being matched, and the third
8710fc41
JD
3894parameter is the size of the rule's right hand side.
3895When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3896right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3897When processing a syntax error, the second parameter identifies locations
3898of the symbols that were discarded during error processing, and the third
96b93a3d 3899parameter is the number of discarded symbols.
847bf1f5 3900
766de5eb 3901By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3902
766de5eb 3903@smallexample
847bf1f5 3904@group
766de5eb
PE
3905# define YYLLOC_DEFAULT(Current, Rhs, N) \
3906 do \
3907 if (N) \
3908 @{ \
3909 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3910 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3911 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3912 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3913 @} \
3914 else \
3915 @{ \
3916 (Current).first_line = (Current).last_line = \
3917 YYRHSLOC(Rhs, 0).last_line; \
3918 (Current).first_column = (Current).last_column = \
3919 YYRHSLOC(Rhs, 0).last_column; \
3920 @} \
3921 while (0)
847bf1f5 3922@end group
766de5eb 3923@end smallexample
676385e2 3924
766de5eb
PE
3925where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3926in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3927just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3928
3e259915 3929When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3930
3e259915 3931@itemize @bullet
79282c6c 3932@item
72d2299c 3933All arguments are free of side-effects. However, only the first one (the
3e259915 3934result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3935
3e259915 3936@item
766de5eb
PE
3937For consistency with semantic actions, valid indexes within the
3938right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3939valid index, and it refers to the symbol just before the reduction.
3940During error processing @var{n} is always positive.
0ae99356
PE
3941
3942@item
3943Your macro should parenthesize its arguments, if need be, since the
3944actual arguments may not be surrounded by parentheses. Also, your
3945macro should expand to something that can be used as a single
3946statement when it is followed by a semicolon.
3e259915 3947@end itemize
847bf1f5 3948
342b8b6e 3949@node Declarations
bfa74976
RS
3950@section Bison Declarations
3951@cindex declarations, Bison
3952@cindex Bison declarations
3953
3954The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3955used in formulating the grammar and the data types of semantic values.
3956@xref{Symbols}.
3957
3958All token type names (but not single-character literal tokens such as
3959@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3960declared if you need to specify which data type to use for the semantic
3961value (@pxref{Multiple Types, ,More Than One Value Type}).
3962
3963The first rule in the file also specifies the start symbol, by default.
3964If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3965it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3966Grammars}).
bfa74976
RS
3967
3968@menu
b50d2359 3969* Require Decl:: Requiring a Bison version.
bfa74976
RS
3970* Token Decl:: Declaring terminal symbols.
3971* Precedence Decl:: Declaring terminals with precedence and associativity.
3972* Union Decl:: Declaring the set of all semantic value types.
3973* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3974* Initial Action Decl:: Code run before parsing starts.
72f889cc 3975* Destructor Decl:: Declaring how symbols are freed.
d6328241 3976* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3977* Start Decl:: Specifying the start symbol.
3978* Pure Decl:: Requesting a reentrant parser.
3979* Decl Summary:: Table of all Bison declarations.
3980@end menu
3981
b50d2359
AD
3982@node Require Decl
3983@subsection Require a Version of Bison
3984@cindex version requirement
3985@cindex requiring a version of Bison
3986@findex %require
3987
3988You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3989the requirement is not met, @command{bison} exits with an error (exit
3990status 63).
b50d2359
AD
3991
3992@example
3993%require "@var{version}"
3994@end example
3995
342b8b6e 3996@node Token Decl
bfa74976
RS
3997@subsection Token Type Names
3998@cindex declaring token type names
3999@cindex token type names, declaring
931c7513 4000@cindex declaring literal string tokens
bfa74976
RS
4001@findex %token
4002
4003The basic way to declare a token type name (terminal symbol) is as follows:
4004
4005@example
4006%token @var{name}
4007@end example
4008
4009Bison will convert this into a @code{#define} directive in
4010the parser, so that the function @code{yylex} (if it is in this file)
4011can use the name @var{name} to stand for this token type's code.
4012
14ded682
AD
4013Alternatively, you can use @code{%left}, @code{%right}, or
4014@code{%nonassoc} instead of @code{%token}, if you wish to specify
4015associativity and precedence. @xref{Precedence Decl, ,Operator
4016Precedence}.
bfa74976
RS
4017
4018You can explicitly specify the numeric code for a token type by appending
1452af69
PE
4019a decimal or hexadecimal integer value in the field immediately
4020following the token name:
bfa74976
RS
4021
4022@example
4023%token NUM 300
1452af69 4024%token XNUM 0x12d // a GNU extension
bfa74976
RS
4025@end example
4026
4027@noindent
4028It is generally best, however, to let Bison choose the numeric codes for
4029all token types. Bison will automatically select codes that don't conflict
e966383b 4030with each other or with normal characters.
bfa74976
RS
4031
4032In the event that the stack type is a union, you must augment the
4033@code{%token} or other token declaration to include the data type
704a47c4
AD
4034alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4035Than One Value Type}).
bfa74976
RS
4036
4037For example:
4038
4039@example
4040@group
4041%union @{ /* define stack type */
4042 double val;
4043 symrec *tptr;
4044@}
4045%token <val> NUM /* define token NUM and its type */
4046@end group
4047@end example
4048
931c7513
RS
4049You can associate a literal string token with a token type name by
4050writing the literal string at the end of a @code{%token}
4051declaration which declares the name. For example:
4052
4053@example
4054%token arrow "=>"
4055@end example
4056
4057@noindent
4058For example, a grammar for the C language might specify these names with
4059equivalent literal string tokens:
4060
4061@example
4062%token <operator> OR "||"
4063%token <operator> LE 134 "<="
4064%left OR "<="
4065@end example
4066
4067@noindent
4068Once you equate the literal string and the token name, you can use them
4069interchangeably in further declarations or the grammar rules. The
4070@code{yylex} function can use the token name or the literal string to
4071obtain the token type code number (@pxref{Calling Convention}).
4072
342b8b6e 4073@node Precedence Decl
bfa74976
RS
4074@subsection Operator Precedence
4075@cindex precedence declarations
4076@cindex declaring operator precedence
4077@cindex operator precedence, declaring
4078
4079Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4080declare a token and specify its precedence and associativity, all at
4081once. These are called @dfn{precedence declarations}.
704a47c4
AD
4082@xref{Precedence, ,Operator Precedence}, for general information on
4083operator precedence.
bfa74976
RS
4084
4085The syntax of a precedence declaration is the same as that of
4086@code{%token}: either
4087
4088@example
4089%left @var{symbols}@dots{}
4090@end example
4091
4092@noindent
4093or
4094
4095@example
4096%left <@var{type}> @var{symbols}@dots{}
4097@end example
4098
4099And indeed any of these declarations serves the purposes of @code{%token}.
4100But in addition, they specify the associativity and relative precedence for
4101all the @var{symbols}:
4102
4103@itemize @bullet
4104@item
4105The associativity of an operator @var{op} determines how repeated uses
4106of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4107@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4108grouping @var{y} with @var{z} first. @code{%left} specifies
4109left-associativity (grouping @var{x} with @var{y} first) and
4110@code{%right} specifies right-associativity (grouping @var{y} with
4111@var{z} first). @code{%nonassoc} specifies no associativity, which
4112means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4113considered a syntax error.
4114
4115@item
4116The precedence of an operator determines how it nests with other operators.
4117All the tokens declared in a single precedence declaration have equal
4118precedence and nest together according to their associativity.
4119When two tokens declared in different precedence declarations associate,
4120the one declared later has the higher precedence and is grouped first.
4121@end itemize
4122
342b8b6e 4123@node Union Decl
bfa74976
RS
4124@subsection The Collection of Value Types
4125@cindex declaring value types
4126@cindex value types, declaring
4127@findex %union
4128
287c78f6
PE
4129The @code{%union} declaration specifies the entire collection of
4130possible data types for semantic values. The keyword @code{%union} is
4131followed by braced code containing the same thing that goes inside a
4132@code{union} in C@.
bfa74976
RS
4133
4134For example:
4135
4136@example
4137@group
4138%union @{
4139 double val;
4140 symrec *tptr;
4141@}
4142@end group
4143@end example
4144
4145@noindent
4146This says that the two alternative types are @code{double} and @code{symrec
4147*}. They are given names @code{val} and @code{tptr}; these names are used
4148in the @code{%token} and @code{%type} declarations to pick one of the types
4149for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4150
6273355b
PE
4151As an extension to @acronym{POSIX}, a tag is allowed after the
4152@code{union}. For example:
4153
4154@example
4155@group
4156%union value @{
4157 double val;
4158 symrec *tptr;
4159@}
4160@end group
4161@end example
4162
d6ca7905 4163@noindent
6273355b
PE
4164specifies the union tag @code{value}, so the corresponding C type is
4165@code{union value}. If you do not specify a tag, it defaults to
4166@code{YYSTYPE}.
4167
d6ca7905
PE
4168As another extension to @acronym{POSIX}, you may specify multiple
4169@code{%union} declarations; their contents are concatenated. However,
4170only the first @code{%union} declaration can specify a tag.
4171
6273355b 4172Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4173a semicolon after the closing brace.
4174
ddc8ede1
PE
4175Instead of @code{%union}, you can define and use your own union type
4176@code{YYSTYPE} if your grammar contains at least one
4177@samp{<@var{type}>} tag. For example, you can put the following into
4178a header file @file{parser.h}:
4179
4180@example
4181@group
4182union YYSTYPE @{
4183 double val;
4184 symrec *tptr;
4185@};
4186typedef union YYSTYPE YYSTYPE;
4187@end group
4188@end example
4189
4190@noindent
4191and then your grammar can use the following
4192instead of @code{%union}:
4193
4194@example
4195@group
4196%@{
4197#include "parser.h"
4198%@}
4199%type <val> expr
4200%token <tptr> ID
4201@end group
4202@end example
4203
342b8b6e 4204@node Type Decl
bfa74976
RS
4205@subsection Nonterminal Symbols
4206@cindex declaring value types, nonterminals
4207@cindex value types, nonterminals, declaring
4208@findex %type
4209
4210@noindent
4211When you use @code{%union} to specify multiple value types, you must
4212declare the value type of each nonterminal symbol for which values are
4213used. This is done with a @code{%type} declaration, like this:
4214
4215@example
4216%type <@var{type}> @var{nonterminal}@dots{}
4217@end example
4218
4219@noindent
704a47c4
AD
4220Here @var{nonterminal} is the name of a nonterminal symbol, and
4221@var{type} is the name given in the @code{%union} to the alternative
4222that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4223can give any number of nonterminal symbols in the same @code{%type}
4224declaration, if they have the same value type. Use spaces to separate
4225the symbol names.
bfa74976 4226
931c7513
RS
4227You can also declare the value type of a terminal symbol. To do this,
4228use the same @code{<@var{type}>} construction in a declaration for the
4229terminal symbol. All kinds of token declarations allow
4230@code{<@var{type}>}.
4231
18d192f0
AD
4232@node Initial Action Decl
4233@subsection Performing Actions before Parsing
4234@findex %initial-action
4235
4236Sometimes your parser needs to perform some initializations before
4237parsing. The @code{%initial-action} directive allows for such arbitrary
4238code.
4239
4240@deffn {Directive} %initial-action @{ @var{code} @}
4241@findex %initial-action
287c78f6 4242Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4243@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4244@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4245@code{%parse-param}.
18d192f0
AD
4246@end deffn
4247
451364ed
AD
4248For instance, if your locations use a file name, you may use
4249
4250@example
48b16bbc 4251%parse-param @{ char const *file_name @};
451364ed
AD
4252%initial-action
4253@{
4626a15d 4254 @@$.initialize (file_name);
451364ed
AD
4255@};
4256@end example
4257
18d192f0 4258
72f889cc
AD
4259@node Destructor Decl
4260@subsection Freeing Discarded Symbols
4261@cindex freeing discarded symbols
4262@findex %destructor
12e35840 4263@findex <*>
3ebecc24 4264@findex <>
a85284cf
AD
4265During error recovery (@pxref{Error Recovery}), symbols already pushed
4266on the stack and tokens coming from the rest of the file are discarded
4267until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4268or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4269symbols on the stack must be discarded. Even if the parser succeeds, it
4270must discard the start symbol.
258b75ca
PE
4271
4272When discarded symbols convey heap based information, this memory is
4273lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4274in traditional compilers, it is unacceptable for programs like shells or
4275protocol implementations that may parse and execute indefinitely.
258b75ca 4276
a85284cf
AD
4277The @code{%destructor} directive defines code that is called when a
4278symbol is automatically discarded.
72f889cc
AD
4279
4280@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4281@findex %destructor
287c78f6
PE
4282Invoke the braced @var{code} whenever the parser discards one of the
4283@var{symbols}.
4b367315 4284Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4285with the discarded symbol, and @code{@@$} designates its location.
4286The additional parser parameters are also available (@pxref{Parser Function, ,
4287The Parser Function @code{yyparse}}).
ec5479ce 4288
b2a0b7ca
JD
4289When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4290per-symbol @code{%destructor}.
4291You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4292tag among @var{symbols}.
b2a0b7ca 4293In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4294grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4295per-symbol @code{%destructor}.
4296
12e35840 4297Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4298(These default forms are experimental.
4299More user feedback will help to determine whether they should become permanent
4300features.)
3ebecc24 4301You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4302exactly one @code{%destructor} declaration in your grammar file.
4303The parser will invoke the @var{code} associated with one of these whenever it
4304discards any user-defined grammar symbol that has no per-symbol and no per-type
4305@code{%destructor}.
4306The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4307symbol for which you have formally declared a semantic type tag (@code{%type}
4308counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4309The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4310symbol that has no declared semantic type tag.
72f889cc
AD
4311@end deffn
4312
b2a0b7ca 4313@noindent
12e35840 4314For example:
72f889cc
AD
4315
4316@smallexample
ec5479ce
JD
4317%union @{ char *string; @}
4318%token <string> STRING1
4319%token <string> STRING2
4320%type <string> string1
4321%type <string> string2
b2a0b7ca
JD
4322%union @{ char character; @}
4323%token <character> CHR
4324%type <character> chr
12e35840
JD
4325%token TAGLESS
4326
b2a0b7ca 4327%destructor @{ @} <character>
12e35840
JD
4328%destructor @{ free ($$); @} <*>
4329%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4330%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4331@end smallexample
4332
4333@noindent
b2a0b7ca
JD
4334guarantees that, when the parser discards any user-defined symbol that has a
4335semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4336to @code{free} by default.
ec5479ce
JD
4337However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4338prints its line number to @code{stdout}.
4339It performs only the second @code{%destructor} in this case, so it invokes
4340@code{free} only once.
12e35840
JD
4341Finally, the parser merely prints a message whenever it discards any symbol,
4342such as @code{TAGLESS}, that has no semantic type tag.
4343
4344A Bison-generated parser invokes the default @code{%destructor}s only for
4345user-defined as opposed to Bison-defined symbols.
4346For example, the parser will not invoke either kind of default
4347@code{%destructor} for the special Bison-defined symbols @code{$accept},
4348@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4349none of which you can reference in your grammar.
4350It also will not invoke either for the @code{error} token (@pxref{Table of
4351Symbols, ,error}), which is always defined by Bison regardless of whether you
4352reference it in your grammar.
4353However, it may invoke one of them for the end token (token 0) if you
4354redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4355
4356@smallexample
4357%token END 0
4358@end smallexample
4359
12e35840
JD
4360@cindex actions in mid-rule
4361@cindex mid-rule actions
4362Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4363mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4364That is, Bison does not consider a mid-rule to have a semantic value if you do
4365not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4366@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4367rule.
4368However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4369@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4370
3508ce36
JD
4371@ignore
4372@noindent
4373In the future, it may be possible to redefine the @code{error} token as a
4374nonterminal that captures the discarded symbols.
4375In that case, the parser will invoke the default destructor for it as well.
4376@end ignore
4377
e757bb10
AD
4378@sp 1
4379
4380@cindex discarded symbols
4381@dfn{Discarded symbols} are the following:
4382
4383@itemize
4384@item
4385stacked symbols popped during the first phase of error recovery,
4386@item
4387incoming terminals during the second phase of error recovery,
4388@item
742e4900 4389the current lookahead and the entire stack (except the current
9d9b8b70 4390right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4391@item
4392the start symbol, when the parser succeeds.
e757bb10
AD
4393@end itemize
4394
9d9b8b70
PE
4395The parser can @dfn{return immediately} because of an explicit call to
4396@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4397exhaustion.
4398
4399Right-hand size symbols of a rule that explicitly triggers a syntax
4400error via @code{YYERROR} are not discarded automatically. As a rule
4401of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4402the memory.
e757bb10 4403
342b8b6e 4404@node Expect Decl
bfa74976
RS
4405@subsection Suppressing Conflict Warnings
4406@cindex suppressing conflict warnings
4407@cindex preventing warnings about conflicts
4408@cindex warnings, preventing
4409@cindex conflicts, suppressing warnings of
4410@findex %expect
d6328241 4411@findex %expect-rr
bfa74976
RS
4412
4413Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4414(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4415have harmless shift/reduce conflicts which are resolved in a predictable
4416way and would be difficult to eliminate. It is desirable to suppress
4417the warning about these conflicts unless the number of conflicts
4418changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4419
4420The declaration looks like this:
4421
4422@example
4423%expect @var{n}
4424@end example
4425
035aa4a0
PE
4426Here @var{n} is a decimal integer. The declaration says there should
4427be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4428Bison reports an error if the number of shift/reduce conflicts differs
4429from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4430
035aa4a0
PE
4431For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4432serious, and should be eliminated entirely. Bison will always report
4433reduce/reduce conflicts for these parsers. With @acronym{GLR}
4434parsers, however, both kinds of conflicts are routine; otherwise,
4435there would be no need to use @acronym{GLR} parsing. Therefore, it is
4436also possible to specify an expected number of reduce/reduce conflicts
4437in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4438
4439@example
4440%expect-rr @var{n}
4441@end example
4442
bfa74976
RS
4443In general, using @code{%expect} involves these steps:
4444
4445@itemize @bullet
4446@item
4447Compile your grammar without @code{%expect}. Use the @samp{-v} option
4448to get a verbose list of where the conflicts occur. Bison will also
4449print the number of conflicts.
4450
4451@item
4452Check each of the conflicts to make sure that Bison's default
4453resolution is what you really want. If not, rewrite the grammar and
4454go back to the beginning.
4455
4456@item
4457Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4458number which Bison printed. With @acronym{GLR} parsers, add an
4459@code{%expect-rr} declaration as well.
bfa74976
RS
4460@end itemize
4461
035aa4a0
PE
4462Now Bison will warn you if you introduce an unexpected conflict, but
4463will keep silent otherwise.
bfa74976 4464
342b8b6e 4465@node Start Decl
bfa74976
RS
4466@subsection The Start-Symbol
4467@cindex declaring the start symbol
4468@cindex start symbol, declaring
4469@cindex default start symbol
4470@findex %start
4471
4472Bison assumes by default that the start symbol for the grammar is the first
4473nonterminal specified in the grammar specification section. The programmer
4474may override this restriction with the @code{%start} declaration as follows:
4475
4476@example
4477%start @var{symbol}
4478@end example
4479
342b8b6e 4480@node Pure Decl
bfa74976
RS
4481@subsection A Pure (Reentrant) Parser
4482@cindex reentrant parser
4483@cindex pure parser
8c9a50be 4484@findex %pure-parser
bfa74976
RS
4485
4486A @dfn{reentrant} program is one which does not alter in the course of
4487execution; in other words, it consists entirely of @dfn{pure} (read-only)
4488code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4489for example, a nonreentrant program may not be safe to call from a signal
4490handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4491program must be called only within interlocks.
4492
70811b85 4493Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4494suitable for most uses, and it permits compatibility with Yacc. (The
4495standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4496statically allocated variables for communication with @code{yylex},
4497including @code{yylval} and @code{yylloc}.)
bfa74976 4498
70811b85 4499Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4500declaration @code{%pure-parser} says that you want the parser to be
70811b85 4501reentrant. It looks like this:
bfa74976
RS
4502
4503@example
8c9a50be 4504%pure-parser
bfa74976
RS
4505@end example
4506
70811b85
RS
4507The result is that the communication variables @code{yylval} and
4508@code{yylloc} become local variables in @code{yyparse}, and a different
4509calling convention is used for the lexical analyzer function
4510@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4511Parsers}, for the details of this. The variable @code{yynerrs} also
4512becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4513Reporting Function @code{yyerror}}). The convention for calling
4514@code{yyparse} itself is unchanged.
4515
4516Whether the parser is pure has nothing to do with the grammar rules.
4517You can generate either a pure parser or a nonreentrant parser from any
4518valid grammar.
bfa74976 4519
342b8b6e 4520@node Decl Summary
bfa74976
RS
4521@subsection Bison Declaration Summary
4522@cindex Bison declaration summary
4523@cindex declaration summary
4524@cindex summary, Bison declaration
4525
d8988b2f 4526Here is a summary of the declarations used to define a grammar:
bfa74976 4527
18b519c0 4528@deffn {Directive} %union
bfa74976
RS
4529Declare the collection of data types that semantic values may have
4530(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4531@end deffn
bfa74976 4532
18b519c0 4533@deffn {Directive} %token
bfa74976
RS
4534Declare a terminal symbol (token type name) with no precedence
4535or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4536@end deffn
bfa74976 4537
18b519c0 4538@deffn {Directive} %right
bfa74976
RS
4539Declare a terminal symbol (token type name) that is right-associative
4540(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4541@end deffn
bfa74976 4542
18b519c0 4543@deffn {Directive} %left
bfa74976
RS
4544Declare a terminal symbol (token type name) that is left-associative
4545(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4546@end deffn
bfa74976 4547
18b519c0 4548@deffn {Directive} %nonassoc
bfa74976 4549Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4550(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4551Using it in a way that would be associative is a syntax error.
4552@end deffn
4553
91d2c560 4554@ifset defaultprec
39a06c25 4555@deffn {Directive} %default-prec
22fccf95 4556Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4557(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4558@end deffn
91d2c560 4559@end ifset
bfa74976 4560
18b519c0 4561@deffn {Directive} %type
bfa74976
RS
4562Declare the type of semantic values for a nonterminal symbol
4563(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4564@end deffn
bfa74976 4565
18b519c0 4566@deffn {Directive} %start
89cab50d
AD
4567Specify the grammar's start symbol (@pxref{Start Decl, ,The
4568Start-Symbol}).
18b519c0 4569@end deffn
bfa74976 4570
18b519c0 4571@deffn {Directive} %expect
bfa74976
RS
4572Declare the expected number of shift-reduce conflicts
4573(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4574@end deffn
4575
bfa74976 4576
d8988b2f
AD
4577@sp 1
4578@noindent
4579In order to change the behavior of @command{bison}, use the following
4580directives:
4581
148d66d8
JD
4582@deffn {Directive} %code @{@var{code}@}
4583@findex %code
4584This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4585It inserts @var{code} verbatim at a language-dependent default location in the
4586output@footnote{The default location is actually skeleton-dependent;
4587 writers of non-standard skeletons however should choose the default location
4588 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4589
4590@cindex Prologue
8405b70c 4591For C/C++, the default location is the parser source code
148d66d8
JD
4592file after the usual contents of the parser header file.
4593Thus, @code{%code} replaces the traditional Yacc prologue,
4594@code{%@{@var{code}%@}}, for most purposes.
4595For a detailed discussion, see @ref{Prologue Alternatives}.
4596
8405b70c 4597For Java, the default location is inside the parser class.
148d66d8
JD
4598
4599(Like all the Yacc prologue alternatives, this directive is experimental.
4600More user feedback will help to determine whether it should become a permanent
4601feature.)
4602@end deffn
4603
4604@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4605This is the qualified form of the @code{%code} directive.
4606If you need to specify location-sensitive verbatim @var{code} that does not
4607belong at the default location selected by the unqualified @code{%code} form,
4608use this form instead.
4609
4610@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4611where Bison should generate it.
4612Not all values of @var{qualifier} are available for all target languages:
4613
4614@itemize @bullet
4615@findex %code requires
4616@item requires
4617
4618@itemize @bullet
4619@item Language(s): C, C++
4620
4621@item Purpose: This is the best place to write dependency code required for
4622@code{YYSTYPE} and @code{YYLTYPE}.
4623In other words, it's the best place to define types referenced in @code{%union}
4624directives, and it's the best place to override Bison's default @code{YYSTYPE}
4625and @code{YYLTYPE} definitions.
4626
4627@item Location(s): The parser header file and the parser source code file
4628before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4629@end itemize
4630
4631@item provides
4632@findex %code provides
4633
4634@itemize @bullet
4635@item Language(s): C, C++
4636
4637@item Purpose: This is the best place to write additional definitions and
4638declarations that should be provided to other modules.
4639
4640@item Location(s): The parser header file and the parser source code file after
4641the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4642@end itemize
4643
4644@item top
4645@findex %code top
4646
4647@itemize @bullet
4648@item Language(s): C, C++
4649
4650@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4651usually be more appropriate than @code{%code top}.
4652However, occasionally it is necessary to insert code much nearer the top of the
4653parser source code file.
4654For example:
4655
4656@smallexample
4657%code top @{
4658 #define _GNU_SOURCE
4659 #include <stdio.h>
4660@}
4661@end smallexample
4662
4663@item Location(s): Near the top of the parser source code file.
4664@end itemize
8405b70c 4665
148d66d8
JD
4666@item imports
4667@findex %code imports
4668
4669@itemize @bullet
4670@item Language(s): Java
4671
4672@item Purpose: This is the best place to write Java import directives.
4673
4674@item Location(s): The parser Java file after any Java package directive and
4675before any class definitions.
4676@end itemize
148d66d8
JD
4677@end itemize
4678
4679(Like all the Yacc prologue alternatives, this directive is experimental.
4680More user feedback will help to determine whether it should become a permanent
4681feature.)
4682
4683@cindex Prologue
4684For a detailed discussion of how to use @code{%code} in place of the
4685traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4686@end deffn
4687
18b519c0 4688@deffn {Directive} %debug
4947ebdb
PE
4689In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4690already defined, so that the debugging facilities are compiled.
18b519c0 4691@end deffn
ec3bc396 4692@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4693
c1d19e10
PB
4694@deffn {Directive} %define @var{variable}
4695@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4696Define a variable to adjust Bison's behavior.
4697The possible choices for @var{variable}, as well as their meanings, depend on
4698the selected target language and/or the parser skeleton (@pxref{Decl
4699Summary,,%language}).
4700
4701Bison will warn if a @var{variable} is defined multiple times.
4702
4703Omitting @code{"@var{value}"} is always equivalent to specifying it as
4704@code{""}.
4705
4706Some @var{variable}s may be used as booleans.
4707In this case, Bison will complain if the variable definition does not meet one
4708of the following four conditions:
4709
4710@enumerate
4711@item @code{"@var{value}"} is @code{"true"}
4712
4713@item @code{"@var{value}"} is omitted (or is @code{""}).
4714This is equivalent to @code{"true"}.
4715
4716@item @code{"@var{value}"} is @code{"false"}.
4717
4718@item @var{variable} is never defined.
4719In this case, Bison selects a default value, which may depend on the selected
4720target language and/or parser skeleton.
4721@end enumerate
148d66d8
JD
4722@end deffn
4723
18b519c0 4724@deffn {Directive} %defines
4bfd5e4e
PE
4725Write a header file containing macro definitions for the token type
4726names defined in the grammar as well as a few other declarations.
d8988b2f 4727If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4728is named @file{@var{name}.h}.
d8988b2f 4729
b321737f 4730For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4731@code{YYSTYPE} is already defined as a macro or you have used a
4732@code{<@var{type}>} tag without using @code{%union}.
4733Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4734(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4735require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4736or type definition
f8e1c9e5
AD
4737(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4738arrange for these definitions to be propagated to all modules, e.g., by
4739putting them in a prerequisite header that is included both by your
4740parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4741
4742Unless your parser is pure, the output header declares @code{yylval}
4743as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4744Parser}.
4745
4746If you have also used locations, the output header declares
4747@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4748the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4749Locations}.
4750
f8e1c9e5
AD
4751This output file is normally essential if you wish to put the definition
4752of @code{yylex} in a separate source file, because @code{yylex}
4753typically needs to be able to refer to the above-mentioned declarations
4754and to the token type codes. @xref{Token Values, ,Semantic Values of
4755Tokens}.
9bc0dd67 4756
16dc6a9e
JD
4757@findex %code requires
4758@findex %code provides
4759If you have declared @code{%code requires} or @code{%code provides}, the output
4760header also contains their code.
148d66d8 4761@xref{Decl Summary, ,%code}.
592d0b1e
PB
4762@end deffn
4763
02975b9a
JD
4764@deffn {Directive} %defines @var{defines-file}
4765Same as above, but save in the file @var{defines-file}.
4766@end deffn
4767
18b519c0 4768@deffn {Directive} %destructor
258b75ca 4769Specify how the parser should reclaim the memory associated to
fa7e68c3 4770discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4771@end deffn
72f889cc 4772
02975b9a 4773@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
4774Specify a prefix to use for all Bison output file names. The names are
4775chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4776@end deffn
d8988b2f 4777
e6e704dc 4778@deffn {Directive} %language "@var{language}"
0e021770
PE
4779Specify the programming language for the generated parser. Currently
4780supported languages include C and C++.
e6e704dc 4781@var{language} is case-insensitive.
0e021770
PE
4782@end deffn
4783
18b519c0 4784@deffn {Directive} %locations
89cab50d
AD
4785Generate the code processing the locations (@pxref{Action Features,
4786,Special Features for Use in Actions}). This mode is enabled as soon as
4787the grammar uses the special @samp{@@@var{n}} tokens, but if your
4788grammar does not use it, using @samp{%locations} allows for more
6e649e65 4789accurate syntax error messages.
18b519c0 4790@end deffn
89cab50d 4791
02975b9a 4792@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
4793Rename the external symbols used in the parser so that they start with
4794@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4795in C parsers
d8988b2f 4796is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4797@code{yylval}, @code{yychar}, @code{yydebug}, and
4798(if locations are used) @code{yylloc}. For example, if you use
02975b9a 4799@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4800and so on. In C++ parsers, it is only the surrounding namespace which is
4801named @var{prefix} instead of @samp{yy}.
4802@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4803@end deffn
931c7513 4804
91d2c560 4805@ifset defaultprec
22fccf95
PE
4806@deffn {Directive} %no-default-prec
4807Do not assign a precedence to rules lacking an explicit @code{%prec}
4808modifier (@pxref{Contextual Precedence, ,Context-Dependent
4809Precedence}).
4810@end deffn
91d2c560 4811@end ifset
22fccf95 4812
18b519c0 4813@deffn {Directive} %no-parser
6deb4447
AD
4814Do not include any C code in the parser file; generate tables only. The
4815parser file contains just @code{#define} directives and static variable
4816declarations.
4817
4818This option also tells Bison to write the C code for the grammar actions
fa4d969f 4819into a file named @file{@var{file}.act}, in the form of a
6deb4447 4820brace-surrounded body fit for a @code{switch} statement.
18b519c0 4821@end deffn
6deb4447 4822
18b519c0 4823@deffn {Directive} %no-lines
931c7513
RS
4824Don't generate any @code{#line} preprocessor commands in the parser
4825file. Ordinarily Bison writes these commands in the parser file so that
4826the C compiler and debuggers will associate errors and object code with
4827your source file (the grammar file). This directive causes them to
4828associate errors with the parser file, treating it an independent source
4829file in its own right.
18b519c0 4830@end deffn
931c7513 4831
02975b9a 4832@deffn {Directive} %output "@var{file}"
fa4d969f 4833Specify @var{file} for the parser file.
18b519c0 4834@end deffn
6deb4447 4835
18b519c0 4836@deffn {Directive} %pure-parser
d8988b2f
AD
4837Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4838(Reentrant) Parser}).
18b519c0 4839@end deffn
6deb4447 4840
b50d2359 4841@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4842Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4843Require a Version of Bison}.
b50d2359
AD
4844@end deffn
4845
0e021770 4846@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
4847Specify the skeleton to use.
4848
4849You probably don't need this option unless you are developing Bison.
4850You should use @code{%language} if you want to specify the skeleton for a
4851different language, because it is clearer and because it will always choose the
4852correct skeleton for non-deterministic or push parsers.
4853
4854If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
4855file in the Bison installation directory.
4856If it does, @var{file} is an absolute file name or a file name relative to the
4857directory of the grammar file.
4858This is similar to how most shells resolve commands.
0e021770
PE
4859@end deffn
4860
18b519c0 4861@deffn {Directive} %token-table
931c7513
RS
4862Generate an array of token names in the parser file. The name of the
4863array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4864token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4865three elements of @code{yytname} correspond to the predefined tokens
4866@code{"$end"},
88bce5a2
AD
4867@code{"error"}, and @code{"$undefined"}; after these come the symbols
4868defined in the grammar file.
931c7513 4869
9e0876fb
PE
4870The name in the table includes all the characters needed to represent
4871the token in Bison. For single-character literals and literal
4872strings, this includes the surrounding quoting characters and any
4873escape sequences. For example, the Bison single-character literal
4874@code{'+'} corresponds to a three-character name, represented in C as
4875@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4876corresponds to a five-character name, represented in C as
4877@code{"\"\\\\/\""}.
931c7513 4878
8c9a50be 4879When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4880definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4881@code{YYNRULES}, and @code{YYNSTATES}:
4882
4883@table @code
4884@item YYNTOKENS
4885The highest token number, plus one.
4886@item YYNNTS
9ecbd125 4887The number of nonterminal symbols.
931c7513
RS
4888@item YYNRULES
4889The number of grammar rules,
4890@item YYNSTATES
4891The number of parser states (@pxref{Parser States}).
4892@end table
18b519c0 4893@end deffn
d8988b2f 4894
18b519c0 4895@deffn {Directive} %verbose
d8988b2f 4896Write an extra output file containing verbose descriptions of the
742e4900 4897parser states and what is done for each type of lookahead token in
72d2299c 4898that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4899information.
18b519c0 4900@end deffn
d8988b2f 4901
18b519c0 4902@deffn {Directive} %yacc
d8988b2f
AD
4903Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4904including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4905@end deffn
d8988b2f
AD
4906
4907
342b8b6e 4908@node Multiple Parsers
bfa74976
RS
4909@section Multiple Parsers in the Same Program
4910
4911Most programs that use Bison parse only one language and therefore contain
4912only one Bison parser. But what if you want to parse more than one
4913language with the same program? Then you need to avoid a name conflict
4914between different definitions of @code{yyparse}, @code{yylval}, and so on.
4915
4916The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4917(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4918functions and variables of the Bison parser to start with @var{prefix}
4919instead of @samp{yy}. You can use this to give each parser distinct
4920names that do not conflict.
bfa74976
RS
4921
4922The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4923@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4924@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4925the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4926
4927@strong{All the other variables and macros associated with Bison are not
4928renamed.} These others are not global; there is no conflict if the same
4929name is used in different parsers. For example, @code{YYSTYPE} is not
4930renamed, but defining this in different ways in different parsers causes
4931no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4932
4933The @samp{-p} option works by adding macro definitions to the beginning
4934of the parser source file, defining @code{yyparse} as
4935@code{@var{prefix}parse}, and so on. This effectively substitutes one
4936name for the other in the entire parser file.
4937
342b8b6e 4938@node Interface
bfa74976
RS
4939@chapter Parser C-Language Interface
4940@cindex C-language interface
4941@cindex interface
4942
4943The Bison parser is actually a C function named @code{yyparse}. Here we
4944describe the interface conventions of @code{yyparse} and the other
4945functions that it needs to use.
4946
4947Keep in mind that the parser uses many C identifiers starting with
4948@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4949identifier (aside from those in this manual) in an action or in epilogue
4950in the grammar file, you are likely to run into trouble.
bfa74976
RS
4951
4952@menu
4953* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4954* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4955 which reads tokens.
4956* Error Reporting:: You must supply a function @code{yyerror}.
4957* Action Features:: Special features for use in actions.
f7ab6a50
PE
4958* Internationalization:: How to let the parser speak in the user's
4959 native language.
bfa74976
RS
4960@end menu
4961
342b8b6e 4962@node Parser Function
bfa74976
RS
4963@section The Parser Function @code{yyparse}
4964@findex yyparse
4965
4966You call the function @code{yyparse} to cause parsing to occur. This
4967function reads tokens, executes actions, and ultimately returns when it
4968encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4969write an action which directs @code{yyparse} to return immediately
4970without reading further.
bfa74976 4971
2a8d363a
AD
4972
4973@deftypefun int yyparse (void)
bfa74976
RS
4974The value returned by @code{yyparse} is 0 if parsing was successful (return
4975is due to end-of-input).
4976
b47dbebe
PE
4977The value is 1 if parsing failed because of invalid input, i.e., input
4978that contains a syntax error or that causes @code{YYABORT} to be
4979invoked.
4980
4981The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4982@end deftypefun
bfa74976
RS
4983
4984In an action, you can cause immediate return from @code{yyparse} by using
4985these macros:
4986
2a8d363a 4987@defmac YYACCEPT
bfa74976
RS
4988@findex YYACCEPT
4989Return immediately with value 0 (to report success).
2a8d363a 4990@end defmac
bfa74976 4991
2a8d363a 4992@defmac YYABORT
bfa74976
RS
4993@findex YYABORT
4994Return immediately with value 1 (to report failure).
2a8d363a
AD
4995@end defmac
4996
4997If you use a reentrant parser, you can optionally pass additional
4998parameter information to it in a reentrant way. To do so, use the
4999declaration @code{%parse-param}:
5000
feeb0eda 5001@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5002@findex %parse-param
287c78f6
PE
5003Declare that an argument declared by the braced-code
5004@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5005The @var{argument-declaration} is used when declaring
feeb0eda
PE
5006functions or prototypes. The last identifier in
5007@var{argument-declaration} must be the argument name.
2a8d363a
AD
5008@end deffn
5009
5010Here's an example. Write this in the parser:
5011
5012@example
feeb0eda
PE
5013%parse-param @{int *nastiness@}
5014%parse-param @{int *randomness@}
2a8d363a
AD
5015@end example
5016
5017@noindent
5018Then call the parser like this:
5019
5020@example
5021@{
5022 int nastiness, randomness;
5023 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5024 value = yyparse (&nastiness, &randomness);
5025 @dots{}
5026@}
5027@end example
5028
5029@noindent
5030In the grammar actions, use expressions like this to refer to the data:
5031
5032@example
5033exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5034@end example
5035
bfa74976 5036
342b8b6e 5037@node Lexical
bfa74976
RS
5038@section The Lexical Analyzer Function @code{yylex}
5039@findex yylex
5040@cindex lexical analyzer
5041
5042The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5043the input stream and returns them to the parser. Bison does not create
5044this function automatically; you must write it so that @code{yyparse} can
5045call it. The function is sometimes referred to as a lexical scanner.
5046
5047In simple programs, @code{yylex} is often defined at the end of the Bison
5048grammar file. If @code{yylex} is defined in a separate source file, you
5049need to arrange for the token-type macro definitions to be available there.
5050To do this, use the @samp{-d} option when you run Bison, so that it will
5051write these macro definitions into a separate header file
5052@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5053that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5054
5055@menu
5056* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5057* Token Values:: How @code{yylex} must return the semantic value
5058 of the token it has read.
95923bd6 5059* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5060 (line number, etc.) of the token, if the
5061 actions want that.
5062* Pure Calling:: How the calling convention differs
5063 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5064@end menu
5065
342b8b6e 5066@node Calling Convention
bfa74976
RS
5067@subsection Calling Convention for @code{yylex}
5068
72d2299c
PE
5069The value that @code{yylex} returns must be the positive numeric code
5070for the type of token it has just found; a zero or negative value
5071signifies end-of-input.
bfa74976
RS
5072
5073When a token is referred to in the grammar rules by a name, that name
5074in the parser file becomes a C macro whose definition is the proper
5075numeric code for that token type. So @code{yylex} can use the name
5076to indicate that type. @xref{Symbols}.
5077
5078When a token is referred to in the grammar rules by a character literal,
5079the numeric code for that character is also the code for the token type.
72d2299c
PE
5080So @code{yylex} can simply return that character code, possibly converted
5081to @code{unsigned char} to avoid sign-extension. The null character
5082must not be used this way, because its code is zero and that
bfa74976
RS
5083signifies end-of-input.
5084
5085Here is an example showing these things:
5086
5087@example
13863333
AD
5088int
5089yylex (void)
bfa74976
RS
5090@{
5091 @dots{}
72d2299c 5092 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5093 return 0;
5094 @dots{}
5095 if (c == '+' || c == '-')
72d2299c 5096 return c; /* Assume token type for `+' is '+'. */
bfa74976 5097 @dots{}
72d2299c 5098 return INT; /* Return the type of the token. */
bfa74976
RS
5099 @dots{}
5100@}
5101@end example
5102
5103@noindent
5104This interface has been designed so that the output from the @code{lex}
5105utility can be used without change as the definition of @code{yylex}.
5106
931c7513
RS
5107If the grammar uses literal string tokens, there are two ways that
5108@code{yylex} can determine the token type codes for them:
5109
5110@itemize @bullet
5111@item
5112If the grammar defines symbolic token names as aliases for the
5113literal string tokens, @code{yylex} can use these symbolic names like
5114all others. In this case, the use of the literal string tokens in
5115the grammar file has no effect on @code{yylex}.
5116
5117@item
9ecbd125 5118@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5119table. The index of the token in the table is the token type's code.
9ecbd125 5120The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5121double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5122token's characters are escaped as necessary to be suitable as input
5123to Bison.
931c7513 5124
9e0876fb
PE
5125Here's code for looking up a multicharacter token in @code{yytname},
5126assuming that the characters of the token are stored in
5127@code{token_buffer}, and assuming that the token does not contain any
5128characters like @samp{"} that require escaping.
931c7513
RS
5129
5130@smallexample
5131for (i = 0; i < YYNTOKENS; i++)
5132 @{
5133 if (yytname[i] != 0
5134 && yytname[i][0] == '"'
68449b3a
PE
5135 && ! strncmp (yytname[i] + 1, token_buffer,
5136 strlen (token_buffer))
931c7513
RS
5137 && yytname[i][strlen (token_buffer) + 1] == '"'
5138 && yytname[i][strlen (token_buffer) + 2] == 0)
5139 break;
5140 @}
5141@end smallexample
5142
5143The @code{yytname} table is generated only if you use the
8c9a50be 5144@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5145@end itemize
5146
342b8b6e 5147@node Token Values
bfa74976
RS
5148@subsection Semantic Values of Tokens
5149
5150@vindex yylval
9d9b8b70 5151In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5152be stored into the global variable @code{yylval}. When you are using
5153just one data type for semantic values, @code{yylval} has that type.
5154Thus, if the type is @code{int} (the default), you might write this in
5155@code{yylex}:
5156
5157@example
5158@group
5159 @dots{}
72d2299c
PE
5160 yylval = value; /* Put value onto Bison stack. */
5161 return INT; /* Return the type of the token. */
bfa74976
RS
5162 @dots{}
5163@end group
5164@end example
5165
5166When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5167made from the @code{%union} declaration (@pxref{Union Decl, ,The
5168Collection of Value Types}). So when you store a token's value, you
5169must use the proper member of the union. If the @code{%union}
5170declaration looks like this:
bfa74976
RS
5171
5172@example
5173@group
5174%union @{
5175 int intval;
5176 double val;
5177 symrec *tptr;
5178@}
5179@end group
5180@end example
5181
5182@noindent
5183then the code in @code{yylex} might look like this:
5184
5185@example
5186@group
5187 @dots{}
72d2299c
PE
5188 yylval.intval = value; /* Put value onto Bison stack. */
5189 return INT; /* Return the type of the token. */
bfa74976
RS
5190 @dots{}
5191@end group
5192@end example
5193
95923bd6
AD
5194@node Token Locations
5195@subsection Textual Locations of Tokens
bfa74976
RS
5196
5197@vindex yylloc
847bf1f5 5198If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5199Tracking Locations}) in actions to keep track of the textual locations
5200of tokens and groupings, then you must provide this information in
5201@code{yylex}. The function @code{yyparse} expects to find the textual
5202location of a token just parsed in the global variable @code{yylloc}.
5203So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5204
5205By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5206initialize the members that are going to be used by the actions. The
5207four members are called @code{first_line}, @code{first_column},
5208@code{last_line} and @code{last_column}. Note that the use of this
5209feature makes the parser noticeably slower.
bfa74976
RS
5210
5211@tindex YYLTYPE
5212The data type of @code{yylloc} has the name @code{YYLTYPE}.
5213
342b8b6e 5214@node Pure Calling
c656404a 5215@subsection Calling Conventions for Pure Parsers
bfa74976 5216
8c9a50be 5217When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5218pure, reentrant parser, the global communication variables @code{yylval}
5219and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5220Parser}.) In such parsers the two global variables are replaced by
5221pointers passed as arguments to @code{yylex}. You must declare them as
5222shown here, and pass the information back by storing it through those
5223pointers.
bfa74976
RS
5224
5225@example
13863333
AD
5226int
5227yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5228@{
5229 @dots{}
5230 *lvalp = value; /* Put value onto Bison stack. */
5231 return INT; /* Return the type of the token. */
5232 @dots{}
5233@}
5234@end example
5235
5236If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5237textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5238this case, omit the second argument; @code{yylex} will be called with
5239only one argument.
5240
e425e872 5241
2a8d363a
AD
5242If you wish to pass the additional parameter data to @code{yylex}, use
5243@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5244Function}).
e425e872 5245
feeb0eda 5246@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5247@findex %lex-param
287c78f6
PE
5248Declare that the braced-code @var{argument-declaration} is an
5249additional @code{yylex} argument declaration.
2a8d363a 5250@end deffn
e425e872 5251
2a8d363a 5252For instance:
e425e872
RS
5253
5254@example
feeb0eda
PE
5255%parse-param @{int *nastiness@}
5256%lex-param @{int *nastiness@}
5257%parse-param @{int *randomness@}
e425e872
RS
5258@end example
5259
5260@noindent
2a8d363a 5261results in the following signature:
e425e872
RS
5262
5263@example
2a8d363a
AD
5264int yylex (int *nastiness);
5265int yyparse (int *nastiness, int *randomness);
e425e872
RS
5266@end example
5267
2a8d363a 5268If @code{%pure-parser} is added:
c656404a
RS
5269
5270@example
2a8d363a
AD
5271int yylex (YYSTYPE *lvalp, int *nastiness);
5272int yyparse (int *nastiness, int *randomness);
c656404a
RS
5273@end example
5274
2a8d363a
AD
5275@noindent
5276and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5277
2a8d363a
AD
5278@example
5279int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5280int yyparse (int *nastiness, int *randomness);
5281@end example
931c7513 5282
342b8b6e 5283@node Error Reporting
bfa74976
RS
5284@section The Error Reporting Function @code{yyerror}
5285@cindex error reporting function
5286@findex yyerror
5287@cindex parse error
5288@cindex syntax error
5289
6e649e65 5290The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5291whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5292action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5293macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5294in Actions}).
bfa74976
RS
5295
5296The Bison parser expects to report the error by calling an error
5297reporting function named @code{yyerror}, which you must supply. It is
5298called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5299receives one argument. For a syntax error, the string is normally
5300@w{@code{"syntax error"}}.
bfa74976 5301
2a8d363a
AD
5302@findex %error-verbose
5303If you invoke the directive @code{%error-verbose} in the Bison
5304declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5305Section}), then Bison provides a more verbose and specific error message
6e649e65 5306string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5307
1a059451
PE
5308The parser can detect one other kind of error: memory exhaustion. This
5309can happen when the input contains constructions that are very deeply
bfa74976 5310nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5311parser normally extends its stack automatically up to a very large limit. But
5312if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5313fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5314
5315In some cases diagnostics like @w{@code{"syntax error"}} are
5316translated automatically from English to some other language before
5317they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5318
5319The following definition suffices in simple programs:
5320
5321@example
5322@group
13863333 5323void
38a92d50 5324yyerror (char const *s)
bfa74976
RS
5325@{
5326@end group
5327@group
5328 fprintf (stderr, "%s\n", s);
5329@}
5330@end group
5331@end example
5332
5333After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5334error recovery if you have written suitable error recovery grammar rules
5335(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5336immediately return 1.
5337
93724f13 5338Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5339an access to the current location.
5340This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5341parsers, but not for the Yacc parser, for historical reasons. I.e., if
5342@samp{%locations %pure-parser} is passed then the prototypes for
5343@code{yyerror} are:
5344
5345@example
38a92d50
PE
5346void yyerror (char const *msg); /* Yacc parsers. */
5347void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5348@end example
5349
feeb0eda 5350If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5351
5352@example
b317297e
PE
5353void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5354void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5355@end example
5356
fa7e68c3 5357Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5358convention for absolutely pure parsers, i.e., when the calling
5359convention of @code{yylex} @emph{and} the calling convention of
5360@code{%pure-parser} are pure. I.e.:
5361
5362@example
5363/* Location tracking. */
5364%locations
5365/* Pure yylex. */
5366%pure-parser
feeb0eda 5367%lex-param @{int *nastiness@}
2a8d363a 5368/* Pure yyparse. */
feeb0eda
PE
5369%parse-param @{int *nastiness@}
5370%parse-param @{int *randomness@}
2a8d363a
AD
5371@end example
5372
5373@noindent
5374results in the following signatures for all the parser kinds:
5375
5376@example
5377int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5378int yyparse (int *nastiness, int *randomness);
93724f13
AD
5379void yyerror (YYLTYPE *locp,
5380 int *nastiness, int *randomness,
38a92d50 5381 char const *msg);
2a8d363a
AD
5382@end example
5383
1c0c3e95 5384@noindent
38a92d50
PE
5385The prototypes are only indications of how the code produced by Bison
5386uses @code{yyerror}. Bison-generated code always ignores the returned
5387value, so @code{yyerror} can return any type, including @code{void}.
5388Also, @code{yyerror} can be a variadic function; that is why the
5389message is always passed last.
5390
5391Traditionally @code{yyerror} returns an @code{int} that is always
5392ignored, but this is purely for historical reasons, and @code{void} is
5393preferable since it more accurately describes the return type for
5394@code{yyerror}.
93724f13 5395
bfa74976
RS
5396@vindex yynerrs
5397The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5398reported so far. Normally this variable is global; but if you
704a47c4
AD
5399request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5400then it is a local variable which only the actions can access.
bfa74976 5401
342b8b6e 5402@node Action Features
bfa74976
RS
5403@section Special Features for Use in Actions
5404@cindex summary, action features
5405@cindex action features summary
5406
5407Here is a table of Bison constructs, variables and macros that
5408are useful in actions.
5409
18b519c0 5410@deffn {Variable} $$
bfa74976
RS
5411Acts like a variable that contains the semantic value for the
5412grouping made by the current rule. @xref{Actions}.
18b519c0 5413@end deffn
bfa74976 5414
18b519c0 5415@deffn {Variable} $@var{n}
bfa74976
RS
5416Acts like a variable that contains the semantic value for the
5417@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5418@end deffn
bfa74976 5419
18b519c0 5420@deffn {Variable} $<@var{typealt}>$
bfa74976 5421Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5422specified by the @code{%union} declaration. @xref{Action Types, ,Data
5423Types of Values in Actions}.
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5427Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5428union specified by the @code{%union} declaration.
e0c471a9 5429@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5430@end deffn
bfa74976 5431
18b519c0 5432@deffn {Macro} YYABORT;
bfa74976
RS
5433Return immediately from @code{yyparse}, indicating failure.
5434@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5435@end deffn
bfa74976 5436
18b519c0 5437@deffn {Macro} YYACCEPT;
bfa74976
RS
5438Return immediately from @code{yyparse}, indicating success.
5439@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5440@end deffn
bfa74976 5441
18b519c0 5442@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5443@findex YYBACKUP
5444Unshift a token. This macro is allowed only for rules that reduce
742e4900 5445a single value, and only when there is no lookahead token.
c827f760 5446It is also disallowed in @acronym{GLR} parsers.
742e4900 5447It installs a lookahead token with token type @var{token} and
bfa74976
RS
5448semantic value @var{value}; then it discards the value that was
5449going to be reduced by this rule.
5450
5451If the macro is used when it is not valid, such as when there is
742e4900 5452a lookahead token already, then it reports a syntax error with
bfa74976
RS
5453a message @samp{cannot back up} and performs ordinary error
5454recovery.
5455
5456In either case, the rest of the action is not executed.
18b519c0 5457@end deffn
bfa74976 5458
18b519c0 5459@deffn {Macro} YYEMPTY
bfa74976 5460@vindex YYEMPTY
742e4900 5461Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5462@end deffn
bfa74976 5463
32c29292
JD
5464@deffn {Macro} YYEOF
5465@vindex YYEOF
742e4900 5466Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5467stream.
5468@end deffn
5469
18b519c0 5470@deffn {Macro} YYERROR;
bfa74976
RS
5471@findex YYERROR
5472Cause an immediate syntax error. This statement initiates error
5473recovery just as if the parser itself had detected an error; however, it
5474does not call @code{yyerror}, and does not print any message. If you
5475want to print an error message, call @code{yyerror} explicitly before
5476the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5477@end deffn
bfa74976 5478
18b519c0 5479@deffn {Macro} YYRECOVERING
02103984
PE
5480@findex YYRECOVERING
5481The expression @code{YYRECOVERING ()} yields 1 when the parser
5482is recovering from a syntax error, and 0 otherwise.
bfa74976 5483@xref{Error Recovery}.
18b519c0 5484@end deffn
bfa74976 5485
18b519c0 5486@deffn {Variable} yychar
742e4900
JD
5487Variable containing either the lookahead token, or @code{YYEOF} when the
5488lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5489has been performed so the next token is not yet known.
5490Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5491Actions}).
742e4900 5492@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5493@end deffn
bfa74976 5494
18b519c0 5495@deffn {Macro} yyclearin;
742e4900 5496Discard the current lookahead token. This is useful primarily in
32c29292
JD
5497error rules.
5498Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5499Semantic Actions}).
5500@xref{Error Recovery}.
18b519c0 5501@end deffn
bfa74976 5502
18b519c0 5503@deffn {Macro} yyerrok;
bfa74976 5504Resume generating error messages immediately for subsequent syntax
13863333 5505errors. This is useful primarily in error rules.
bfa74976 5506@xref{Error Recovery}.
18b519c0 5507@end deffn
bfa74976 5508
32c29292 5509@deffn {Variable} yylloc
742e4900 5510Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5511to @code{YYEMPTY} or @code{YYEOF}.
5512Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5513Actions}).
5514@xref{Actions and Locations, ,Actions and Locations}.
5515@end deffn
5516
5517@deffn {Variable} yylval
742e4900 5518Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5519not set to @code{YYEMPTY} or @code{YYEOF}.
5520Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5521Actions}).
5522@xref{Actions, ,Actions}.
5523@end deffn
5524
18b519c0 5525@deffn {Value} @@$
847bf1f5 5526@findex @@$
95923bd6 5527Acts like a structure variable containing information on the textual location
847bf1f5
AD
5528of the grouping made by the current rule. @xref{Locations, ,
5529Tracking Locations}.
bfa74976 5530
847bf1f5
AD
5531@c Check if those paragraphs are still useful or not.
5532
5533@c @example
5534@c struct @{
5535@c int first_line, last_line;
5536@c int first_column, last_column;
5537@c @};
5538@c @end example
5539
5540@c Thus, to get the starting line number of the third component, you would
5541@c use @samp{@@3.first_line}.
bfa74976 5542
847bf1f5
AD
5543@c In order for the members of this structure to contain valid information,
5544@c you must make @code{yylex} supply this information about each token.
5545@c If you need only certain members, then @code{yylex} need only fill in
5546@c those members.
bfa74976 5547
847bf1f5 5548@c The use of this feature makes the parser noticeably slower.
18b519c0 5549@end deffn
847bf1f5 5550
18b519c0 5551@deffn {Value} @@@var{n}
847bf1f5 5552@findex @@@var{n}
95923bd6 5553Acts like a structure variable containing information on the textual location
847bf1f5
AD
5554of the @var{n}th component of the current rule. @xref{Locations, ,
5555Tracking Locations}.
18b519c0 5556@end deffn
bfa74976 5557
f7ab6a50
PE
5558@node Internationalization
5559@section Parser Internationalization
5560@cindex internationalization
5561@cindex i18n
5562@cindex NLS
5563@cindex gettext
5564@cindex bison-po
5565
5566A Bison-generated parser can print diagnostics, including error and
5567tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5568also supports outputting diagnostics in the user's native language. To
5569make this work, the user should set the usual environment variables.
5570@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5571For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5572set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5573encoding. The exact set of available locales depends on the user's
5574installation.
5575
5576The maintainer of a package that uses a Bison-generated parser enables
5577the internationalization of the parser's output through the following
5578steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5579@acronym{GNU} Automake.
5580
5581@enumerate
5582@item
30757c8c 5583@cindex bison-i18n.m4
f7ab6a50
PE
5584Into the directory containing the @acronym{GNU} Autoconf macros used
5585by the package---often called @file{m4}---copy the
5586@file{bison-i18n.m4} file installed by Bison under
5587@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5588For example:
5589
5590@example
5591cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5592@end example
5593
5594@item
30757c8c
PE
5595@findex BISON_I18N
5596@vindex BISON_LOCALEDIR
5597@vindex YYENABLE_NLS
f7ab6a50
PE
5598In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5599invocation, add an invocation of @code{BISON_I18N}. This macro is
5600defined in the file @file{bison-i18n.m4} that you copied earlier. It
5601causes @samp{configure} to find the value of the
30757c8c
PE
5602@code{BISON_LOCALEDIR} variable, and it defines the source-language
5603symbol @code{YYENABLE_NLS} to enable translations in the
5604Bison-generated parser.
f7ab6a50
PE
5605
5606@item
5607In the @code{main} function of your program, designate the directory
5608containing Bison's runtime message catalog, through a call to
5609@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5610For example:
5611
5612@example
5613bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5614@end example
5615
5616Typically this appears after any other call @code{bindtextdomain
5617(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5618@samp{BISON_LOCALEDIR} to be defined as a string through the
5619@file{Makefile}.
5620
5621@item
5622In the @file{Makefile.am} that controls the compilation of the @code{main}
5623function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5624either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5625
5626@example
5627DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5628@end example
5629
5630or:
5631
5632@example
5633AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5634@end example
5635
5636@item
5637Finally, invoke the command @command{autoreconf} to generate the build
5638infrastructure.
5639@end enumerate
5640
bfa74976 5641
342b8b6e 5642@node Algorithm
13863333
AD
5643@chapter The Bison Parser Algorithm
5644@cindex Bison parser algorithm
bfa74976
RS
5645@cindex algorithm of parser
5646@cindex shifting
5647@cindex reduction
5648@cindex parser stack
5649@cindex stack, parser
5650
5651As Bison reads tokens, it pushes them onto a stack along with their
5652semantic values. The stack is called the @dfn{parser stack}. Pushing a
5653token is traditionally called @dfn{shifting}.
5654
5655For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5656@samp{3} to come. The stack will have four elements, one for each token
5657that was shifted.
5658
5659But the stack does not always have an element for each token read. When
5660the last @var{n} tokens and groupings shifted match the components of a
5661grammar rule, they can be combined according to that rule. This is called
5662@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5663single grouping whose symbol is the result (left hand side) of that rule.
5664Running the rule's action is part of the process of reduction, because this
5665is what computes the semantic value of the resulting grouping.
5666
5667For example, if the infix calculator's parser stack contains this:
5668
5669@example
56701 + 5 * 3
5671@end example
5672
5673@noindent
5674and the next input token is a newline character, then the last three
5675elements can be reduced to 15 via the rule:
5676
5677@example
5678expr: expr '*' expr;
5679@end example
5680
5681@noindent
5682Then the stack contains just these three elements:
5683
5684@example
56851 + 15
5686@end example
5687
5688@noindent
5689At this point, another reduction can be made, resulting in the single value
569016. Then the newline token can be shifted.
5691
5692The parser tries, by shifts and reductions, to reduce the entire input down
5693to a single grouping whose symbol is the grammar's start-symbol
5694(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5695
5696This kind of parser is known in the literature as a bottom-up parser.
5697
5698@menu
742e4900 5699* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5700* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5701* Precedence:: Operator precedence works by resolving conflicts.
5702* Contextual Precedence:: When an operator's precedence depends on context.
5703* Parser States:: The parser is a finite-state-machine with stack.
5704* Reduce/Reduce:: When two rules are applicable in the same situation.
5705* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5706* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5707* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5708@end menu
5709
742e4900
JD
5710@node Lookahead
5711@section Lookahead Tokens
5712@cindex lookahead token
bfa74976
RS
5713
5714The Bison parser does @emph{not} always reduce immediately as soon as the
5715last @var{n} tokens and groupings match a rule. This is because such a
5716simple strategy is inadequate to handle most languages. Instead, when a
5717reduction is possible, the parser sometimes ``looks ahead'' at the next
5718token in order to decide what to do.
5719
5720When a token is read, it is not immediately shifted; first it becomes the
742e4900 5721@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5722perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5723the lookahead token remains off to the side. When no more reductions
5724should take place, the lookahead token is shifted onto the stack. This
bfa74976 5725does not mean that all possible reductions have been done; depending on the
742e4900 5726token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5727application.
5728
742e4900 5729Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5730expressions which contain binary addition operators and postfix unary
5731factorial operators (@samp{!}), and allow parentheses for grouping.
5732
5733@example
5734@group
5735expr: term '+' expr
5736 | term
5737 ;
5738@end group
5739
5740@group
5741term: '(' expr ')'
5742 | term '!'
5743 | NUMBER
5744 ;
5745@end group
5746@end example
5747
5748Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5749should be done? If the following token is @samp{)}, then the first three
5750tokens must be reduced to form an @code{expr}. This is the only valid
5751course, because shifting the @samp{)} would produce a sequence of symbols
5752@w{@code{term ')'}}, and no rule allows this.
5753
5754If the following token is @samp{!}, then it must be shifted immediately so
5755that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5756parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5757@code{expr}. It would then be impossible to shift the @samp{!} because
5758doing so would produce on the stack the sequence of symbols @code{expr
5759'!'}. No rule allows that sequence.
5760
5761@vindex yychar
32c29292
JD
5762@vindex yylval
5763@vindex yylloc
742e4900 5764The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5765Its semantic value and location, if any, are stored in the variables
5766@code{yylval} and @code{yylloc}.
bfa74976
RS
5767@xref{Action Features, ,Special Features for Use in Actions}.
5768
342b8b6e 5769@node Shift/Reduce
bfa74976
RS
5770@section Shift/Reduce Conflicts
5771@cindex conflicts
5772@cindex shift/reduce conflicts
5773@cindex dangling @code{else}
5774@cindex @code{else}, dangling
5775
5776Suppose we are parsing a language which has if-then and if-then-else
5777statements, with a pair of rules like this:
5778
5779@example
5780@group
5781if_stmt:
5782 IF expr THEN stmt
5783 | IF expr THEN stmt ELSE stmt
5784 ;
5785@end group
5786@end example
5787
5788@noindent
5789Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5790terminal symbols for specific keyword tokens.
5791
742e4900 5792When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5793contents of the stack (assuming the input is valid) are just right for
5794reduction by the first rule. But it is also legitimate to shift the
5795@code{ELSE}, because that would lead to eventual reduction by the second
5796rule.
5797
5798This situation, where either a shift or a reduction would be valid, is
5799called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5800these conflicts by choosing to shift, unless otherwise directed by
5801operator precedence declarations. To see the reason for this, let's
5802contrast it with the other alternative.
5803
5804Since the parser prefers to shift the @code{ELSE}, the result is to attach
5805the else-clause to the innermost if-statement, making these two inputs
5806equivalent:
5807
5808@example
5809if x then if y then win (); else lose;
5810
5811if x then do; if y then win (); else lose; end;
5812@end example
5813
5814But if the parser chose to reduce when possible rather than shift, the
5815result would be to attach the else-clause to the outermost if-statement,
5816making these two inputs equivalent:
5817
5818@example
5819if x then if y then win (); else lose;
5820
5821if x then do; if y then win (); end; else lose;
5822@end example
5823
5824The conflict exists because the grammar as written is ambiguous: either
5825parsing of the simple nested if-statement is legitimate. The established
5826convention is that these ambiguities are resolved by attaching the
5827else-clause to the innermost if-statement; this is what Bison accomplishes
5828by choosing to shift rather than reduce. (It would ideally be cleaner to
5829write an unambiguous grammar, but that is very hard to do in this case.)
5830This particular ambiguity was first encountered in the specifications of
5831Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5832
5833To avoid warnings from Bison about predictable, legitimate shift/reduce
5834conflicts, use the @code{%expect @var{n}} declaration. There will be no
5835warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5836@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5837
5838The definition of @code{if_stmt} above is solely to blame for the
5839conflict, but the conflict does not actually appear without additional
5840rules. Here is a complete Bison input file that actually manifests the
5841conflict:
5842
5843@example
5844@group
5845%token IF THEN ELSE variable
5846%%
5847@end group
5848@group
5849stmt: expr
5850 | if_stmt
5851 ;
5852@end group
5853
5854@group
5855if_stmt:
5856 IF expr THEN stmt
5857 | IF expr THEN stmt ELSE stmt
5858 ;
5859@end group
5860
5861expr: variable
5862 ;
5863@end example
5864
342b8b6e 5865@node Precedence
bfa74976
RS
5866@section Operator Precedence
5867@cindex operator precedence
5868@cindex precedence of operators
5869
5870Another situation where shift/reduce conflicts appear is in arithmetic
5871expressions. Here shifting is not always the preferred resolution; the
5872Bison declarations for operator precedence allow you to specify when to
5873shift and when to reduce.
5874
5875@menu
5876* Why Precedence:: An example showing why precedence is needed.
5877* Using Precedence:: How to specify precedence in Bison grammars.
5878* Precedence Examples:: How these features are used in the previous example.
5879* How Precedence:: How they work.
5880@end menu
5881
342b8b6e 5882@node Why Precedence
bfa74976
RS
5883@subsection When Precedence is Needed
5884
5885Consider the following ambiguous grammar fragment (ambiguous because the
5886input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5887
5888@example
5889@group
5890expr: expr '-' expr
5891 | expr '*' expr
5892 | expr '<' expr
5893 | '(' expr ')'
5894 @dots{}
5895 ;
5896@end group
5897@end example
5898
5899@noindent
5900Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5901should it reduce them via the rule for the subtraction operator? It
5902depends on the next token. Of course, if the next token is @samp{)}, we
5903must reduce; shifting is invalid because no single rule can reduce the
5904token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5905the next token is @samp{*} or @samp{<}, we have a choice: either
5906shifting or reduction would allow the parse to complete, but with
5907different results.
5908
5909To decide which one Bison should do, we must consider the results. If
5910the next operator token @var{op} is shifted, then it must be reduced
5911first in order to permit another opportunity to reduce the difference.
5912The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5913hand, if the subtraction is reduced before shifting @var{op}, the result
5914is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5915reduce should depend on the relative precedence of the operators
5916@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5917@samp{<}.
bfa74976
RS
5918
5919@cindex associativity
5920What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5921@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5922operators we prefer the former, which is called @dfn{left association}.
5923The latter alternative, @dfn{right association}, is desirable for
5924assignment operators. The choice of left or right association is a
5925matter of whether the parser chooses to shift or reduce when the stack
742e4900 5926contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5927makes right-associativity.
bfa74976 5928
342b8b6e 5929@node Using Precedence
bfa74976
RS
5930@subsection Specifying Operator Precedence
5931@findex %left
5932@findex %right
5933@findex %nonassoc
5934
5935Bison allows you to specify these choices with the operator precedence
5936declarations @code{%left} and @code{%right}. Each such declaration
5937contains a list of tokens, which are operators whose precedence and
5938associativity is being declared. The @code{%left} declaration makes all
5939those operators left-associative and the @code{%right} declaration makes
5940them right-associative. A third alternative is @code{%nonassoc}, which
5941declares that it is a syntax error to find the same operator twice ``in a
5942row''.
5943
5944The relative precedence of different operators is controlled by the
5945order in which they are declared. The first @code{%left} or
5946@code{%right} declaration in the file declares the operators whose
5947precedence is lowest, the next such declaration declares the operators
5948whose precedence is a little higher, and so on.
5949
342b8b6e 5950@node Precedence Examples
bfa74976
RS
5951@subsection Precedence Examples
5952
5953In our example, we would want the following declarations:
5954
5955@example
5956%left '<'
5957%left '-'
5958%left '*'
5959@end example
5960
5961In a more complete example, which supports other operators as well, we
5962would declare them in groups of equal precedence. For example, @code{'+'} is
5963declared with @code{'-'}:
5964
5965@example
5966%left '<' '>' '=' NE LE GE
5967%left '+' '-'
5968%left '*' '/'
5969@end example
5970
5971@noindent
5972(Here @code{NE} and so on stand for the operators for ``not equal''
5973and so on. We assume that these tokens are more than one character long
5974and therefore are represented by names, not character literals.)
5975
342b8b6e 5976@node How Precedence
bfa74976
RS
5977@subsection How Precedence Works
5978
5979The first effect of the precedence declarations is to assign precedence
5980levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5981precedence levels to certain rules: each rule gets its precedence from
5982the last terminal symbol mentioned in the components. (You can also
5983specify explicitly the precedence of a rule. @xref{Contextual
5984Precedence, ,Context-Dependent Precedence}.)
5985
5986Finally, the resolution of conflicts works by comparing the precedence
742e4900 5987of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5988token's precedence is higher, the choice is to shift. If the rule's
5989precedence is higher, the choice is to reduce. If they have equal
5990precedence, the choice is made based on the associativity of that
5991precedence level. The verbose output file made by @samp{-v}
5992(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5993resolved.
bfa74976
RS
5994
5995Not all rules and not all tokens have precedence. If either the rule or
742e4900 5996the lookahead token has no precedence, then the default is to shift.
bfa74976 5997
342b8b6e 5998@node Contextual Precedence
bfa74976
RS
5999@section Context-Dependent Precedence
6000@cindex context-dependent precedence
6001@cindex unary operator precedence
6002@cindex precedence, context-dependent
6003@cindex precedence, unary operator
6004@findex %prec
6005
6006Often the precedence of an operator depends on the context. This sounds
6007outlandish at first, but it is really very common. For example, a minus
6008sign typically has a very high precedence as a unary operator, and a
6009somewhat lower precedence (lower than multiplication) as a binary operator.
6010
6011The Bison precedence declarations, @code{%left}, @code{%right} and
6012@code{%nonassoc}, can only be used once for a given token; so a token has
6013only one precedence declared in this way. For context-dependent
6014precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6015modifier for rules.
bfa74976
RS
6016
6017The @code{%prec} modifier declares the precedence of a particular rule by
6018specifying a terminal symbol whose precedence should be used for that rule.
6019It's not necessary for that symbol to appear otherwise in the rule. The
6020modifier's syntax is:
6021
6022@example
6023%prec @var{terminal-symbol}
6024@end example
6025
6026@noindent
6027and it is written after the components of the rule. Its effect is to
6028assign the rule the precedence of @var{terminal-symbol}, overriding
6029the precedence that would be deduced for it in the ordinary way. The
6030altered rule precedence then affects how conflicts involving that rule
6031are resolved (@pxref{Precedence, ,Operator Precedence}).
6032
6033Here is how @code{%prec} solves the problem of unary minus. First, declare
6034a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6035are no tokens of this type, but the symbol serves to stand for its
6036precedence:
6037
6038@example
6039@dots{}
6040%left '+' '-'
6041%left '*'
6042%left UMINUS
6043@end example
6044
6045Now the precedence of @code{UMINUS} can be used in specific rules:
6046
6047@example
6048@group
6049exp: @dots{}
6050 | exp '-' exp
6051 @dots{}
6052 | '-' exp %prec UMINUS
6053@end group
6054@end example
6055
91d2c560 6056@ifset defaultprec
39a06c25
PE
6057If you forget to append @code{%prec UMINUS} to the rule for unary
6058minus, Bison silently assumes that minus has its usual precedence.
6059This kind of problem can be tricky to debug, since one typically
6060discovers the mistake only by testing the code.
6061
22fccf95 6062The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6063this kind of problem systematically. It causes rules that lack a
6064@code{%prec} modifier to have no precedence, even if the last terminal
6065symbol mentioned in their components has a declared precedence.
6066
22fccf95 6067If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6068for all rules that participate in precedence conflict resolution.
6069Then you will see any shift/reduce conflict until you tell Bison how
6070to resolve it, either by changing your grammar or by adding an
6071explicit precedence. This will probably add declarations to the
6072grammar, but it helps to protect against incorrect rule precedences.
6073
22fccf95
PE
6074The effect of @code{%no-default-prec;} can be reversed by giving
6075@code{%default-prec;}, which is the default.
91d2c560 6076@end ifset
39a06c25 6077
342b8b6e 6078@node Parser States
bfa74976
RS
6079@section Parser States
6080@cindex finite-state machine
6081@cindex parser state
6082@cindex state (of parser)
6083
6084The function @code{yyparse} is implemented using a finite-state machine.
6085The values pushed on the parser stack are not simply token type codes; they
6086represent the entire sequence of terminal and nonterminal symbols at or
6087near the top of the stack. The current state collects all the information
6088about previous input which is relevant to deciding what to do next.
6089
742e4900
JD
6090Each time a lookahead token is read, the current parser state together
6091with the type of lookahead token are looked up in a table. This table
6092entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6093specifies the new parser state, which is pushed onto the top of the
6094parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6095This means that a certain number of tokens or groupings are taken off
6096the top of the stack, and replaced by one grouping. In other words,
6097that number of states are popped from the stack, and one new state is
6098pushed.
6099
742e4900 6100There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6101is erroneous in the current state. This causes error processing to begin
6102(@pxref{Error Recovery}).
6103
342b8b6e 6104@node Reduce/Reduce
bfa74976
RS
6105@section Reduce/Reduce Conflicts
6106@cindex reduce/reduce conflict
6107@cindex conflicts, reduce/reduce
6108
6109A reduce/reduce conflict occurs if there are two or more rules that apply
6110to the same sequence of input. This usually indicates a serious error
6111in the grammar.
6112
6113For example, here is an erroneous attempt to define a sequence
6114of zero or more @code{word} groupings.
6115
6116@example
6117sequence: /* empty */
6118 @{ printf ("empty sequence\n"); @}
6119 | maybeword
6120 | sequence word
6121 @{ printf ("added word %s\n", $2); @}
6122 ;
6123
6124maybeword: /* empty */
6125 @{ printf ("empty maybeword\n"); @}
6126 | word
6127 @{ printf ("single word %s\n", $1); @}
6128 ;
6129@end example
6130
6131@noindent
6132The error is an ambiguity: there is more than one way to parse a single
6133@code{word} into a @code{sequence}. It could be reduced to a
6134@code{maybeword} and then into a @code{sequence} via the second rule.
6135Alternatively, nothing-at-all could be reduced into a @code{sequence}
6136via the first rule, and this could be combined with the @code{word}
6137using the third rule for @code{sequence}.
6138
6139There is also more than one way to reduce nothing-at-all into a
6140@code{sequence}. This can be done directly via the first rule,
6141or indirectly via @code{maybeword} and then the second rule.
6142
6143You might think that this is a distinction without a difference, because it
6144does not change whether any particular input is valid or not. But it does
6145affect which actions are run. One parsing order runs the second rule's
6146action; the other runs the first rule's action and the third rule's action.
6147In this example, the output of the program changes.
6148
6149Bison resolves a reduce/reduce conflict by choosing to use the rule that
6150appears first in the grammar, but it is very risky to rely on this. Every
6151reduce/reduce conflict must be studied and usually eliminated. Here is the
6152proper way to define @code{sequence}:
6153
6154@example
6155sequence: /* empty */
6156 @{ printf ("empty sequence\n"); @}
6157 | sequence word
6158 @{ printf ("added word %s\n", $2); @}
6159 ;
6160@end example
6161
6162Here is another common error that yields a reduce/reduce conflict:
6163
6164@example
6165sequence: /* empty */
6166 | sequence words
6167 | sequence redirects
6168 ;
6169
6170words: /* empty */
6171 | words word
6172 ;
6173
6174redirects:/* empty */
6175 | redirects redirect
6176 ;
6177@end example
6178
6179@noindent
6180The intention here is to define a sequence which can contain either
6181@code{word} or @code{redirect} groupings. The individual definitions of
6182@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6183three together make a subtle ambiguity: even an empty input can be parsed
6184in infinitely many ways!
6185
6186Consider: nothing-at-all could be a @code{words}. Or it could be two
6187@code{words} in a row, or three, or any number. It could equally well be a
6188@code{redirects}, or two, or any number. Or it could be a @code{words}
6189followed by three @code{redirects} and another @code{words}. And so on.
6190
6191Here are two ways to correct these rules. First, to make it a single level
6192of sequence:
6193
6194@example
6195sequence: /* empty */
6196 | sequence word
6197 | sequence redirect
6198 ;
6199@end example
6200
6201Second, to prevent either a @code{words} or a @code{redirects}
6202from being empty:
6203
6204@example
6205sequence: /* empty */
6206 | sequence words
6207 | sequence redirects
6208 ;
6209
6210words: word
6211 | words word
6212 ;
6213
6214redirects:redirect
6215 | redirects redirect
6216 ;
6217@end example
6218
342b8b6e 6219@node Mystery Conflicts
bfa74976
RS
6220@section Mysterious Reduce/Reduce Conflicts
6221
6222Sometimes reduce/reduce conflicts can occur that don't look warranted.
6223Here is an example:
6224
6225@example
6226@group
6227%token ID
6228
6229%%
6230def: param_spec return_spec ','
6231 ;
6232param_spec:
6233 type
6234 | name_list ':' type
6235 ;
6236@end group
6237@group
6238return_spec:
6239 type
6240 | name ':' type
6241 ;
6242@end group
6243@group
6244type: ID
6245 ;
6246@end group
6247@group
6248name: ID
6249 ;
6250name_list:
6251 name
6252 | name ',' name_list
6253 ;
6254@end group
6255@end example
6256
6257It would seem that this grammar can be parsed with only a single token
742e4900 6258of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6259a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6260@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6261
c827f760
PE
6262@cindex @acronym{LR}(1)
6263@cindex @acronym{LALR}(1)
bfa74976 6264However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6265@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6266an @code{ID}
bfa74976
RS
6267at the beginning of a @code{param_spec} and likewise at the beginning of
6268a @code{return_spec}, are similar enough that Bison assumes they are the
6269same. They appear similar because the same set of rules would be
6270active---the rule for reducing to a @code{name} and that for reducing to
6271a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6272that the rules would require different lookahead tokens in the two
bfa74976
RS
6273contexts, so it makes a single parser state for them both. Combining
6274the two contexts causes a conflict later. In parser terminology, this
c827f760 6275occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6276
6277In general, it is better to fix deficiencies than to document them. But
6278this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6279generators that can handle @acronym{LR}(1) grammars are hard to write
6280and tend to
bfa74976
RS
6281produce parsers that are very large. In practice, Bison is more useful
6282as it is now.
6283
6284When the problem arises, you can often fix it by identifying the two
a220f555
MA
6285parser states that are being confused, and adding something to make them
6286look distinct. In the above example, adding one rule to
bfa74976
RS
6287@code{return_spec} as follows makes the problem go away:
6288
6289@example
6290@group
6291%token BOGUS
6292@dots{}
6293%%
6294@dots{}
6295return_spec:
6296 type
6297 | name ':' type
6298 /* This rule is never used. */
6299 | ID BOGUS
6300 ;
6301@end group
6302@end example
6303
6304This corrects the problem because it introduces the possibility of an
6305additional active rule in the context after the @code{ID} at the beginning of
6306@code{return_spec}. This rule is not active in the corresponding context
6307in a @code{param_spec}, so the two contexts receive distinct parser states.
6308As long as the token @code{BOGUS} is never generated by @code{yylex},
6309the added rule cannot alter the way actual input is parsed.
6310
6311In this particular example, there is another way to solve the problem:
6312rewrite the rule for @code{return_spec} to use @code{ID} directly
6313instead of via @code{name}. This also causes the two confusing
6314contexts to have different sets of active rules, because the one for
6315@code{return_spec} activates the altered rule for @code{return_spec}
6316rather than the one for @code{name}.
6317
6318@example
6319param_spec:
6320 type
6321 | name_list ':' type
6322 ;
6323return_spec:
6324 type
6325 | ID ':' type
6326 ;
6327@end example
6328
e054b190
PE
6329For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6330generators, please see:
6331Frank DeRemer and Thomas Pennello, Efficient Computation of
6332@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6333Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6334pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6335
fae437e8 6336@node Generalized LR Parsing
c827f760
PE
6337@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6338@cindex @acronym{GLR} parsing
6339@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6340@cindex ambiguous grammars
9d9b8b70 6341@cindex nondeterministic parsing
676385e2 6342
fae437e8
AD
6343Bison produces @emph{deterministic} parsers that choose uniquely
6344when to reduce and which reduction to apply
742e4900 6345based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6346As a result, normal Bison handles a proper subset of the family of
6347context-free languages.
fae437e8 6348Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6349sequence of reductions cannot have deterministic parsers in this sense.
6350The same is true of languages that require more than one symbol of
742e4900 6351lookahead, since the parser lacks the information necessary to make a
676385e2 6352decision at the point it must be made in a shift-reduce parser.
fae437e8 6353Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6354there are languages where Bison's particular choice of how to
6355summarize the input seen so far loses necessary information.
6356
6357When you use the @samp{%glr-parser} declaration in your grammar file,
6358Bison generates a parser that uses a different algorithm, called
c827f760
PE
6359Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6360parser uses the same basic
676385e2
PH
6361algorithm for parsing as an ordinary Bison parser, but behaves
6362differently in cases where there is a shift-reduce conflict that has not
fae437e8 6363been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6364reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6365situation, it
fae437e8 6366effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6367shift or reduction. These parsers then proceed as usual, consuming
6368tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6369and split further, with the result that instead of a sequence of states,
c827f760 6370a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6371
6372In effect, each stack represents a guess as to what the proper parse
6373is. Additional input may indicate that a guess was wrong, in which case
6374the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6375actions generated in each stack are saved, rather than being executed
676385e2 6376immediately. When a stack disappears, its saved semantic actions never
fae437e8 6377get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6378their sets of semantic actions are both saved with the state that
6379results from the reduction. We say that two stacks are equivalent
fae437e8 6380when they both represent the same sequence of states,
676385e2
PH
6381and each pair of corresponding states represents a
6382grammar symbol that produces the same segment of the input token
6383stream.
6384
6385Whenever the parser makes a transition from having multiple
c827f760 6386states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6387algorithm, after resolving and executing the saved-up actions.
6388At this transition, some of the states on the stack will have semantic
6389values that are sets (actually multisets) of possible actions. The
6390parser tries to pick one of the actions by first finding one whose rule
6391has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6392declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6393precedence, but there the same merging function is declared for both
fae437e8 6394rules by the @samp{%merge} declaration,
676385e2
PH
6395Bison resolves and evaluates both and then calls the merge function on
6396the result. Otherwise, it reports an ambiguity.
6397
c827f760
PE
6398It is possible to use a data structure for the @acronym{GLR} parsing tree that
6399permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6400size of the input), any unambiguous (not necessarily
6401@acronym{LALR}(1)) grammar in
fae437e8 6402quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6403context-free grammar in cubic worst-case time. However, Bison currently
6404uses a simpler data structure that requires time proportional to the
6405length of the input times the maximum number of stacks required for any
9d9b8b70 6406prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6407grammars can require exponential time and space to process. Such badly
6408behaving examples, however, are not generally of practical interest.
9d9b8b70 6409Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6410doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6411structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6412grammar, in particular, it is only slightly slower than with the default
6413Bison parser.
6414
fa7e68c3 6415For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6416Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6417Generalised @acronym{LR} Parsers, Royal Holloway, University of
6418London, Department of Computer Science, TR-00-12,
6419@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6420(2000-12-24).
6421
1a059451
PE
6422@node Memory Management
6423@section Memory Management, and How to Avoid Memory Exhaustion
6424@cindex memory exhaustion
6425@cindex memory management
bfa74976
RS
6426@cindex stack overflow
6427@cindex parser stack overflow
6428@cindex overflow of parser stack
6429
1a059451 6430The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6431not reduced. When this happens, the parser function @code{yyparse}
1a059451 6432calls @code{yyerror} and then returns 2.
bfa74976 6433
c827f760 6434Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6435usually results from using a right recursion instead of a left
6436recursion, @xref{Recursion, ,Recursive Rules}.
6437
bfa74976
RS
6438@vindex YYMAXDEPTH
6439By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6440parser stack can become before memory is exhausted. Define the
bfa74976
RS
6441macro with a value that is an integer. This value is the maximum number
6442of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6443
6444The stack space allowed is not necessarily allocated. If you specify a
1a059451 6445large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6446stack at first, and then makes it bigger by stages as needed. This
6447increasing allocation happens automatically and silently. Therefore,
6448you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6449space for ordinary inputs that do not need much stack.
6450
d7e14fc0
PE
6451However, do not allow @code{YYMAXDEPTH} to be a value so large that
6452arithmetic overflow could occur when calculating the size of the stack
6453space. Also, do not allow @code{YYMAXDEPTH} to be less than
6454@code{YYINITDEPTH}.
6455
bfa74976
RS
6456@cindex default stack limit
6457The default value of @code{YYMAXDEPTH}, if you do not define it, is
645810000.
6459
6460@vindex YYINITDEPTH
6461You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6462macro @code{YYINITDEPTH} to a positive integer. For the C
6463@acronym{LALR}(1) parser, this value must be a compile-time constant
6464unless you are assuming C99 or some other target language or compiler
6465that allows variable-length arrays. The default is 200.
6466
1a059451 6467Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6468
d1a1114f 6469@c FIXME: C++ output.
c827f760 6470Because of semantical differences between C and C++, the
1a059451
PE
6471@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6472by C++ compilers. In this precise case (compiling a C parser as C++) you are
6473suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6474this deficiency in a future release.
d1a1114f 6475
342b8b6e 6476@node Error Recovery
bfa74976
RS
6477@chapter Error Recovery
6478@cindex error recovery
6479@cindex recovery from errors
6480
6e649e65 6481It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6482error. For example, a compiler should recover sufficiently to parse the
6483rest of the input file and check it for errors; a calculator should accept
6484another expression.
6485
6486In a simple interactive command parser where each input is one line, it may
6487be sufficient to allow @code{yyparse} to return 1 on error and have the
6488caller ignore the rest of the input line when that happens (and then call
6489@code{yyparse} again). But this is inadequate for a compiler, because it
6490forgets all the syntactic context leading up to the error. A syntax error
6491deep within a function in the compiler input should not cause the compiler
6492to treat the following line like the beginning of a source file.
6493
6494@findex error
6495You can define how to recover from a syntax error by writing rules to
6496recognize the special token @code{error}. This is a terminal symbol that
6497is always defined (you need not declare it) and reserved for error
6498handling. The Bison parser generates an @code{error} token whenever a
6499syntax error happens; if you have provided a rule to recognize this token
13863333 6500in the current context, the parse can continue.
bfa74976
RS
6501
6502For example:
6503
6504@example
6505stmnts: /* empty string */
6506 | stmnts '\n'
6507 | stmnts exp '\n'
6508 | stmnts error '\n'
6509@end example
6510
6511The fourth rule in this example says that an error followed by a newline
6512makes a valid addition to any @code{stmnts}.
6513
6514What happens if a syntax error occurs in the middle of an @code{exp}? The
6515error recovery rule, interpreted strictly, applies to the precise sequence
6516of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6517the middle of an @code{exp}, there will probably be some additional tokens
6518and subexpressions on the stack after the last @code{stmnts}, and there
6519will be tokens to read before the next newline. So the rule is not
6520applicable in the ordinary way.
6521
6522But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6523the semantic context and part of the input. First it discards states
6524and objects from the stack until it gets back to a state in which the
bfa74976 6525@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6526already parsed are discarded, back to the last complete @code{stmnts}.)
6527At this point the @code{error} token can be shifted. Then, if the old
742e4900 6528lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6529tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6530this example, Bison reads and discards input until the next newline so
6531that the fourth rule can apply. Note that discarded symbols are
6532possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6533Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6534
6535The choice of error rules in the grammar is a choice of strategies for
6536error recovery. A simple and useful strategy is simply to skip the rest of
6537the current input line or current statement if an error is detected:
6538
6539@example
72d2299c 6540stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6541@end example
6542
6543It is also useful to recover to the matching close-delimiter of an
6544opening-delimiter that has already been parsed. Otherwise the
6545close-delimiter will probably appear to be unmatched, and generate another,
6546spurious error message:
6547
6548@example
6549primary: '(' expr ')'
6550 | '(' error ')'
6551 @dots{}
6552 ;
6553@end example
6554
6555Error recovery strategies are necessarily guesses. When they guess wrong,
6556one syntax error often leads to another. In the above example, the error
6557recovery rule guesses that an error is due to bad input within one
6558@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6559middle of a valid @code{stmnt}. After the error recovery rule recovers
6560from the first error, another syntax error will be found straightaway,
6561since the text following the spurious semicolon is also an invalid
6562@code{stmnt}.
6563
6564To prevent an outpouring of error messages, the parser will output no error
6565message for another syntax error that happens shortly after the first; only
6566after three consecutive input tokens have been successfully shifted will
6567error messages resume.
6568
6569Note that rules which accept the @code{error} token may have actions, just
6570as any other rules can.
6571
6572@findex yyerrok
6573You can make error messages resume immediately by using the macro
6574@code{yyerrok} in an action. If you do this in the error rule's action, no
6575error messages will be suppressed. This macro requires no arguments;
6576@samp{yyerrok;} is a valid C statement.
6577
6578@findex yyclearin
742e4900 6579The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6580this is unacceptable, then the macro @code{yyclearin} may be used to clear
6581this token. Write the statement @samp{yyclearin;} in the error rule's
6582action.
32c29292 6583@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6584
6e649e65 6585For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6586called that advances the input stream to some point where parsing should
6587once again commence. The next symbol returned by the lexical scanner is
742e4900 6588probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6589with @samp{yyclearin;}.
6590
6591@vindex YYRECOVERING
02103984
PE
6592The expression @code{YYRECOVERING ()} yields 1 when the parser
6593is recovering from a syntax error, and 0 otherwise.
6594Syntax error diagnostics are suppressed while recovering from a syntax
6595error.
bfa74976 6596
342b8b6e 6597@node Context Dependency
bfa74976
RS
6598@chapter Handling Context Dependencies
6599
6600The Bison paradigm is to parse tokens first, then group them into larger
6601syntactic units. In many languages, the meaning of a token is affected by
6602its context. Although this violates the Bison paradigm, certain techniques
6603(known as @dfn{kludges}) may enable you to write Bison parsers for such
6604languages.
6605
6606@menu
6607* Semantic Tokens:: Token parsing can depend on the semantic context.
6608* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6609* Tie-in Recovery:: Lexical tie-ins have implications for how
6610 error recovery rules must be written.
6611@end menu
6612
6613(Actually, ``kludge'' means any technique that gets its job done but is
6614neither clean nor robust.)
6615
342b8b6e 6616@node Semantic Tokens
bfa74976
RS
6617@section Semantic Info in Token Types
6618
6619The C language has a context dependency: the way an identifier is used
6620depends on what its current meaning is. For example, consider this:
6621
6622@example
6623foo (x);
6624@end example
6625
6626This looks like a function call statement, but if @code{foo} is a typedef
6627name, then this is actually a declaration of @code{x}. How can a Bison
6628parser for C decide how to parse this input?
6629
c827f760 6630The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6631@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6632identifier, it looks up the current declaration of the identifier in order
6633to decide which token type to return: @code{TYPENAME} if the identifier is
6634declared as a typedef, @code{IDENTIFIER} otherwise.
6635
6636The grammar rules can then express the context dependency by the choice of
6637token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6638but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6639@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6640is @emph{not} significant, such as in declarations that can shadow a
6641typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6642accepted---there is one rule for each of the two token types.
6643
6644This technique is simple to use if the decision of which kinds of
6645identifiers to allow is made at a place close to where the identifier is
6646parsed. But in C this is not always so: C allows a declaration to
6647redeclare a typedef name provided an explicit type has been specified
6648earlier:
6649
6650@example
3a4f411f
PE
6651typedef int foo, bar;
6652int baz (void)
6653@{
6654 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6655 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6656 return foo (bar);
6657@}
bfa74976
RS
6658@end example
6659
6660Unfortunately, the name being declared is separated from the declaration
6661construct itself by a complicated syntactic structure---the ``declarator''.
6662
9ecbd125 6663As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6664all the nonterminal names changed: once for parsing a declaration in
6665which a typedef name can be redefined, and once for parsing a
6666declaration in which that can't be done. Here is a part of the
6667duplication, with actions omitted for brevity:
bfa74976
RS
6668
6669@example
6670initdcl:
6671 declarator maybeasm '='
6672 init
6673 | declarator maybeasm
6674 ;
6675
6676notype_initdcl:
6677 notype_declarator maybeasm '='
6678 init
6679 | notype_declarator maybeasm
6680 ;
6681@end example
6682
6683@noindent
6684Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6685cannot. The distinction between @code{declarator} and
6686@code{notype_declarator} is the same sort of thing.
6687
6688There is some similarity between this technique and a lexical tie-in
6689(described next), in that information which alters the lexical analysis is
6690changed during parsing by other parts of the program. The difference is
6691here the information is global, and is used for other purposes in the
6692program. A true lexical tie-in has a special-purpose flag controlled by
6693the syntactic context.
6694
342b8b6e 6695@node Lexical Tie-ins
bfa74976
RS
6696@section Lexical Tie-ins
6697@cindex lexical tie-in
6698
6699One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6700which is set by Bison actions, whose purpose is to alter the way tokens are
6701parsed.
6702
6703For example, suppose we have a language vaguely like C, but with a special
6704construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6705an expression in parentheses in which all integers are hexadecimal. In
6706particular, the token @samp{a1b} must be treated as an integer rather than
6707as an identifier if it appears in that context. Here is how you can do it:
6708
6709@example
6710@group
6711%@{
38a92d50
PE
6712 int hexflag;
6713 int yylex (void);
6714 void yyerror (char const *);
bfa74976
RS
6715%@}
6716%%
6717@dots{}
6718@end group
6719@group
6720expr: IDENTIFIER
6721 | constant
6722 | HEX '('
6723 @{ hexflag = 1; @}
6724 expr ')'
6725 @{ hexflag = 0;
6726 $$ = $4; @}
6727 | expr '+' expr
6728 @{ $$ = make_sum ($1, $3); @}
6729 @dots{}
6730 ;
6731@end group
6732
6733@group
6734constant:
6735 INTEGER
6736 | STRING
6737 ;
6738@end group
6739@end example
6740
6741@noindent
6742Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6743it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6744with letters are parsed as integers if possible.
6745
342b8b6e
AD
6746The declaration of @code{hexflag} shown in the prologue of the parser file
6747is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6748You must also write the code in @code{yylex} to obey the flag.
bfa74976 6749
342b8b6e 6750@node Tie-in Recovery
bfa74976
RS
6751@section Lexical Tie-ins and Error Recovery
6752
6753Lexical tie-ins make strict demands on any error recovery rules you have.
6754@xref{Error Recovery}.
6755
6756The reason for this is that the purpose of an error recovery rule is to
6757abort the parsing of one construct and resume in some larger construct.
6758For example, in C-like languages, a typical error recovery rule is to skip
6759tokens until the next semicolon, and then start a new statement, like this:
6760
6761@example
6762stmt: expr ';'
6763 | IF '(' expr ')' stmt @{ @dots{} @}
6764 @dots{}
6765 error ';'
6766 @{ hexflag = 0; @}
6767 ;
6768@end example
6769
6770If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6771construct, this error rule will apply, and then the action for the
6772completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6773remain set for the entire rest of the input, or until the next @code{hex}
6774keyword, causing identifiers to be misinterpreted as integers.
6775
6776To avoid this problem the error recovery rule itself clears @code{hexflag}.
6777
6778There may also be an error recovery rule that works within expressions.
6779For example, there could be a rule which applies within parentheses
6780and skips to the close-parenthesis:
6781
6782@example
6783@group
6784expr: @dots{}
6785 | '(' expr ')'
6786 @{ $$ = $2; @}
6787 | '(' error ')'
6788 @dots{}
6789@end group
6790@end example
6791
6792If this rule acts within the @code{hex} construct, it is not going to abort
6793that construct (since it applies to an inner level of parentheses within
6794the construct). Therefore, it should not clear the flag: the rest of
6795the @code{hex} construct should be parsed with the flag still in effect.
6796
6797What if there is an error recovery rule which might abort out of the
6798@code{hex} construct or might not, depending on circumstances? There is no
6799way you can write the action to determine whether a @code{hex} construct is
6800being aborted or not. So if you are using a lexical tie-in, you had better
6801make sure your error recovery rules are not of this kind. Each rule must
6802be such that you can be sure that it always will, or always won't, have to
6803clear the flag.
6804
ec3bc396
AD
6805@c ================================================== Debugging Your Parser
6806
342b8b6e 6807@node Debugging
bfa74976 6808@chapter Debugging Your Parser
ec3bc396
AD
6809
6810Developing a parser can be a challenge, especially if you don't
6811understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6812Algorithm}). Even so, sometimes a detailed description of the automaton
6813can help (@pxref{Understanding, , Understanding Your Parser}), or
6814tracing the execution of the parser can give some insight on why it
6815behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6816
6817@menu
6818* Understanding:: Understanding the structure of your parser.
6819* Tracing:: Tracing the execution of your parser.
6820@end menu
6821
6822@node Understanding
6823@section Understanding Your Parser
6824
6825As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6826Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6827frequent than one would hope), looking at this automaton is required to
6828tune or simply fix a parser. Bison provides two different
35fe0834 6829representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6830
6831The textual file is generated when the options @option{--report} or
6832@option{--verbose} are specified, see @xref{Invocation, , Invoking
6833Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6834the parser output file name, and adding @samp{.output} instead.
6835Therefore, if the input file is @file{foo.y}, then the parser file is
6836called @file{foo.tab.c} by default. As a consequence, the verbose
6837output file is called @file{foo.output}.
6838
6839The following grammar file, @file{calc.y}, will be used in the sequel:
6840
6841@example
6842%token NUM STR
6843%left '+' '-'
6844%left '*'
6845%%
6846exp: exp '+' exp
6847 | exp '-' exp
6848 | exp '*' exp
6849 | exp '/' exp
6850 | NUM
6851 ;
6852useless: STR;
6853%%
6854@end example
6855
88bce5a2
AD
6856@command{bison} reports:
6857
6858@example
6859calc.y: warning: 1 useless nonterminal and 1 useless rule
6860calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6861calc.y:11.10-12: warning: useless rule: useless: STR
6862calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6863@end example
6864
6865When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6866creates a file @file{calc.output} with contents detailed below. The
6867order of the output and the exact presentation might vary, but the
6868interpretation is the same.
ec3bc396
AD
6869
6870The first section includes details on conflicts that were solved thanks
6871to precedence and/or associativity:
6872
6873@example
6874Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6875Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6876Conflict in state 8 between rule 2 and token '*' resolved as shift.
6877@exdent @dots{}
6878@end example
6879
6880@noindent
6881The next section lists states that still have conflicts.
6882
6883@example
5a99098d
PE
6884State 8 conflicts: 1 shift/reduce
6885State 9 conflicts: 1 shift/reduce
6886State 10 conflicts: 1 shift/reduce
6887State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6888@end example
6889
6890@noindent
6891@cindex token, useless
6892@cindex useless token
6893@cindex nonterminal, useless
6894@cindex useless nonterminal
6895@cindex rule, useless
6896@cindex useless rule
6897The next section reports useless tokens, nonterminal and rules. Useless
6898nonterminals and rules are removed in order to produce a smaller parser,
6899but useless tokens are preserved, since they might be used by the
6900scanner (note the difference between ``useless'' and ``not used''
6901below):
6902
6903@example
6904Useless nonterminals:
6905 useless
6906
6907Terminals which are not used:
6908 STR
6909
6910Useless rules:
6911#6 useless: STR;
6912@end example
6913
6914@noindent
6915The next section reproduces the exact grammar that Bison used:
6916
6917@example
6918Grammar
6919
6920 Number, Line, Rule
88bce5a2 6921 0 5 $accept -> exp $end
ec3bc396
AD
6922 1 5 exp -> exp '+' exp
6923 2 6 exp -> exp '-' exp
6924 3 7 exp -> exp '*' exp
6925 4 8 exp -> exp '/' exp
6926 5 9 exp -> NUM
6927@end example
6928
6929@noindent
6930and reports the uses of the symbols:
6931
6932@example
6933Terminals, with rules where they appear
6934
88bce5a2 6935$end (0) 0
ec3bc396
AD
6936'*' (42) 3
6937'+' (43) 1
6938'-' (45) 2
6939'/' (47) 4
6940error (256)
6941NUM (258) 5
6942
6943Nonterminals, with rules where they appear
6944
88bce5a2 6945$accept (8)
ec3bc396
AD
6946 on left: 0
6947exp (9)
6948 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6949@end example
6950
6951@noindent
6952@cindex item
6953@cindex pointed rule
6954@cindex rule, pointed
6955Bison then proceeds onto the automaton itself, describing each state
6956with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6957item is a production rule together with a point (marked by @samp{.})
6958that the input cursor.
6959
6960@example
6961state 0
6962
88bce5a2 6963 $accept -> . exp $ (rule 0)
ec3bc396 6964
2a8d363a 6965 NUM shift, and go to state 1
ec3bc396 6966
2a8d363a 6967 exp go to state 2
ec3bc396
AD
6968@end example
6969
6970This reads as follows: ``state 0 corresponds to being at the very
6971beginning of the parsing, in the initial rule, right before the start
6972symbol (here, @code{exp}). When the parser returns to this state right
6973after having reduced a rule that produced an @code{exp}, the control
6974flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6975symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6976the parse stack, and the control flow jumps to state 1. Any other
742e4900 6977lookahead triggers a syntax error.''
ec3bc396
AD
6978
6979@cindex core, item set
6980@cindex item set core
6981@cindex kernel, item set
6982@cindex item set core
6983Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6984report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6985at the beginning of any rule deriving an @code{exp}. By default Bison
6986reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6987you want to see more detail you can invoke @command{bison} with
6988@option{--report=itemset} to list all the items, include those that can
6989be derived:
6990
6991@example
6992state 0
6993
88bce5a2 6994 $accept -> . exp $ (rule 0)
ec3bc396
AD
6995 exp -> . exp '+' exp (rule 1)
6996 exp -> . exp '-' exp (rule 2)
6997 exp -> . exp '*' exp (rule 3)
6998 exp -> . exp '/' exp (rule 4)
6999 exp -> . NUM (rule 5)
7000
7001 NUM shift, and go to state 1
7002
7003 exp go to state 2
7004@end example
7005
7006@noindent
7007In the state 1...
7008
7009@example
7010state 1
7011
7012 exp -> NUM . (rule 5)
7013
2a8d363a 7014 $default reduce using rule 5 (exp)
ec3bc396
AD
7015@end example
7016
7017@noindent
742e4900 7018the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7019(@samp{$default}), the parser will reduce it. If it was coming from
7020state 0, then, after this reduction it will return to state 0, and will
7021jump to state 2 (@samp{exp: go to state 2}).
7022
7023@example
7024state 2
7025
88bce5a2 7026 $accept -> exp . $ (rule 0)
ec3bc396
AD
7027 exp -> exp . '+' exp (rule 1)
7028 exp -> exp . '-' exp (rule 2)
7029 exp -> exp . '*' exp (rule 3)
7030 exp -> exp . '/' exp (rule 4)
7031
2a8d363a
AD
7032 $ shift, and go to state 3
7033 '+' shift, and go to state 4
7034 '-' shift, and go to state 5
7035 '*' shift, and go to state 6
7036 '/' shift, and go to state 7
ec3bc396
AD
7037@end example
7038
7039@noindent
7040In state 2, the automaton can only shift a symbol. For instance,
742e4900 7041because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7042@samp{+}, it will be shifted on the parse stack, and the automaton
7043control will jump to state 4, corresponding to the item @samp{exp -> exp
7044'+' . exp}. Since there is no default action, any other token than
6e649e65 7045those listed above will trigger a syntax error.
ec3bc396
AD
7046
7047The state 3 is named the @dfn{final state}, or the @dfn{accepting
7048state}:
7049
7050@example
7051state 3
7052
88bce5a2 7053 $accept -> exp $ . (rule 0)
ec3bc396 7054
2a8d363a 7055 $default accept
ec3bc396
AD
7056@end example
7057
7058@noindent
7059the initial rule is completed (the start symbol and the end
7060of input were read), the parsing exits successfully.
7061
7062The interpretation of states 4 to 7 is straightforward, and is left to
7063the reader.
7064
7065@example
7066state 4
7067
7068 exp -> exp '+' . exp (rule 1)
7069
2a8d363a 7070 NUM shift, and go to state 1
ec3bc396 7071
2a8d363a 7072 exp go to state 8
ec3bc396
AD
7073
7074state 5
7075
7076 exp -> exp '-' . exp (rule 2)
7077
2a8d363a 7078 NUM shift, and go to state 1
ec3bc396 7079
2a8d363a 7080 exp go to state 9
ec3bc396
AD
7081
7082state 6
7083
7084 exp -> exp '*' . exp (rule 3)
7085
2a8d363a 7086 NUM shift, and go to state 1
ec3bc396 7087
2a8d363a 7088 exp go to state 10
ec3bc396
AD
7089
7090state 7
7091
7092 exp -> exp '/' . exp (rule 4)
7093
2a8d363a 7094 NUM shift, and go to state 1
ec3bc396 7095
2a8d363a 7096 exp go to state 11
ec3bc396
AD
7097@end example
7098
5a99098d
PE
7099As was announced in beginning of the report, @samp{State 8 conflicts:
71001 shift/reduce}:
ec3bc396
AD
7101
7102@example
7103state 8
7104
7105 exp -> exp . '+' exp (rule 1)
7106 exp -> exp '+' exp . (rule 1)
7107 exp -> exp . '-' exp (rule 2)
7108 exp -> exp . '*' exp (rule 3)
7109 exp -> exp . '/' exp (rule 4)
7110
2a8d363a
AD
7111 '*' shift, and go to state 6
7112 '/' shift, and go to state 7
ec3bc396 7113
2a8d363a
AD
7114 '/' [reduce using rule 1 (exp)]
7115 $default reduce using rule 1 (exp)
ec3bc396
AD
7116@end example
7117
742e4900 7118Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7119either shifting (and going to state 7), or reducing rule 1. The
7120conflict means that either the grammar is ambiguous, or the parser lacks
7121information to make the right decision. Indeed the grammar is
7122ambiguous, as, since we did not specify the precedence of @samp{/}, the
7123sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7124NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7125NUM}, which corresponds to reducing rule 1.
7126
c827f760 7127Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7128arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7129Shift/Reduce Conflicts}. Discarded actions are reported in between
7130square brackets.
7131
7132Note that all the previous states had a single possible action: either
7133shifting the next token and going to the corresponding state, or
7134reducing a single rule. In the other cases, i.e., when shifting
7135@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7136possible, the lookahead is required to select the action. State 8 is
7137one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7138is shifting, otherwise the action is reducing rule 1. In other words,
7139the first two items, corresponding to rule 1, are not eligible when the
742e4900 7140lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7141precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7142with some set of possible lookahead tokens. When run with
7143@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7144
7145@example
7146state 8
7147
7148 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
7149 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7150 exp -> exp . '-' exp (rule 2)
7151 exp -> exp . '*' exp (rule 3)
7152 exp -> exp . '/' exp (rule 4)
7153
7154 '*' shift, and go to state 6
7155 '/' shift, and go to state 7
7156
7157 '/' [reduce using rule 1 (exp)]
7158 $default reduce using rule 1 (exp)
7159@end example
7160
7161The remaining states are similar:
7162
7163@example
7164state 9
7165
7166 exp -> exp . '+' exp (rule 1)
7167 exp -> exp . '-' exp (rule 2)
7168 exp -> exp '-' exp . (rule 2)
7169 exp -> exp . '*' exp (rule 3)
7170 exp -> exp . '/' exp (rule 4)
7171
2a8d363a
AD
7172 '*' shift, and go to state 6
7173 '/' shift, and go to state 7
ec3bc396 7174
2a8d363a
AD
7175 '/' [reduce using rule 2 (exp)]
7176 $default reduce using rule 2 (exp)
ec3bc396
AD
7177
7178state 10
7179
7180 exp -> exp . '+' exp (rule 1)
7181 exp -> exp . '-' exp (rule 2)
7182 exp -> exp . '*' exp (rule 3)
7183 exp -> exp '*' exp . (rule 3)
7184 exp -> exp . '/' exp (rule 4)
7185
2a8d363a 7186 '/' shift, and go to state 7
ec3bc396 7187
2a8d363a
AD
7188 '/' [reduce using rule 3 (exp)]
7189 $default reduce using rule 3 (exp)
ec3bc396
AD
7190
7191state 11
7192
7193 exp -> exp . '+' exp (rule 1)
7194 exp -> exp . '-' exp (rule 2)
7195 exp -> exp . '*' exp (rule 3)
7196 exp -> exp . '/' exp (rule 4)
7197 exp -> exp '/' exp . (rule 4)
7198
2a8d363a
AD
7199 '+' shift, and go to state 4
7200 '-' shift, and go to state 5
7201 '*' shift, and go to state 6
7202 '/' shift, and go to state 7
ec3bc396 7203
2a8d363a
AD
7204 '+' [reduce using rule 4 (exp)]
7205 '-' [reduce using rule 4 (exp)]
7206 '*' [reduce using rule 4 (exp)]
7207 '/' [reduce using rule 4 (exp)]
7208 $default reduce using rule 4 (exp)
ec3bc396
AD
7209@end example
7210
7211@noindent
fa7e68c3
PE
7212Observe that state 11 contains conflicts not only due to the lack of
7213precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7214@samp{*}, but also because the
ec3bc396
AD
7215associativity of @samp{/} is not specified.
7216
7217
7218@node Tracing
7219@section Tracing Your Parser
bfa74976
RS
7220@findex yydebug
7221@cindex debugging
7222@cindex tracing the parser
7223
7224If a Bison grammar compiles properly but doesn't do what you want when it
7225runs, the @code{yydebug} parser-trace feature can help you figure out why.
7226
3ded9a63
AD
7227There are several means to enable compilation of trace facilities:
7228
7229@table @asis
7230@item the macro @code{YYDEBUG}
7231@findex YYDEBUG
7232Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7233parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7234@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7235YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7236Prologue}).
7237
7238@item the option @option{-t}, @option{--debug}
7239Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7240,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7241
7242@item the directive @samp{%debug}
7243@findex %debug
7244Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7245Declaration Summary}). This is a Bison extension, which will prove
7246useful when Bison will output parsers for languages that don't use a
c827f760
PE
7247preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7248you, this is
3ded9a63
AD
7249the preferred solution.
7250@end table
7251
7252We suggest that you always enable the debug option so that debugging is
7253always possible.
bfa74976 7254
02a81e05 7255The trace facility outputs messages with macro calls of the form
e2742e46 7256@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7257@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7258arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7259define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7260and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7261
7262Once you have compiled the program with trace facilities, the way to
7263request a trace is to store a nonzero value in the variable @code{yydebug}.
7264You can do this by making the C code do it (in @code{main}, perhaps), or
7265you can alter the value with a C debugger.
7266
7267Each step taken by the parser when @code{yydebug} is nonzero produces a
7268line or two of trace information, written on @code{stderr}. The trace
7269messages tell you these things:
7270
7271@itemize @bullet
7272@item
7273Each time the parser calls @code{yylex}, what kind of token was read.
7274
7275@item
7276Each time a token is shifted, the depth and complete contents of the
7277state stack (@pxref{Parser States}).
7278
7279@item
7280Each time a rule is reduced, which rule it is, and the complete contents
7281of the state stack afterward.
7282@end itemize
7283
7284To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7285produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7286Bison}). This file shows the meaning of each state in terms of
7287positions in various rules, and also what each state will do with each
7288possible input token. As you read the successive trace messages, you
7289can see that the parser is functioning according to its specification in
7290the listing file. Eventually you will arrive at the place where
7291something undesirable happens, and you will see which parts of the
7292grammar are to blame.
bfa74976
RS
7293
7294The parser file is a C program and you can use C debuggers on it, but it's
7295not easy to interpret what it is doing. The parser function is a
7296finite-state machine interpreter, and aside from the actions it executes
7297the same code over and over. Only the values of variables show where in
7298the grammar it is working.
7299
7300@findex YYPRINT
7301The debugging information normally gives the token type of each token
7302read, but not its semantic value. You can optionally define a macro
7303named @code{YYPRINT} to provide a way to print the value. If you define
7304@code{YYPRINT}, it should take three arguments. The parser will pass a
7305standard I/O stream, the numeric code for the token type, and the token
7306value (from @code{yylval}).
7307
7308Here is an example of @code{YYPRINT} suitable for the multi-function
7309calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7310
7311@smallexample
38a92d50
PE
7312%@{
7313 static void print_token_value (FILE *, int, YYSTYPE);
7314 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7315%@}
7316
7317@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7318
7319static void
831d3c99 7320print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7321@{
7322 if (type == VAR)
d3c4e709 7323 fprintf (file, "%s", value.tptr->name);
bfa74976 7324 else if (type == NUM)
d3c4e709 7325 fprintf (file, "%d", value.val);
bfa74976
RS
7326@}
7327@end smallexample
7328
ec3bc396
AD
7329@c ================================================= Invoking Bison
7330
342b8b6e 7331@node Invocation
bfa74976
RS
7332@chapter Invoking Bison
7333@cindex invoking Bison
7334@cindex Bison invocation
7335@cindex options for invoking Bison
7336
7337The usual way to invoke Bison is as follows:
7338
7339@example
7340bison @var{infile}
7341@end example
7342
7343Here @var{infile} is the grammar file name, which usually ends in
7344@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7345with @samp{.tab.c} and removing any leading directory. Thus, the
7346@samp{bison foo.y} file name yields
7347@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7348@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7349C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7350or @file{foo.y++}. Then, the output files will take an extension like
7351the given one as input (respectively @file{foo.tab.cpp} and
7352@file{foo.tab.c++}).
fa4d969f 7353This feature takes effect with all options that manipulate file names like
234a3be3
AD
7354@samp{-o} or @samp{-d}.
7355
7356For example :
7357
7358@example
7359bison -d @var{infile.yxx}
7360@end example
84163231 7361@noindent
72d2299c 7362will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7363
7364@example
b56471a6 7365bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7366@end example
84163231 7367@noindent
234a3be3
AD
7368will produce @file{output.c++} and @file{outfile.h++}.
7369
397ec073
PE
7370For compatibility with @acronym{POSIX}, the standard Bison
7371distribution also contains a shell script called @command{yacc} that
7372invokes Bison with the @option{-y} option.
7373
bfa74976 7374@menu
13863333 7375* Bison Options:: All the options described in detail,
c827f760 7376 in alphabetical order by short options.
bfa74976 7377* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7378* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7379@end menu
7380
342b8b6e 7381@node Bison Options
bfa74976
RS
7382@section Bison Options
7383
7384Bison supports both traditional single-letter options and mnemonic long
7385option names. Long option names are indicated with @samp{--} instead of
7386@samp{-}. Abbreviations for option names are allowed as long as they
7387are unique. When a long option takes an argument, like
7388@samp{--file-prefix}, connect the option name and the argument with
7389@samp{=}.
7390
7391Here is a list of options that can be used with Bison, alphabetized by
7392short option. It is followed by a cross key alphabetized by long
7393option.
7394
89cab50d
AD
7395@c Please, keep this ordered as in `bison --help'.
7396@noindent
7397Operations modes:
7398@table @option
7399@item -h
7400@itemx --help
7401Print a summary of the command-line options to Bison and exit.
bfa74976 7402
89cab50d
AD
7403@item -V
7404@itemx --version
7405Print the version number of Bison and exit.
bfa74976 7406
f7ab6a50
PE
7407@item --print-localedir
7408Print the name of the directory containing locale-dependent data.
7409
89cab50d
AD
7410@item -y
7411@itemx --yacc
54662697
PE
7412Act more like the traditional Yacc command. This can cause
7413different diagnostics to be generated, and may change behavior in
7414other minor ways. Most importantly, imitate Yacc's output
7415file name conventions, so that the parser output file is called
89cab50d 7416@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7417@file{y.tab.h}.
7418Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7419statements in addition to an @code{enum} to associate token numbers with token
7420names.
7421Thus, the following shell script can substitute for Yacc, and the Bison
7422distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7423
89cab50d 7424@example
397ec073 7425#! /bin/sh
26e06a21 7426bison -y "$@@"
89cab50d 7427@end example
54662697
PE
7428
7429The @option{-y}/@option{--yacc} option is intended for use with
7430traditional Yacc grammars. If your grammar uses a Bison extension
7431like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7432this option is specified.
7433
89cab50d
AD
7434@end table
7435
7436@noindent
7437Tuning the parser:
7438
7439@table @option
7440@item -t
7441@itemx --debug
4947ebdb
PE
7442In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7443already defined, so that the debugging facilities are compiled.
ec3bc396 7444@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7445
0e021770
PE
7446@item -L @var{language}
7447@itemx --language=@var{language}
7448Specify the programming language for the generated parser, as if
7449@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7450Summary}). Currently supported languages include C and C++.
e6e704dc 7451@var{language} is case-insensitive.
0e021770 7452
89cab50d 7453@item --locations
d8988b2f 7454Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7455
7456@item -p @var{prefix}
7457@itemx --name-prefix=@var{prefix}
02975b9a 7458Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7459@xref{Decl Summary}.
bfa74976
RS
7460
7461@item -l
7462@itemx --no-lines
7463Don't put any @code{#line} preprocessor commands in the parser file.
7464Ordinarily Bison puts them in the parser file so that the C compiler
7465and debuggers will associate errors with your source file, the
7466grammar file. This option causes them to associate errors with the
95e742f7 7467parser file, treating it as an independent source file in its own right.
bfa74976 7468
931c7513
RS
7469@item -n
7470@itemx --no-parser
d8988b2f 7471Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7472
e6e704dc
JD
7473@item -S @var{file}
7474@itemx --skeleton=@var{file}
a7867f53 7475Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7476(@pxref{Decl Summary, , Bison Declaration Summary}).
7477
a7867f53
JD
7478You probably don't need this option unless you are developing Bison.
7479You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7480different language, because it is clearer and because it will always
7481choose the correct skeleton for non-deterministic or push parsers.
7482
a7867f53
JD
7483If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7484file in the Bison installation directory.
7485If it does, @var{file} is an absolute file name or a file name relative to the
7486current working directory.
7487This is similar to how most shells resolve commands.
7488
89cab50d
AD
7489@item -k
7490@itemx --token-table
d8988b2f 7491Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7492@end table
bfa74976 7493
89cab50d
AD
7494@noindent
7495Adjust the output:
bfa74976 7496
89cab50d
AD
7497@table @option
7498@item -d
d8988b2f
AD
7499@itemx --defines
7500Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7501file containing macro definitions for the token type names defined in
4bfd5e4e 7502the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7503
342b8b6e 7504@item --defines=@var{defines-file}
d8988b2f 7505Same as above, but save in the file @var{defines-file}.
342b8b6e 7506
89cab50d
AD
7507@item -b @var{file-prefix}
7508@itemx --file-prefix=@var{prefix}
9c437126 7509Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7510for all Bison output file names. @xref{Decl Summary}.
bfa74976 7511
ec3bc396
AD
7512@item -r @var{things}
7513@itemx --report=@var{things}
7514Write an extra output file containing verbose description of the comma
7515separated list of @var{things} among:
7516
7517@table @code
7518@item state
7519Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7520@acronym{LALR} automaton.
ec3bc396 7521
742e4900 7522@item lookahead
ec3bc396 7523Implies @code{state} and augments the description of the automaton with
742e4900 7524each rule's lookahead set.
ec3bc396
AD
7525
7526@item itemset
7527Implies @code{state} and augments the description of the automaton with
7528the full set of items for each state, instead of its core only.
7529@end table
7530
bfa74976
RS
7531@item -v
7532@itemx --verbose
9c437126 7533Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7534file containing verbose descriptions of the grammar and
72d2299c 7535parser. @xref{Decl Summary}.
bfa74976 7536
fa4d969f
PE
7537@item -o @var{file}
7538@itemx --output=@var{file}
7539Specify the @var{file} for the parser file.
bfa74976 7540
fa4d969f 7541The other output files' names are constructed from @var{file} as
d8988b2f 7542described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7543
7544@item -g
35fe0834
PE
7545Output a graphical representation of the @acronym{LALR}(1) grammar
7546automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7547@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7548If the grammar file is @file{foo.y}, the output file will
7549be @file{foo.dot}.
342b8b6e
AD
7550
7551@item --graph=@var{graph-file}
72d2299c
PE
7552The behavior of @var{--graph} is the same than @samp{-g}. The only
7553difference is that it has an optional argument which is the name of
fa4d969f 7554the output graph file.
bfa74976
RS
7555@end table
7556
342b8b6e 7557@node Option Cross Key
bfa74976
RS
7558@section Option Cross Key
7559
aa08666d 7560@c FIXME: How about putting the directives too?
bfa74976
RS
7561Here is a list of options, alphabetized by long option, to help you find
7562the corresponding short option.
7563
aa08666d
AD
7564@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7565@headitem Long Option @tab Short Option
7566@item @option{--debug} @tab @option{-t}
7567@item @option{--defines=@var{defines-file}} @tab @option{-d}
7568@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7569@item @option{--graph=@var{graph-file}} @tab @option{-d}
7570@item @option{--help} @tab @option{-h}
7571@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7572@item @option{--no-lines} @tab @option{-l}
7573@item @option{--no-parser} @tab @option{-n}
7574@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7575@item @option{--print-localedir} @tab
7576@item @option{--token-table} @tab @option{-k}
7577@item @option{--verbose} @tab @option{-v}
7578@item @option{--version} @tab @option{-V}
7579@item @option{--yacc} @tab @option{-y}
7580@end multitable
bfa74976 7581
93dd49ab
PE
7582@node Yacc Library
7583@section Yacc Library
7584
7585The Yacc library contains default implementations of the
7586@code{yyerror} and @code{main} functions. These default
7587implementations are normally not useful, but @acronym{POSIX} requires
7588them. To use the Yacc library, link your program with the
7589@option{-ly} option. Note that Bison's implementation of the Yacc
7590library is distributed under the terms of the @acronym{GNU} General
7591Public License (@pxref{Copying}).
7592
7593If you use the Yacc library's @code{yyerror} function, you should
7594declare @code{yyerror} as follows:
7595
7596@example
7597int yyerror (char const *);
7598@end example
7599
7600Bison ignores the @code{int} value returned by this @code{yyerror}.
7601If you use the Yacc library's @code{main} function, your
7602@code{yyparse} function should have the following type signature:
7603
7604@example
7605int yyparse (void);
7606@end example
7607
12545799
AD
7608@c ================================================= C++ Bison
7609
8405b70c
PB
7610@node Other Languages
7611@chapter Parsers Written In Other Languages
12545799
AD
7612
7613@menu
7614* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7615* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7616@end menu
7617
7618@node C++ Parsers
7619@section C++ Parsers
7620
7621@menu
7622* C++ Bison Interface:: Asking for C++ parser generation
7623* C++ Semantic Values:: %union vs. C++
7624* C++ Location Values:: The position and location classes
7625* C++ Parser Interface:: Instantiating and running the parser
7626* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 7627* A Complete C++ Example:: Demonstrating their use
12545799
AD
7628@end menu
7629
7630@node C++ Bison Interface
7631@subsection C++ Bison Interface
0e021770 7632@c - %language "C++"
12545799
AD
7633@c - Always pure
7634@c - initial action
7635
e6e704dc
JD
7636The C++ @acronym{LALR}(1) parser is selected using the language directive,
7637@samp{%language "C++"}, or the synonymous command-line option
7638@option{--language=c++}.
7639@xref{Decl Summary}.
0e021770
PE
7640
7641When run, @command{bison} will create several
aa08666d
AD
7642entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7643directive to change the namespace name, see @ref{Decl Summary}. The
7644various classes are generated in the following files:
7645
12545799
AD
7646@table @file
7647@item position.hh
7648@itemx location.hh
7649The definition of the classes @code{position} and @code{location},
7650used for location tracking. @xref{C++ Location Values}.
7651
7652@item stack.hh
7653An auxiliary class @code{stack} used by the parser.
7654
fa4d969f
PE
7655@item @var{file}.hh
7656@itemx @var{file}.cc
cd8b5791
AD
7657(Assuming the extension of the input file was @samp{.yy}.) The
7658declaration and implementation of the C++ parser class. The basename
7659and extension of these two files follow the same rules as with regular C
7660parsers (@pxref{Invocation}).
12545799 7661
cd8b5791
AD
7662The header is @emph{mandatory}; you must either pass
7663@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7664@samp{%defines} directive.
7665@end table
7666
7667All these files are documented using Doxygen; run @command{doxygen}
7668for a complete and accurate documentation.
7669
7670@node C++ Semantic Values
7671@subsection C++ Semantic Values
7672@c - No objects in unions
178e123e 7673@c - YYSTYPE
12545799
AD
7674@c - Printer and destructor
7675
7676The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7677Collection of Value Types}. In particular it produces a genuine
7678@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7679within pseudo-unions (similar to Boost variants) might be implemented to
7680alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7681@itemize @minus
7682@item
fb9712a9
AD
7683The type @code{YYSTYPE} is defined but its use is discouraged: rather
7684you should refer to the parser's encapsulated type
7685@code{yy::parser::semantic_type}.
12545799
AD
7686@item
7687Non POD (Plain Old Data) types cannot be used. C++ forbids any
7688instance of classes with constructors in unions: only @emph{pointers}
7689to such objects are allowed.
7690@end itemize
7691
7692Because objects have to be stored via pointers, memory is not
7693reclaimed automatically: using the @code{%destructor} directive is the
7694only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7695Symbols}.
7696
7697
7698@node C++ Location Values
7699@subsection C++ Location Values
7700@c - %locations
7701@c - class Position
7702@c - class Location
16dc6a9e 7703@c - %define filename_type "const symbol::Symbol"
12545799
AD
7704
7705When the directive @code{%locations} is used, the C++ parser supports
7706location tracking, see @ref{Locations, , Locations Overview}. Two
7707auxiliary classes define a @code{position}, a single point in a file,
7708and a @code{location}, a range composed of a pair of
7709@code{position}s (possibly spanning several files).
7710
fa4d969f 7711@deftypemethod {position} {std::string*} file
12545799
AD
7712The name of the file. It will always be handled as a pointer, the
7713parser will never duplicate nor deallocate it. As an experimental
7714feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 7715filename_type "@var{type}"}.
12545799
AD
7716@end deftypemethod
7717
7718@deftypemethod {position} {unsigned int} line
7719The line, starting at 1.
7720@end deftypemethod
7721
7722@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7723Advance by @var{height} lines, resetting the column number.
7724@end deftypemethod
7725
7726@deftypemethod {position} {unsigned int} column
7727The column, starting at 0.
7728@end deftypemethod
7729
7730@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7731Advance by @var{width} columns, without changing the line number.
7732@end deftypemethod
7733
7734@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7735@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7736@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7737@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7738Various forms of syntactic sugar for @code{columns}.
7739@end deftypemethod
7740
7741@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7742Report @var{p} on @var{o} like this:
fa4d969f
PE
7743@samp{@var{file}:@var{line}.@var{column}}, or
7744@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7745@end deftypemethod
7746
7747@deftypemethod {location} {position} begin
7748@deftypemethodx {location} {position} end
7749The first, inclusive, position of the range, and the first beyond.
7750@end deftypemethod
7751
7752@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7753@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7754Advance the @code{end} position.
7755@end deftypemethod
7756
7757@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7758@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7759@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7760Various forms of syntactic sugar.
7761@end deftypemethod
7762
7763@deftypemethod {location} {void} step ()
7764Move @code{begin} onto @code{end}.
7765@end deftypemethod
7766
7767
7768@node C++ Parser Interface
7769@subsection C++ Parser Interface
7770@c - define parser_class_name
7771@c - Ctor
7772@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7773@c debug_stream.
7774@c - Reporting errors
7775
7776The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7777declare and define the parser class in the namespace @code{yy}. The
7778class name defaults to @code{parser}, but may be changed using
16dc6a9e 7779@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 7780this class is detailed below. It can be extended using the
12545799
AD
7781@code{%parse-param} feature: its semantics is slightly changed since
7782it describes an additional member of the parser class, and an
7783additional argument for its constructor.
7784
8a0adb01
AD
7785@defcv {Type} {parser} {semantic_value_type}
7786@defcvx {Type} {parser} {location_value_type}
12545799 7787The types for semantics value and locations.
8a0adb01 7788@end defcv
12545799
AD
7789
7790@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7791Build a new parser object. There are no arguments by default, unless
7792@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7793@end deftypemethod
7794
7795@deftypemethod {parser} {int} parse ()
7796Run the syntactic analysis, and return 0 on success, 1 otherwise.
7797@end deftypemethod
7798
7799@deftypemethod {parser} {std::ostream&} debug_stream ()
7800@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7801Get or set the stream used for tracing the parsing. It defaults to
7802@code{std::cerr}.
7803@end deftypemethod
7804
7805@deftypemethod {parser} {debug_level_type} debug_level ()
7806@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7807Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7808or nonzero, full tracing.
12545799
AD
7809@end deftypemethod
7810
7811@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7812The definition for this member function must be supplied by the user:
7813the parser uses it to report a parser error occurring at @var{l},
7814described by @var{m}.
7815@end deftypemethod
7816
7817
7818@node C++ Scanner Interface
7819@subsection C++ Scanner Interface
7820@c - prefix for yylex.
7821@c - Pure interface to yylex
7822@c - %lex-param
7823
7824The parser invokes the scanner by calling @code{yylex}. Contrary to C
7825parsers, C++ parsers are always pure: there is no point in using the
7826@code{%pure-parser} directive. Therefore the interface is as follows.
7827
7828@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7829Return the next token. Its type is the return value, its semantic
7830value and location being @var{yylval} and @var{yylloc}. Invocations of
7831@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7832@end deftypemethod
7833
7834
7835@node A Complete C++ Example
8405b70c 7836@subsection A Complete C++ Example
12545799
AD
7837
7838This section demonstrates the use of a C++ parser with a simple but
7839complete example. This example should be available on your system,
7840ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7841focuses on the use of Bison, therefore the design of the various C++
7842classes is very naive: no accessors, no encapsulation of members etc.
7843We will use a Lex scanner, and more precisely, a Flex scanner, to
7844demonstrate the various interaction. A hand written scanner is
7845actually easier to interface with.
7846
7847@menu
7848* Calc++ --- C++ Calculator:: The specifications
7849* Calc++ Parsing Driver:: An active parsing context
7850* Calc++ Parser:: A parser class
7851* Calc++ Scanner:: A pure C++ Flex scanner
7852* Calc++ Top Level:: Conducting the band
7853@end menu
7854
7855@node Calc++ --- C++ Calculator
8405b70c 7856@subsubsection Calc++ --- C++ Calculator
12545799
AD
7857
7858Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7859expression, possibly preceded by variable assignments. An
12545799
AD
7860environment containing possibly predefined variables such as
7861@code{one} and @code{two}, is exchanged with the parser. An example
7862of valid input follows.
7863
7864@example
7865three := 3
7866seven := one + two * three
7867seven * seven
7868@end example
7869
7870@node Calc++ Parsing Driver
8405b70c 7871@subsubsection Calc++ Parsing Driver
12545799
AD
7872@c - An env
7873@c - A place to store error messages
7874@c - A place for the result
7875
7876To support a pure interface with the parser (and the scanner) the
7877technique of the ``parsing context'' is convenient: a structure
7878containing all the data to exchange. Since, in addition to simply
7879launch the parsing, there are several auxiliary tasks to execute (open
7880the file for parsing, instantiate the parser etc.), we recommend
7881transforming the simple parsing context structure into a fully blown
7882@dfn{parsing driver} class.
7883
7884The declaration of this driver class, @file{calc++-driver.hh}, is as
7885follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7886required standard library components, and the declaration of the parser
7887class.
12545799 7888
1c59e0a1 7889@comment file: calc++-driver.hh
12545799
AD
7890@example
7891#ifndef CALCXX_DRIVER_HH
7892# define CALCXX_DRIVER_HH
7893# include <string>
7894# include <map>
fb9712a9 7895# include "calc++-parser.hh"
12545799
AD
7896@end example
7897
12545799
AD
7898
7899@noindent
7900Then comes the declaration of the scanning function. Flex expects
7901the signature of @code{yylex} to be defined in the macro
7902@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7903factor both as follows.
1c59e0a1
AD
7904
7905@comment file: calc++-driver.hh
12545799 7906@example
3dc5e96b
PE
7907// Tell Flex the lexer's prototype ...
7908# define YY_DECL \
c095d689
AD
7909 yy::calcxx_parser::token_type \
7910 yylex (yy::calcxx_parser::semantic_type* yylval, \
7911 yy::calcxx_parser::location_type* yylloc, \
7912 calcxx_driver& driver)
12545799
AD
7913// ... and declare it for the parser's sake.
7914YY_DECL;
7915@end example
7916
7917@noindent
7918The @code{calcxx_driver} class is then declared with its most obvious
7919members.
7920
1c59e0a1 7921@comment file: calc++-driver.hh
12545799
AD
7922@example
7923// Conducting the whole scanning and parsing of Calc++.
7924class calcxx_driver
7925@{
7926public:
7927 calcxx_driver ();
7928 virtual ~calcxx_driver ();
7929
7930 std::map<std::string, int> variables;
7931
7932 int result;
7933@end example
7934
7935@noindent
7936To encapsulate the coordination with the Flex scanner, it is useful to
7937have two members function to open and close the scanning phase.
12545799 7938
1c59e0a1 7939@comment file: calc++-driver.hh
12545799
AD
7940@example
7941 // Handling the scanner.
7942 void scan_begin ();
7943 void scan_end ();
7944 bool trace_scanning;
7945@end example
7946
7947@noindent
7948Similarly for the parser itself.
7949
1c59e0a1 7950@comment file: calc++-driver.hh
12545799 7951@example
bb32f4f2
AD
7952 // Run the parser. Return 0 on success.
7953 int parse (const std::string& f);
12545799
AD
7954 std::string file;
7955 bool trace_parsing;
7956@end example
7957
7958@noindent
7959To demonstrate pure handling of parse errors, instead of simply
7960dumping them on the standard error output, we will pass them to the
7961compiler driver using the following two member functions. Finally, we
7962close the class declaration and CPP guard.
7963
1c59e0a1 7964@comment file: calc++-driver.hh
12545799
AD
7965@example
7966 // Error handling.
7967 void error (const yy::location& l, const std::string& m);
7968 void error (const std::string& m);
7969@};
7970#endif // ! CALCXX_DRIVER_HH
7971@end example
7972
7973The implementation of the driver is straightforward. The @code{parse}
7974member function deserves some attention. The @code{error} functions
7975are simple stubs, they should actually register the located error
7976messages and set error state.
7977
1c59e0a1 7978@comment file: calc++-driver.cc
12545799
AD
7979@example
7980#include "calc++-driver.hh"
7981#include "calc++-parser.hh"
7982
7983calcxx_driver::calcxx_driver ()
7984 : trace_scanning (false), trace_parsing (false)
7985@{
7986 variables["one"] = 1;
7987 variables["two"] = 2;
7988@}
7989
7990calcxx_driver::~calcxx_driver ()
7991@{
7992@}
7993
bb32f4f2 7994int
12545799
AD
7995calcxx_driver::parse (const std::string &f)
7996@{
7997 file = f;
7998 scan_begin ();
7999 yy::calcxx_parser parser (*this);
8000 parser.set_debug_level (trace_parsing);
bb32f4f2 8001 int res = parser.parse ();
12545799 8002 scan_end ();
bb32f4f2 8003 return res;
12545799
AD
8004@}
8005
8006void
8007calcxx_driver::error (const yy::location& l, const std::string& m)
8008@{
8009 std::cerr << l << ": " << m << std::endl;
8010@}
8011
8012void
8013calcxx_driver::error (const std::string& m)
8014@{
8015 std::cerr << m << std::endl;
8016@}
8017@end example
8018
8019@node Calc++ Parser
8405b70c 8020@subsubsection Calc++ Parser
12545799 8021
b50d2359
AD
8022The parser definition file @file{calc++-parser.yy} starts by asking for
8023the C++ LALR(1) skeleton, the creation of the parser header file, and
8024specifies the name of the parser class. Because the C++ skeleton
8025changed several times, it is safer to require the version you designed
8026the grammar for.
1c59e0a1
AD
8027
8028@comment file: calc++-parser.yy
12545799 8029@example
0e021770 8030%language "C++" /* -*- C++ -*- */
e6e704dc 8031%require "@value{VERSION}"
12545799 8032%defines
16dc6a9e 8033%define parser_class_name "calcxx_parser"
fb9712a9
AD
8034@end example
8035
8036@noindent
16dc6a9e 8037@findex %code requires
fb9712a9
AD
8038Then come the declarations/inclusions needed to define the
8039@code{%union}. Because the parser uses the parsing driver and
8040reciprocally, both cannot include the header of the other. Because the
8041driver's header needs detailed knowledge about the parser class (in
8042particular its inner types), it is the parser's header which will simply
8043use a forward declaration of the driver.
148d66d8 8044@xref{Decl Summary, ,%code}.
fb9712a9
AD
8045
8046@comment file: calc++-parser.yy
8047@example
16dc6a9e 8048%code requires @{
12545799 8049# include <string>
fb9712a9 8050class calcxx_driver;
9bc0dd67 8051@}
12545799
AD
8052@end example
8053
8054@noindent
8055The driver is passed by reference to the parser and to the scanner.
8056This provides a simple but effective pure interface, not relying on
8057global variables.
8058
1c59e0a1 8059@comment file: calc++-parser.yy
12545799
AD
8060@example
8061// The parsing context.
8062%parse-param @{ calcxx_driver& driver @}
8063%lex-param @{ calcxx_driver& driver @}
8064@end example
8065
8066@noindent
8067Then we request the location tracking feature, and initialize the
8068first location's file name. Afterwards new locations are computed
8069relatively to the previous locations: the file name will be
8070automatically propagated.
8071
1c59e0a1 8072@comment file: calc++-parser.yy
12545799
AD
8073@example
8074%locations
8075%initial-action
8076@{
8077 // Initialize the initial location.
b47dbebe 8078 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8079@};
8080@end example
8081
8082@noindent
8083Use the two following directives to enable parser tracing and verbose
8084error messages.
8085
1c59e0a1 8086@comment file: calc++-parser.yy
12545799
AD
8087@example
8088%debug
8089%error-verbose
8090@end example
8091
8092@noindent
8093Semantic values cannot use ``real'' objects, but only pointers to
8094them.
8095
1c59e0a1 8096@comment file: calc++-parser.yy
12545799
AD
8097@example
8098// Symbols.
8099%union
8100@{
8101 int ival;
8102 std::string *sval;
8103@};
8104@end example
8105
fb9712a9 8106@noindent
136a0f76
PB
8107@findex %code
8108The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8109@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8110
8111@comment file: calc++-parser.yy
8112@example
136a0f76 8113%code @{
fb9712a9 8114# include "calc++-driver.hh"
34f98f46 8115@}
fb9712a9
AD
8116@end example
8117
8118
12545799
AD
8119@noindent
8120The token numbered as 0 corresponds to end of file; the following line
8121allows for nicer error messages referring to ``end of file'' instead
8122of ``$end''. Similarly user friendly named are provided for each
8123symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8124avoid name clashes.
8125
1c59e0a1 8126@comment file: calc++-parser.yy
12545799 8127@example
fb9712a9
AD
8128%token END 0 "end of file"
8129%token ASSIGN ":="
8130%token <sval> IDENTIFIER "identifier"
8131%token <ival> NUMBER "number"
a8c2e813 8132%type <ival> exp
12545799
AD
8133@end example
8134
8135@noindent
8136To enable memory deallocation during error recovery, use
8137@code{%destructor}.
8138
287c78f6 8139@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8140@comment file: calc++-parser.yy
12545799
AD
8141@example
8142%printer @{ debug_stream () << *$$; @} "identifier"
8143%destructor @{ delete $$; @} "identifier"
8144
a8c2e813 8145%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8146@end example
8147
8148@noindent
8149The grammar itself is straightforward.
8150
1c59e0a1 8151@comment file: calc++-parser.yy
12545799
AD
8152@example
8153%%
8154%start unit;
8155unit: assignments exp @{ driver.result = $2; @};
8156
8157assignments: assignments assignment @{@}
9d9b8b70 8158 | /* Nothing. */ @{@};
12545799 8159
3dc5e96b
PE
8160assignment:
8161 "identifier" ":=" exp
8162 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8163
8164%left '+' '-';
8165%left '*' '/';
8166exp: exp '+' exp @{ $$ = $1 + $3; @}
8167 | exp '-' exp @{ $$ = $1 - $3; @}
8168 | exp '*' exp @{ $$ = $1 * $3; @}
8169 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8170 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8171 | "number" @{ $$ = $1; @};
12545799
AD
8172%%
8173@end example
8174
8175@noindent
8176Finally the @code{error} member function registers the errors to the
8177driver.
8178
1c59e0a1 8179@comment file: calc++-parser.yy
12545799
AD
8180@example
8181void
1c59e0a1
AD
8182yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8183 const std::string& m)
12545799
AD
8184@{
8185 driver.error (l, m);
8186@}
8187@end example
8188
8189@node Calc++ Scanner
8405b70c 8190@subsubsection Calc++ Scanner
12545799
AD
8191
8192The Flex scanner first includes the driver declaration, then the
8193parser's to get the set of defined tokens.
8194
1c59e0a1 8195@comment file: calc++-scanner.ll
12545799
AD
8196@example
8197%@{ /* -*- C++ -*- */
04098407
PE
8198# include <cstdlib>
8199# include <errno.h>
8200# include <limits.h>
12545799
AD
8201# include <string>
8202# include "calc++-driver.hh"
8203# include "calc++-parser.hh"
eaea13f5
PE
8204
8205/* Work around an incompatibility in flex (at least versions
8206 2.5.31 through 2.5.33): it generates code that does
8207 not conform to C89. See Debian bug 333231
8208 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8209# undef yywrap
8210# define yywrap() 1
eaea13f5 8211
c095d689
AD
8212/* By default yylex returns int, we use token_type.
8213 Unfortunately yyterminate by default returns 0, which is
8214 not of token_type. */
8c5b881d 8215#define yyterminate() return token::END
12545799
AD
8216%@}
8217@end example
8218
8219@noindent
8220Because there is no @code{#include}-like feature we don't need
8221@code{yywrap}, we don't need @code{unput} either, and we parse an
8222actual file, this is not an interactive session with the user.
8223Finally we enable the scanner tracing features.
8224
1c59e0a1 8225@comment file: calc++-scanner.ll
12545799
AD
8226@example
8227%option noyywrap nounput batch debug
8228@end example
8229
8230@noindent
8231Abbreviations allow for more readable rules.
8232
1c59e0a1 8233@comment file: calc++-scanner.ll
12545799
AD
8234@example
8235id [a-zA-Z][a-zA-Z_0-9]*
8236int [0-9]+
8237blank [ \t]
8238@end example
8239
8240@noindent
9d9b8b70 8241The following paragraph suffices to track locations accurately. Each
12545799
AD
8242time @code{yylex} is invoked, the begin position is moved onto the end
8243position. Then when a pattern is matched, the end position is
8244advanced of its width. In case it matched ends of lines, the end
8245cursor is adjusted, and each time blanks are matched, the begin cursor
8246is moved onto the end cursor to effectively ignore the blanks
8247preceding tokens. Comments would be treated equally.
8248
1c59e0a1 8249@comment file: calc++-scanner.ll
12545799 8250@example
828c373b
AD
8251%@{
8252# define YY_USER_ACTION yylloc->columns (yyleng);
8253%@}
12545799
AD
8254%%
8255%@{
8256 yylloc->step ();
12545799
AD
8257%@}
8258@{blank@}+ yylloc->step ();
8259[\n]+ yylloc->lines (yyleng); yylloc->step ();
8260@end example
8261
8262@noindent
fb9712a9
AD
8263The rules are simple, just note the use of the driver to report errors.
8264It is convenient to use a typedef to shorten
8265@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8266@code{token::identifier} for instance.
12545799 8267
1c59e0a1 8268@comment file: calc++-scanner.ll
12545799 8269@example
fb9712a9
AD
8270%@{
8271 typedef yy::calcxx_parser::token token;
8272%@}
8c5b881d 8273 /* Convert ints to the actual type of tokens. */
c095d689 8274[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8275":=" return token::ASSIGN;
04098407
PE
8276@{int@} @{
8277 errno = 0;
8278 long n = strtol (yytext, NULL, 10);
8279 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8280 driver.error (*yylloc, "integer is out of range");
8281 yylval->ival = n;
fb9712a9 8282 return token::NUMBER;
04098407 8283@}
fb9712a9 8284@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8285. driver.error (*yylloc, "invalid character");
8286%%
8287@end example
8288
8289@noindent
8290Finally, because the scanner related driver's member function depend
8291on the scanner's data, it is simpler to implement them in this file.
8292
1c59e0a1 8293@comment file: calc++-scanner.ll
12545799
AD
8294@example
8295void
8296calcxx_driver::scan_begin ()
8297@{
8298 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8299 if (file == "-")
8300 yyin = stdin;
8301 else if (!(yyin = fopen (file.c_str (), "r")))
8302 @{
8303 error (std::string ("cannot open ") + file);
8304 exit (1);
8305 @}
12545799
AD
8306@}
8307
8308void
8309calcxx_driver::scan_end ()
8310@{
8311 fclose (yyin);
8312@}
8313@end example
8314
8315@node Calc++ Top Level
8405b70c 8316@subsubsection Calc++ Top Level
12545799
AD
8317
8318The top level file, @file{calc++.cc}, poses no problem.
8319
1c59e0a1 8320@comment file: calc++.cc
12545799
AD
8321@example
8322#include <iostream>
8323#include "calc++-driver.hh"
8324
8325int
fa4d969f 8326main (int argc, char *argv[])
12545799
AD
8327@{
8328 calcxx_driver driver;
8329 for (++argv; argv[0]; ++argv)
8330 if (*argv == std::string ("-p"))
8331 driver.trace_parsing = true;
8332 else if (*argv == std::string ("-s"))
8333 driver.trace_scanning = true;
bb32f4f2
AD
8334 else if (!driver.parse (*argv))
8335 std::cout << driver.result << std::endl;
12545799
AD
8336@}
8337@end example
8338
8405b70c
PB
8339@node Java Parsers
8340@section Java Parsers
8341
8342@menu
8343* Java Bison Interface:: Asking for Java parser generation
8344* Java Semantic Values:: %type and %token vs. Java
8345* Java Location Values:: The position and location classes
8346* Java Parser Interface:: Instantiating and running the parser
8347* Java Scanner Interface:: Java scanners, and pure parsers
8348* Java Differences:: Differences between C/C++ and Java Grammars
8349@end menu
8350
8351@node Java Bison Interface
8352@subsection Java Bison Interface
8353@c - %language "Java"
8354@c - initial action
8355
8356The Java parser skeletons are selected using a language directive,
8357@samp{%language "Java"}, or the synonymous command-line option
8358@option{--language=java}.
8359
8360When run, @command{bison} will create several entities whose name
8361starts with @samp{YY}. Use the @samp{%name-prefix} directive to
8362change the prefix, see @ref{Decl Summary}; classes can be placed
8363in an arbitrary Java package using a @samp{%define package} section.
8364
8365The parser class defines an inner class, @code{Location}, that is used
8366for location tracking. If the parser is pure, it also defines an
8367inner interface, @code{Lexer}; see~@ref{Java Scanner Interface} for the
8368meaning of pure parsers when the Java language is chosen. Other than
8369these inner class/interface, and the members described in~@ref{Java
8370Parser Interface}, all the other members and fields are preceded
8371with a @code{yy} prefix to avoid clashes with user code.
8372
8373No header file can be generated for Java parsers; you must not pass
8374@option{-d}/@option{--defines} to @command{bison}, nor use the
8375@samp{%defines} directive.
8376
8377By default, the @samp{YYParser} class has package visibility. A
8378declaration @samp{%define "public"} will change to public visibility.
8379Remember that, according to the Java language specification, the name
8380of the @file{.java} file should match the name of the class in this
8381case.
8382
8383All these files are documented using Javadoc.
8384
8385@node Java Semantic Values
8386@subsection Java Semantic Values
8387@c - No %union, specify type in %type/%token.
8388@c - YYSTYPE
8389@c - Printer and destructor
8390
8391There is no @code{%union} directive in Java parsers. Instead, the
8392semantic values' types (class names) should be specified in the
8393@code{%type} or @code{%token} directive:
8394
8395@example
8396%type <Expression> expr assignment_expr term factor
8397%type <Integer> number
8398@end example
8399
8400By default, the semantic stack is declared to have @code{Object} members,
8401which means that the class types you specify can be of any class.
8402To improve the type safety of the parser, you can declare the common
8403superclass of all the semantic values using the @samp{%define} directive.
8404For example, after the following declaration:
8405
8406@example
8407%define "union_name" "ASTNode"
8408@end example
8409
8410@noindent
8411any @code{%type} or @code{%token} specifying a semantic type which
8412is not a subclass of ASTNode, will cause a compile-time error.
8413
8414Types used in the directives may be qualified with a package name.
8415Primitive data types are accepted for Java version 1.5 or later. Note
8416that in this case the autoboxing feature of Java 1.5 will be used.
8417
8418Java parsers do not support @code{%destructor}, since the language
8419adopts garbage collection. The parser will try to hold references
8420to semantic values for as little time as needed.
8421
8422Java parsers do not support @code{%printer}, as @code{toString()}
8423can be used to print the semantic values. This however may change
8424(in a backwards-compatible way) in future versions of Bison.
8425
8426
8427@node Java Location Values
8428@subsection Java Location Values
8429@c - %locations
8430@c - class Position
8431@c - class Location
8432
8433When the directive @code{%locations} is used, the Java parser
8434supports location tracking, see @ref{Locations, , Locations Overview}.
8435An auxiliary user-defined class defines a @dfn{position}, a single point
8436in a file; Bison itself defines a class representing a @dfn{location},
8437a range composed of a pair of positions (possibly spanning several
8438files). The location class is an inner class of the parser; the name
8439is @code{Location} by default, may also be renamed using @code{%define
8440"location_type" "@var{class-name}}.
8441
8442The location class treats the position as a completely opaque value.
8443By default, the class name is @code{Position}, but this can be changed
8444with @code{%define "position_type" "@var{class-name}"}.
8445
8446
8447@deftypemethod {Location} {Position} begin
8448@deftypemethodx {Location} {Position} end
8449The first, inclusive, position of the range, and the first beyond.
8450@end deftypemethod
8451
8452@deftypemethod {Location} {void} toString ()
8453Prints the range represented by the location. For this to work
8454properly, the position class should override the @code{equals} and
8455@code{toString} methods appropriately.
8456@end deftypemethod
8457
8458
8459@node Java Parser Interface
8460@subsection Java Parser Interface
8461@c - define parser_class_name
8462@c - Ctor
8463@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8464@c debug_stream.
8465@c - Reporting errors
8466
8467The output file defines the parser class in the package optionally
8468indicated in the @code{%define package} section. The class name defaults
8469to @code{YYParser}. The @code{YY} prefix may be changed using
8470@samp{%name-prefix}; alternatively, you can use @samp{%define
8471"parser_class_name" "@var{name}"} to give a custom name to the class.
8472The interface of this class is detailed below. It can be extended using
8473the @code{%parse-param} directive; each occurrence of the directive will
8474add a field to the parser class, and an argument to its constructor.
8475
8476@deftypemethod {YYParser} {} YYParser (@var{type1} @var{arg1}, ...)
8477Build a new parser object. There are no arguments by default, unless
8478@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8479@end deftypemethod
8480
8481@deftypemethod {YYParser} {boolean} parse ()
8482Run the syntactic analysis, and return @code{true} on success,
8483@code{false} otherwise.
8484@end deftypemethod
8485
8486@deftypemethod {YYParser} {boolean} yyrecovering ()
8487During the syntactic analysis, return @code{true} if recovering
8488from a syntax error. @xref{Error Recovery}.
8489@end deftypemethod
8490
8491@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8492@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8493Get or set the stream used for tracing the parsing. It defaults to
8494@code{System.err}.
8495@end deftypemethod
8496
8497@deftypemethod {YYParser} {int} getDebugLevel ()
8498@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8499Get or set the tracing level. Currently its value is either 0, no trace,
8500or nonzero, full tracing.
8501@end deftypemethod
8502
8503@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8504The definition for this member function must be supplied by the user
8505in the same way as the scanner interface (@pxref{Java Scanner
8506Interface}); the parser uses it to report a parser error occurring at
8507@var{l}, described by @var{m}.
8508@end deftypemethod
8509
8510
8511@node Java Scanner Interface
8512@subsection Java Scanner Interface
8513@c - prefix for yylex.
8514@c - Pure interface to yylex
8515@c - %lex-param
8516
8517There are two possible ways to interface a Bison-generated Java parser
8518with a scanner.
8519
8520@cindex pure parser, in Java
8521Contrary to C parsers, Java parsers do not use global variables; the
8522state of the parser is always local to an instance of the parser class.
8523Therefore, all Java parsers are ``pure'' in the C sense. The
8524@code{%pure-parser} directive can still be used in Java, and it
8525will control whether the lexer resides in a separate class than the
8526Bison-generated parser (therefore, Bison generates a class that is
8527``purely'' a parser), or in the same class. The interface to the scanner
8528is similar, though the two cases present a slightly different naming.
8529
8530For the @code{%pure-parser} case, the scanner implements an interface
8531called @code{Lexer} and defined within the parser class (e.g.,
8532@code{YYParser.Lexer}. The constructor of the parser object accepts
8533an object implementing the interface. The interface specifies
8534the following methods.
8535
8536@deftypemethod {Lexer} {void} error (Location @var{l}, String @var{m})
8537As explained in @pxref{Java Parser Interface}, this method is defined
8538by the user to emit an error message. The first parameter is not used
8539unless location tracking is active. Its type can be changed using
8540@samp{%define "location_type" "@var{class-name}".}
8541@end deftypemethod
8542
8543@deftypemethod {Lexer} {int} yylex (@var{type1} @var{arg1}, ...)
8544Return the next token. Its type is the return value, its semantic
8545value and location are saved and returned by the ther methods in the
8546interface. Invocations of @samp{%lex-param @{@var{type1}
8547@var{arg1}@}} yield additional arguments.
8548@end deftypemethod
8549
8550@deftypemethod {Lexer} {Position} getStartPos ()
8551@deftypemethodx {Lexer} {Position} getEndPos ()
8552Return respectively the first position of the last token that yylex
8553returned, and the first position beyond it. These methods are not
8554needed unless location tracking is active.
8555
8556The return type can be changed using @samp{%define "position_type"
8557"@var{class-name}".}
8558@end deftypemethod
8559
8560@deftypemethod {Lexer} {Object} getLVal ()
8561Return respectively the first position of the last token that yylex
8562returned, and the first position beyond it.
8563
8564The return type can be changed using @samp{%define "union_name"
8565"@var{class-name}".}
8566@end deftypemethod
8567
8568
8569If @code{%pure-parser} is not specified, the lexer interface
8570resides in the same class (@code{YYParser}) as the Bison-generated
8571parser. The fields and methods that are provided to
8572this end are as follows.
8573
8574@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8575As explained in @pxref{Java Parser Interface}, this method is defined
8576by the user to emit an error message. The first parameter is not used
8577unless location tracking is active. Its type can be changed using
8578@samp{%define "location_type" "@var{class-name}".}
8579@end deftypemethod
8580
8581@deftypemethod {YYParser} {int} yylex (@var{type1} @var{arg1}, ...)
8582Return the next token. Its type is the return value, its semantic
8583value and location are saved into @code{yylval}, @code{yystartpos},
8584@code{yyendpos}. Invocations of @samp{%lex-param @{@var{type1}
8585@var{arg1}@}} yield additional arguments.
8586@end deftypemethod
8587
8588@deftypecv {Field} {YYParser} Position yystartpos
8589@deftypecvx {Field} {YYParser} Position yyendpos
8590Contain respectively the first position of the last token that yylex
8591returned, and the first position beyond it. These methods are not
8592needed unless location tracking is active.
8593
8594The field's type can be changed using @samp{%define "position_type"
8595"@var{class-name}".}
8596@end deftypecv
8597
8598@deftypecv {Field} {YYParser} Object yylval
8599Return respectively the first position of the last token that yylex
8600returned, and the first position beyond it.
8601
8602The field's type can be changed using @samp{%define "union_name"
8603"@var{class-name}".}
8604@end deftypecv
8605
8606By default the class generated for a non-pure Java parser is abstract,
8607and the methods @code{yylex} and @code{yyerror} shall be placed in a
8608subclass (possibly defined in the additional code section). It is
8609also possible, using the @code{%define "single_class"} declaration, to
8610define the scanner in the same class as the parser; when this
8611declaration is present, the class is not declared as abstract.
8612In order to place the declarations for the scanner inside the
8613parser class, you should use @code{%code} sections.
8614
8615@node Java Differences
8616@subsection Differences between C/C++ and Java Grammars
8617
8618The different structure of the Java language forces several differences
8619between C/C++ grammars, and grammars designed for Java parsers. This
8620section summarizes this differences.
8621
8622@itemize
8623@item
8624Since Java lacks a preprocessor, the @code{YYERROR}, @code{YYACCEPT},
8625@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
8626macros. Instead, they should be preceded in an action with
8627@code{return}. The actual definition of these symbols should be
8628opaque to the Bison grammar, and it might change in the future. The
8629only meaningful operation that you can do, is to return them.
8630
8631Note that of these three symbols, only @code{YYACCEPT} and
8632@code{YYABORT} will cause a return from the @code{yyparse}
8633method@footnote{Java parsers include the actions in a separate
8634method than @code{yyparse} in order to have an intuitive syntax that
8635corresponds to these C macros.}.
8636
8637@item
8638The prolog declarations have a different meaning than in C/C++ code.
8639@table @code
8640@item %code
8641@code{%code imports} blocks are placed at the beginning of the Java
8642source code. They may include copyright notices. For a @code{package}
8643declarations, it is suggested to use @code{%define package} instead.
8644
8645@code{%code} blocks are placed inside the parser class. If @code{%define
8646single_class} is being used, the definitions of @code{yylex} and
8647@code{yyerror} should be placed here. Subroutines for the parser actions
8648may be included in this kind of block.
8649
8650Other @code{%code} blocks are not supported in Java parsers.
8651@end table
8652@end itemize
8653
12545799 8654@c ================================================= FAQ
d1a1114f
AD
8655
8656@node FAQ
8657@chapter Frequently Asked Questions
8658@cindex frequently asked questions
8659@cindex questions
8660
8661Several questions about Bison come up occasionally. Here some of them
8662are addressed.
8663
8664@menu
55ba27be
AD
8665* Memory Exhausted:: Breaking the Stack Limits
8666* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8667* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8668* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8669* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8670* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8671* I can't build Bison:: Troubleshooting
8672* Where can I find help?:: Troubleshouting
8673* Bug Reports:: Troublereporting
8405b70c 8674* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
8675* Beta Testing:: Experimenting development versions
8676* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8677@end menu
8678
1a059451
PE
8679@node Memory Exhausted
8680@section Memory Exhausted
d1a1114f
AD
8681
8682@display
1a059451 8683My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8684message. What can I do?
8685@end display
8686
8687This question is already addressed elsewhere, @xref{Recursion,
8688,Recursive Rules}.
8689
e64fec0a
PE
8690@node How Can I Reset the Parser
8691@section How Can I Reset the Parser
5b066063 8692
0e14ad77
PE
8693The following phenomenon has several symptoms, resulting in the
8694following typical questions:
5b066063
AD
8695
8696@display
8697I invoke @code{yyparse} several times, and on correct input it works
8698properly; but when a parse error is found, all the other calls fail
0e14ad77 8699too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8700@end display
8701
8702@noindent
8703or
8704
8705@display
0e14ad77 8706My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8707which case I run @code{yyparse} from @code{yyparse}. This fails
8708although I did specify I needed a @code{%pure-parser}.
8709@end display
8710
0e14ad77
PE
8711These problems typically come not from Bison itself, but from
8712Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8713speed, they might not notice a change of input file. As a
8714demonstration, consider the following source file,
8715@file{first-line.l}:
8716
8717@verbatim
8718%{
8719#include <stdio.h>
8720#include <stdlib.h>
8721%}
8722%%
8723.*\n ECHO; return 1;
8724%%
8725int
0e14ad77 8726yyparse (char const *file)
5b066063
AD
8727{
8728 yyin = fopen (file, "r");
8729 if (!yyin)
8730 exit (2);
fa7e68c3 8731 /* One token only. */
5b066063 8732 yylex ();
0e14ad77 8733 if (fclose (yyin) != 0)
5b066063
AD
8734 exit (3);
8735 return 0;
8736}
8737
8738int
0e14ad77 8739main (void)
5b066063
AD
8740{
8741 yyparse ("input");
8742 yyparse ("input");
8743 return 0;
8744}
8745@end verbatim
8746
8747@noindent
8748If the file @file{input} contains
8749
8750@verbatim
8751input:1: Hello,
8752input:2: World!
8753@end verbatim
8754
8755@noindent
0e14ad77 8756then instead of getting the first line twice, you get:
5b066063
AD
8757
8758@example
8759$ @kbd{flex -ofirst-line.c first-line.l}
8760$ @kbd{gcc -ofirst-line first-line.c -ll}
8761$ @kbd{./first-line}
8762input:1: Hello,
8763input:2: World!
8764@end example
8765
0e14ad77
PE
8766Therefore, whenever you change @code{yyin}, you must tell the
8767Lex-generated scanner to discard its current buffer and switch to the
8768new one. This depends upon your implementation of Lex; see its
8769documentation for more. For Flex, it suffices to call
8770@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8771Flex-generated scanner needs to read from several input streams to
8772handle features like include files, you might consider using Flex
8773functions like @samp{yy_switch_to_buffer} that manipulate multiple
8774input buffers.
5b066063 8775
b165c324
AD
8776If your Flex-generated scanner uses start conditions (@pxref{Start
8777conditions, , Start conditions, flex, The Flex Manual}), you might
8778also want to reset the scanner's state, i.e., go back to the initial
8779start condition, through a call to @samp{BEGIN (0)}.
8780
fef4cb51
AD
8781@node Strings are Destroyed
8782@section Strings are Destroyed
8783
8784@display
c7e441b4 8785My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8786them. Instead of reporting @samp{"foo", "bar"}, it reports
8787@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8788@end display
8789
8790This error is probably the single most frequent ``bug report'' sent to
8791Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8792of the scanner. Consider the following Lex code:
fef4cb51
AD
8793
8794@verbatim
8795%{
8796#include <stdio.h>
8797char *yylval = NULL;
8798%}
8799%%
8800.* yylval = yytext; return 1;
8801\n /* IGNORE */
8802%%
8803int
8804main ()
8805{
fa7e68c3 8806 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8807 char *fst = (yylex (), yylval);
8808 char *snd = (yylex (), yylval);
8809 printf ("\"%s\", \"%s\"\n", fst, snd);
8810 return 0;
8811}
8812@end verbatim
8813
8814If you compile and run this code, you get:
8815
8816@example
8817$ @kbd{flex -osplit-lines.c split-lines.l}
8818$ @kbd{gcc -osplit-lines split-lines.c -ll}
8819$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8820"one
8821two", "two"
8822@end example
8823
8824@noindent
8825this is because @code{yytext} is a buffer provided for @emph{reading}
8826in the action, but if you want to keep it, you have to duplicate it
8827(e.g., using @code{strdup}). Note that the output may depend on how
8828your implementation of Lex handles @code{yytext}. For instance, when
8829given the Lex compatibility option @option{-l} (which triggers the
8830option @samp{%array}) Flex generates a different behavior:
8831
8832@example
8833$ @kbd{flex -l -osplit-lines.c split-lines.l}
8834$ @kbd{gcc -osplit-lines split-lines.c -ll}
8835$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8836"two", "two"
8837@end example
8838
8839
2fa09258
AD
8840@node Implementing Gotos/Loops
8841@section Implementing Gotos/Loops
a06ea4aa
AD
8842
8843@display
8844My simple calculator supports variables, assignments, and functions,
2fa09258 8845but how can I implement gotos, or loops?
a06ea4aa
AD
8846@end display
8847
8848Although very pedagogical, the examples included in the document blur
a1c84f45 8849the distinction to make between the parser---whose job is to recover
a06ea4aa 8850the structure of a text and to transmit it to subsequent modules of
a1c84f45 8851the program---and the processing (such as the execution) of this
a06ea4aa
AD
8852structure. This works well with so called straight line programs,
8853i.e., precisely those that have a straightforward execution model:
8854execute simple instructions one after the others.
8855
8856@cindex abstract syntax tree
8857@cindex @acronym{AST}
8858If you want a richer model, you will probably need to use the parser
8859to construct a tree that does represent the structure it has
8860recovered; this tree is usually called the @dfn{abstract syntax tree},
8861or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8862traversing it in various ways, will enable treatments such as its
8863execution or its translation, which will result in an interpreter or a
8864compiler.
8865
8866This topic is way beyond the scope of this manual, and the reader is
8867invited to consult the dedicated literature.
8868
8869
ed2e6384
AD
8870@node Multiple start-symbols
8871@section Multiple start-symbols
8872
8873@display
8874I have several closely related grammars, and I would like to share their
8875implementations. In fact, I could use a single grammar but with
8876multiple entry points.
8877@end display
8878
8879Bison does not support multiple start-symbols, but there is a very
8880simple means to simulate them. If @code{foo} and @code{bar} are the two
8881pseudo start-symbols, then introduce two new tokens, say
8882@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8883real start-symbol:
8884
8885@example
8886%token START_FOO START_BAR;
8887%start start;
8888start: START_FOO foo
8889 | START_BAR bar;
8890@end example
8891
8892These tokens prevents the introduction of new conflicts. As far as the
8893parser goes, that is all that is needed.
8894
8895Now the difficult part is ensuring that the scanner will send these
8896tokens first. If your scanner is hand-written, that should be
8897straightforward. If your scanner is generated by Lex, them there is
8898simple means to do it: recall that anything between @samp{%@{ ... %@}}
8899after the first @code{%%} is copied verbatim in the top of the generated
8900@code{yylex} function. Make sure a variable @code{start_token} is
8901available in the scanner (e.g., a global variable or using
8902@code{%lex-param} etc.), and use the following:
8903
8904@example
8905 /* @r{Prologue.} */
8906%%
8907%@{
8908 if (start_token)
8909 @{
8910 int t = start_token;
8911 start_token = 0;
8912 return t;
8913 @}
8914%@}
8915 /* @r{The rules.} */
8916@end example
8917
8918
55ba27be
AD
8919@node Secure? Conform?
8920@section Secure? Conform?
8921
8922@display
8923Is Bison secure? Does it conform to POSIX?
8924@end display
8925
8926If you're looking for a guarantee or certification, we don't provide it.
8927However, Bison is intended to be a reliable program that conforms to the
8928@acronym{POSIX} specification for Yacc. If you run into problems,
8929please send us a bug report.
8930
8931@node I can't build Bison
8932@section I can't build Bison
8933
8934@display
8c5b881d
PE
8935I can't build Bison because @command{make} complains that
8936@code{msgfmt} is not found.
55ba27be
AD
8937What should I do?
8938@end display
8939
8940Like most GNU packages with internationalization support, that feature
8941is turned on by default. If you have problems building in the @file{po}
8942subdirectory, it indicates that your system's internationalization
8943support is lacking. You can re-configure Bison with
8944@option{--disable-nls} to turn off this support, or you can install GNU
8945gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8946Bison. See the file @file{ABOUT-NLS} for more information.
8947
8948
8949@node Where can I find help?
8950@section Where can I find help?
8951
8952@display
8953I'm having trouble using Bison. Where can I find help?
8954@end display
8955
8956First, read this fine manual. Beyond that, you can send mail to
8957@email{help-bison@@gnu.org}. This mailing list is intended to be
8958populated with people who are willing to answer questions about using
8959and installing Bison. Please keep in mind that (most of) the people on
8960the list have aspects of their lives which are not related to Bison (!),
8961so you may not receive an answer to your question right away. This can
8962be frustrating, but please try not to honk them off; remember that any
8963help they provide is purely voluntary and out of the kindness of their
8964hearts.
8965
8966@node Bug Reports
8967@section Bug Reports
8968
8969@display
8970I found a bug. What should I include in the bug report?
8971@end display
8972
8973Before you send a bug report, make sure you are using the latest
8974version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8975mirrors. Be sure to include the version number in your bug report. If
8976the bug is present in the latest version but not in a previous version,
8977try to determine the most recent version which did not contain the bug.
8978
8979If the bug is parser-related, you should include the smallest grammar
8980you can which demonstrates the bug. The grammar file should also be
8981complete (i.e., I should be able to run it through Bison without having
8982to edit or add anything). The smaller and simpler the grammar, the
8983easier it will be to fix the bug.
8984
8985Include information about your compilation environment, including your
8986operating system's name and version and your compiler's name and
8987version. If you have trouble compiling, you should also include a
8988transcript of the build session, starting with the invocation of
8989`configure'. Depending on the nature of the bug, you may be asked to
8990send additional files as well (such as `config.h' or `config.cache').
8991
8992Patches are most welcome, but not required. That is, do not hesitate to
8993send a bug report just because you can not provide a fix.
8994
8995Send bug reports to @email{bug-bison@@gnu.org}.
8996
8405b70c
PB
8997@node More Languages
8998@section More Languages
55ba27be
AD
8999
9000@display
8405b70c 9001Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9002favorite language here}?
9003@end display
9004
8405b70c 9005C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9006languages; contributions are welcome.
9007
9008@node Beta Testing
9009@section Beta Testing
9010
9011@display
9012What is involved in being a beta tester?
9013@end display
9014
9015It's not terribly involved. Basically, you would download a test
9016release, compile it, and use it to build and run a parser or two. After
9017that, you would submit either a bug report or a message saying that
9018everything is okay. It is important to report successes as well as
9019failures because test releases eventually become mainstream releases,
9020but only if they are adequately tested. If no one tests, development is
9021essentially halted.
9022
9023Beta testers are particularly needed for operating systems to which the
9024developers do not have easy access. They currently have easy access to
9025recent GNU/Linux and Solaris versions. Reports about other operating
9026systems are especially welcome.
9027
9028@node Mailing Lists
9029@section Mailing Lists
9030
9031@display
9032How do I join the help-bison and bug-bison mailing lists?
9033@end display
9034
9035See @url{http://lists.gnu.org/}.
a06ea4aa 9036
d1a1114f
AD
9037@c ================================================= Table of Symbols
9038
342b8b6e 9039@node Table of Symbols
bfa74976
RS
9040@appendix Bison Symbols
9041@cindex Bison symbols, table of
9042@cindex symbols in Bison, table of
9043
18b519c0 9044@deffn {Variable} @@$
3ded9a63 9045In an action, the location of the left-hand side of the rule.
88bce5a2 9046@xref{Locations, , Locations Overview}.
18b519c0 9047@end deffn
3ded9a63 9048
18b519c0 9049@deffn {Variable} @@@var{n}
3ded9a63
AD
9050In an action, the location of the @var{n}-th symbol of the right-hand
9051side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9052@end deffn
3ded9a63 9053
18b519c0 9054@deffn {Variable} $$
3ded9a63
AD
9055In an action, the semantic value of the left-hand side of the rule.
9056@xref{Actions}.
18b519c0 9057@end deffn
3ded9a63 9058
18b519c0 9059@deffn {Variable} $@var{n}
3ded9a63
AD
9060In an action, the semantic value of the @var{n}-th symbol of the
9061right-hand side of the rule. @xref{Actions}.
18b519c0 9062@end deffn
3ded9a63 9063
dd8d9022
AD
9064@deffn {Delimiter} %%
9065Delimiter used to separate the grammar rule section from the
9066Bison declarations section or the epilogue.
9067@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9068@end deffn
bfa74976 9069
dd8d9022
AD
9070@c Don't insert spaces, or check the DVI output.
9071@deffn {Delimiter} %@{@var{code}%@}
9072All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9073the output file uninterpreted. Such code forms the prologue of the input
9074file. @xref{Grammar Outline, ,Outline of a Bison
9075Grammar}.
18b519c0 9076@end deffn
bfa74976 9077
dd8d9022
AD
9078@deffn {Construct} /*@dots{}*/
9079Comment delimiters, as in C.
18b519c0 9080@end deffn
bfa74976 9081
dd8d9022
AD
9082@deffn {Delimiter} :
9083Separates a rule's result from its components. @xref{Rules, ,Syntax of
9084Grammar Rules}.
18b519c0 9085@end deffn
bfa74976 9086
dd8d9022
AD
9087@deffn {Delimiter} ;
9088Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9089@end deffn
bfa74976 9090
dd8d9022
AD
9091@deffn {Delimiter} |
9092Separates alternate rules for the same result nonterminal.
9093@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9094@end deffn
bfa74976 9095
12e35840
JD
9096@deffn {Directive} <*>
9097Used to define a default tagged @code{%destructor} or default tagged
9098@code{%printer}.
85894313
JD
9099
9100This feature is experimental.
9101More user feedback will help to determine whether it should become a permanent
9102feature.
9103
12e35840
JD
9104@xref{Destructor Decl, , Freeing Discarded Symbols}.
9105@end deffn
9106
3ebecc24 9107@deffn {Directive} <>
12e35840
JD
9108Used to define a default tagless @code{%destructor} or default tagless
9109@code{%printer}.
85894313
JD
9110
9111This feature is experimental.
9112More user feedback will help to determine whether it should become a permanent
9113feature.
9114
12e35840
JD
9115@xref{Destructor Decl, , Freeing Discarded Symbols}.
9116@end deffn
9117
dd8d9022
AD
9118@deffn {Symbol} $accept
9119The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9120$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9121Start-Symbol}. It cannot be used in the grammar.
18b519c0 9122@end deffn
bfa74976 9123
136a0f76 9124@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9125@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9126Insert @var{code} verbatim into output parser source.
9127@xref{Decl Summary,,%code}.
9bc0dd67
JD
9128@end deffn
9129
9130@deffn {Directive} %debug
9131Equip the parser for debugging. @xref{Decl Summary}.
9132@end deffn
9133
18b519c0 9134@deffn {Directive} %debug
6deb4447 9135Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9136@end deffn
6deb4447 9137
91d2c560 9138@ifset defaultprec
22fccf95
PE
9139@deffn {Directive} %default-prec
9140Assign a precedence to rules that lack an explicit @samp{%prec}
9141modifier. @xref{Contextual Precedence, ,Context-Dependent
9142Precedence}.
39a06c25 9143@end deffn
91d2c560 9144@end ifset
39a06c25 9145
148d66d8
JD
9146@deffn {Directive} %define @var{define-variable}
9147@deffnx {Directive} %define @var{define-variable} @var{value}
9148Define a variable to adjust Bison's behavior.
9149@xref{Decl Summary,,%define}.
9150@end deffn
9151
18b519c0 9152@deffn {Directive} %defines
6deb4447
AD
9153Bison declaration to create a header file meant for the scanner.
9154@xref{Decl Summary}.
18b519c0 9155@end deffn
6deb4447 9156
02975b9a
JD
9157@deffn {Directive} %defines @var{defines-file}
9158Same as above, but save in the file @var{defines-file}.
9159@xref{Decl Summary}.
9160@end deffn
9161
18b519c0 9162@deffn {Directive} %destructor
258b75ca 9163Specify how the parser should reclaim the memory associated to
fa7e68c3 9164discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9165@end deffn
72f889cc 9166
18b519c0 9167@deffn {Directive} %dprec
676385e2 9168Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9169time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9170@acronym{GLR} Parsers}.
18b519c0 9171@end deffn
676385e2 9172
dd8d9022
AD
9173@deffn {Symbol} $end
9174The predefined token marking the end of the token stream. It cannot be
9175used in the grammar.
9176@end deffn
9177
9178@deffn {Symbol} error
9179A token name reserved for error recovery. This token may be used in
9180grammar rules so as to allow the Bison parser to recognize an error in
9181the grammar without halting the process. In effect, a sentence
9182containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9183token @code{error} becomes the current lookahead token. Actions
9184corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9185token is reset to the token that originally caused the violation.
9186@xref{Error Recovery}.
18d192f0
AD
9187@end deffn
9188
18b519c0 9189@deffn {Directive} %error-verbose
2a8d363a
AD
9190Bison declaration to request verbose, specific error message strings
9191when @code{yyerror} is called.
18b519c0 9192@end deffn
2a8d363a 9193
02975b9a 9194@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9195Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9196Summary}.
18b519c0 9197@end deffn
d8988b2f 9198
18b519c0 9199@deffn {Directive} %glr-parser
c827f760
PE
9200Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9201Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9202@end deffn
676385e2 9203
dd8d9022
AD
9204@deffn {Directive} %initial-action
9205Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9206@end deffn
9207
e6e704dc
JD
9208@deffn {Directive} %language
9209Specify the programming language for the generated parser.
9210@xref{Decl Summary}.
9211@end deffn
9212
18b519c0 9213@deffn {Directive} %left
bfa74976
RS
9214Bison declaration to assign left associativity to token(s).
9215@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9216@end deffn
bfa74976 9217
feeb0eda 9218@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9219Bison declaration to specifying an additional parameter that
9220@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9221for Pure Parsers}.
18b519c0 9222@end deffn
2a8d363a 9223
18b519c0 9224@deffn {Directive} %merge
676385e2 9225Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9226reduce/reduce conflict with a rule having the same merging function, the
676385e2 9227function is applied to the two semantic values to get a single result.
c827f760 9228@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9229@end deffn
676385e2 9230
02975b9a 9231@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9232Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9233@end deffn
d8988b2f 9234
91d2c560 9235@ifset defaultprec
22fccf95
PE
9236@deffn {Directive} %no-default-prec
9237Do not assign a precedence to rules that lack an explicit @samp{%prec}
9238modifier. @xref{Contextual Precedence, ,Context-Dependent
9239Precedence}.
9240@end deffn
91d2c560 9241@end ifset
22fccf95 9242
18b519c0 9243@deffn {Directive} %no-lines
931c7513
RS
9244Bison declaration to avoid generating @code{#line} directives in the
9245parser file. @xref{Decl Summary}.
18b519c0 9246@end deffn
931c7513 9247
18b519c0 9248@deffn {Directive} %nonassoc
9d9b8b70 9249Bison declaration to assign nonassociativity to token(s).
bfa74976 9250@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9251@end deffn
bfa74976 9252
02975b9a 9253@deffn {Directive} %output "@var{file}"
72d2299c 9254Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9255Summary}.
18b519c0 9256@end deffn
d8988b2f 9257
feeb0eda 9258@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9259Bison declaration to specifying an additional parameter that
9260@code{yyparse} should accept. @xref{Parser Function,, The Parser
9261Function @code{yyparse}}.
18b519c0 9262@end deffn
2a8d363a 9263
18b519c0 9264@deffn {Directive} %prec
bfa74976
RS
9265Bison declaration to assign a precedence to a specific rule.
9266@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9267@end deffn
bfa74976 9268
18b519c0 9269@deffn {Directive} %pure-parser
bfa74976
RS
9270Bison declaration to request a pure (reentrant) parser.
9271@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 9272@end deffn
bfa74976 9273
b50d2359 9274@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9275Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9276Require a Version of Bison}.
b50d2359
AD
9277@end deffn
9278
18b519c0 9279@deffn {Directive} %right
bfa74976
RS
9280Bison declaration to assign right associativity to token(s).
9281@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9282@end deffn
bfa74976 9283
e6e704dc
JD
9284@deffn {Directive} %skeleton
9285Specify the skeleton to use; usually for development.
9286@xref{Decl Summary}.
9287@end deffn
9288
18b519c0 9289@deffn {Directive} %start
704a47c4
AD
9290Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9291Start-Symbol}.
18b519c0 9292@end deffn
bfa74976 9293
18b519c0 9294@deffn {Directive} %token
bfa74976
RS
9295Bison declaration to declare token(s) without specifying precedence.
9296@xref{Token Decl, ,Token Type Names}.
18b519c0 9297@end deffn
bfa74976 9298
18b519c0 9299@deffn {Directive} %token-table
931c7513
RS
9300Bison declaration to include a token name table in the parser file.
9301@xref{Decl Summary}.
18b519c0 9302@end deffn
931c7513 9303
18b519c0 9304@deffn {Directive} %type
704a47c4
AD
9305Bison declaration to declare nonterminals. @xref{Type Decl,
9306,Nonterminal Symbols}.
18b519c0 9307@end deffn
bfa74976 9308
dd8d9022
AD
9309@deffn {Symbol} $undefined
9310The predefined token onto which all undefined values returned by
9311@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9312@code{error}.
9313@end deffn
9314
18b519c0 9315@deffn {Directive} %union
bfa74976
RS
9316Bison declaration to specify several possible data types for semantic
9317values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9318@end deffn
bfa74976 9319
dd8d9022
AD
9320@deffn {Macro} YYABORT
9321Macro to pretend that an unrecoverable syntax error has occurred, by
9322making @code{yyparse} return 1 immediately. The error reporting
9323function @code{yyerror} is not called. @xref{Parser Function, ,The
9324Parser Function @code{yyparse}}.
8405b70c
PB
9325
9326For Java parsers, this functionality is invoked using @code{return YYABORT;}
9327instead.
dd8d9022 9328@end deffn
3ded9a63 9329
dd8d9022
AD
9330@deffn {Macro} YYACCEPT
9331Macro to pretend that a complete utterance of the language has been
9332read, by making @code{yyparse} return 0 immediately.
9333@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9334
9335For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9336instead.
dd8d9022 9337@end deffn
bfa74976 9338
dd8d9022 9339@deffn {Macro} YYBACKUP
742e4900 9340Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9341token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9342@end deffn
bfa74976 9343
dd8d9022 9344@deffn {Variable} yychar
32c29292 9345External integer variable that contains the integer value of the
742e4900 9346lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9347@code{yyparse}.) Error-recovery rule actions may examine this variable.
9348@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9349@end deffn
bfa74976 9350
dd8d9022
AD
9351@deffn {Variable} yyclearin
9352Macro used in error-recovery rule actions. It clears the previous
742e4900 9353lookahead token. @xref{Error Recovery}.
18b519c0 9354@end deffn
bfa74976 9355
dd8d9022
AD
9356@deffn {Macro} YYDEBUG
9357Macro to define to equip the parser with tracing code. @xref{Tracing,
9358,Tracing Your Parser}.
18b519c0 9359@end deffn
bfa74976 9360
dd8d9022
AD
9361@deffn {Variable} yydebug
9362External integer variable set to zero by default. If @code{yydebug}
9363is given a nonzero value, the parser will output information on input
9364symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9365@end deffn
bfa74976 9366
dd8d9022
AD
9367@deffn {Macro} yyerrok
9368Macro to cause parser to recover immediately to its normal mode
9369after a syntax error. @xref{Error Recovery}.
9370@end deffn
9371
9372@deffn {Macro} YYERROR
9373Macro to pretend that a syntax error has just been detected: call
9374@code{yyerror} and then perform normal error recovery if possible
9375(@pxref{Error Recovery}), or (if recovery is impossible) make
9376@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
9377
9378For Java parsers, this functionality is invoked using @code{return YYERROR;}
9379instead.
dd8d9022
AD
9380@end deffn
9381
9382@deffn {Function} yyerror
9383User-supplied function to be called by @code{yyparse} on error.
9384@xref{Error Reporting, ,The Error
9385Reporting Function @code{yyerror}}.
9386@end deffn
9387
9388@deffn {Macro} YYERROR_VERBOSE
9389An obsolete macro that you define with @code{#define} in the prologue
9390to request verbose, specific error message strings
9391when @code{yyerror} is called. It doesn't matter what definition you
9392use for @code{YYERROR_VERBOSE}, just whether you define it. Using
9393@code{%error-verbose} is preferred.
9394@end deffn
9395
9396@deffn {Macro} YYINITDEPTH
9397Macro for specifying the initial size of the parser stack.
1a059451 9398@xref{Memory Management}.
dd8d9022
AD
9399@end deffn
9400
9401@deffn {Function} yylex
9402User-supplied lexical analyzer function, called with no arguments to get
9403the next token. @xref{Lexical, ,The Lexical Analyzer Function
9404@code{yylex}}.
9405@end deffn
9406
9407@deffn {Macro} YYLEX_PARAM
9408An obsolete macro for specifying an extra argument (or list of extra
32c29292 9409arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9410macro is deprecated, and is supported only for Yacc like parsers.
9411@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9412@end deffn
9413
9414@deffn {Variable} yylloc
9415External variable in which @code{yylex} should place the line and column
9416numbers associated with a token. (In a pure parser, it is a local
9417variable within @code{yyparse}, and its address is passed to
32c29292
JD
9418@code{yylex}.)
9419You can ignore this variable if you don't use the @samp{@@} feature in the
9420grammar actions.
9421@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9422In semantic actions, it stores the location of the lookahead token.
32c29292 9423@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9424@end deffn
9425
9426@deffn {Type} YYLTYPE
9427Data type of @code{yylloc}; by default, a structure with four
9428members. @xref{Location Type, , Data Types of Locations}.
9429@end deffn
9430
9431@deffn {Variable} yylval
9432External variable in which @code{yylex} should place the semantic
9433value associated with a token. (In a pure parser, it is a local
9434variable within @code{yyparse}, and its address is passed to
32c29292
JD
9435@code{yylex}.)
9436@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9437In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9438@xref{Actions, ,Actions}.
dd8d9022
AD
9439@end deffn
9440
9441@deffn {Macro} YYMAXDEPTH
1a059451
PE
9442Macro for specifying the maximum size of the parser stack. @xref{Memory
9443Management}.
dd8d9022
AD
9444@end deffn
9445
9446@deffn {Variable} yynerrs
8a2800e7 9447Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
9448(In a pure parser, it is a local variable within @code{yyparse}.)
9449@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9450@end deffn
9451
9452@deffn {Function} yyparse
9453The parser function produced by Bison; call this function to start
9454parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9455@end deffn
9456
9457@deffn {Macro} YYPARSE_PARAM
9458An obsolete macro for specifying the name of a parameter that
9459@code{yyparse} should accept. The use of this macro is deprecated, and
9460is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9461Conventions for Pure Parsers}.
9462@end deffn
9463
9464@deffn {Macro} YYRECOVERING
02103984
PE
9465The expression @code{YYRECOVERING ()} yields 1 when the parser
9466is recovering from a syntax error, and 0 otherwise.
9467@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9468@end deffn
9469
9470@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9471Macro used to control the use of @code{alloca} when the C
9472@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9473the parser will use @code{malloc} to extend its stacks. If defined to
94741, the parser will use @code{alloca}. Values other than 0 and 1 are
9475reserved for future Bison extensions. If not defined,
9476@code{YYSTACK_USE_ALLOCA} defaults to 0.
9477
55289366 9478In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9479limited stack and with unreliable stack-overflow checking, you should
9480set @code{YYMAXDEPTH} to a value that cannot possibly result in
9481unchecked stack overflow on any of your target hosts when
9482@code{alloca} is called. You can inspect the code that Bison
9483generates in order to determine the proper numeric values. This will
9484require some expertise in low-level implementation details.
dd8d9022
AD
9485@end deffn
9486
9487@deffn {Type} YYSTYPE
9488Data type of semantic values; @code{int} by default.
9489@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9490@end deffn
bfa74976 9491
342b8b6e 9492@node Glossary
bfa74976
RS
9493@appendix Glossary
9494@cindex glossary
9495
9496@table @asis
c827f760
PE
9497@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9498Formal method of specifying context-free grammars originally proposed
9499by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9500committee document contributing to what became the Algol 60 report.
9501@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9502
9503@item Context-free grammars
9504Grammars specified as rules that can be applied regardless of context.
9505Thus, if there is a rule which says that an integer can be used as an
9506expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9507permitted. @xref{Language and Grammar, ,Languages and Context-Free
9508Grammars}.
bfa74976
RS
9509
9510@item Dynamic allocation
9511Allocation of memory that occurs during execution, rather than at
9512compile time or on entry to a function.
9513
9514@item Empty string
9515Analogous to the empty set in set theory, the empty string is a
9516character string of length zero.
9517
9518@item Finite-state stack machine
9519A ``machine'' that has discrete states in which it is said to exist at
9520each instant in time. As input to the machine is processed, the
9521machine moves from state to state as specified by the logic of the
9522machine. In the case of the parser, the input is the language being
9523parsed, and the states correspond to various stages in the grammar
c827f760 9524rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9525
c827f760 9526@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9527A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9528that are not @acronym{LALR}(1). It resolves situations that Bison's
9529usual @acronym{LALR}(1)
676385e2
PH
9530algorithm cannot by effectively splitting off multiple parsers, trying all
9531possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9532right context. @xref{Generalized LR Parsing, ,Generalized
9533@acronym{LR} Parsing}.
676385e2 9534
bfa74976
RS
9535@item Grouping
9536A language construct that is (in general) grammatically divisible;
c827f760 9537for example, `expression' or `declaration' in C@.
bfa74976
RS
9538@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9539
9540@item Infix operator
9541An arithmetic operator that is placed between the operands on which it
9542performs some operation.
9543
9544@item Input stream
9545A continuous flow of data between devices or programs.
9546
9547@item Language construct
9548One of the typical usage schemas of the language. For example, one of
9549the constructs of the C language is the @code{if} statement.
9550@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9551
9552@item Left associativity
9553Operators having left associativity are analyzed from left to right:
9554@samp{a+b+c} first computes @samp{a+b} and then combines with
9555@samp{c}. @xref{Precedence, ,Operator Precedence}.
9556
9557@item Left recursion
89cab50d
AD
9558A rule whose result symbol is also its first component symbol; for
9559example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9560Rules}.
bfa74976
RS
9561
9562@item Left-to-right parsing
9563Parsing a sentence of a language by analyzing it token by token from
c827f760 9564left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9565
9566@item Lexical analyzer (scanner)
9567A function that reads an input stream and returns tokens one by one.
9568@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9569
9570@item Lexical tie-in
9571A flag, set by actions in the grammar rules, which alters the way
9572tokens are parsed. @xref{Lexical Tie-ins}.
9573
931c7513 9574@item Literal string token
14ded682 9575A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9576
742e4900
JD
9577@item Lookahead token
9578A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9579Tokens}.
bfa74976 9580
c827f760 9581@item @acronym{LALR}(1)
bfa74976 9582The class of context-free grammars that Bison (like most other parser
c827f760
PE
9583generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9584Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9585
c827f760 9586@item @acronym{LR}(1)
bfa74976 9587The class of context-free grammars in which at most one token of
742e4900 9588lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9589
9590@item Nonterminal symbol
9591A grammar symbol standing for a grammatical construct that can
9592be expressed through rules in terms of smaller constructs; in other
9593words, a construct that is not a token. @xref{Symbols}.
9594
bfa74976
RS
9595@item Parser
9596A function that recognizes valid sentences of a language by analyzing
9597the syntax structure of a set of tokens passed to it from a lexical
9598analyzer.
9599
9600@item Postfix operator
9601An arithmetic operator that is placed after the operands upon which it
9602performs some operation.
9603
9604@item Reduction
9605Replacing a string of nonterminals and/or terminals with a single
89cab50d 9606nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9607Parser Algorithm}.
bfa74976
RS
9608
9609@item Reentrant
9610A reentrant subprogram is a subprogram which can be in invoked any
9611number of times in parallel, without interference between the various
9612invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9613
9614@item Reverse polish notation
9615A language in which all operators are postfix operators.
9616
9617@item Right recursion
89cab50d
AD
9618A rule whose result symbol is also its last component symbol; for
9619example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9620Rules}.
bfa74976
RS
9621
9622@item Semantics
9623In computer languages, the semantics are specified by the actions
9624taken for each instance of the language, i.e., the meaning of
9625each statement. @xref{Semantics, ,Defining Language Semantics}.
9626
9627@item Shift
9628A parser is said to shift when it makes the choice of analyzing
9629further input from the stream rather than reducing immediately some
c827f760 9630already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9631
9632@item Single-character literal
9633A single character that is recognized and interpreted as is.
9634@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9635
9636@item Start symbol
9637The nonterminal symbol that stands for a complete valid utterance in
9638the language being parsed. The start symbol is usually listed as the
13863333 9639first nonterminal symbol in a language specification.
bfa74976
RS
9640@xref{Start Decl, ,The Start-Symbol}.
9641
9642@item Symbol table
9643A data structure where symbol names and associated data are stored
9644during parsing to allow for recognition and use of existing
9645information in repeated uses of a symbol. @xref{Multi-function Calc}.
9646
6e649e65
PE
9647@item Syntax error
9648An error encountered during parsing of an input stream due to invalid
9649syntax. @xref{Error Recovery}.
9650
bfa74976
RS
9651@item Token
9652A basic, grammatically indivisible unit of a language. The symbol
9653that describes a token in the grammar is a terminal symbol.
9654The input of the Bison parser is a stream of tokens which comes from
9655the lexical analyzer. @xref{Symbols}.
9656
9657@item Terminal symbol
89cab50d
AD
9658A grammar symbol that has no rules in the grammar and therefore is
9659grammatically indivisible. The piece of text it represents is a token.
9660@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9661@end table
9662
342b8b6e 9663@node Copying This Manual
f2b5126e 9664@appendix Copying This Manual
f9a8293a 9665
f2b5126e
PB
9666@menu
9667* GNU Free Documentation License:: License for copying this manual.
9668@end menu
f9a8293a 9669
f2b5126e
PB
9670@include fdl.texi
9671
342b8b6e 9672@node Index
bfa74976
RS
9673@unnumbered Index
9674
9675@printindex cp
9676
bfa74976 9677@bye
a06ea4aa
AD
9678
9679@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9680@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9681@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9682@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9683@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9684@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9685@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9686@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9687@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9688@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9689@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9690@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 9691@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
9692@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9693@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9694@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9695@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 9696@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
9697@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9698@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9699@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9700@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9701@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9702@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9703@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9704@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 9705@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 9706@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 9707@c LocalWords: YYSTACK DVI fdl printindex