]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Whether the default %destructor/%printer applies to a particular symbol
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
194* Bison Declarations:: Syntax and usage of the Bison declarations section.
195* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 196* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
197
198Defining Language Semantics
199
200* Value Type:: Specifying one data type for all semantic values.
201* Multiple Types:: Specifying several alternative data types.
202* Actions:: An action is the semantic definition of a grammar rule.
203* Action Types:: Specifying data types for actions to operate on.
204* Mid-Rule Actions:: Most actions go at the end of a rule.
205 This says when, why and how to use the exceptional
206 action in the middle of a rule.
207
93dd49ab
PE
208Tracking Locations
209
210* Location Type:: Specifying a data type for locations.
211* Actions and Locations:: Using locations in actions.
212* Location Default Action:: Defining a general way to compute locations.
213
bfa74976
RS
214Bison Declarations
215
b50d2359 216* Require Decl:: Requiring a Bison version.
bfa74976
RS
217* Token Decl:: Declaring terminal symbols.
218* Precedence Decl:: Declaring terminals with precedence and associativity.
219* Union Decl:: Declaring the set of all semantic value types.
220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 221* Initial Action Decl:: Code run before parsing starts.
72f889cc 222* Destructor Decl:: Declaring how symbols are freed.
d6328241 223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
224* Start Decl:: Specifying the start symbol.
225* Pure Decl:: Requesting a reentrant parser.
226* Decl Summary:: Table of all Bison declarations.
227
228Parser C-Language Interface
229
230* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 231* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
232 which reads tokens.
233* Error Reporting:: You must supply a function @code{yyerror}.
234* Action Features:: Special features for use in actions.
f7ab6a50
PE
235* Internationalization:: How to let the parser speak in the user's
236 native language.
bfa74976
RS
237
238The Lexical Analyzer Function @code{yylex}
239
240* Calling Convention:: How @code{yyparse} calls @code{yylex}.
241* Token Values:: How @code{yylex} must return the semantic value
242 of the token it has read.
95923bd6 243* Token Locations:: How @code{yylex} must return the text location
bfa74976 244 (line number, etc.) of the token, if the
93dd49ab 245 actions want that.
bfa74976
RS
246* Pure Calling:: How the calling convention differs
247 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
248
13863333 249The Bison Parser Algorithm
bfa74976 250
742e4900 251* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
252* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
253* Precedence:: Operator precedence works by resolving conflicts.
254* Contextual Precedence:: When an operator's precedence depends on context.
255* Parser States:: The parser is a finite-state-machine with stack.
256* Reduce/Reduce:: When two rules are applicable in the same situation.
257* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 258* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 259* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
260
261Operator Precedence
262
263* Why Precedence:: An example showing why precedence is needed.
264* Using Precedence:: How to specify precedence in Bison grammars.
265* Precedence Examples:: How these features are used in the previous example.
266* How Precedence:: How they work.
267
268Handling Context Dependencies
269
270* Semantic Tokens:: Token parsing can depend on the semantic context.
271* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
272* Tie-in Recovery:: Lexical tie-ins have implications for how
273 error recovery rules must be written.
274
93dd49ab 275Debugging Your Parser
ec3bc396
AD
276
277* Understanding:: Understanding the structure of your parser.
278* Tracing:: Tracing the execution of your parser.
279
bfa74976
RS
280Invoking Bison
281
13863333 282* Bison Options:: All the options described in detail,
c827f760 283 in alphabetical order by short options.
bfa74976 284* Option Cross Key:: Alphabetical list of long options.
93dd49ab 285* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 286
12545799
AD
287C++ Language Interface
288
289* C++ Parsers:: The interface to generate C++ parser classes
290* A Complete C++ Example:: Demonstrating their use
291
292C++ Parsers
293
294* C++ Bison Interface:: Asking for C++ parser generation
295* C++ Semantic Values:: %union vs. C++
296* C++ Location Values:: The position and location classes
297* C++ Parser Interface:: Instantiating and running the parser
298* C++ Scanner Interface:: Exchanges between yylex and parse
299
300A Complete C++ Example
301
302* Calc++ --- C++ Calculator:: The specifications
303* Calc++ Parsing Driver:: An active parsing context
304* Calc++ Parser:: A parser class
305* Calc++ Scanner:: A pure C++ Flex scanner
306* Calc++ Top Level:: Conducting the band
307
d1a1114f
AD
308Frequently Asked Questions
309
1a059451 310* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 311* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 312* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 313* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 314* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
315* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
316* I can't build Bison:: Troubleshooting
317* Where can I find help?:: Troubleshouting
318* Bug Reports:: Troublereporting
319* Other Languages:: Parsers in Java and others
320* Beta Testing:: Experimenting development versions
321* Mailing Lists:: Meeting other Bison users
d1a1114f 322
f2b5126e
PB
323Copying This Manual
324
325* GNU Free Documentation License:: License for copying this manual.
326
342b8b6e 327@end detailmenu
bfa74976
RS
328@end menu
329
342b8b6e 330@node Introduction
bfa74976
RS
331@unnumbered Introduction
332@cindex introduction
333
6077da58
PE
334@dfn{Bison} is a general-purpose parser generator that converts an
335annotated context-free grammar into an @acronym{LALR}(1) or
336@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 337Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
338used in simple desk calculators to complex programming languages.
339
340Bison is upward compatible with Yacc: all properly-written Yacc grammars
341ought to work with Bison with no change. Anyone familiar with Yacc
342should be able to use Bison with little trouble. You need to be fluent in
1e137b71 343C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
344
345We begin with tutorial chapters that explain the basic concepts of using
346Bison and show three explained examples, each building on the last. If you
347don't know Bison or Yacc, start by reading these chapters. Reference
348chapters follow which describe specific aspects of Bison in detail.
349
931c7513
RS
350Bison was written primarily by Robert Corbett; Richard Stallman made it
351Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 352multi-character string literals and other features.
931c7513 353
df1af54c 354This edition corresponds to version @value{VERSION} of Bison.
bfa74976 355
342b8b6e 356@node Conditions
bfa74976
RS
357@unnumbered Conditions for Using Bison
358
193d7c70
PE
359The distribution terms for Bison-generated parsers permit using the
360parsers in nonfree programs. Before Bison version 2.2, these extra
361permissions applied only when Bison was generating @acronym{LALR}(1)
362parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
374parser's implementation. (The actions from your grammar are inserted
375into this implementation at one point, but most of the rest of the
376implementation is not changed.) When we applied the @acronym{GPL}
377terms to the skeleton code for the parser's implementation,
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
193d7c70
PE
387This exception applies when Bison is generating code for a parser.
388You can tell whether the exception applies to a Bison output file by
389inspecting the file for text beginning with ``As a special
390exception@dots{}''. The text spells out the exact terms of the
391exception.
262aa8dd 392
c67a198d 393@include gpl.texi
bfa74976 394
342b8b6e 395@node Concepts
bfa74976
RS
396@chapter The Concepts of Bison
397
398This chapter introduces many of the basic concepts without which the
399details of Bison will not make sense. If you do not already know how to
400use Bison or Yacc, we suggest you start by reading this chapter carefully.
401
402@menu
403* Language and Grammar:: Languages and context-free grammars,
404 as mathematical ideas.
405* Grammar in Bison:: How we represent grammars for Bison's sake.
406* Semantic Values:: Each token or syntactic grouping can have
407 a semantic value (the value of an integer,
408 the name of an identifier, etc.).
409* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 410* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 411* Locations Overview:: Tracking Locations.
bfa74976
RS
412* Bison Parser:: What are Bison's input and output,
413 how is the output used?
414* Stages:: Stages in writing and running Bison grammars.
415* Grammar Layout:: Overall structure of a Bison grammar file.
416@end menu
417
342b8b6e 418@node Language and Grammar
bfa74976
RS
419@section Languages and Context-Free Grammars
420
bfa74976
RS
421@cindex context-free grammar
422@cindex grammar, context-free
423In order for Bison to parse a language, it must be described by a
424@dfn{context-free grammar}. This means that you specify one or more
425@dfn{syntactic groupings} and give rules for constructing them from their
426parts. For example, in the C language, one kind of grouping is called an
427`expression'. One rule for making an expression might be, ``An expression
428can be made of a minus sign and another expression''. Another would be,
429``An expression can be an integer''. As you can see, rules are often
430recursive, but there must be at least one rule which leads out of the
431recursion.
432
c827f760 433@cindex @acronym{BNF}
bfa74976
RS
434@cindex Backus-Naur form
435The most common formal system for presenting such rules for humans to read
c827f760
PE
436is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
437order to specify the language Algol 60. Any grammar expressed in
438@acronym{BNF} is a context-free grammar. The input to Bison is
439essentially machine-readable @acronym{BNF}.
bfa74976 440
c827f760
PE
441@cindex @acronym{LALR}(1) grammars
442@cindex @acronym{LR}(1) grammars
676385e2
PH
443There are various important subclasses of context-free grammar. Although it
444can handle almost all context-free grammars, Bison is optimized for what
c827f760 445are called @acronym{LALR}(1) grammars.
676385e2 446In brief, in these grammars, it must be possible to
bfa74976 447tell how to parse any portion of an input string with just a single
742e4900 448token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
449@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
450restrictions that are
bfa74976 451hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
452@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
453@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
454more information on this.
bfa74976 455
c827f760
PE
456@cindex @acronym{GLR} parsing
457@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 458@cindex ambiguous grammars
9d9b8b70 459@cindex nondeterministic parsing
9501dc6e
AD
460
461Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
462roughly that the next grammar rule to apply at any point in the input is
463uniquely determined by the preceding input and a fixed, finite portion
742e4900 464(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 465grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 466apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 467grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 468lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
469With the proper declarations, Bison is also able to parse these more
470general context-free grammars, using a technique known as @acronym{GLR}
471parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
472are able to handle any context-free grammar for which the number of
473possible parses of any given string is finite.
676385e2 474
bfa74976
RS
475@cindex symbols (abstract)
476@cindex token
477@cindex syntactic grouping
478@cindex grouping, syntactic
9501dc6e
AD
479In the formal grammatical rules for a language, each kind of syntactic
480unit or grouping is named by a @dfn{symbol}. Those which are built by
481grouping smaller constructs according to grammatical rules are called
bfa74976
RS
482@dfn{nonterminal symbols}; those which can't be subdivided are called
483@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
484corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 485corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
486
487We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
488nonterminal, mean. The tokens of C are identifiers, constants (numeric
489and string), and the various keywords, arithmetic operators and
490punctuation marks. So the terminal symbols of a grammar for C include
491`identifier', `number', `string', plus one symbol for each keyword,
492operator or punctuation mark: `if', `return', `const', `static', `int',
493`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
494(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
495lexicography, not grammar.)
496
497Here is a simple C function subdivided into tokens:
498
9edcd895
AD
499@ifinfo
500@example
501int /* @r{keyword `int'} */
14d4662b 502square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
503 @r{identifier, close-paren} */
504@{ /* @r{open-brace} */
aa08666d
AD
505 return x * x; /* @r{keyword `return', identifier, asterisk,}
506 @r{identifier, semicolon} */
9edcd895
AD
507@} /* @r{close-brace} */
508@end example
509@end ifinfo
510@ifnotinfo
bfa74976
RS
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 514@{ /* @r{open-brace} */
9edcd895 515 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
516@} /* @r{close-brace} */
517@end example
9edcd895 518@end ifnotinfo
bfa74976
RS
519
520The syntactic groupings of C include the expression, the statement, the
521declaration, and the function definition. These are represented in the
522grammar of C by nonterminal symbols `expression', `statement',
523`declaration' and `function definition'. The full grammar uses dozens of
524additional language constructs, each with its own nonterminal symbol, in
525order to express the meanings of these four. The example above is a
526function definition; it contains one declaration, and one statement. In
527the statement, each @samp{x} is an expression and so is @samp{x * x}.
528
529Each nonterminal symbol must have grammatical rules showing how it is made
530out of simpler constructs. For example, one kind of C statement is the
531@code{return} statement; this would be described with a grammar rule which
532reads informally as follows:
533
534@quotation
535A `statement' can be made of a `return' keyword, an `expression' and a
536`semicolon'.
537@end quotation
538
539@noindent
540There would be many other rules for `statement', one for each kind of
541statement in C.
542
543@cindex start symbol
544One nonterminal symbol must be distinguished as the special one which
545defines a complete utterance in the language. It is called the @dfn{start
546symbol}. In a compiler, this means a complete input program. In the C
547language, the nonterminal symbol `sequence of definitions and declarations'
548plays this role.
549
550For example, @samp{1 + 2} is a valid C expression---a valid part of a C
551program---but it is not valid as an @emph{entire} C program. In the
552context-free grammar of C, this follows from the fact that `expression' is
553not the start symbol.
554
555The Bison parser reads a sequence of tokens as its input, and groups the
556tokens using the grammar rules. If the input is valid, the end result is
557that the entire token sequence reduces to a single grouping whose symbol is
558the grammar's start symbol. If we use a grammar for C, the entire input
559must be a `sequence of definitions and declarations'. If not, the parser
560reports a syntax error.
561
342b8b6e 562@node Grammar in Bison
bfa74976
RS
563@section From Formal Rules to Bison Input
564@cindex Bison grammar
565@cindex grammar, Bison
566@cindex formal grammar
567
568A formal grammar is a mathematical construct. To define the language
569for Bison, you must write a file expressing the grammar in Bison syntax:
570a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
571
572A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 573as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
574in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
575
576The Bison representation for a terminal symbol is also called a @dfn{token
577type}. Token types as well can be represented as C-like identifiers. By
578convention, these identifiers should be upper case to distinguish them from
579nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
580@code{RETURN}. A terminal symbol that stands for a particular keyword in
581the language should be named after that keyword converted to upper case.
582The terminal symbol @code{error} is reserved for error recovery.
931c7513 583@xref{Symbols}.
bfa74976
RS
584
585A terminal symbol can also be represented as a character literal, just like
586a C character constant. You should do this whenever a token is just a
587single character (parenthesis, plus-sign, etc.): use that same character in
588a literal as the terminal symbol for that token.
589
931c7513
RS
590A third way to represent a terminal symbol is with a C string constant
591containing several characters. @xref{Symbols}, for more information.
592
bfa74976
RS
593The grammar rules also have an expression in Bison syntax. For example,
594here is the Bison rule for a C @code{return} statement. The semicolon in
595quotes is a literal character token, representing part of the C syntax for
596the statement; the naked semicolon, and the colon, are Bison punctuation
597used in every rule.
598
599@example
600stmt: RETURN expr ';'
601 ;
602@end example
603
604@noindent
605@xref{Rules, ,Syntax of Grammar Rules}.
606
342b8b6e 607@node Semantic Values
bfa74976
RS
608@section Semantic Values
609@cindex semantic value
610@cindex value, semantic
611
612A formal grammar selects tokens only by their classifications: for example,
613if a rule mentions the terminal symbol `integer constant', it means that
614@emph{any} integer constant is grammatically valid in that position. The
615precise value of the constant is irrelevant to how to parse the input: if
616@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 617grammatical.
bfa74976
RS
618
619But the precise value is very important for what the input means once it is
620parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6213989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
622has both a token type and a @dfn{semantic value}. @xref{Semantics,
623,Defining Language Semantics},
bfa74976
RS
624for details.
625
626The token type is a terminal symbol defined in the grammar, such as
627@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
628you need to know to decide where the token may validly appear and how to
629group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 630except their types.
bfa74976
RS
631
632The semantic value has all the rest of the information about the
633meaning of the token, such as the value of an integer, or the name of an
634identifier. (A token such as @code{','} which is just punctuation doesn't
635need to have any semantic value.)
636
637For example, an input token might be classified as token type
638@code{INTEGER} and have the semantic value 4. Another input token might
639have the same token type @code{INTEGER} but value 3989. When a grammar
640rule says that @code{INTEGER} is allowed, either of these tokens is
641acceptable because each is an @code{INTEGER}. When the parser accepts the
642token, it keeps track of the token's semantic value.
643
644Each grouping can also have a semantic value as well as its nonterminal
645symbol. For example, in a calculator, an expression typically has a
646semantic value that is a number. In a compiler for a programming
647language, an expression typically has a semantic value that is a tree
648structure describing the meaning of the expression.
649
342b8b6e 650@node Semantic Actions
bfa74976
RS
651@section Semantic Actions
652@cindex semantic actions
653@cindex actions, semantic
654
655In order to be useful, a program must do more than parse input; it must
656also produce some output based on the input. In a Bison grammar, a grammar
657rule can have an @dfn{action} made up of C statements. Each time the
658parser recognizes a match for that rule, the action is executed.
659@xref{Actions}.
13863333 660
bfa74976
RS
661Most of the time, the purpose of an action is to compute the semantic value
662of the whole construct from the semantic values of its parts. For example,
663suppose we have a rule which says an expression can be the sum of two
664expressions. When the parser recognizes such a sum, each of the
665subexpressions has a semantic value which describes how it was built up.
666The action for this rule should create a similar sort of value for the
667newly recognized larger expression.
668
669For example, here is a rule that says an expression can be the sum of
670two subexpressions:
671
672@example
673expr: expr '+' expr @{ $$ = $1 + $3; @}
674 ;
675@end example
676
677@noindent
678The action says how to produce the semantic value of the sum expression
679from the values of the two subexpressions.
680
676385e2 681@node GLR Parsers
c827f760
PE
682@section Writing @acronym{GLR} Parsers
683@cindex @acronym{GLR} parsing
684@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
685@findex %glr-parser
686@cindex conflicts
687@cindex shift/reduce conflicts
fa7e68c3 688@cindex reduce/reduce conflicts
676385e2 689
fa7e68c3 690In some grammars, Bison's standard
9501dc6e
AD
691@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
692certain grammar rule at a given point. That is, it may not be able to
693decide (on the basis of the input read so far) which of two possible
694reductions (applications of a grammar rule) applies, or whether to apply
695a reduction or read more of the input and apply a reduction later in the
696input. These are known respectively as @dfn{reduce/reduce} conflicts
697(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
698(@pxref{Shift/Reduce}).
699
700To use a grammar that is not easily modified to be @acronym{LALR}(1), a
701more general parsing algorithm is sometimes necessary. If you include
676385e2 702@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 703(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
704(@acronym{GLR}) parser. These parsers handle Bison grammars that
705contain no unresolved conflicts (i.e., after applying precedence
706declarations) identically to @acronym{LALR}(1) parsers. However, when
707faced with unresolved shift/reduce and reduce/reduce conflicts,
708@acronym{GLR} parsers use the simple expedient of doing both,
709effectively cloning the parser to follow both possibilities. Each of
710the resulting parsers can again split, so that at any given time, there
711can be any number of possible parses being explored. The parsers
676385e2
PH
712proceed in lockstep; that is, all of them consume (shift) a given input
713symbol before any of them proceed to the next. Each of the cloned
714parsers eventually meets one of two possible fates: either it runs into
715a parsing error, in which case it simply vanishes, or it merges with
716another parser, because the two of them have reduced the input to an
717identical set of symbols.
718
719During the time that there are multiple parsers, semantic actions are
720recorded, but not performed. When a parser disappears, its recorded
721semantic actions disappear as well, and are never performed. When a
722reduction makes two parsers identical, causing them to merge, Bison
723records both sets of semantic actions. Whenever the last two parsers
724merge, reverting to the single-parser case, Bison resolves all the
725outstanding actions either by precedences given to the grammar rules
726involved, or by performing both actions, and then calling a designated
727user-defined function on the resulting values to produce an arbitrary
728merged result.
729
fa7e68c3 730@menu
32c29292
JD
731* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
732* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
733* GLR Semantic Actions:: Deferred semantic actions have special concerns.
734* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
735@end menu
736
737@node Simple GLR Parsers
738@subsection Using @acronym{GLR} on Unambiguous Grammars
739@cindex @acronym{GLR} parsing, unambiguous grammars
740@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
741@findex %glr-parser
742@findex %expect-rr
743@cindex conflicts
744@cindex reduce/reduce conflicts
745@cindex shift/reduce conflicts
746
747In the simplest cases, you can use the @acronym{GLR} algorithm
748to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 749Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
750or (in rare cases) fall into the category of grammars in which the
751@acronym{LALR}(1) algorithm throws away too much information (they are in
752@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
753
754Consider a problem that
755arises in the declaration of enumerated and subrange types in the
756programming language Pascal. Here are some examples:
757
758@example
759type subrange = lo .. hi;
760type enum = (a, b, c);
761@end example
762
763@noindent
764The original language standard allows only numeric
765literals and constant identifiers for the subrange bounds (@samp{lo}
766and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76710206) and many other
768Pascal implementations allow arbitrary expressions there. This gives
769rise to the following situation, containing a superfluous pair of
770parentheses:
771
772@example
773type subrange = (a) .. b;
774@end example
775
776@noindent
777Compare this to the following declaration of an enumerated
778type with only one value:
779
780@example
781type enum = (a);
782@end example
783
784@noindent
785(These declarations are contrived, but they are syntactically
786valid, and more-complicated cases can come up in practical programs.)
787
788These two declarations look identical until the @samp{..} token.
742e4900 789With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
790possible to decide between the two forms when the identifier
791@samp{a} is parsed. It is, however, desirable
792for a parser to decide this, since in the latter case
793@samp{a} must become a new identifier to represent the enumeration
794value, while in the former case @samp{a} must be evaluated with its
795current meaning, which may be a constant or even a function call.
796
797You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
798to be resolved later, but this typically requires substantial
799contortions in both semantic actions and large parts of the
800grammar, where the parentheses are nested in the recursive rules for
801expressions.
802
803You might think of using the lexer to distinguish between the two
804forms by returning different tokens for currently defined and
805undefined identifiers. But if these declarations occur in a local
806scope, and @samp{a} is defined in an outer scope, then both forms
807are possible---either locally redefining @samp{a}, or using the
808value of @samp{a} from the outer scope. So this approach cannot
809work.
810
e757bb10 811A simple solution to this problem is to declare the parser to
fa7e68c3
PE
812use the @acronym{GLR} algorithm.
813When the @acronym{GLR} parser reaches the critical state, it
814merely splits into two branches and pursues both syntax rules
815simultaneously. Sooner or later, one of them runs into a parsing
816error. If there is a @samp{..} token before the next
817@samp{;}, the rule for enumerated types fails since it cannot
818accept @samp{..} anywhere; otherwise, the subrange type rule
819fails since it requires a @samp{..} token. So one of the branches
820fails silently, and the other one continues normally, performing
821all the intermediate actions that were postponed during the split.
822
823If the input is syntactically incorrect, both branches fail and the parser
824reports a syntax error as usual.
825
826The effect of all this is that the parser seems to ``guess'' the
827correct branch to take, or in other words, it seems to use more
742e4900 828lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
829for. In this example, @acronym{LALR}(2) would suffice, but also some cases
830that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
831
832In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
833and the current Bison parser even takes exponential time and space
834for some grammars. In practice, this rarely happens, and for many
835grammars it is possible to prove that it cannot happen.
836The present example contains only one conflict between two
837rules, and the type-declaration context containing the conflict
838cannot be nested. So the number of
839branches that can exist at any time is limited by the constant 2,
840and the parsing time is still linear.
841
842Here is a Bison grammar corresponding to the example above. It
843parses a vastly simplified form of Pascal type declarations.
844
845@example
846%token TYPE DOTDOT ID
847
848@group
849%left '+' '-'
850%left '*' '/'
851@end group
852
853%%
854
855@group
856type_decl : TYPE ID '=' type ';'
857 ;
858@end group
859
860@group
861type : '(' id_list ')'
862 | expr DOTDOT expr
863 ;
864@end group
865
866@group
867id_list : ID
868 | id_list ',' ID
869 ;
870@end group
871
872@group
873expr : '(' expr ')'
874 | expr '+' expr
875 | expr '-' expr
876 | expr '*' expr
877 | expr '/' expr
878 | ID
879 ;
880@end group
881@end example
882
883When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
884about one reduce/reduce conflict. In the conflicting situation the
885parser chooses one of the alternatives, arbitrarily the one
886declared first. Therefore the following correct input is not
887recognized:
888
889@example
890type t = (a) .. b;
891@end example
892
893The parser can be turned into a @acronym{GLR} parser, while also telling Bison
894to be silent about the one known reduce/reduce conflict, by
e757bb10 895adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
896@samp{%%}):
897
898@example
899%glr-parser
900%expect-rr 1
901@end example
902
903@noindent
904No change in the grammar itself is required. Now the
905parser recognizes all valid declarations, according to the
906limited syntax above, transparently. In fact, the user does not even
907notice when the parser splits.
908
f8e1c9e5
AD
909So here we have a case where we can use the benefits of @acronym{GLR},
910almost without disadvantages. Even in simple cases like this, however,
911there are at least two potential problems to beware. First, always
912analyze the conflicts reported by Bison to make sure that @acronym{GLR}
913splitting is only done where it is intended. A @acronym{GLR} parser
914splitting inadvertently may cause problems less obvious than an
915@acronym{LALR} parser statically choosing the wrong alternative in a
916conflict. Second, consider interactions with the lexer (@pxref{Semantic
917Tokens}) with great care. Since a split parser consumes tokens without
918performing any actions during the split, the lexer cannot obtain
919information via parser actions. Some cases of lexer interactions can be
920eliminated by using @acronym{GLR} to shift the complications from the
921lexer to the parser. You must check the remaining cases for
922correctness.
923
924In our example, it would be safe for the lexer to return tokens based on
925their current meanings in some symbol table, because no new symbols are
926defined in the middle of a type declaration. Though it is possible for
927a parser to define the enumeration constants as they are parsed, before
928the type declaration is completed, it actually makes no difference since
929they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
930
931@node Merging GLR Parses
932@subsection Using @acronym{GLR} to Resolve Ambiguities
933@cindex @acronym{GLR} parsing, ambiguous grammars
934@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
935@findex %dprec
936@findex %merge
937@cindex conflicts
938@cindex reduce/reduce conflicts
939
2a8d363a 940Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
941
942@example
943%@{
38a92d50
PE
944 #include <stdio.h>
945 #define YYSTYPE char const *
946 int yylex (void);
947 void yyerror (char const *);
676385e2
PH
948%@}
949
950%token TYPENAME ID
951
952%right '='
953%left '+'
954
955%glr-parser
956
957%%
958
fae437e8 959prog :
676385e2
PH
960 | prog stmt @{ printf ("\n"); @}
961 ;
962
963stmt : expr ';' %dprec 1
964 | decl %dprec 2
965 ;
966
2a8d363a 967expr : ID @{ printf ("%s ", $$); @}
fae437e8 968 | TYPENAME '(' expr ')'
2a8d363a
AD
969 @{ printf ("%s <cast> ", $1); @}
970 | expr '+' expr @{ printf ("+ "); @}
971 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
972 ;
973
fae437e8 974decl : TYPENAME declarator ';'
2a8d363a 975 @{ printf ("%s <declare> ", $1); @}
676385e2 976 | TYPENAME declarator '=' expr ';'
2a8d363a 977 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
978 ;
979
2a8d363a 980declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
981 | '(' declarator ')'
982 ;
983@end example
984
985@noindent
986This models a problematic part of the C++ grammar---the ambiguity between
987certain declarations and statements. For example,
988
989@example
990T (x) = y+z;
991@end example
992
993@noindent
994parses as either an @code{expr} or a @code{stmt}
c827f760
PE
995(assuming that @samp{T} is recognized as a @code{TYPENAME} and
996@samp{x} as an @code{ID}).
676385e2 997Bison detects this as a reduce/reduce conflict between the rules
fae437e8 998@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
999time it encounters @code{x} in the example above. Since this is a
1000@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1001each choice of resolving the reduce/reduce conflict.
1002Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1003however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1004ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1005the other reduces @code{stmt : decl}, after which both parsers are in an
1006identical state: they've seen @samp{prog stmt} and have the same unprocessed
1007input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1008
1009At this point, the @acronym{GLR} parser requires a specification in the
1010grammar of how to choose between the competing parses.
1011In the example above, the two @code{%dprec}
e757bb10 1012declarations specify that Bison is to give precedence
fa7e68c3 1013to the parse that interprets the example as a
676385e2
PH
1014@code{decl}, which implies that @code{x} is a declarator.
1015The parser therefore prints
1016
1017@example
fae437e8 1018"x" y z + T <init-declare>
676385e2
PH
1019@end example
1020
fa7e68c3
PE
1021The @code{%dprec} declarations only come into play when more than one
1022parse survives. Consider a different input string for this parser:
676385e2
PH
1023
1024@example
1025T (x) + y;
1026@end example
1027
1028@noindent
e757bb10 1029This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1030construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1031Here, there is no ambiguity (this cannot be parsed as a declaration).
1032However, at the time the Bison parser encounters @code{x}, it does not
1033have enough information to resolve the reduce/reduce conflict (again,
1034between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1035case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1036into two, one assuming that @code{x} is an @code{expr}, and the other
1037assuming @code{x} is a @code{declarator}. The second of these parsers
1038then vanishes when it sees @code{+}, and the parser prints
1039
1040@example
fae437e8 1041x T <cast> y +
676385e2
PH
1042@end example
1043
1044Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1045the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1046actions of the two possible parsers, rather than choosing one over the
1047other. To do so, you could change the declaration of @code{stmt} as
1048follows:
1049
1050@example
1051stmt : expr ';' %merge <stmtMerge>
1052 | decl %merge <stmtMerge>
1053 ;
1054@end example
1055
1056@noindent
676385e2
PH
1057and define the @code{stmtMerge} function as:
1058
1059@example
38a92d50
PE
1060static YYSTYPE
1061stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1062@{
1063 printf ("<OR> ");
1064 return "";
1065@}
1066@end example
1067
1068@noindent
1069with an accompanying forward declaration
1070in the C declarations at the beginning of the file:
1071
1072@example
1073%@{
38a92d50 1074 #define YYSTYPE char const *
676385e2
PH
1075 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1076%@}
1077@end example
1078
1079@noindent
fa7e68c3
PE
1080With these declarations, the resulting parser parses the first example
1081as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1082
1083@example
fae437e8 1084"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1085@end example
1086
fa7e68c3 1087Bison requires that all of the
e757bb10 1088productions that participate in any particular merge have identical
fa7e68c3
PE
1089@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1090and the parser will report an error during any parse that results in
1091the offending merge.
9501dc6e 1092
32c29292
JD
1093@node GLR Semantic Actions
1094@subsection GLR Semantic Actions
1095
1096@cindex deferred semantic actions
1097By definition, a deferred semantic action is not performed at the same time as
1098the associated reduction.
1099This raises caveats for several Bison features you might use in a semantic
1100action in a @acronym{GLR} parser.
1101
1102@vindex yychar
1103@cindex @acronym{GLR} parsers and @code{yychar}
1104@vindex yylval
1105@cindex @acronym{GLR} parsers and @code{yylval}
1106@vindex yylloc
1107@cindex @acronym{GLR} parsers and @code{yylloc}
1108In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1109the lookahead token present at the time of the associated reduction.
32c29292
JD
1110After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1111you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1112lookahead token's semantic value and location, if any.
32c29292
JD
1113In a nondeferred semantic action, you can also modify any of these variables to
1114influence syntax analysis.
742e4900 1115@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1116
1117@findex yyclearin
1118@cindex @acronym{GLR} parsers and @code{yyclearin}
1119In a deferred semantic action, it's too late to influence syntax analysis.
1120In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1121shallow copies of the values they had at the time of the associated reduction.
1122For this reason alone, modifying them is dangerous.
1123Moreover, the result of modifying them is undefined and subject to change with
1124future versions of Bison.
1125For example, if a semantic action might be deferred, you should never write it
1126to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1127memory referenced by @code{yylval}.
1128
1129@findex YYERROR
1130@cindex @acronym{GLR} parsers and @code{YYERROR}
1131Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1132(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1133initiate error recovery.
1134During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1135the same as its effect in an @acronym{LALR}(1) parser.
1136In a deferred semantic action, its effect is undefined.
1137@c The effect is probably a syntax error at the split point.
1138
8710fc41
JD
1139Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1140describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1141
fa7e68c3
PE
1142@node Compiler Requirements
1143@subsection Considerations when Compiling @acronym{GLR} Parsers
1144@cindex @code{inline}
9501dc6e 1145@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1146
38a92d50
PE
1147The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1148later. In addition, they use the @code{inline} keyword, which is not
1149C89, but is C99 and is a common extension in pre-C99 compilers. It is
1150up to the user of these parsers to handle
9501dc6e
AD
1151portability issues. For instance, if using Autoconf and the Autoconf
1152macro @code{AC_C_INLINE}, a mere
1153
1154@example
1155%@{
38a92d50 1156 #include <config.h>
9501dc6e
AD
1157%@}
1158@end example
1159
1160@noindent
1161will suffice. Otherwise, we suggest
1162
1163@example
1164%@{
38a92d50
PE
1165 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1166 #define inline
1167 #endif
9501dc6e
AD
1168%@}
1169@end example
676385e2 1170
342b8b6e 1171@node Locations Overview
847bf1f5
AD
1172@section Locations
1173@cindex location
95923bd6
AD
1174@cindex textual location
1175@cindex location, textual
847bf1f5
AD
1176
1177Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1178and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1179the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1180Bison provides a mechanism for handling these locations.
1181
72d2299c 1182Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1183associated location, but the type of locations is the same for all tokens and
72d2299c 1184groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1185structure for storing locations (@pxref{Locations}, for more details).
1186
1187Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1188set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1189is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1190@code{@@3}.
1191
1192When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1193of its left hand side (@pxref{Actions}). In the same way, another default
1194action is used for locations. However, the action for locations is general
847bf1f5 1195enough for most cases, meaning there is usually no need to describe for each
72d2299c 1196rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1197grouping, the default behavior of the output parser is to take the beginning
1198of the first symbol, and the end of the last symbol.
1199
342b8b6e 1200@node Bison Parser
bfa74976
RS
1201@section Bison Output: the Parser File
1202@cindex Bison parser
1203@cindex Bison utility
1204@cindex lexical analyzer, purpose
1205@cindex parser
1206
1207When you run Bison, you give it a Bison grammar file as input. The output
1208is a C source file that parses the language described by the grammar.
1209This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1210utility and the Bison parser are two distinct programs: the Bison utility
1211is a program whose output is the Bison parser that becomes part of your
1212program.
1213
1214The job of the Bison parser is to group tokens into groupings according to
1215the grammar rules---for example, to build identifiers and operators into
1216expressions. As it does this, it runs the actions for the grammar rules it
1217uses.
1218
704a47c4
AD
1219The tokens come from a function called the @dfn{lexical analyzer} that
1220you must supply in some fashion (such as by writing it in C). The Bison
1221parser calls the lexical analyzer each time it wants a new token. It
1222doesn't know what is ``inside'' the tokens (though their semantic values
1223may reflect this). Typically the lexical analyzer makes the tokens by
1224parsing characters of text, but Bison does not depend on this.
1225@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1226
1227The Bison parser file is C code which defines a function named
1228@code{yyparse} which implements that grammar. This function does not make
1229a complete C program: you must supply some additional functions. One is
1230the lexical analyzer. Another is an error-reporting function which the
1231parser calls to report an error. In addition, a complete C program must
1232start with a function called @code{main}; you have to provide this, and
1233arrange for it to call @code{yyparse} or the parser will never run.
1234@xref{Interface, ,Parser C-Language Interface}.
1235
f7ab6a50 1236Aside from the token type names and the symbols in the actions you
7093d0f5 1237write, all symbols defined in the Bison parser file itself
bfa74976
RS
1238begin with @samp{yy} or @samp{YY}. This includes interface functions
1239such as the lexical analyzer function @code{yylex}, the error reporting
1240function @code{yyerror} and the parser function @code{yyparse} itself.
1241This also includes numerous identifiers used for internal purposes.
1242Therefore, you should avoid using C identifiers starting with @samp{yy}
1243or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1244this manual. Also, you should avoid using the C identifiers
1245@samp{malloc} and @samp{free} for anything other than their usual
1246meanings.
bfa74976 1247
7093d0f5
AD
1248In some cases the Bison parser file includes system headers, and in
1249those cases your code should respect the identifiers reserved by those
55289366 1250headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1251@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1252declare memory allocators and related types. @code{<libintl.h>} is
1253included if message translation is in use
1254(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1255be included if you define @code{YYDEBUG} to a nonzero value
1256(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1257
342b8b6e 1258@node Stages
bfa74976
RS
1259@section Stages in Using Bison
1260@cindex stages in using Bison
1261@cindex using Bison
1262
1263The actual language-design process using Bison, from grammar specification
1264to a working compiler or interpreter, has these parts:
1265
1266@enumerate
1267@item
1268Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1269(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1270in the language, describe the action that is to be taken when an
1271instance of that rule is recognized. The action is described by a
1272sequence of C statements.
bfa74976
RS
1273
1274@item
704a47c4
AD
1275Write a lexical analyzer to process input and pass tokens to the parser.
1276The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1277Lexical Analyzer Function @code{yylex}}). It could also be produced
1278using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1279
1280@item
1281Write a controlling function that calls the Bison-produced parser.
1282
1283@item
1284Write error-reporting routines.
1285@end enumerate
1286
1287To turn this source code as written into a runnable program, you
1288must follow these steps:
1289
1290@enumerate
1291@item
1292Run Bison on the grammar to produce the parser.
1293
1294@item
1295Compile the code output by Bison, as well as any other source files.
1296
1297@item
1298Link the object files to produce the finished product.
1299@end enumerate
1300
342b8b6e 1301@node Grammar Layout
bfa74976
RS
1302@section The Overall Layout of a Bison Grammar
1303@cindex grammar file
1304@cindex file format
1305@cindex format of grammar file
1306@cindex layout of Bison grammar
1307
1308The input file for the Bison utility is a @dfn{Bison grammar file}. The
1309general form of a Bison grammar file is as follows:
1310
1311@example
1312%@{
08e49d20 1313@var{Prologue}
bfa74976
RS
1314%@}
1315
1316@var{Bison declarations}
1317
1318%%
1319@var{Grammar rules}
1320%%
08e49d20 1321@var{Epilogue}
bfa74976
RS
1322@end example
1323
1324@noindent
1325The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1326in every Bison grammar file to separate the sections.
1327
72d2299c 1328The prologue may define types and variables used in the actions. You can
342b8b6e 1329also use preprocessor commands to define macros used there, and use
bfa74976 1330@code{#include} to include header files that do any of these things.
38a92d50
PE
1331You need to declare the lexical analyzer @code{yylex} and the error
1332printer @code{yyerror} here, along with any other global identifiers
1333used by the actions in the grammar rules.
bfa74976
RS
1334
1335The Bison declarations declare the names of the terminal and nonterminal
1336symbols, and may also describe operator precedence and the data types of
1337semantic values of various symbols.
1338
1339The grammar rules define how to construct each nonterminal symbol from its
1340parts.
1341
38a92d50
PE
1342The epilogue can contain any code you want to use. Often the
1343definitions of functions declared in the prologue go here. In a
1344simple program, all the rest of the program can go here.
bfa74976 1345
342b8b6e 1346@node Examples
bfa74976
RS
1347@chapter Examples
1348@cindex simple examples
1349@cindex examples, simple
1350
1351Now we show and explain three sample programs written using Bison: a
1352reverse polish notation calculator, an algebraic (infix) notation
1353calculator, and a multi-function calculator. All three have been tested
1354under BSD Unix 4.3; each produces a usable, though limited, interactive
1355desk-top calculator.
1356
1357These examples are simple, but Bison grammars for real programming
aa08666d
AD
1358languages are written the same way. You can copy these examples into a
1359source file to try them.
bfa74976
RS
1360
1361@menu
1362* RPN Calc:: Reverse polish notation calculator;
1363 a first example with no operator precedence.
1364* Infix Calc:: Infix (algebraic) notation calculator.
1365 Operator precedence is introduced.
1366* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1367* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1368* Multi-function Calc:: Calculator with memory and trig functions.
1369 It uses multiple data-types for semantic values.
1370* Exercises:: Ideas for improving the multi-function calculator.
1371@end menu
1372
342b8b6e 1373@node RPN Calc
bfa74976
RS
1374@section Reverse Polish Notation Calculator
1375@cindex reverse polish notation
1376@cindex polish notation calculator
1377@cindex @code{rpcalc}
1378@cindex calculator, simple
1379
1380The first example is that of a simple double-precision @dfn{reverse polish
1381notation} calculator (a calculator using postfix operators). This example
1382provides a good starting point, since operator precedence is not an issue.
1383The second example will illustrate how operator precedence is handled.
1384
1385The source code for this calculator is named @file{rpcalc.y}. The
1386@samp{.y} extension is a convention used for Bison input files.
1387
1388@menu
75f5aaea 1389* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1390* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1391* Lexer: Rpcalc Lexer. The lexical analyzer.
1392* Main: Rpcalc Main. The controlling function.
1393* Error: Rpcalc Error. The error reporting function.
1394* Gen: Rpcalc Gen. Running Bison on the grammar file.
1395* Comp: Rpcalc Compile. Run the C compiler on the output code.
1396@end menu
1397
342b8b6e 1398@node Rpcalc Decls
bfa74976
RS
1399@subsection Declarations for @code{rpcalc}
1400
1401Here are the C and Bison declarations for the reverse polish notation
1402calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1403
1404@example
72d2299c 1405/* Reverse polish notation calculator. */
bfa74976
RS
1406
1407%@{
38a92d50
PE
1408 #define YYSTYPE double
1409 #include <math.h>
1410 int yylex (void);
1411 void yyerror (char const *);
bfa74976
RS
1412%@}
1413
1414%token NUM
1415
72d2299c 1416%% /* Grammar rules and actions follow. */
bfa74976
RS
1417@end example
1418
75f5aaea 1419The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1420preprocessor directives and two forward declarations.
bfa74976
RS
1421
1422The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1423specifying the C data type for semantic values of both tokens and
1424groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1425Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1426don't define it, @code{int} is the default. Because we specify
1427@code{double}, each token and each expression has an associated value,
1428which is a floating point number.
bfa74976
RS
1429
1430The @code{#include} directive is used to declare the exponentiation
1431function @code{pow}.
1432
38a92d50
PE
1433The forward declarations for @code{yylex} and @code{yyerror} are
1434needed because the C language requires that functions be declared
1435before they are used. These functions will be defined in the
1436epilogue, but the parser calls them so they must be declared in the
1437prologue.
1438
704a47c4
AD
1439The second section, Bison declarations, provides information to Bison
1440about the token types (@pxref{Bison Declarations, ,The Bison
1441Declarations Section}). Each terminal symbol that is not a
1442single-character literal must be declared here. (Single-character
bfa74976
RS
1443literals normally don't need to be declared.) In this example, all the
1444arithmetic operators are designated by single-character literals, so the
1445only terminal symbol that needs to be declared is @code{NUM}, the token
1446type for numeric constants.
1447
342b8b6e 1448@node Rpcalc Rules
bfa74976
RS
1449@subsection Grammar Rules for @code{rpcalc}
1450
1451Here are the grammar rules for the reverse polish notation calculator.
1452
1453@example
1454input: /* empty */
1455 | input line
1456;
1457
1458line: '\n'
18b519c0 1459 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1460;
1461
18b519c0
AD
1462exp: NUM @{ $$ = $1; @}
1463 | exp exp '+' @{ $$ = $1 + $2; @}
1464 | exp exp '-' @{ $$ = $1 - $2; @}
1465 | exp exp '*' @{ $$ = $1 * $2; @}
1466 | exp exp '/' @{ $$ = $1 / $2; @}
1467 /* Exponentiation */
1468 | exp exp '^' @{ $$ = pow ($1, $2); @}
1469 /* Unary minus */
1470 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1471;
1472%%
1473@end example
1474
1475The groupings of the rpcalc ``language'' defined here are the expression
1476(given the name @code{exp}), the line of input (@code{line}), and the
1477complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1478symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1479which is read as ``or''. The following sections explain what these rules
1480mean.
1481
1482The semantics of the language is determined by the actions taken when a
1483grouping is recognized. The actions are the C code that appears inside
1484braces. @xref{Actions}.
1485
1486You must specify these actions in C, but Bison provides the means for
1487passing semantic values between the rules. In each action, the
1488pseudo-variable @code{$$} stands for the semantic value for the grouping
1489that the rule is going to construct. Assigning a value to @code{$$} is the
1490main job of most actions. The semantic values of the components of the
1491rule are referred to as @code{$1}, @code{$2}, and so on.
1492
1493@menu
13863333
AD
1494* Rpcalc Input::
1495* Rpcalc Line::
1496* Rpcalc Expr::
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node Rpcalc Input
bfa74976
RS
1500@subsubsection Explanation of @code{input}
1501
1502Consider the definition of @code{input}:
1503
1504@example
1505input: /* empty */
1506 | input line
1507;
1508@end example
1509
1510This definition reads as follows: ``A complete input is either an empty
1511string, or a complete input followed by an input line''. Notice that
1512``complete input'' is defined in terms of itself. This definition is said
1513to be @dfn{left recursive} since @code{input} appears always as the
1514leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1515
1516The first alternative is empty because there are no symbols between the
1517colon and the first @samp{|}; this means that @code{input} can match an
1518empty string of input (no tokens). We write the rules this way because it
1519is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1520It's conventional to put an empty alternative first and write the comment
1521@samp{/* empty */} in it.
1522
1523The second alternate rule (@code{input line}) handles all nontrivial input.
1524It means, ``After reading any number of lines, read one more line if
1525possible.'' The left recursion makes this rule into a loop. Since the
1526first alternative matches empty input, the loop can be executed zero or
1527more times.
1528
1529The parser function @code{yyparse} continues to process input until a
1530grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1531input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1532
342b8b6e 1533@node Rpcalc Line
bfa74976
RS
1534@subsubsection Explanation of @code{line}
1535
1536Now consider the definition of @code{line}:
1537
1538@example
1539line: '\n'
1540 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1541;
1542@end example
1543
1544The first alternative is a token which is a newline character; this means
1545that rpcalc accepts a blank line (and ignores it, since there is no
1546action). The second alternative is an expression followed by a newline.
1547This is the alternative that makes rpcalc useful. The semantic value of
1548the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1549question is the first symbol in the alternative. The action prints this
1550value, which is the result of the computation the user asked for.
1551
1552This action is unusual because it does not assign a value to @code{$$}. As
1553a consequence, the semantic value associated with the @code{line} is
1554uninitialized (its value will be unpredictable). This would be a bug if
1555that value were ever used, but we don't use it: once rpcalc has printed the
1556value of the user's input line, that value is no longer needed.
1557
342b8b6e 1558@node Rpcalc Expr
bfa74976
RS
1559@subsubsection Explanation of @code{expr}
1560
1561The @code{exp} grouping has several rules, one for each kind of expression.
1562The first rule handles the simplest expressions: those that are just numbers.
1563The second handles an addition-expression, which looks like two expressions
1564followed by a plus-sign. The third handles subtraction, and so on.
1565
1566@example
1567exp: NUM
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 @dots{}
1571 ;
1572@end example
1573
1574We have used @samp{|} to join all the rules for @code{exp}, but we could
1575equally well have written them separately:
1576
1577@example
1578exp: NUM ;
1579exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1580exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1581 @dots{}
1582@end example
1583
1584Most of the rules have actions that compute the value of the expression in
1585terms of the value of its parts. For example, in the rule for addition,
1586@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1587the second one. The third component, @code{'+'}, has no meaningful
1588associated semantic value, but if it had one you could refer to it as
1589@code{$3}. When @code{yyparse} recognizes a sum expression using this
1590rule, the sum of the two subexpressions' values is produced as the value of
1591the entire expression. @xref{Actions}.
1592
1593You don't have to give an action for every rule. When a rule has no
1594action, Bison by default copies the value of @code{$1} into @code{$$}.
1595This is what happens in the first rule (the one that uses @code{NUM}).
1596
1597The formatting shown here is the recommended convention, but Bison does
72d2299c 1598not require it. You can add or change white space as much as you wish.
bfa74976
RS
1599For example, this:
1600
1601@example
99a9344e 1602exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1603@end example
1604
1605@noindent
1606means the same thing as this:
1607
1608@example
1609exp: NUM
1610 | exp exp '+' @{ $$ = $1 + $2; @}
1611 | @dots{}
99a9344e 1612;
bfa74976
RS
1613@end example
1614
1615@noindent
1616The latter, however, is much more readable.
1617
342b8b6e 1618@node Rpcalc Lexer
bfa74976
RS
1619@subsection The @code{rpcalc} Lexical Analyzer
1620@cindex writing a lexical analyzer
1621@cindex lexical analyzer, writing
1622
704a47c4
AD
1623The lexical analyzer's job is low-level parsing: converting characters
1624or sequences of characters into tokens. The Bison parser gets its
1625tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1626Analyzer Function @code{yylex}}.
bfa74976 1627
c827f760
PE
1628Only a simple lexical analyzer is needed for the @acronym{RPN}
1629calculator. This
bfa74976
RS
1630lexical analyzer skips blanks and tabs, then reads in numbers as
1631@code{double} and returns them as @code{NUM} tokens. Any other character
1632that isn't part of a number is a separate token. Note that the token-code
1633for such a single-character token is the character itself.
1634
1635The return value of the lexical analyzer function is a numeric code which
1636represents a token type. The same text used in Bison rules to stand for
1637this token type is also a C expression for the numeric code for the type.
1638This works in two ways. If the token type is a character literal, then its
e966383b 1639numeric code is that of the character; you can use the same
bfa74976
RS
1640character literal in the lexical analyzer to express the number. If the
1641token type is an identifier, that identifier is defined by Bison as a C
1642macro whose definition is the appropriate number. In this example,
1643therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1644
1964ad8c
AD
1645The semantic value of the token (if it has one) is stored into the
1646global variable @code{yylval}, which is where the Bison parser will look
1647for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1648defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1649,Declarations for @code{rpcalc}}.)
bfa74976 1650
72d2299c
PE
1651A token type code of zero is returned if the end-of-input is encountered.
1652(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1653
1654Here is the code for the lexical analyzer:
1655
1656@example
1657@group
72d2299c 1658/* The lexical analyzer returns a double floating point
e966383b 1659 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1660 of the character read if not a number. It skips all blanks
1661 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1662
1663#include <ctype.h>
1664@end group
1665
1666@group
13863333
AD
1667int
1668yylex (void)
bfa74976
RS
1669@{
1670 int c;
1671
72d2299c 1672 /* Skip white space. */
13863333 1673 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1674 ;
1675@end group
1676@group
72d2299c 1677 /* Process numbers. */
13863333 1678 if (c == '.' || isdigit (c))
bfa74976
RS
1679 @{
1680 ungetc (c, stdin);
1681 scanf ("%lf", &yylval);
1682 return NUM;
1683 @}
1684@end group
1685@group
72d2299c 1686 /* Return end-of-input. */
13863333 1687 if (c == EOF)
bfa74976 1688 return 0;
72d2299c 1689 /* Return a single char. */
13863333 1690 return c;
bfa74976
RS
1691@}
1692@end group
1693@end example
1694
342b8b6e 1695@node Rpcalc Main
bfa74976
RS
1696@subsection The Controlling Function
1697@cindex controlling function
1698@cindex main function in simple example
1699
1700In keeping with the spirit of this example, the controlling function is
1701kept to the bare minimum. The only requirement is that it call
1702@code{yyparse} to start the process of parsing.
1703
1704@example
1705@group
13863333
AD
1706int
1707main (void)
bfa74976 1708@{
13863333 1709 return yyparse ();
bfa74976
RS
1710@}
1711@end group
1712@end example
1713
342b8b6e 1714@node Rpcalc Error
bfa74976
RS
1715@subsection The Error Reporting Routine
1716@cindex error reporting routine
1717
1718When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1719function @code{yyerror} to print an error message (usually but not
6e649e65 1720always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1721@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1722here is the definition we will use:
bfa74976
RS
1723
1724@example
1725@group
1726#include <stdio.h>
1727
38a92d50 1728/* Called by yyparse on error. */
13863333 1729void
38a92d50 1730yyerror (char const *s)
bfa74976 1731@{
4e03e201 1732 fprintf (stderr, "%s\n", s);
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
1737After @code{yyerror} returns, the Bison parser may recover from the error
1738and continue parsing if the grammar contains a suitable error rule
1739(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1740have not written any error rules in this example, so any invalid input will
1741cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1742real calculator, but it is adequate for the first example.
bfa74976 1743
342b8b6e 1744@node Rpcalc Gen
bfa74976
RS
1745@subsection Running Bison to Make the Parser
1746@cindex running Bison (introduction)
1747
ceed8467
AD
1748Before running Bison to produce a parser, we need to decide how to
1749arrange all the source code in one or more source files. For such a
1750simple example, the easiest thing is to put everything in one file. The
1751definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1752end, in the epilogue of the file
75f5aaea 1753(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1754
1755For a large project, you would probably have several source files, and use
1756@code{make} to arrange to recompile them.
1757
1758With all the source in a single file, you use the following command to
1759convert it into a parser file:
1760
1761@example
fa4d969f 1762bison @var{file}.y
bfa74976
RS
1763@end example
1764
1765@noindent
1766In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1767@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1768removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1769Bison contains the source code for @code{yyparse}. The additional
1770functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1771are copied verbatim to the output.
1772
342b8b6e 1773@node Rpcalc Compile
bfa74976
RS
1774@subsection Compiling the Parser File
1775@cindex compiling the parser
1776
1777Here is how to compile and run the parser file:
1778
1779@example
1780@group
1781# @r{List files in current directory.}
9edcd895 1782$ @kbd{ls}
bfa74976
RS
1783rpcalc.tab.c rpcalc.y
1784@end group
1785
1786@group
1787# @r{Compile the Bison parser.}
1788# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1789$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1790@end group
1791
1792@group
1793# @r{List files again.}
9edcd895 1794$ @kbd{ls}
bfa74976
RS
1795rpcalc rpcalc.tab.c rpcalc.y
1796@end group
1797@end example
1798
1799The file @file{rpcalc} now contains the executable code. Here is an
1800example session using @code{rpcalc}.
1801
1802@example
9edcd895
AD
1803$ @kbd{rpcalc}
1804@kbd{4 9 +}
bfa74976 180513
9edcd895 1806@kbd{3 7 + 3 4 5 *+-}
bfa74976 1807-13
9edcd895 1808@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 180913
9edcd895 1810@kbd{5 6 / 4 n +}
bfa74976 1811-3.166666667
9edcd895 1812@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181381
9edcd895
AD
1814@kbd{^D} @r{End-of-file indicator}
1815$
bfa74976
RS
1816@end example
1817
342b8b6e 1818@node Infix Calc
bfa74976
RS
1819@section Infix Notation Calculator: @code{calc}
1820@cindex infix notation calculator
1821@cindex @code{calc}
1822@cindex calculator, infix notation
1823
1824We now modify rpcalc to handle infix operators instead of postfix. Infix
1825notation involves the concept of operator precedence and the need for
1826parentheses nested to arbitrary depth. Here is the Bison code for
1827@file{calc.y}, an infix desk-top calculator.
1828
1829@example
38a92d50 1830/* Infix notation calculator. */
bfa74976
RS
1831
1832%@{
38a92d50
PE
1833 #define YYSTYPE double
1834 #include <math.h>
1835 #include <stdio.h>
1836 int yylex (void);
1837 void yyerror (char const *);
bfa74976
RS
1838%@}
1839
38a92d50 1840/* Bison declarations. */
bfa74976
RS
1841%token NUM
1842%left '-' '+'
1843%left '*' '/'
1844%left NEG /* negation--unary minus */
38a92d50 1845%right '^' /* exponentiation */
bfa74976 1846
38a92d50
PE
1847%% /* The grammar follows. */
1848input: /* empty */
bfa74976
RS
1849 | input line
1850;
1851
1852line: '\n'
1853 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1854;
1855
1856exp: NUM @{ $$ = $1; @}
1857 | exp '+' exp @{ $$ = $1 + $3; @}
1858 | exp '-' exp @{ $$ = $1 - $3; @}
1859 | exp '*' exp @{ $$ = $1 * $3; @}
1860 | exp '/' exp @{ $$ = $1 / $3; @}
1861 | '-' exp %prec NEG @{ $$ = -$2; @}
1862 | exp '^' exp @{ $$ = pow ($1, $3); @}
1863 | '(' exp ')' @{ $$ = $2; @}
1864;
1865%%
1866@end example
1867
1868@noindent
ceed8467
AD
1869The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1870same as before.
bfa74976
RS
1871
1872There are two important new features shown in this code.
1873
1874In the second section (Bison declarations), @code{%left} declares token
1875types and says they are left-associative operators. The declarations
1876@code{%left} and @code{%right} (right associativity) take the place of
1877@code{%token} which is used to declare a token type name without
1878associativity. (These tokens are single-character literals, which
1879ordinarily don't need to be declared. We declare them here to specify
1880the associativity.)
1881
1882Operator precedence is determined by the line ordering of the
1883declarations; the higher the line number of the declaration (lower on
1884the page or screen), the higher the precedence. Hence, exponentiation
1885has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1886by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1887Precedence}.
bfa74976 1888
704a47c4
AD
1889The other important new feature is the @code{%prec} in the grammar
1890section for the unary minus operator. The @code{%prec} simply instructs
1891Bison that the rule @samp{| '-' exp} has the same precedence as
1892@code{NEG}---in this case the next-to-highest. @xref{Contextual
1893Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1894
1895Here is a sample run of @file{calc.y}:
1896
1897@need 500
1898@example
9edcd895
AD
1899$ @kbd{calc}
1900@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19016.880952381
9edcd895 1902@kbd{-56 + 2}
bfa74976 1903-54
9edcd895 1904@kbd{3 ^ 2}
bfa74976
RS
19059
1906@end example
1907
342b8b6e 1908@node Simple Error Recovery
bfa74976
RS
1909@section Simple Error Recovery
1910@cindex error recovery, simple
1911
1912Up to this point, this manual has not addressed the issue of @dfn{error
1913recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1914error. All we have handled is error reporting with @code{yyerror}.
1915Recall that by default @code{yyparse} returns after calling
1916@code{yyerror}. This means that an erroneous input line causes the
1917calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1918
1919The Bison language itself includes the reserved word @code{error}, which
1920may be included in the grammar rules. In the example below it has
1921been added to one of the alternatives for @code{line}:
1922
1923@example
1924@group
1925line: '\n'
1926 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1927 | error '\n' @{ yyerrok; @}
1928;
1929@end group
1930@end example
1931
ceed8467 1932This addition to the grammar allows for simple error recovery in the
6e649e65 1933event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1934read, the error will be recognized by the third rule for @code{line},
1935and parsing will continue. (The @code{yyerror} function is still called
1936upon to print its message as well.) The action executes the statement
1937@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1938that error recovery is complete (@pxref{Error Recovery}). Note the
1939difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1940misprint.
bfa74976
RS
1941
1942This form of error recovery deals with syntax errors. There are other
1943kinds of errors; for example, division by zero, which raises an exception
1944signal that is normally fatal. A real calculator program must handle this
1945signal and use @code{longjmp} to return to @code{main} and resume parsing
1946input lines; it would also have to discard the rest of the current line of
1947input. We won't discuss this issue further because it is not specific to
1948Bison programs.
1949
342b8b6e
AD
1950@node Location Tracking Calc
1951@section Location Tracking Calculator: @code{ltcalc}
1952@cindex location tracking calculator
1953@cindex @code{ltcalc}
1954@cindex calculator, location tracking
1955
9edcd895
AD
1956This example extends the infix notation calculator with location
1957tracking. This feature will be used to improve the error messages. For
1958the sake of clarity, this example is a simple integer calculator, since
1959most of the work needed to use locations will be done in the lexical
72d2299c 1960analyzer.
342b8b6e
AD
1961
1962@menu
1963* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1964* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1965* Lexer: Ltcalc Lexer. The lexical analyzer.
1966@end menu
1967
1968@node Ltcalc Decls
1969@subsection Declarations for @code{ltcalc}
1970
9edcd895
AD
1971The C and Bison declarations for the location tracking calculator are
1972the same as the declarations for the infix notation calculator.
342b8b6e
AD
1973
1974@example
1975/* Location tracking calculator. */
1976
1977%@{
38a92d50
PE
1978 #define YYSTYPE int
1979 #include <math.h>
1980 int yylex (void);
1981 void yyerror (char const *);
342b8b6e
AD
1982%@}
1983
1984/* Bison declarations. */
1985%token NUM
1986
1987%left '-' '+'
1988%left '*' '/'
1989%left NEG
1990%right '^'
1991
38a92d50 1992%% /* The grammar follows. */
342b8b6e
AD
1993@end example
1994
9edcd895
AD
1995@noindent
1996Note there are no declarations specific to locations. Defining a data
1997type for storing locations is not needed: we will use the type provided
1998by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1999four member structure with the following integer fields:
2000@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2001@code{last_column}. By conventions, and in accordance with the GNU
2002Coding Standards and common practice, the line and column count both
2003start at 1.
342b8b6e
AD
2004
2005@node Ltcalc Rules
2006@subsection Grammar Rules for @code{ltcalc}
2007
9edcd895
AD
2008Whether handling locations or not has no effect on the syntax of your
2009language. Therefore, grammar rules for this example will be very close
2010to those of the previous example: we will only modify them to benefit
2011from the new information.
342b8b6e 2012
9edcd895
AD
2013Here, we will use locations to report divisions by zero, and locate the
2014wrong expressions or subexpressions.
342b8b6e
AD
2015
2016@example
2017@group
2018input : /* empty */
2019 | input line
2020;
2021@end group
2022
2023@group
2024line : '\n'
2025 | exp '\n' @{ printf ("%d\n", $1); @}
2026;
2027@end group
2028
2029@group
2030exp : NUM @{ $$ = $1; @}
2031 | exp '+' exp @{ $$ = $1 + $3; @}
2032 | exp '-' exp @{ $$ = $1 - $3; @}
2033 | exp '*' exp @{ $$ = $1 * $3; @}
2034@end group
342b8b6e 2035@group
9edcd895 2036 | exp '/' exp
342b8b6e
AD
2037 @{
2038 if ($3)
2039 $$ = $1 / $3;
2040 else
2041 @{
2042 $$ = 1;
9edcd895
AD
2043 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2044 @@3.first_line, @@3.first_column,
2045 @@3.last_line, @@3.last_column);
342b8b6e
AD
2046 @}
2047 @}
2048@end group
2049@group
2050 | '-' exp %preg NEG @{ $$ = -$2; @}
2051 | exp '^' exp @{ $$ = pow ($1, $3); @}
2052 | '(' exp ')' @{ $$ = $2; @}
2053@end group
2054@end example
2055
2056This code shows how to reach locations inside of semantic actions, by
2057using the pseudo-variables @code{@@@var{n}} for rule components, and the
2058pseudo-variable @code{@@$} for groupings.
2059
9edcd895
AD
2060We don't need to assign a value to @code{@@$}: the output parser does it
2061automatically. By default, before executing the C code of each action,
2062@code{@@$} is set to range from the beginning of @code{@@1} to the end
2063of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2064can be redefined (@pxref{Location Default Action, , Default Action for
2065Locations}), and for very specific rules, @code{@@$} can be computed by
2066hand.
342b8b6e
AD
2067
2068@node Ltcalc Lexer
2069@subsection The @code{ltcalc} Lexical Analyzer.
2070
9edcd895 2071Until now, we relied on Bison's defaults to enable location
72d2299c 2072tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2073able to feed the parser with the token locations, as it already does for
2074semantic values.
342b8b6e 2075
9edcd895
AD
2076To this end, we must take into account every single character of the
2077input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2078
2079@example
2080@group
2081int
2082yylex (void)
2083@{
2084 int c;
18b519c0 2085@end group
342b8b6e 2086
18b519c0 2087@group
72d2299c 2088 /* Skip white space. */
342b8b6e
AD
2089 while ((c = getchar ()) == ' ' || c == '\t')
2090 ++yylloc.last_column;
18b519c0 2091@end group
342b8b6e 2092
18b519c0 2093@group
72d2299c 2094 /* Step. */
342b8b6e
AD
2095 yylloc.first_line = yylloc.last_line;
2096 yylloc.first_column = yylloc.last_column;
2097@end group
2098
2099@group
72d2299c 2100 /* Process numbers. */
342b8b6e
AD
2101 if (isdigit (c))
2102 @{
2103 yylval = c - '0';
2104 ++yylloc.last_column;
2105 while (isdigit (c = getchar ()))
2106 @{
2107 ++yylloc.last_column;
2108 yylval = yylval * 10 + c - '0';
2109 @}
2110 ungetc (c, stdin);
2111 return NUM;
2112 @}
2113@end group
2114
72d2299c 2115 /* Return end-of-input. */
342b8b6e
AD
2116 if (c == EOF)
2117 return 0;
2118
72d2299c 2119 /* Return a single char, and update location. */
342b8b6e
AD
2120 if (c == '\n')
2121 @{
2122 ++yylloc.last_line;
2123 yylloc.last_column = 0;
2124 @}
2125 else
2126 ++yylloc.last_column;
2127 return c;
2128@}
2129@end example
2130
9edcd895
AD
2131Basically, the lexical analyzer performs the same processing as before:
2132it skips blanks and tabs, and reads numbers or single-character tokens.
2133In addition, it updates @code{yylloc}, the global variable (of type
2134@code{YYLTYPE}) containing the token's location.
342b8b6e 2135
9edcd895 2136Now, each time this function returns a token, the parser has its number
72d2299c 2137as well as its semantic value, and its location in the text. The last
9edcd895
AD
2138needed change is to initialize @code{yylloc}, for example in the
2139controlling function:
342b8b6e
AD
2140
2141@example
9edcd895 2142@group
342b8b6e
AD
2143int
2144main (void)
2145@{
2146 yylloc.first_line = yylloc.last_line = 1;
2147 yylloc.first_column = yylloc.last_column = 0;
2148 return yyparse ();
2149@}
9edcd895 2150@end group
342b8b6e
AD
2151@end example
2152
9edcd895
AD
2153Remember that computing locations is not a matter of syntax. Every
2154character must be associated to a location update, whether it is in
2155valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2156
2157@node Multi-function Calc
bfa74976
RS
2158@section Multi-Function Calculator: @code{mfcalc}
2159@cindex multi-function calculator
2160@cindex @code{mfcalc}
2161@cindex calculator, multi-function
2162
2163Now that the basics of Bison have been discussed, it is time to move on to
2164a more advanced problem. The above calculators provided only five
2165functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2166be nice to have a calculator that provides other mathematical functions such
2167as @code{sin}, @code{cos}, etc.
2168
2169It is easy to add new operators to the infix calculator as long as they are
2170only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2171back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2172adding a new operator. But we want something more flexible: built-in
2173functions whose syntax has this form:
2174
2175@example
2176@var{function_name} (@var{argument})
2177@end example
2178
2179@noindent
2180At the same time, we will add memory to the calculator, by allowing you
2181to create named variables, store values in them, and use them later.
2182Here is a sample session with the multi-function calculator:
2183
2184@example
9edcd895
AD
2185$ @kbd{mfcalc}
2186@kbd{pi = 3.141592653589}
bfa74976 21873.1415926536
9edcd895 2188@kbd{sin(pi)}
bfa74976 21890.0000000000
9edcd895 2190@kbd{alpha = beta1 = 2.3}
bfa74976 21912.3000000000
9edcd895 2192@kbd{alpha}
bfa74976 21932.3000000000
9edcd895 2194@kbd{ln(alpha)}
bfa74976 21950.8329091229
9edcd895 2196@kbd{exp(ln(beta1))}
bfa74976 21972.3000000000
9edcd895 2198$
bfa74976
RS
2199@end example
2200
2201Note that multiple assignment and nested function calls are permitted.
2202
2203@menu
2204* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2205* Rules: Mfcalc Rules. Grammar rules for the calculator.
2206* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2207@end menu
2208
342b8b6e 2209@node Mfcalc Decl
bfa74976
RS
2210@subsection Declarations for @code{mfcalc}
2211
2212Here are the C and Bison declarations for the multi-function calculator.
2213
2214@smallexample
18b519c0 2215@group
bfa74976 2216%@{
38a92d50
PE
2217 #include <math.h> /* For math functions, cos(), sin(), etc. */
2218 #include "calc.h" /* Contains definition of `symrec'. */
2219 int yylex (void);
2220 void yyerror (char const *);
bfa74976 2221%@}
18b519c0
AD
2222@end group
2223@group
bfa74976 2224%union @{
38a92d50
PE
2225 double val; /* For returning numbers. */
2226 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2227@}
18b519c0 2228@end group
38a92d50
PE
2229%token <val> NUM /* Simple double precision number. */
2230%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2231%type <val> exp
2232
18b519c0 2233@group
bfa74976
RS
2234%right '='
2235%left '-' '+'
2236%left '*' '/'
38a92d50
PE
2237%left NEG /* negation--unary minus */
2238%right '^' /* exponentiation */
18b519c0 2239@end group
38a92d50 2240%% /* The grammar follows. */
bfa74976
RS
2241@end smallexample
2242
2243The above grammar introduces only two new features of the Bison language.
2244These features allow semantic values to have various data types
2245(@pxref{Multiple Types, ,More Than One Value Type}).
2246
2247The @code{%union} declaration specifies the entire list of possible types;
2248this is instead of defining @code{YYSTYPE}. The allowable types are now
2249double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2250the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2251
2252Since values can now have various types, it is necessary to associate a
2253type with each grammar symbol whose semantic value is used. These symbols
2254are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2255declarations are augmented with information about their data type (placed
2256between angle brackets).
2257
704a47c4
AD
2258The Bison construct @code{%type} is used for declaring nonterminal
2259symbols, just as @code{%token} is used for declaring token types. We
2260have not used @code{%type} before because nonterminal symbols are
2261normally declared implicitly by the rules that define them. But
2262@code{exp} must be declared explicitly so we can specify its value type.
2263@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2264
342b8b6e 2265@node Mfcalc Rules
bfa74976
RS
2266@subsection Grammar Rules for @code{mfcalc}
2267
2268Here are the grammar rules for the multi-function calculator.
2269Most of them are copied directly from @code{calc}; three rules,
2270those which mention @code{VAR} or @code{FNCT}, are new.
2271
2272@smallexample
18b519c0 2273@group
bfa74976
RS
2274input: /* empty */
2275 | input line
2276;
18b519c0 2277@end group
bfa74976 2278
18b519c0 2279@group
bfa74976
RS
2280line:
2281 '\n'
2282 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2283 | error '\n' @{ yyerrok; @}
2284;
18b519c0 2285@end group
bfa74976 2286
18b519c0 2287@group
bfa74976
RS
2288exp: NUM @{ $$ = $1; @}
2289 | VAR @{ $$ = $1->value.var; @}
2290 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2291 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2292 | exp '+' exp @{ $$ = $1 + $3; @}
2293 | exp '-' exp @{ $$ = $1 - $3; @}
2294 | exp '*' exp @{ $$ = $1 * $3; @}
2295 | exp '/' exp @{ $$ = $1 / $3; @}
2296 | '-' exp %prec NEG @{ $$ = -$2; @}
2297 | exp '^' exp @{ $$ = pow ($1, $3); @}
2298 | '(' exp ')' @{ $$ = $2; @}
2299;
18b519c0 2300@end group
38a92d50 2301/* End of grammar. */
bfa74976
RS
2302%%
2303@end smallexample
2304
342b8b6e 2305@node Mfcalc Symtab
bfa74976
RS
2306@subsection The @code{mfcalc} Symbol Table
2307@cindex symbol table example
2308
2309The multi-function calculator requires a symbol table to keep track of the
2310names and meanings of variables and functions. This doesn't affect the
2311grammar rules (except for the actions) or the Bison declarations, but it
2312requires some additional C functions for support.
2313
2314The symbol table itself consists of a linked list of records. Its
2315definition, which is kept in the header @file{calc.h}, is as follows. It
2316provides for either functions or variables to be placed in the table.
2317
2318@smallexample
2319@group
38a92d50 2320/* Function type. */
32dfccf8 2321typedef double (*func_t) (double);
72f889cc 2322@end group
32dfccf8 2323
72f889cc 2324@group
38a92d50 2325/* Data type for links in the chain of symbols. */
bfa74976
RS
2326struct symrec
2327@{
38a92d50 2328 char *name; /* name of symbol */
bfa74976 2329 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2330 union
2331 @{
38a92d50
PE
2332 double var; /* value of a VAR */
2333 func_t fnctptr; /* value of a FNCT */
bfa74976 2334 @} value;
38a92d50 2335 struct symrec *next; /* link field */
bfa74976
RS
2336@};
2337@end group
2338
2339@group
2340typedef struct symrec symrec;
2341
38a92d50 2342/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2343extern symrec *sym_table;
2344
a730d142 2345symrec *putsym (char const *, int);
38a92d50 2346symrec *getsym (char const *);
bfa74976
RS
2347@end group
2348@end smallexample
2349
2350The new version of @code{main} includes a call to @code{init_table}, a
2351function that initializes the symbol table. Here it is, and
2352@code{init_table} as well:
2353
2354@smallexample
bfa74976
RS
2355#include <stdio.h>
2356
18b519c0 2357@group
38a92d50 2358/* Called by yyparse on error. */
13863333 2359void
38a92d50 2360yyerror (char const *s)
bfa74976
RS
2361@{
2362 printf ("%s\n", s);
2363@}
18b519c0 2364@end group
bfa74976 2365
18b519c0 2366@group
bfa74976
RS
2367struct init
2368@{
38a92d50
PE
2369 char const *fname;
2370 double (*fnct) (double);
bfa74976
RS
2371@};
2372@end group
2373
2374@group
38a92d50 2375struct init const arith_fncts[] =
13863333 2376@{
32dfccf8
AD
2377 "sin", sin,
2378 "cos", cos,
13863333 2379 "atan", atan,
32dfccf8
AD
2380 "ln", log,
2381 "exp", exp,
13863333
AD
2382 "sqrt", sqrt,
2383 0, 0
2384@};
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976 2388/* The symbol table: a chain of `struct symrec'. */
38a92d50 2389symrec *sym_table;
bfa74976
RS
2390@end group
2391
2392@group
72d2299c 2393/* Put arithmetic functions in table. */
13863333
AD
2394void
2395init_table (void)
bfa74976
RS
2396@{
2397 int i;
2398 symrec *ptr;
2399 for (i = 0; arith_fncts[i].fname != 0; i++)
2400 @{
2401 ptr = putsym (arith_fncts[i].fname, FNCT);
2402 ptr->value.fnctptr = arith_fncts[i].fnct;
2403 @}
2404@}
2405@end group
38a92d50
PE
2406
2407@group
2408int
2409main (void)
2410@{
2411 init_table ();
2412 return yyparse ();
2413@}
2414@end group
bfa74976
RS
2415@end smallexample
2416
2417By simply editing the initialization list and adding the necessary include
2418files, you can add additional functions to the calculator.
2419
2420Two important functions allow look-up and installation of symbols in the
2421symbol table. The function @code{putsym} is passed a name and the type
2422(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2423linked to the front of the list, and a pointer to the object is returned.
2424The function @code{getsym} is passed the name of the symbol to look up. If
2425found, a pointer to that symbol is returned; otherwise zero is returned.
2426
2427@smallexample
2428symrec *
38a92d50 2429putsym (char const *sym_name, int sym_type)
bfa74976
RS
2430@{
2431 symrec *ptr;
2432 ptr = (symrec *) malloc (sizeof (symrec));
2433 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2434 strcpy (ptr->name,sym_name);
2435 ptr->type = sym_type;
72d2299c 2436 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2437 ptr->next = (struct symrec *)sym_table;
2438 sym_table = ptr;
2439 return ptr;
2440@}
2441
2442symrec *
38a92d50 2443getsym (char const *sym_name)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 for (ptr = sym_table; ptr != (symrec *) 0;
2447 ptr = (symrec *)ptr->next)
2448 if (strcmp (ptr->name,sym_name) == 0)
2449 return ptr;
2450 return 0;
2451@}
2452@end smallexample
2453
2454The function @code{yylex} must now recognize variables, numeric values, and
2455the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2456characters with a leading letter are recognized as either variables or
bfa74976
RS
2457functions depending on what the symbol table says about them.
2458
2459The string is passed to @code{getsym} for look up in the symbol table. If
2460the name appears in the table, a pointer to its location and its type
2461(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2462already in the table, then it is installed as a @code{VAR} using
2463@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2464returned to @code{yyparse}.
bfa74976
RS
2465
2466No change is needed in the handling of numeric values and arithmetic
2467operators in @code{yylex}.
2468
2469@smallexample
2470@group
2471#include <ctype.h>
18b519c0 2472@end group
13863333 2473
18b519c0 2474@group
13863333
AD
2475int
2476yylex (void)
bfa74976
RS
2477@{
2478 int c;
2479
72d2299c 2480 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2481 while ((c = getchar ()) == ' ' || c == '\t');
2482
2483 if (c == EOF)
2484 return 0;
2485@end group
2486
2487@group
2488 /* Char starts a number => parse the number. */
2489 if (c == '.' || isdigit (c))
2490 @{
2491 ungetc (c, stdin);
2492 scanf ("%lf", &yylval.val);
2493 return NUM;
2494 @}
2495@end group
2496
2497@group
2498 /* Char starts an identifier => read the name. */
2499 if (isalpha (c))
2500 @{
2501 symrec *s;
2502 static char *symbuf = 0;
2503 static int length = 0;
2504 int i;
2505@end group
2506
2507@group
2508 /* Initially make the buffer long enough
2509 for a 40-character symbol name. */
2510 if (length == 0)
2511 length = 40, symbuf = (char *)malloc (length + 1);
2512
2513 i = 0;
2514 do
2515@end group
2516@group
2517 @{
2518 /* If buffer is full, make it bigger. */
2519 if (i == length)
2520 @{
2521 length *= 2;
18b519c0 2522 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2523 @}
2524 /* Add this character to the buffer. */
2525 symbuf[i++] = c;
2526 /* Get another character. */
2527 c = getchar ();
2528 @}
2529@end group
2530@group
72d2299c 2531 while (isalnum (c));
bfa74976
RS
2532
2533 ungetc (c, stdin);
2534 symbuf[i] = '\0';
2535@end group
2536
2537@group
2538 s = getsym (symbuf);
2539 if (s == 0)
2540 s = putsym (symbuf, VAR);
2541 yylval.tptr = s;
2542 return s->type;
2543 @}
2544
2545 /* Any other character is a token by itself. */
2546 return c;
2547@}
2548@end group
2549@end smallexample
2550
72d2299c 2551This program is both powerful and flexible. You may easily add new
704a47c4
AD
2552functions, and it is a simple job to modify this code to install
2553predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2554
342b8b6e 2555@node Exercises
bfa74976
RS
2556@section Exercises
2557@cindex exercises
2558
2559@enumerate
2560@item
2561Add some new functions from @file{math.h} to the initialization list.
2562
2563@item
2564Add another array that contains constants and their values. Then
2565modify @code{init_table} to add these constants to the symbol table.
2566It will be easiest to give the constants type @code{VAR}.
2567
2568@item
2569Make the program report an error if the user refers to an
2570uninitialized variable in any way except to store a value in it.
2571@end enumerate
2572
342b8b6e 2573@node Grammar File
bfa74976
RS
2574@chapter Bison Grammar Files
2575
2576Bison takes as input a context-free grammar specification and produces a
2577C-language function that recognizes correct instances of the grammar.
2578
2579The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2580@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2581
2582@menu
2583* Grammar Outline:: Overall layout of the grammar file.
2584* Symbols:: Terminal and nonterminal symbols.
2585* Rules:: How to write grammar rules.
2586* Recursion:: Writing recursive rules.
2587* Semantics:: Semantic values and actions.
847bf1f5 2588* Locations:: Locations and actions.
bfa74976
RS
2589* Declarations:: All kinds of Bison declarations are described here.
2590* Multiple Parsers:: Putting more than one Bison parser in one program.
2591@end menu
2592
342b8b6e 2593@node Grammar Outline
bfa74976
RS
2594@section Outline of a Bison Grammar
2595
2596A Bison grammar file has four main sections, shown here with the
2597appropriate delimiters:
2598
2599@example
2600%@{
38a92d50 2601 @var{Prologue}
bfa74976
RS
2602%@}
2603
2604@var{Bison declarations}
2605
2606%%
2607@var{Grammar rules}
2608%%
2609
75f5aaea 2610@var{Epilogue}
bfa74976
RS
2611@end example
2612
2613Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2614As a @acronym{GNU} extension, @samp{//} introduces a comment that
2615continues until end of line.
bfa74976
RS
2616
2617@menu
75f5aaea 2618* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2619* Bison Declarations:: Syntax and usage of the Bison declarations section.
2620* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2621* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2622@end menu
2623
38a92d50 2624@node Prologue
75f5aaea
MA
2625@subsection The prologue
2626@cindex declarations section
2627@cindex Prologue
2628@cindex declarations
bfa74976 2629
f8e1c9e5
AD
2630The @var{Prologue} section contains macro definitions and declarations
2631of functions and variables that are used in the actions in the grammar
2632rules. These are copied to the beginning of the parser file so that
2633they precede the definition of @code{yyparse}. You can use
2634@samp{#include} to get the declarations from a header file. If you
2635don't need any C declarations, you may omit the @samp{%@{} and
2636@samp{%@}} delimiters that bracket this section.
bfa74976 2637
9c437126 2638The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2639of @samp{%@}} that is outside a comment, a string literal, or a
2640character constant.
2641
c732d2c6
AD
2642You may have more than one @var{Prologue} section, intermixed with the
2643@var{Bison declarations}. This allows you to have C and Bison
2644declarations that refer to each other. For example, the @code{%union}
2645declaration may use types defined in a header file, and you may wish to
2646prototype functions that take arguments of type @code{YYSTYPE}. This
2647can be done with two @var{Prologue} blocks, one before and one after the
2648@code{%union} declaration.
2649
2650@smallexample
2651%@{
38a92d50
PE
2652 #include <stdio.h>
2653 #include "ptypes.h"
c732d2c6
AD
2654%@}
2655
2656%union @{
779e7ceb 2657 long int n;
c732d2c6
AD
2658 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2659@}
2660
2661%@{
38a92d50
PE
2662 static void print_token_value (FILE *, int, YYSTYPE);
2663 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2664%@}
2665
2666@dots{}
2667@end smallexample
2668
34f98f46
JD
2669@findex %before-header
2670@findex %start-header
2671@findex %after-header
9bc0dd67
JD
2672If you've instructed Bison to generate a header file (@pxref{Table of Symbols,
2673,%defines}), you probably want @code{#include "ptypes.h"} to appear
2674in that header file as well.
34f98f46
JD
2675In that case, use @code{%before-header}, @code{%start-header}, and
2676@code{%after-header} instead of @var{Prologue} sections
2677(@pxref{Table of Symbols, ,%start-header}):
9bc0dd67
JD
2678
2679@smallexample
34f98f46 2680%before-header @{
9bc0dd67 2681 #include <stdio.h>
34f98f46 2682@}
9bc0dd67 2683
34f98f46 2684%start-header @{
9bc0dd67
JD
2685 #include "ptypes.h"
2686@}
2687%union @{
2688 long int n;
2689 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2690@}
2691
34f98f46 2692%after-header @{
9bc0dd67
JD
2693 static void print_token_value (FILE *, int, YYSTYPE);
2694 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2695@}
9bc0dd67
JD
2696
2697@dots{}
2698@end smallexample
2699
342b8b6e 2700@node Bison Declarations
bfa74976
RS
2701@subsection The Bison Declarations Section
2702@cindex Bison declarations (introduction)
2703@cindex declarations, Bison (introduction)
2704
2705The @var{Bison declarations} section contains declarations that define
2706terminal and nonterminal symbols, specify precedence, and so on.
2707In some simple grammars you may not need any declarations.
2708@xref{Declarations, ,Bison Declarations}.
2709
342b8b6e 2710@node Grammar Rules
bfa74976
RS
2711@subsection The Grammar Rules Section
2712@cindex grammar rules section
2713@cindex rules section for grammar
2714
2715The @dfn{grammar rules} section contains one or more Bison grammar
2716rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2717
2718There must always be at least one grammar rule, and the first
2719@samp{%%} (which precedes the grammar rules) may never be omitted even
2720if it is the first thing in the file.
2721
38a92d50 2722@node Epilogue
75f5aaea 2723@subsection The epilogue
bfa74976 2724@cindex additional C code section
75f5aaea 2725@cindex epilogue
bfa74976
RS
2726@cindex C code, section for additional
2727
08e49d20
PE
2728The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2729the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2730place to put anything that you want to have in the parser file but which need
2731not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2732definitions of @code{yylex} and @code{yyerror} often go here. Because
2733C requires functions to be declared before being used, you often need
2734to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2735even if you define them in the Epilogue.
75f5aaea 2736@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2737
2738If the last section is empty, you may omit the @samp{%%} that separates it
2739from the grammar rules.
2740
f8e1c9e5
AD
2741The Bison parser itself contains many macros and identifiers whose names
2742start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2743any such names (except those documented in this manual) in the epilogue
2744of the grammar file.
bfa74976 2745
342b8b6e 2746@node Symbols
bfa74976
RS
2747@section Symbols, Terminal and Nonterminal
2748@cindex nonterminal symbol
2749@cindex terminal symbol
2750@cindex token type
2751@cindex symbol
2752
2753@dfn{Symbols} in Bison grammars represent the grammatical classifications
2754of the language.
2755
2756A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2757class of syntactically equivalent tokens. You use the symbol in grammar
2758rules to mean that a token in that class is allowed. The symbol is
2759represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2760function returns a token type code to indicate what kind of token has
2761been read. You don't need to know what the code value is; you can use
2762the symbol to stand for it.
bfa74976 2763
f8e1c9e5
AD
2764A @dfn{nonterminal symbol} stands for a class of syntactically
2765equivalent groupings. The symbol name is used in writing grammar rules.
2766By convention, it should be all lower case.
bfa74976
RS
2767
2768Symbol names can contain letters, digits (not at the beginning),
2769underscores and periods. Periods make sense only in nonterminals.
2770
931c7513 2771There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2772
2773@itemize @bullet
2774@item
2775A @dfn{named token type} is written with an identifier, like an
c827f760 2776identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2777such name must be defined with a Bison declaration such as
2778@code{%token}. @xref{Token Decl, ,Token Type Names}.
2779
2780@item
2781@cindex character token
2782@cindex literal token
2783@cindex single-character literal
931c7513
RS
2784A @dfn{character token type} (or @dfn{literal character token}) is
2785written in the grammar using the same syntax used in C for character
2786constants; for example, @code{'+'} is a character token type. A
2787character token type doesn't need to be declared unless you need to
2788specify its semantic value data type (@pxref{Value Type, ,Data Types of
2789Semantic Values}), associativity, or precedence (@pxref{Precedence,
2790,Operator Precedence}).
bfa74976
RS
2791
2792By convention, a character token type is used only to represent a
2793token that consists of that particular character. Thus, the token
2794type @code{'+'} is used to represent the character @samp{+} as a
2795token. Nothing enforces this convention, but if you depart from it,
2796your program will confuse other readers.
2797
2798All the usual escape sequences used in character literals in C can be
2799used in Bison as well, but you must not use the null character as a
72d2299c
PE
2800character literal because its numeric code, zero, signifies
2801end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2802for @code{yylex}}). Also, unlike standard C, trigraphs have no
2803special meaning in Bison character literals, nor is backslash-newline
2804allowed.
931c7513
RS
2805
2806@item
2807@cindex string token
2808@cindex literal string token
9ecbd125 2809@cindex multicharacter literal
931c7513
RS
2810A @dfn{literal string token} is written like a C string constant; for
2811example, @code{"<="} is a literal string token. A literal string token
2812doesn't need to be declared unless you need to specify its semantic
14ded682 2813value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2814(@pxref{Precedence}).
2815
2816You can associate the literal string token with a symbolic name as an
2817alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2818Declarations}). If you don't do that, the lexical analyzer has to
2819retrieve the token number for the literal string token from the
2820@code{yytname} table (@pxref{Calling Convention}).
2821
c827f760 2822@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2823
2824By convention, a literal string token is used only to represent a token
2825that consists of that particular string. Thus, you should use the token
2826type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2827does not enforce this convention, but if you depart from it, people who
931c7513
RS
2828read your program will be confused.
2829
2830All the escape sequences used in string literals in C can be used in
92ac3705
PE
2831Bison as well, except that you must not use a null character within a
2832string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2833meaning in Bison string literals, nor is backslash-newline allowed. A
2834literal string token must contain two or more characters; for a token
2835containing just one character, use a character token (see above).
bfa74976
RS
2836@end itemize
2837
2838How you choose to write a terminal symbol has no effect on its
2839grammatical meaning. That depends only on where it appears in rules and
2840on when the parser function returns that symbol.
2841
72d2299c
PE
2842The value returned by @code{yylex} is always one of the terminal
2843symbols, except that a zero or negative value signifies end-of-input.
2844Whichever way you write the token type in the grammar rules, you write
2845it the same way in the definition of @code{yylex}. The numeric code
2846for a character token type is simply the positive numeric code of the
2847character, so @code{yylex} can use the identical value to generate the
2848requisite code, though you may need to convert it to @code{unsigned
2849char} to avoid sign-extension on hosts where @code{char} is signed.
2850Each named token type becomes a C macro in
bfa74976 2851the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2852(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2853@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2854
2855If @code{yylex} is defined in a separate file, you need to arrange for the
2856token-type macro definitions to be available there. Use the @samp{-d}
2857option when you run Bison, so that it will write these macro definitions
2858into a separate header file @file{@var{name}.tab.h} which you can include
2859in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2860
72d2299c 2861If you want to write a grammar that is portable to any Standard C
9d9b8b70 2862host, you must use only nonnull character tokens taken from the basic
c827f760 2863execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2864digits, the 52 lower- and upper-case English letters, and the
2865characters in the following C-language string:
2866
2867@example
2868"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2869@end example
2870
f8e1c9e5
AD
2871The @code{yylex} function and Bison must use a consistent character set
2872and encoding for character tokens. For example, if you run Bison in an
2873@acronym{ASCII} environment, but then compile and run the resulting
2874program in an environment that uses an incompatible character set like
2875@acronym{EBCDIC}, the resulting program may not work because the tables
2876generated by Bison will assume @acronym{ASCII} numeric values for
2877character tokens. It is standard practice for software distributions to
2878contain C source files that were generated by Bison in an
2879@acronym{ASCII} environment, so installers on platforms that are
2880incompatible with @acronym{ASCII} must rebuild those files before
2881compiling them.
e966383b 2882
bfa74976
RS
2883The symbol @code{error} is a terminal symbol reserved for error recovery
2884(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2885In particular, @code{yylex} should never return this value. The default
2886value of the error token is 256, unless you explicitly assigned 256 to
2887one of your tokens with a @code{%token} declaration.
bfa74976 2888
342b8b6e 2889@node Rules
bfa74976
RS
2890@section Syntax of Grammar Rules
2891@cindex rule syntax
2892@cindex grammar rule syntax
2893@cindex syntax of grammar rules
2894
2895A Bison grammar rule has the following general form:
2896
2897@example
e425e872 2898@group
bfa74976
RS
2899@var{result}: @var{components}@dots{}
2900 ;
e425e872 2901@end group
bfa74976
RS
2902@end example
2903
2904@noindent
9ecbd125 2905where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2906and @var{components} are various terminal and nonterminal symbols that
13863333 2907are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2908
2909For example,
2910
2911@example
2912@group
2913exp: exp '+' exp
2914 ;
2915@end group
2916@end example
2917
2918@noindent
2919says that two groupings of type @code{exp}, with a @samp{+} token in between,
2920can be combined into a larger grouping of type @code{exp}.
2921
72d2299c
PE
2922White space in rules is significant only to separate symbols. You can add
2923extra white space as you wish.
bfa74976
RS
2924
2925Scattered among the components can be @var{actions} that determine
2926the semantics of the rule. An action looks like this:
2927
2928@example
2929@{@var{C statements}@}
2930@end example
2931
2932@noindent
287c78f6
PE
2933@cindex braced code
2934This is an example of @dfn{braced code}, that is, C code surrounded by
2935braces, much like a compound statement in C@. Braced code can contain
2936any sequence of C tokens, so long as its braces are balanced. Bison
2937does not check the braced code for correctness directly; it merely
2938copies the code to the output file, where the C compiler can check it.
2939
2940Within braced code, the balanced-brace count is not affected by braces
2941within comments, string literals, or character constants, but it is
2942affected by the C digraphs @samp{<%} and @samp{%>} that represent
2943braces. At the top level braced code must be terminated by @samp{@}}
2944and not by a digraph. Bison does not look for trigraphs, so if braced
2945code uses trigraphs you should ensure that they do not affect the
2946nesting of braces or the boundaries of comments, string literals, or
2947character constants.
2948
bfa74976
RS
2949Usually there is only one action and it follows the components.
2950@xref{Actions}.
2951
2952@findex |
2953Multiple rules for the same @var{result} can be written separately or can
2954be joined with the vertical-bar character @samp{|} as follows:
2955
bfa74976
RS
2956@example
2957@group
2958@var{result}: @var{rule1-components}@dots{}
2959 | @var{rule2-components}@dots{}
2960 @dots{}
2961 ;
2962@end group
2963@end example
bfa74976
RS
2964
2965@noindent
2966They are still considered distinct rules even when joined in this way.
2967
2968If @var{components} in a rule is empty, it means that @var{result} can
2969match the empty string. For example, here is how to define a
2970comma-separated sequence of zero or more @code{exp} groupings:
2971
2972@example
2973@group
2974expseq: /* empty */
2975 | expseq1
2976 ;
2977@end group
2978
2979@group
2980expseq1: exp
2981 | expseq1 ',' exp
2982 ;
2983@end group
2984@end example
2985
2986@noindent
2987It is customary to write a comment @samp{/* empty */} in each rule
2988with no components.
2989
342b8b6e 2990@node Recursion
bfa74976
RS
2991@section Recursive Rules
2992@cindex recursive rule
2993
f8e1c9e5
AD
2994A rule is called @dfn{recursive} when its @var{result} nonterminal
2995appears also on its right hand side. Nearly all Bison grammars need to
2996use recursion, because that is the only way to define a sequence of any
2997number of a particular thing. Consider this recursive definition of a
9ecbd125 2998comma-separated sequence of one or more expressions:
bfa74976
RS
2999
3000@example
3001@group
3002expseq1: exp
3003 | expseq1 ',' exp
3004 ;
3005@end group
3006@end example
3007
3008@cindex left recursion
3009@cindex right recursion
3010@noindent
3011Since the recursive use of @code{expseq1} is the leftmost symbol in the
3012right hand side, we call this @dfn{left recursion}. By contrast, here
3013the same construct is defined using @dfn{right recursion}:
3014
3015@example
3016@group
3017expseq1: exp
3018 | exp ',' expseq1
3019 ;
3020@end group
3021@end example
3022
3023@noindent
ec3bc396
AD
3024Any kind of sequence can be defined using either left recursion or right
3025recursion, but you should always use left recursion, because it can
3026parse a sequence of any number of elements with bounded stack space.
3027Right recursion uses up space on the Bison stack in proportion to the
3028number of elements in the sequence, because all the elements must be
3029shifted onto the stack before the rule can be applied even once.
3030@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3031of this.
bfa74976
RS
3032
3033@cindex mutual recursion
3034@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3035rule does not appear directly on its right hand side, but does appear
3036in rules for other nonterminals which do appear on its right hand
13863333 3037side.
bfa74976
RS
3038
3039For example:
3040
3041@example
3042@group
3043expr: primary
3044 | primary '+' primary
3045 ;
3046@end group
3047
3048@group
3049primary: constant
3050 | '(' expr ')'
3051 ;
3052@end group
3053@end example
3054
3055@noindent
3056defines two mutually-recursive nonterminals, since each refers to the
3057other.
3058
342b8b6e 3059@node Semantics
bfa74976
RS
3060@section Defining Language Semantics
3061@cindex defining language semantics
13863333 3062@cindex language semantics, defining
bfa74976
RS
3063
3064The grammar rules for a language determine only the syntax. The semantics
3065are determined by the semantic values associated with various tokens and
3066groupings, and by the actions taken when various groupings are recognized.
3067
3068For example, the calculator calculates properly because the value
3069associated with each expression is the proper number; it adds properly
3070because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3071the numbers associated with @var{x} and @var{y}.
3072
3073@menu
3074* Value Type:: Specifying one data type for all semantic values.
3075* Multiple Types:: Specifying several alternative data types.
3076* Actions:: An action is the semantic definition of a grammar rule.
3077* Action Types:: Specifying data types for actions to operate on.
3078* Mid-Rule Actions:: Most actions go at the end of a rule.
3079 This says when, why and how to use the exceptional
3080 action in the middle of a rule.
3081@end menu
3082
342b8b6e 3083@node Value Type
bfa74976
RS
3084@subsection Data Types of Semantic Values
3085@cindex semantic value type
3086@cindex value type, semantic
3087@cindex data types of semantic values
3088@cindex default data type
3089
3090In a simple program it may be sufficient to use the same data type for
3091the semantic values of all language constructs. This was true in the
c827f760 3092@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3093Notation Calculator}).
bfa74976 3094
ddc8ede1
PE
3095Bison normally uses the type @code{int} for semantic values if your
3096program uses the same data type for all language constructs. To
bfa74976
RS
3097specify some other type, define @code{YYSTYPE} as a macro, like this:
3098
3099@example
3100#define YYSTYPE double
3101@end example
3102
3103@noindent
50cce58e
PE
3104@code{YYSTYPE}'s replacement list should be a type name
3105that does not contain parentheses or square brackets.
342b8b6e 3106This macro definition must go in the prologue of the grammar file
75f5aaea 3107(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3108
342b8b6e 3109@node Multiple Types
bfa74976
RS
3110@subsection More Than One Value Type
3111
3112In most programs, you will need different data types for different kinds
3113of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3114@code{int} or @code{long int}, while a string constant needs type
3115@code{char *}, and an identifier might need a pointer to an entry in the
3116symbol table.
bfa74976
RS
3117
3118To use more than one data type for semantic values in one parser, Bison
3119requires you to do two things:
3120
3121@itemize @bullet
3122@item
ddc8ede1 3123Specify the entire collection of possible data types, either by using the
704a47c4 3124@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3125Value Types}), or by using a @code{typedef} or a @code{#define} to
3126define @code{YYSTYPE} to be a union type whose member names are
3127the type tags.
bfa74976
RS
3128
3129@item
14ded682
AD
3130Choose one of those types for each symbol (terminal or nonterminal) for
3131which semantic values are used. This is done for tokens with the
3132@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3133and for groupings with the @code{%type} Bison declaration (@pxref{Type
3134Decl, ,Nonterminal Symbols}).
bfa74976
RS
3135@end itemize
3136
342b8b6e 3137@node Actions
bfa74976
RS
3138@subsection Actions
3139@cindex action
3140@vindex $$
3141@vindex $@var{n}
3142
3143An action accompanies a syntactic rule and contains C code to be executed
3144each time an instance of that rule is recognized. The task of most actions
3145is to compute a semantic value for the grouping built by the rule from the
3146semantic values associated with tokens or smaller groupings.
3147
287c78f6
PE
3148An action consists of braced code containing C statements, and can be
3149placed at any position in the rule;
704a47c4
AD
3150it is executed at that position. Most rules have just one action at the
3151end of the rule, following all the components. Actions in the middle of
3152a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3153Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3154
3155The C code in an action can refer to the semantic values of the components
3156matched by the rule with the construct @code{$@var{n}}, which stands for
3157the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3158being constructed is @code{$$}. Bison translates both of these
3159constructs into expressions of the appropriate type when it copies the
3160actions into the parser file. @code{$$} is translated to a modifiable
3161lvalue, so it can be assigned to.
bfa74976
RS
3162
3163Here is a typical example:
3164
3165@example
3166@group
3167exp: @dots{}
3168 | exp '+' exp
3169 @{ $$ = $1 + $3; @}
3170@end group
3171@end example
3172
3173@noindent
3174This rule constructs an @code{exp} from two smaller @code{exp} groupings
3175connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3176refer to the semantic values of the two component @code{exp} groupings,
3177which are the first and third symbols on the right hand side of the rule.
3178The sum is stored into @code{$$} so that it becomes the semantic value of
3179the addition-expression just recognized by the rule. If there were a
3180useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3181referred to as @code{$2}.
bfa74976 3182
3ded9a63
AD
3183Note that the vertical-bar character @samp{|} is really a rule
3184separator, and actions are attached to a single rule. This is a
3185difference with tools like Flex, for which @samp{|} stands for either
3186``or'', or ``the same action as that of the next rule''. In the
3187following example, the action is triggered only when @samp{b} is found:
3188
3189@example
3190@group
3191a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3192@end group
3193@end example
3194
bfa74976
RS
3195@cindex default action
3196If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3197@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3198becomes the value of the whole rule. Of course, the default action is
3199valid only if the two data types match. There is no meaningful default
3200action for an empty rule; every empty rule must have an explicit action
3201unless the rule's value does not matter.
bfa74976
RS
3202
3203@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3204to tokens and groupings on the stack @emph{before} those that match the
3205current rule. This is a very risky practice, and to use it reliably
3206you must be certain of the context in which the rule is applied. Here
3207is a case in which you can use this reliably:
3208
3209@example
3210@group
3211foo: expr bar '+' expr @{ @dots{} @}
3212 | expr bar '-' expr @{ @dots{} @}
3213 ;
3214@end group
3215
3216@group
3217bar: /* empty */
3218 @{ previous_expr = $0; @}
3219 ;
3220@end group
3221@end example
3222
3223As long as @code{bar} is used only in the fashion shown here, @code{$0}
3224always refers to the @code{expr} which precedes @code{bar} in the
3225definition of @code{foo}.
3226
32c29292 3227@vindex yylval
742e4900 3228It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3229any, from a semantic action.
3230This semantic value is stored in @code{yylval}.
3231@xref{Action Features, ,Special Features for Use in Actions}.
3232
342b8b6e 3233@node Action Types
bfa74976
RS
3234@subsection Data Types of Values in Actions
3235@cindex action data types
3236@cindex data types in actions
3237
3238If you have chosen a single data type for semantic values, the @code{$$}
3239and @code{$@var{n}} constructs always have that data type.
3240
3241If you have used @code{%union} to specify a variety of data types, then you
3242must declare a choice among these types for each terminal or nonterminal
3243symbol that can have a semantic value. Then each time you use @code{$$} or
3244@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3245in the rule. In this example,
bfa74976
RS
3246
3247@example
3248@group
3249exp: @dots{}
3250 | exp '+' exp
3251 @{ $$ = $1 + $3; @}
3252@end group
3253@end example
3254
3255@noindent
3256@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3257have the data type declared for the nonterminal symbol @code{exp}. If
3258@code{$2} were used, it would have the data type declared for the
e0c471a9 3259terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3260
3261Alternatively, you can specify the data type when you refer to the value,
3262by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3263reference. For example, if you have defined types as shown here:
3264
3265@example
3266@group
3267%union @{
3268 int itype;
3269 double dtype;
3270@}
3271@end group
3272@end example
3273
3274@noindent
3275then you can write @code{$<itype>1} to refer to the first subunit of the
3276rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3277
342b8b6e 3278@node Mid-Rule Actions
bfa74976
RS
3279@subsection Actions in Mid-Rule
3280@cindex actions in mid-rule
3281@cindex mid-rule actions
3282
3283Occasionally it is useful to put an action in the middle of a rule.
3284These actions are written just like usual end-of-rule actions, but they
3285are executed before the parser even recognizes the following components.
3286
3287A mid-rule action may refer to the components preceding it using
3288@code{$@var{n}}, but it may not refer to subsequent components because
3289it is run before they are parsed.
3290
3291The mid-rule action itself counts as one of the components of the rule.
3292This makes a difference when there is another action later in the same rule
3293(and usually there is another at the end): you have to count the actions
3294along with the symbols when working out which number @var{n} to use in
3295@code{$@var{n}}.
3296
3297The mid-rule action can also have a semantic value. The action can set
3298its value with an assignment to @code{$$}, and actions later in the rule
3299can refer to the value using @code{$@var{n}}. Since there is no symbol
3300to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3301in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3302specify a data type each time you refer to this value.
bfa74976
RS
3303
3304There is no way to set the value of the entire rule with a mid-rule
3305action, because assignments to @code{$$} do not have that effect. The
3306only way to set the value for the entire rule is with an ordinary action
3307at the end of the rule.
3308
3309Here is an example from a hypothetical compiler, handling a @code{let}
3310statement that looks like @samp{let (@var{variable}) @var{statement}} and
3311serves to create a variable named @var{variable} temporarily for the
3312duration of @var{statement}. To parse this construct, we must put
3313@var{variable} into the symbol table while @var{statement} is parsed, then
3314remove it afterward. Here is how it is done:
3315
3316@example
3317@group
3318stmt: LET '(' var ')'
3319 @{ $<context>$ = push_context ();
3320 declare_variable ($3); @}
3321 stmt @{ $$ = $6;
3322 pop_context ($<context>5); @}
3323@end group
3324@end example
3325
3326@noindent
3327As soon as @samp{let (@var{variable})} has been recognized, the first
3328action is run. It saves a copy of the current semantic context (the
3329list of accessible variables) as its semantic value, using alternative
3330@code{context} in the data-type union. Then it calls
3331@code{declare_variable} to add the new variable to that list. Once the
3332first action is finished, the embedded statement @code{stmt} can be
3333parsed. Note that the mid-rule action is component number 5, so the
3334@samp{stmt} is component number 6.
3335
3336After the embedded statement is parsed, its semantic value becomes the
3337value of the entire @code{let}-statement. Then the semantic value from the
3338earlier action is used to restore the prior list of variables. This
3339removes the temporary @code{let}-variable from the list so that it won't
3340appear to exist while the rest of the program is parsed.
3341
841a7737
JD
3342@findex %destructor
3343@cindex discarded symbols, mid-rule actions
3344@cindex error recovery, mid-rule actions
3345In the above example, if the parser initiates error recovery (@pxref{Error
3346Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3347it might discard the previous semantic context @code{$<context>5} without
3348restoring it.
3349Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3350Discarded Symbols}).
ec5479ce
JD
3351However, Bison currently provides no means to declare a destructor specific to
3352a particular mid-rule action's semantic value.
841a7737
JD
3353
3354One solution is to bury the mid-rule action inside a nonterminal symbol and to
3355declare a destructor for that symbol:
3356
3357@example
3358@group
3359%type <context> let
3360%destructor @{ pop_context ($$); @} let
3361
3362%%
3363
3364stmt: let stmt
3365 @{ $$ = $2;
3366 pop_context ($1); @}
3367 ;
3368
3369let: LET '(' var ')'
3370 @{ $$ = push_context ();
3371 declare_variable ($3); @}
3372 ;
3373
3374@end group
3375@end example
3376
3377@noindent
3378Note that the action is now at the end of its rule.
3379Any mid-rule action can be converted to an end-of-rule action in this way, and
3380this is what Bison actually does to implement mid-rule actions.
3381
bfa74976
RS
3382Taking action before a rule is completely recognized often leads to
3383conflicts since the parser must commit to a parse in order to execute the
3384action. For example, the following two rules, without mid-rule actions,
3385can coexist in a working parser because the parser can shift the open-brace
3386token and look at what follows before deciding whether there is a
3387declaration or not:
3388
3389@example
3390@group
3391compound: '@{' declarations statements '@}'
3392 | '@{' statements '@}'
3393 ;
3394@end group
3395@end example
3396
3397@noindent
3398But when we add a mid-rule action as follows, the rules become nonfunctional:
3399
3400@example
3401@group
3402compound: @{ prepare_for_local_variables (); @}
3403 '@{' declarations statements '@}'
3404@end group
3405@group
3406 | '@{' statements '@}'
3407 ;
3408@end group
3409@end example
3410
3411@noindent
3412Now the parser is forced to decide whether to run the mid-rule action
3413when it has read no farther than the open-brace. In other words, it
3414must commit to using one rule or the other, without sufficient
3415information to do it correctly. (The open-brace token is what is called
742e4900
JD
3416the @dfn{lookahead} token at this time, since the parser is still
3417deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3418
3419You might think that you could correct the problem by putting identical
3420actions into the two rules, like this:
3421
3422@example
3423@group
3424compound: @{ prepare_for_local_variables (); @}
3425 '@{' declarations statements '@}'
3426 | @{ prepare_for_local_variables (); @}
3427 '@{' statements '@}'
3428 ;
3429@end group
3430@end example
3431
3432@noindent
3433But this does not help, because Bison does not realize that the two actions
3434are identical. (Bison never tries to understand the C code in an action.)
3435
3436If the grammar is such that a declaration can be distinguished from a
3437statement by the first token (which is true in C), then one solution which
3438does work is to put the action after the open-brace, like this:
3439
3440@example
3441@group
3442compound: '@{' @{ prepare_for_local_variables (); @}
3443 declarations statements '@}'
3444 | '@{' statements '@}'
3445 ;
3446@end group
3447@end example
3448
3449@noindent
3450Now the first token of the following declaration or statement,
3451which would in any case tell Bison which rule to use, can still do so.
3452
3453Another solution is to bury the action inside a nonterminal symbol which
3454serves as a subroutine:
3455
3456@example
3457@group
3458subroutine: /* empty */
3459 @{ prepare_for_local_variables (); @}
3460 ;
3461
3462@end group
3463
3464@group
3465compound: subroutine
3466 '@{' declarations statements '@}'
3467 | subroutine
3468 '@{' statements '@}'
3469 ;
3470@end group
3471@end example
3472
3473@noindent
3474Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3475deciding which rule for @code{compound} it will eventually use.
bfa74976 3476
342b8b6e 3477@node Locations
847bf1f5
AD
3478@section Tracking Locations
3479@cindex location
95923bd6
AD
3480@cindex textual location
3481@cindex location, textual
847bf1f5
AD
3482
3483Though grammar rules and semantic actions are enough to write a fully
72d2299c 3484functional parser, it can be useful to process some additional information,
3e259915
MA
3485especially symbol locations.
3486
704a47c4
AD
3487The way locations are handled is defined by providing a data type, and
3488actions to take when rules are matched.
847bf1f5
AD
3489
3490@menu
3491* Location Type:: Specifying a data type for locations.
3492* Actions and Locations:: Using locations in actions.
3493* Location Default Action:: Defining a general way to compute locations.
3494@end menu
3495
342b8b6e 3496@node Location Type
847bf1f5
AD
3497@subsection Data Type of Locations
3498@cindex data type of locations
3499@cindex default location type
3500
3501Defining a data type for locations is much simpler than for semantic values,
3502since all tokens and groupings always use the same type.
3503
50cce58e
PE
3504You can specify the type of locations by defining a macro called
3505@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3506defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3507When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3508four members:
3509
3510@example
6273355b 3511typedef struct YYLTYPE
847bf1f5
AD
3512@{
3513 int first_line;
3514 int first_column;
3515 int last_line;
3516 int last_column;
6273355b 3517@} YYLTYPE;
847bf1f5
AD
3518@end example
3519
cd48d21d
AD
3520At the beginning of the parsing, Bison initializes all these fields to 1
3521for @code{yylloc}.
3522
342b8b6e 3523@node Actions and Locations
847bf1f5
AD
3524@subsection Actions and Locations
3525@cindex location actions
3526@cindex actions, location
3527@vindex @@$
3528@vindex @@@var{n}
3529
3530Actions are not only useful for defining language semantics, but also for
3531describing the behavior of the output parser with locations.
3532
3533The most obvious way for building locations of syntactic groupings is very
72d2299c 3534similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3535constructs can be used to access the locations of the elements being matched.
3536The location of the @var{n}th component of the right hand side is
3537@code{@@@var{n}}, while the location of the left hand side grouping is
3538@code{@@$}.
3539
3e259915 3540Here is a basic example using the default data type for locations:
847bf1f5
AD
3541
3542@example
3543@group
3544exp: @dots{}
3e259915 3545 | exp '/' exp
847bf1f5 3546 @{
3e259915
MA
3547 @@$.first_column = @@1.first_column;
3548 @@$.first_line = @@1.first_line;
847bf1f5
AD
3549 @@$.last_column = @@3.last_column;
3550 @@$.last_line = @@3.last_line;
3e259915
MA
3551 if ($3)
3552 $$ = $1 / $3;
3553 else
3554 @{
3555 $$ = 1;
4e03e201
AD
3556 fprintf (stderr,
3557 "Division by zero, l%d,c%d-l%d,c%d",
3558 @@3.first_line, @@3.first_column,
3559 @@3.last_line, @@3.last_column);
3e259915 3560 @}
847bf1f5
AD
3561 @}
3562@end group
3563@end example
3564
3e259915 3565As for semantic values, there is a default action for locations that is
72d2299c 3566run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3567beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3568last symbol.
3e259915 3569
72d2299c 3570With this default action, the location tracking can be fully automatic. The
3e259915
MA
3571example above simply rewrites this way:
3572
3573@example
3574@group
3575exp: @dots{}
3576 | exp '/' exp
3577 @{
3578 if ($3)
3579 $$ = $1 / $3;
3580 else
3581 @{
3582 $$ = 1;
4e03e201
AD
3583 fprintf (stderr,
3584 "Division by zero, l%d,c%d-l%d,c%d",
3585 @@3.first_line, @@3.first_column,
3586 @@3.last_line, @@3.last_column);
3e259915
MA
3587 @}
3588 @}
3589@end group
3590@end example
847bf1f5 3591
32c29292 3592@vindex yylloc
742e4900 3593It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3594from a semantic action.
3595This location is stored in @code{yylloc}.
3596@xref{Action Features, ,Special Features for Use in Actions}.
3597
342b8b6e 3598@node Location Default Action
847bf1f5
AD
3599@subsection Default Action for Locations
3600@vindex YYLLOC_DEFAULT
8710fc41 3601@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3602
72d2299c 3603Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3604locations are much more general than semantic values, there is room in
3605the output parser to redefine the default action to take for each
72d2299c 3606rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3607matched, before the associated action is run. It is also invoked
3608while processing a syntax error, to compute the error's location.
8710fc41
JD
3609Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3610parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3611of that ambiguity.
847bf1f5 3612
3e259915 3613Most of the time, this macro is general enough to suppress location
79282c6c 3614dedicated code from semantic actions.
847bf1f5 3615
72d2299c 3616The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3617the location of the grouping (the result of the computation). When a
766de5eb 3618rule is matched, the second parameter identifies locations of
96b93a3d 3619all right hand side elements of the rule being matched, and the third
8710fc41
JD
3620parameter is the size of the rule's right hand side.
3621When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3622right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3623When processing a syntax error, the second parameter identifies locations
3624of the symbols that were discarded during error processing, and the third
96b93a3d 3625parameter is the number of discarded symbols.
847bf1f5 3626
766de5eb 3627By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3628
766de5eb 3629@smallexample
847bf1f5 3630@group
766de5eb
PE
3631# define YYLLOC_DEFAULT(Current, Rhs, N) \
3632 do \
3633 if (N) \
3634 @{ \
3635 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3636 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3637 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3638 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3639 @} \
3640 else \
3641 @{ \
3642 (Current).first_line = (Current).last_line = \
3643 YYRHSLOC(Rhs, 0).last_line; \
3644 (Current).first_column = (Current).last_column = \
3645 YYRHSLOC(Rhs, 0).last_column; \
3646 @} \
3647 while (0)
847bf1f5 3648@end group
766de5eb 3649@end smallexample
676385e2 3650
766de5eb
PE
3651where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3652in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3653just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3654
3e259915 3655When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3656
3e259915 3657@itemize @bullet
79282c6c 3658@item
72d2299c 3659All arguments are free of side-effects. However, only the first one (the
3e259915 3660result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3661
3e259915 3662@item
766de5eb
PE
3663For consistency with semantic actions, valid indexes within the
3664right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3665valid index, and it refers to the symbol just before the reduction.
3666During error processing @var{n} is always positive.
0ae99356
PE
3667
3668@item
3669Your macro should parenthesize its arguments, if need be, since the
3670actual arguments may not be surrounded by parentheses. Also, your
3671macro should expand to something that can be used as a single
3672statement when it is followed by a semicolon.
3e259915 3673@end itemize
847bf1f5 3674
342b8b6e 3675@node Declarations
bfa74976
RS
3676@section Bison Declarations
3677@cindex declarations, Bison
3678@cindex Bison declarations
3679
3680The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3681used in formulating the grammar and the data types of semantic values.
3682@xref{Symbols}.
3683
3684All token type names (but not single-character literal tokens such as
3685@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3686declared if you need to specify which data type to use for the semantic
3687value (@pxref{Multiple Types, ,More Than One Value Type}).
3688
3689The first rule in the file also specifies the start symbol, by default.
3690If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3691it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3692Grammars}).
bfa74976
RS
3693
3694@menu
b50d2359 3695* Require Decl:: Requiring a Bison version.
bfa74976
RS
3696* Token Decl:: Declaring terminal symbols.
3697* Precedence Decl:: Declaring terminals with precedence and associativity.
3698* Union Decl:: Declaring the set of all semantic value types.
3699* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3700* Initial Action Decl:: Code run before parsing starts.
72f889cc 3701* Destructor Decl:: Declaring how symbols are freed.
d6328241 3702* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3703* Start Decl:: Specifying the start symbol.
3704* Pure Decl:: Requesting a reentrant parser.
3705* Decl Summary:: Table of all Bison declarations.
3706@end menu
3707
b50d2359
AD
3708@node Require Decl
3709@subsection Require a Version of Bison
3710@cindex version requirement
3711@cindex requiring a version of Bison
3712@findex %require
3713
3714You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3715the requirement is not met, @command{bison} exits with an error (exit
3716status 63).
b50d2359
AD
3717
3718@example
3719%require "@var{version}"
3720@end example
3721
342b8b6e 3722@node Token Decl
bfa74976
RS
3723@subsection Token Type Names
3724@cindex declaring token type names
3725@cindex token type names, declaring
931c7513 3726@cindex declaring literal string tokens
bfa74976
RS
3727@findex %token
3728
3729The basic way to declare a token type name (terminal symbol) is as follows:
3730
3731@example
3732%token @var{name}
3733@end example
3734
3735Bison will convert this into a @code{#define} directive in
3736the parser, so that the function @code{yylex} (if it is in this file)
3737can use the name @var{name} to stand for this token type's code.
3738
14ded682
AD
3739Alternatively, you can use @code{%left}, @code{%right}, or
3740@code{%nonassoc} instead of @code{%token}, if you wish to specify
3741associativity and precedence. @xref{Precedence Decl, ,Operator
3742Precedence}.
bfa74976
RS
3743
3744You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3745a decimal or hexadecimal integer value in the field immediately
3746following the token name:
bfa74976
RS
3747
3748@example
3749%token NUM 300
1452af69 3750%token XNUM 0x12d // a GNU extension
bfa74976
RS
3751@end example
3752
3753@noindent
3754It is generally best, however, to let Bison choose the numeric codes for
3755all token types. Bison will automatically select codes that don't conflict
e966383b 3756with each other or with normal characters.
bfa74976
RS
3757
3758In the event that the stack type is a union, you must augment the
3759@code{%token} or other token declaration to include the data type
704a47c4
AD
3760alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3761Than One Value Type}).
bfa74976
RS
3762
3763For example:
3764
3765@example
3766@group
3767%union @{ /* define stack type */
3768 double val;
3769 symrec *tptr;
3770@}
3771%token <val> NUM /* define token NUM and its type */
3772@end group
3773@end example
3774
931c7513
RS
3775You can associate a literal string token with a token type name by
3776writing the literal string at the end of a @code{%token}
3777declaration which declares the name. For example:
3778
3779@example
3780%token arrow "=>"
3781@end example
3782
3783@noindent
3784For example, a grammar for the C language might specify these names with
3785equivalent literal string tokens:
3786
3787@example
3788%token <operator> OR "||"
3789%token <operator> LE 134 "<="
3790%left OR "<="
3791@end example
3792
3793@noindent
3794Once you equate the literal string and the token name, you can use them
3795interchangeably in further declarations or the grammar rules. The
3796@code{yylex} function can use the token name or the literal string to
3797obtain the token type code number (@pxref{Calling Convention}).
3798
342b8b6e 3799@node Precedence Decl
bfa74976
RS
3800@subsection Operator Precedence
3801@cindex precedence declarations
3802@cindex declaring operator precedence
3803@cindex operator precedence, declaring
3804
3805Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3806declare a token and specify its precedence and associativity, all at
3807once. These are called @dfn{precedence declarations}.
704a47c4
AD
3808@xref{Precedence, ,Operator Precedence}, for general information on
3809operator precedence.
bfa74976
RS
3810
3811The syntax of a precedence declaration is the same as that of
3812@code{%token}: either
3813
3814@example
3815%left @var{symbols}@dots{}
3816@end example
3817
3818@noindent
3819or
3820
3821@example
3822%left <@var{type}> @var{symbols}@dots{}
3823@end example
3824
3825And indeed any of these declarations serves the purposes of @code{%token}.
3826But in addition, they specify the associativity and relative precedence for
3827all the @var{symbols}:
3828
3829@itemize @bullet
3830@item
3831The associativity of an operator @var{op} determines how repeated uses
3832of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3833@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3834grouping @var{y} with @var{z} first. @code{%left} specifies
3835left-associativity (grouping @var{x} with @var{y} first) and
3836@code{%right} specifies right-associativity (grouping @var{y} with
3837@var{z} first). @code{%nonassoc} specifies no associativity, which
3838means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3839considered a syntax error.
3840
3841@item
3842The precedence of an operator determines how it nests with other operators.
3843All the tokens declared in a single precedence declaration have equal
3844precedence and nest together according to their associativity.
3845When two tokens declared in different precedence declarations associate,
3846the one declared later has the higher precedence and is grouped first.
3847@end itemize
3848
342b8b6e 3849@node Union Decl
bfa74976
RS
3850@subsection The Collection of Value Types
3851@cindex declaring value types
3852@cindex value types, declaring
3853@findex %union
3854
287c78f6
PE
3855The @code{%union} declaration specifies the entire collection of
3856possible data types for semantic values. The keyword @code{%union} is
3857followed by braced code containing the same thing that goes inside a
3858@code{union} in C@.
bfa74976
RS
3859
3860For example:
3861
3862@example
3863@group
3864%union @{
3865 double val;
3866 symrec *tptr;
3867@}
3868@end group
3869@end example
3870
3871@noindent
3872This says that the two alternative types are @code{double} and @code{symrec
3873*}. They are given names @code{val} and @code{tptr}; these names are used
3874in the @code{%token} and @code{%type} declarations to pick one of the types
3875for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3876
6273355b
PE
3877As an extension to @acronym{POSIX}, a tag is allowed after the
3878@code{union}. For example:
3879
3880@example
3881@group
3882%union value @{
3883 double val;
3884 symrec *tptr;
3885@}
3886@end group
3887@end example
3888
d6ca7905 3889@noindent
6273355b
PE
3890specifies the union tag @code{value}, so the corresponding C type is
3891@code{union value}. If you do not specify a tag, it defaults to
3892@code{YYSTYPE}.
3893
d6ca7905
PE
3894As another extension to @acronym{POSIX}, you may specify multiple
3895@code{%union} declarations; their contents are concatenated. However,
3896only the first @code{%union} declaration can specify a tag.
3897
6273355b 3898Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3899a semicolon after the closing brace.
3900
ddc8ede1
PE
3901Instead of @code{%union}, you can define and use your own union type
3902@code{YYSTYPE} if your grammar contains at least one
3903@samp{<@var{type}>} tag. For example, you can put the following into
3904a header file @file{parser.h}:
3905
3906@example
3907@group
3908union YYSTYPE @{
3909 double val;
3910 symrec *tptr;
3911@};
3912typedef union YYSTYPE YYSTYPE;
3913@end group
3914@end example
3915
3916@noindent
3917and then your grammar can use the following
3918instead of @code{%union}:
3919
3920@example
3921@group
3922%@{
3923#include "parser.h"
3924%@}
3925%type <val> expr
3926%token <tptr> ID
3927@end group
3928@end example
3929
342b8b6e 3930@node Type Decl
bfa74976
RS
3931@subsection Nonterminal Symbols
3932@cindex declaring value types, nonterminals
3933@cindex value types, nonterminals, declaring
3934@findex %type
3935
3936@noindent
3937When you use @code{%union} to specify multiple value types, you must
3938declare the value type of each nonterminal symbol for which values are
3939used. This is done with a @code{%type} declaration, like this:
3940
3941@example
3942%type <@var{type}> @var{nonterminal}@dots{}
3943@end example
3944
3945@noindent
704a47c4
AD
3946Here @var{nonterminal} is the name of a nonterminal symbol, and
3947@var{type} is the name given in the @code{%union} to the alternative
3948that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3949can give any number of nonterminal symbols in the same @code{%type}
3950declaration, if they have the same value type. Use spaces to separate
3951the symbol names.
bfa74976 3952
931c7513
RS
3953You can also declare the value type of a terminal symbol. To do this,
3954use the same @code{<@var{type}>} construction in a declaration for the
3955terminal symbol. All kinds of token declarations allow
3956@code{<@var{type}>}.
3957
18d192f0
AD
3958@node Initial Action Decl
3959@subsection Performing Actions before Parsing
3960@findex %initial-action
3961
3962Sometimes your parser needs to perform some initializations before
3963parsing. The @code{%initial-action} directive allows for such arbitrary
3964code.
3965
3966@deffn {Directive} %initial-action @{ @var{code} @}
3967@findex %initial-action
287c78f6 3968Declare that the braced @var{code} must be invoked before parsing each time
451364ed 3969@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 3970@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 3971@code{%parse-param}.
18d192f0
AD
3972@end deffn
3973
451364ed
AD
3974For instance, if your locations use a file name, you may use
3975
3976@example
48b16bbc 3977%parse-param @{ char const *file_name @};
451364ed
AD
3978%initial-action
3979@{
4626a15d 3980 @@$.initialize (file_name);
451364ed
AD
3981@};
3982@end example
3983
18d192f0 3984
72f889cc
AD
3985@node Destructor Decl
3986@subsection Freeing Discarded Symbols
3987@cindex freeing discarded symbols
3988@findex %destructor
3989
a85284cf
AD
3990During error recovery (@pxref{Error Recovery}), symbols already pushed
3991on the stack and tokens coming from the rest of the file are discarded
3992until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3993or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3994symbols on the stack must be discarded. Even if the parser succeeds, it
3995must discard the start symbol.
258b75ca
PE
3996
3997When discarded symbols convey heap based information, this memory is
3998lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3999in traditional compilers, it is unacceptable for programs like shells or
4000protocol implementations that may parse and execute indefinitely.
258b75ca 4001
a85284cf
AD
4002The @code{%destructor} directive defines code that is called when a
4003symbol is automatically discarded.
72f889cc
AD
4004
4005@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4006@findex %destructor
287c78f6
PE
4007Invoke the braced @var{code} whenever the parser discards one of the
4008@var{symbols}.
4b367315 4009Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4010with the discarded symbol, and @code{@@$} designates its location.
4011The additional parser parameters are also available (@pxref{Parser Function, ,
4012The Parser Function @code{yyparse}}).
4013@end deffn
4014
4015@deffn {Directive} %destructor @{ @var{code} @}
4016@cindex default %destructor
3508ce36 4017Invoke the braced @var{code} whenever the parser discards any user-defined
ec5479ce
JD
4018grammar symbol for which the user has not specifically declared any
4019@code{%destructor}.
4020This is known as the default @code{%destructor}.
4021As in the previous form, @code{$$}, @code{@@$}, and the additional parser
4022parameters are available.
72f889cc
AD
4023@end deffn
4024
4025For instance:
4026
4027@smallexample
ec5479ce
JD
4028%union @{ char *string; @}
4029%token <string> STRING1
4030%token <string> STRING2
4031%type <string> string1
4032%type <string> string2
4033%destructor @{ free ($$); @}
4034%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
72f889cc
AD
4035@end smallexample
4036
4037@noindent
3508ce36 4038guarantees that, when the parser discards any user-defined symbol, it passes
ec5479ce
JD
4039its semantic value to @code{free}.
4040However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4041prints its line number to @code{stdout}.
4042It performs only the second @code{%destructor} in this case, so it invokes
4043@code{free} only once.
72f889cc 4044
3508ce36
JD
4045Notice that a Bison-generated parser invokes the default @code{%destructor}
4046only for user-defined as opposed to Bison-defined symbols.
4047For example, the parser will not invoke it for the special Bison-defined
4048symbols @code{$accept}, @code{$undefined}, or @code{$end} (@pxref{Table of
4049Symbols, ,Bison Symbols}), none of which you can reference in your grammar.
4050It also will not invoke it for the @code{error} token (@pxref{Table of Symbols,
4051,error}), which is always defined by Bison regardless of whether you reference
4052it in your grammar.
4053However, it will invoke it for the end token (token 0) if you redefine it from
4054@code{$end} to, for example, @code{END}:
4055
4056@smallexample
4057%token END 0
4058@end smallexample
4059
4060@ignore
4061@noindent
4062In the future, it may be possible to redefine the @code{error} token as a
4063nonterminal that captures the discarded symbols.
4064In that case, the parser will invoke the default destructor for it as well.
4065@end ignore
4066
e757bb10
AD
4067@sp 1
4068
4069@cindex discarded symbols
4070@dfn{Discarded symbols} are the following:
4071
4072@itemize
4073@item
4074stacked symbols popped during the first phase of error recovery,
4075@item
4076incoming terminals during the second phase of error recovery,
4077@item
742e4900 4078the current lookahead and the entire stack (except the current
9d9b8b70 4079right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4080@item
4081the start symbol, when the parser succeeds.
e757bb10
AD
4082@end itemize
4083
9d9b8b70
PE
4084The parser can @dfn{return immediately} because of an explicit call to
4085@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4086exhaustion.
4087
4088Right-hand size symbols of a rule that explicitly triggers a syntax
4089error via @code{YYERROR} are not discarded automatically. As a rule
4090of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4091the memory.
e757bb10 4092
342b8b6e 4093@node Expect Decl
bfa74976
RS
4094@subsection Suppressing Conflict Warnings
4095@cindex suppressing conflict warnings
4096@cindex preventing warnings about conflicts
4097@cindex warnings, preventing
4098@cindex conflicts, suppressing warnings of
4099@findex %expect
d6328241 4100@findex %expect-rr
bfa74976
RS
4101
4102Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4103(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4104have harmless shift/reduce conflicts which are resolved in a predictable
4105way and would be difficult to eliminate. It is desirable to suppress
4106the warning about these conflicts unless the number of conflicts
4107changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4108
4109The declaration looks like this:
4110
4111@example
4112%expect @var{n}
4113@end example
4114
035aa4a0
PE
4115Here @var{n} is a decimal integer. The declaration says there should
4116be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4117Bison reports an error if the number of shift/reduce conflicts differs
4118from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4119
035aa4a0
PE
4120For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4121serious, and should be eliminated entirely. Bison will always report
4122reduce/reduce conflicts for these parsers. With @acronym{GLR}
4123parsers, however, both kinds of conflicts are routine; otherwise,
4124there would be no need to use @acronym{GLR} parsing. Therefore, it is
4125also possible to specify an expected number of reduce/reduce conflicts
4126in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4127
4128@example
4129%expect-rr @var{n}
4130@end example
4131
bfa74976
RS
4132In general, using @code{%expect} involves these steps:
4133
4134@itemize @bullet
4135@item
4136Compile your grammar without @code{%expect}. Use the @samp{-v} option
4137to get a verbose list of where the conflicts occur. Bison will also
4138print the number of conflicts.
4139
4140@item
4141Check each of the conflicts to make sure that Bison's default
4142resolution is what you really want. If not, rewrite the grammar and
4143go back to the beginning.
4144
4145@item
4146Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4147number which Bison printed. With @acronym{GLR} parsers, add an
4148@code{%expect-rr} declaration as well.
bfa74976
RS
4149@end itemize
4150
035aa4a0
PE
4151Now Bison will warn you if you introduce an unexpected conflict, but
4152will keep silent otherwise.
bfa74976 4153
342b8b6e 4154@node Start Decl
bfa74976
RS
4155@subsection The Start-Symbol
4156@cindex declaring the start symbol
4157@cindex start symbol, declaring
4158@cindex default start symbol
4159@findex %start
4160
4161Bison assumes by default that the start symbol for the grammar is the first
4162nonterminal specified in the grammar specification section. The programmer
4163may override this restriction with the @code{%start} declaration as follows:
4164
4165@example
4166%start @var{symbol}
4167@end example
4168
342b8b6e 4169@node Pure Decl
bfa74976
RS
4170@subsection A Pure (Reentrant) Parser
4171@cindex reentrant parser
4172@cindex pure parser
8c9a50be 4173@findex %pure-parser
bfa74976
RS
4174
4175A @dfn{reentrant} program is one which does not alter in the course of
4176execution; in other words, it consists entirely of @dfn{pure} (read-only)
4177code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4178for example, a nonreentrant program may not be safe to call from a signal
4179handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4180program must be called only within interlocks.
4181
70811b85 4182Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4183suitable for most uses, and it permits compatibility with Yacc. (The
4184standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4185statically allocated variables for communication with @code{yylex},
4186including @code{yylval} and @code{yylloc}.)
bfa74976 4187
70811b85 4188Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4189declaration @code{%pure-parser} says that you want the parser to be
70811b85 4190reentrant. It looks like this:
bfa74976
RS
4191
4192@example
8c9a50be 4193%pure-parser
bfa74976
RS
4194@end example
4195
70811b85
RS
4196The result is that the communication variables @code{yylval} and
4197@code{yylloc} become local variables in @code{yyparse}, and a different
4198calling convention is used for the lexical analyzer function
4199@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4200Parsers}, for the details of this. The variable @code{yynerrs} also
4201becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4202Reporting Function @code{yyerror}}). The convention for calling
4203@code{yyparse} itself is unchanged.
4204
4205Whether the parser is pure has nothing to do with the grammar rules.
4206You can generate either a pure parser or a nonreentrant parser from any
4207valid grammar.
bfa74976 4208
342b8b6e 4209@node Decl Summary
bfa74976
RS
4210@subsection Bison Declaration Summary
4211@cindex Bison declaration summary
4212@cindex declaration summary
4213@cindex summary, Bison declaration
4214
d8988b2f 4215Here is a summary of the declarations used to define a grammar:
bfa74976 4216
18b519c0 4217@deffn {Directive} %union
bfa74976
RS
4218Declare the collection of data types that semantic values may have
4219(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4220@end deffn
bfa74976 4221
18b519c0 4222@deffn {Directive} %token
bfa74976
RS
4223Declare a terminal symbol (token type name) with no precedence
4224or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4225@end deffn
bfa74976 4226
18b519c0 4227@deffn {Directive} %right
bfa74976
RS
4228Declare a terminal symbol (token type name) that is right-associative
4229(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4230@end deffn
bfa74976 4231
18b519c0 4232@deffn {Directive} %left
bfa74976
RS
4233Declare a terminal symbol (token type name) that is left-associative
4234(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4235@end deffn
bfa74976 4236
18b519c0 4237@deffn {Directive} %nonassoc
bfa74976 4238Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4239(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4240Using it in a way that would be associative is a syntax error.
4241@end deffn
4242
91d2c560 4243@ifset defaultprec
39a06c25 4244@deffn {Directive} %default-prec
22fccf95 4245Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4246(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4247@end deffn
91d2c560 4248@end ifset
bfa74976 4249
18b519c0 4250@deffn {Directive} %type
bfa74976
RS
4251Declare the type of semantic values for a nonterminal symbol
4252(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4253@end deffn
bfa74976 4254
18b519c0 4255@deffn {Directive} %start
89cab50d
AD
4256Specify the grammar's start symbol (@pxref{Start Decl, ,The
4257Start-Symbol}).
18b519c0 4258@end deffn
bfa74976 4259
18b519c0 4260@deffn {Directive} %expect
bfa74976
RS
4261Declare the expected number of shift-reduce conflicts
4262(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4263@end deffn
4264
bfa74976 4265
d8988b2f
AD
4266@sp 1
4267@noindent
4268In order to change the behavior of @command{bison}, use the following
4269directives:
4270
18b519c0 4271@deffn {Directive} %debug
4947ebdb
PE
4272In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4273already defined, so that the debugging facilities are compiled.
18b519c0 4274@end deffn
ec3bc396 4275@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4276
18b519c0 4277@deffn {Directive} %defines
4bfd5e4e
PE
4278Write a header file containing macro definitions for the token type
4279names defined in the grammar as well as a few other declarations.
d8988b2f 4280If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4281is named @file{@var{name}.h}.
d8988b2f 4282
b321737f 4283For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4284@code{YYSTYPE} is already defined as a macro or you have used a
4285@code{<@var{type}>} tag without using @code{%union}.
4286Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4287(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4288require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4289or type definition
f8e1c9e5
AD
4290(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4291arrange for these definitions to be propagated to all modules, e.g., by
4292putting them in a prerequisite header that is included both by your
4293parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4294
4295Unless your parser is pure, the output header declares @code{yylval}
4296as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4297Parser}.
4298
4299If you have also used locations, the output header declares
4300@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4301the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4302Locations}.
4303
f8e1c9e5
AD
4304This output file is normally essential if you wish to put the definition
4305of @code{yylex} in a separate source file, because @code{yylex}
4306typically needs to be able to refer to the above-mentioned declarations
4307and to the token type codes. @xref{Token Values, ,Semantic Values of
4308Tokens}.
9bc0dd67 4309
34f98f46
JD
4310@findex %start-header
4311@findex %end-header
4312If you have declared @code{%start-header} or @code{%end-header}, the output
4313header also contains their code.
4314@xref{Table of Symbols, ,%start-header}.
18b519c0 4315@end deffn
d8988b2f 4316
18b519c0 4317@deffn {Directive} %destructor
258b75ca 4318Specify how the parser should reclaim the memory associated to
fa7e68c3 4319discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4320@end deffn
72f889cc 4321
18b519c0 4322@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4323Specify a prefix to use for all Bison output file names. The names are
4324chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4325@end deffn
d8988b2f 4326
18b519c0 4327@deffn {Directive} %locations
89cab50d
AD
4328Generate the code processing the locations (@pxref{Action Features,
4329,Special Features for Use in Actions}). This mode is enabled as soon as
4330the grammar uses the special @samp{@@@var{n}} tokens, but if your
4331grammar does not use it, using @samp{%locations} allows for more
6e649e65 4332accurate syntax error messages.
18b519c0 4333@end deffn
89cab50d 4334
18b519c0 4335@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4336Rename the external symbols used in the parser so that they start with
4337@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4338in C parsers
d8988b2f 4339is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4340@code{yylval}, @code{yychar}, @code{yydebug}, and
4341(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4342@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4343and so on. In C++ parsers, it is only the surrounding namespace which is
4344named @var{prefix} instead of @samp{yy}.
4345@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4346@end deffn
931c7513 4347
91d2c560 4348@ifset defaultprec
22fccf95
PE
4349@deffn {Directive} %no-default-prec
4350Do not assign a precedence to rules lacking an explicit @code{%prec}
4351modifier (@pxref{Contextual Precedence, ,Context-Dependent
4352Precedence}).
4353@end deffn
91d2c560 4354@end ifset
22fccf95 4355
18b519c0 4356@deffn {Directive} %no-parser
6deb4447
AD
4357Do not include any C code in the parser file; generate tables only. The
4358parser file contains just @code{#define} directives and static variable
4359declarations.
4360
4361This option also tells Bison to write the C code for the grammar actions
fa4d969f 4362into a file named @file{@var{file}.act}, in the form of a
6deb4447 4363brace-surrounded body fit for a @code{switch} statement.
18b519c0 4364@end deffn
6deb4447 4365
18b519c0 4366@deffn {Directive} %no-lines
931c7513
RS
4367Don't generate any @code{#line} preprocessor commands in the parser
4368file. Ordinarily Bison writes these commands in the parser file so that
4369the C compiler and debuggers will associate errors and object code with
4370your source file (the grammar file). This directive causes them to
4371associate errors with the parser file, treating it an independent source
4372file in its own right.
18b519c0 4373@end deffn
931c7513 4374
fa4d969f
PE
4375@deffn {Directive} %output="@var{file}"
4376Specify @var{file} for the parser file.
18b519c0 4377@end deffn
6deb4447 4378
18b519c0 4379@deffn {Directive} %pure-parser
d8988b2f
AD
4380Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4381(Reentrant) Parser}).
18b519c0 4382@end deffn
6deb4447 4383
b50d2359 4384@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4385Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4386Require a Version of Bison}.
b50d2359
AD
4387@end deffn
4388
18b519c0 4389@deffn {Directive} %token-table
931c7513
RS
4390Generate an array of token names in the parser file. The name of the
4391array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4392token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4393three elements of @code{yytname} correspond to the predefined tokens
4394@code{"$end"},
88bce5a2
AD
4395@code{"error"}, and @code{"$undefined"}; after these come the symbols
4396defined in the grammar file.
931c7513 4397
9e0876fb
PE
4398The name in the table includes all the characters needed to represent
4399the token in Bison. For single-character literals and literal
4400strings, this includes the surrounding quoting characters and any
4401escape sequences. For example, the Bison single-character literal
4402@code{'+'} corresponds to a three-character name, represented in C as
4403@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4404corresponds to a five-character name, represented in C as
4405@code{"\"\\\\/\""}.
931c7513 4406
8c9a50be 4407When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4408definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4409@code{YYNRULES}, and @code{YYNSTATES}:
4410
4411@table @code
4412@item YYNTOKENS
4413The highest token number, plus one.
4414@item YYNNTS
9ecbd125 4415The number of nonterminal symbols.
931c7513
RS
4416@item YYNRULES
4417The number of grammar rules,
4418@item YYNSTATES
4419The number of parser states (@pxref{Parser States}).
4420@end table
18b519c0 4421@end deffn
d8988b2f 4422
18b519c0 4423@deffn {Directive} %verbose
d8988b2f 4424Write an extra output file containing verbose descriptions of the
742e4900 4425parser states and what is done for each type of lookahead token in
72d2299c 4426that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4427information.
18b519c0 4428@end deffn
d8988b2f 4429
18b519c0 4430@deffn {Directive} %yacc
d8988b2f
AD
4431Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4432including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4433@end deffn
d8988b2f
AD
4434
4435
342b8b6e 4436@node Multiple Parsers
bfa74976
RS
4437@section Multiple Parsers in the Same Program
4438
4439Most programs that use Bison parse only one language and therefore contain
4440only one Bison parser. But what if you want to parse more than one
4441language with the same program? Then you need to avoid a name conflict
4442between different definitions of @code{yyparse}, @code{yylval}, and so on.
4443
4444The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4445(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4446functions and variables of the Bison parser to start with @var{prefix}
4447instead of @samp{yy}. You can use this to give each parser distinct
4448names that do not conflict.
bfa74976
RS
4449
4450The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4451@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4452@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4453the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4454
4455@strong{All the other variables and macros associated with Bison are not
4456renamed.} These others are not global; there is no conflict if the same
4457name is used in different parsers. For example, @code{YYSTYPE} is not
4458renamed, but defining this in different ways in different parsers causes
4459no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4460
4461The @samp{-p} option works by adding macro definitions to the beginning
4462of the parser source file, defining @code{yyparse} as
4463@code{@var{prefix}parse}, and so on. This effectively substitutes one
4464name for the other in the entire parser file.
4465
342b8b6e 4466@node Interface
bfa74976
RS
4467@chapter Parser C-Language Interface
4468@cindex C-language interface
4469@cindex interface
4470
4471The Bison parser is actually a C function named @code{yyparse}. Here we
4472describe the interface conventions of @code{yyparse} and the other
4473functions that it needs to use.
4474
4475Keep in mind that the parser uses many C identifiers starting with
4476@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4477identifier (aside from those in this manual) in an action or in epilogue
4478in the grammar file, you are likely to run into trouble.
bfa74976
RS
4479
4480@menu
4481* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4482* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4483 which reads tokens.
4484* Error Reporting:: You must supply a function @code{yyerror}.
4485* Action Features:: Special features for use in actions.
f7ab6a50
PE
4486* Internationalization:: How to let the parser speak in the user's
4487 native language.
bfa74976
RS
4488@end menu
4489
342b8b6e 4490@node Parser Function
bfa74976
RS
4491@section The Parser Function @code{yyparse}
4492@findex yyparse
4493
4494You call the function @code{yyparse} to cause parsing to occur. This
4495function reads tokens, executes actions, and ultimately returns when it
4496encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4497write an action which directs @code{yyparse} to return immediately
4498without reading further.
bfa74976 4499
2a8d363a
AD
4500
4501@deftypefun int yyparse (void)
bfa74976
RS
4502The value returned by @code{yyparse} is 0 if parsing was successful (return
4503is due to end-of-input).
4504
b47dbebe
PE
4505The value is 1 if parsing failed because of invalid input, i.e., input
4506that contains a syntax error or that causes @code{YYABORT} to be
4507invoked.
4508
4509The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4510@end deftypefun
bfa74976
RS
4511
4512In an action, you can cause immediate return from @code{yyparse} by using
4513these macros:
4514
2a8d363a 4515@defmac YYACCEPT
bfa74976
RS
4516@findex YYACCEPT
4517Return immediately with value 0 (to report success).
2a8d363a 4518@end defmac
bfa74976 4519
2a8d363a 4520@defmac YYABORT
bfa74976
RS
4521@findex YYABORT
4522Return immediately with value 1 (to report failure).
2a8d363a
AD
4523@end defmac
4524
4525If you use a reentrant parser, you can optionally pass additional
4526parameter information to it in a reentrant way. To do so, use the
4527declaration @code{%parse-param}:
4528
feeb0eda 4529@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4530@findex %parse-param
287c78f6
PE
4531Declare that an argument declared by the braced-code
4532@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4533The @var{argument-declaration} is used when declaring
feeb0eda
PE
4534functions or prototypes. The last identifier in
4535@var{argument-declaration} must be the argument name.
2a8d363a
AD
4536@end deffn
4537
4538Here's an example. Write this in the parser:
4539
4540@example
feeb0eda
PE
4541%parse-param @{int *nastiness@}
4542%parse-param @{int *randomness@}
2a8d363a
AD
4543@end example
4544
4545@noindent
4546Then call the parser like this:
4547
4548@example
4549@{
4550 int nastiness, randomness;
4551 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4552 value = yyparse (&nastiness, &randomness);
4553 @dots{}
4554@}
4555@end example
4556
4557@noindent
4558In the grammar actions, use expressions like this to refer to the data:
4559
4560@example
4561exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4562@end example
4563
bfa74976 4564
342b8b6e 4565@node Lexical
bfa74976
RS
4566@section The Lexical Analyzer Function @code{yylex}
4567@findex yylex
4568@cindex lexical analyzer
4569
4570The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4571the input stream and returns them to the parser. Bison does not create
4572this function automatically; you must write it so that @code{yyparse} can
4573call it. The function is sometimes referred to as a lexical scanner.
4574
4575In simple programs, @code{yylex} is often defined at the end of the Bison
4576grammar file. If @code{yylex} is defined in a separate source file, you
4577need to arrange for the token-type macro definitions to be available there.
4578To do this, use the @samp{-d} option when you run Bison, so that it will
4579write these macro definitions into a separate header file
4580@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4581that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4582
4583@menu
4584* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4585* Token Values:: How @code{yylex} must return the semantic value
4586 of the token it has read.
95923bd6 4587* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4588 (line number, etc.) of the token, if the
4589 actions want that.
4590* Pure Calling:: How the calling convention differs
4591 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4592@end menu
4593
342b8b6e 4594@node Calling Convention
bfa74976
RS
4595@subsection Calling Convention for @code{yylex}
4596
72d2299c
PE
4597The value that @code{yylex} returns must be the positive numeric code
4598for the type of token it has just found; a zero or negative value
4599signifies end-of-input.
bfa74976
RS
4600
4601When a token is referred to in the grammar rules by a name, that name
4602in the parser file becomes a C macro whose definition is the proper
4603numeric code for that token type. So @code{yylex} can use the name
4604to indicate that type. @xref{Symbols}.
4605
4606When a token is referred to in the grammar rules by a character literal,
4607the numeric code for that character is also the code for the token type.
72d2299c
PE
4608So @code{yylex} can simply return that character code, possibly converted
4609to @code{unsigned char} to avoid sign-extension. The null character
4610must not be used this way, because its code is zero and that
bfa74976
RS
4611signifies end-of-input.
4612
4613Here is an example showing these things:
4614
4615@example
13863333
AD
4616int
4617yylex (void)
bfa74976
RS
4618@{
4619 @dots{}
72d2299c 4620 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4621 return 0;
4622 @dots{}
4623 if (c == '+' || c == '-')
72d2299c 4624 return c; /* Assume token type for `+' is '+'. */
bfa74976 4625 @dots{}
72d2299c 4626 return INT; /* Return the type of the token. */
bfa74976
RS
4627 @dots{}
4628@}
4629@end example
4630
4631@noindent
4632This interface has been designed so that the output from the @code{lex}
4633utility can be used without change as the definition of @code{yylex}.
4634
931c7513
RS
4635If the grammar uses literal string tokens, there are two ways that
4636@code{yylex} can determine the token type codes for them:
4637
4638@itemize @bullet
4639@item
4640If the grammar defines symbolic token names as aliases for the
4641literal string tokens, @code{yylex} can use these symbolic names like
4642all others. In this case, the use of the literal string tokens in
4643the grammar file has no effect on @code{yylex}.
4644
4645@item
9ecbd125 4646@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4647table. The index of the token in the table is the token type's code.
9ecbd125 4648The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4649double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4650token's characters are escaped as necessary to be suitable as input
4651to Bison.
931c7513 4652
9e0876fb
PE
4653Here's code for looking up a multicharacter token in @code{yytname},
4654assuming that the characters of the token are stored in
4655@code{token_buffer}, and assuming that the token does not contain any
4656characters like @samp{"} that require escaping.
931c7513
RS
4657
4658@smallexample
4659for (i = 0; i < YYNTOKENS; i++)
4660 @{
4661 if (yytname[i] != 0
4662 && yytname[i][0] == '"'
68449b3a
PE
4663 && ! strncmp (yytname[i] + 1, token_buffer,
4664 strlen (token_buffer))
931c7513
RS
4665 && yytname[i][strlen (token_buffer) + 1] == '"'
4666 && yytname[i][strlen (token_buffer) + 2] == 0)
4667 break;
4668 @}
4669@end smallexample
4670
4671The @code{yytname} table is generated only if you use the
8c9a50be 4672@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4673@end itemize
4674
342b8b6e 4675@node Token Values
bfa74976
RS
4676@subsection Semantic Values of Tokens
4677
4678@vindex yylval
9d9b8b70 4679In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4680be stored into the global variable @code{yylval}. When you are using
4681just one data type for semantic values, @code{yylval} has that type.
4682Thus, if the type is @code{int} (the default), you might write this in
4683@code{yylex}:
4684
4685@example
4686@group
4687 @dots{}
72d2299c
PE
4688 yylval = value; /* Put value onto Bison stack. */
4689 return INT; /* Return the type of the token. */
bfa74976
RS
4690 @dots{}
4691@end group
4692@end example
4693
4694When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4695made from the @code{%union} declaration (@pxref{Union Decl, ,The
4696Collection of Value Types}). So when you store a token's value, you
4697must use the proper member of the union. If the @code{%union}
4698declaration looks like this:
bfa74976
RS
4699
4700@example
4701@group
4702%union @{
4703 int intval;
4704 double val;
4705 symrec *tptr;
4706@}
4707@end group
4708@end example
4709
4710@noindent
4711then the code in @code{yylex} might look like this:
4712
4713@example
4714@group
4715 @dots{}
72d2299c
PE
4716 yylval.intval = value; /* Put value onto Bison stack. */
4717 return INT; /* Return the type of the token. */
bfa74976
RS
4718 @dots{}
4719@end group
4720@end example
4721
95923bd6
AD
4722@node Token Locations
4723@subsection Textual Locations of Tokens
bfa74976
RS
4724
4725@vindex yylloc
847bf1f5 4726If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4727Tracking Locations}) in actions to keep track of the textual locations
4728of tokens and groupings, then you must provide this information in
4729@code{yylex}. The function @code{yyparse} expects to find the textual
4730location of a token just parsed in the global variable @code{yylloc}.
4731So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4732
4733By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4734initialize the members that are going to be used by the actions. The
4735four members are called @code{first_line}, @code{first_column},
4736@code{last_line} and @code{last_column}. Note that the use of this
4737feature makes the parser noticeably slower.
bfa74976
RS
4738
4739@tindex YYLTYPE
4740The data type of @code{yylloc} has the name @code{YYLTYPE}.
4741
342b8b6e 4742@node Pure Calling
c656404a 4743@subsection Calling Conventions for Pure Parsers
bfa74976 4744
8c9a50be 4745When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4746pure, reentrant parser, the global communication variables @code{yylval}
4747and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4748Parser}.) In such parsers the two global variables are replaced by
4749pointers passed as arguments to @code{yylex}. You must declare them as
4750shown here, and pass the information back by storing it through those
4751pointers.
bfa74976
RS
4752
4753@example
13863333
AD
4754int
4755yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4756@{
4757 @dots{}
4758 *lvalp = value; /* Put value onto Bison stack. */
4759 return INT; /* Return the type of the token. */
4760 @dots{}
4761@}
4762@end example
4763
4764If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4765textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4766this case, omit the second argument; @code{yylex} will be called with
4767only one argument.
4768
e425e872 4769
2a8d363a
AD
4770If you wish to pass the additional parameter data to @code{yylex}, use
4771@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4772Function}).
e425e872 4773
feeb0eda 4774@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4775@findex %lex-param
287c78f6
PE
4776Declare that the braced-code @var{argument-declaration} is an
4777additional @code{yylex} argument declaration.
2a8d363a 4778@end deffn
e425e872 4779
2a8d363a 4780For instance:
e425e872
RS
4781
4782@example
feeb0eda
PE
4783%parse-param @{int *nastiness@}
4784%lex-param @{int *nastiness@}
4785%parse-param @{int *randomness@}
e425e872
RS
4786@end example
4787
4788@noindent
2a8d363a 4789results in the following signature:
e425e872
RS
4790
4791@example
2a8d363a
AD
4792int yylex (int *nastiness);
4793int yyparse (int *nastiness, int *randomness);
e425e872
RS
4794@end example
4795
2a8d363a 4796If @code{%pure-parser} is added:
c656404a
RS
4797
4798@example
2a8d363a
AD
4799int yylex (YYSTYPE *lvalp, int *nastiness);
4800int yyparse (int *nastiness, int *randomness);
c656404a
RS
4801@end example
4802
2a8d363a
AD
4803@noindent
4804and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4805
2a8d363a
AD
4806@example
4807int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4808int yyparse (int *nastiness, int *randomness);
4809@end example
931c7513 4810
342b8b6e 4811@node Error Reporting
bfa74976
RS
4812@section The Error Reporting Function @code{yyerror}
4813@cindex error reporting function
4814@findex yyerror
4815@cindex parse error
4816@cindex syntax error
4817
6e649e65 4818The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4819whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4820action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4821macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4822in Actions}).
bfa74976
RS
4823
4824The Bison parser expects to report the error by calling an error
4825reporting function named @code{yyerror}, which you must supply. It is
4826called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4827receives one argument. For a syntax error, the string is normally
4828@w{@code{"syntax error"}}.
bfa74976 4829
2a8d363a
AD
4830@findex %error-verbose
4831If you invoke the directive @code{%error-verbose} in the Bison
4832declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4833Section}), then Bison provides a more verbose and specific error message
6e649e65 4834string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4835
1a059451
PE
4836The parser can detect one other kind of error: memory exhaustion. This
4837can happen when the input contains constructions that are very deeply
bfa74976 4838nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4839parser normally extends its stack automatically up to a very large limit. But
4840if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4841fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4842
4843In some cases diagnostics like @w{@code{"syntax error"}} are
4844translated automatically from English to some other language before
4845they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4846
4847The following definition suffices in simple programs:
4848
4849@example
4850@group
13863333 4851void
38a92d50 4852yyerror (char const *s)
bfa74976
RS
4853@{
4854@end group
4855@group
4856 fprintf (stderr, "%s\n", s);
4857@}
4858@end group
4859@end example
4860
4861After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4862error recovery if you have written suitable error recovery grammar rules
4863(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4864immediately return 1.
4865
93724f13 4866Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4867an access to the current location.
4868This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4869parsers, but not for the Yacc parser, for historical reasons. I.e., if
4870@samp{%locations %pure-parser} is passed then the prototypes for
4871@code{yyerror} are:
4872
4873@example
38a92d50
PE
4874void yyerror (char const *msg); /* Yacc parsers. */
4875void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4876@end example
4877
feeb0eda 4878If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4879
4880@example
b317297e
PE
4881void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4882void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4883@end example
4884
fa7e68c3 4885Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4886convention for absolutely pure parsers, i.e., when the calling
4887convention of @code{yylex} @emph{and} the calling convention of
4888@code{%pure-parser} are pure. I.e.:
4889
4890@example
4891/* Location tracking. */
4892%locations
4893/* Pure yylex. */
4894%pure-parser
feeb0eda 4895%lex-param @{int *nastiness@}
2a8d363a 4896/* Pure yyparse. */
feeb0eda
PE
4897%parse-param @{int *nastiness@}
4898%parse-param @{int *randomness@}
2a8d363a
AD
4899@end example
4900
4901@noindent
4902results in the following signatures for all the parser kinds:
4903
4904@example
4905int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4906int yyparse (int *nastiness, int *randomness);
93724f13
AD
4907void yyerror (YYLTYPE *locp,
4908 int *nastiness, int *randomness,
38a92d50 4909 char const *msg);
2a8d363a
AD
4910@end example
4911
1c0c3e95 4912@noindent
38a92d50
PE
4913The prototypes are only indications of how the code produced by Bison
4914uses @code{yyerror}. Bison-generated code always ignores the returned
4915value, so @code{yyerror} can return any type, including @code{void}.
4916Also, @code{yyerror} can be a variadic function; that is why the
4917message is always passed last.
4918
4919Traditionally @code{yyerror} returns an @code{int} that is always
4920ignored, but this is purely for historical reasons, and @code{void} is
4921preferable since it more accurately describes the return type for
4922@code{yyerror}.
93724f13 4923
bfa74976
RS
4924@vindex yynerrs
4925The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4926reported so far. Normally this variable is global; but if you
704a47c4
AD
4927request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4928then it is a local variable which only the actions can access.
bfa74976 4929
342b8b6e 4930@node Action Features
bfa74976
RS
4931@section Special Features for Use in Actions
4932@cindex summary, action features
4933@cindex action features summary
4934
4935Here is a table of Bison constructs, variables and macros that
4936are useful in actions.
4937
18b519c0 4938@deffn {Variable} $$
bfa74976
RS
4939Acts like a variable that contains the semantic value for the
4940grouping made by the current rule. @xref{Actions}.
18b519c0 4941@end deffn
bfa74976 4942
18b519c0 4943@deffn {Variable} $@var{n}
bfa74976
RS
4944Acts like a variable that contains the semantic value for the
4945@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4946@end deffn
bfa74976 4947
18b519c0 4948@deffn {Variable} $<@var{typealt}>$
bfa74976 4949Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4950specified by the @code{%union} declaration. @xref{Action Types, ,Data
4951Types of Values in Actions}.
18b519c0 4952@end deffn
bfa74976 4953
18b519c0 4954@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4955Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4956union specified by the @code{%union} declaration.
e0c471a9 4957@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4958@end deffn
bfa74976 4959
18b519c0 4960@deffn {Macro} YYABORT;
bfa74976
RS
4961Return immediately from @code{yyparse}, indicating failure.
4962@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4963@end deffn
bfa74976 4964
18b519c0 4965@deffn {Macro} YYACCEPT;
bfa74976
RS
4966Return immediately from @code{yyparse}, indicating success.
4967@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4968@end deffn
bfa74976 4969
18b519c0 4970@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4971@findex YYBACKUP
4972Unshift a token. This macro is allowed only for rules that reduce
742e4900 4973a single value, and only when there is no lookahead token.
c827f760 4974It is also disallowed in @acronym{GLR} parsers.
742e4900 4975It installs a lookahead token with token type @var{token} and
bfa74976
RS
4976semantic value @var{value}; then it discards the value that was
4977going to be reduced by this rule.
4978
4979If the macro is used when it is not valid, such as when there is
742e4900 4980a lookahead token already, then it reports a syntax error with
bfa74976
RS
4981a message @samp{cannot back up} and performs ordinary error
4982recovery.
4983
4984In either case, the rest of the action is not executed.
18b519c0 4985@end deffn
bfa74976 4986
18b519c0 4987@deffn {Macro} YYEMPTY
bfa74976 4988@vindex YYEMPTY
742e4900 4989Value stored in @code{yychar} when there is no lookahead token.
18b519c0 4990@end deffn
bfa74976 4991
32c29292
JD
4992@deffn {Macro} YYEOF
4993@vindex YYEOF
742e4900 4994Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
4995stream.
4996@end deffn
4997
18b519c0 4998@deffn {Macro} YYERROR;
bfa74976
RS
4999@findex YYERROR
5000Cause an immediate syntax error. This statement initiates error
5001recovery just as if the parser itself had detected an error; however, it
5002does not call @code{yyerror}, and does not print any message. If you
5003want to print an error message, call @code{yyerror} explicitly before
5004the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5005@end deffn
bfa74976 5006
18b519c0 5007@deffn {Macro} YYRECOVERING
02103984
PE
5008@findex YYRECOVERING
5009The expression @code{YYRECOVERING ()} yields 1 when the parser
5010is recovering from a syntax error, and 0 otherwise.
bfa74976 5011@xref{Error Recovery}.
18b519c0 5012@end deffn
bfa74976 5013
18b519c0 5014@deffn {Variable} yychar
742e4900
JD
5015Variable containing either the lookahead token, or @code{YYEOF} when the
5016lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5017has been performed so the next token is not yet known.
5018Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5019Actions}).
742e4900 5020@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5021@end deffn
bfa74976 5022
18b519c0 5023@deffn {Macro} yyclearin;
742e4900 5024Discard the current lookahead token. This is useful primarily in
32c29292
JD
5025error rules.
5026Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5027Semantic Actions}).
5028@xref{Error Recovery}.
18b519c0 5029@end deffn
bfa74976 5030
18b519c0 5031@deffn {Macro} yyerrok;
bfa74976 5032Resume generating error messages immediately for subsequent syntax
13863333 5033errors. This is useful primarily in error rules.
bfa74976 5034@xref{Error Recovery}.
18b519c0 5035@end deffn
bfa74976 5036
32c29292 5037@deffn {Variable} yylloc
742e4900 5038Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5039to @code{YYEMPTY} or @code{YYEOF}.
5040Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5041Actions}).
5042@xref{Actions and Locations, ,Actions and Locations}.
5043@end deffn
5044
5045@deffn {Variable} yylval
742e4900 5046Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5047not set to @code{YYEMPTY} or @code{YYEOF}.
5048Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5049Actions}).
5050@xref{Actions, ,Actions}.
5051@end deffn
5052
18b519c0 5053@deffn {Value} @@$
847bf1f5 5054@findex @@$
95923bd6 5055Acts like a structure variable containing information on the textual location
847bf1f5
AD
5056of the grouping made by the current rule. @xref{Locations, ,
5057Tracking Locations}.
bfa74976 5058
847bf1f5
AD
5059@c Check if those paragraphs are still useful or not.
5060
5061@c @example
5062@c struct @{
5063@c int first_line, last_line;
5064@c int first_column, last_column;
5065@c @};
5066@c @end example
5067
5068@c Thus, to get the starting line number of the third component, you would
5069@c use @samp{@@3.first_line}.
bfa74976 5070
847bf1f5
AD
5071@c In order for the members of this structure to contain valid information,
5072@c you must make @code{yylex} supply this information about each token.
5073@c If you need only certain members, then @code{yylex} need only fill in
5074@c those members.
bfa74976 5075
847bf1f5 5076@c The use of this feature makes the parser noticeably slower.
18b519c0 5077@end deffn
847bf1f5 5078
18b519c0 5079@deffn {Value} @@@var{n}
847bf1f5 5080@findex @@@var{n}
95923bd6 5081Acts like a structure variable containing information on the textual location
847bf1f5
AD
5082of the @var{n}th component of the current rule. @xref{Locations, ,
5083Tracking Locations}.
18b519c0 5084@end deffn
bfa74976 5085
f7ab6a50
PE
5086@node Internationalization
5087@section Parser Internationalization
5088@cindex internationalization
5089@cindex i18n
5090@cindex NLS
5091@cindex gettext
5092@cindex bison-po
5093
5094A Bison-generated parser can print diagnostics, including error and
5095tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5096also supports outputting diagnostics in the user's native language. To
5097make this work, the user should set the usual environment variables.
5098@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5099For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5100set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5101encoding. The exact set of available locales depends on the user's
5102installation.
5103
5104The maintainer of a package that uses a Bison-generated parser enables
5105the internationalization of the parser's output through the following
5106steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5107@acronym{GNU} Automake.
5108
5109@enumerate
5110@item
30757c8c 5111@cindex bison-i18n.m4
f7ab6a50
PE
5112Into the directory containing the @acronym{GNU} Autoconf macros used
5113by the package---often called @file{m4}---copy the
5114@file{bison-i18n.m4} file installed by Bison under
5115@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5116For example:
5117
5118@example
5119cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5120@end example
5121
5122@item
30757c8c
PE
5123@findex BISON_I18N
5124@vindex BISON_LOCALEDIR
5125@vindex YYENABLE_NLS
f7ab6a50
PE
5126In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5127invocation, add an invocation of @code{BISON_I18N}. This macro is
5128defined in the file @file{bison-i18n.m4} that you copied earlier. It
5129causes @samp{configure} to find the value of the
30757c8c
PE
5130@code{BISON_LOCALEDIR} variable, and it defines the source-language
5131symbol @code{YYENABLE_NLS} to enable translations in the
5132Bison-generated parser.
f7ab6a50
PE
5133
5134@item
5135In the @code{main} function of your program, designate the directory
5136containing Bison's runtime message catalog, through a call to
5137@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5138For example:
5139
5140@example
5141bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5142@end example
5143
5144Typically this appears after any other call @code{bindtextdomain
5145(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5146@samp{BISON_LOCALEDIR} to be defined as a string through the
5147@file{Makefile}.
5148
5149@item
5150In the @file{Makefile.am} that controls the compilation of the @code{main}
5151function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5152either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5153
5154@example
5155DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5156@end example
5157
5158or:
5159
5160@example
5161AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5162@end example
5163
5164@item
5165Finally, invoke the command @command{autoreconf} to generate the build
5166infrastructure.
5167@end enumerate
5168
bfa74976 5169
342b8b6e 5170@node Algorithm
13863333
AD
5171@chapter The Bison Parser Algorithm
5172@cindex Bison parser algorithm
bfa74976
RS
5173@cindex algorithm of parser
5174@cindex shifting
5175@cindex reduction
5176@cindex parser stack
5177@cindex stack, parser
5178
5179As Bison reads tokens, it pushes them onto a stack along with their
5180semantic values. The stack is called the @dfn{parser stack}. Pushing a
5181token is traditionally called @dfn{shifting}.
5182
5183For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5184@samp{3} to come. The stack will have four elements, one for each token
5185that was shifted.
5186
5187But the stack does not always have an element for each token read. When
5188the last @var{n} tokens and groupings shifted match the components of a
5189grammar rule, they can be combined according to that rule. This is called
5190@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5191single grouping whose symbol is the result (left hand side) of that rule.
5192Running the rule's action is part of the process of reduction, because this
5193is what computes the semantic value of the resulting grouping.
5194
5195For example, if the infix calculator's parser stack contains this:
5196
5197@example
51981 + 5 * 3
5199@end example
5200
5201@noindent
5202and the next input token is a newline character, then the last three
5203elements can be reduced to 15 via the rule:
5204
5205@example
5206expr: expr '*' expr;
5207@end example
5208
5209@noindent
5210Then the stack contains just these three elements:
5211
5212@example
52131 + 15
5214@end example
5215
5216@noindent
5217At this point, another reduction can be made, resulting in the single value
521816. Then the newline token can be shifted.
5219
5220The parser tries, by shifts and reductions, to reduce the entire input down
5221to a single grouping whose symbol is the grammar's start-symbol
5222(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5223
5224This kind of parser is known in the literature as a bottom-up parser.
5225
5226@menu
742e4900 5227* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5228* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5229* Precedence:: Operator precedence works by resolving conflicts.
5230* Contextual Precedence:: When an operator's precedence depends on context.
5231* Parser States:: The parser is a finite-state-machine with stack.
5232* Reduce/Reduce:: When two rules are applicable in the same situation.
5233* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5234* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5235* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5236@end menu
5237
742e4900
JD
5238@node Lookahead
5239@section Lookahead Tokens
5240@cindex lookahead token
bfa74976
RS
5241
5242The Bison parser does @emph{not} always reduce immediately as soon as the
5243last @var{n} tokens and groupings match a rule. This is because such a
5244simple strategy is inadequate to handle most languages. Instead, when a
5245reduction is possible, the parser sometimes ``looks ahead'' at the next
5246token in order to decide what to do.
5247
5248When a token is read, it is not immediately shifted; first it becomes the
742e4900 5249@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5250perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5251the lookahead token remains off to the side. When no more reductions
5252should take place, the lookahead token is shifted onto the stack. This
bfa74976 5253does not mean that all possible reductions have been done; depending on the
742e4900 5254token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5255application.
5256
742e4900 5257Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5258expressions which contain binary addition operators and postfix unary
5259factorial operators (@samp{!}), and allow parentheses for grouping.
5260
5261@example
5262@group
5263expr: term '+' expr
5264 | term
5265 ;
5266@end group
5267
5268@group
5269term: '(' expr ')'
5270 | term '!'
5271 | NUMBER
5272 ;
5273@end group
5274@end example
5275
5276Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5277should be done? If the following token is @samp{)}, then the first three
5278tokens must be reduced to form an @code{expr}. This is the only valid
5279course, because shifting the @samp{)} would produce a sequence of symbols
5280@w{@code{term ')'}}, and no rule allows this.
5281
5282If the following token is @samp{!}, then it must be shifted immediately so
5283that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5284parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5285@code{expr}. It would then be impossible to shift the @samp{!} because
5286doing so would produce on the stack the sequence of symbols @code{expr
5287'!'}. No rule allows that sequence.
5288
5289@vindex yychar
32c29292
JD
5290@vindex yylval
5291@vindex yylloc
742e4900 5292The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5293Its semantic value and location, if any, are stored in the variables
5294@code{yylval} and @code{yylloc}.
bfa74976
RS
5295@xref{Action Features, ,Special Features for Use in Actions}.
5296
342b8b6e 5297@node Shift/Reduce
bfa74976
RS
5298@section Shift/Reduce Conflicts
5299@cindex conflicts
5300@cindex shift/reduce conflicts
5301@cindex dangling @code{else}
5302@cindex @code{else}, dangling
5303
5304Suppose we are parsing a language which has if-then and if-then-else
5305statements, with a pair of rules like this:
5306
5307@example
5308@group
5309if_stmt:
5310 IF expr THEN stmt
5311 | IF expr THEN stmt ELSE stmt
5312 ;
5313@end group
5314@end example
5315
5316@noindent
5317Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5318terminal symbols for specific keyword tokens.
5319
742e4900 5320When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5321contents of the stack (assuming the input is valid) are just right for
5322reduction by the first rule. But it is also legitimate to shift the
5323@code{ELSE}, because that would lead to eventual reduction by the second
5324rule.
5325
5326This situation, where either a shift or a reduction would be valid, is
5327called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5328these conflicts by choosing to shift, unless otherwise directed by
5329operator precedence declarations. To see the reason for this, let's
5330contrast it with the other alternative.
5331
5332Since the parser prefers to shift the @code{ELSE}, the result is to attach
5333the else-clause to the innermost if-statement, making these two inputs
5334equivalent:
5335
5336@example
5337if x then if y then win (); else lose;
5338
5339if x then do; if y then win (); else lose; end;
5340@end example
5341
5342But if the parser chose to reduce when possible rather than shift, the
5343result would be to attach the else-clause to the outermost if-statement,
5344making these two inputs equivalent:
5345
5346@example
5347if x then if y then win (); else lose;
5348
5349if x then do; if y then win (); end; else lose;
5350@end example
5351
5352The conflict exists because the grammar as written is ambiguous: either
5353parsing of the simple nested if-statement is legitimate. The established
5354convention is that these ambiguities are resolved by attaching the
5355else-clause to the innermost if-statement; this is what Bison accomplishes
5356by choosing to shift rather than reduce. (It would ideally be cleaner to
5357write an unambiguous grammar, but that is very hard to do in this case.)
5358This particular ambiguity was first encountered in the specifications of
5359Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5360
5361To avoid warnings from Bison about predictable, legitimate shift/reduce
5362conflicts, use the @code{%expect @var{n}} declaration. There will be no
5363warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5364@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5365
5366The definition of @code{if_stmt} above is solely to blame for the
5367conflict, but the conflict does not actually appear without additional
5368rules. Here is a complete Bison input file that actually manifests the
5369conflict:
5370
5371@example
5372@group
5373%token IF THEN ELSE variable
5374%%
5375@end group
5376@group
5377stmt: expr
5378 | if_stmt
5379 ;
5380@end group
5381
5382@group
5383if_stmt:
5384 IF expr THEN stmt
5385 | IF expr THEN stmt ELSE stmt
5386 ;
5387@end group
5388
5389expr: variable
5390 ;
5391@end example
5392
342b8b6e 5393@node Precedence
bfa74976
RS
5394@section Operator Precedence
5395@cindex operator precedence
5396@cindex precedence of operators
5397
5398Another situation where shift/reduce conflicts appear is in arithmetic
5399expressions. Here shifting is not always the preferred resolution; the
5400Bison declarations for operator precedence allow you to specify when to
5401shift and when to reduce.
5402
5403@menu
5404* Why Precedence:: An example showing why precedence is needed.
5405* Using Precedence:: How to specify precedence in Bison grammars.
5406* Precedence Examples:: How these features are used in the previous example.
5407* How Precedence:: How they work.
5408@end menu
5409
342b8b6e 5410@node Why Precedence
bfa74976
RS
5411@subsection When Precedence is Needed
5412
5413Consider the following ambiguous grammar fragment (ambiguous because the
5414input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5415
5416@example
5417@group
5418expr: expr '-' expr
5419 | expr '*' expr
5420 | expr '<' expr
5421 | '(' expr ')'
5422 @dots{}
5423 ;
5424@end group
5425@end example
5426
5427@noindent
5428Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5429should it reduce them via the rule for the subtraction operator? It
5430depends on the next token. Of course, if the next token is @samp{)}, we
5431must reduce; shifting is invalid because no single rule can reduce the
5432token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5433the next token is @samp{*} or @samp{<}, we have a choice: either
5434shifting or reduction would allow the parse to complete, but with
5435different results.
5436
5437To decide which one Bison should do, we must consider the results. If
5438the next operator token @var{op} is shifted, then it must be reduced
5439first in order to permit another opportunity to reduce the difference.
5440The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5441hand, if the subtraction is reduced before shifting @var{op}, the result
5442is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5443reduce should depend on the relative precedence of the operators
5444@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5445@samp{<}.
bfa74976
RS
5446
5447@cindex associativity
5448What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5449@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5450operators we prefer the former, which is called @dfn{left association}.
5451The latter alternative, @dfn{right association}, is desirable for
5452assignment operators. The choice of left or right association is a
5453matter of whether the parser chooses to shift or reduce when the stack
742e4900 5454contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5455makes right-associativity.
bfa74976 5456
342b8b6e 5457@node Using Precedence
bfa74976
RS
5458@subsection Specifying Operator Precedence
5459@findex %left
5460@findex %right
5461@findex %nonassoc
5462
5463Bison allows you to specify these choices with the operator precedence
5464declarations @code{%left} and @code{%right}. Each such declaration
5465contains a list of tokens, which are operators whose precedence and
5466associativity is being declared. The @code{%left} declaration makes all
5467those operators left-associative and the @code{%right} declaration makes
5468them right-associative. A third alternative is @code{%nonassoc}, which
5469declares that it is a syntax error to find the same operator twice ``in a
5470row''.
5471
5472The relative precedence of different operators is controlled by the
5473order in which they are declared. The first @code{%left} or
5474@code{%right} declaration in the file declares the operators whose
5475precedence is lowest, the next such declaration declares the operators
5476whose precedence is a little higher, and so on.
5477
342b8b6e 5478@node Precedence Examples
bfa74976
RS
5479@subsection Precedence Examples
5480
5481In our example, we would want the following declarations:
5482
5483@example
5484%left '<'
5485%left '-'
5486%left '*'
5487@end example
5488
5489In a more complete example, which supports other operators as well, we
5490would declare them in groups of equal precedence. For example, @code{'+'} is
5491declared with @code{'-'}:
5492
5493@example
5494%left '<' '>' '=' NE LE GE
5495%left '+' '-'
5496%left '*' '/'
5497@end example
5498
5499@noindent
5500(Here @code{NE} and so on stand for the operators for ``not equal''
5501and so on. We assume that these tokens are more than one character long
5502and therefore are represented by names, not character literals.)
5503
342b8b6e 5504@node How Precedence
bfa74976
RS
5505@subsection How Precedence Works
5506
5507The first effect of the precedence declarations is to assign precedence
5508levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5509precedence levels to certain rules: each rule gets its precedence from
5510the last terminal symbol mentioned in the components. (You can also
5511specify explicitly the precedence of a rule. @xref{Contextual
5512Precedence, ,Context-Dependent Precedence}.)
5513
5514Finally, the resolution of conflicts works by comparing the precedence
742e4900 5515of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5516token's precedence is higher, the choice is to shift. If the rule's
5517precedence is higher, the choice is to reduce. If they have equal
5518precedence, the choice is made based on the associativity of that
5519precedence level. The verbose output file made by @samp{-v}
5520(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5521resolved.
bfa74976
RS
5522
5523Not all rules and not all tokens have precedence. If either the rule or
742e4900 5524the lookahead token has no precedence, then the default is to shift.
bfa74976 5525
342b8b6e 5526@node Contextual Precedence
bfa74976
RS
5527@section Context-Dependent Precedence
5528@cindex context-dependent precedence
5529@cindex unary operator precedence
5530@cindex precedence, context-dependent
5531@cindex precedence, unary operator
5532@findex %prec
5533
5534Often the precedence of an operator depends on the context. This sounds
5535outlandish at first, but it is really very common. For example, a minus
5536sign typically has a very high precedence as a unary operator, and a
5537somewhat lower precedence (lower than multiplication) as a binary operator.
5538
5539The Bison precedence declarations, @code{%left}, @code{%right} and
5540@code{%nonassoc}, can only be used once for a given token; so a token has
5541only one precedence declared in this way. For context-dependent
5542precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5543modifier for rules.
bfa74976
RS
5544
5545The @code{%prec} modifier declares the precedence of a particular rule by
5546specifying a terminal symbol whose precedence should be used for that rule.
5547It's not necessary for that symbol to appear otherwise in the rule. The
5548modifier's syntax is:
5549
5550@example
5551%prec @var{terminal-symbol}
5552@end example
5553
5554@noindent
5555and it is written after the components of the rule. Its effect is to
5556assign the rule the precedence of @var{terminal-symbol}, overriding
5557the precedence that would be deduced for it in the ordinary way. The
5558altered rule precedence then affects how conflicts involving that rule
5559are resolved (@pxref{Precedence, ,Operator Precedence}).
5560
5561Here is how @code{%prec} solves the problem of unary minus. First, declare
5562a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5563are no tokens of this type, but the symbol serves to stand for its
5564precedence:
5565
5566@example
5567@dots{}
5568%left '+' '-'
5569%left '*'
5570%left UMINUS
5571@end example
5572
5573Now the precedence of @code{UMINUS} can be used in specific rules:
5574
5575@example
5576@group
5577exp: @dots{}
5578 | exp '-' exp
5579 @dots{}
5580 | '-' exp %prec UMINUS
5581@end group
5582@end example
5583
91d2c560 5584@ifset defaultprec
39a06c25
PE
5585If you forget to append @code{%prec UMINUS} to the rule for unary
5586minus, Bison silently assumes that minus has its usual precedence.
5587This kind of problem can be tricky to debug, since one typically
5588discovers the mistake only by testing the code.
5589
22fccf95 5590The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5591this kind of problem systematically. It causes rules that lack a
5592@code{%prec} modifier to have no precedence, even if the last terminal
5593symbol mentioned in their components has a declared precedence.
5594
22fccf95 5595If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5596for all rules that participate in precedence conflict resolution.
5597Then you will see any shift/reduce conflict until you tell Bison how
5598to resolve it, either by changing your grammar or by adding an
5599explicit precedence. This will probably add declarations to the
5600grammar, but it helps to protect against incorrect rule precedences.
5601
22fccf95
PE
5602The effect of @code{%no-default-prec;} can be reversed by giving
5603@code{%default-prec;}, which is the default.
91d2c560 5604@end ifset
39a06c25 5605
342b8b6e 5606@node Parser States
bfa74976
RS
5607@section Parser States
5608@cindex finite-state machine
5609@cindex parser state
5610@cindex state (of parser)
5611
5612The function @code{yyparse} is implemented using a finite-state machine.
5613The values pushed on the parser stack are not simply token type codes; they
5614represent the entire sequence of terminal and nonterminal symbols at or
5615near the top of the stack. The current state collects all the information
5616about previous input which is relevant to deciding what to do next.
5617
742e4900
JD
5618Each time a lookahead token is read, the current parser state together
5619with the type of lookahead token are looked up in a table. This table
5620entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5621specifies the new parser state, which is pushed onto the top of the
5622parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5623This means that a certain number of tokens or groupings are taken off
5624the top of the stack, and replaced by one grouping. In other words,
5625that number of states are popped from the stack, and one new state is
5626pushed.
5627
742e4900 5628There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5629is erroneous in the current state. This causes error processing to begin
5630(@pxref{Error Recovery}).
5631
342b8b6e 5632@node Reduce/Reduce
bfa74976
RS
5633@section Reduce/Reduce Conflicts
5634@cindex reduce/reduce conflict
5635@cindex conflicts, reduce/reduce
5636
5637A reduce/reduce conflict occurs if there are two or more rules that apply
5638to the same sequence of input. This usually indicates a serious error
5639in the grammar.
5640
5641For example, here is an erroneous attempt to define a sequence
5642of zero or more @code{word} groupings.
5643
5644@example
5645sequence: /* empty */
5646 @{ printf ("empty sequence\n"); @}
5647 | maybeword
5648 | sequence word
5649 @{ printf ("added word %s\n", $2); @}
5650 ;
5651
5652maybeword: /* empty */
5653 @{ printf ("empty maybeword\n"); @}
5654 | word
5655 @{ printf ("single word %s\n", $1); @}
5656 ;
5657@end example
5658
5659@noindent
5660The error is an ambiguity: there is more than one way to parse a single
5661@code{word} into a @code{sequence}. It could be reduced to a
5662@code{maybeword} and then into a @code{sequence} via the second rule.
5663Alternatively, nothing-at-all could be reduced into a @code{sequence}
5664via the first rule, and this could be combined with the @code{word}
5665using the third rule for @code{sequence}.
5666
5667There is also more than one way to reduce nothing-at-all into a
5668@code{sequence}. This can be done directly via the first rule,
5669or indirectly via @code{maybeword} and then the second rule.
5670
5671You might think that this is a distinction without a difference, because it
5672does not change whether any particular input is valid or not. But it does
5673affect which actions are run. One parsing order runs the second rule's
5674action; the other runs the first rule's action and the third rule's action.
5675In this example, the output of the program changes.
5676
5677Bison resolves a reduce/reduce conflict by choosing to use the rule that
5678appears first in the grammar, but it is very risky to rely on this. Every
5679reduce/reduce conflict must be studied and usually eliminated. Here is the
5680proper way to define @code{sequence}:
5681
5682@example
5683sequence: /* empty */
5684 @{ printf ("empty sequence\n"); @}
5685 | sequence word
5686 @{ printf ("added word %s\n", $2); @}
5687 ;
5688@end example
5689
5690Here is another common error that yields a reduce/reduce conflict:
5691
5692@example
5693sequence: /* empty */
5694 | sequence words
5695 | sequence redirects
5696 ;
5697
5698words: /* empty */
5699 | words word
5700 ;
5701
5702redirects:/* empty */
5703 | redirects redirect
5704 ;
5705@end example
5706
5707@noindent
5708The intention here is to define a sequence which can contain either
5709@code{word} or @code{redirect} groupings. The individual definitions of
5710@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5711three together make a subtle ambiguity: even an empty input can be parsed
5712in infinitely many ways!
5713
5714Consider: nothing-at-all could be a @code{words}. Or it could be two
5715@code{words} in a row, or three, or any number. It could equally well be a
5716@code{redirects}, or two, or any number. Or it could be a @code{words}
5717followed by three @code{redirects} and another @code{words}. And so on.
5718
5719Here are two ways to correct these rules. First, to make it a single level
5720of sequence:
5721
5722@example
5723sequence: /* empty */
5724 | sequence word
5725 | sequence redirect
5726 ;
5727@end example
5728
5729Second, to prevent either a @code{words} or a @code{redirects}
5730from being empty:
5731
5732@example
5733sequence: /* empty */
5734 | sequence words
5735 | sequence redirects
5736 ;
5737
5738words: word
5739 | words word
5740 ;
5741
5742redirects:redirect
5743 | redirects redirect
5744 ;
5745@end example
5746
342b8b6e 5747@node Mystery Conflicts
bfa74976
RS
5748@section Mysterious Reduce/Reduce Conflicts
5749
5750Sometimes reduce/reduce conflicts can occur that don't look warranted.
5751Here is an example:
5752
5753@example
5754@group
5755%token ID
5756
5757%%
5758def: param_spec return_spec ','
5759 ;
5760param_spec:
5761 type
5762 | name_list ':' type
5763 ;
5764@end group
5765@group
5766return_spec:
5767 type
5768 | name ':' type
5769 ;
5770@end group
5771@group
5772type: ID
5773 ;
5774@end group
5775@group
5776name: ID
5777 ;
5778name_list:
5779 name
5780 | name ',' name_list
5781 ;
5782@end group
5783@end example
5784
5785It would seem that this grammar can be parsed with only a single token
742e4900 5786of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5787a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5788@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5789
c827f760
PE
5790@cindex @acronym{LR}(1)
5791@cindex @acronym{LALR}(1)
bfa74976 5792However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5793@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5794an @code{ID}
bfa74976
RS
5795at the beginning of a @code{param_spec} and likewise at the beginning of
5796a @code{return_spec}, are similar enough that Bison assumes they are the
5797same. They appear similar because the same set of rules would be
5798active---the rule for reducing to a @code{name} and that for reducing to
5799a @code{type}. Bison is unable to determine at that stage of processing
742e4900 5800that the rules would require different lookahead tokens in the two
bfa74976
RS
5801contexts, so it makes a single parser state for them both. Combining
5802the two contexts causes a conflict later. In parser terminology, this
c827f760 5803occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5804
5805In general, it is better to fix deficiencies than to document them. But
5806this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5807generators that can handle @acronym{LR}(1) grammars are hard to write
5808and tend to
bfa74976
RS
5809produce parsers that are very large. In practice, Bison is more useful
5810as it is now.
5811
5812When the problem arises, you can often fix it by identifying the two
a220f555
MA
5813parser states that are being confused, and adding something to make them
5814look distinct. In the above example, adding one rule to
bfa74976
RS
5815@code{return_spec} as follows makes the problem go away:
5816
5817@example
5818@group
5819%token BOGUS
5820@dots{}
5821%%
5822@dots{}
5823return_spec:
5824 type
5825 | name ':' type
5826 /* This rule is never used. */
5827 | ID BOGUS
5828 ;
5829@end group
5830@end example
5831
5832This corrects the problem because it introduces the possibility of an
5833additional active rule in the context after the @code{ID} at the beginning of
5834@code{return_spec}. This rule is not active in the corresponding context
5835in a @code{param_spec}, so the two contexts receive distinct parser states.
5836As long as the token @code{BOGUS} is never generated by @code{yylex},
5837the added rule cannot alter the way actual input is parsed.
5838
5839In this particular example, there is another way to solve the problem:
5840rewrite the rule for @code{return_spec} to use @code{ID} directly
5841instead of via @code{name}. This also causes the two confusing
5842contexts to have different sets of active rules, because the one for
5843@code{return_spec} activates the altered rule for @code{return_spec}
5844rather than the one for @code{name}.
5845
5846@example
5847param_spec:
5848 type
5849 | name_list ':' type
5850 ;
5851return_spec:
5852 type
5853 | ID ':' type
5854 ;
5855@end example
5856
e054b190
PE
5857For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5858generators, please see:
5859Frank DeRemer and Thomas Pennello, Efficient Computation of
5860@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5861Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5862pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5863
fae437e8 5864@node Generalized LR Parsing
c827f760
PE
5865@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5866@cindex @acronym{GLR} parsing
5867@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5868@cindex ambiguous grammars
9d9b8b70 5869@cindex nondeterministic parsing
676385e2 5870
fae437e8
AD
5871Bison produces @emph{deterministic} parsers that choose uniquely
5872when to reduce and which reduction to apply
742e4900 5873based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
5874As a result, normal Bison handles a proper subset of the family of
5875context-free languages.
fae437e8 5876Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5877sequence of reductions cannot have deterministic parsers in this sense.
5878The same is true of languages that require more than one symbol of
742e4900 5879lookahead, since the parser lacks the information necessary to make a
676385e2 5880decision at the point it must be made in a shift-reduce parser.
fae437e8 5881Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5882there are languages where Bison's particular choice of how to
5883summarize the input seen so far loses necessary information.
5884
5885When you use the @samp{%glr-parser} declaration in your grammar file,
5886Bison generates a parser that uses a different algorithm, called
c827f760
PE
5887Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5888parser uses the same basic
676385e2
PH
5889algorithm for parsing as an ordinary Bison parser, but behaves
5890differently in cases where there is a shift-reduce conflict that has not
fae437e8 5891been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5892reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5893situation, it
fae437e8 5894effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5895shift or reduction. These parsers then proceed as usual, consuming
5896tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5897and split further, with the result that instead of a sequence of states,
c827f760 5898a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5899
5900In effect, each stack represents a guess as to what the proper parse
5901is. Additional input may indicate that a guess was wrong, in which case
5902the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5903actions generated in each stack are saved, rather than being executed
676385e2 5904immediately. When a stack disappears, its saved semantic actions never
fae437e8 5905get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5906their sets of semantic actions are both saved with the state that
5907results from the reduction. We say that two stacks are equivalent
fae437e8 5908when they both represent the same sequence of states,
676385e2
PH
5909and each pair of corresponding states represents a
5910grammar symbol that produces the same segment of the input token
5911stream.
5912
5913Whenever the parser makes a transition from having multiple
c827f760 5914states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5915algorithm, after resolving and executing the saved-up actions.
5916At this transition, some of the states on the stack will have semantic
5917values that are sets (actually multisets) of possible actions. The
5918parser tries to pick one of the actions by first finding one whose rule
5919has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5920declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5921precedence, but there the same merging function is declared for both
fae437e8 5922rules by the @samp{%merge} declaration,
676385e2
PH
5923Bison resolves and evaluates both and then calls the merge function on
5924the result. Otherwise, it reports an ambiguity.
5925
c827f760
PE
5926It is possible to use a data structure for the @acronym{GLR} parsing tree that
5927permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5928size of the input), any unambiguous (not necessarily
5929@acronym{LALR}(1)) grammar in
fae437e8 5930quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5931context-free grammar in cubic worst-case time. However, Bison currently
5932uses a simpler data structure that requires time proportional to the
5933length of the input times the maximum number of stacks required for any
9d9b8b70 5934prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5935grammars can require exponential time and space to process. Such badly
5936behaving examples, however, are not generally of practical interest.
9d9b8b70 5937Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5938doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5939structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5940grammar, in particular, it is only slightly slower than with the default
5941Bison parser.
5942
fa7e68c3 5943For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5944Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5945Generalised @acronym{LR} Parsers, Royal Holloway, University of
5946London, Department of Computer Science, TR-00-12,
5947@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5948(2000-12-24).
5949
1a059451
PE
5950@node Memory Management
5951@section Memory Management, and How to Avoid Memory Exhaustion
5952@cindex memory exhaustion
5953@cindex memory management
bfa74976
RS
5954@cindex stack overflow
5955@cindex parser stack overflow
5956@cindex overflow of parser stack
5957
1a059451 5958The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5959not reduced. When this happens, the parser function @code{yyparse}
1a059451 5960calls @code{yyerror} and then returns 2.
bfa74976 5961
c827f760 5962Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5963usually results from using a right recursion instead of a left
5964recursion, @xref{Recursion, ,Recursive Rules}.
5965
bfa74976
RS
5966@vindex YYMAXDEPTH
5967By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5968parser stack can become before memory is exhausted. Define the
bfa74976
RS
5969macro with a value that is an integer. This value is the maximum number
5970of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5971
5972The stack space allowed is not necessarily allocated. If you specify a
1a059451 5973large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5974stack at first, and then makes it bigger by stages as needed. This
5975increasing allocation happens automatically and silently. Therefore,
5976you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5977space for ordinary inputs that do not need much stack.
5978
d7e14fc0
PE
5979However, do not allow @code{YYMAXDEPTH} to be a value so large that
5980arithmetic overflow could occur when calculating the size of the stack
5981space. Also, do not allow @code{YYMAXDEPTH} to be less than
5982@code{YYINITDEPTH}.
5983
bfa74976
RS
5984@cindex default stack limit
5985The default value of @code{YYMAXDEPTH}, if you do not define it, is
598610000.
5987
5988@vindex YYINITDEPTH
5989You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5990macro @code{YYINITDEPTH} to a positive integer. For the C
5991@acronym{LALR}(1) parser, this value must be a compile-time constant
5992unless you are assuming C99 or some other target language or compiler
5993that allows variable-length arrays. The default is 200.
5994
1a059451 5995Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5996
d1a1114f 5997@c FIXME: C++ output.
c827f760 5998Because of semantical differences between C and C++, the
1a059451
PE
5999@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6000by C++ compilers. In this precise case (compiling a C parser as C++) you are
6001suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6002this deficiency in a future release.
d1a1114f 6003
342b8b6e 6004@node Error Recovery
bfa74976
RS
6005@chapter Error Recovery
6006@cindex error recovery
6007@cindex recovery from errors
6008
6e649e65 6009It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6010error. For example, a compiler should recover sufficiently to parse the
6011rest of the input file and check it for errors; a calculator should accept
6012another expression.
6013
6014In a simple interactive command parser where each input is one line, it may
6015be sufficient to allow @code{yyparse} to return 1 on error and have the
6016caller ignore the rest of the input line when that happens (and then call
6017@code{yyparse} again). But this is inadequate for a compiler, because it
6018forgets all the syntactic context leading up to the error. A syntax error
6019deep within a function in the compiler input should not cause the compiler
6020to treat the following line like the beginning of a source file.
6021
6022@findex error
6023You can define how to recover from a syntax error by writing rules to
6024recognize the special token @code{error}. This is a terminal symbol that
6025is always defined (you need not declare it) and reserved for error
6026handling. The Bison parser generates an @code{error} token whenever a
6027syntax error happens; if you have provided a rule to recognize this token
13863333 6028in the current context, the parse can continue.
bfa74976
RS
6029
6030For example:
6031
6032@example
6033stmnts: /* empty string */
6034 | stmnts '\n'
6035 | stmnts exp '\n'
6036 | stmnts error '\n'
6037@end example
6038
6039The fourth rule in this example says that an error followed by a newline
6040makes a valid addition to any @code{stmnts}.
6041
6042What happens if a syntax error occurs in the middle of an @code{exp}? The
6043error recovery rule, interpreted strictly, applies to the precise sequence
6044of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6045the middle of an @code{exp}, there will probably be some additional tokens
6046and subexpressions on the stack after the last @code{stmnts}, and there
6047will be tokens to read before the next newline. So the rule is not
6048applicable in the ordinary way.
6049
6050But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6051the semantic context and part of the input. First it discards states
6052and objects from the stack until it gets back to a state in which the
bfa74976 6053@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6054already parsed are discarded, back to the last complete @code{stmnts}.)
6055At this point the @code{error} token can be shifted. Then, if the old
742e4900 6056lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6057tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6058this example, Bison reads and discards input until the next newline so
6059that the fourth rule can apply. Note that discarded symbols are
6060possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6061Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6062
6063The choice of error rules in the grammar is a choice of strategies for
6064error recovery. A simple and useful strategy is simply to skip the rest of
6065the current input line or current statement if an error is detected:
6066
6067@example
72d2299c 6068stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6069@end example
6070
6071It is also useful to recover to the matching close-delimiter of an
6072opening-delimiter that has already been parsed. Otherwise the
6073close-delimiter will probably appear to be unmatched, and generate another,
6074spurious error message:
6075
6076@example
6077primary: '(' expr ')'
6078 | '(' error ')'
6079 @dots{}
6080 ;
6081@end example
6082
6083Error recovery strategies are necessarily guesses. When they guess wrong,
6084one syntax error often leads to another. In the above example, the error
6085recovery rule guesses that an error is due to bad input within one
6086@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6087middle of a valid @code{stmnt}. After the error recovery rule recovers
6088from the first error, another syntax error will be found straightaway,
6089since the text following the spurious semicolon is also an invalid
6090@code{stmnt}.
6091
6092To prevent an outpouring of error messages, the parser will output no error
6093message for another syntax error that happens shortly after the first; only
6094after three consecutive input tokens have been successfully shifted will
6095error messages resume.
6096
6097Note that rules which accept the @code{error} token may have actions, just
6098as any other rules can.
6099
6100@findex yyerrok
6101You can make error messages resume immediately by using the macro
6102@code{yyerrok} in an action. If you do this in the error rule's action, no
6103error messages will be suppressed. This macro requires no arguments;
6104@samp{yyerrok;} is a valid C statement.
6105
6106@findex yyclearin
742e4900 6107The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6108this is unacceptable, then the macro @code{yyclearin} may be used to clear
6109this token. Write the statement @samp{yyclearin;} in the error rule's
6110action.
32c29292 6111@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6112
6e649e65 6113For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6114called that advances the input stream to some point where parsing should
6115once again commence. The next symbol returned by the lexical scanner is
742e4900 6116probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6117with @samp{yyclearin;}.
6118
6119@vindex YYRECOVERING
02103984
PE
6120The expression @code{YYRECOVERING ()} yields 1 when the parser
6121is recovering from a syntax error, and 0 otherwise.
6122Syntax error diagnostics are suppressed while recovering from a syntax
6123error.
bfa74976 6124
342b8b6e 6125@node Context Dependency
bfa74976
RS
6126@chapter Handling Context Dependencies
6127
6128The Bison paradigm is to parse tokens first, then group them into larger
6129syntactic units. In many languages, the meaning of a token is affected by
6130its context. Although this violates the Bison paradigm, certain techniques
6131(known as @dfn{kludges}) may enable you to write Bison parsers for such
6132languages.
6133
6134@menu
6135* Semantic Tokens:: Token parsing can depend on the semantic context.
6136* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6137* Tie-in Recovery:: Lexical tie-ins have implications for how
6138 error recovery rules must be written.
6139@end menu
6140
6141(Actually, ``kludge'' means any technique that gets its job done but is
6142neither clean nor robust.)
6143
342b8b6e 6144@node Semantic Tokens
bfa74976
RS
6145@section Semantic Info in Token Types
6146
6147The C language has a context dependency: the way an identifier is used
6148depends on what its current meaning is. For example, consider this:
6149
6150@example
6151foo (x);
6152@end example
6153
6154This looks like a function call statement, but if @code{foo} is a typedef
6155name, then this is actually a declaration of @code{x}. How can a Bison
6156parser for C decide how to parse this input?
6157
c827f760 6158The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6159@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6160identifier, it looks up the current declaration of the identifier in order
6161to decide which token type to return: @code{TYPENAME} if the identifier is
6162declared as a typedef, @code{IDENTIFIER} otherwise.
6163
6164The grammar rules can then express the context dependency by the choice of
6165token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6166but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6167@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6168is @emph{not} significant, such as in declarations that can shadow a
6169typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6170accepted---there is one rule for each of the two token types.
6171
6172This technique is simple to use if the decision of which kinds of
6173identifiers to allow is made at a place close to where the identifier is
6174parsed. But in C this is not always so: C allows a declaration to
6175redeclare a typedef name provided an explicit type has been specified
6176earlier:
6177
6178@example
3a4f411f
PE
6179typedef int foo, bar;
6180int baz (void)
6181@{
6182 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6183 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6184 return foo (bar);
6185@}
bfa74976
RS
6186@end example
6187
6188Unfortunately, the name being declared is separated from the declaration
6189construct itself by a complicated syntactic structure---the ``declarator''.
6190
9ecbd125 6191As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6192all the nonterminal names changed: once for parsing a declaration in
6193which a typedef name can be redefined, and once for parsing a
6194declaration in which that can't be done. Here is a part of the
6195duplication, with actions omitted for brevity:
bfa74976
RS
6196
6197@example
6198initdcl:
6199 declarator maybeasm '='
6200 init
6201 | declarator maybeasm
6202 ;
6203
6204notype_initdcl:
6205 notype_declarator maybeasm '='
6206 init
6207 | notype_declarator maybeasm
6208 ;
6209@end example
6210
6211@noindent
6212Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6213cannot. The distinction between @code{declarator} and
6214@code{notype_declarator} is the same sort of thing.
6215
6216There is some similarity between this technique and a lexical tie-in
6217(described next), in that information which alters the lexical analysis is
6218changed during parsing by other parts of the program. The difference is
6219here the information is global, and is used for other purposes in the
6220program. A true lexical tie-in has a special-purpose flag controlled by
6221the syntactic context.
6222
342b8b6e 6223@node Lexical Tie-ins
bfa74976
RS
6224@section Lexical Tie-ins
6225@cindex lexical tie-in
6226
6227One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6228which is set by Bison actions, whose purpose is to alter the way tokens are
6229parsed.
6230
6231For example, suppose we have a language vaguely like C, but with a special
6232construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6233an expression in parentheses in which all integers are hexadecimal. In
6234particular, the token @samp{a1b} must be treated as an integer rather than
6235as an identifier if it appears in that context. Here is how you can do it:
6236
6237@example
6238@group
6239%@{
38a92d50
PE
6240 int hexflag;
6241 int yylex (void);
6242 void yyerror (char const *);
bfa74976
RS
6243%@}
6244%%
6245@dots{}
6246@end group
6247@group
6248expr: IDENTIFIER
6249 | constant
6250 | HEX '('
6251 @{ hexflag = 1; @}
6252 expr ')'
6253 @{ hexflag = 0;
6254 $$ = $4; @}
6255 | expr '+' expr
6256 @{ $$ = make_sum ($1, $3); @}
6257 @dots{}
6258 ;
6259@end group
6260
6261@group
6262constant:
6263 INTEGER
6264 | STRING
6265 ;
6266@end group
6267@end example
6268
6269@noindent
6270Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6271it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6272with letters are parsed as integers if possible.
6273
342b8b6e
AD
6274The declaration of @code{hexflag} shown in the prologue of the parser file
6275is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6276You must also write the code in @code{yylex} to obey the flag.
bfa74976 6277
342b8b6e 6278@node Tie-in Recovery
bfa74976
RS
6279@section Lexical Tie-ins and Error Recovery
6280
6281Lexical tie-ins make strict demands on any error recovery rules you have.
6282@xref{Error Recovery}.
6283
6284The reason for this is that the purpose of an error recovery rule is to
6285abort the parsing of one construct and resume in some larger construct.
6286For example, in C-like languages, a typical error recovery rule is to skip
6287tokens until the next semicolon, and then start a new statement, like this:
6288
6289@example
6290stmt: expr ';'
6291 | IF '(' expr ')' stmt @{ @dots{} @}
6292 @dots{}
6293 error ';'
6294 @{ hexflag = 0; @}
6295 ;
6296@end example
6297
6298If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6299construct, this error rule will apply, and then the action for the
6300completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6301remain set for the entire rest of the input, or until the next @code{hex}
6302keyword, causing identifiers to be misinterpreted as integers.
6303
6304To avoid this problem the error recovery rule itself clears @code{hexflag}.
6305
6306There may also be an error recovery rule that works within expressions.
6307For example, there could be a rule which applies within parentheses
6308and skips to the close-parenthesis:
6309
6310@example
6311@group
6312expr: @dots{}
6313 | '(' expr ')'
6314 @{ $$ = $2; @}
6315 | '(' error ')'
6316 @dots{}
6317@end group
6318@end example
6319
6320If this rule acts within the @code{hex} construct, it is not going to abort
6321that construct (since it applies to an inner level of parentheses within
6322the construct). Therefore, it should not clear the flag: the rest of
6323the @code{hex} construct should be parsed with the flag still in effect.
6324
6325What if there is an error recovery rule which might abort out of the
6326@code{hex} construct or might not, depending on circumstances? There is no
6327way you can write the action to determine whether a @code{hex} construct is
6328being aborted or not. So if you are using a lexical tie-in, you had better
6329make sure your error recovery rules are not of this kind. Each rule must
6330be such that you can be sure that it always will, or always won't, have to
6331clear the flag.
6332
ec3bc396
AD
6333@c ================================================== Debugging Your Parser
6334
342b8b6e 6335@node Debugging
bfa74976 6336@chapter Debugging Your Parser
ec3bc396
AD
6337
6338Developing a parser can be a challenge, especially if you don't
6339understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6340Algorithm}). Even so, sometimes a detailed description of the automaton
6341can help (@pxref{Understanding, , Understanding Your Parser}), or
6342tracing the execution of the parser can give some insight on why it
6343behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6344
6345@menu
6346* Understanding:: Understanding the structure of your parser.
6347* Tracing:: Tracing the execution of your parser.
6348@end menu
6349
6350@node Understanding
6351@section Understanding Your Parser
6352
6353As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6354Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6355frequent than one would hope), looking at this automaton is required to
6356tune or simply fix a parser. Bison provides two different
c827f760 6357representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6358file).
6359
6360The textual file is generated when the options @option{--report} or
6361@option{--verbose} are specified, see @xref{Invocation, , Invoking
6362Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6363the parser output file name, and adding @samp{.output} instead.
6364Therefore, if the input file is @file{foo.y}, then the parser file is
6365called @file{foo.tab.c} by default. As a consequence, the verbose
6366output file is called @file{foo.output}.
6367
6368The following grammar file, @file{calc.y}, will be used in the sequel:
6369
6370@example
6371%token NUM STR
6372%left '+' '-'
6373%left '*'
6374%%
6375exp: exp '+' exp
6376 | exp '-' exp
6377 | exp '*' exp
6378 | exp '/' exp
6379 | NUM
6380 ;
6381useless: STR;
6382%%
6383@end example
6384
88bce5a2
AD
6385@command{bison} reports:
6386
6387@example
6388calc.y: warning: 1 useless nonterminal and 1 useless rule
6389calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6390calc.y:11.10-12: warning: useless rule: useless: STR
6391calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6392@end example
6393
6394When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6395creates a file @file{calc.output} with contents detailed below. The
6396order of the output and the exact presentation might vary, but the
6397interpretation is the same.
ec3bc396
AD
6398
6399The first section includes details on conflicts that were solved thanks
6400to precedence and/or associativity:
6401
6402@example
6403Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6404Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6405Conflict in state 8 between rule 2 and token '*' resolved as shift.
6406@exdent @dots{}
6407@end example
6408
6409@noindent
6410The next section lists states that still have conflicts.
6411
6412@example
5a99098d
PE
6413State 8 conflicts: 1 shift/reduce
6414State 9 conflicts: 1 shift/reduce
6415State 10 conflicts: 1 shift/reduce
6416State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6417@end example
6418
6419@noindent
6420@cindex token, useless
6421@cindex useless token
6422@cindex nonterminal, useless
6423@cindex useless nonterminal
6424@cindex rule, useless
6425@cindex useless rule
6426The next section reports useless tokens, nonterminal and rules. Useless
6427nonterminals and rules are removed in order to produce a smaller parser,
6428but useless tokens are preserved, since they might be used by the
6429scanner (note the difference between ``useless'' and ``not used''
6430below):
6431
6432@example
6433Useless nonterminals:
6434 useless
6435
6436Terminals which are not used:
6437 STR
6438
6439Useless rules:
6440#6 useless: STR;
6441@end example
6442
6443@noindent
6444The next section reproduces the exact grammar that Bison used:
6445
6446@example
6447Grammar
6448
6449 Number, Line, Rule
88bce5a2 6450 0 5 $accept -> exp $end
ec3bc396
AD
6451 1 5 exp -> exp '+' exp
6452 2 6 exp -> exp '-' exp
6453 3 7 exp -> exp '*' exp
6454 4 8 exp -> exp '/' exp
6455 5 9 exp -> NUM
6456@end example
6457
6458@noindent
6459and reports the uses of the symbols:
6460
6461@example
6462Terminals, with rules where they appear
6463
88bce5a2 6464$end (0) 0
ec3bc396
AD
6465'*' (42) 3
6466'+' (43) 1
6467'-' (45) 2
6468'/' (47) 4
6469error (256)
6470NUM (258) 5
6471
6472Nonterminals, with rules where they appear
6473
88bce5a2 6474$accept (8)
ec3bc396
AD
6475 on left: 0
6476exp (9)
6477 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6478@end example
6479
6480@noindent
6481@cindex item
6482@cindex pointed rule
6483@cindex rule, pointed
6484Bison then proceeds onto the automaton itself, describing each state
6485with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6486item is a production rule together with a point (marked by @samp{.})
6487that the input cursor.
6488
6489@example
6490state 0
6491
88bce5a2 6492 $accept -> . exp $ (rule 0)
ec3bc396 6493
2a8d363a 6494 NUM shift, and go to state 1
ec3bc396 6495
2a8d363a 6496 exp go to state 2
ec3bc396
AD
6497@end example
6498
6499This reads as follows: ``state 0 corresponds to being at the very
6500beginning of the parsing, in the initial rule, right before the start
6501symbol (here, @code{exp}). When the parser returns to this state right
6502after having reduced a rule that produced an @code{exp}, the control
6503flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6504symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6505the parse stack, and the control flow jumps to state 1. Any other
742e4900 6506lookahead triggers a syntax error.''
ec3bc396
AD
6507
6508@cindex core, item set
6509@cindex item set core
6510@cindex kernel, item set
6511@cindex item set core
6512Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6513report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6514at the beginning of any rule deriving an @code{exp}. By default Bison
6515reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6516you want to see more detail you can invoke @command{bison} with
6517@option{--report=itemset} to list all the items, include those that can
6518be derived:
6519
6520@example
6521state 0
6522
88bce5a2 6523 $accept -> . exp $ (rule 0)
ec3bc396
AD
6524 exp -> . exp '+' exp (rule 1)
6525 exp -> . exp '-' exp (rule 2)
6526 exp -> . exp '*' exp (rule 3)
6527 exp -> . exp '/' exp (rule 4)
6528 exp -> . NUM (rule 5)
6529
6530 NUM shift, and go to state 1
6531
6532 exp go to state 2
6533@end example
6534
6535@noindent
6536In the state 1...
6537
6538@example
6539state 1
6540
6541 exp -> NUM . (rule 5)
6542
2a8d363a 6543 $default reduce using rule 5 (exp)
ec3bc396
AD
6544@end example
6545
6546@noindent
742e4900 6547the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6548(@samp{$default}), the parser will reduce it. If it was coming from
6549state 0, then, after this reduction it will return to state 0, and will
6550jump to state 2 (@samp{exp: go to state 2}).
6551
6552@example
6553state 2
6554
88bce5a2 6555 $accept -> exp . $ (rule 0)
ec3bc396
AD
6556 exp -> exp . '+' exp (rule 1)
6557 exp -> exp . '-' exp (rule 2)
6558 exp -> exp . '*' exp (rule 3)
6559 exp -> exp . '/' exp (rule 4)
6560
2a8d363a
AD
6561 $ shift, and go to state 3
6562 '+' shift, and go to state 4
6563 '-' shift, and go to state 5
6564 '*' shift, and go to state 6
6565 '/' shift, and go to state 7
ec3bc396
AD
6566@end example
6567
6568@noindent
6569In state 2, the automaton can only shift a symbol. For instance,
742e4900 6570because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6571@samp{+}, it will be shifted on the parse stack, and the automaton
6572control will jump to state 4, corresponding to the item @samp{exp -> exp
6573'+' . exp}. Since there is no default action, any other token than
6e649e65 6574those listed above will trigger a syntax error.
ec3bc396
AD
6575
6576The state 3 is named the @dfn{final state}, or the @dfn{accepting
6577state}:
6578
6579@example
6580state 3
6581
88bce5a2 6582 $accept -> exp $ . (rule 0)
ec3bc396 6583
2a8d363a 6584 $default accept
ec3bc396
AD
6585@end example
6586
6587@noindent
6588the initial rule is completed (the start symbol and the end
6589of input were read), the parsing exits successfully.
6590
6591The interpretation of states 4 to 7 is straightforward, and is left to
6592the reader.
6593
6594@example
6595state 4
6596
6597 exp -> exp '+' . exp (rule 1)
6598
2a8d363a 6599 NUM shift, and go to state 1
ec3bc396 6600
2a8d363a 6601 exp go to state 8
ec3bc396
AD
6602
6603state 5
6604
6605 exp -> exp '-' . exp (rule 2)
6606
2a8d363a 6607 NUM shift, and go to state 1
ec3bc396 6608
2a8d363a 6609 exp go to state 9
ec3bc396
AD
6610
6611state 6
6612
6613 exp -> exp '*' . exp (rule 3)
6614
2a8d363a 6615 NUM shift, and go to state 1
ec3bc396 6616
2a8d363a 6617 exp go to state 10
ec3bc396
AD
6618
6619state 7
6620
6621 exp -> exp '/' . exp (rule 4)
6622
2a8d363a 6623 NUM shift, and go to state 1
ec3bc396 6624
2a8d363a 6625 exp go to state 11
ec3bc396
AD
6626@end example
6627
5a99098d
PE
6628As was announced in beginning of the report, @samp{State 8 conflicts:
66291 shift/reduce}:
ec3bc396
AD
6630
6631@example
6632state 8
6633
6634 exp -> exp . '+' exp (rule 1)
6635 exp -> exp '+' exp . (rule 1)
6636 exp -> exp . '-' exp (rule 2)
6637 exp -> exp . '*' exp (rule 3)
6638 exp -> exp . '/' exp (rule 4)
6639
2a8d363a
AD
6640 '*' shift, and go to state 6
6641 '/' shift, and go to state 7
ec3bc396 6642
2a8d363a
AD
6643 '/' [reduce using rule 1 (exp)]
6644 $default reduce using rule 1 (exp)
ec3bc396
AD
6645@end example
6646
742e4900 6647Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6648either shifting (and going to state 7), or reducing rule 1. The
6649conflict means that either the grammar is ambiguous, or the parser lacks
6650information to make the right decision. Indeed the grammar is
6651ambiguous, as, since we did not specify the precedence of @samp{/}, the
6652sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6653NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6654NUM}, which corresponds to reducing rule 1.
6655
c827f760 6656Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6657arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6658Shift/Reduce Conflicts}. Discarded actions are reported in between
6659square brackets.
6660
6661Note that all the previous states had a single possible action: either
6662shifting the next token and going to the corresponding state, or
6663reducing a single rule. In the other cases, i.e., when shifting
6664@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6665possible, the lookahead is required to select the action. State 8 is
6666one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6667is shifting, otherwise the action is reducing rule 1. In other words,
6668the first two items, corresponding to rule 1, are not eligible when the
742e4900 6669lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6670precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6671with some set of possible lookahead tokens. When run with
6672@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6673
6674@example
6675state 8
6676
6677 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6678 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6679 exp -> exp . '-' exp (rule 2)
6680 exp -> exp . '*' exp (rule 3)
6681 exp -> exp . '/' exp (rule 4)
6682
6683 '*' shift, and go to state 6
6684 '/' shift, and go to state 7
6685
6686 '/' [reduce using rule 1 (exp)]
6687 $default reduce using rule 1 (exp)
6688@end example
6689
6690The remaining states are similar:
6691
6692@example
6693state 9
6694
6695 exp -> exp . '+' exp (rule 1)
6696 exp -> exp . '-' exp (rule 2)
6697 exp -> exp '-' exp . (rule 2)
6698 exp -> exp . '*' exp (rule 3)
6699 exp -> exp . '/' exp (rule 4)
6700
2a8d363a
AD
6701 '*' shift, and go to state 6
6702 '/' shift, and go to state 7
ec3bc396 6703
2a8d363a
AD
6704 '/' [reduce using rule 2 (exp)]
6705 $default reduce using rule 2 (exp)
ec3bc396
AD
6706
6707state 10
6708
6709 exp -> exp . '+' exp (rule 1)
6710 exp -> exp . '-' exp (rule 2)
6711 exp -> exp . '*' exp (rule 3)
6712 exp -> exp '*' exp . (rule 3)
6713 exp -> exp . '/' exp (rule 4)
6714
2a8d363a 6715 '/' shift, and go to state 7
ec3bc396 6716
2a8d363a
AD
6717 '/' [reduce using rule 3 (exp)]
6718 $default reduce using rule 3 (exp)
ec3bc396
AD
6719
6720state 11
6721
6722 exp -> exp . '+' exp (rule 1)
6723 exp -> exp . '-' exp (rule 2)
6724 exp -> exp . '*' exp (rule 3)
6725 exp -> exp . '/' exp (rule 4)
6726 exp -> exp '/' exp . (rule 4)
6727
2a8d363a
AD
6728 '+' shift, and go to state 4
6729 '-' shift, and go to state 5
6730 '*' shift, and go to state 6
6731 '/' shift, and go to state 7
ec3bc396 6732
2a8d363a
AD
6733 '+' [reduce using rule 4 (exp)]
6734 '-' [reduce using rule 4 (exp)]
6735 '*' [reduce using rule 4 (exp)]
6736 '/' [reduce using rule 4 (exp)]
6737 $default reduce using rule 4 (exp)
ec3bc396
AD
6738@end example
6739
6740@noindent
fa7e68c3
PE
6741Observe that state 11 contains conflicts not only due to the lack of
6742precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6743@samp{*}, but also because the
ec3bc396
AD
6744associativity of @samp{/} is not specified.
6745
6746
6747@node Tracing
6748@section Tracing Your Parser
bfa74976
RS
6749@findex yydebug
6750@cindex debugging
6751@cindex tracing the parser
6752
6753If a Bison grammar compiles properly but doesn't do what you want when it
6754runs, the @code{yydebug} parser-trace feature can help you figure out why.
6755
3ded9a63
AD
6756There are several means to enable compilation of trace facilities:
6757
6758@table @asis
6759@item the macro @code{YYDEBUG}
6760@findex YYDEBUG
6761Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6762parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6763@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6764YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6765Prologue}).
6766
6767@item the option @option{-t}, @option{--debug}
6768Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6769,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6770
6771@item the directive @samp{%debug}
6772@findex %debug
6773Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6774Declaration Summary}). This is a Bison extension, which will prove
6775useful when Bison will output parsers for languages that don't use a
c827f760
PE
6776preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6777you, this is
3ded9a63
AD
6778the preferred solution.
6779@end table
6780
6781We suggest that you always enable the debug option so that debugging is
6782always possible.
bfa74976 6783
02a81e05 6784The trace facility outputs messages with macro calls of the form
e2742e46 6785@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6786@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6787arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6788define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 6789and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6790
6791Once you have compiled the program with trace facilities, the way to
6792request a trace is to store a nonzero value in the variable @code{yydebug}.
6793You can do this by making the C code do it (in @code{main}, perhaps), or
6794you can alter the value with a C debugger.
6795
6796Each step taken by the parser when @code{yydebug} is nonzero produces a
6797line or two of trace information, written on @code{stderr}. The trace
6798messages tell you these things:
6799
6800@itemize @bullet
6801@item
6802Each time the parser calls @code{yylex}, what kind of token was read.
6803
6804@item
6805Each time a token is shifted, the depth and complete contents of the
6806state stack (@pxref{Parser States}).
6807
6808@item
6809Each time a rule is reduced, which rule it is, and the complete contents
6810of the state stack afterward.
6811@end itemize
6812
6813To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6814produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6815Bison}). This file shows the meaning of each state in terms of
6816positions in various rules, and also what each state will do with each
6817possible input token. As you read the successive trace messages, you
6818can see that the parser is functioning according to its specification in
6819the listing file. Eventually you will arrive at the place where
6820something undesirable happens, and you will see which parts of the
6821grammar are to blame.
bfa74976
RS
6822
6823The parser file is a C program and you can use C debuggers on it, but it's
6824not easy to interpret what it is doing. The parser function is a
6825finite-state machine interpreter, and aside from the actions it executes
6826the same code over and over. Only the values of variables show where in
6827the grammar it is working.
6828
6829@findex YYPRINT
6830The debugging information normally gives the token type of each token
6831read, but not its semantic value. You can optionally define a macro
6832named @code{YYPRINT} to provide a way to print the value. If you define
6833@code{YYPRINT}, it should take three arguments. The parser will pass a
6834standard I/O stream, the numeric code for the token type, and the token
6835value (from @code{yylval}).
6836
6837Here is an example of @code{YYPRINT} suitable for the multi-function
6838calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6839
6840@smallexample
38a92d50
PE
6841%@{
6842 static void print_token_value (FILE *, int, YYSTYPE);
6843 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6844%@}
6845
6846@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6847
6848static void
831d3c99 6849print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6850@{
6851 if (type == VAR)
d3c4e709 6852 fprintf (file, "%s", value.tptr->name);
bfa74976 6853 else if (type == NUM)
d3c4e709 6854 fprintf (file, "%d", value.val);
bfa74976
RS
6855@}
6856@end smallexample
6857
ec3bc396
AD
6858@c ================================================= Invoking Bison
6859
342b8b6e 6860@node Invocation
bfa74976
RS
6861@chapter Invoking Bison
6862@cindex invoking Bison
6863@cindex Bison invocation
6864@cindex options for invoking Bison
6865
6866The usual way to invoke Bison is as follows:
6867
6868@example
6869bison @var{infile}
6870@end example
6871
6872Here @var{infile} is the grammar file name, which usually ends in
6873@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6874with @samp{.tab.c} and removing any leading directory. Thus, the
6875@samp{bison foo.y} file name yields
6876@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6877@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6878C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6879or @file{foo.y++}. Then, the output files will take an extension like
6880the given one as input (respectively @file{foo.tab.cpp} and
6881@file{foo.tab.c++}).
fa4d969f 6882This feature takes effect with all options that manipulate file names like
234a3be3
AD
6883@samp{-o} or @samp{-d}.
6884
6885For example :
6886
6887@example
6888bison -d @var{infile.yxx}
6889@end example
84163231 6890@noindent
72d2299c 6891will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6892
6893@example
b56471a6 6894bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6895@end example
84163231 6896@noindent
234a3be3
AD
6897will produce @file{output.c++} and @file{outfile.h++}.
6898
397ec073
PE
6899For compatibility with @acronym{POSIX}, the standard Bison
6900distribution also contains a shell script called @command{yacc} that
6901invokes Bison with the @option{-y} option.
6902
bfa74976 6903@menu
13863333 6904* Bison Options:: All the options described in detail,
c827f760 6905 in alphabetical order by short options.
bfa74976 6906* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6907* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6908@end menu
6909
342b8b6e 6910@node Bison Options
bfa74976
RS
6911@section Bison Options
6912
6913Bison supports both traditional single-letter options and mnemonic long
6914option names. Long option names are indicated with @samp{--} instead of
6915@samp{-}. Abbreviations for option names are allowed as long as they
6916are unique. When a long option takes an argument, like
6917@samp{--file-prefix}, connect the option name and the argument with
6918@samp{=}.
6919
6920Here is a list of options that can be used with Bison, alphabetized by
6921short option. It is followed by a cross key alphabetized by long
6922option.
6923
89cab50d
AD
6924@c Please, keep this ordered as in `bison --help'.
6925@noindent
6926Operations modes:
6927@table @option
6928@item -h
6929@itemx --help
6930Print a summary of the command-line options to Bison and exit.
bfa74976 6931
89cab50d
AD
6932@item -V
6933@itemx --version
6934Print the version number of Bison and exit.
bfa74976 6935
f7ab6a50
PE
6936@item --print-localedir
6937Print the name of the directory containing locale-dependent data.
6938
89cab50d
AD
6939@item -y
6940@itemx --yacc
54662697
PE
6941Act more like the traditional Yacc command. This can cause
6942different diagnostics to be generated, and may change behavior in
6943other minor ways. Most importantly, imitate Yacc's output
6944file name conventions, so that the parser output file is called
89cab50d 6945@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
6946@file{y.tab.h}.
6947Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
6948statements in addition to an @code{enum} to associate token numbers with token
6949names.
6950Thus, the following shell script can substitute for Yacc, and the Bison
6951distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 6952
89cab50d 6953@example
397ec073 6954#! /bin/sh
26e06a21 6955bison -y "$@@"
89cab50d 6956@end example
54662697
PE
6957
6958The @option{-y}/@option{--yacc} option is intended for use with
6959traditional Yacc grammars. If your grammar uses a Bison extension
6960like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6961this option is specified.
6962
89cab50d
AD
6963@end table
6964
6965@noindent
6966Tuning the parser:
6967
6968@table @option
cd5bd6ac
AD
6969@item -S @var{file}
6970@itemx --skeleton=@var{file}
6971Specify the skeleton to use. You probably don't need this option unless
6972you are developing Bison.
6973
89cab50d
AD
6974@item -t
6975@itemx --debug
4947ebdb
PE
6976In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6977already defined, so that the debugging facilities are compiled.
ec3bc396 6978@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6979
6980@item --locations
d8988b2f 6981Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6982
6983@item -p @var{prefix}
6984@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6985Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6986@xref{Decl Summary}.
bfa74976
RS
6987
6988@item -l
6989@itemx --no-lines
6990Don't put any @code{#line} preprocessor commands in the parser file.
6991Ordinarily Bison puts them in the parser file so that the C compiler
6992and debuggers will associate errors with your source file, the
6993grammar file. This option causes them to associate errors with the
95e742f7 6994parser file, treating it as an independent source file in its own right.
bfa74976 6995
931c7513
RS
6996@item -n
6997@itemx --no-parser
d8988b2f 6998Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6999
89cab50d
AD
7000@item -k
7001@itemx --token-table
d8988b2f 7002Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7003@end table
bfa74976 7004
89cab50d
AD
7005@noindent
7006Adjust the output:
bfa74976 7007
89cab50d
AD
7008@table @option
7009@item -d
d8988b2f
AD
7010@itemx --defines
7011Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7012file containing macro definitions for the token type names defined in
4bfd5e4e 7013the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7014
342b8b6e 7015@item --defines=@var{defines-file}
d8988b2f 7016Same as above, but save in the file @var{defines-file}.
342b8b6e 7017
89cab50d
AD
7018@item -b @var{file-prefix}
7019@itemx --file-prefix=@var{prefix}
9c437126 7020Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7021for all Bison output file names. @xref{Decl Summary}.
bfa74976 7022
ec3bc396
AD
7023@item -r @var{things}
7024@itemx --report=@var{things}
7025Write an extra output file containing verbose description of the comma
7026separated list of @var{things} among:
7027
7028@table @code
7029@item state
7030Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7031@acronym{LALR} automaton.
ec3bc396 7032
742e4900 7033@item lookahead
ec3bc396 7034Implies @code{state} and augments the description of the automaton with
742e4900 7035each rule's lookahead set.
ec3bc396
AD
7036
7037@item itemset
7038Implies @code{state} and augments the description of the automaton with
7039the full set of items for each state, instead of its core only.
7040@end table
7041
bfa74976
RS
7042@item -v
7043@itemx --verbose
9c437126 7044Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7045file containing verbose descriptions of the grammar and
72d2299c 7046parser. @xref{Decl Summary}.
bfa74976 7047
fa4d969f
PE
7048@item -o @var{file}
7049@itemx --output=@var{file}
7050Specify the @var{file} for the parser file.
bfa74976 7051
fa4d969f 7052The other output files' names are constructed from @var{file} as
d8988b2f 7053described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7054
7055@item -g
c827f760
PE
7056Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
7057automaton computed by Bison. If the grammar file is @file{foo.y}, the
7058@acronym{VCG} output file will
342b8b6e
AD
7059be @file{foo.vcg}.
7060
7061@item --graph=@var{graph-file}
72d2299c
PE
7062The behavior of @var{--graph} is the same than @samp{-g}. The only
7063difference is that it has an optional argument which is the name of
fa4d969f 7064the output graph file.
bfa74976
RS
7065@end table
7066
342b8b6e 7067@node Option Cross Key
bfa74976
RS
7068@section Option Cross Key
7069
aa08666d 7070@c FIXME: How about putting the directives too?
bfa74976
RS
7071Here is a list of options, alphabetized by long option, to help you find
7072the corresponding short option.
7073
aa08666d
AD
7074@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7075@headitem Long Option @tab Short Option
7076@item @option{--debug} @tab @option{-t}
7077@item @option{--defines=@var{defines-file}} @tab @option{-d}
7078@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7079@item @option{--graph=@var{graph-file}} @tab @option{-d}
7080@item @option{--help} @tab @option{-h}
7081@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7082@item @option{--no-lines} @tab @option{-l}
7083@item @option{--no-parser} @tab @option{-n}
7084@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7085@item @option{--print-localedir} @tab
7086@item @option{--token-table} @tab @option{-k}
7087@item @option{--verbose} @tab @option{-v}
7088@item @option{--version} @tab @option{-V}
7089@item @option{--yacc} @tab @option{-y}
7090@end multitable
bfa74976 7091
93dd49ab
PE
7092@node Yacc Library
7093@section Yacc Library
7094
7095The Yacc library contains default implementations of the
7096@code{yyerror} and @code{main} functions. These default
7097implementations are normally not useful, but @acronym{POSIX} requires
7098them. To use the Yacc library, link your program with the
7099@option{-ly} option. Note that Bison's implementation of the Yacc
7100library is distributed under the terms of the @acronym{GNU} General
7101Public License (@pxref{Copying}).
7102
7103If you use the Yacc library's @code{yyerror} function, you should
7104declare @code{yyerror} as follows:
7105
7106@example
7107int yyerror (char const *);
7108@end example
7109
7110Bison ignores the @code{int} value returned by this @code{yyerror}.
7111If you use the Yacc library's @code{main} function, your
7112@code{yyparse} function should have the following type signature:
7113
7114@example
7115int yyparse (void);
7116@end example
7117
12545799
AD
7118@c ================================================= C++ Bison
7119
7120@node C++ Language Interface
7121@chapter C++ Language Interface
7122
7123@menu
7124* C++ Parsers:: The interface to generate C++ parser classes
7125* A Complete C++ Example:: Demonstrating their use
7126@end menu
7127
7128@node C++ Parsers
7129@section C++ Parsers
7130
7131@menu
7132* C++ Bison Interface:: Asking for C++ parser generation
7133* C++ Semantic Values:: %union vs. C++
7134* C++ Location Values:: The position and location classes
7135* C++ Parser Interface:: Instantiating and running the parser
7136* C++ Scanner Interface:: Exchanges between yylex and parse
7137@end menu
7138
7139@node C++ Bison Interface
7140@subsection C++ Bison Interface
7141@c - %skeleton "lalr1.cc"
7142@c - Always pure
7143@c - initial action
7144
aa08666d
AD
7145The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7146select it, you may either pass the option @option{--skeleton=lalr1.cc}
7147to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7148grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7149entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7150directive to change the namespace name, see @ref{Decl Summary}. The
7151various classes are generated in the following files:
7152
12545799
AD
7153@table @file
7154@item position.hh
7155@itemx location.hh
7156The definition of the classes @code{position} and @code{location},
7157used for location tracking. @xref{C++ Location Values}.
7158
7159@item stack.hh
7160An auxiliary class @code{stack} used by the parser.
7161
fa4d969f
PE
7162@item @var{file}.hh
7163@itemx @var{file}.cc
cd8b5791
AD
7164(Assuming the extension of the input file was @samp{.yy}.) The
7165declaration and implementation of the C++ parser class. The basename
7166and extension of these two files follow the same rules as with regular C
7167parsers (@pxref{Invocation}).
12545799 7168
cd8b5791
AD
7169The header is @emph{mandatory}; you must either pass
7170@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7171@samp{%defines} directive.
7172@end table
7173
7174All these files are documented using Doxygen; run @command{doxygen}
7175for a complete and accurate documentation.
7176
7177@node C++ Semantic Values
7178@subsection C++ Semantic Values
7179@c - No objects in unions
7180@c - YSTYPE
7181@c - Printer and destructor
7182
7183The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7184Collection of Value Types}. In particular it produces a genuine
7185@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7186within pseudo-unions (similar to Boost variants) might be implemented to
7187alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7188@itemize @minus
7189@item
fb9712a9
AD
7190The type @code{YYSTYPE} is defined but its use is discouraged: rather
7191you should refer to the parser's encapsulated type
7192@code{yy::parser::semantic_type}.
12545799
AD
7193@item
7194Non POD (Plain Old Data) types cannot be used. C++ forbids any
7195instance of classes with constructors in unions: only @emph{pointers}
7196to such objects are allowed.
7197@end itemize
7198
7199Because objects have to be stored via pointers, memory is not
7200reclaimed automatically: using the @code{%destructor} directive is the
7201only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7202Symbols}.
7203
7204
7205@node C++ Location Values
7206@subsection C++ Location Values
7207@c - %locations
7208@c - class Position
7209@c - class Location
b47dbebe 7210@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7211
7212When the directive @code{%locations} is used, the C++ parser supports
7213location tracking, see @ref{Locations, , Locations Overview}. Two
7214auxiliary classes define a @code{position}, a single point in a file,
7215and a @code{location}, a range composed of a pair of
7216@code{position}s (possibly spanning several files).
7217
fa4d969f 7218@deftypemethod {position} {std::string*} file
12545799
AD
7219The name of the file. It will always be handled as a pointer, the
7220parser will never duplicate nor deallocate it. As an experimental
7221feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7222"filename_type" "@var{type}"}.
12545799
AD
7223@end deftypemethod
7224
7225@deftypemethod {position} {unsigned int} line
7226The line, starting at 1.
7227@end deftypemethod
7228
7229@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7230Advance by @var{height} lines, resetting the column number.
7231@end deftypemethod
7232
7233@deftypemethod {position} {unsigned int} column
7234The column, starting at 0.
7235@end deftypemethod
7236
7237@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7238Advance by @var{width} columns, without changing the line number.
7239@end deftypemethod
7240
7241@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7242@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7243@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7244@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7245Various forms of syntactic sugar for @code{columns}.
7246@end deftypemethod
7247
7248@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7249Report @var{p} on @var{o} like this:
fa4d969f
PE
7250@samp{@var{file}:@var{line}.@var{column}}, or
7251@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7252@end deftypemethod
7253
7254@deftypemethod {location} {position} begin
7255@deftypemethodx {location} {position} end
7256The first, inclusive, position of the range, and the first beyond.
7257@end deftypemethod
7258
7259@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7260@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7261Advance the @code{end} position.
7262@end deftypemethod
7263
7264@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7265@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7266@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7267Various forms of syntactic sugar.
7268@end deftypemethod
7269
7270@deftypemethod {location} {void} step ()
7271Move @code{begin} onto @code{end}.
7272@end deftypemethod
7273
7274
7275@node C++ Parser Interface
7276@subsection C++ Parser Interface
7277@c - define parser_class_name
7278@c - Ctor
7279@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7280@c debug_stream.
7281@c - Reporting errors
7282
7283The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7284declare and define the parser class in the namespace @code{yy}. The
7285class name defaults to @code{parser}, but may be changed using
7286@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7287this class is detailed below. It can be extended using the
12545799
AD
7288@code{%parse-param} feature: its semantics is slightly changed since
7289it describes an additional member of the parser class, and an
7290additional argument for its constructor.
7291
8a0adb01
AD
7292@defcv {Type} {parser} {semantic_value_type}
7293@defcvx {Type} {parser} {location_value_type}
12545799 7294The types for semantics value and locations.
8a0adb01 7295@end defcv
12545799
AD
7296
7297@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7298Build a new parser object. There are no arguments by default, unless
7299@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7300@end deftypemethod
7301
7302@deftypemethod {parser} {int} parse ()
7303Run the syntactic analysis, and return 0 on success, 1 otherwise.
7304@end deftypemethod
7305
7306@deftypemethod {parser} {std::ostream&} debug_stream ()
7307@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7308Get or set the stream used for tracing the parsing. It defaults to
7309@code{std::cerr}.
7310@end deftypemethod
7311
7312@deftypemethod {parser} {debug_level_type} debug_level ()
7313@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7314Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7315or nonzero, full tracing.
12545799
AD
7316@end deftypemethod
7317
7318@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7319The definition for this member function must be supplied by the user:
7320the parser uses it to report a parser error occurring at @var{l},
7321described by @var{m}.
7322@end deftypemethod
7323
7324
7325@node C++ Scanner Interface
7326@subsection C++ Scanner Interface
7327@c - prefix for yylex.
7328@c - Pure interface to yylex
7329@c - %lex-param
7330
7331The parser invokes the scanner by calling @code{yylex}. Contrary to C
7332parsers, C++ parsers are always pure: there is no point in using the
7333@code{%pure-parser} directive. Therefore the interface is as follows.
7334
7335@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7336Return the next token. Its type is the return value, its semantic
7337value and location being @var{yylval} and @var{yylloc}. Invocations of
7338@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7339@end deftypemethod
7340
7341
7342@node A Complete C++ Example
7343@section A Complete C++ Example
7344
7345This section demonstrates the use of a C++ parser with a simple but
7346complete example. This example should be available on your system,
7347ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7348focuses on the use of Bison, therefore the design of the various C++
7349classes is very naive: no accessors, no encapsulation of members etc.
7350We will use a Lex scanner, and more precisely, a Flex scanner, to
7351demonstrate the various interaction. A hand written scanner is
7352actually easier to interface with.
7353
7354@menu
7355* Calc++ --- C++ Calculator:: The specifications
7356* Calc++ Parsing Driver:: An active parsing context
7357* Calc++ Parser:: A parser class
7358* Calc++ Scanner:: A pure C++ Flex scanner
7359* Calc++ Top Level:: Conducting the band
7360@end menu
7361
7362@node Calc++ --- C++ Calculator
7363@subsection Calc++ --- C++ Calculator
7364
7365Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7366expression, possibly preceded by variable assignments. An
12545799
AD
7367environment containing possibly predefined variables such as
7368@code{one} and @code{two}, is exchanged with the parser. An example
7369of valid input follows.
7370
7371@example
7372three := 3
7373seven := one + two * three
7374seven * seven
7375@end example
7376
7377@node Calc++ Parsing Driver
7378@subsection Calc++ Parsing Driver
7379@c - An env
7380@c - A place to store error messages
7381@c - A place for the result
7382
7383To support a pure interface with the parser (and the scanner) the
7384technique of the ``parsing context'' is convenient: a structure
7385containing all the data to exchange. Since, in addition to simply
7386launch the parsing, there are several auxiliary tasks to execute (open
7387the file for parsing, instantiate the parser etc.), we recommend
7388transforming the simple parsing context structure into a fully blown
7389@dfn{parsing driver} class.
7390
7391The declaration of this driver class, @file{calc++-driver.hh}, is as
7392follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7393required standard library components, and the declaration of the parser
7394class.
12545799 7395
1c59e0a1 7396@comment file: calc++-driver.hh
12545799
AD
7397@example
7398#ifndef CALCXX_DRIVER_HH
7399# define CALCXX_DRIVER_HH
7400# include <string>
7401# include <map>
fb9712a9 7402# include "calc++-parser.hh"
12545799
AD
7403@end example
7404
12545799
AD
7405
7406@noindent
7407Then comes the declaration of the scanning function. Flex expects
7408the signature of @code{yylex} to be defined in the macro
7409@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7410factor both as follows.
1c59e0a1
AD
7411
7412@comment file: calc++-driver.hh
12545799
AD
7413@example
7414// Announce to Flex the prototype we want for lexing function, ...
c095d689
AD
7415# define YY_DECL \
7416 yy::calcxx_parser::token_type \
7417 yylex (yy::calcxx_parser::semantic_type* yylval, \
7418 yy::calcxx_parser::location_type* yylloc, \
7419 calcxx_driver& driver)
12545799
AD
7420// ... and declare it for the parser's sake.
7421YY_DECL;
7422@end example
7423
7424@noindent
7425The @code{calcxx_driver} class is then declared with its most obvious
7426members.
7427
1c59e0a1 7428@comment file: calc++-driver.hh
12545799
AD
7429@example
7430// Conducting the whole scanning and parsing of Calc++.
7431class calcxx_driver
7432@{
7433public:
7434 calcxx_driver ();
7435 virtual ~calcxx_driver ();
7436
7437 std::map<std::string, int> variables;
7438
7439 int result;
7440@end example
7441
7442@noindent
7443To encapsulate the coordination with the Flex scanner, it is useful to
7444have two members function to open and close the scanning phase.
12545799 7445
1c59e0a1 7446@comment file: calc++-driver.hh
12545799
AD
7447@example
7448 // Handling the scanner.
7449 void scan_begin ();
7450 void scan_end ();
7451 bool trace_scanning;
7452@end example
7453
7454@noindent
7455Similarly for the parser itself.
7456
1c59e0a1 7457@comment file: calc++-driver.hh
12545799
AD
7458@example
7459 // Handling the parser.
7460 void parse (const std::string& f);
7461 std::string file;
7462 bool trace_parsing;
7463@end example
7464
7465@noindent
7466To demonstrate pure handling of parse errors, instead of simply
7467dumping them on the standard error output, we will pass them to the
7468compiler driver using the following two member functions. Finally, we
7469close the class declaration and CPP guard.
7470
1c59e0a1 7471@comment file: calc++-driver.hh
12545799
AD
7472@example
7473 // Error handling.
7474 void error (const yy::location& l, const std::string& m);
7475 void error (const std::string& m);
7476@};
7477#endif // ! CALCXX_DRIVER_HH
7478@end example
7479
7480The implementation of the driver is straightforward. The @code{parse}
7481member function deserves some attention. The @code{error} functions
7482are simple stubs, they should actually register the located error
7483messages and set error state.
7484
1c59e0a1 7485@comment file: calc++-driver.cc
12545799
AD
7486@example
7487#include "calc++-driver.hh"
7488#include "calc++-parser.hh"
7489
7490calcxx_driver::calcxx_driver ()
7491 : trace_scanning (false), trace_parsing (false)
7492@{
7493 variables["one"] = 1;
7494 variables["two"] = 2;
7495@}
7496
7497calcxx_driver::~calcxx_driver ()
7498@{
7499@}
7500
7501void
7502calcxx_driver::parse (const std::string &f)
7503@{
7504 file = f;
7505 scan_begin ();
7506 yy::calcxx_parser parser (*this);
7507 parser.set_debug_level (trace_parsing);
7508 parser.parse ();
7509 scan_end ();
7510@}
7511
7512void
7513calcxx_driver::error (const yy::location& l, const std::string& m)
7514@{
7515 std::cerr << l << ": " << m << std::endl;
7516@}
7517
7518void
7519calcxx_driver::error (const std::string& m)
7520@{
7521 std::cerr << m << std::endl;
7522@}
7523@end example
7524
7525@node Calc++ Parser
7526@subsection Calc++ Parser
7527
b50d2359
AD
7528The parser definition file @file{calc++-parser.yy} starts by asking for
7529the C++ LALR(1) skeleton, the creation of the parser header file, and
7530specifies the name of the parser class. Because the C++ skeleton
7531changed several times, it is safer to require the version you designed
7532the grammar for.
1c59e0a1
AD
7533
7534@comment file: calc++-parser.yy
12545799
AD
7535@example
7536%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7537%require "2.1a"
12545799 7538%defines
fb9712a9
AD
7539%define "parser_class_name" "calcxx_parser"
7540@end example
7541
7542@noindent
34f98f46 7543@findex %start-header
fb9712a9
AD
7544Then come the declarations/inclusions needed to define the
7545@code{%union}. Because the parser uses the parsing driver and
7546reciprocally, both cannot include the header of the other. Because the
7547driver's header needs detailed knowledge about the parser class (in
7548particular its inner types), it is the parser's header which will simply
7549use a forward declaration of the driver.
34f98f46 7550@xref{Table of Symbols, ,%start-header}.
fb9712a9
AD
7551
7552@comment file: calc++-parser.yy
7553@example
34f98f46 7554%start-header @{
12545799 7555# include <string>
fb9712a9 7556class calcxx_driver;
9bc0dd67 7557@}
12545799
AD
7558@end example
7559
7560@noindent
7561The driver is passed by reference to the parser and to the scanner.
7562This provides a simple but effective pure interface, not relying on
7563global variables.
7564
1c59e0a1 7565@comment file: calc++-parser.yy
12545799
AD
7566@example
7567// The parsing context.
7568%parse-param @{ calcxx_driver& driver @}
7569%lex-param @{ calcxx_driver& driver @}
7570@end example
7571
7572@noindent
7573Then we request the location tracking feature, and initialize the
7574first location's file name. Afterwards new locations are computed
7575relatively to the previous locations: the file name will be
7576automatically propagated.
7577
1c59e0a1 7578@comment file: calc++-parser.yy
12545799
AD
7579@example
7580%locations
7581%initial-action
7582@{
7583 // Initialize the initial location.
b47dbebe 7584 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7585@};
7586@end example
7587
7588@noindent
7589Use the two following directives to enable parser tracing and verbose
7590error messages.
7591
1c59e0a1 7592@comment file: calc++-parser.yy
12545799
AD
7593@example
7594%debug
7595%error-verbose
7596@end example
7597
7598@noindent
7599Semantic values cannot use ``real'' objects, but only pointers to
7600them.
7601
1c59e0a1 7602@comment file: calc++-parser.yy
12545799
AD
7603@example
7604// Symbols.
7605%union
7606@{
7607 int ival;
7608 std::string *sval;
7609@};
7610@end example
7611
fb9712a9 7612@noindent
34f98f46
JD
7613@findex %after-header
7614The code between @samp{%after-header @{} and @samp{@}} is output in the
7615@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7616
7617@comment file: calc++-parser.yy
7618@example
34f98f46 7619%after-header @{
fb9712a9 7620# include "calc++-driver.hh"
34f98f46 7621@}
fb9712a9
AD
7622@end example
7623
7624
12545799
AD
7625@noindent
7626The token numbered as 0 corresponds to end of file; the following line
7627allows for nicer error messages referring to ``end of file'' instead
7628of ``$end''. Similarly user friendly named are provided for each
7629symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7630avoid name clashes.
7631
1c59e0a1 7632@comment file: calc++-parser.yy
12545799 7633@example
fb9712a9
AD
7634%token END 0 "end of file"
7635%token ASSIGN ":="
7636%token <sval> IDENTIFIER "identifier"
7637%token <ival> NUMBER "number"
7638%type <ival> exp "expression"
12545799
AD
7639@end example
7640
7641@noindent
7642To enable memory deallocation during error recovery, use
7643@code{%destructor}.
7644
287c78f6 7645@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7646@comment file: calc++-parser.yy
12545799
AD
7647@example
7648%printer @{ debug_stream () << *$$; @} "identifier"
7649%destructor @{ delete $$; @} "identifier"
7650
7651%printer @{ debug_stream () << $$; @} "number" "expression"
7652@end example
7653
7654@noindent
7655The grammar itself is straightforward.
7656
1c59e0a1 7657@comment file: calc++-parser.yy
12545799
AD
7658@example
7659%%
7660%start unit;
7661unit: assignments exp @{ driver.result = $2; @};
7662
7663assignments: assignments assignment @{@}
9d9b8b70 7664 | /* Nothing. */ @{@};
12545799 7665
fb9712a9 7666assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7667
7668%left '+' '-';
7669%left '*' '/';
7670exp: exp '+' exp @{ $$ = $1 + $3; @}
7671 | exp '-' exp @{ $$ = $1 - $3; @}
7672 | exp '*' exp @{ $$ = $1 * $3; @}
7673 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7674 | "identifier" @{ $$ = driver.variables[*$1]; @}
7675 | "number" @{ $$ = $1; @};
12545799
AD
7676%%
7677@end example
7678
7679@noindent
7680Finally the @code{error} member function registers the errors to the
7681driver.
7682
1c59e0a1 7683@comment file: calc++-parser.yy
12545799
AD
7684@example
7685void
1c59e0a1
AD
7686yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7687 const std::string& m)
12545799
AD
7688@{
7689 driver.error (l, m);
7690@}
7691@end example
7692
7693@node Calc++ Scanner
7694@subsection Calc++ Scanner
7695
7696The Flex scanner first includes the driver declaration, then the
7697parser's to get the set of defined tokens.
7698
1c59e0a1 7699@comment file: calc++-scanner.ll
12545799
AD
7700@example
7701%@{ /* -*- C++ -*- */
04098407
PE
7702# include <cstdlib>
7703# include <errno.h>
7704# include <limits.h>
12545799
AD
7705# include <string>
7706# include "calc++-driver.hh"
7707# include "calc++-parser.hh"
eaea13f5
PE
7708
7709/* Work around an incompatibility in flex (at least versions
7710 2.5.31 through 2.5.33): it generates code that does
7711 not conform to C89. See Debian bug 333231
7712 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7713# undef yywrap
7714# define yywrap() 1
eaea13f5 7715
c095d689
AD
7716/* By default yylex returns int, we use token_type.
7717 Unfortunately yyterminate by default returns 0, which is
7718 not of token_type. */
8c5b881d 7719#define yyterminate() return token::END
12545799
AD
7720%@}
7721@end example
7722
7723@noindent
7724Because there is no @code{#include}-like feature we don't need
7725@code{yywrap}, we don't need @code{unput} either, and we parse an
7726actual file, this is not an interactive session with the user.
7727Finally we enable the scanner tracing features.
7728
1c59e0a1 7729@comment file: calc++-scanner.ll
12545799
AD
7730@example
7731%option noyywrap nounput batch debug
7732@end example
7733
7734@noindent
7735Abbreviations allow for more readable rules.
7736
1c59e0a1 7737@comment file: calc++-scanner.ll
12545799
AD
7738@example
7739id [a-zA-Z][a-zA-Z_0-9]*
7740int [0-9]+
7741blank [ \t]
7742@end example
7743
7744@noindent
9d9b8b70 7745The following paragraph suffices to track locations accurately. Each
12545799
AD
7746time @code{yylex} is invoked, the begin position is moved onto the end
7747position. Then when a pattern is matched, the end position is
7748advanced of its width. In case it matched ends of lines, the end
7749cursor is adjusted, and each time blanks are matched, the begin cursor
7750is moved onto the end cursor to effectively ignore the blanks
7751preceding tokens. Comments would be treated equally.
7752
1c59e0a1 7753@comment file: calc++-scanner.ll
12545799 7754@example
828c373b
AD
7755%@{
7756# define YY_USER_ACTION yylloc->columns (yyleng);
7757%@}
12545799
AD
7758%%
7759%@{
7760 yylloc->step ();
12545799
AD
7761%@}
7762@{blank@}+ yylloc->step ();
7763[\n]+ yylloc->lines (yyleng); yylloc->step ();
7764@end example
7765
7766@noindent
fb9712a9
AD
7767The rules are simple, just note the use of the driver to report errors.
7768It is convenient to use a typedef to shorten
7769@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7770@code{token::identifier} for instance.
12545799 7771
1c59e0a1 7772@comment file: calc++-scanner.ll
12545799 7773@example
fb9712a9
AD
7774%@{
7775 typedef yy::calcxx_parser::token token;
7776%@}
8c5b881d 7777 /* Convert ints to the actual type of tokens. */
c095d689 7778[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7779":=" return token::ASSIGN;
04098407
PE
7780@{int@} @{
7781 errno = 0;
7782 long n = strtol (yytext, NULL, 10);
7783 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7784 driver.error (*yylloc, "integer is out of range");
7785 yylval->ival = n;
fb9712a9 7786 return token::NUMBER;
04098407 7787@}
fb9712a9 7788@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7789. driver.error (*yylloc, "invalid character");
7790%%
7791@end example
7792
7793@noindent
7794Finally, because the scanner related driver's member function depend
7795on the scanner's data, it is simpler to implement them in this file.
7796
1c59e0a1 7797@comment file: calc++-scanner.ll
12545799
AD
7798@example
7799void
7800calcxx_driver::scan_begin ()
7801@{
7802 yy_flex_debug = trace_scanning;
7803 if (!(yyin = fopen (file.c_str (), "r")))
7804 error (std::string ("cannot open ") + file);
7805@}
7806
7807void
7808calcxx_driver::scan_end ()
7809@{
7810 fclose (yyin);
7811@}
7812@end example
7813
7814@node Calc++ Top Level
7815@subsection Calc++ Top Level
7816
7817The top level file, @file{calc++.cc}, poses no problem.
7818
1c59e0a1 7819@comment file: calc++.cc
12545799
AD
7820@example
7821#include <iostream>
7822#include "calc++-driver.hh"
7823
7824int
fa4d969f 7825main (int argc, char *argv[])
12545799
AD
7826@{
7827 calcxx_driver driver;
7828 for (++argv; argv[0]; ++argv)
7829 if (*argv == std::string ("-p"))
7830 driver.trace_parsing = true;
7831 else if (*argv == std::string ("-s"))
7832 driver.trace_scanning = true;
7833 else
7834 @{
7835 driver.parse (*argv);
7836 std::cout << driver.result << std::endl;
7837 @}
7838@}
7839@end example
7840
7841@c ================================================= FAQ
d1a1114f
AD
7842
7843@node FAQ
7844@chapter Frequently Asked Questions
7845@cindex frequently asked questions
7846@cindex questions
7847
7848Several questions about Bison come up occasionally. Here some of them
7849are addressed.
7850
7851@menu
55ba27be
AD
7852* Memory Exhausted:: Breaking the Stack Limits
7853* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7854* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7855* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 7856* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
7857* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7858* I can't build Bison:: Troubleshooting
7859* Where can I find help?:: Troubleshouting
7860* Bug Reports:: Troublereporting
7861* Other Languages:: Parsers in Java and others
7862* Beta Testing:: Experimenting development versions
7863* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7864@end menu
7865
1a059451
PE
7866@node Memory Exhausted
7867@section Memory Exhausted
d1a1114f
AD
7868
7869@display
1a059451 7870My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7871message. What can I do?
7872@end display
7873
7874This question is already addressed elsewhere, @xref{Recursion,
7875,Recursive Rules}.
7876
e64fec0a
PE
7877@node How Can I Reset the Parser
7878@section How Can I Reset the Parser
5b066063 7879
0e14ad77
PE
7880The following phenomenon has several symptoms, resulting in the
7881following typical questions:
5b066063
AD
7882
7883@display
7884I invoke @code{yyparse} several times, and on correct input it works
7885properly; but when a parse error is found, all the other calls fail
0e14ad77 7886too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7887@end display
7888
7889@noindent
7890or
7891
7892@display
0e14ad77 7893My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7894which case I run @code{yyparse} from @code{yyparse}. This fails
7895although I did specify I needed a @code{%pure-parser}.
7896@end display
7897
0e14ad77
PE
7898These problems typically come not from Bison itself, but from
7899Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7900speed, they might not notice a change of input file. As a
7901demonstration, consider the following source file,
7902@file{first-line.l}:
7903
7904@verbatim
7905%{
7906#include <stdio.h>
7907#include <stdlib.h>
7908%}
7909%%
7910.*\n ECHO; return 1;
7911%%
7912int
0e14ad77 7913yyparse (char const *file)
5b066063
AD
7914{
7915 yyin = fopen (file, "r");
7916 if (!yyin)
7917 exit (2);
fa7e68c3 7918 /* One token only. */
5b066063 7919 yylex ();
0e14ad77 7920 if (fclose (yyin) != 0)
5b066063
AD
7921 exit (3);
7922 return 0;
7923}
7924
7925int
0e14ad77 7926main (void)
5b066063
AD
7927{
7928 yyparse ("input");
7929 yyparse ("input");
7930 return 0;
7931}
7932@end verbatim
7933
7934@noindent
7935If the file @file{input} contains
7936
7937@verbatim
7938input:1: Hello,
7939input:2: World!
7940@end verbatim
7941
7942@noindent
0e14ad77 7943then instead of getting the first line twice, you get:
5b066063
AD
7944
7945@example
7946$ @kbd{flex -ofirst-line.c first-line.l}
7947$ @kbd{gcc -ofirst-line first-line.c -ll}
7948$ @kbd{./first-line}
7949input:1: Hello,
7950input:2: World!
7951@end example
7952
0e14ad77
PE
7953Therefore, whenever you change @code{yyin}, you must tell the
7954Lex-generated scanner to discard its current buffer and switch to the
7955new one. This depends upon your implementation of Lex; see its
7956documentation for more. For Flex, it suffices to call
7957@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7958Flex-generated scanner needs to read from several input streams to
7959handle features like include files, you might consider using Flex
7960functions like @samp{yy_switch_to_buffer} that manipulate multiple
7961input buffers.
5b066063 7962
b165c324
AD
7963If your Flex-generated scanner uses start conditions (@pxref{Start
7964conditions, , Start conditions, flex, The Flex Manual}), you might
7965also want to reset the scanner's state, i.e., go back to the initial
7966start condition, through a call to @samp{BEGIN (0)}.
7967
fef4cb51
AD
7968@node Strings are Destroyed
7969@section Strings are Destroyed
7970
7971@display
c7e441b4 7972My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7973them. Instead of reporting @samp{"foo", "bar"}, it reports
7974@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7975@end display
7976
7977This error is probably the single most frequent ``bug report'' sent to
7978Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 7979of the scanner. Consider the following Lex code:
fef4cb51
AD
7980
7981@verbatim
7982%{
7983#include <stdio.h>
7984char *yylval = NULL;
7985%}
7986%%
7987.* yylval = yytext; return 1;
7988\n /* IGNORE */
7989%%
7990int
7991main ()
7992{
fa7e68c3 7993 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7994 char *fst = (yylex (), yylval);
7995 char *snd = (yylex (), yylval);
7996 printf ("\"%s\", \"%s\"\n", fst, snd);
7997 return 0;
7998}
7999@end verbatim
8000
8001If you compile and run this code, you get:
8002
8003@example
8004$ @kbd{flex -osplit-lines.c split-lines.l}
8005$ @kbd{gcc -osplit-lines split-lines.c -ll}
8006$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8007"one
8008two", "two"
8009@end example
8010
8011@noindent
8012this is because @code{yytext} is a buffer provided for @emph{reading}
8013in the action, but if you want to keep it, you have to duplicate it
8014(e.g., using @code{strdup}). Note that the output may depend on how
8015your implementation of Lex handles @code{yytext}. For instance, when
8016given the Lex compatibility option @option{-l} (which triggers the
8017option @samp{%array}) Flex generates a different behavior:
8018
8019@example
8020$ @kbd{flex -l -osplit-lines.c split-lines.l}
8021$ @kbd{gcc -osplit-lines split-lines.c -ll}
8022$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8023"two", "two"
8024@end example
8025
8026
2fa09258
AD
8027@node Implementing Gotos/Loops
8028@section Implementing Gotos/Loops
a06ea4aa
AD
8029
8030@display
8031My simple calculator supports variables, assignments, and functions,
2fa09258 8032but how can I implement gotos, or loops?
a06ea4aa
AD
8033@end display
8034
8035Although very pedagogical, the examples included in the document blur
a1c84f45 8036the distinction to make between the parser---whose job is to recover
a06ea4aa 8037the structure of a text and to transmit it to subsequent modules of
a1c84f45 8038the program---and the processing (such as the execution) of this
a06ea4aa
AD
8039structure. This works well with so called straight line programs,
8040i.e., precisely those that have a straightforward execution model:
8041execute simple instructions one after the others.
8042
8043@cindex abstract syntax tree
8044@cindex @acronym{AST}
8045If you want a richer model, you will probably need to use the parser
8046to construct a tree that does represent the structure it has
8047recovered; this tree is usually called the @dfn{abstract syntax tree},
8048or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8049traversing it in various ways, will enable treatments such as its
8050execution or its translation, which will result in an interpreter or a
8051compiler.
8052
8053This topic is way beyond the scope of this manual, and the reader is
8054invited to consult the dedicated literature.
8055
8056
ed2e6384
AD
8057@node Multiple start-symbols
8058@section Multiple start-symbols
8059
8060@display
8061I have several closely related grammars, and I would like to share their
8062implementations. In fact, I could use a single grammar but with
8063multiple entry points.
8064@end display
8065
8066Bison does not support multiple start-symbols, but there is a very
8067simple means to simulate them. If @code{foo} and @code{bar} are the two
8068pseudo start-symbols, then introduce two new tokens, say
8069@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8070real start-symbol:
8071
8072@example
8073%token START_FOO START_BAR;
8074%start start;
8075start: START_FOO foo
8076 | START_BAR bar;
8077@end example
8078
8079These tokens prevents the introduction of new conflicts. As far as the
8080parser goes, that is all that is needed.
8081
8082Now the difficult part is ensuring that the scanner will send these
8083tokens first. If your scanner is hand-written, that should be
8084straightforward. If your scanner is generated by Lex, them there is
8085simple means to do it: recall that anything between @samp{%@{ ... %@}}
8086after the first @code{%%} is copied verbatim in the top of the generated
8087@code{yylex} function. Make sure a variable @code{start_token} is
8088available in the scanner (e.g., a global variable or using
8089@code{%lex-param} etc.), and use the following:
8090
8091@example
8092 /* @r{Prologue.} */
8093%%
8094%@{
8095 if (start_token)
8096 @{
8097 int t = start_token;
8098 start_token = 0;
8099 return t;
8100 @}
8101%@}
8102 /* @r{The rules.} */
8103@end example
8104
8105
55ba27be
AD
8106@node Secure? Conform?
8107@section Secure? Conform?
8108
8109@display
8110Is Bison secure? Does it conform to POSIX?
8111@end display
8112
8113If you're looking for a guarantee or certification, we don't provide it.
8114However, Bison is intended to be a reliable program that conforms to the
8115@acronym{POSIX} specification for Yacc. If you run into problems,
8116please send us a bug report.
8117
8118@node I can't build Bison
8119@section I can't build Bison
8120
8121@display
8c5b881d
PE
8122I can't build Bison because @command{make} complains that
8123@code{msgfmt} is not found.
55ba27be
AD
8124What should I do?
8125@end display
8126
8127Like most GNU packages with internationalization support, that feature
8128is turned on by default. If you have problems building in the @file{po}
8129subdirectory, it indicates that your system's internationalization
8130support is lacking. You can re-configure Bison with
8131@option{--disable-nls} to turn off this support, or you can install GNU
8132gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8133Bison. See the file @file{ABOUT-NLS} for more information.
8134
8135
8136@node Where can I find help?
8137@section Where can I find help?
8138
8139@display
8140I'm having trouble using Bison. Where can I find help?
8141@end display
8142
8143First, read this fine manual. Beyond that, you can send mail to
8144@email{help-bison@@gnu.org}. This mailing list is intended to be
8145populated with people who are willing to answer questions about using
8146and installing Bison. Please keep in mind that (most of) the people on
8147the list have aspects of their lives which are not related to Bison (!),
8148so you may not receive an answer to your question right away. This can
8149be frustrating, but please try not to honk them off; remember that any
8150help they provide is purely voluntary and out of the kindness of their
8151hearts.
8152
8153@node Bug Reports
8154@section Bug Reports
8155
8156@display
8157I found a bug. What should I include in the bug report?
8158@end display
8159
8160Before you send a bug report, make sure you are using the latest
8161version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8162mirrors. Be sure to include the version number in your bug report. If
8163the bug is present in the latest version but not in a previous version,
8164try to determine the most recent version which did not contain the bug.
8165
8166If the bug is parser-related, you should include the smallest grammar
8167you can which demonstrates the bug. The grammar file should also be
8168complete (i.e., I should be able to run it through Bison without having
8169to edit or add anything). The smaller and simpler the grammar, the
8170easier it will be to fix the bug.
8171
8172Include information about your compilation environment, including your
8173operating system's name and version and your compiler's name and
8174version. If you have trouble compiling, you should also include a
8175transcript of the build session, starting with the invocation of
8176`configure'. Depending on the nature of the bug, you may be asked to
8177send additional files as well (such as `config.h' or `config.cache').
8178
8179Patches are most welcome, but not required. That is, do not hesitate to
8180send a bug report just because you can not provide a fix.
8181
8182Send bug reports to @email{bug-bison@@gnu.org}.
8183
8184@node Other Languages
8185@section Other Languages
8186
8187@display
8188Will Bison ever have C++ support? How about Java or @var{insert your
8189favorite language here}?
8190@end display
8191
8192C++ support is there now, and is documented. We'd love to add other
8193languages; contributions are welcome.
8194
8195@node Beta Testing
8196@section Beta Testing
8197
8198@display
8199What is involved in being a beta tester?
8200@end display
8201
8202It's not terribly involved. Basically, you would download a test
8203release, compile it, and use it to build and run a parser or two. After
8204that, you would submit either a bug report or a message saying that
8205everything is okay. It is important to report successes as well as
8206failures because test releases eventually become mainstream releases,
8207but only if they are adequately tested. If no one tests, development is
8208essentially halted.
8209
8210Beta testers are particularly needed for operating systems to which the
8211developers do not have easy access. They currently have easy access to
8212recent GNU/Linux and Solaris versions. Reports about other operating
8213systems are especially welcome.
8214
8215@node Mailing Lists
8216@section Mailing Lists
8217
8218@display
8219How do I join the help-bison and bug-bison mailing lists?
8220@end display
8221
8222See @url{http://lists.gnu.org/}.
a06ea4aa 8223
d1a1114f
AD
8224@c ================================================= Table of Symbols
8225
342b8b6e 8226@node Table of Symbols
bfa74976
RS
8227@appendix Bison Symbols
8228@cindex Bison symbols, table of
8229@cindex symbols in Bison, table of
8230
18b519c0 8231@deffn {Variable} @@$
3ded9a63 8232In an action, the location of the left-hand side of the rule.
88bce5a2 8233@xref{Locations, , Locations Overview}.
18b519c0 8234@end deffn
3ded9a63 8235
18b519c0 8236@deffn {Variable} @@@var{n}
3ded9a63
AD
8237In an action, the location of the @var{n}-th symbol of the right-hand
8238side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8239@end deffn
3ded9a63 8240
18b519c0 8241@deffn {Variable} $$
3ded9a63
AD
8242In an action, the semantic value of the left-hand side of the rule.
8243@xref{Actions}.
18b519c0 8244@end deffn
3ded9a63 8245
18b519c0 8246@deffn {Variable} $@var{n}
3ded9a63
AD
8247In an action, the semantic value of the @var{n}-th symbol of the
8248right-hand side of the rule. @xref{Actions}.
18b519c0 8249@end deffn
3ded9a63 8250
dd8d9022
AD
8251@deffn {Delimiter} %%
8252Delimiter used to separate the grammar rule section from the
8253Bison declarations section or the epilogue.
8254@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8255@end deffn
bfa74976 8256
dd8d9022
AD
8257@c Don't insert spaces, or check the DVI output.
8258@deffn {Delimiter} %@{@var{code}%@}
8259All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8260the output file uninterpreted. Such code forms the prologue of the input
8261file. @xref{Grammar Outline, ,Outline of a Bison
8262Grammar}.
18b519c0 8263@end deffn
bfa74976 8264
dd8d9022
AD
8265@deffn {Construct} /*@dots{}*/
8266Comment delimiters, as in C.
18b519c0 8267@end deffn
bfa74976 8268
dd8d9022
AD
8269@deffn {Delimiter} :
8270Separates a rule's result from its components. @xref{Rules, ,Syntax of
8271Grammar Rules}.
18b519c0 8272@end deffn
bfa74976 8273
dd8d9022
AD
8274@deffn {Delimiter} ;
8275Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8276@end deffn
bfa74976 8277
dd8d9022
AD
8278@deffn {Delimiter} |
8279Separates alternate rules for the same result nonterminal.
8280@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8281@end deffn
bfa74976 8282
dd8d9022
AD
8283@deffn {Symbol} $accept
8284The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8285$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8286Start-Symbol}. It cannot be used in the grammar.
18b519c0 8287@end deffn
bfa74976 8288
34f98f46
JD
8289@deffn {Directive} %after-header @{@var{code}@}
8290Specifies code to be inserted into the code file after the contents of the
8291header file.
8292@xref{Table of Symbols, ,%start-header}.
8293@end deffn
8294
8295@deffn {Directive} %before-header @{@var{code}@}
8296Specifies code to be inserted into the code file before the contents of the
8297header file.
8298@xref{Table of Symbols, ,%start-header}.
8299@end deffn
8300
8301@deffn {Directive} %end-header @{@var{code}@}
9bc0dd67
JD
8302Specifies code to be inserted both into the header file (if generated;
8303@pxref{Table of Symbols, ,%defines}) and into the code file after any
8304Bison-generated definitions.
34f98f46 8305@xref{Table of Symbols, ,%start-header}.
9bc0dd67
JD
8306@end deffn
8307
34f98f46 8308@deffn {Directive} %start-header @{@var{code}@}
9bc0dd67
JD
8309Specifies code to be inserted both into the header file (if generated;
8310@pxref{Table of Symbols, ,%defines}) and into the code file before any
8311Bison-generated definitions.
8312
8313@cindex Prologue
34f98f46 8314@findex %before-header
9bc0dd67 8315@findex %union
34f98f46
JD
8316@findex %end-header
8317@findex %after-header
8318For example, the following declaration order in the grammar file reflects the
8319order in which Bison will output these code blocks. However, you are free to
8320declare these code blocks in your grammar file in whatever order is most
8321convenient for you:
9bc0dd67
JD
8322
8323@smallexample
34f98f46
JD
8324%before-header @{
8325 /* Bison treats this block like a pre-prologue block: it inserts it
8326 * into the code file before the contents of the header file. It
8327 * does *not* insert it into the header file. This is a good place
8328 * to put #include's that you want at the top of your code file. A
8329 * common example is `#include "system.h"'. */
8330@}
8331%start-header @{
8332 /* Bison inserts this block into both the header file and the code
8333 * file. In both files, the point of insertion is before any
8334 * Bison-generated token, semantic type, location type, and class
8335 * definitions. This is a good place to define %union
8336 * dependencies, for example. */
9bc0dd67
JD
8337@}
8338%union @{
34f98f46
JD
8339 /* Unlike the traditional Yacc prologue blocks, the output order
8340 * for the %*-header blocks is not affected by their declaration
8341 * position relative to any %union in the grammar file. */
9bc0dd67 8342@}
34f98f46
JD
8343%end-header @{
8344 /* Bison inserts this block into both the header file and the code
8345 * file. In both files, the point of insertion is after the
8346 * Bison-generated definitions. This is a good place to declare or
8347 * define public functions or data structures that depend on the
8348 * Bison-generated definitions. */
8349@}
8350%after-header @{
8351 /* Bison treats this block like a post-prologue block: it inserts
8352 * it into the code file after the contents of the header file. It
8353 * does *not* insert it into the header file. This is a good place
8354 * to declare or define internal functions or data structures that
8355 * depend on the Bison-generated definitions. */
9bc0dd67 8356@}
9bc0dd67
JD
8357@end smallexample
8358
34f98f46
JD
8359If you have multiple occurrences of any one of the above declarations, Bison
8360will concatenate the contents in declaration order.
8361
9bc0dd67
JD
8362@xref{Prologue, ,The Prologue}.
8363@end deffn
8364
8365@deffn {Directive} %debug
8366Equip the parser for debugging. @xref{Decl Summary}.
8367@end deffn
8368
18b519c0 8369@deffn {Directive} %debug
6deb4447 8370Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8371@end deffn
6deb4447 8372
91d2c560 8373@ifset defaultprec
22fccf95
PE
8374@deffn {Directive} %default-prec
8375Assign a precedence to rules that lack an explicit @samp{%prec}
8376modifier. @xref{Contextual Precedence, ,Context-Dependent
8377Precedence}.
39a06c25 8378@end deffn
91d2c560 8379@end ifset
39a06c25 8380
18b519c0 8381@deffn {Directive} %defines
6deb4447
AD
8382Bison declaration to create a header file meant for the scanner.
8383@xref{Decl Summary}.
18b519c0 8384@end deffn
6deb4447 8385
18b519c0 8386@deffn {Directive} %destructor
258b75ca 8387Specify how the parser should reclaim the memory associated to
fa7e68c3 8388discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8389@end deffn
72f889cc 8390
18b519c0 8391@deffn {Directive} %dprec
676385e2 8392Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8393time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8394@acronym{GLR} Parsers}.
18b519c0 8395@end deffn
676385e2 8396
dd8d9022
AD
8397@deffn {Symbol} $end
8398The predefined token marking the end of the token stream. It cannot be
8399used in the grammar.
8400@end deffn
8401
8402@deffn {Symbol} error
8403A token name reserved for error recovery. This token may be used in
8404grammar rules so as to allow the Bison parser to recognize an error in
8405the grammar without halting the process. In effect, a sentence
8406containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8407token @code{error} becomes the current lookahead token. Actions
8408corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8409token is reset to the token that originally caused the violation.
8410@xref{Error Recovery}.
18d192f0
AD
8411@end deffn
8412
18b519c0 8413@deffn {Directive} %error-verbose
2a8d363a
AD
8414Bison declaration to request verbose, specific error message strings
8415when @code{yyerror} is called.
18b519c0 8416@end deffn
2a8d363a 8417
18b519c0 8418@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8419Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8420Summary}.
18b519c0 8421@end deffn
d8988b2f 8422
18b519c0 8423@deffn {Directive} %glr-parser
c827f760
PE
8424Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8425Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8426@end deffn
676385e2 8427
dd8d9022
AD
8428@deffn {Directive} %initial-action
8429Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8430@end deffn
8431
18b519c0 8432@deffn {Directive} %left
bfa74976
RS
8433Bison declaration to assign left associativity to token(s).
8434@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8435@end deffn
bfa74976 8436
feeb0eda 8437@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8438Bison declaration to specifying an additional parameter that
8439@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8440for Pure Parsers}.
18b519c0 8441@end deffn
2a8d363a 8442
18b519c0 8443@deffn {Directive} %merge
676385e2 8444Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8445reduce/reduce conflict with a rule having the same merging function, the
676385e2 8446function is applied to the two semantic values to get a single result.
c827f760 8447@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8448@end deffn
676385e2 8449
18b519c0 8450@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8451Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8452@end deffn
d8988b2f 8453
91d2c560 8454@ifset defaultprec
22fccf95
PE
8455@deffn {Directive} %no-default-prec
8456Do not assign a precedence to rules that lack an explicit @samp{%prec}
8457modifier. @xref{Contextual Precedence, ,Context-Dependent
8458Precedence}.
8459@end deffn
91d2c560 8460@end ifset
22fccf95 8461
18b519c0 8462@deffn {Directive} %no-lines
931c7513
RS
8463Bison declaration to avoid generating @code{#line} directives in the
8464parser file. @xref{Decl Summary}.
18b519c0 8465@end deffn
931c7513 8466
18b519c0 8467@deffn {Directive} %nonassoc
9d9b8b70 8468Bison declaration to assign nonassociativity to token(s).
bfa74976 8469@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8470@end deffn
bfa74976 8471
fa4d969f 8472@deffn {Directive} %output="@var{file}"
72d2299c 8473Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8474Summary}.
18b519c0 8475@end deffn
d8988b2f 8476
feeb0eda 8477@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8478Bison declaration to specifying an additional parameter that
8479@code{yyparse} should accept. @xref{Parser Function,, The Parser
8480Function @code{yyparse}}.
18b519c0 8481@end deffn
2a8d363a 8482
18b519c0 8483@deffn {Directive} %prec
bfa74976
RS
8484Bison declaration to assign a precedence to a specific rule.
8485@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8486@end deffn
bfa74976 8487
18b519c0 8488@deffn {Directive} %pure-parser
bfa74976
RS
8489Bison declaration to request a pure (reentrant) parser.
8490@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8491@end deffn
bfa74976 8492
b50d2359 8493@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8494Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8495Require a Version of Bison}.
b50d2359
AD
8496@end deffn
8497
18b519c0 8498@deffn {Directive} %right
bfa74976
RS
8499Bison declaration to assign right associativity to token(s).
8500@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8501@end deffn
bfa74976 8502
18b519c0 8503@deffn {Directive} %start
704a47c4
AD
8504Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8505Start-Symbol}.
18b519c0 8506@end deffn
bfa74976 8507
18b519c0 8508@deffn {Directive} %token
bfa74976
RS
8509Bison declaration to declare token(s) without specifying precedence.
8510@xref{Token Decl, ,Token Type Names}.
18b519c0 8511@end deffn
bfa74976 8512
18b519c0 8513@deffn {Directive} %token-table
931c7513
RS
8514Bison declaration to include a token name table in the parser file.
8515@xref{Decl Summary}.
18b519c0 8516@end deffn
931c7513 8517
18b519c0 8518@deffn {Directive} %type
704a47c4
AD
8519Bison declaration to declare nonterminals. @xref{Type Decl,
8520,Nonterminal Symbols}.
18b519c0 8521@end deffn
bfa74976 8522
dd8d9022
AD
8523@deffn {Symbol} $undefined
8524The predefined token onto which all undefined values returned by
8525@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8526@code{error}.
8527@end deffn
8528
18b519c0 8529@deffn {Directive} %union
bfa74976
RS
8530Bison declaration to specify several possible data types for semantic
8531values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8532@end deffn
bfa74976 8533
dd8d9022
AD
8534@deffn {Macro} YYABORT
8535Macro to pretend that an unrecoverable syntax error has occurred, by
8536making @code{yyparse} return 1 immediately. The error reporting
8537function @code{yyerror} is not called. @xref{Parser Function, ,The
8538Parser Function @code{yyparse}}.
8539@end deffn
3ded9a63 8540
dd8d9022
AD
8541@deffn {Macro} YYACCEPT
8542Macro to pretend that a complete utterance of the language has been
8543read, by making @code{yyparse} return 0 immediately.
8544@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8545@end deffn
bfa74976 8546
dd8d9022 8547@deffn {Macro} YYBACKUP
742e4900 8548Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8549token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8550@end deffn
bfa74976 8551
dd8d9022 8552@deffn {Variable} yychar
32c29292 8553External integer variable that contains the integer value of the
742e4900 8554lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8555@code{yyparse}.) Error-recovery rule actions may examine this variable.
8556@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8557@end deffn
bfa74976 8558
dd8d9022
AD
8559@deffn {Variable} yyclearin
8560Macro used in error-recovery rule actions. It clears the previous
742e4900 8561lookahead token. @xref{Error Recovery}.
18b519c0 8562@end deffn
bfa74976 8563
dd8d9022
AD
8564@deffn {Macro} YYDEBUG
8565Macro to define to equip the parser with tracing code. @xref{Tracing,
8566,Tracing Your Parser}.
18b519c0 8567@end deffn
bfa74976 8568
dd8d9022
AD
8569@deffn {Variable} yydebug
8570External integer variable set to zero by default. If @code{yydebug}
8571is given a nonzero value, the parser will output information on input
8572symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8573@end deffn
bfa74976 8574
dd8d9022
AD
8575@deffn {Macro} yyerrok
8576Macro to cause parser to recover immediately to its normal mode
8577after a syntax error. @xref{Error Recovery}.
8578@end deffn
8579
8580@deffn {Macro} YYERROR
8581Macro to pretend that a syntax error has just been detected: call
8582@code{yyerror} and then perform normal error recovery if possible
8583(@pxref{Error Recovery}), or (if recovery is impossible) make
8584@code{yyparse} return 1. @xref{Error Recovery}.
8585@end deffn
8586
8587@deffn {Function} yyerror
8588User-supplied function to be called by @code{yyparse} on error.
8589@xref{Error Reporting, ,The Error
8590Reporting Function @code{yyerror}}.
8591@end deffn
8592
8593@deffn {Macro} YYERROR_VERBOSE
8594An obsolete macro that you define with @code{#define} in the prologue
8595to request verbose, specific error message strings
8596when @code{yyerror} is called. It doesn't matter what definition you
8597use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8598@code{%error-verbose} is preferred.
8599@end deffn
8600
8601@deffn {Macro} YYINITDEPTH
8602Macro for specifying the initial size of the parser stack.
1a059451 8603@xref{Memory Management}.
dd8d9022
AD
8604@end deffn
8605
8606@deffn {Function} yylex
8607User-supplied lexical analyzer function, called with no arguments to get
8608the next token. @xref{Lexical, ,The Lexical Analyzer Function
8609@code{yylex}}.
8610@end deffn
8611
8612@deffn {Macro} YYLEX_PARAM
8613An obsolete macro for specifying an extra argument (or list of extra
32c29292 8614arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8615macro is deprecated, and is supported only for Yacc like parsers.
8616@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8617@end deffn
8618
8619@deffn {Variable} yylloc
8620External variable in which @code{yylex} should place the line and column
8621numbers associated with a token. (In a pure parser, it is a local
8622variable within @code{yyparse}, and its address is passed to
32c29292
JD
8623@code{yylex}.)
8624You can ignore this variable if you don't use the @samp{@@} feature in the
8625grammar actions.
8626@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8627In semantic actions, it stores the location of the lookahead token.
32c29292 8628@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8629@end deffn
8630
8631@deffn {Type} YYLTYPE
8632Data type of @code{yylloc}; by default, a structure with four
8633members. @xref{Location Type, , Data Types of Locations}.
8634@end deffn
8635
8636@deffn {Variable} yylval
8637External variable in which @code{yylex} should place the semantic
8638value associated with a token. (In a pure parser, it is a local
8639variable within @code{yyparse}, and its address is passed to
32c29292
JD
8640@code{yylex}.)
8641@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8642In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8643@xref{Actions, ,Actions}.
dd8d9022
AD
8644@end deffn
8645
8646@deffn {Macro} YYMAXDEPTH
1a059451
PE
8647Macro for specifying the maximum size of the parser stack. @xref{Memory
8648Management}.
dd8d9022
AD
8649@end deffn
8650
8651@deffn {Variable} yynerrs
8a2800e7 8652Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8653(In a pure parser, it is a local variable within @code{yyparse}.)
8654@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8655@end deffn
8656
8657@deffn {Function} yyparse
8658The parser function produced by Bison; call this function to start
8659parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8660@end deffn
8661
8662@deffn {Macro} YYPARSE_PARAM
8663An obsolete macro for specifying the name of a parameter that
8664@code{yyparse} should accept. The use of this macro is deprecated, and
8665is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8666Conventions for Pure Parsers}.
8667@end deffn
8668
8669@deffn {Macro} YYRECOVERING
02103984
PE
8670The expression @code{YYRECOVERING ()} yields 1 when the parser
8671is recovering from a syntax error, and 0 otherwise.
8672@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8673@end deffn
8674
8675@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8676Macro used to control the use of @code{alloca} when the C
8677@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8678the parser will use @code{malloc} to extend its stacks. If defined to
86791, the parser will use @code{alloca}. Values other than 0 and 1 are
8680reserved for future Bison extensions. If not defined,
8681@code{YYSTACK_USE_ALLOCA} defaults to 0.
8682
55289366 8683In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8684limited stack and with unreliable stack-overflow checking, you should
8685set @code{YYMAXDEPTH} to a value that cannot possibly result in
8686unchecked stack overflow on any of your target hosts when
8687@code{alloca} is called. You can inspect the code that Bison
8688generates in order to determine the proper numeric values. This will
8689require some expertise in low-level implementation details.
dd8d9022
AD
8690@end deffn
8691
8692@deffn {Type} YYSTYPE
8693Data type of semantic values; @code{int} by default.
8694@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8695@end deffn
bfa74976 8696
342b8b6e 8697@node Glossary
bfa74976
RS
8698@appendix Glossary
8699@cindex glossary
8700
8701@table @asis
c827f760
PE
8702@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8703Formal method of specifying context-free grammars originally proposed
8704by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8705committee document contributing to what became the Algol 60 report.
8706@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8707
8708@item Context-free grammars
8709Grammars specified as rules that can be applied regardless of context.
8710Thus, if there is a rule which says that an integer can be used as an
8711expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8712permitted. @xref{Language and Grammar, ,Languages and Context-Free
8713Grammars}.
bfa74976
RS
8714
8715@item Dynamic allocation
8716Allocation of memory that occurs during execution, rather than at
8717compile time or on entry to a function.
8718
8719@item Empty string
8720Analogous to the empty set in set theory, the empty string is a
8721character string of length zero.
8722
8723@item Finite-state stack machine
8724A ``machine'' that has discrete states in which it is said to exist at
8725each instant in time. As input to the machine is processed, the
8726machine moves from state to state as specified by the logic of the
8727machine. In the case of the parser, the input is the language being
8728parsed, and the states correspond to various stages in the grammar
c827f760 8729rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8730
c827f760 8731@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8732A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8733that are not @acronym{LALR}(1). It resolves situations that Bison's
8734usual @acronym{LALR}(1)
676385e2
PH
8735algorithm cannot by effectively splitting off multiple parsers, trying all
8736possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8737right context. @xref{Generalized LR Parsing, ,Generalized
8738@acronym{LR} Parsing}.
676385e2 8739
bfa74976
RS
8740@item Grouping
8741A language construct that is (in general) grammatically divisible;
c827f760 8742for example, `expression' or `declaration' in C@.
bfa74976
RS
8743@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8744
8745@item Infix operator
8746An arithmetic operator that is placed between the operands on which it
8747performs some operation.
8748
8749@item Input stream
8750A continuous flow of data between devices or programs.
8751
8752@item Language construct
8753One of the typical usage schemas of the language. For example, one of
8754the constructs of the C language is the @code{if} statement.
8755@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8756
8757@item Left associativity
8758Operators having left associativity are analyzed from left to right:
8759@samp{a+b+c} first computes @samp{a+b} and then combines with
8760@samp{c}. @xref{Precedence, ,Operator Precedence}.
8761
8762@item Left recursion
89cab50d
AD
8763A rule whose result symbol is also its first component symbol; for
8764example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8765Rules}.
bfa74976
RS
8766
8767@item Left-to-right parsing
8768Parsing a sentence of a language by analyzing it token by token from
c827f760 8769left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8770
8771@item Lexical analyzer (scanner)
8772A function that reads an input stream and returns tokens one by one.
8773@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8774
8775@item Lexical tie-in
8776A flag, set by actions in the grammar rules, which alters the way
8777tokens are parsed. @xref{Lexical Tie-ins}.
8778
931c7513 8779@item Literal string token
14ded682 8780A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8781
742e4900
JD
8782@item Lookahead token
8783A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 8784Tokens}.
bfa74976 8785
c827f760 8786@item @acronym{LALR}(1)
bfa74976 8787The class of context-free grammars that Bison (like most other parser
c827f760
PE
8788generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8789Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8790
c827f760 8791@item @acronym{LR}(1)
bfa74976 8792The class of context-free grammars in which at most one token of
742e4900 8793lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
8794
8795@item Nonterminal symbol
8796A grammar symbol standing for a grammatical construct that can
8797be expressed through rules in terms of smaller constructs; in other
8798words, a construct that is not a token. @xref{Symbols}.
8799
bfa74976
RS
8800@item Parser
8801A function that recognizes valid sentences of a language by analyzing
8802the syntax structure of a set of tokens passed to it from a lexical
8803analyzer.
8804
8805@item Postfix operator
8806An arithmetic operator that is placed after the operands upon which it
8807performs some operation.
8808
8809@item Reduction
8810Replacing a string of nonterminals and/or terminals with a single
89cab50d 8811nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8812Parser Algorithm}.
bfa74976
RS
8813
8814@item Reentrant
8815A reentrant subprogram is a subprogram which can be in invoked any
8816number of times in parallel, without interference between the various
8817invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8818
8819@item Reverse polish notation
8820A language in which all operators are postfix operators.
8821
8822@item Right recursion
89cab50d
AD
8823A rule whose result symbol is also its last component symbol; for
8824example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8825Rules}.
bfa74976
RS
8826
8827@item Semantics
8828In computer languages, the semantics are specified by the actions
8829taken for each instance of the language, i.e., the meaning of
8830each statement. @xref{Semantics, ,Defining Language Semantics}.
8831
8832@item Shift
8833A parser is said to shift when it makes the choice of analyzing
8834further input from the stream rather than reducing immediately some
c827f760 8835already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8836
8837@item Single-character literal
8838A single character that is recognized and interpreted as is.
8839@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8840
8841@item Start symbol
8842The nonterminal symbol that stands for a complete valid utterance in
8843the language being parsed. The start symbol is usually listed as the
13863333 8844first nonterminal symbol in a language specification.
bfa74976
RS
8845@xref{Start Decl, ,The Start-Symbol}.
8846
8847@item Symbol table
8848A data structure where symbol names and associated data are stored
8849during parsing to allow for recognition and use of existing
8850information in repeated uses of a symbol. @xref{Multi-function Calc}.
8851
6e649e65
PE
8852@item Syntax error
8853An error encountered during parsing of an input stream due to invalid
8854syntax. @xref{Error Recovery}.
8855
bfa74976
RS
8856@item Token
8857A basic, grammatically indivisible unit of a language. The symbol
8858that describes a token in the grammar is a terminal symbol.
8859The input of the Bison parser is a stream of tokens which comes from
8860the lexical analyzer. @xref{Symbols}.
8861
8862@item Terminal symbol
89cab50d
AD
8863A grammar symbol that has no rules in the grammar and therefore is
8864grammatically indivisible. The piece of text it represents is a token.
8865@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8866@end table
8867
342b8b6e 8868@node Copying This Manual
f2b5126e 8869@appendix Copying This Manual
f9a8293a 8870
f2b5126e
PB
8871@menu
8872* GNU Free Documentation License:: License for copying this manual.
8873@end menu
f9a8293a 8874
f2b5126e
PB
8875@include fdl.texi
8876
342b8b6e 8877@node Index
bfa74976
RS
8878@unnumbered Index
8879
8880@printindex cp
8881
bfa74976 8882@bye
a06ea4aa
AD
8883
8884@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8885@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8886@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8887@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8888@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8889@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8890@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8891@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8892@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8893@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8894@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8895@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8896@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8897@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8898@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8899@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8900@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8901@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8902@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8903@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8904@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8905@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8906@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8907@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8908@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
9c437126 8909@c LocalWords: infile ypp yxx outfile itemx vcg tex leaderfill
a06ea4aa
AD
8910@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8911@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8912@c LocalWords: YYSTACK DVI fdl printindex