]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Split the default %destructor/%printer into two kinds: <*> and <!>.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
12545799
AD
288C++ Language Interface
289
290* C++ Parsers:: The interface to generate C++ parser classes
291* A Complete C++ Example:: Demonstrating their use
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
300
301A Complete C++ Example
302
303* Calc++ --- C++ Calculator:: The specifications
304* Calc++ Parsing Driver:: An active parsing context
305* Calc++ Parser:: A parser class
306* Calc++ Scanner:: A pure C++ Flex scanner
307* Calc++ Top Level:: Conducting the band
308
d1a1114f
AD
309Frequently Asked Questions
310
1a059451 311* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 312* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 313* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 314* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 315* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
316* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
317* I can't build Bison:: Troubleshooting
318* Where can I find help?:: Troubleshouting
319* Bug Reports:: Troublereporting
320* Other Languages:: Parsers in Java and others
321* Beta Testing:: Experimenting development versions
322* Mailing Lists:: Meeting other Bison users
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
6077da58
PE
335@dfn{Bison} is a general-purpose parser generator that converts an
336annotated context-free grammar into an @acronym{LALR}(1) or
337@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 338Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
1e137b71 344C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
193d7c70
PE
360The distribution terms for Bison-generated parsers permit using the
361parsers in nonfree programs. Before Bison version 2.2, these extra
362permissions applied only when Bison was generating @acronym{LALR}(1)
363parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 364parsers could be used only in programs that were free software.
a31239f1 365
c827f760
PE
366The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
367compiler, have never
9ecbd125 368had such a requirement. They could always be used for nonfree
a31239f1
RS
369software. The reason Bison was different was not due to a special
370policy decision; it resulted from applying the usual General Public
371License to all of the Bison source code.
372
373The output of the Bison utility---the Bison parser file---contains a
374verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
375parser's implementation. (The actions from your grammar are inserted
376into this implementation at one point, but most of the rest of the
377implementation is not changed.) When we applied the @acronym{GPL}
378terms to the skeleton code for the parser's implementation,
a31239f1
RS
379the effect was to restrict the use of Bison output to free software.
380
381We didn't change the terms because of sympathy for people who want to
382make software proprietary. @strong{Software should be free.} But we
383concluded that limiting Bison's use to free software was doing little to
384encourage people to make other software free. So we decided to make the
385practical conditions for using Bison match the practical conditions for
c827f760 386using the other @acronym{GNU} tools.
bfa74976 387
193d7c70
PE
388This exception applies when Bison is generating code for a parser.
389You can tell whether the exception applies to a Bison output file by
390inspecting the file for text beginning with ``As a special
391exception@dots{}''. The text spells out the exact terms of the
392exception.
262aa8dd 393
c67a198d 394@include gpl.texi
bfa74976 395
342b8b6e 396@node Concepts
bfa74976
RS
397@chapter The Concepts of Bison
398
399This chapter introduces many of the basic concepts without which the
400details of Bison will not make sense. If you do not already know how to
401use Bison or Yacc, we suggest you start by reading this chapter carefully.
402
403@menu
404* Language and Grammar:: Languages and context-free grammars,
405 as mathematical ideas.
406* Grammar in Bison:: How we represent grammars for Bison's sake.
407* Semantic Values:: Each token or syntactic grouping can have
408 a semantic value (the value of an integer,
409 the name of an identifier, etc.).
410* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 411* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 412* Locations Overview:: Tracking Locations.
bfa74976
RS
413* Bison Parser:: What are Bison's input and output,
414 how is the output used?
415* Stages:: Stages in writing and running Bison grammars.
416* Grammar Layout:: Overall structure of a Bison grammar file.
417@end menu
418
342b8b6e 419@node Language and Grammar
bfa74976
RS
420@section Languages and Context-Free Grammars
421
bfa74976
RS
422@cindex context-free grammar
423@cindex grammar, context-free
424In order for Bison to parse a language, it must be described by a
425@dfn{context-free grammar}. This means that you specify one or more
426@dfn{syntactic groupings} and give rules for constructing them from their
427parts. For example, in the C language, one kind of grouping is called an
428`expression'. One rule for making an expression might be, ``An expression
429can be made of a minus sign and another expression''. Another would be,
430``An expression can be an integer''. As you can see, rules are often
431recursive, but there must be at least one rule which leads out of the
432recursion.
433
c827f760 434@cindex @acronym{BNF}
bfa74976
RS
435@cindex Backus-Naur form
436The most common formal system for presenting such rules for humans to read
c827f760
PE
437is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
438order to specify the language Algol 60. Any grammar expressed in
439@acronym{BNF} is a context-free grammar. The input to Bison is
440essentially machine-readable @acronym{BNF}.
bfa74976 441
c827f760
PE
442@cindex @acronym{LALR}(1) grammars
443@cindex @acronym{LR}(1) grammars
676385e2
PH
444There are various important subclasses of context-free grammar. Although it
445can handle almost all context-free grammars, Bison is optimized for what
c827f760 446are called @acronym{LALR}(1) grammars.
676385e2 447In brief, in these grammars, it must be possible to
bfa74976 448tell how to parse any portion of an input string with just a single
742e4900 449token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
450@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
451restrictions that are
bfa74976 452hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
453@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
455more information on this.
bfa74976 456
c827f760
PE
457@cindex @acronym{GLR} parsing
458@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 459@cindex ambiguous grammars
9d9b8b70 460@cindex nondeterministic parsing
9501dc6e
AD
461
462Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
463roughly that the next grammar rule to apply at any point in the input is
464uniquely determined by the preceding input and a fixed, finite portion
742e4900 465(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 466grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 467apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 468grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 469lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
470With the proper declarations, Bison is also able to parse these more
471general context-free grammars, using a technique known as @acronym{GLR}
472parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
473are able to handle any context-free grammar for which the number of
474possible parses of any given string is finite.
676385e2 475
bfa74976
RS
476@cindex symbols (abstract)
477@cindex token
478@cindex syntactic grouping
479@cindex grouping, syntactic
9501dc6e
AD
480In the formal grammatical rules for a language, each kind of syntactic
481unit or grouping is named by a @dfn{symbol}. Those which are built by
482grouping smaller constructs according to grammatical rules are called
bfa74976
RS
483@dfn{nonterminal symbols}; those which can't be subdivided are called
484@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
485corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 486corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
487
488We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
489nonterminal, mean. The tokens of C are identifiers, constants (numeric
490and string), and the various keywords, arithmetic operators and
491punctuation marks. So the terminal symbols of a grammar for C include
492`identifier', `number', `string', plus one symbol for each keyword,
493operator or punctuation mark: `if', `return', `const', `static', `int',
494`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
495(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
496lexicography, not grammar.)
497
498Here is a simple C function subdivided into tokens:
499
9edcd895
AD
500@ifinfo
501@example
502int /* @r{keyword `int'} */
14d4662b 503square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
504 @r{identifier, close-paren} */
505@{ /* @r{open-brace} */
aa08666d
AD
506 return x * x; /* @r{keyword `return', identifier, asterisk,}
507 @r{identifier, semicolon} */
9edcd895
AD
508@} /* @r{close-brace} */
509@end example
510@end ifinfo
511@ifnotinfo
bfa74976
RS
512@example
513int /* @r{keyword `int'} */
14d4662b 514square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 515@{ /* @r{open-brace} */
9edcd895 516 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
517@} /* @r{close-brace} */
518@end example
9edcd895 519@end ifnotinfo
bfa74976
RS
520
521The syntactic groupings of C include the expression, the statement, the
522declaration, and the function definition. These are represented in the
523grammar of C by nonterminal symbols `expression', `statement',
524`declaration' and `function definition'. The full grammar uses dozens of
525additional language constructs, each with its own nonterminal symbol, in
526order to express the meanings of these four. The example above is a
527function definition; it contains one declaration, and one statement. In
528the statement, each @samp{x} is an expression and so is @samp{x * x}.
529
530Each nonterminal symbol must have grammatical rules showing how it is made
531out of simpler constructs. For example, one kind of C statement is the
532@code{return} statement; this would be described with a grammar rule which
533reads informally as follows:
534
535@quotation
536A `statement' can be made of a `return' keyword, an `expression' and a
537`semicolon'.
538@end quotation
539
540@noindent
541There would be many other rules for `statement', one for each kind of
542statement in C.
543
544@cindex start symbol
545One nonterminal symbol must be distinguished as the special one which
546defines a complete utterance in the language. It is called the @dfn{start
547symbol}. In a compiler, this means a complete input program. In the C
548language, the nonterminal symbol `sequence of definitions and declarations'
549plays this role.
550
551For example, @samp{1 + 2} is a valid C expression---a valid part of a C
552program---but it is not valid as an @emph{entire} C program. In the
553context-free grammar of C, this follows from the fact that `expression' is
554not the start symbol.
555
556The Bison parser reads a sequence of tokens as its input, and groups the
557tokens using the grammar rules. If the input is valid, the end result is
558that the entire token sequence reduces to a single grouping whose symbol is
559the grammar's start symbol. If we use a grammar for C, the entire input
560must be a `sequence of definitions and declarations'. If not, the parser
561reports a syntax error.
562
342b8b6e 563@node Grammar in Bison
bfa74976
RS
564@section From Formal Rules to Bison Input
565@cindex Bison grammar
566@cindex grammar, Bison
567@cindex formal grammar
568
569A formal grammar is a mathematical construct. To define the language
570for Bison, you must write a file expressing the grammar in Bison syntax:
571a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
572
573A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 574as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
575in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
576
577The Bison representation for a terminal symbol is also called a @dfn{token
578type}. Token types as well can be represented as C-like identifiers. By
579convention, these identifiers should be upper case to distinguish them from
580nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
581@code{RETURN}. A terminal symbol that stands for a particular keyword in
582the language should be named after that keyword converted to upper case.
583The terminal symbol @code{error} is reserved for error recovery.
931c7513 584@xref{Symbols}.
bfa74976
RS
585
586A terminal symbol can also be represented as a character literal, just like
587a C character constant. You should do this whenever a token is just a
588single character (parenthesis, plus-sign, etc.): use that same character in
589a literal as the terminal symbol for that token.
590
931c7513
RS
591A third way to represent a terminal symbol is with a C string constant
592containing several characters. @xref{Symbols}, for more information.
593
bfa74976
RS
594The grammar rules also have an expression in Bison syntax. For example,
595here is the Bison rule for a C @code{return} statement. The semicolon in
596quotes is a literal character token, representing part of the C syntax for
597the statement; the naked semicolon, and the colon, are Bison punctuation
598used in every rule.
599
600@example
601stmt: RETURN expr ';'
602 ;
603@end example
604
605@noindent
606@xref{Rules, ,Syntax of Grammar Rules}.
607
342b8b6e 608@node Semantic Values
bfa74976
RS
609@section Semantic Values
610@cindex semantic value
611@cindex value, semantic
612
613A formal grammar selects tokens only by their classifications: for example,
614if a rule mentions the terminal symbol `integer constant', it means that
615@emph{any} integer constant is grammatically valid in that position. The
616precise value of the constant is irrelevant to how to parse the input: if
617@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 618grammatical.
bfa74976
RS
619
620But the precise value is very important for what the input means once it is
621parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6223989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
623has both a token type and a @dfn{semantic value}. @xref{Semantics,
624,Defining Language Semantics},
bfa74976
RS
625for details.
626
627The token type is a terminal symbol defined in the grammar, such as
628@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
629you need to know to decide where the token may validly appear and how to
630group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 631except their types.
bfa74976
RS
632
633The semantic value has all the rest of the information about the
634meaning of the token, such as the value of an integer, or the name of an
635identifier. (A token such as @code{','} which is just punctuation doesn't
636need to have any semantic value.)
637
638For example, an input token might be classified as token type
639@code{INTEGER} and have the semantic value 4. Another input token might
640have the same token type @code{INTEGER} but value 3989. When a grammar
641rule says that @code{INTEGER} is allowed, either of these tokens is
642acceptable because each is an @code{INTEGER}. When the parser accepts the
643token, it keeps track of the token's semantic value.
644
645Each grouping can also have a semantic value as well as its nonterminal
646symbol. For example, in a calculator, an expression typically has a
647semantic value that is a number. In a compiler for a programming
648language, an expression typically has a semantic value that is a tree
649structure describing the meaning of the expression.
650
342b8b6e 651@node Semantic Actions
bfa74976
RS
652@section Semantic Actions
653@cindex semantic actions
654@cindex actions, semantic
655
656In order to be useful, a program must do more than parse input; it must
657also produce some output based on the input. In a Bison grammar, a grammar
658rule can have an @dfn{action} made up of C statements. Each time the
659parser recognizes a match for that rule, the action is executed.
660@xref{Actions}.
13863333 661
bfa74976
RS
662Most of the time, the purpose of an action is to compute the semantic value
663of the whole construct from the semantic values of its parts. For example,
664suppose we have a rule which says an expression can be the sum of two
665expressions. When the parser recognizes such a sum, each of the
666subexpressions has a semantic value which describes how it was built up.
667The action for this rule should create a similar sort of value for the
668newly recognized larger expression.
669
670For example, here is a rule that says an expression can be the sum of
671two subexpressions:
672
673@example
674expr: expr '+' expr @{ $$ = $1 + $3; @}
675 ;
676@end example
677
678@noindent
679The action says how to produce the semantic value of the sum expression
680from the values of the two subexpressions.
681
676385e2 682@node GLR Parsers
c827f760
PE
683@section Writing @acronym{GLR} Parsers
684@cindex @acronym{GLR} parsing
685@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
686@findex %glr-parser
687@cindex conflicts
688@cindex shift/reduce conflicts
fa7e68c3 689@cindex reduce/reduce conflicts
676385e2 690
fa7e68c3 691In some grammars, Bison's standard
9501dc6e
AD
692@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
693certain grammar rule at a given point. That is, it may not be able to
694decide (on the basis of the input read so far) which of two possible
695reductions (applications of a grammar rule) applies, or whether to apply
696a reduction or read more of the input and apply a reduction later in the
697input. These are known respectively as @dfn{reduce/reduce} conflicts
698(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
699(@pxref{Shift/Reduce}).
700
701To use a grammar that is not easily modified to be @acronym{LALR}(1), a
702more general parsing algorithm is sometimes necessary. If you include
676385e2 703@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 704(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
705(@acronym{GLR}) parser. These parsers handle Bison grammars that
706contain no unresolved conflicts (i.e., after applying precedence
707declarations) identically to @acronym{LALR}(1) parsers. However, when
708faced with unresolved shift/reduce and reduce/reduce conflicts,
709@acronym{GLR} parsers use the simple expedient of doing both,
710effectively cloning the parser to follow both possibilities. Each of
711the resulting parsers can again split, so that at any given time, there
712can be any number of possible parses being explored. The parsers
676385e2
PH
713proceed in lockstep; that is, all of them consume (shift) a given input
714symbol before any of them proceed to the next. Each of the cloned
715parsers eventually meets one of two possible fates: either it runs into
716a parsing error, in which case it simply vanishes, or it merges with
717another parser, because the two of them have reduced the input to an
718identical set of symbols.
719
720During the time that there are multiple parsers, semantic actions are
721recorded, but not performed. When a parser disappears, its recorded
722semantic actions disappear as well, and are never performed. When a
723reduction makes two parsers identical, causing them to merge, Bison
724records both sets of semantic actions. Whenever the last two parsers
725merge, reverting to the single-parser case, Bison resolves all the
726outstanding actions either by precedences given to the grammar rules
727involved, or by performing both actions, and then calling a designated
728user-defined function on the resulting values to produce an arbitrary
729merged result.
730
fa7e68c3 731@menu
32c29292
JD
732* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
733* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
734* GLR Semantic Actions:: Deferred semantic actions have special concerns.
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 750Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
742e4900 790With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
742e4900 829lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
f8e1c9e5
AD
910So here we have a case where we can use the benefits of @acronym{GLR},
911almost without disadvantages. Even in simple cases like this, however,
912there are at least two potential problems to beware. First, always
913analyze the conflicts reported by Bison to make sure that @acronym{GLR}
914splitting is only done where it is intended. A @acronym{GLR} parser
915splitting inadvertently may cause problems less obvious than an
916@acronym{LALR} parser statically choosing the wrong alternative in a
917conflict. Second, consider interactions with the lexer (@pxref{Semantic
918Tokens}) with great care. Since a split parser consumes tokens without
919performing any actions during the split, the lexer cannot obtain
920information via parser actions. Some cases of lexer interactions can be
921eliminated by using @acronym{GLR} to shift the complications from the
922lexer to the parser. You must check the remaining cases for
923correctness.
924
925In our example, it would be safe for the lexer to return tokens based on
926their current meanings in some symbol table, because no new symbols are
927defined in the middle of a type declaration. Though it is possible for
928a parser to define the enumeration constants as they are parsed, before
929the type declaration is completed, it actually makes no difference since
930they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
931
932@node Merging GLR Parses
933@subsection Using @acronym{GLR} to Resolve Ambiguities
934@cindex @acronym{GLR} parsing, ambiguous grammars
935@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
936@findex %dprec
937@findex %merge
938@cindex conflicts
939@cindex reduce/reduce conflicts
940
2a8d363a 941Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
942
943@example
944%@{
38a92d50
PE
945 #include <stdio.h>
946 #define YYSTYPE char const *
947 int yylex (void);
948 void yyerror (char const *);
676385e2
PH
949%@}
950
951%token TYPENAME ID
952
953%right '='
954%left '+'
955
956%glr-parser
957
958%%
959
fae437e8 960prog :
676385e2
PH
961 | prog stmt @{ printf ("\n"); @}
962 ;
963
964stmt : expr ';' %dprec 1
965 | decl %dprec 2
966 ;
967
2a8d363a 968expr : ID @{ printf ("%s ", $$); @}
fae437e8 969 | TYPENAME '(' expr ')'
2a8d363a
AD
970 @{ printf ("%s <cast> ", $1); @}
971 | expr '+' expr @{ printf ("+ "); @}
972 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
973 ;
974
fae437e8 975decl : TYPENAME declarator ';'
2a8d363a 976 @{ printf ("%s <declare> ", $1); @}
676385e2 977 | TYPENAME declarator '=' expr ';'
2a8d363a 978 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
979 ;
980
2a8d363a 981declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
982 | '(' declarator ')'
983 ;
984@end example
985
986@noindent
987This models a problematic part of the C++ grammar---the ambiguity between
988certain declarations and statements. For example,
989
990@example
991T (x) = y+z;
992@end example
993
994@noindent
995parses as either an @code{expr} or a @code{stmt}
c827f760
PE
996(assuming that @samp{T} is recognized as a @code{TYPENAME} and
997@samp{x} as an @code{ID}).
676385e2 998Bison detects this as a reduce/reduce conflict between the rules
fae437e8 999@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1000time it encounters @code{x} in the example above. Since this is a
1001@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1002each choice of resolving the reduce/reduce conflict.
1003Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1004however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1005ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1006the other reduces @code{stmt : decl}, after which both parsers are in an
1007identical state: they've seen @samp{prog stmt} and have the same unprocessed
1008input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1009
1010At this point, the @acronym{GLR} parser requires a specification in the
1011grammar of how to choose between the competing parses.
1012In the example above, the two @code{%dprec}
e757bb10 1013declarations specify that Bison is to give precedence
fa7e68c3 1014to the parse that interprets the example as a
676385e2
PH
1015@code{decl}, which implies that @code{x} is a declarator.
1016The parser therefore prints
1017
1018@example
fae437e8 1019"x" y z + T <init-declare>
676385e2
PH
1020@end example
1021
fa7e68c3
PE
1022The @code{%dprec} declarations only come into play when more than one
1023parse survives. Consider a different input string for this parser:
676385e2
PH
1024
1025@example
1026T (x) + y;
1027@end example
1028
1029@noindent
e757bb10 1030This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1031construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1032Here, there is no ambiguity (this cannot be parsed as a declaration).
1033However, at the time the Bison parser encounters @code{x}, it does not
1034have enough information to resolve the reduce/reduce conflict (again,
1035between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1036case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1037into two, one assuming that @code{x} is an @code{expr}, and the other
1038assuming @code{x} is a @code{declarator}. The second of these parsers
1039then vanishes when it sees @code{+}, and the parser prints
1040
1041@example
fae437e8 1042x T <cast> y +
676385e2
PH
1043@end example
1044
1045Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1046the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1047actions of the two possible parsers, rather than choosing one over the
1048other. To do so, you could change the declaration of @code{stmt} as
1049follows:
1050
1051@example
1052stmt : expr ';' %merge <stmtMerge>
1053 | decl %merge <stmtMerge>
1054 ;
1055@end example
1056
1057@noindent
676385e2
PH
1058and define the @code{stmtMerge} function as:
1059
1060@example
38a92d50
PE
1061static YYSTYPE
1062stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1063@{
1064 printf ("<OR> ");
1065 return "";
1066@}
1067@end example
1068
1069@noindent
1070with an accompanying forward declaration
1071in the C declarations at the beginning of the file:
1072
1073@example
1074%@{
38a92d50 1075 #define YYSTYPE char const *
676385e2
PH
1076 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1077%@}
1078@end example
1079
1080@noindent
fa7e68c3
PE
1081With these declarations, the resulting parser parses the first example
1082as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1083
1084@example
fae437e8 1085"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1086@end example
1087
fa7e68c3 1088Bison requires that all of the
e757bb10 1089productions that participate in any particular merge have identical
fa7e68c3
PE
1090@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1091and the parser will report an error during any parse that results in
1092the offending merge.
9501dc6e 1093
32c29292
JD
1094@node GLR Semantic Actions
1095@subsection GLR Semantic Actions
1096
1097@cindex deferred semantic actions
1098By definition, a deferred semantic action is not performed at the same time as
1099the associated reduction.
1100This raises caveats for several Bison features you might use in a semantic
1101action in a @acronym{GLR} parser.
1102
1103@vindex yychar
1104@cindex @acronym{GLR} parsers and @code{yychar}
1105@vindex yylval
1106@cindex @acronym{GLR} parsers and @code{yylval}
1107@vindex yylloc
1108@cindex @acronym{GLR} parsers and @code{yylloc}
1109In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1110the lookahead token present at the time of the associated reduction.
32c29292
JD
1111After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1112you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1113lookahead token's semantic value and location, if any.
32c29292
JD
1114In a nondeferred semantic action, you can also modify any of these variables to
1115influence syntax analysis.
742e4900 1116@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1117
1118@findex yyclearin
1119@cindex @acronym{GLR} parsers and @code{yyclearin}
1120In a deferred semantic action, it's too late to influence syntax analysis.
1121In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1122shallow copies of the values they had at the time of the associated reduction.
1123For this reason alone, modifying them is dangerous.
1124Moreover, the result of modifying them is undefined and subject to change with
1125future versions of Bison.
1126For example, if a semantic action might be deferred, you should never write it
1127to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1128memory referenced by @code{yylval}.
1129
1130@findex YYERROR
1131@cindex @acronym{GLR} parsers and @code{YYERROR}
1132Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1133(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1134initiate error recovery.
1135During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1136the same as its effect in an @acronym{LALR}(1) parser.
1137In a deferred semantic action, its effect is undefined.
1138@c The effect is probably a syntax error at the split point.
1139
8710fc41
JD
1140Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1141describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1142
fa7e68c3
PE
1143@node Compiler Requirements
1144@subsection Considerations when Compiling @acronym{GLR} Parsers
1145@cindex @code{inline}
9501dc6e 1146@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1147
38a92d50
PE
1148The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1149later. In addition, they use the @code{inline} keyword, which is not
1150C89, but is C99 and is a common extension in pre-C99 compilers. It is
1151up to the user of these parsers to handle
9501dc6e
AD
1152portability issues. For instance, if using Autoconf and the Autoconf
1153macro @code{AC_C_INLINE}, a mere
1154
1155@example
1156%@{
38a92d50 1157 #include <config.h>
9501dc6e
AD
1158%@}
1159@end example
1160
1161@noindent
1162will suffice. Otherwise, we suggest
1163
1164@example
1165%@{
38a92d50
PE
1166 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1167 #define inline
1168 #endif
9501dc6e
AD
1169%@}
1170@end example
676385e2 1171
342b8b6e 1172@node Locations Overview
847bf1f5
AD
1173@section Locations
1174@cindex location
95923bd6
AD
1175@cindex textual location
1176@cindex location, textual
847bf1f5
AD
1177
1178Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1179and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1180the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1181Bison provides a mechanism for handling these locations.
1182
72d2299c 1183Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1184associated location, but the type of locations is the same for all tokens and
72d2299c 1185groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1186structure for storing locations (@pxref{Locations}, for more details).
1187
1188Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1189set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1190is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1191@code{@@3}.
1192
1193When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1194of its left hand side (@pxref{Actions}). In the same way, another default
1195action is used for locations. However, the action for locations is general
847bf1f5 1196enough for most cases, meaning there is usually no need to describe for each
72d2299c 1197rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1198grouping, the default behavior of the output parser is to take the beginning
1199of the first symbol, and the end of the last symbol.
1200
342b8b6e 1201@node Bison Parser
bfa74976
RS
1202@section Bison Output: the Parser File
1203@cindex Bison parser
1204@cindex Bison utility
1205@cindex lexical analyzer, purpose
1206@cindex parser
1207
1208When you run Bison, you give it a Bison grammar file as input. The output
1209is a C source file that parses the language described by the grammar.
1210This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1211utility and the Bison parser are two distinct programs: the Bison utility
1212is a program whose output is the Bison parser that becomes part of your
1213program.
1214
1215The job of the Bison parser is to group tokens into groupings according to
1216the grammar rules---for example, to build identifiers and operators into
1217expressions. As it does this, it runs the actions for the grammar rules it
1218uses.
1219
704a47c4
AD
1220The tokens come from a function called the @dfn{lexical analyzer} that
1221you must supply in some fashion (such as by writing it in C). The Bison
1222parser calls the lexical analyzer each time it wants a new token. It
1223doesn't know what is ``inside'' the tokens (though their semantic values
1224may reflect this). Typically the lexical analyzer makes the tokens by
1225parsing characters of text, but Bison does not depend on this.
1226@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1227
1228The Bison parser file is C code which defines a function named
1229@code{yyparse} which implements that grammar. This function does not make
1230a complete C program: you must supply some additional functions. One is
1231the lexical analyzer. Another is an error-reporting function which the
1232parser calls to report an error. In addition, a complete C program must
1233start with a function called @code{main}; you have to provide this, and
1234arrange for it to call @code{yyparse} or the parser will never run.
1235@xref{Interface, ,Parser C-Language Interface}.
1236
f7ab6a50 1237Aside from the token type names and the symbols in the actions you
7093d0f5 1238write, all symbols defined in the Bison parser file itself
bfa74976
RS
1239begin with @samp{yy} or @samp{YY}. This includes interface functions
1240such as the lexical analyzer function @code{yylex}, the error reporting
1241function @code{yyerror} and the parser function @code{yyparse} itself.
1242This also includes numerous identifiers used for internal purposes.
1243Therefore, you should avoid using C identifiers starting with @samp{yy}
1244or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1245this manual. Also, you should avoid using the C identifiers
1246@samp{malloc} and @samp{free} for anything other than their usual
1247meanings.
bfa74976 1248
7093d0f5
AD
1249In some cases the Bison parser file includes system headers, and in
1250those cases your code should respect the identifiers reserved by those
55289366 1251headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1252@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1253declare memory allocators and related types. @code{<libintl.h>} is
1254included if message translation is in use
1255(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1256be included if you define @code{YYDEBUG} to a nonzero value
1257(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1258
342b8b6e 1259@node Stages
bfa74976
RS
1260@section Stages in Using Bison
1261@cindex stages in using Bison
1262@cindex using Bison
1263
1264The actual language-design process using Bison, from grammar specification
1265to a working compiler or interpreter, has these parts:
1266
1267@enumerate
1268@item
1269Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1270(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1271in the language, describe the action that is to be taken when an
1272instance of that rule is recognized. The action is described by a
1273sequence of C statements.
bfa74976
RS
1274
1275@item
704a47c4
AD
1276Write a lexical analyzer to process input and pass tokens to the parser.
1277The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1278Lexical Analyzer Function @code{yylex}}). It could also be produced
1279using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1280
1281@item
1282Write a controlling function that calls the Bison-produced parser.
1283
1284@item
1285Write error-reporting routines.
1286@end enumerate
1287
1288To turn this source code as written into a runnable program, you
1289must follow these steps:
1290
1291@enumerate
1292@item
1293Run Bison on the grammar to produce the parser.
1294
1295@item
1296Compile the code output by Bison, as well as any other source files.
1297
1298@item
1299Link the object files to produce the finished product.
1300@end enumerate
1301
342b8b6e 1302@node Grammar Layout
bfa74976
RS
1303@section The Overall Layout of a Bison Grammar
1304@cindex grammar file
1305@cindex file format
1306@cindex format of grammar file
1307@cindex layout of Bison grammar
1308
1309The input file for the Bison utility is a @dfn{Bison grammar file}. The
1310general form of a Bison grammar file is as follows:
1311
1312@example
1313%@{
08e49d20 1314@var{Prologue}
bfa74976
RS
1315%@}
1316
1317@var{Bison declarations}
1318
1319%%
1320@var{Grammar rules}
1321%%
08e49d20 1322@var{Epilogue}
bfa74976
RS
1323@end example
1324
1325@noindent
1326The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1327in every Bison grammar file to separate the sections.
1328
72d2299c 1329The prologue may define types and variables used in the actions. You can
342b8b6e 1330also use preprocessor commands to define macros used there, and use
bfa74976 1331@code{#include} to include header files that do any of these things.
38a92d50
PE
1332You need to declare the lexical analyzer @code{yylex} and the error
1333printer @code{yyerror} here, along with any other global identifiers
1334used by the actions in the grammar rules.
bfa74976
RS
1335
1336The Bison declarations declare the names of the terminal and nonterminal
1337symbols, and may also describe operator precedence and the data types of
1338semantic values of various symbols.
1339
1340The grammar rules define how to construct each nonterminal symbol from its
1341parts.
1342
38a92d50
PE
1343The epilogue can contain any code you want to use. Often the
1344definitions of functions declared in the prologue go here. In a
1345simple program, all the rest of the program can go here.
bfa74976 1346
342b8b6e 1347@node Examples
bfa74976
RS
1348@chapter Examples
1349@cindex simple examples
1350@cindex examples, simple
1351
1352Now we show and explain three sample programs written using Bison: a
1353reverse polish notation calculator, an algebraic (infix) notation
1354calculator, and a multi-function calculator. All three have been tested
1355under BSD Unix 4.3; each produces a usable, though limited, interactive
1356desk-top calculator.
1357
1358These examples are simple, but Bison grammars for real programming
aa08666d
AD
1359languages are written the same way. You can copy these examples into a
1360source file to try them.
bfa74976
RS
1361
1362@menu
1363* RPN Calc:: Reverse polish notation calculator;
1364 a first example with no operator precedence.
1365* Infix Calc:: Infix (algebraic) notation calculator.
1366 Operator precedence is introduced.
1367* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1368* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1369* Multi-function Calc:: Calculator with memory and trig functions.
1370 It uses multiple data-types for semantic values.
1371* Exercises:: Ideas for improving the multi-function calculator.
1372@end menu
1373
342b8b6e 1374@node RPN Calc
bfa74976
RS
1375@section Reverse Polish Notation Calculator
1376@cindex reverse polish notation
1377@cindex polish notation calculator
1378@cindex @code{rpcalc}
1379@cindex calculator, simple
1380
1381The first example is that of a simple double-precision @dfn{reverse polish
1382notation} calculator (a calculator using postfix operators). This example
1383provides a good starting point, since operator precedence is not an issue.
1384The second example will illustrate how operator precedence is handled.
1385
1386The source code for this calculator is named @file{rpcalc.y}. The
1387@samp{.y} extension is a convention used for Bison input files.
1388
1389@menu
75f5aaea 1390* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1391* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1392* Lexer: Rpcalc Lexer. The lexical analyzer.
1393* Main: Rpcalc Main. The controlling function.
1394* Error: Rpcalc Error. The error reporting function.
1395* Gen: Rpcalc Gen. Running Bison on the grammar file.
1396* Comp: Rpcalc Compile. Run the C compiler on the output code.
1397@end menu
1398
342b8b6e 1399@node Rpcalc Decls
bfa74976
RS
1400@subsection Declarations for @code{rpcalc}
1401
1402Here are the C and Bison declarations for the reverse polish notation
1403calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1404
1405@example
72d2299c 1406/* Reverse polish notation calculator. */
bfa74976
RS
1407
1408%@{
38a92d50
PE
1409 #define YYSTYPE double
1410 #include <math.h>
1411 int yylex (void);
1412 void yyerror (char const *);
bfa74976
RS
1413%@}
1414
1415%token NUM
1416
72d2299c 1417%% /* Grammar rules and actions follow. */
bfa74976
RS
1418@end example
1419
75f5aaea 1420The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1421preprocessor directives and two forward declarations.
bfa74976
RS
1422
1423The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1424specifying the C data type for semantic values of both tokens and
1425groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1426Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1427don't define it, @code{int} is the default. Because we specify
1428@code{double}, each token and each expression has an associated value,
1429which is a floating point number.
bfa74976
RS
1430
1431The @code{#include} directive is used to declare the exponentiation
1432function @code{pow}.
1433
38a92d50
PE
1434The forward declarations for @code{yylex} and @code{yyerror} are
1435needed because the C language requires that functions be declared
1436before they are used. These functions will be defined in the
1437epilogue, but the parser calls them so they must be declared in the
1438prologue.
1439
704a47c4
AD
1440The second section, Bison declarations, provides information to Bison
1441about the token types (@pxref{Bison Declarations, ,The Bison
1442Declarations Section}). Each terminal symbol that is not a
1443single-character literal must be declared here. (Single-character
bfa74976
RS
1444literals normally don't need to be declared.) In this example, all the
1445arithmetic operators are designated by single-character literals, so the
1446only terminal symbol that needs to be declared is @code{NUM}, the token
1447type for numeric constants.
1448
342b8b6e 1449@node Rpcalc Rules
bfa74976
RS
1450@subsection Grammar Rules for @code{rpcalc}
1451
1452Here are the grammar rules for the reverse polish notation calculator.
1453
1454@example
1455input: /* empty */
1456 | input line
1457;
1458
1459line: '\n'
18b519c0 1460 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1461;
1462
18b519c0
AD
1463exp: NUM @{ $$ = $1; @}
1464 | exp exp '+' @{ $$ = $1 + $2; @}
1465 | exp exp '-' @{ $$ = $1 - $2; @}
1466 | exp exp '*' @{ $$ = $1 * $2; @}
1467 | exp exp '/' @{ $$ = $1 / $2; @}
1468 /* Exponentiation */
1469 | exp exp '^' @{ $$ = pow ($1, $2); @}
1470 /* Unary minus */
1471 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1472;
1473%%
1474@end example
1475
1476The groupings of the rpcalc ``language'' defined here are the expression
1477(given the name @code{exp}), the line of input (@code{line}), and the
1478complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1479symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1480which is read as ``or''. The following sections explain what these rules
1481mean.
1482
1483The semantics of the language is determined by the actions taken when a
1484grouping is recognized. The actions are the C code that appears inside
1485braces. @xref{Actions}.
1486
1487You must specify these actions in C, but Bison provides the means for
1488passing semantic values between the rules. In each action, the
1489pseudo-variable @code{$$} stands for the semantic value for the grouping
1490that the rule is going to construct. Assigning a value to @code{$$} is the
1491main job of most actions. The semantic values of the components of the
1492rule are referred to as @code{$1}, @code{$2}, and so on.
1493
1494@menu
13863333
AD
1495* Rpcalc Input::
1496* Rpcalc Line::
1497* Rpcalc Expr::
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node Rpcalc Input
bfa74976
RS
1501@subsubsection Explanation of @code{input}
1502
1503Consider the definition of @code{input}:
1504
1505@example
1506input: /* empty */
1507 | input line
1508;
1509@end example
1510
1511This definition reads as follows: ``A complete input is either an empty
1512string, or a complete input followed by an input line''. Notice that
1513``complete input'' is defined in terms of itself. This definition is said
1514to be @dfn{left recursive} since @code{input} appears always as the
1515leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1516
1517The first alternative is empty because there are no symbols between the
1518colon and the first @samp{|}; this means that @code{input} can match an
1519empty string of input (no tokens). We write the rules this way because it
1520is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1521It's conventional to put an empty alternative first and write the comment
1522@samp{/* empty */} in it.
1523
1524The second alternate rule (@code{input line}) handles all nontrivial input.
1525It means, ``After reading any number of lines, read one more line if
1526possible.'' The left recursion makes this rule into a loop. Since the
1527first alternative matches empty input, the loop can be executed zero or
1528more times.
1529
1530The parser function @code{yyparse} continues to process input until a
1531grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1532input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1533
342b8b6e 1534@node Rpcalc Line
bfa74976
RS
1535@subsubsection Explanation of @code{line}
1536
1537Now consider the definition of @code{line}:
1538
1539@example
1540line: '\n'
1541 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1542;
1543@end example
1544
1545The first alternative is a token which is a newline character; this means
1546that rpcalc accepts a blank line (and ignores it, since there is no
1547action). The second alternative is an expression followed by a newline.
1548This is the alternative that makes rpcalc useful. The semantic value of
1549the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1550question is the first symbol in the alternative. The action prints this
1551value, which is the result of the computation the user asked for.
1552
1553This action is unusual because it does not assign a value to @code{$$}. As
1554a consequence, the semantic value associated with the @code{line} is
1555uninitialized (its value will be unpredictable). This would be a bug if
1556that value were ever used, but we don't use it: once rpcalc has printed the
1557value of the user's input line, that value is no longer needed.
1558
342b8b6e 1559@node Rpcalc Expr
bfa74976
RS
1560@subsubsection Explanation of @code{expr}
1561
1562The @code{exp} grouping has several rules, one for each kind of expression.
1563The first rule handles the simplest expressions: those that are just numbers.
1564The second handles an addition-expression, which looks like two expressions
1565followed by a plus-sign. The third handles subtraction, and so on.
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | exp exp '-' @{ $$ = $1 - $2; @}
1571 @dots{}
1572 ;
1573@end example
1574
1575We have used @samp{|} to join all the rules for @code{exp}, but we could
1576equally well have written them separately:
1577
1578@example
1579exp: NUM ;
1580exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1581exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1582 @dots{}
1583@end example
1584
1585Most of the rules have actions that compute the value of the expression in
1586terms of the value of its parts. For example, in the rule for addition,
1587@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1588the second one. The third component, @code{'+'}, has no meaningful
1589associated semantic value, but if it had one you could refer to it as
1590@code{$3}. When @code{yyparse} recognizes a sum expression using this
1591rule, the sum of the two subexpressions' values is produced as the value of
1592the entire expression. @xref{Actions}.
1593
1594You don't have to give an action for every rule. When a rule has no
1595action, Bison by default copies the value of @code{$1} into @code{$$}.
1596This is what happens in the first rule (the one that uses @code{NUM}).
1597
1598The formatting shown here is the recommended convention, but Bison does
72d2299c 1599not require it. You can add or change white space as much as you wish.
bfa74976
RS
1600For example, this:
1601
1602@example
99a9344e 1603exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1604@end example
1605
1606@noindent
1607means the same thing as this:
1608
1609@example
1610exp: NUM
1611 | exp exp '+' @{ $$ = $1 + $2; @}
1612 | @dots{}
99a9344e 1613;
bfa74976
RS
1614@end example
1615
1616@noindent
1617The latter, however, is much more readable.
1618
342b8b6e 1619@node Rpcalc Lexer
bfa74976
RS
1620@subsection The @code{rpcalc} Lexical Analyzer
1621@cindex writing a lexical analyzer
1622@cindex lexical analyzer, writing
1623
704a47c4
AD
1624The lexical analyzer's job is low-level parsing: converting characters
1625or sequences of characters into tokens. The Bison parser gets its
1626tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1627Analyzer Function @code{yylex}}.
bfa74976 1628
c827f760
PE
1629Only a simple lexical analyzer is needed for the @acronym{RPN}
1630calculator. This
bfa74976
RS
1631lexical analyzer skips blanks and tabs, then reads in numbers as
1632@code{double} and returns them as @code{NUM} tokens. Any other character
1633that isn't part of a number is a separate token. Note that the token-code
1634for such a single-character token is the character itself.
1635
1636The return value of the lexical analyzer function is a numeric code which
1637represents a token type. The same text used in Bison rules to stand for
1638this token type is also a C expression for the numeric code for the type.
1639This works in two ways. If the token type is a character literal, then its
e966383b 1640numeric code is that of the character; you can use the same
bfa74976
RS
1641character literal in the lexical analyzer to express the number. If the
1642token type is an identifier, that identifier is defined by Bison as a C
1643macro whose definition is the appropriate number. In this example,
1644therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1645
1964ad8c
AD
1646The semantic value of the token (if it has one) is stored into the
1647global variable @code{yylval}, which is where the Bison parser will look
1648for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1649defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1650,Declarations for @code{rpcalc}}.)
bfa74976 1651
72d2299c
PE
1652A token type code of zero is returned if the end-of-input is encountered.
1653(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1654
1655Here is the code for the lexical analyzer:
1656
1657@example
1658@group
72d2299c 1659/* The lexical analyzer returns a double floating point
e966383b 1660 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1661 of the character read if not a number. It skips all blanks
1662 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1663
1664#include <ctype.h>
1665@end group
1666
1667@group
13863333
AD
1668int
1669yylex (void)
bfa74976
RS
1670@{
1671 int c;
1672
72d2299c 1673 /* Skip white space. */
13863333 1674 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1675 ;
1676@end group
1677@group
72d2299c 1678 /* Process numbers. */
13863333 1679 if (c == '.' || isdigit (c))
bfa74976
RS
1680 @{
1681 ungetc (c, stdin);
1682 scanf ("%lf", &yylval);
1683 return NUM;
1684 @}
1685@end group
1686@group
72d2299c 1687 /* Return end-of-input. */
13863333 1688 if (c == EOF)
bfa74976 1689 return 0;
72d2299c 1690 /* Return a single char. */
13863333 1691 return c;
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
342b8b6e 1696@node Rpcalc Main
bfa74976
RS
1697@subsection The Controlling Function
1698@cindex controlling function
1699@cindex main function in simple example
1700
1701In keeping with the spirit of this example, the controlling function is
1702kept to the bare minimum. The only requirement is that it call
1703@code{yyparse} to start the process of parsing.
1704
1705@example
1706@group
13863333
AD
1707int
1708main (void)
bfa74976 1709@{
13863333 1710 return yyparse ();
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Error
bfa74976
RS
1716@subsection The Error Reporting Routine
1717@cindex error reporting routine
1718
1719When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1720function @code{yyerror} to print an error message (usually but not
6e649e65 1721always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1722@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1723here is the definition we will use:
bfa74976
RS
1724
1725@example
1726@group
1727#include <stdio.h>
1728
38a92d50 1729/* Called by yyparse on error. */
13863333 1730void
38a92d50 1731yyerror (char const *s)
bfa74976 1732@{
4e03e201 1733 fprintf (stderr, "%s\n", s);
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
1738After @code{yyerror} returns, the Bison parser may recover from the error
1739and continue parsing if the grammar contains a suitable error rule
1740(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1741have not written any error rules in this example, so any invalid input will
1742cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1743real calculator, but it is adequate for the first example.
bfa74976 1744
342b8b6e 1745@node Rpcalc Gen
bfa74976
RS
1746@subsection Running Bison to Make the Parser
1747@cindex running Bison (introduction)
1748
ceed8467
AD
1749Before running Bison to produce a parser, we need to decide how to
1750arrange all the source code in one or more source files. For such a
1751simple example, the easiest thing is to put everything in one file. The
1752definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1753end, in the epilogue of the file
75f5aaea 1754(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1755
1756For a large project, you would probably have several source files, and use
1757@code{make} to arrange to recompile them.
1758
1759With all the source in a single file, you use the following command to
1760convert it into a parser file:
1761
1762@example
fa4d969f 1763bison @var{file}.y
bfa74976
RS
1764@end example
1765
1766@noindent
1767In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1768@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1769removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1770Bison contains the source code for @code{yyparse}. The additional
1771functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1772are copied verbatim to the output.
1773
342b8b6e 1774@node Rpcalc Compile
bfa74976
RS
1775@subsection Compiling the Parser File
1776@cindex compiling the parser
1777
1778Here is how to compile and run the parser file:
1779
1780@example
1781@group
1782# @r{List files in current directory.}
9edcd895 1783$ @kbd{ls}
bfa74976
RS
1784rpcalc.tab.c rpcalc.y
1785@end group
1786
1787@group
1788# @r{Compile the Bison parser.}
1789# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1790$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1791@end group
1792
1793@group
1794# @r{List files again.}
9edcd895 1795$ @kbd{ls}
bfa74976
RS
1796rpcalc rpcalc.tab.c rpcalc.y
1797@end group
1798@end example
1799
1800The file @file{rpcalc} now contains the executable code. Here is an
1801example session using @code{rpcalc}.
1802
1803@example
9edcd895
AD
1804$ @kbd{rpcalc}
1805@kbd{4 9 +}
bfa74976 180613
9edcd895 1807@kbd{3 7 + 3 4 5 *+-}
bfa74976 1808-13
9edcd895 1809@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181013
9edcd895 1811@kbd{5 6 / 4 n +}
bfa74976 1812-3.166666667
9edcd895 1813@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181481
9edcd895
AD
1815@kbd{^D} @r{End-of-file indicator}
1816$
bfa74976
RS
1817@end example
1818
342b8b6e 1819@node Infix Calc
bfa74976
RS
1820@section Infix Notation Calculator: @code{calc}
1821@cindex infix notation calculator
1822@cindex @code{calc}
1823@cindex calculator, infix notation
1824
1825We now modify rpcalc to handle infix operators instead of postfix. Infix
1826notation involves the concept of operator precedence and the need for
1827parentheses nested to arbitrary depth. Here is the Bison code for
1828@file{calc.y}, an infix desk-top calculator.
1829
1830@example
38a92d50 1831/* Infix notation calculator. */
bfa74976
RS
1832
1833%@{
38a92d50
PE
1834 #define YYSTYPE double
1835 #include <math.h>
1836 #include <stdio.h>
1837 int yylex (void);
1838 void yyerror (char const *);
bfa74976
RS
1839%@}
1840
38a92d50 1841/* Bison declarations. */
bfa74976
RS
1842%token NUM
1843%left '-' '+'
1844%left '*' '/'
1845%left NEG /* negation--unary minus */
38a92d50 1846%right '^' /* exponentiation */
bfa74976 1847
38a92d50
PE
1848%% /* The grammar follows. */
1849input: /* empty */
bfa74976
RS
1850 | input line
1851;
1852
1853line: '\n'
1854 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1855;
1856
1857exp: NUM @{ $$ = $1; @}
1858 | exp '+' exp @{ $$ = $1 + $3; @}
1859 | exp '-' exp @{ $$ = $1 - $3; @}
1860 | exp '*' exp @{ $$ = $1 * $3; @}
1861 | exp '/' exp @{ $$ = $1 / $3; @}
1862 | '-' exp %prec NEG @{ $$ = -$2; @}
1863 | exp '^' exp @{ $$ = pow ($1, $3); @}
1864 | '(' exp ')' @{ $$ = $2; @}
1865;
1866%%
1867@end example
1868
1869@noindent
ceed8467
AD
1870The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1871same as before.
bfa74976
RS
1872
1873There are two important new features shown in this code.
1874
1875In the second section (Bison declarations), @code{%left} declares token
1876types and says they are left-associative operators. The declarations
1877@code{%left} and @code{%right} (right associativity) take the place of
1878@code{%token} which is used to declare a token type name without
1879associativity. (These tokens are single-character literals, which
1880ordinarily don't need to be declared. We declare them here to specify
1881the associativity.)
1882
1883Operator precedence is determined by the line ordering of the
1884declarations; the higher the line number of the declaration (lower on
1885the page or screen), the higher the precedence. Hence, exponentiation
1886has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1887by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1888Precedence}.
bfa74976 1889
704a47c4
AD
1890The other important new feature is the @code{%prec} in the grammar
1891section for the unary minus operator. The @code{%prec} simply instructs
1892Bison that the rule @samp{| '-' exp} has the same precedence as
1893@code{NEG}---in this case the next-to-highest. @xref{Contextual
1894Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1895
1896Here is a sample run of @file{calc.y}:
1897
1898@need 500
1899@example
9edcd895
AD
1900$ @kbd{calc}
1901@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19026.880952381
9edcd895 1903@kbd{-56 + 2}
bfa74976 1904-54
9edcd895 1905@kbd{3 ^ 2}
bfa74976
RS
19069
1907@end example
1908
342b8b6e 1909@node Simple Error Recovery
bfa74976
RS
1910@section Simple Error Recovery
1911@cindex error recovery, simple
1912
1913Up to this point, this manual has not addressed the issue of @dfn{error
1914recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1915error. All we have handled is error reporting with @code{yyerror}.
1916Recall that by default @code{yyparse} returns after calling
1917@code{yyerror}. This means that an erroneous input line causes the
1918calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1919
1920The Bison language itself includes the reserved word @code{error}, which
1921may be included in the grammar rules. In the example below it has
1922been added to one of the alternatives for @code{line}:
1923
1924@example
1925@group
1926line: '\n'
1927 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1928 | error '\n' @{ yyerrok; @}
1929;
1930@end group
1931@end example
1932
ceed8467 1933This addition to the grammar allows for simple error recovery in the
6e649e65 1934event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1935read, the error will be recognized by the third rule for @code{line},
1936and parsing will continue. (The @code{yyerror} function is still called
1937upon to print its message as well.) The action executes the statement
1938@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1939that error recovery is complete (@pxref{Error Recovery}). Note the
1940difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1941misprint.
bfa74976
RS
1942
1943This form of error recovery deals with syntax errors. There are other
1944kinds of errors; for example, division by zero, which raises an exception
1945signal that is normally fatal. A real calculator program must handle this
1946signal and use @code{longjmp} to return to @code{main} and resume parsing
1947input lines; it would also have to discard the rest of the current line of
1948input. We won't discuss this issue further because it is not specific to
1949Bison programs.
1950
342b8b6e
AD
1951@node Location Tracking Calc
1952@section Location Tracking Calculator: @code{ltcalc}
1953@cindex location tracking calculator
1954@cindex @code{ltcalc}
1955@cindex calculator, location tracking
1956
9edcd895
AD
1957This example extends the infix notation calculator with location
1958tracking. This feature will be used to improve the error messages. For
1959the sake of clarity, this example is a simple integer calculator, since
1960most of the work needed to use locations will be done in the lexical
72d2299c 1961analyzer.
342b8b6e
AD
1962
1963@menu
1964* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1965* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1966* Lexer: Ltcalc Lexer. The lexical analyzer.
1967@end menu
1968
1969@node Ltcalc Decls
1970@subsection Declarations for @code{ltcalc}
1971
9edcd895
AD
1972The C and Bison declarations for the location tracking calculator are
1973the same as the declarations for the infix notation calculator.
342b8b6e
AD
1974
1975@example
1976/* Location tracking calculator. */
1977
1978%@{
38a92d50
PE
1979 #define YYSTYPE int
1980 #include <math.h>
1981 int yylex (void);
1982 void yyerror (char const *);
342b8b6e
AD
1983%@}
1984
1985/* Bison declarations. */
1986%token NUM
1987
1988%left '-' '+'
1989%left '*' '/'
1990%left NEG
1991%right '^'
1992
38a92d50 1993%% /* The grammar follows. */
342b8b6e
AD
1994@end example
1995
9edcd895
AD
1996@noindent
1997Note there are no declarations specific to locations. Defining a data
1998type for storing locations is not needed: we will use the type provided
1999by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2000four member structure with the following integer fields:
2001@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2002@code{last_column}. By conventions, and in accordance with the GNU
2003Coding Standards and common practice, the line and column count both
2004start at 1.
342b8b6e
AD
2005
2006@node Ltcalc Rules
2007@subsection Grammar Rules for @code{ltcalc}
2008
9edcd895
AD
2009Whether handling locations or not has no effect on the syntax of your
2010language. Therefore, grammar rules for this example will be very close
2011to those of the previous example: we will only modify them to benefit
2012from the new information.
342b8b6e 2013
9edcd895
AD
2014Here, we will use locations to report divisions by zero, and locate the
2015wrong expressions or subexpressions.
342b8b6e
AD
2016
2017@example
2018@group
2019input : /* empty */
2020 | input line
2021;
2022@end group
2023
2024@group
2025line : '\n'
2026 | exp '\n' @{ printf ("%d\n", $1); @}
2027;
2028@end group
2029
2030@group
2031exp : NUM @{ $$ = $1; @}
2032 | exp '+' exp @{ $$ = $1 + $3; @}
2033 | exp '-' exp @{ $$ = $1 - $3; @}
2034 | exp '*' exp @{ $$ = $1 * $3; @}
2035@end group
342b8b6e 2036@group
9edcd895 2037 | exp '/' exp
342b8b6e
AD
2038 @{
2039 if ($3)
2040 $$ = $1 / $3;
2041 else
2042 @{
2043 $$ = 1;
9edcd895
AD
2044 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2045 @@3.first_line, @@3.first_column,
2046 @@3.last_line, @@3.last_column);
342b8b6e
AD
2047 @}
2048 @}
2049@end group
2050@group
2051 | '-' exp %preg NEG @{ $$ = -$2; @}
2052 | exp '^' exp @{ $$ = pow ($1, $3); @}
2053 | '(' exp ')' @{ $$ = $2; @}
2054@end group
2055@end example
2056
2057This code shows how to reach locations inside of semantic actions, by
2058using the pseudo-variables @code{@@@var{n}} for rule components, and the
2059pseudo-variable @code{@@$} for groupings.
2060
9edcd895
AD
2061We don't need to assign a value to @code{@@$}: the output parser does it
2062automatically. By default, before executing the C code of each action,
2063@code{@@$} is set to range from the beginning of @code{@@1} to the end
2064of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2065can be redefined (@pxref{Location Default Action, , Default Action for
2066Locations}), and for very specific rules, @code{@@$} can be computed by
2067hand.
342b8b6e
AD
2068
2069@node Ltcalc Lexer
2070@subsection The @code{ltcalc} Lexical Analyzer.
2071
9edcd895 2072Until now, we relied on Bison's defaults to enable location
72d2299c 2073tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2074able to feed the parser with the token locations, as it already does for
2075semantic values.
342b8b6e 2076
9edcd895
AD
2077To this end, we must take into account every single character of the
2078input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2079
2080@example
2081@group
2082int
2083yylex (void)
2084@{
2085 int c;
18b519c0 2086@end group
342b8b6e 2087
18b519c0 2088@group
72d2299c 2089 /* Skip white space. */
342b8b6e
AD
2090 while ((c = getchar ()) == ' ' || c == '\t')
2091 ++yylloc.last_column;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Step. */
342b8b6e
AD
2096 yylloc.first_line = yylloc.last_line;
2097 yylloc.first_column = yylloc.last_column;
2098@end group
2099
2100@group
72d2299c 2101 /* Process numbers. */
342b8b6e
AD
2102 if (isdigit (c))
2103 @{
2104 yylval = c - '0';
2105 ++yylloc.last_column;
2106 while (isdigit (c = getchar ()))
2107 @{
2108 ++yylloc.last_column;
2109 yylval = yylval * 10 + c - '0';
2110 @}
2111 ungetc (c, stdin);
2112 return NUM;
2113 @}
2114@end group
2115
72d2299c 2116 /* Return end-of-input. */
342b8b6e
AD
2117 if (c == EOF)
2118 return 0;
2119
72d2299c 2120 /* Return a single char, and update location. */
342b8b6e
AD
2121 if (c == '\n')
2122 @{
2123 ++yylloc.last_line;
2124 yylloc.last_column = 0;
2125 @}
2126 else
2127 ++yylloc.last_column;
2128 return c;
2129@}
2130@end example
2131
9edcd895
AD
2132Basically, the lexical analyzer performs the same processing as before:
2133it skips blanks and tabs, and reads numbers or single-character tokens.
2134In addition, it updates @code{yylloc}, the global variable (of type
2135@code{YYLTYPE}) containing the token's location.
342b8b6e 2136
9edcd895 2137Now, each time this function returns a token, the parser has its number
72d2299c 2138as well as its semantic value, and its location in the text. The last
9edcd895
AD
2139needed change is to initialize @code{yylloc}, for example in the
2140controlling function:
342b8b6e
AD
2141
2142@example
9edcd895 2143@group
342b8b6e
AD
2144int
2145main (void)
2146@{
2147 yylloc.first_line = yylloc.last_line = 1;
2148 yylloc.first_column = yylloc.last_column = 0;
2149 return yyparse ();
2150@}
9edcd895 2151@end group
342b8b6e
AD
2152@end example
2153
9edcd895
AD
2154Remember that computing locations is not a matter of syntax. Every
2155character must be associated to a location update, whether it is in
2156valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2157
2158@node Multi-function Calc
bfa74976
RS
2159@section Multi-Function Calculator: @code{mfcalc}
2160@cindex multi-function calculator
2161@cindex @code{mfcalc}
2162@cindex calculator, multi-function
2163
2164Now that the basics of Bison have been discussed, it is time to move on to
2165a more advanced problem. The above calculators provided only five
2166functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2167be nice to have a calculator that provides other mathematical functions such
2168as @code{sin}, @code{cos}, etc.
2169
2170It is easy to add new operators to the infix calculator as long as they are
2171only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2172back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2173adding a new operator. But we want something more flexible: built-in
2174functions whose syntax has this form:
2175
2176@example
2177@var{function_name} (@var{argument})
2178@end example
2179
2180@noindent
2181At the same time, we will add memory to the calculator, by allowing you
2182to create named variables, store values in them, and use them later.
2183Here is a sample session with the multi-function calculator:
2184
2185@example
9edcd895
AD
2186$ @kbd{mfcalc}
2187@kbd{pi = 3.141592653589}
bfa74976 21883.1415926536
9edcd895 2189@kbd{sin(pi)}
bfa74976 21900.0000000000
9edcd895 2191@kbd{alpha = beta1 = 2.3}
bfa74976 21922.3000000000
9edcd895 2193@kbd{alpha}
bfa74976 21942.3000000000
9edcd895 2195@kbd{ln(alpha)}
bfa74976 21960.8329091229
9edcd895 2197@kbd{exp(ln(beta1))}
bfa74976 21982.3000000000
9edcd895 2199$
bfa74976
RS
2200@end example
2201
2202Note that multiple assignment and nested function calls are permitted.
2203
2204@menu
2205* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2206* Rules: Mfcalc Rules. Grammar rules for the calculator.
2207* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2208@end menu
2209
342b8b6e 2210@node Mfcalc Decl
bfa74976
RS
2211@subsection Declarations for @code{mfcalc}
2212
2213Here are the C and Bison declarations for the multi-function calculator.
2214
2215@smallexample
18b519c0 2216@group
bfa74976 2217%@{
38a92d50
PE
2218 #include <math.h> /* For math functions, cos(), sin(), etc. */
2219 #include "calc.h" /* Contains definition of `symrec'. */
2220 int yylex (void);
2221 void yyerror (char const *);
bfa74976 2222%@}
18b519c0
AD
2223@end group
2224@group
bfa74976 2225%union @{
38a92d50
PE
2226 double val; /* For returning numbers. */
2227 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2228@}
18b519c0 2229@end group
38a92d50
PE
2230%token <val> NUM /* Simple double precision number. */
2231%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2232%type <val> exp
2233
18b519c0 2234@group
bfa74976
RS
2235%right '='
2236%left '-' '+'
2237%left '*' '/'
38a92d50
PE
2238%left NEG /* negation--unary minus */
2239%right '^' /* exponentiation */
18b519c0 2240@end group
38a92d50 2241%% /* The grammar follows. */
bfa74976
RS
2242@end smallexample
2243
2244The above grammar introduces only two new features of the Bison language.
2245These features allow semantic values to have various data types
2246(@pxref{Multiple Types, ,More Than One Value Type}).
2247
2248The @code{%union} declaration specifies the entire list of possible types;
2249this is instead of defining @code{YYSTYPE}. The allowable types are now
2250double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2251the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2252
2253Since values can now have various types, it is necessary to associate a
2254type with each grammar symbol whose semantic value is used. These symbols
2255are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2256declarations are augmented with information about their data type (placed
2257between angle brackets).
2258
704a47c4
AD
2259The Bison construct @code{%type} is used for declaring nonterminal
2260symbols, just as @code{%token} is used for declaring token types. We
2261have not used @code{%type} before because nonterminal symbols are
2262normally declared implicitly by the rules that define them. But
2263@code{exp} must be declared explicitly so we can specify its value type.
2264@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2265
342b8b6e 2266@node Mfcalc Rules
bfa74976
RS
2267@subsection Grammar Rules for @code{mfcalc}
2268
2269Here are the grammar rules for the multi-function calculator.
2270Most of them are copied directly from @code{calc}; three rules,
2271those which mention @code{VAR} or @code{FNCT}, are new.
2272
2273@smallexample
18b519c0 2274@group
bfa74976
RS
2275input: /* empty */
2276 | input line
2277;
18b519c0 2278@end group
bfa74976 2279
18b519c0 2280@group
bfa74976
RS
2281line:
2282 '\n'
2283 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2284 | error '\n' @{ yyerrok; @}
2285;
18b519c0 2286@end group
bfa74976 2287
18b519c0 2288@group
bfa74976
RS
2289exp: NUM @{ $$ = $1; @}
2290 | VAR @{ $$ = $1->value.var; @}
2291 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2292 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2293 | exp '+' exp @{ $$ = $1 + $3; @}
2294 | exp '-' exp @{ $$ = $1 - $3; @}
2295 | exp '*' exp @{ $$ = $1 * $3; @}
2296 | exp '/' exp @{ $$ = $1 / $3; @}
2297 | '-' exp %prec NEG @{ $$ = -$2; @}
2298 | exp '^' exp @{ $$ = pow ($1, $3); @}
2299 | '(' exp ')' @{ $$ = $2; @}
2300;
18b519c0 2301@end group
38a92d50 2302/* End of grammar. */
bfa74976
RS
2303%%
2304@end smallexample
2305
342b8b6e 2306@node Mfcalc Symtab
bfa74976
RS
2307@subsection The @code{mfcalc} Symbol Table
2308@cindex symbol table example
2309
2310The multi-function calculator requires a symbol table to keep track of the
2311names and meanings of variables and functions. This doesn't affect the
2312grammar rules (except for the actions) or the Bison declarations, but it
2313requires some additional C functions for support.
2314
2315The symbol table itself consists of a linked list of records. Its
2316definition, which is kept in the header @file{calc.h}, is as follows. It
2317provides for either functions or variables to be placed in the table.
2318
2319@smallexample
2320@group
38a92d50 2321/* Function type. */
32dfccf8 2322typedef double (*func_t) (double);
72f889cc 2323@end group
32dfccf8 2324
72f889cc 2325@group
38a92d50 2326/* Data type for links in the chain of symbols. */
bfa74976
RS
2327struct symrec
2328@{
38a92d50 2329 char *name; /* name of symbol */
bfa74976 2330 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2331 union
2332 @{
38a92d50
PE
2333 double var; /* value of a VAR */
2334 func_t fnctptr; /* value of a FNCT */
bfa74976 2335 @} value;
38a92d50 2336 struct symrec *next; /* link field */
bfa74976
RS
2337@};
2338@end group
2339
2340@group
2341typedef struct symrec symrec;
2342
38a92d50 2343/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2344extern symrec *sym_table;
2345
a730d142 2346symrec *putsym (char const *, int);
38a92d50 2347symrec *getsym (char const *);
bfa74976
RS
2348@end group
2349@end smallexample
2350
2351The new version of @code{main} includes a call to @code{init_table}, a
2352function that initializes the symbol table. Here it is, and
2353@code{init_table} as well:
2354
2355@smallexample
bfa74976
RS
2356#include <stdio.h>
2357
18b519c0 2358@group
38a92d50 2359/* Called by yyparse on error. */
13863333 2360void
38a92d50 2361yyerror (char const *s)
bfa74976
RS
2362@{
2363 printf ("%s\n", s);
2364@}
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976
RS
2368struct init
2369@{
38a92d50
PE
2370 char const *fname;
2371 double (*fnct) (double);
bfa74976
RS
2372@};
2373@end group
2374
2375@group
38a92d50 2376struct init const arith_fncts[] =
13863333 2377@{
32dfccf8
AD
2378 "sin", sin,
2379 "cos", cos,
13863333 2380 "atan", atan,
32dfccf8
AD
2381 "ln", log,
2382 "exp", exp,
13863333
AD
2383 "sqrt", sqrt,
2384 0, 0
2385@};
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976 2389/* The symbol table: a chain of `struct symrec'. */
38a92d50 2390symrec *sym_table;
bfa74976
RS
2391@end group
2392
2393@group
72d2299c 2394/* Put arithmetic functions in table. */
13863333
AD
2395void
2396init_table (void)
bfa74976
RS
2397@{
2398 int i;
2399 symrec *ptr;
2400 for (i = 0; arith_fncts[i].fname != 0; i++)
2401 @{
2402 ptr = putsym (arith_fncts[i].fname, FNCT);
2403 ptr->value.fnctptr = arith_fncts[i].fnct;
2404 @}
2405@}
2406@end group
38a92d50
PE
2407
2408@group
2409int
2410main (void)
2411@{
2412 init_table ();
2413 return yyparse ();
2414@}
2415@end group
bfa74976
RS
2416@end smallexample
2417
2418By simply editing the initialization list and adding the necessary include
2419files, you can add additional functions to the calculator.
2420
2421Two important functions allow look-up and installation of symbols in the
2422symbol table. The function @code{putsym} is passed a name and the type
2423(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2424linked to the front of the list, and a pointer to the object is returned.
2425The function @code{getsym} is passed the name of the symbol to look up. If
2426found, a pointer to that symbol is returned; otherwise zero is returned.
2427
2428@smallexample
2429symrec *
38a92d50 2430putsym (char const *sym_name, int sym_type)
bfa74976
RS
2431@{
2432 symrec *ptr;
2433 ptr = (symrec *) malloc (sizeof (symrec));
2434 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2435 strcpy (ptr->name,sym_name);
2436 ptr->type = sym_type;
72d2299c 2437 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2438 ptr->next = (struct symrec *)sym_table;
2439 sym_table = ptr;
2440 return ptr;
2441@}
2442
2443symrec *
38a92d50 2444getsym (char const *sym_name)
bfa74976
RS
2445@{
2446 symrec *ptr;
2447 for (ptr = sym_table; ptr != (symrec *) 0;
2448 ptr = (symrec *)ptr->next)
2449 if (strcmp (ptr->name,sym_name) == 0)
2450 return ptr;
2451 return 0;
2452@}
2453@end smallexample
2454
2455The function @code{yylex} must now recognize variables, numeric values, and
2456the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2457characters with a leading letter are recognized as either variables or
bfa74976
RS
2458functions depending on what the symbol table says about them.
2459
2460The string is passed to @code{getsym} for look up in the symbol table. If
2461the name appears in the table, a pointer to its location and its type
2462(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2463already in the table, then it is installed as a @code{VAR} using
2464@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2465returned to @code{yyparse}.
bfa74976
RS
2466
2467No change is needed in the handling of numeric values and arithmetic
2468operators in @code{yylex}.
2469
2470@smallexample
2471@group
2472#include <ctype.h>
18b519c0 2473@end group
13863333 2474
18b519c0 2475@group
13863333
AD
2476int
2477yylex (void)
bfa74976
RS
2478@{
2479 int c;
2480
72d2299c 2481 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2482 while ((c = getchar ()) == ' ' || c == '\t');
2483
2484 if (c == EOF)
2485 return 0;
2486@end group
2487
2488@group
2489 /* Char starts a number => parse the number. */
2490 if (c == '.' || isdigit (c))
2491 @{
2492 ungetc (c, stdin);
2493 scanf ("%lf", &yylval.val);
2494 return NUM;
2495 @}
2496@end group
2497
2498@group
2499 /* Char starts an identifier => read the name. */
2500 if (isalpha (c))
2501 @{
2502 symrec *s;
2503 static char *symbuf = 0;
2504 static int length = 0;
2505 int i;
2506@end group
2507
2508@group
2509 /* Initially make the buffer long enough
2510 for a 40-character symbol name. */
2511 if (length == 0)
2512 length = 40, symbuf = (char *)malloc (length + 1);
2513
2514 i = 0;
2515 do
2516@end group
2517@group
2518 @{
2519 /* If buffer is full, make it bigger. */
2520 if (i == length)
2521 @{
2522 length *= 2;
18b519c0 2523 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2524 @}
2525 /* Add this character to the buffer. */
2526 symbuf[i++] = c;
2527 /* Get another character. */
2528 c = getchar ();
2529 @}
2530@end group
2531@group
72d2299c 2532 while (isalnum (c));
bfa74976
RS
2533
2534 ungetc (c, stdin);
2535 symbuf[i] = '\0';
2536@end group
2537
2538@group
2539 s = getsym (symbuf);
2540 if (s == 0)
2541 s = putsym (symbuf, VAR);
2542 yylval.tptr = s;
2543 return s->type;
2544 @}
2545
2546 /* Any other character is a token by itself. */
2547 return c;
2548@}
2549@end group
2550@end smallexample
2551
72d2299c 2552This program is both powerful and flexible. You may easily add new
704a47c4
AD
2553functions, and it is a simple job to modify this code to install
2554predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2555
342b8b6e 2556@node Exercises
bfa74976
RS
2557@section Exercises
2558@cindex exercises
2559
2560@enumerate
2561@item
2562Add some new functions from @file{math.h} to the initialization list.
2563
2564@item
2565Add another array that contains constants and their values. Then
2566modify @code{init_table} to add these constants to the symbol table.
2567It will be easiest to give the constants type @code{VAR}.
2568
2569@item
2570Make the program report an error if the user refers to an
2571uninitialized variable in any way except to store a value in it.
2572@end enumerate
2573
342b8b6e 2574@node Grammar File
bfa74976
RS
2575@chapter Bison Grammar Files
2576
2577Bison takes as input a context-free grammar specification and produces a
2578C-language function that recognizes correct instances of the grammar.
2579
2580The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2581@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2582
2583@menu
2584* Grammar Outline:: Overall layout of the grammar file.
2585* Symbols:: Terminal and nonterminal symbols.
2586* Rules:: How to write grammar rules.
2587* Recursion:: Writing recursive rules.
2588* Semantics:: Semantic values and actions.
847bf1f5 2589* Locations:: Locations and actions.
bfa74976
RS
2590* Declarations:: All kinds of Bison declarations are described here.
2591* Multiple Parsers:: Putting more than one Bison parser in one program.
2592@end menu
2593
342b8b6e 2594@node Grammar Outline
bfa74976
RS
2595@section Outline of a Bison Grammar
2596
2597A Bison grammar file has four main sections, shown here with the
2598appropriate delimiters:
2599
2600@example
2601%@{
38a92d50 2602 @var{Prologue}
bfa74976
RS
2603%@}
2604
2605@var{Bison declarations}
2606
2607%%
2608@var{Grammar rules}
2609%%
2610
75f5aaea 2611@var{Epilogue}
bfa74976
RS
2612@end example
2613
2614Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2615As a @acronym{GNU} extension, @samp{//} introduces a comment that
2616continues until end of line.
bfa74976
RS
2617
2618@menu
75f5aaea 2619* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2620* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2621* Bison Declarations:: Syntax and usage of the Bison declarations section.
2622* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2623* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2624@end menu
2625
38a92d50 2626@node Prologue
75f5aaea
MA
2627@subsection The prologue
2628@cindex declarations section
2629@cindex Prologue
2630@cindex declarations
bfa74976 2631
f8e1c9e5
AD
2632The @var{Prologue} section contains macro definitions and declarations
2633of functions and variables that are used in the actions in the grammar
2634rules. These are copied to the beginning of the parser file so that
2635they precede the definition of @code{yyparse}. You can use
2636@samp{#include} to get the declarations from a header file. If you
2637don't need any C declarations, you may omit the @samp{%@{} and
2638@samp{%@}} delimiters that bracket this section.
bfa74976 2639
9c437126 2640The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2641of @samp{%@}} that is outside a comment, a string literal, or a
2642character constant.
2643
c732d2c6
AD
2644You may have more than one @var{Prologue} section, intermixed with the
2645@var{Bison declarations}. This allows you to have C and Bison
2646declarations that refer to each other. For example, the @code{%union}
2647declaration may use types defined in a header file, and you may wish to
2648prototype functions that take arguments of type @code{YYSTYPE}. This
2649can be done with two @var{Prologue} blocks, one before and one after the
2650@code{%union} declaration.
2651
2652@smallexample
2653%@{
aef3da86 2654 #define _GNU_SOURCE
38a92d50
PE
2655 #include <stdio.h>
2656 #include "ptypes.h"
c732d2c6
AD
2657%@}
2658
2659%union @{
779e7ceb 2660 long int n;
c732d2c6
AD
2661 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2662@}
2663
2664%@{
38a92d50
PE
2665 static void print_token_value (FILE *, int, YYSTYPE);
2666 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2667%@}
2668
2669@dots{}
2670@end smallexample
2671
aef3da86
PE
2672When in doubt, it is usually safer to put prologue code before all
2673Bison declarations, rather than after. For example, any definitions
2674of feature test macros like @code{_GNU_SOURCE} or
2675@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2676feature test macros can affect the behavior of Bison-generated
2677@code{#include} directives.
2678
2cbe6b7f
JD
2679@node Prologue Alternatives
2680@subsection Prologue Alternatives
2681@cindex Prologue Alternatives
2682
136a0f76 2683@findex %code
2cbe6b7f
JD
2684@findex %requires
2685@findex %provides
2686@findex %code-top
2687The functionality of @var{Prologue} sections can often be subtle and
2688inflexible.
2689As an alternative, Bison provides a set of more explicit directives:
a501eca9
JD
2690@code{%code}, @code{%requires}, @code{%provides}, and @code{%code-top}.
2691@xref{Table of Symbols,,Bison Symbols}.
2cbe6b7f
JD
2692
2693Look again at the example of the previous section:
2694
2695@smallexample
2696%@{
2697 #define _GNU_SOURCE
2698 #include <stdio.h>
2699 #include "ptypes.h"
2700%@}
2701
2702%union @{
2703 long int n;
2704 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2705@}
2706
2707%@{
2708 static void print_token_value (FILE *, int, YYSTYPE);
2709 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2710%@}
2711
2712@dots{}
2713@end smallexample
2714
2715@noindent
2716Notice that there are two @var{Prologue} sections here, but there's a subtle
2717distinction between their functionality.
2718For example, if you decide to override Bison's default definition for
2719@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2720definition?
2721You should write it in the first since Bison will insert that code into the
2722parser code file @emph{before} the default @code{YYLTYPE} definition.
2723In which @var{Prologue} section should you prototype an internal function,
2724@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2725arguments?
2726You should prototype it in the second since Bison will insert that code
2727@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2728
2729This distinction in functionality between the two @var{Prologue} sections is
2730established by the appearance of the @code{%union} between them.
a501eca9 2731This behavior raises a few questions.
2cbe6b7f
JD
2732First, why should the position of a @code{%union} affect definitions related to
2733@code{YYLTYPE} and @code{yytokentype}?
2734Second, what if there is no @code{%union}?
2735In that case, the second kind of @var{Prologue} section is not available.
2736This behavior is not intuitive.
2737
2738To avoid this subtle @code{%union} dependency, rewrite the example using
2739@code{%code-top} and @code{%code}.
2740Let's go ahead and add the new @code{YYLTYPE} definition and the
2741@code{trace_token} prototype at the same time:
2742
2743@smallexample
2744%code-top @{
2745 #define _GNU_SOURCE
2746 #include <stdio.h>
2747 /* The following code really belongs in a %requires; see below. */
2748 #include "ptypes.h"
2749 #define YYLTYPE YYLTYPE
2750 typedef struct YYLTYPE
2751 @{
2752 int first_line;
2753 int first_column;
2754 int last_line;
2755 int last_column;
2756 char *filename;
2757 @} YYLTYPE;
2758@}
2759
2760%union @{
2761 long int n;
2762 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2763@}
2764
2765%code @{
2766 static void print_token_value (FILE *, int, YYSTYPE);
2767 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2768 static void trace_token (enum yytokentype token, YYLTYPE loc);
2769@}
2770
2771@dots{}
2772@end smallexample
2773
2774@noindent
2775In this way, @code{%code-top} and @code{%code} achieve the same functionality
2776as the two kinds of @var{Prologue} sections, but it's always explicit which
2777kind you intend.
2778Moreover, both kinds are always available even in the absence of @code{%union}.
2779
a501eca9 2780The @code{%code-top} block above logically contains two parts.
2cbe6b7f
JD
2781The first two lines need to appear in the parser code file.
2782The fourth line is required by @code{YYSTYPE} and thus also needs to appear in
2783the parser code file.
2784However, if you've instructed Bison to generate a parser header file
67a9768e 2785(@pxref{Table of Symbols, ,%defines}), you probably want the fourth line to
2cbe6b7f
JD
2786appear before the @code{YYSTYPE} definition in that header file as well.
2787Also, the @code{YYLTYPE} definition should appear in the parser header file to
2788override the default @code{YYLTYPE} definition there.
2789
a501eca9 2790In other words, in the @code{%code-top} block above, all but the first two
2cbe6b7f
JD
2791lines are dependency code for externally exposed definitions (@code{YYSTYPE}
2792and @code{YYLTYPE}) required by Bison.
2793Thus, they belong in one or more @code{%requires}:
9bc0dd67
JD
2794
2795@smallexample
2cbe6b7f
JD
2796%code-top @{
2797 #define _GNU_SOURCE
2798 #include <stdio.h>
2799@}
2800
136a0f76 2801%requires @{
9bc0dd67
JD
2802 #include "ptypes.h"
2803@}
2804%union @{
2805 long int n;
2806 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2807@}
2808
2cbe6b7f
JD
2809%requires @{
2810 #define YYLTYPE YYLTYPE
2811 typedef struct YYLTYPE
2812 @{
2813 int first_line;
2814 int first_column;
2815 int last_line;
2816 int last_column;
2817 char *filename;
2818 @} YYLTYPE;
2819@}
2820
136a0f76 2821%code @{
2cbe6b7f
JD
2822 static void print_token_value (FILE *, int, YYSTYPE);
2823 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2824 static void trace_token (enum yytokentype token, YYLTYPE loc);
2825@}
2826
2827@dots{}
2828@end smallexample
2829
2830@noindent
2831Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2832definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
2833definitions in both the parser code file and the parser header file.
2834(By the same reasoning, @code{%requires} would also be the appropriate place to
2835write your own definition for @code{YYSTYPE}.)
2836
a501eca9
JD
2837When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
2838should prefer @code{%requires} over @code{%code-top} regardless of whether you
2839instruct Bison to generate a parser header file.
2840When you are writing code that you need Bison to insert only into the parser
2841code file and that has no special need to appear at the top of the code file,
2842you should prefer @code{%code} over @code{%code-top}.
2843These practices will make the purpose of each block of your code explicit to
2844Bison and to other developers reading your grammar file.
2845Following these practices, we expect @code{%code} and @code{%requires} to be
2846the most important of the four @var{Prologue} alternative directives discussed
2847in this section.
2848
2cbe6b7f
JD
2849At some point while developing your parser, you might decide to provide
2850@code{trace_token} to modules that are external to your parser.
2851Thus, you might wish for Bison to insert the prototype into both the parser
2852header file and the parser code file.
2853Since this function is not a dependency of any Bison-required definition (such
2854as @code{YYSTYPE}), it doesn't make sense to move its prototype to a
2855@code{%requires}.
2856More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
2857@code{%requires} is not sufficient.
2858Instead, move its prototype from the @code{%code} to a @code{%provides}:
2859
2860@smallexample
2861%code-top @{
2862 #define _GNU_SOURCE
136a0f76 2863 #include <stdio.h>
2cbe6b7f 2864@}
136a0f76 2865
2cbe6b7f
JD
2866%requires @{
2867 #include "ptypes.h"
2868@}
2869%union @{
2870 long int n;
2871 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2872@}
2873
2874%requires @{
2875 #define YYLTYPE YYLTYPE
2876 typedef struct YYLTYPE
2877 @{
2878 int first_line;
2879 int first_column;
2880 int last_line;
2881 int last_column;
2882 char *filename;
2883 @} YYLTYPE;
2884@}
2885
2886%provides @{
2887 void trace_token (enum yytokentype token, YYLTYPE loc);
2888@}
2889
2890%code @{
9bc0dd67
JD
2891 static void print_token_value (FILE *, int, YYSTYPE);
2892 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2893@}
9bc0dd67
JD
2894
2895@dots{}
2896@end smallexample
2897
2cbe6b7f
JD
2898@noindent
2899Bison will insert the @code{trace_token} prototype into both the parser header
2900file and the parser code file after the definitions for @code{yytokentype},
2901@code{YYLTYPE}, and @code{YYSTYPE}.
2902
2903The above examples are careful to write directives in an order that reflects
2904the layout of the generated parser code and header files:
2905@code{%code-top}, @code{%requires}, @code{%provides}, and then @code{%code}.
a501eca9 2906While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2907this order, Bison does not require it.
2908Instead, Bison lets you choose an organization that makes sense to you.
2909
a501eca9 2910You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2911In that case, Bison concatenates the contained code in declaration order.
2912This is the only way in which the position of one of these directives within
2913the grammar file affects its functionality.
2914
2915The result of the previous two properties is greater flexibility in how you may
2916organize your grammar file.
2917For example, you may organize semantic-type-related directives by semantic
2918type:
2919
2920@smallexample
2921%requires @{ #include "type1.h" @}
2922%union @{ type1 field1; @}
2923%destructor @{ type1_free ($$); @} <field1>
2924%printer @{ type1_print ($$); @} <field1>
2925
2926%requires @{ #include "type2.h" @}
2927%union @{ type2 field2; @}
2928%destructor @{ type2_free ($$); @} <field2>
2929%printer @{ type2_print ($$); @} <field2>
2930@end smallexample
2931
2932@noindent
2933You could even place each of the above directive groups in the rules section of
2934the grammar file next to the set of rules that uses the associated semantic
2935type.
2936And you don't have to worry that some directive (like a @code{%union}) in the
2937definitions section is going to adversely affect their functionality in some
2938counter-intuitive manner just because it comes first.
2939Such an organization is not possible using @var{Prologue} sections.
2940
a501eca9
JD
2941This section has been concerned with explaining the advantages of the four
2942@var{Prologue} alternative directives over the original Yacc @var{Prologue}.
2943However, in most cases when using these directives, you shouldn't need to
2944think about all the low-level ordering issues discussed here.
2945Instead, you should simply use these directives to label each block of your
2946code according to its purpose and let Bison handle the ordering.
2947@code{%code} is the most generic label.
2948Move code to @code{%requires}, @code{%provides}, or @code{%code-top} as needed.
2949
342b8b6e 2950@node Bison Declarations
bfa74976
RS
2951@subsection The Bison Declarations Section
2952@cindex Bison declarations (introduction)
2953@cindex declarations, Bison (introduction)
2954
2955The @var{Bison declarations} section contains declarations that define
2956terminal and nonterminal symbols, specify precedence, and so on.
2957In some simple grammars you may not need any declarations.
2958@xref{Declarations, ,Bison Declarations}.
2959
342b8b6e 2960@node Grammar Rules
bfa74976
RS
2961@subsection The Grammar Rules Section
2962@cindex grammar rules section
2963@cindex rules section for grammar
2964
2965The @dfn{grammar rules} section contains one or more Bison grammar
2966rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2967
2968There must always be at least one grammar rule, and the first
2969@samp{%%} (which precedes the grammar rules) may never be omitted even
2970if it is the first thing in the file.
2971
38a92d50 2972@node Epilogue
75f5aaea 2973@subsection The epilogue
bfa74976 2974@cindex additional C code section
75f5aaea 2975@cindex epilogue
bfa74976
RS
2976@cindex C code, section for additional
2977
08e49d20
PE
2978The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2979the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2980place to put anything that you want to have in the parser file but which need
2981not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2982definitions of @code{yylex} and @code{yyerror} often go here. Because
2983C requires functions to be declared before being used, you often need
2984to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2985even if you define them in the Epilogue.
75f5aaea 2986@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2987
2988If the last section is empty, you may omit the @samp{%%} that separates it
2989from the grammar rules.
2990
f8e1c9e5
AD
2991The Bison parser itself contains many macros and identifiers whose names
2992start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2993any such names (except those documented in this manual) in the epilogue
2994of the grammar file.
bfa74976 2995
342b8b6e 2996@node Symbols
bfa74976
RS
2997@section Symbols, Terminal and Nonterminal
2998@cindex nonterminal symbol
2999@cindex terminal symbol
3000@cindex token type
3001@cindex symbol
3002
3003@dfn{Symbols} in Bison grammars represent the grammatical classifications
3004of the language.
3005
3006A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3007class of syntactically equivalent tokens. You use the symbol in grammar
3008rules to mean that a token in that class is allowed. The symbol is
3009represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3010function returns a token type code to indicate what kind of token has
3011been read. You don't need to know what the code value is; you can use
3012the symbol to stand for it.
bfa74976 3013
f8e1c9e5
AD
3014A @dfn{nonterminal symbol} stands for a class of syntactically
3015equivalent groupings. The symbol name is used in writing grammar rules.
3016By convention, it should be all lower case.
bfa74976
RS
3017
3018Symbol names can contain letters, digits (not at the beginning),
3019underscores and periods. Periods make sense only in nonterminals.
3020
931c7513 3021There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3022
3023@itemize @bullet
3024@item
3025A @dfn{named token type} is written with an identifier, like an
c827f760 3026identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3027such name must be defined with a Bison declaration such as
3028@code{%token}. @xref{Token Decl, ,Token Type Names}.
3029
3030@item
3031@cindex character token
3032@cindex literal token
3033@cindex single-character literal
931c7513
RS
3034A @dfn{character token type} (or @dfn{literal character token}) is
3035written in the grammar using the same syntax used in C for character
3036constants; for example, @code{'+'} is a character token type. A
3037character token type doesn't need to be declared unless you need to
3038specify its semantic value data type (@pxref{Value Type, ,Data Types of
3039Semantic Values}), associativity, or precedence (@pxref{Precedence,
3040,Operator Precedence}).
bfa74976
RS
3041
3042By convention, a character token type is used only to represent a
3043token that consists of that particular character. Thus, the token
3044type @code{'+'} is used to represent the character @samp{+} as a
3045token. Nothing enforces this convention, but if you depart from it,
3046your program will confuse other readers.
3047
3048All the usual escape sequences used in character literals in C can be
3049used in Bison as well, but you must not use the null character as a
72d2299c
PE
3050character literal because its numeric code, zero, signifies
3051end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3052for @code{yylex}}). Also, unlike standard C, trigraphs have no
3053special meaning in Bison character literals, nor is backslash-newline
3054allowed.
931c7513
RS
3055
3056@item
3057@cindex string token
3058@cindex literal string token
9ecbd125 3059@cindex multicharacter literal
931c7513
RS
3060A @dfn{literal string token} is written like a C string constant; for
3061example, @code{"<="} is a literal string token. A literal string token
3062doesn't need to be declared unless you need to specify its semantic
14ded682 3063value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3064(@pxref{Precedence}).
3065
3066You can associate the literal string token with a symbolic name as an
3067alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3068Declarations}). If you don't do that, the lexical analyzer has to
3069retrieve the token number for the literal string token from the
3070@code{yytname} table (@pxref{Calling Convention}).
3071
c827f760 3072@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3073
3074By convention, a literal string token is used only to represent a token
3075that consists of that particular string. Thus, you should use the token
3076type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3077does not enforce this convention, but if you depart from it, people who
931c7513
RS
3078read your program will be confused.
3079
3080All the escape sequences used in string literals in C can be used in
92ac3705
PE
3081Bison as well, except that you must not use a null character within a
3082string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3083meaning in Bison string literals, nor is backslash-newline allowed. A
3084literal string token must contain two or more characters; for a token
3085containing just one character, use a character token (see above).
bfa74976
RS
3086@end itemize
3087
3088How you choose to write a terminal symbol has no effect on its
3089grammatical meaning. That depends only on where it appears in rules and
3090on when the parser function returns that symbol.
3091
72d2299c
PE
3092The value returned by @code{yylex} is always one of the terminal
3093symbols, except that a zero or negative value signifies end-of-input.
3094Whichever way you write the token type in the grammar rules, you write
3095it the same way in the definition of @code{yylex}. The numeric code
3096for a character token type is simply the positive numeric code of the
3097character, so @code{yylex} can use the identical value to generate the
3098requisite code, though you may need to convert it to @code{unsigned
3099char} to avoid sign-extension on hosts where @code{char} is signed.
3100Each named token type becomes a C macro in
bfa74976 3101the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3102(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3103@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3104
3105If @code{yylex} is defined in a separate file, you need to arrange for the
3106token-type macro definitions to be available there. Use the @samp{-d}
3107option when you run Bison, so that it will write these macro definitions
3108into a separate header file @file{@var{name}.tab.h} which you can include
3109in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3110
72d2299c 3111If you want to write a grammar that is portable to any Standard C
9d9b8b70 3112host, you must use only nonnull character tokens taken from the basic
c827f760 3113execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3114digits, the 52 lower- and upper-case English letters, and the
3115characters in the following C-language string:
3116
3117@example
3118"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3119@end example
3120
f8e1c9e5
AD
3121The @code{yylex} function and Bison must use a consistent character set
3122and encoding for character tokens. For example, if you run Bison in an
3123@acronym{ASCII} environment, but then compile and run the resulting
3124program in an environment that uses an incompatible character set like
3125@acronym{EBCDIC}, the resulting program may not work because the tables
3126generated by Bison will assume @acronym{ASCII} numeric values for
3127character tokens. It is standard practice for software distributions to
3128contain C source files that were generated by Bison in an
3129@acronym{ASCII} environment, so installers on platforms that are
3130incompatible with @acronym{ASCII} must rebuild those files before
3131compiling them.
e966383b 3132
bfa74976
RS
3133The symbol @code{error} is a terminal symbol reserved for error recovery
3134(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3135In particular, @code{yylex} should never return this value. The default
3136value of the error token is 256, unless you explicitly assigned 256 to
3137one of your tokens with a @code{%token} declaration.
bfa74976 3138
342b8b6e 3139@node Rules
bfa74976
RS
3140@section Syntax of Grammar Rules
3141@cindex rule syntax
3142@cindex grammar rule syntax
3143@cindex syntax of grammar rules
3144
3145A Bison grammar rule has the following general form:
3146
3147@example
e425e872 3148@group
bfa74976
RS
3149@var{result}: @var{components}@dots{}
3150 ;
e425e872 3151@end group
bfa74976
RS
3152@end example
3153
3154@noindent
9ecbd125 3155where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3156and @var{components} are various terminal and nonterminal symbols that
13863333 3157are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3158
3159For example,
3160
3161@example
3162@group
3163exp: exp '+' exp
3164 ;
3165@end group
3166@end example
3167
3168@noindent
3169says that two groupings of type @code{exp}, with a @samp{+} token in between,
3170can be combined into a larger grouping of type @code{exp}.
3171
72d2299c
PE
3172White space in rules is significant only to separate symbols. You can add
3173extra white space as you wish.
bfa74976
RS
3174
3175Scattered among the components can be @var{actions} that determine
3176the semantics of the rule. An action looks like this:
3177
3178@example
3179@{@var{C statements}@}
3180@end example
3181
3182@noindent
287c78f6
PE
3183@cindex braced code
3184This is an example of @dfn{braced code}, that is, C code surrounded by
3185braces, much like a compound statement in C@. Braced code can contain
3186any sequence of C tokens, so long as its braces are balanced. Bison
3187does not check the braced code for correctness directly; it merely
3188copies the code to the output file, where the C compiler can check it.
3189
3190Within braced code, the balanced-brace count is not affected by braces
3191within comments, string literals, or character constants, but it is
3192affected by the C digraphs @samp{<%} and @samp{%>} that represent
3193braces. At the top level braced code must be terminated by @samp{@}}
3194and not by a digraph. Bison does not look for trigraphs, so if braced
3195code uses trigraphs you should ensure that they do not affect the
3196nesting of braces or the boundaries of comments, string literals, or
3197character constants.
3198
bfa74976
RS
3199Usually there is only one action and it follows the components.
3200@xref{Actions}.
3201
3202@findex |
3203Multiple rules for the same @var{result} can be written separately or can
3204be joined with the vertical-bar character @samp{|} as follows:
3205
bfa74976
RS
3206@example
3207@group
3208@var{result}: @var{rule1-components}@dots{}
3209 | @var{rule2-components}@dots{}
3210 @dots{}
3211 ;
3212@end group
3213@end example
bfa74976
RS
3214
3215@noindent
3216They are still considered distinct rules even when joined in this way.
3217
3218If @var{components} in a rule is empty, it means that @var{result} can
3219match the empty string. For example, here is how to define a
3220comma-separated sequence of zero or more @code{exp} groupings:
3221
3222@example
3223@group
3224expseq: /* empty */
3225 | expseq1
3226 ;
3227@end group
3228
3229@group
3230expseq1: exp
3231 | expseq1 ',' exp
3232 ;
3233@end group
3234@end example
3235
3236@noindent
3237It is customary to write a comment @samp{/* empty */} in each rule
3238with no components.
3239
342b8b6e 3240@node Recursion
bfa74976
RS
3241@section Recursive Rules
3242@cindex recursive rule
3243
f8e1c9e5
AD
3244A rule is called @dfn{recursive} when its @var{result} nonterminal
3245appears also on its right hand side. Nearly all Bison grammars need to
3246use recursion, because that is the only way to define a sequence of any
3247number of a particular thing. Consider this recursive definition of a
9ecbd125 3248comma-separated sequence of one or more expressions:
bfa74976
RS
3249
3250@example
3251@group
3252expseq1: exp
3253 | expseq1 ',' exp
3254 ;
3255@end group
3256@end example
3257
3258@cindex left recursion
3259@cindex right recursion
3260@noindent
3261Since the recursive use of @code{expseq1} is the leftmost symbol in the
3262right hand side, we call this @dfn{left recursion}. By contrast, here
3263the same construct is defined using @dfn{right recursion}:
3264
3265@example
3266@group
3267expseq1: exp
3268 | exp ',' expseq1
3269 ;
3270@end group
3271@end example
3272
3273@noindent
ec3bc396
AD
3274Any kind of sequence can be defined using either left recursion or right
3275recursion, but you should always use left recursion, because it can
3276parse a sequence of any number of elements with bounded stack space.
3277Right recursion uses up space on the Bison stack in proportion to the
3278number of elements in the sequence, because all the elements must be
3279shifted onto the stack before the rule can be applied even once.
3280@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3281of this.
bfa74976
RS
3282
3283@cindex mutual recursion
3284@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3285rule does not appear directly on its right hand side, but does appear
3286in rules for other nonterminals which do appear on its right hand
13863333 3287side.
bfa74976
RS
3288
3289For example:
3290
3291@example
3292@group
3293expr: primary
3294 | primary '+' primary
3295 ;
3296@end group
3297
3298@group
3299primary: constant
3300 | '(' expr ')'
3301 ;
3302@end group
3303@end example
3304
3305@noindent
3306defines two mutually-recursive nonterminals, since each refers to the
3307other.
3308
342b8b6e 3309@node Semantics
bfa74976
RS
3310@section Defining Language Semantics
3311@cindex defining language semantics
13863333 3312@cindex language semantics, defining
bfa74976
RS
3313
3314The grammar rules for a language determine only the syntax. The semantics
3315are determined by the semantic values associated with various tokens and
3316groupings, and by the actions taken when various groupings are recognized.
3317
3318For example, the calculator calculates properly because the value
3319associated with each expression is the proper number; it adds properly
3320because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3321the numbers associated with @var{x} and @var{y}.
3322
3323@menu
3324* Value Type:: Specifying one data type for all semantic values.
3325* Multiple Types:: Specifying several alternative data types.
3326* Actions:: An action is the semantic definition of a grammar rule.
3327* Action Types:: Specifying data types for actions to operate on.
3328* Mid-Rule Actions:: Most actions go at the end of a rule.
3329 This says when, why and how to use the exceptional
3330 action in the middle of a rule.
3331@end menu
3332
342b8b6e 3333@node Value Type
bfa74976
RS
3334@subsection Data Types of Semantic Values
3335@cindex semantic value type
3336@cindex value type, semantic
3337@cindex data types of semantic values
3338@cindex default data type
3339
3340In a simple program it may be sufficient to use the same data type for
3341the semantic values of all language constructs. This was true in the
c827f760 3342@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3343Notation Calculator}).
bfa74976 3344
ddc8ede1
PE
3345Bison normally uses the type @code{int} for semantic values if your
3346program uses the same data type for all language constructs. To
bfa74976
RS
3347specify some other type, define @code{YYSTYPE} as a macro, like this:
3348
3349@example
3350#define YYSTYPE double
3351@end example
3352
3353@noindent
50cce58e
PE
3354@code{YYSTYPE}'s replacement list should be a type name
3355that does not contain parentheses or square brackets.
342b8b6e 3356This macro definition must go in the prologue of the grammar file
75f5aaea 3357(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3358
342b8b6e 3359@node Multiple Types
bfa74976
RS
3360@subsection More Than One Value Type
3361
3362In most programs, you will need different data types for different kinds
3363of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3364@code{int} or @code{long int}, while a string constant needs type
3365@code{char *}, and an identifier might need a pointer to an entry in the
3366symbol table.
bfa74976
RS
3367
3368To use more than one data type for semantic values in one parser, Bison
3369requires you to do two things:
3370
3371@itemize @bullet
3372@item
ddc8ede1 3373Specify the entire collection of possible data types, either by using the
704a47c4 3374@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3375Value Types}), or by using a @code{typedef} or a @code{#define} to
3376define @code{YYSTYPE} to be a union type whose member names are
3377the type tags.
bfa74976
RS
3378
3379@item
14ded682
AD
3380Choose one of those types for each symbol (terminal or nonterminal) for
3381which semantic values are used. This is done for tokens with the
3382@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3383and for groupings with the @code{%type} Bison declaration (@pxref{Type
3384Decl, ,Nonterminal Symbols}).
bfa74976
RS
3385@end itemize
3386
342b8b6e 3387@node Actions
bfa74976
RS
3388@subsection Actions
3389@cindex action
3390@vindex $$
3391@vindex $@var{n}
3392
3393An action accompanies a syntactic rule and contains C code to be executed
3394each time an instance of that rule is recognized. The task of most actions
3395is to compute a semantic value for the grouping built by the rule from the
3396semantic values associated with tokens or smaller groupings.
3397
287c78f6
PE
3398An action consists of braced code containing C statements, and can be
3399placed at any position in the rule;
704a47c4
AD
3400it is executed at that position. Most rules have just one action at the
3401end of the rule, following all the components. Actions in the middle of
3402a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3403Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3404
3405The C code in an action can refer to the semantic values of the components
3406matched by the rule with the construct @code{$@var{n}}, which stands for
3407the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3408being constructed is @code{$$}. Bison translates both of these
3409constructs into expressions of the appropriate type when it copies the
3410actions into the parser file. @code{$$} is translated to a modifiable
3411lvalue, so it can be assigned to.
bfa74976
RS
3412
3413Here is a typical example:
3414
3415@example
3416@group
3417exp: @dots{}
3418 | exp '+' exp
3419 @{ $$ = $1 + $3; @}
3420@end group
3421@end example
3422
3423@noindent
3424This rule constructs an @code{exp} from two smaller @code{exp} groupings
3425connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3426refer to the semantic values of the two component @code{exp} groupings,
3427which are the first and third symbols on the right hand side of the rule.
3428The sum is stored into @code{$$} so that it becomes the semantic value of
3429the addition-expression just recognized by the rule. If there were a
3430useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3431referred to as @code{$2}.
bfa74976 3432
3ded9a63
AD
3433Note that the vertical-bar character @samp{|} is really a rule
3434separator, and actions are attached to a single rule. This is a
3435difference with tools like Flex, for which @samp{|} stands for either
3436``or'', or ``the same action as that of the next rule''. In the
3437following example, the action is triggered only when @samp{b} is found:
3438
3439@example
3440@group
3441a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3442@end group
3443@end example
3444
bfa74976
RS
3445@cindex default action
3446If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3447@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3448becomes the value of the whole rule. Of course, the default action is
3449valid only if the two data types match. There is no meaningful default
3450action for an empty rule; every empty rule must have an explicit action
3451unless the rule's value does not matter.
bfa74976
RS
3452
3453@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3454to tokens and groupings on the stack @emph{before} those that match the
3455current rule. This is a very risky practice, and to use it reliably
3456you must be certain of the context in which the rule is applied. Here
3457is a case in which you can use this reliably:
3458
3459@example
3460@group
3461foo: expr bar '+' expr @{ @dots{} @}
3462 | expr bar '-' expr @{ @dots{} @}
3463 ;
3464@end group
3465
3466@group
3467bar: /* empty */
3468 @{ previous_expr = $0; @}
3469 ;
3470@end group
3471@end example
3472
3473As long as @code{bar} is used only in the fashion shown here, @code{$0}
3474always refers to the @code{expr} which precedes @code{bar} in the
3475definition of @code{foo}.
3476
32c29292 3477@vindex yylval
742e4900 3478It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3479any, from a semantic action.
3480This semantic value is stored in @code{yylval}.
3481@xref{Action Features, ,Special Features for Use in Actions}.
3482
342b8b6e 3483@node Action Types
bfa74976
RS
3484@subsection Data Types of Values in Actions
3485@cindex action data types
3486@cindex data types in actions
3487
3488If you have chosen a single data type for semantic values, the @code{$$}
3489and @code{$@var{n}} constructs always have that data type.
3490
3491If you have used @code{%union} to specify a variety of data types, then you
3492must declare a choice among these types for each terminal or nonterminal
3493symbol that can have a semantic value. Then each time you use @code{$$} or
3494@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3495in the rule. In this example,
bfa74976
RS
3496
3497@example
3498@group
3499exp: @dots{}
3500 | exp '+' exp
3501 @{ $$ = $1 + $3; @}
3502@end group
3503@end example
3504
3505@noindent
3506@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3507have the data type declared for the nonterminal symbol @code{exp}. If
3508@code{$2} were used, it would have the data type declared for the
e0c471a9 3509terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3510
3511Alternatively, you can specify the data type when you refer to the value,
3512by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3513reference. For example, if you have defined types as shown here:
3514
3515@example
3516@group
3517%union @{
3518 int itype;
3519 double dtype;
3520@}
3521@end group
3522@end example
3523
3524@noindent
3525then you can write @code{$<itype>1} to refer to the first subunit of the
3526rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3527
342b8b6e 3528@node Mid-Rule Actions
bfa74976
RS
3529@subsection Actions in Mid-Rule
3530@cindex actions in mid-rule
3531@cindex mid-rule actions
3532
3533Occasionally it is useful to put an action in the middle of a rule.
3534These actions are written just like usual end-of-rule actions, but they
3535are executed before the parser even recognizes the following components.
3536
3537A mid-rule action may refer to the components preceding it using
3538@code{$@var{n}}, but it may not refer to subsequent components because
3539it is run before they are parsed.
3540
3541The mid-rule action itself counts as one of the components of the rule.
3542This makes a difference when there is another action later in the same rule
3543(and usually there is another at the end): you have to count the actions
3544along with the symbols when working out which number @var{n} to use in
3545@code{$@var{n}}.
3546
3547The mid-rule action can also have a semantic value. The action can set
3548its value with an assignment to @code{$$}, and actions later in the rule
3549can refer to the value using @code{$@var{n}}. Since there is no symbol
3550to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3551in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3552specify a data type each time you refer to this value.
bfa74976
RS
3553
3554There is no way to set the value of the entire rule with a mid-rule
3555action, because assignments to @code{$$} do not have that effect. The
3556only way to set the value for the entire rule is with an ordinary action
3557at the end of the rule.
3558
3559Here is an example from a hypothetical compiler, handling a @code{let}
3560statement that looks like @samp{let (@var{variable}) @var{statement}} and
3561serves to create a variable named @var{variable} temporarily for the
3562duration of @var{statement}. To parse this construct, we must put
3563@var{variable} into the symbol table while @var{statement} is parsed, then
3564remove it afterward. Here is how it is done:
3565
3566@example
3567@group
3568stmt: LET '(' var ')'
3569 @{ $<context>$ = push_context ();
3570 declare_variable ($3); @}
3571 stmt @{ $$ = $6;
3572 pop_context ($<context>5); @}
3573@end group
3574@end example
3575
3576@noindent
3577As soon as @samp{let (@var{variable})} has been recognized, the first
3578action is run. It saves a copy of the current semantic context (the
3579list of accessible variables) as its semantic value, using alternative
3580@code{context} in the data-type union. Then it calls
3581@code{declare_variable} to add the new variable to that list. Once the
3582first action is finished, the embedded statement @code{stmt} can be
3583parsed. Note that the mid-rule action is component number 5, so the
3584@samp{stmt} is component number 6.
3585
3586After the embedded statement is parsed, its semantic value becomes the
3587value of the entire @code{let}-statement. Then the semantic value from the
3588earlier action is used to restore the prior list of variables. This
3589removes the temporary @code{let}-variable from the list so that it won't
3590appear to exist while the rest of the program is parsed.
3591
841a7737
JD
3592@findex %destructor
3593@cindex discarded symbols, mid-rule actions
3594@cindex error recovery, mid-rule actions
3595In the above example, if the parser initiates error recovery (@pxref{Error
3596Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3597it might discard the previous semantic context @code{$<context>5} without
3598restoring it.
3599Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3600Discarded Symbols}).
ec5479ce
JD
3601However, Bison currently provides no means to declare a destructor specific to
3602a particular mid-rule action's semantic value.
841a7737
JD
3603
3604One solution is to bury the mid-rule action inside a nonterminal symbol and to
3605declare a destructor for that symbol:
3606
3607@example
3608@group
3609%type <context> let
3610%destructor @{ pop_context ($$); @} let
3611
3612%%
3613
3614stmt: let stmt
3615 @{ $$ = $2;
3616 pop_context ($1); @}
3617 ;
3618
3619let: LET '(' var ')'
3620 @{ $$ = push_context ();
3621 declare_variable ($3); @}
3622 ;
3623
3624@end group
3625@end example
3626
3627@noindent
3628Note that the action is now at the end of its rule.
3629Any mid-rule action can be converted to an end-of-rule action in this way, and
3630this is what Bison actually does to implement mid-rule actions.
3631
bfa74976
RS
3632Taking action before a rule is completely recognized often leads to
3633conflicts since the parser must commit to a parse in order to execute the
3634action. For example, the following two rules, without mid-rule actions,
3635can coexist in a working parser because the parser can shift the open-brace
3636token and look at what follows before deciding whether there is a
3637declaration or not:
3638
3639@example
3640@group
3641compound: '@{' declarations statements '@}'
3642 | '@{' statements '@}'
3643 ;
3644@end group
3645@end example
3646
3647@noindent
3648But when we add a mid-rule action as follows, the rules become nonfunctional:
3649
3650@example
3651@group
3652compound: @{ prepare_for_local_variables (); @}
3653 '@{' declarations statements '@}'
3654@end group
3655@group
3656 | '@{' statements '@}'
3657 ;
3658@end group
3659@end example
3660
3661@noindent
3662Now the parser is forced to decide whether to run the mid-rule action
3663when it has read no farther than the open-brace. In other words, it
3664must commit to using one rule or the other, without sufficient
3665information to do it correctly. (The open-brace token is what is called
742e4900
JD
3666the @dfn{lookahead} token at this time, since the parser is still
3667deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3668
3669You might think that you could correct the problem by putting identical
3670actions into the two rules, like this:
3671
3672@example
3673@group
3674compound: @{ prepare_for_local_variables (); @}
3675 '@{' declarations statements '@}'
3676 | @{ prepare_for_local_variables (); @}
3677 '@{' statements '@}'
3678 ;
3679@end group
3680@end example
3681
3682@noindent
3683But this does not help, because Bison does not realize that the two actions
3684are identical. (Bison never tries to understand the C code in an action.)
3685
3686If the grammar is such that a declaration can be distinguished from a
3687statement by the first token (which is true in C), then one solution which
3688does work is to put the action after the open-brace, like this:
3689
3690@example
3691@group
3692compound: '@{' @{ prepare_for_local_variables (); @}
3693 declarations statements '@}'
3694 | '@{' statements '@}'
3695 ;
3696@end group
3697@end example
3698
3699@noindent
3700Now the first token of the following declaration or statement,
3701which would in any case tell Bison which rule to use, can still do so.
3702
3703Another solution is to bury the action inside a nonterminal symbol which
3704serves as a subroutine:
3705
3706@example
3707@group
3708subroutine: /* empty */
3709 @{ prepare_for_local_variables (); @}
3710 ;
3711
3712@end group
3713
3714@group
3715compound: subroutine
3716 '@{' declarations statements '@}'
3717 | subroutine
3718 '@{' statements '@}'
3719 ;
3720@end group
3721@end example
3722
3723@noindent
3724Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3725deciding which rule for @code{compound} it will eventually use.
bfa74976 3726
342b8b6e 3727@node Locations
847bf1f5
AD
3728@section Tracking Locations
3729@cindex location
95923bd6
AD
3730@cindex textual location
3731@cindex location, textual
847bf1f5
AD
3732
3733Though grammar rules and semantic actions are enough to write a fully
72d2299c 3734functional parser, it can be useful to process some additional information,
3e259915
MA
3735especially symbol locations.
3736
704a47c4
AD
3737The way locations are handled is defined by providing a data type, and
3738actions to take when rules are matched.
847bf1f5
AD
3739
3740@menu
3741* Location Type:: Specifying a data type for locations.
3742* Actions and Locations:: Using locations in actions.
3743* Location Default Action:: Defining a general way to compute locations.
3744@end menu
3745
342b8b6e 3746@node Location Type
847bf1f5
AD
3747@subsection Data Type of Locations
3748@cindex data type of locations
3749@cindex default location type
3750
3751Defining a data type for locations is much simpler than for semantic values,
3752since all tokens and groupings always use the same type.
3753
50cce58e
PE
3754You can specify the type of locations by defining a macro called
3755@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3756defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3757When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3758four members:
3759
3760@example
6273355b 3761typedef struct YYLTYPE
847bf1f5
AD
3762@{
3763 int first_line;
3764 int first_column;
3765 int last_line;
3766 int last_column;
6273355b 3767@} YYLTYPE;
847bf1f5
AD
3768@end example
3769
cd48d21d
AD
3770At the beginning of the parsing, Bison initializes all these fields to 1
3771for @code{yylloc}.
3772
342b8b6e 3773@node Actions and Locations
847bf1f5
AD
3774@subsection Actions and Locations
3775@cindex location actions
3776@cindex actions, location
3777@vindex @@$
3778@vindex @@@var{n}
3779
3780Actions are not only useful for defining language semantics, but also for
3781describing the behavior of the output parser with locations.
3782
3783The most obvious way for building locations of syntactic groupings is very
72d2299c 3784similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3785constructs can be used to access the locations of the elements being matched.
3786The location of the @var{n}th component of the right hand side is
3787@code{@@@var{n}}, while the location of the left hand side grouping is
3788@code{@@$}.
3789
3e259915 3790Here is a basic example using the default data type for locations:
847bf1f5
AD
3791
3792@example
3793@group
3794exp: @dots{}
3e259915 3795 | exp '/' exp
847bf1f5 3796 @{
3e259915
MA
3797 @@$.first_column = @@1.first_column;
3798 @@$.first_line = @@1.first_line;
847bf1f5
AD
3799 @@$.last_column = @@3.last_column;
3800 @@$.last_line = @@3.last_line;
3e259915
MA
3801 if ($3)
3802 $$ = $1 / $3;
3803 else
3804 @{
3805 $$ = 1;
4e03e201
AD
3806 fprintf (stderr,
3807 "Division by zero, l%d,c%d-l%d,c%d",
3808 @@3.first_line, @@3.first_column,
3809 @@3.last_line, @@3.last_column);
3e259915 3810 @}
847bf1f5
AD
3811 @}
3812@end group
3813@end example
3814
3e259915 3815As for semantic values, there is a default action for locations that is
72d2299c 3816run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3817beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3818last symbol.
3e259915 3819
72d2299c 3820With this default action, the location tracking can be fully automatic. The
3e259915
MA
3821example above simply rewrites this way:
3822
3823@example
3824@group
3825exp: @dots{}
3826 | exp '/' exp
3827 @{
3828 if ($3)
3829 $$ = $1 / $3;
3830 else
3831 @{
3832 $$ = 1;
4e03e201
AD
3833 fprintf (stderr,
3834 "Division by zero, l%d,c%d-l%d,c%d",
3835 @@3.first_line, @@3.first_column,
3836 @@3.last_line, @@3.last_column);
3e259915
MA
3837 @}
3838 @}
3839@end group
3840@end example
847bf1f5 3841
32c29292 3842@vindex yylloc
742e4900 3843It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3844from a semantic action.
3845This location is stored in @code{yylloc}.
3846@xref{Action Features, ,Special Features for Use in Actions}.
3847
342b8b6e 3848@node Location Default Action
847bf1f5
AD
3849@subsection Default Action for Locations
3850@vindex YYLLOC_DEFAULT
8710fc41 3851@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3852
72d2299c 3853Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3854locations are much more general than semantic values, there is room in
3855the output parser to redefine the default action to take for each
72d2299c 3856rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3857matched, before the associated action is run. It is also invoked
3858while processing a syntax error, to compute the error's location.
8710fc41
JD
3859Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3860parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3861of that ambiguity.
847bf1f5 3862
3e259915 3863Most of the time, this macro is general enough to suppress location
79282c6c 3864dedicated code from semantic actions.
847bf1f5 3865
72d2299c 3866The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3867the location of the grouping (the result of the computation). When a
766de5eb 3868rule is matched, the second parameter identifies locations of
96b93a3d 3869all right hand side elements of the rule being matched, and the third
8710fc41
JD
3870parameter is the size of the rule's right hand side.
3871When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3872right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3873When processing a syntax error, the second parameter identifies locations
3874of the symbols that were discarded during error processing, and the third
96b93a3d 3875parameter is the number of discarded symbols.
847bf1f5 3876
766de5eb 3877By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3878
766de5eb 3879@smallexample
847bf1f5 3880@group
766de5eb
PE
3881# define YYLLOC_DEFAULT(Current, Rhs, N) \
3882 do \
3883 if (N) \
3884 @{ \
3885 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3886 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3887 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3888 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3889 @} \
3890 else \
3891 @{ \
3892 (Current).first_line = (Current).last_line = \
3893 YYRHSLOC(Rhs, 0).last_line; \
3894 (Current).first_column = (Current).last_column = \
3895 YYRHSLOC(Rhs, 0).last_column; \
3896 @} \
3897 while (0)
847bf1f5 3898@end group
766de5eb 3899@end smallexample
676385e2 3900
766de5eb
PE
3901where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3902in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3903just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3904
3e259915 3905When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3906
3e259915 3907@itemize @bullet
79282c6c 3908@item
72d2299c 3909All arguments are free of side-effects. However, only the first one (the
3e259915 3910result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3911
3e259915 3912@item
766de5eb
PE
3913For consistency with semantic actions, valid indexes within the
3914right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3915valid index, and it refers to the symbol just before the reduction.
3916During error processing @var{n} is always positive.
0ae99356
PE
3917
3918@item
3919Your macro should parenthesize its arguments, if need be, since the
3920actual arguments may not be surrounded by parentheses. Also, your
3921macro should expand to something that can be used as a single
3922statement when it is followed by a semicolon.
3e259915 3923@end itemize
847bf1f5 3924
342b8b6e 3925@node Declarations
bfa74976
RS
3926@section Bison Declarations
3927@cindex declarations, Bison
3928@cindex Bison declarations
3929
3930The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3931used in formulating the grammar and the data types of semantic values.
3932@xref{Symbols}.
3933
3934All token type names (but not single-character literal tokens such as
3935@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3936declared if you need to specify which data type to use for the semantic
3937value (@pxref{Multiple Types, ,More Than One Value Type}).
3938
3939The first rule in the file also specifies the start symbol, by default.
3940If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3941it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3942Grammars}).
bfa74976
RS
3943
3944@menu
b50d2359 3945* Require Decl:: Requiring a Bison version.
bfa74976
RS
3946* Token Decl:: Declaring terminal symbols.
3947* Precedence Decl:: Declaring terminals with precedence and associativity.
3948* Union Decl:: Declaring the set of all semantic value types.
3949* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3950* Initial Action Decl:: Code run before parsing starts.
72f889cc 3951* Destructor Decl:: Declaring how symbols are freed.
d6328241 3952* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3953* Start Decl:: Specifying the start symbol.
3954* Pure Decl:: Requesting a reentrant parser.
3955* Decl Summary:: Table of all Bison declarations.
3956@end menu
3957
b50d2359
AD
3958@node Require Decl
3959@subsection Require a Version of Bison
3960@cindex version requirement
3961@cindex requiring a version of Bison
3962@findex %require
3963
3964You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3965the requirement is not met, @command{bison} exits with an error (exit
3966status 63).
b50d2359
AD
3967
3968@example
3969%require "@var{version}"
3970@end example
3971
342b8b6e 3972@node Token Decl
bfa74976
RS
3973@subsection Token Type Names
3974@cindex declaring token type names
3975@cindex token type names, declaring
931c7513 3976@cindex declaring literal string tokens
bfa74976
RS
3977@findex %token
3978
3979The basic way to declare a token type name (terminal symbol) is as follows:
3980
3981@example
3982%token @var{name}
3983@end example
3984
3985Bison will convert this into a @code{#define} directive in
3986the parser, so that the function @code{yylex} (if it is in this file)
3987can use the name @var{name} to stand for this token type's code.
3988
14ded682
AD
3989Alternatively, you can use @code{%left}, @code{%right}, or
3990@code{%nonassoc} instead of @code{%token}, if you wish to specify
3991associativity and precedence. @xref{Precedence Decl, ,Operator
3992Precedence}.
bfa74976
RS
3993
3994You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3995a decimal or hexadecimal integer value in the field immediately
3996following the token name:
bfa74976
RS
3997
3998@example
3999%token NUM 300
1452af69 4000%token XNUM 0x12d // a GNU extension
bfa74976
RS
4001@end example
4002
4003@noindent
4004It is generally best, however, to let Bison choose the numeric codes for
4005all token types. Bison will automatically select codes that don't conflict
e966383b 4006with each other or with normal characters.
bfa74976
RS
4007
4008In the event that the stack type is a union, you must augment the
4009@code{%token} or other token declaration to include the data type
704a47c4
AD
4010alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4011Than One Value Type}).
bfa74976
RS
4012
4013For example:
4014
4015@example
4016@group
4017%union @{ /* define stack type */
4018 double val;
4019 symrec *tptr;
4020@}
4021%token <val> NUM /* define token NUM and its type */
4022@end group
4023@end example
4024
931c7513
RS
4025You can associate a literal string token with a token type name by
4026writing the literal string at the end of a @code{%token}
4027declaration which declares the name. For example:
4028
4029@example
4030%token arrow "=>"
4031@end example
4032
4033@noindent
4034For example, a grammar for the C language might specify these names with
4035equivalent literal string tokens:
4036
4037@example
4038%token <operator> OR "||"
4039%token <operator> LE 134 "<="
4040%left OR "<="
4041@end example
4042
4043@noindent
4044Once you equate the literal string and the token name, you can use them
4045interchangeably in further declarations or the grammar rules. The
4046@code{yylex} function can use the token name or the literal string to
4047obtain the token type code number (@pxref{Calling Convention}).
4048
342b8b6e 4049@node Precedence Decl
bfa74976
RS
4050@subsection Operator Precedence
4051@cindex precedence declarations
4052@cindex declaring operator precedence
4053@cindex operator precedence, declaring
4054
4055Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4056declare a token and specify its precedence and associativity, all at
4057once. These are called @dfn{precedence declarations}.
704a47c4
AD
4058@xref{Precedence, ,Operator Precedence}, for general information on
4059operator precedence.
bfa74976
RS
4060
4061The syntax of a precedence declaration is the same as that of
4062@code{%token}: either
4063
4064@example
4065%left @var{symbols}@dots{}
4066@end example
4067
4068@noindent
4069or
4070
4071@example
4072%left <@var{type}> @var{symbols}@dots{}
4073@end example
4074
4075And indeed any of these declarations serves the purposes of @code{%token}.
4076But in addition, they specify the associativity and relative precedence for
4077all the @var{symbols}:
4078
4079@itemize @bullet
4080@item
4081The associativity of an operator @var{op} determines how repeated uses
4082of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4083@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4084grouping @var{y} with @var{z} first. @code{%left} specifies
4085left-associativity (grouping @var{x} with @var{y} first) and
4086@code{%right} specifies right-associativity (grouping @var{y} with
4087@var{z} first). @code{%nonassoc} specifies no associativity, which
4088means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4089considered a syntax error.
4090
4091@item
4092The precedence of an operator determines how it nests with other operators.
4093All the tokens declared in a single precedence declaration have equal
4094precedence and nest together according to their associativity.
4095When two tokens declared in different precedence declarations associate,
4096the one declared later has the higher precedence and is grouped first.
4097@end itemize
4098
342b8b6e 4099@node Union Decl
bfa74976
RS
4100@subsection The Collection of Value Types
4101@cindex declaring value types
4102@cindex value types, declaring
4103@findex %union
4104
287c78f6
PE
4105The @code{%union} declaration specifies the entire collection of
4106possible data types for semantic values. The keyword @code{%union} is
4107followed by braced code containing the same thing that goes inside a
4108@code{union} in C@.
bfa74976
RS
4109
4110For example:
4111
4112@example
4113@group
4114%union @{
4115 double val;
4116 symrec *tptr;
4117@}
4118@end group
4119@end example
4120
4121@noindent
4122This says that the two alternative types are @code{double} and @code{symrec
4123*}. They are given names @code{val} and @code{tptr}; these names are used
4124in the @code{%token} and @code{%type} declarations to pick one of the types
4125for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4126
6273355b
PE
4127As an extension to @acronym{POSIX}, a tag is allowed after the
4128@code{union}. For example:
4129
4130@example
4131@group
4132%union value @{
4133 double val;
4134 symrec *tptr;
4135@}
4136@end group
4137@end example
4138
d6ca7905 4139@noindent
6273355b
PE
4140specifies the union tag @code{value}, so the corresponding C type is
4141@code{union value}. If you do not specify a tag, it defaults to
4142@code{YYSTYPE}.
4143
d6ca7905
PE
4144As another extension to @acronym{POSIX}, you may specify multiple
4145@code{%union} declarations; their contents are concatenated. However,
4146only the first @code{%union} declaration can specify a tag.
4147
6273355b 4148Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4149a semicolon after the closing brace.
4150
ddc8ede1
PE
4151Instead of @code{%union}, you can define and use your own union type
4152@code{YYSTYPE} if your grammar contains at least one
4153@samp{<@var{type}>} tag. For example, you can put the following into
4154a header file @file{parser.h}:
4155
4156@example
4157@group
4158union YYSTYPE @{
4159 double val;
4160 symrec *tptr;
4161@};
4162typedef union YYSTYPE YYSTYPE;
4163@end group
4164@end example
4165
4166@noindent
4167and then your grammar can use the following
4168instead of @code{%union}:
4169
4170@example
4171@group
4172%@{
4173#include "parser.h"
4174%@}
4175%type <val> expr
4176%token <tptr> ID
4177@end group
4178@end example
4179
342b8b6e 4180@node Type Decl
bfa74976
RS
4181@subsection Nonterminal Symbols
4182@cindex declaring value types, nonterminals
4183@cindex value types, nonterminals, declaring
4184@findex %type
4185
4186@noindent
4187When you use @code{%union} to specify multiple value types, you must
4188declare the value type of each nonterminal symbol for which values are
4189used. This is done with a @code{%type} declaration, like this:
4190
4191@example
4192%type <@var{type}> @var{nonterminal}@dots{}
4193@end example
4194
4195@noindent
704a47c4
AD
4196Here @var{nonterminal} is the name of a nonterminal symbol, and
4197@var{type} is the name given in the @code{%union} to the alternative
4198that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4199can give any number of nonterminal symbols in the same @code{%type}
4200declaration, if they have the same value type. Use spaces to separate
4201the symbol names.
bfa74976 4202
931c7513
RS
4203You can also declare the value type of a terminal symbol. To do this,
4204use the same @code{<@var{type}>} construction in a declaration for the
4205terminal symbol. All kinds of token declarations allow
4206@code{<@var{type}>}.
4207
18d192f0
AD
4208@node Initial Action Decl
4209@subsection Performing Actions before Parsing
4210@findex %initial-action
4211
4212Sometimes your parser needs to perform some initializations before
4213parsing. The @code{%initial-action} directive allows for such arbitrary
4214code.
4215
4216@deffn {Directive} %initial-action @{ @var{code} @}
4217@findex %initial-action
287c78f6 4218Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4219@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4220@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4221@code{%parse-param}.
18d192f0
AD
4222@end deffn
4223
451364ed
AD
4224For instance, if your locations use a file name, you may use
4225
4226@example
48b16bbc 4227%parse-param @{ char const *file_name @};
451364ed
AD
4228%initial-action
4229@{
4626a15d 4230 @@$.initialize (file_name);
451364ed
AD
4231@};
4232@end example
4233
18d192f0 4234
72f889cc
AD
4235@node Destructor Decl
4236@subsection Freeing Discarded Symbols
4237@cindex freeing discarded symbols
4238@findex %destructor
12e35840
JD
4239@findex <*>
4240@findex <!>
a85284cf
AD
4241During error recovery (@pxref{Error Recovery}), symbols already pushed
4242on the stack and tokens coming from the rest of the file are discarded
4243until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4244or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4245symbols on the stack must be discarded. Even if the parser succeeds, it
4246must discard the start symbol.
258b75ca
PE
4247
4248When discarded symbols convey heap based information, this memory is
4249lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4250in traditional compilers, it is unacceptable for programs like shells or
4251protocol implementations that may parse and execute indefinitely.
258b75ca 4252
a85284cf
AD
4253The @code{%destructor} directive defines code that is called when a
4254symbol is automatically discarded.
72f889cc
AD
4255
4256@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4257@findex %destructor
287c78f6
PE
4258Invoke the braced @var{code} whenever the parser discards one of the
4259@var{symbols}.
4b367315 4260Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4261with the discarded symbol, and @code{@@$} designates its location.
4262The additional parser parameters are also available (@pxref{Parser Function, ,
4263The Parser Function @code{yyparse}}).
ec5479ce 4264
b2a0b7ca
JD
4265When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4266per-symbol @code{%destructor}.
4267You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4268tag among @var{symbols}.
b2a0b7ca 4269In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4270grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4271per-symbol @code{%destructor}.
4272
12e35840
JD
4273Finally, you can define two different kinds of default @code{%destructor}s.
4274You can place each of @code{<*>} and @code{<!>} in the @var{symbols} list of
4275exactly one @code{%destructor} declaration in your grammar file.
4276The parser will invoke the @var{code} associated with one of these whenever it
4277discards any user-defined grammar symbol that has no per-symbol and no per-type
4278@code{%destructor}.
4279The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4280symbol for which you have formally declared a semantic type tag (@code{%type}
4281counts as such a declaration, but @code{$<tag>$} does not).
4282The parser uses the @var{code} for @code{<!>} in the case of such a grammar
4283symbol that has no declared semantic type tag.
72f889cc
AD
4284@end deffn
4285
b2a0b7ca 4286@noindent
12e35840 4287For example:
72f889cc
AD
4288
4289@smallexample
ec5479ce
JD
4290%union @{ char *string; @}
4291%token <string> STRING1
4292%token <string> STRING2
4293%type <string> string1
4294%type <string> string2
b2a0b7ca
JD
4295%union @{ char character; @}
4296%token <character> CHR
4297%type <character> chr
12e35840
JD
4298%token TAGLESS
4299
b2a0b7ca 4300%destructor @{ @} <character>
12e35840
JD
4301%destructor @{ free ($$); @} <*>
4302%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
4303%destructor @{ printf ("Discarding tagless symbol.\n"); @} <!>
72f889cc
AD
4304@end smallexample
4305
4306@noindent
b2a0b7ca
JD
4307guarantees that, when the parser discards any user-defined symbol that has a
4308semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4309to @code{free} by default.
ec5479ce
JD
4310However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4311prints its line number to @code{stdout}.
4312It performs only the second @code{%destructor} in this case, so it invokes
4313@code{free} only once.
12e35840
JD
4314Finally, the parser merely prints a message whenever it discards any symbol,
4315such as @code{TAGLESS}, that has no semantic type tag.
4316
4317A Bison-generated parser invokes the default @code{%destructor}s only for
4318user-defined as opposed to Bison-defined symbols.
4319For example, the parser will not invoke either kind of default
4320@code{%destructor} for the special Bison-defined symbols @code{$accept},
4321@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4322none of which you can reference in your grammar.
4323It also will not invoke either for the @code{error} token (@pxref{Table of
4324Symbols, ,error}), which is always defined by Bison regardless of whether you
4325reference it in your grammar.
4326However, it may invoke one of them for the end token (token 0) if you
4327redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4328
4329@smallexample
4330%token END 0
4331@end smallexample
4332
12e35840
JD
4333@cindex actions in mid-rule
4334@cindex mid-rule actions
4335Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4336mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4337That is, Bison does not consider a mid-rule to have a semantic value if you do
4338not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4339@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4340rule.
4341However, if you do reference either, the Bison-generated parser will invoke the
4342@code{<!>} @code{%destructor} whenever it discards the mid-rule symbol.
4343
3508ce36
JD
4344@ignore
4345@noindent
4346In the future, it may be possible to redefine the @code{error} token as a
4347nonterminal that captures the discarded symbols.
4348In that case, the parser will invoke the default destructor for it as well.
4349@end ignore
4350
e757bb10
AD
4351@sp 1
4352
4353@cindex discarded symbols
4354@dfn{Discarded symbols} are the following:
4355
4356@itemize
4357@item
4358stacked symbols popped during the first phase of error recovery,
4359@item
4360incoming terminals during the second phase of error recovery,
4361@item
742e4900 4362the current lookahead and the entire stack (except the current
9d9b8b70 4363right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4364@item
4365the start symbol, when the parser succeeds.
e757bb10
AD
4366@end itemize
4367
9d9b8b70
PE
4368The parser can @dfn{return immediately} because of an explicit call to
4369@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4370exhaustion.
4371
4372Right-hand size symbols of a rule that explicitly triggers a syntax
4373error via @code{YYERROR} are not discarded automatically. As a rule
4374of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4375the memory.
e757bb10 4376
342b8b6e 4377@node Expect Decl
bfa74976
RS
4378@subsection Suppressing Conflict Warnings
4379@cindex suppressing conflict warnings
4380@cindex preventing warnings about conflicts
4381@cindex warnings, preventing
4382@cindex conflicts, suppressing warnings of
4383@findex %expect
d6328241 4384@findex %expect-rr
bfa74976
RS
4385
4386Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4387(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4388have harmless shift/reduce conflicts which are resolved in a predictable
4389way and would be difficult to eliminate. It is desirable to suppress
4390the warning about these conflicts unless the number of conflicts
4391changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4392
4393The declaration looks like this:
4394
4395@example
4396%expect @var{n}
4397@end example
4398
035aa4a0
PE
4399Here @var{n} is a decimal integer. The declaration says there should
4400be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4401Bison reports an error if the number of shift/reduce conflicts differs
4402from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4403
035aa4a0
PE
4404For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4405serious, and should be eliminated entirely. Bison will always report
4406reduce/reduce conflicts for these parsers. With @acronym{GLR}
4407parsers, however, both kinds of conflicts are routine; otherwise,
4408there would be no need to use @acronym{GLR} parsing. Therefore, it is
4409also possible to specify an expected number of reduce/reduce conflicts
4410in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4411
4412@example
4413%expect-rr @var{n}
4414@end example
4415
bfa74976
RS
4416In general, using @code{%expect} involves these steps:
4417
4418@itemize @bullet
4419@item
4420Compile your grammar without @code{%expect}. Use the @samp{-v} option
4421to get a verbose list of where the conflicts occur. Bison will also
4422print the number of conflicts.
4423
4424@item
4425Check each of the conflicts to make sure that Bison's default
4426resolution is what you really want. If not, rewrite the grammar and
4427go back to the beginning.
4428
4429@item
4430Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4431number which Bison printed. With @acronym{GLR} parsers, add an
4432@code{%expect-rr} declaration as well.
bfa74976
RS
4433@end itemize
4434
035aa4a0
PE
4435Now Bison will warn you if you introduce an unexpected conflict, but
4436will keep silent otherwise.
bfa74976 4437
342b8b6e 4438@node Start Decl
bfa74976
RS
4439@subsection The Start-Symbol
4440@cindex declaring the start symbol
4441@cindex start symbol, declaring
4442@cindex default start symbol
4443@findex %start
4444
4445Bison assumes by default that the start symbol for the grammar is the first
4446nonterminal specified in the grammar specification section. The programmer
4447may override this restriction with the @code{%start} declaration as follows:
4448
4449@example
4450%start @var{symbol}
4451@end example
4452
342b8b6e 4453@node Pure Decl
bfa74976
RS
4454@subsection A Pure (Reentrant) Parser
4455@cindex reentrant parser
4456@cindex pure parser
8c9a50be 4457@findex %pure-parser
bfa74976
RS
4458
4459A @dfn{reentrant} program is one which does not alter in the course of
4460execution; in other words, it consists entirely of @dfn{pure} (read-only)
4461code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4462for example, a nonreentrant program may not be safe to call from a signal
4463handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4464program must be called only within interlocks.
4465
70811b85 4466Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4467suitable for most uses, and it permits compatibility with Yacc. (The
4468standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4469statically allocated variables for communication with @code{yylex},
4470including @code{yylval} and @code{yylloc}.)
bfa74976 4471
70811b85 4472Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4473declaration @code{%pure-parser} says that you want the parser to be
70811b85 4474reentrant. It looks like this:
bfa74976
RS
4475
4476@example
8c9a50be 4477%pure-parser
bfa74976
RS
4478@end example
4479
70811b85
RS
4480The result is that the communication variables @code{yylval} and
4481@code{yylloc} become local variables in @code{yyparse}, and a different
4482calling convention is used for the lexical analyzer function
4483@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4484Parsers}, for the details of this. The variable @code{yynerrs} also
4485becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4486Reporting Function @code{yyerror}}). The convention for calling
4487@code{yyparse} itself is unchanged.
4488
4489Whether the parser is pure has nothing to do with the grammar rules.
4490You can generate either a pure parser or a nonreentrant parser from any
4491valid grammar.
bfa74976 4492
342b8b6e 4493@node Decl Summary
bfa74976
RS
4494@subsection Bison Declaration Summary
4495@cindex Bison declaration summary
4496@cindex declaration summary
4497@cindex summary, Bison declaration
4498
d8988b2f 4499Here is a summary of the declarations used to define a grammar:
bfa74976 4500
18b519c0 4501@deffn {Directive} %union
bfa74976
RS
4502Declare the collection of data types that semantic values may have
4503(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4504@end deffn
bfa74976 4505
18b519c0 4506@deffn {Directive} %token
bfa74976
RS
4507Declare a terminal symbol (token type name) with no precedence
4508or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4509@end deffn
bfa74976 4510
18b519c0 4511@deffn {Directive} %right
bfa74976
RS
4512Declare a terminal symbol (token type name) that is right-associative
4513(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4514@end deffn
bfa74976 4515
18b519c0 4516@deffn {Directive} %left
bfa74976
RS
4517Declare a terminal symbol (token type name) that is left-associative
4518(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4519@end deffn
bfa74976 4520
18b519c0 4521@deffn {Directive} %nonassoc
bfa74976 4522Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4523(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4524Using it in a way that would be associative is a syntax error.
4525@end deffn
4526
91d2c560 4527@ifset defaultprec
39a06c25 4528@deffn {Directive} %default-prec
22fccf95 4529Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4530(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4531@end deffn
91d2c560 4532@end ifset
bfa74976 4533
18b519c0 4534@deffn {Directive} %type
bfa74976
RS
4535Declare the type of semantic values for a nonterminal symbol
4536(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4537@end deffn
bfa74976 4538
18b519c0 4539@deffn {Directive} %start
89cab50d
AD
4540Specify the grammar's start symbol (@pxref{Start Decl, ,The
4541Start-Symbol}).
18b519c0 4542@end deffn
bfa74976 4543
18b519c0 4544@deffn {Directive} %expect
bfa74976
RS
4545Declare the expected number of shift-reduce conflicts
4546(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4547@end deffn
4548
bfa74976 4549
d8988b2f
AD
4550@sp 1
4551@noindent
4552In order to change the behavior of @command{bison}, use the following
4553directives:
4554
18b519c0 4555@deffn {Directive} %debug
4947ebdb
PE
4556In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4557already defined, so that the debugging facilities are compiled.
18b519c0 4558@end deffn
ec3bc396 4559@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4560
18b519c0 4561@deffn {Directive} %defines
4bfd5e4e
PE
4562Write a header file containing macro definitions for the token type
4563names defined in the grammar as well as a few other declarations.
d8988b2f 4564If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4565is named @file{@var{name}.h}.
d8988b2f 4566
b321737f 4567For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4568@code{YYSTYPE} is already defined as a macro or you have used a
4569@code{<@var{type}>} tag without using @code{%union}.
4570Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4571(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4572require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4573or type definition
f8e1c9e5
AD
4574(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4575arrange for these definitions to be propagated to all modules, e.g., by
4576putting them in a prerequisite header that is included both by your
4577parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4578
4579Unless your parser is pure, the output header declares @code{yylval}
4580as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4581Parser}.
4582
4583If you have also used locations, the output header declares
4584@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4585the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4586Locations}.
4587
f8e1c9e5
AD
4588This output file is normally essential if you wish to put the definition
4589of @code{yylex} in a separate source file, because @code{yylex}
4590typically needs to be able to refer to the above-mentioned declarations
4591and to the token type codes. @xref{Token Values, ,Semantic Values of
4592Tokens}.
9bc0dd67 4593
136a0f76
PB
4594@findex %requires
4595@findex %provides
4596If you have declared @code{%requires} or @code{%provides}, the output
34f98f46 4597header also contains their code.
136a0f76 4598@xref{Table of Symbols, ,%requires}.
18b519c0 4599@end deffn
d8988b2f 4600
18b519c0 4601@deffn {Directive} %destructor
258b75ca 4602Specify how the parser should reclaim the memory associated to
fa7e68c3 4603discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4604@end deffn
72f889cc 4605
18b519c0 4606@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4607Specify a prefix to use for all Bison output file names. The names are
4608chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4609@end deffn
d8988b2f 4610
18b519c0 4611@deffn {Directive} %locations
89cab50d
AD
4612Generate the code processing the locations (@pxref{Action Features,
4613,Special Features for Use in Actions}). This mode is enabled as soon as
4614the grammar uses the special @samp{@@@var{n}} tokens, but if your
4615grammar does not use it, using @samp{%locations} allows for more
6e649e65 4616accurate syntax error messages.
18b519c0 4617@end deffn
89cab50d 4618
18b519c0 4619@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4620Rename the external symbols used in the parser so that they start with
4621@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4622in C parsers
d8988b2f 4623is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4624@code{yylval}, @code{yychar}, @code{yydebug}, and
4625(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4626@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4627and so on. In C++ parsers, it is only the surrounding namespace which is
4628named @var{prefix} instead of @samp{yy}.
4629@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4630@end deffn
931c7513 4631
91d2c560 4632@ifset defaultprec
22fccf95
PE
4633@deffn {Directive} %no-default-prec
4634Do not assign a precedence to rules lacking an explicit @code{%prec}
4635modifier (@pxref{Contextual Precedence, ,Context-Dependent
4636Precedence}).
4637@end deffn
91d2c560 4638@end ifset
22fccf95 4639
18b519c0 4640@deffn {Directive} %no-parser
6deb4447
AD
4641Do not include any C code in the parser file; generate tables only. The
4642parser file contains just @code{#define} directives and static variable
4643declarations.
4644
4645This option also tells Bison to write the C code for the grammar actions
fa4d969f 4646into a file named @file{@var{file}.act}, in the form of a
6deb4447 4647brace-surrounded body fit for a @code{switch} statement.
18b519c0 4648@end deffn
6deb4447 4649
18b519c0 4650@deffn {Directive} %no-lines
931c7513
RS
4651Don't generate any @code{#line} preprocessor commands in the parser
4652file. Ordinarily Bison writes these commands in the parser file so that
4653the C compiler and debuggers will associate errors and object code with
4654your source file (the grammar file). This directive causes them to
4655associate errors with the parser file, treating it an independent source
4656file in its own right.
18b519c0 4657@end deffn
931c7513 4658
fa4d969f
PE
4659@deffn {Directive} %output="@var{file}"
4660Specify @var{file} for the parser file.
18b519c0 4661@end deffn
6deb4447 4662
18b519c0 4663@deffn {Directive} %pure-parser
d8988b2f
AD
4664Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4665(Reentrant) Parser}).
18b519c0 4666@end deffn
6deb4447 4667
b50d2359 4668@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4669Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4670Require a Version of Bison}.
b50d2359
AD
4671@end deffn
4672
18b519c0 4673@deffn {Directive} %token-table
931c7513
RS
4674Generate an array of token names in the parser file. The name of the
4675array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4676token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4677three elements of @code{yytname} correspond to the predefined tokens
4678@code{"$end"},
88bce5a2
AD
4679@code{"error"}, and @code{"$undefined"}; after these come the symbols
4680defined in the grammar file.
931c7513 4681
9e0876fb
PE
4682The name in the table includes all the characters needed to represent
4683the token in Bison. For single-character literals and literal
4684strings, this includes the surrounding quoting characters and any
4685escape sequences. For example, the Bison single-character literal
4686@code{'+'} corresponds to a three-character name, represented in C as
4687@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4688corresponds to a five-character name, represented in C as
4689@code{"\"\\\\/\""}.
931c7513 4690
8c9a50be 4691When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4692definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4693@code{YYNRULES}, and @code{YYNSTATES}:
4694
4695@table @code
4696@item YYNTOKENS
4697The highest token number, plus one.
4698@item YYNNTS
9ecbd125 4699The number of nonterminal symbols.
931c7513
RS
4700@item YYNRULES
4701The number of grammar rules,
4702@item YYNSTATES
4703The number of parser states (@pxref{Parser States}).
4704@end table
18b519c0 4705@end deffn
d8988b2f 4706
18b519c0 4707@deffn {Directive} %verbose
d8988b2f 4708Write an extra output file containing verbose descriptions of the
742e4900 4709parser states and what is done for each type of lookahead token in
72d2299c 4710that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4711information.
18b519c0 4712@end deffn
d8988b2f 4713
18b519c0 4714@deffn {Directive} %yacc
d8988b2f
AD
4715Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4716including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4717@end deffn
d8988b2f
AD
4718
4719
342b8b6e 4720@node Multiple Parsers
bfa74976
RS
4721@section Multiple Parsers in the Same Program
4722
4723Most programs that use Bison parse only one language and therefore contain
4724only one Bison parser. But what if you want to parse more than one
4725language with the same program? Then you need to avoid a name conflict
4726between different definitions of @code{yyparse}, @code{yylval}, and so on.
4727
4728The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4729(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4730functions and variables of the Bison parser to start with @var{prefix}
4731instead of @samp{yy}. You can use this to give each parser distinct
4732names that do not conflict.
bfa74976
RS
4733
4734The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4735@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4736@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4737the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4738
4739@strong{All the other variables and macros associated with Bison are not
4740renamed.} These others are not global; there is no conflict if the same
4741name is used in different parsers. For example, @code{YYSTYPE} is not
4742renamed, but defining this in different ways in different parsers causes
4743no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4744
4745The @samp{-p} option works by adding macro definitions to the beginning
4746of the parser source file, defining @code{yyparse} as
4747@code{@var{prefix}parse}, and so on. This effectively substitutes one
4748name for the other in the entire parser file.
4749
342b8b6e 4750@node Interface
bfa74976
RS
4751@chapter Parser C-Language Interface
4752@cindex C-language interface
4753@cindex interface
4754
4755The Bison parser is actually a C function named @code{yyparse}. Here we
4756describe the interface conventions of @code{yyparse} and the other
4757functions that it needs to use.
4758
4759Keep in mind that the parser uses many C identifiers starting with
4760@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4761identifier (aside from those in this manual) in an action or in epilogue
4762in the grammar file, you are likely to run into trouble.
bfa74976
RS
4763
4764@menu
4765* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4766* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4767 which reads tokens.
4768* Error Reporting:: You must supply a function @code{yyerror}.
4769* Action Features:: Special features for use in actions.
f7ab6a50
PE
4770* Internationalization:: How to let the parser speak in the user's
4771 native language.
bfa74976
RS
4772@end menu
4773
342b8b6e 4774@node Parser Function
bfa74976
RS
4775@section The Parser Function @code{yyparse}
4776@findex yyparse
4777
4778You call the function @code{yyparse} to cause parsing to occur. This
4779function reads tokens, executes actions, and ultimately returns when it
4780encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4781write an action which directs @code{yyparse} to return immediately
4782without reading further.
bfa74976 4783
2a8d363a
AD
4784
4785@deftypefun int yyparse (void)
bfa74976
RS
4786The value returned by @code{yyparse} is 0 if parsing was successful (return
4787is due to end-of-input).
4788
b47dbebe
PE
4789The value is 1 if parsing failed because of invalid input, i.e., input
4790that contains a syntax error or that causes @code{YYABORT} to be
4791invoked.
4792
4793The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4794@end deftypefun
bfa74976
RS
4795
4796In an action, you can cause immediate return from @code{yyparse} by using
4797these macros:
4798
2a8d363a 4799@defmac YYACCEPT
bfa74976
RS
4800@findex YYACCEPT
4801Return immediately with value 0 (to report success).
2a8d363a 4802@end defmac
bfa74976 4803
2a8d363a 4804@defmac YYABORT
bfa74976
RS
4805@findex YYABORT
4806Return immediately with value 1 (to report failure).
2a8d363a
AD
4807@end defmac
4808
4809If you use a reentrant parser, you can optionally pass additional
4810parameter information to it in a reentrant way. To do so, use the
4811declaration @code{%parse-param}:
4812
feeb0eda 4813@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4814@findex %parse-param
287c78f6
PE
4815Declare that an argument declared by the braced-code
4816@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4817The @var{argument-declaration} is used when declaring
feeb0eda
PE
4818functions or prototypes. The last identifier in
4819@var{argument-declaration} must be the argument name.
2a8d363a
AD
4820@end deffn
4821
4822Here's an example. Write this in the parser:
4823
4824@example
feeb0eda
PE
4825%parse-param @{int *nastiness@}
4826%parse-param @{int *randomness@}
2a8d363a
AD
4827@end example
4828
4829@noindent
4830Then call the parser like this:
4831
4832@example
4833@{
4834 int nastiness, randomness;
4835 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4836 value = yyparse (&nastiness, &randomness);
4837 @dots{}
4838@}
4839@end example
4840
4841@noindent
4842In the grammar actions, use expressions like this to refer to the data:
4843
4844@example
4845exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4846@end example
4847
bfa74976 4848
342b8b6e 4849@node Lexical
bfa74976
RS
4850@section The Lexical Analyzer Function @code{yylex}
4851@findex yylex
4852@cindex lexical analyzer
4853
4854The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4855the input stream and returns them to the parser. Bison does not create
4856this function automatically; you must write it so that @code{yyparse} can
4857call it. The function is sometimes referred to as a lexical scanner.
4858
4859In simple programs, @code{yylex} is often defined at the end of the Bison
4860grammar file. If @code{yylex} is defined in a separate source file, you
4861need to arrange for the token-type macro definitions to be available there.
4862To do this, use the @samp{-d} option when you run Bison, so that it will
4863write these macro definitions into a separate header file
4864@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4865that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4866
4867@menu
4868* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4869* Token Values:: How @code{yylex} must return the semantic value
4870 of the token it has read.
95923bd6 4871* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4872 (line number, etc.) of the token, if the
4873 actions want that.
4874* Pure Calling:: How the calling convention differs
4875 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4876@end menu
4877
342b8b6e 4878@node Calling Convention
bfa74976
RS
4879@subsection Calling Convention for @code{yylex}
4880
72d2299c
PE
4881The value that @code{yylex} returns must be the positive numeric code
4882for the type of token it has just found; a zero or negative value
4883signifies end-of-input.
bfa74976
RS
4884
4885When a token is referred to in the grammar rules by a name, that name
4886in the parser file becomes a C macro whose definition is the proper
4887numeric code for that token type. So @code{yylex} can use the name
4888to indicate that type. @xref{Symbols}.
4889
4890When a token is referred to in the grammar rules by a character literal,
4891the numeric code for that character is also the code for the token type.
72d2299c
PE
4892So @code{yylex} can simply return that character code, possibly converted
4893to @code{unsigned char} to avoid sign-extension. The null character
4894must not be used this way, because its code is zero and that
bfa74976
RS
4895signifies end-of-input.
4896
4897Here is an example showing these things:
4898
4899@example
13863333
AD
4900int
4901yylex (void)
bfa74976
RS
4902@{
4903 @dots{}
72d2299c 4904 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4905 return 0;
4906 @dots{}
4907 if (c == '+' || c == '-')
72d2299c 4908 return c; /* Assume token type for `+' is '+'. */
bfa74976 4909 @dots{}
72d2299c 4910 return INT; /* Return the type of the token. */
bfa74976
RS
4911 @dots{}
4912@}
4913@end example
4914
4915@noindent
4916This interface has been designed so that the output from the @code{lex}
4917utility can be used without change as the definition of @code{yylex}.
4918
931c7513
RS
4919If the grammar uses literal string tokens, there are two ways that
4920@code{yylex} can determine the token type codes for them:
4921
4922@itemize @bullet
4923@item
4924If the grammar defines symbolic token names as aliases for the
4925literal string tokens, @code{yylex} can use these symbolic names like
4926all others. In this case, the use of the literal string tokens in
4927the grammar file has no effect on @code{yylex}.
4928
4929@item
9ecbd125 4930@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4931table. The index of the token in the table is the token type's code.
9ecbd125 4932The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4933double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4934token's characters are escaped as necessary to be suitable as input
4935to Bison.
931c7513 4936
9e0876fb
PE
4937Here's code for looking up a multicharacter token in @code{yytname},
4938assuming that the characters of the token are stored in
4939@code{token_buffer}, and assuming that the token does not contain any
4940characters like @samp{"} that require escaping.
931c7513
RS
4941
4942@smallexample
4943for (i = 0; i < YYNTOKENS; i++)
4944 @{
4945 if (yytname[i] != 0
4946 && yytname[i][0] == '"'
68449b3a
PE
4947 && ! strncmp (yytname[i] + 1, token_buffer,
4948 strlen (token_buffer))
931c7513
RS
4949 && yytname[i][strlen (token_buffer) + 1] == '"'
4950 && yytname[i][strlen (token_buffer) + 2] == 0)
4951 break;
4952 @}
4953@end smallexample
4954
4955The @code{yytname} table is generated only if you use the
8c9a50be 4956@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4957@end itemize
4958
342b8b6e 4959@node Token Values
bfa74976
RS
4960@subsection Semantic Values of Tokens
4961
4962@vindex yylval
9d9b8b70 4963In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4964be stored into the global variable @code{yylval}. When you are using
4965just one data type for semantic values, @code{yylval} has that type.
4966Thus, if the type is @code{int} (the default), you might write this in
4967@code{yylex}:
4968
4969@example
4970@group
4971 @dots{}
72d2299c
PE
4972 yylval = value; /* Put value onto Bison stack. */
4973 return INT; /* Return the type of the token. */
bfa74976
RS
4974 @dots{}
4975@end group
4976@end example
4977
4978When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4979made from the @code{%union} declaration (@pxref{Union Decl, ,The
4980Collection of Value Types}). So when you store a token's value, you
4981must use the proper member of the union. If the @code{%union}
4982declaration looks like this:
bfa74976
RS
4983
4984@example
4985@group
4986%union @{
4987 int intval;
4988 double val;
4989 symrec *tptr;
4990@}
4991@end group
4992@end example
4993
4994@noindent
4995then the code in @code{yylex} might look like this:
4996
4997@example
4998@group
4999 @dots{}
72d2299c
PE
5000 yylval.intval = value; /* Put value onto Bison stack. */
5001 return INT; /* Return the type of the token. */
bfa74976
RS
5002 @dots{}
5003@end group
5004@end example
5005
95923bd6
AD
5006@node Token Locations
5007@subsection Textual Locations of Tokens
bfa74976
RS
5008
5009@vindex yylloc
847bf1f5 5010If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5011Tracking Locations}) in actions to keep track of the textual locations
5012of tokens and groupings, then you must provide this information in
5013@code{yylex}. The function @code{yyparse} expects to find the textual
5014location of a token just parsed in the global variable @code{yylloc}.
5015So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5016
5017By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5018initialize the members that are going to be used by the actions. The
5019four members are called @code{first_line}, @code{first_column},
5020@code{last_line} and @code{last_column}. Note that the use of this
5021feature makes the parser noticeably slower.
bfa74976
RS
5022
5023@tindex YYLTYPE
5024The data type of @code{yylloc} has the name @code{YYLTYPE}.
5025
342b8b6e 5026@node Pure Calling
c656404a 5027@subsection Calling Conventions for Pure Parsers
bfa74976 5028
8c9a50be 5029When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5030pure, reentrant parser, the global communication variables @code{yylval}
5031and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5032Parser}.) In such parsers the two global variables are replaced by
5033pointers passed as arguments to @code{yylex}. You must declare them as
5034shown here, and pass the information back by storing it through those
5035pointers.
bfa74976
RS
5036
5037@example
13863333
AD
5038int
5039yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5040@{
5041 @dots{}
5042 *lvalp = value; /* Put value onto Bison stack. */
5043 return INT; /* Return the type of the token. */
5044 @dots{}
5045@}
5046@end example
5047
5048If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5049textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5050this case, omit the second argument; @code{yylex} will be called with
5051only one argument.
5052
e425e872 5053
2a8d363a
AD
5054If you wish to pass the additional parameter data to @code{yylex}, use
5055@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5056Function}).
e425e872 5057
feeb0eda 5058@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5059@findex %lex-param
287c78f6
PE
5060Declare that the braced-code @var{argument-declaration} is an
5061additional @code{yylex} argument declaration.
2a8d363a 5062@end deffn
e425e872 5063
2a8d363a 5064For instance:
e425e872
RS
5065
5066@example
feeb0eda
PE
5067%parse-param @{int *nastiness@}
5068%lex-param @{int *nastiness@}
5069%parse-param @{int *randomness@}
e425e872
RS
5070@end example
5071
5072@noindent
2a8d363a 5073results in the following signature:
e425e872
RS
5074
5075@example
2a8d363a
AD
5076int yylex (int *nastiness);
5077int yyparse (int *nastiness, int *randomness);
e425e872
RS
5078@end example
5079
2a8d363a 5080If @code{%pure-parser} is added:
c656404a
RS
5081
5082@example
2a8d363a
AD
5083int yylex (YYSTYPE *lvalp, int *nastiness);
5084int yyparse (int *nastiness, int *randomness);
c656404a
RS
5085@end example
5086
2a8d363a
AD
5087@noindent
5088and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5089
2a8d363a
AD
5090@example
5091int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5092int yyparse (int *nastiness, int *randomness);
5093@end example
931c7513 5094
342b8b6e 5095@node Error Reporting
bfa74976
RS
5096@section The Error Reporting Function @code{yyerror}
5097@cindex error reporting function
5098@findex yyerror
5099@cindex parse error
5100@cindex syntax error
5101
6e649e65 5102The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5103whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5104action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5105macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5106in Actions}).
bfa74976
RS
5107
5108The Bison parser expects to report the error by calling an error
5109reporting function named @code{yyerror}, which you must supply. It is
5110called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5111receives one argument. For a syntax error, the string is normally
5112@w{@code{"syntax error"}}.
bfa74976 5113
2a8d363a
AD
5114@findex %error-verbose
5115If you invoke the directive @code{%error-verbose} in the Bison
5116declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5117Section}), then Bison provides a more verbose and specific error message
6e649e65 5118string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5119
1a059451
PE
5120The parser can detect one other kind of error: memory exhaustion. This
5121can happen when the input contains constructions that are very deeply
bfa74976 5122nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5123parser normally extends its stack automatically up to a very large limit. But
5124if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5125fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5126
5127In some cases diagnostics like @w{@code{"syntax error"}} are
5128translated automatically from English to some other language before
5129they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5130
5131The following definition suffices in simple programs:
5132
5133@example
5134@group
13863333 5135void
38a92d50 5136yyerror (char const *s)
bfa74976
RS
5137@{
5138@end group
5139@group
5140 fprintf (stderr, "%s\n", s);
5141@}
5142@end group
5143@end example
5144
5145After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5146error recovery if you have written suitable error recovery grammar rules
5147(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5148immediately return 1.
5149
93724f13 5150Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5151an access to the current location.
5152This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5153parsers, but not for the Yacc parser, for historical reasons. I.e., if
5154@samp{%locations %pure-parser} is passed then the prototypes for
5155@code{yyerror} are:
5156
5157@example
38a92d50
PE
5158void yyerror (char const *msg); /* Yacc parsers. */
5159void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5160@end example
5161
feeb0eda 5162If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5163
5164@example
b317297e
PE
5165void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5166void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5167@end example
5168
fa7e68c3 5169Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5170convention for absolutely pure parsers, i.e., when the calling
5171convention of @code{yylex} @emph{and} the calling convention of
5172@code{%pure-parser} are pure. I.e.:
5173
5174@example
5175/* Location tracking. */
5176%locations
5177/* Pure yylex. */
5178%pure-parser
feeb0eda 5179%lex-param @{int *nastiness@}
2a8d363a 5180/* Pure yyparse. */
feeb0eda
PE
5181%parse-param @{int *nastiness@}
5182%parse-param @{int *randomness@}
2a8d363a
AD
5183@end example
5184
5185@noindent
5186results in the following signatures for all the parser kinds:
5187
5188@example
5189int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5190int yyparse (int *nastiness, int *randomness);
93724f13
AD
5191void yyerror (YYLTYPE *locp,
5192 int *nastiness, int *randomness,
38a92d50 5193 char const *msg);
2a8d363a
AD
5194@end example
5195
1c0c3e95 5196@noindent
38a92d50
PE
5197The prototypes are only indications of how the code produced by Bison
5198uses @code{yyerror}. Bison-generated code always ignores the returned
5199value, so @code{yyerror} can return any type, including @code{void}.
5200Also, @code{yyerror} can be a variadic function; that is why the
5201message is always passed last.
5202
5203Traditionally @code{yyerror} returns an @code{int} that is always
5204ignored, but this is purely for historical reasons, and @code{void} is
5205preferable since it more accurately describes the return type for
5206@code{yyerror}.
93724f13 5207
bfa74976
RS
5208@vindex yynerrs
5209The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5210reported so far. Normally this variable is global; but if you
704a47c4
AD
5211request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5212then it is a local variable which only the actions can access.
bfa74976 5213
342b8b6e 5214@node Action Features
bfa74976
RS
5215@section Special Features for Use in Actions
5216@cindex summary, action features
5217@cindex action features summary
5218
5219Here is a table of Bison constructs, variables and macros that
5220are useful in actions.
5221
18b519c0 5222@deffn {Variable} $$
bfa74976
RS
5223Acts like a variable that contains the semantic value for the
5224grouping made by the current rule. @xref{Actions}.
18b519c0 5225@end deffn
bfa74976 5226
18b519c0 5227@deffn {Variable} $@var{n}
bfa74976
RS
5228Acts like a variable that contains the semantic value for the
5229@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5230@end deffn
bfa74976 5231
18b519c0 5232@deffn {Variable} $<@var{typealt}>$
bfa74976 5233Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5234specified by the @code{%union} declaration. @xref{Action Types, ,Data
5235Types of Values in Actions}.
18b519c0 5236@end deffn
bfa74976 5237
18b519c0 5238@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5239Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5240union specified by the @code{%union} declaration.
e0c471a9 5241@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5242@end deffn
bfa74976 5243
18b519c0 5244@deffn {Macro} YYABORT;
bfa74976
RS
5245Return immediately from @code{yyparse}, indicating failure.
5246@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5247@end deffn
bfa74976 5248
18b519c0 5249@deffn {Macro} YYACCEPT;
bfa74976
RS
5250Return immediately from @code{yyparse}, indicating success.
5251@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5252@end deffn
bfa74976 5253
18b519c0 5254@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5255@findex YYBACKUP
5256Unshift a token. This macro is allowed only for rules that reduce
742e4900 5257a single value, and only when there is no lookahead token.
c827f760 5258It is also disallowed in @acronym{GLR} parsers.
742e4900 5259It installs a lookahead token with token type @var{token} and
bfa74976
RS
5260semantic value @var{value}; then it discards the value that was
5261going to be reduced by this rule.
5262
5263If the macro is used when it is not valid, such as when there is
742e4900 5264a lookahead token already, then it reports a syntax error with
bfa74976
RS
5265a message @samp{cannot back up} and performs ordinary error
5266recovery.
5267
5268In either case, the rest of the action is not executed.
18b519c0 5269@end deffn
bfa74976 5270
18b519c0 5271@deffn {Macro} YYEMPTY
bfa74976 5272@vindex YYEMPTY
742e4900 5273Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5274@end deffn
bfa74976 5275
32c29292
JD
5276@deffn {Macro} YYEOF
5277@vindex YYEOF
742e4900 5278Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5279stream.
5280@end deffn
5281
18b519c0 5282@deffn {Macro} YYERROR;
bfa74976
RS
5283@findex YYERROR
5284Cause an immediate syntax error. This statement initiates error
5285recovery just as if the parser itself had detected an error; however, it
5286does not call @code{yyerror}, and does not print any message. If you
5287want to print an error message, call @code{yyerror} explicitly before
5288the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5289@end deffn
bfa74976 5290
18b519c0 5291@deffn {Macro} YYRECOVERING
02103984
PE
5292@findex YYRECOVERING
5293The expression @code{YYRECOVERING ()} yields 1 when the parser
5294is recovering from a syntax error, and 0 otherwise.
bfa74976 5295@xref{Error Recovery}.
18b519c0 5296@end deffn
bfa74976 5297
18b519c0 5298@deffn {Variable} yychar
742e4900
JD
5299Variable containing either the lookahead token, or @code{YYEOF} when the
5300lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5301has been performed so the next token is not yet known.
5302Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5303Actions}).
742e4900 5304@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5305@end deffn
bfa74976 5306
18b519c0 5307@deffn {Macro} yyclearin;
742e4900 5308Discard the current lookahead token. This is useful primarily in
32c29292
JD
5309error rules.
5310Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5311Semantic Actions}).
5312@xref{Error Recovery}.
18b519c0 5313@end deffn
bfa74976 5314
18b519c0 5315@deffn {Macro} yyerrok;
bfa74976 5316Resume generating error messages immediately for subsequent syntax
13863333 5317errors. This is useful primarily in error rules.
bfa74976 5318@xref{Error Recovery}.
18b519c0 5319@end deffn
bfa74976 5320
32c29292 5321@deffn {Variable} yylloc
742e4900 5322Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5323to @code{YYEMPTY} or @code{YYEOF}.
5324Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5325Actions}).
5326@xref{Actions and Locations, ,Actions and Locations}.
5327@end deffn
5328
5329@deffn {Variable} yylval
742e4900 5330Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5331not set to @code{YYEMPTY} or @code{YYEOF}.
5332Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5333Actions}).
5334@xref{Actions, ,Actions}.
5335@end deffn
5336
18b519c0 5337@deffn {Value} @@$
847bf1f5 5338@findex @@$
95923bd6 5339Acts like a structure variable containing information on the textual location
847bf1f5
AD
5340of the grouping made by the current rule. @xref{Locations, ,
5341Tracking Locations}.
bfa74976 5342
847bf1f5
AD
5343@c Check if those paragraphs are still useful or not.
5344
5345@c @example
5346@c struct @{
5347@c int first_line, last_line;
5348@c int first_column, last_column;
5349@c @};
5350@c @end example
5351
5352@c Thus, to get the starting line number of the third component, you would
5353@c use @samp{@@3.first_line}.
bfa74976 5354
847bf1f5
AD
5355@c In order for the members of this structure to contain valid information,
5356@c you must make @code{yylex} supply this information about each token.
5357@c If you need only certain members, then @code{yylex} need only fill in
5358@c those members.
bfa74976 5359
847bf1f5 5360@c The use of this feature makes the parser noticeably slower.
18b519c0 5361@end deffn
847bf1f5 5362
18b519c0 5363@deffn {Value} @@@var{n}
847bf1f5 5364@findex @@@var{n}
95923bd6 5365Acts like a structure variable containing information on the textual location
847bf1f5
AD
5366of the @var{n}th component of the current rule. @xref{Locations, ,
5367Tracking Locations}.
18b519c0 5368@end deffn
bfa74976 5369
f7ab6a50
PE
5370@node Internationalization
5371@section Parser Internationalization
5372@cindex internationalization
5373@cindex i18n
5374@cindex NLS
5375@cindex gettext
5376@cindex bison-po
5377
5378A Bison-generated parser can print diagnostics, including error and
5379tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5380also supports outputting diagnostics in the user's native language. To
5381make this work, the user should set the usual environment variables.
5382@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5383For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5384set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5385encoding. The exact set of available locales depends on the user's
5386installation.
5387
5388The maintainer of a package that uses a Bison-generated parser enables
5389the internationalization of the parser's output through the following
5390steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5391@acronym{GNU} Automake.
5392
5393@enumerate
5394@item
30757c8c 5395@cindex bison-i18n.m4
f7ab6a50
PE
5396Into the directory containing the @acronym{GNU} Autoconf macros used
5397by the package---often called @file{m4}---copy the
5398@file{bison-i18n.m4} file installed by Bison under
5399@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5400For example:
5401
5402@example
5403cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5404@end example
5405
5406@item
30757c8c
PE
5407@findex BISON_I18N
5408@vindex BISON_LOCALEDIR
5409@vindex YYENABLE_NLS
f7ab6a50
PE
5410In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5411invocation, add an invocation of @code{BISON_I18N}. This macro is
5412defined in the file @file{bison-i18n.m4} that you copied earlier. It
5413causes @samp{configure} to find the value of the
30757c8c
PE
5414@code{BISON_LOCALEDIR} variable, and it defines the source-language
5415symbol @code{YYENABLE_NLS} to enable translations in the
5416Bison-generated parser.
f7ab6a50
PE
5417
5418@item
5419In the @code{main} function of your program, designate the directory
5420containing Bison's runtime message catalog, through a call to
5421@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5422For example:
5423
5424@example
5425bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5426@end example
5427
5428Typically this appears after any other call @code{bindtextdomain
5429(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5430@samp{BISON_LOCALEDIR} to be defined as a string through the
5431@file{Makefile}.
5432
5433@item
5434In the @file{Makefile.am} that controls the compilation of the @code{main}
5435function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5436either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5437
5438@example
5439DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5440@end example
5441
5442or:
5443
5444@example
5445AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5446@end example
5447
5448@item
5449Finally, invoke the command @command{autoreconf} to generate the build
5450infrastructure.
5451@end enumerate
5452
bfa74976 5453
342b8b6e 5454@node Algorithm
13863333
AD
5455@chapter The Bison Parser Algorithm
5456@cindex Bison parser algorithm
bfa74976
RS
5457@cindex algorithm of parser
5458@cindex shifting
5459@cindex reduction
5460@cindex parser stack
5461@cindex stack, parser
5462
5463As Bison reads tokens, it pushes them onto a stack along with their
5464semantic values. The stack is called the @dfn{parser stack}. Pushing a
5465token is traditionally called @dfn{shifting}.
5466
5467For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5468@samp{3} to come. The stack will have four elements, one for each token
5469that was shifted.
5470
5471But the stack does not always have an element for each token read. When
5472the last @var{n} tokens and groupings shifted match the components of a
5473grammar rule, they can be combined according to that rule. This is called
5474@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5475single grouping whose symbol is the result (left hand side) of that rule.
5476Running the rule's action is part of the process of reduction, because this
5477is what computes the semantic value of the resulting grouping.
5478
5479For example, if the infix calculator's parser stack contains this:
5480
5481@example
54821 + 5 * 3
5483@end example
5484
5485@noindent
5486and the next input token is a newline character, then the last three
5487elements can be reduced to 15 via the rule:
5488
5489@example
5490expr: expr '*' expr;
5491@end example
5492
5493@noindent
5494Then the stack contains just these three elements:
5495
5496@example
54971 + 15
5498@end example
5499
5500@noindent
5501At this point, another reduction can be made, resulting in the single value
550216. Then the newline token can be shifted.
5503
5504The parser tries, by shifts and reductions, to reduce the entire input down
5505to a single grouping whose symbol is the grammar's start-symbol
5506(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5507
5508This kind of parser is known in the literature as a bottom-up parser.
5509
5510@menu
742e4900 5511* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5512* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5513* Precedence:: Operator precedence works by resolving conflicts.
5514* Contextual Precedence:: When an operator's precedence depends on context.
5515* Parser States:: The parser is a finite-state-machine with stack.
5516* Reduce/Reduce:: When two rules are applicable in the same situation.
5517* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5518* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5519* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5520@end menu
5521
742e4900
JD
5522@node Lookahead
5523@section Lookahead Tokens
5524@cindex lookahead token
bfa74976
RS
5525
5526The Bison parser does @emph{not} always reduce immediately as soon as the
5527last @var{n} tokens and groupings match a rule. This is because such a
5528simple strategy is inadequate to handle most languages. Instead, when a
5529reduction is possible, the parser sometimes ``looks ahead'' at the next
5530token in order to decide what to do.
5531
5532When a token is read, it is not immediately shifted; first it becomes the
742e4900 5533@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5534perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5535the lookahead token remains off to the side. When no more reductions
5536should take place, the lookahead token is shifted onto the stack. This
bfa74976 5537does not mean that all possible reductions have been done; depending on the
742e4900 5538token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5539application.
5540
742e4900 5541Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5542expressions which contain binary addition operators and postfix unary
5543factorial operators (@samp{!}), and allow parentheses for grouping.
5544
5545@example
5546@group
5547expr: term '+' expr
5548 | term
5549 ;
5550@end group
5551
5552@group
5553term: '(' expr ')'
5554 | term '!'
5555 | NUMBER
5556 ;
5557@end group
5558@end example
5559
5560Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5561should be done? If the following token is @samp{)}, then the first three
5562tokens must be reduced to form an @code{expr}. This is the only valid
5563course, because shifting the @samp{)} would produce a sequence of symbols
5564@w{@code{term ')'}}, and no rule allows this.
5565
5566If the following token is @samp{!}, then it must be shifted immediately so
5567that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5568parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5569@code{expr}. It would then be impossible to shift the @samp{!} because
5570doing so would produce on the stack the sequence of symbols @code{expr
5571'!'}. No rule allows that sequence.
5572
5573@vindex yychar
32c29292
JD
5574@vindex yylval
5575@vindex yylloc
742e4900 5576The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5577Its semantic value and location, if any, are stored in the variables
5578@code{yylval} and @code{yylloc}.
bfa74976
RS
5579@xref{Action Features, ,Special Features for Use in Actions}.
5580
342b8b6e 5581@node Shift/Reduce
bfa74976
RS
5582@section Shift/Reduce Conflicts
5583@cindex conflicts
5584@cindex shift/reduce conflicts
5585@cindex dangling @code{else}
5586@cindex @code{else}, dangling
5587
5588Suppose we are parsing a language which has if-then and if-then-else
5589statements, with a pair of rules like this:
5590
5591@example
5592@group
5593if_stmt:
5594 IF expr THEN stmt
5595 | IF expr THEN stmt ELSE stmt
5596 ;
5597@end group
5598@end example
5599
5600@noindent
5601Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5602terminal symbols for specific keyword tokens.
5603
742e4900 5604When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5605contents of the stack (assuming the input is valid) are just right for
5606reduction by the first rule. But it is also legitimate to shift the
5607@code{ELSE}, because that would lead to eventual reduction by the second
5608rule.
5609
5610This situation, where either a shift or a reduction would be valid, is
5611called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5612these conflicts by choosing to shift, unless otherwise directed by
5613operator precedence declarations. To see the reason for this, let's
5614contrast it with the other alternative.
5615
5616Since the parser prefers to shift the @code{ELSE}, the result is to attach
5617the else-clause to the innermost if-statement, making these two inputs
5618equivalent:
5619
5620@example
5621if x then if y then win (); else lose;
5622
5623if x then do; if y then win (); else lose; end;
5624@end example
5625
5626But if the parser chose to reduce when possible rather than shift, the
5627result would be to attach the else-clause to the outermost if-statement,
5628making these two inputs equivalent:
5629
5630@example
5631if x then if y then win (); else lose;
5632
5633if x then do; if y then win (); end; else lose;
5634@end example
5635
5636The conflict exists because the grammar as written is ambiguous: either
5637parsing of the simple nested if-statement is legitimate. The established
5638convention is that these ambiguities are resolved by attaching the
5639else-clause to the innermost if-statement; this is what Bison accomplishes
5640by choosing to shift rather than reduce. (It would ideally be cleaner to
5641write an unambiguous grammar, but that is very hard to do in this case.)
5642This particular ambiguity was first encountered in the specifications of
5643Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5644
5645To avoid warnings from Bison about predictable, legitimate shift/reduce
5646conflicts, use the @code{%expect @var{n}} declaration. There will be no
5647warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5648@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5649
5650The definition of @code{if_stmt} above is solely to blame for the
5651conflict, but the conflict does not actually appear without additional
5652rules. Here is a complete Bison input file that actually manifests the
5653conflict:
5654
5655@example
5656@group
5657%token IF THEN ELSE variable
5658%%
5659@end group
5660@group
5661stmt: expr
5662 | if_stmt
5663 ;
5664@end group
5665
5666@group
5667if_stmt:
5668 IF expr THEN stmt
5669 | IF expr THEN stmt ELSE stmt
5670 ;
5671@end group
5672
5673expr: variable
5674 ;
5675@end example
5676
342b8b6e 5677@node Precedence
bfa74976
RS
5678@section Operator Precedence
5679@cindex operator precedence
5680@cindex precedence of operators
5681
5682Another situation where shift/reduce conflicts appear is in arithmetic
5683expressions. Here shifting is not always the preferred resolution; the
5684Bison declarations for operator precedence allow you to specify when to
5685shift and when to reduce.
5686
5687@menu
5688* Why Precedence:: An example showing why precedence is needed.
5689* Using Precedence:: How to specify precedence in Bison grammars.
5690* Precedence Examples:: How these features are used in the previous example.
5691* How Precedence:: How they work.
5692@end menu
5693
342b8b6e 5694@node Why Precedence
bfa74976
RS
5695@subsection When Precedence is Needed
5696
5697Consider the following ambiguous grammar fragment (ambiguous because the
5698input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5699
5700@example
5701@group
5702expr: expr '-' expr
5703 | expr '*' expr
5704 | expr '<' expr
5705 | '(' expr ')'
5706 @dots{}
5707 ;
5708@end group
5709@end example
5710
5711@noindent
5712Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5713should it reduce them via the rule for the subtraction operator? It
5714depends on the next token. Of course, if the next token is @samp{)}, we
5715must reduce; shifting is invalid because no single rule can reduce the
5716token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5717the next token is @samp{*} or @samp{<}, we have a choice: either
5718shifting or reduction would allow the parse to complete, but with
5719different results.
5720
5721To decide which one Bison should do, we must consider the results. If
5722the next operator token @var{op} is shifted, then it must be reduced
5723first in order to permit another opportunity to reduce the difference.
5724The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5725hand, if the subtraction is reduced before shifting @var{op}, the result
5726is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5727reduce should depend on the relative precedence of the operators
5728@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5729@samp{<}.
bfa74976
RS
5730
5731@cindex associativity
5732What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5733@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5734operators we prefer the former, which is called @dfn{left association}.
5735The latter alternative, @dfn{right association}, is desirable for
5736assignment operators. The choice of left or right association is a
5737matter of whether the parser chooses to shift or reduce when the stack
742e4900 5738contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5739makes right-associativity.
bfa74976 5740
342b8b6e 5741@node Using Precedence
bfa74976
RS
5742@subsection Specifying Operator Precedence
5743@findex %left
5744@findex %right
5745@findex %nonassoc
5746
5747Bison allows you to specify these choices with the operator precedence
5748declarations @code{%left} and @code{%right}. Each such declaration
5749contains a list of tokens, which are operators whose precedence and
5750associativity is being declared. The @code{%left} declaration makes all
5751those operators left-associative and the @code{%right} declaration makes
5752them right-associative. A third alternative is @code{%nonassoc}, which
5753declares that it is a syntax error to find the same operator twice ``in a
5754row''.
5755
5756The relative precedence of different operators is controlled by the
5757order in which they are declared. The first @code{%left} or
5758@code{%right} declaration in the file declares the operators whose
5759precedence is lowest, the next such declaration declares the operators
5760whose precedence is a little higher, and so on.
5761
342b8b6e 5762@node Precedence Examples
bfa74976
RS
5763@subsection Precedence Examples
5764
5765In our example, we would want the following declarations:
5766
5767@example
5768%left '<'
5769%left '-'
5770%left '*'
5771@end example
5772
5773In a more complete example, which supports other operators as well, we
5774would declare them in groups of equal precedence. For example, @code{'+'} is
5775declared with @code{'-'}:
5776
5777@example
5778%left '<' '>' '=' NE LE GE
5779%left '+' '-'
5780%left '*' '/'
5781@end example
5782
5783@noindent
5784(Here @code{NE} and so on stand for the operators for ``not equal''
5785and so on. We assume that these tokens are more than one character long
5786and therefore are represented by names, not character literals.)
5787
342b8b6e 5788@node How Precedence
bfa74976
RS
5789@subsection How Precedence Works
5790
5791The first effect of the precedence declarations is to assign precedence
5792levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5793precedence levels to certain rules: each rule gets its precedence from
5794the last terminal symbol mentioned in the components. (You can also
5795specify explicitly the precedence of a rule. @xref{Contextual
5796Precedence, ,Context-Dependent Precedence}.)
5797
5798Finally, the resolution of conflicts works by comparing the precedence
742e4900 5799of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5800token's precedence is higher, the choice is to shift. If the rule's
5801precedence is higher, the choice is to reduce. If they have equal
5802precedence, the choice is made based on the associativity of that
5803precedence level. The verbose output file made by @samp{-v}
5804(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5805resolved.
bfa74976
RS
5806
5807Not all rules and not all tokens have precedence. If either the rule or
742e4900 5808the lookahead token has no precedence, then the default is to shift.
bfa74976 5809
342b8b6e 5810@node Contextual Precedence
bfa74976
RS
5811@section Context-Dependent Precedence
5812@cindex context-dependent precedence
5813@cindex unary operator precedence
5814@cindex precedence, context-dependent
5815@cindex precedence, unary operator
5816@findex %prec
5817
5818Often the precedence of an operator depends on the context. This sounds
5819outlandish at first, but it is really very common. For example, a minus
5820sign typically has a very high precedence as a unary operator, and a
5821somewhat lower precedence (lower than multiplication) as a binary operator.
5822
5823The Bison precedence declarations, @code{%left}, @code{%right} and
5824@code{%nonassoc}, can only be used once for a given token; so a token has
5825only one precedence declared in this way. For context-dependent
5826precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5827modifier for rules.
bfa74976
RS
5828
5829The @code{%prec} modifier declares the precedence of a particular rule by
5830specifying a terminal symbol whose precedence should be used for that rule.
5831It's not necessary for that symbol to appear otherwise in the rule. The
5832modifier's syntax is:
5833
5834@example
5835%prec @var{terminal-symbol}
5836@end example
5837
5838@noindent
5839and it is written after the components of the rule. Its effect is to
5840assign the rule the precedence of @var{terminal-symbol}, overriding
5841the precedence that would be deduced for it in the ordinary way. The
5842altered rule precedence then affects how conflicts involving that rule
5843are resolved (@pxref{Precedence, ,Operator Precedence}).
5844
5845Here is how @code{%prec} solves the problem of unary minus. First, declare
5846a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5847are no tokens of this type, but the symbol serves to stand for its
5848precedence:
5849
5850@example
5851@dots{}
5852%left '+' '-'
5853%left '*'
5854%left UMINUS
5855@end example
5856
5857Now the precedence of @code{UMINUS} can be used in specific rules:
5858
5859@example
5860@group
5861exp: @dots{}
5862 | exp '-' exp
5863 @dots{}
5864 | '-' exp %prec UMINUS
5865@end group
5866@end example
5867
91d2c560 5868@ifset defaultprec
39a06c25
PE
5869If you forget to append @code{%prec UMINUS} to the rule for unary
5870minus, Bison silently assumes that minus has its usual precedence.
5871This kind of problem can be tricky to debug, since one typically
5872discovers the mistake only by testing the code.
5873
22fccf95 5874The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5875this kind of problem systematically. It causes rules that lack a
5876@code{%prec} modifier to have no precedence, even if the last terminal
5877symbol mentioned in their components has a declared precedence.
5878
22fccf95 5879If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5880for all rules that participate in precedence conflict resolution.
5881Then you will see any shift/reduce conflict until you tell Bison how
5882to resolve it, either by changing your grammar or by adding an
5883explicit precedence. This will probably add declarations to the
5884grammar, but it helps to protect against incorrect rule precedences.
5885
22fccf95
PE
5886The effect of @code{%no-default-prec;} can be reversed by giving
5887@code{%default-prec;}, which is the default.
91d2c560 5888@end ifset
39a06c25 5889
342b8b6e 5890@node Parser States
bfa74976
RS
5891@section Parser States
5892@cindex finite-state machine
5893@cindex parser state
5894@cindex state (of parser)
5895
5896The function @code{yyparse} is implemented using a finite-state machine.
5897The values pushed on the parser stack are not simply token type codes; they
5898represent the entire sequence of terminal and nonterminal symbols at or
5899near the top of the stack. The current state collects all the information
5900about previous input which is relevant to deciding what to do next.
5901
742e4900
JD
5902Each time a lookahead token is read, the current parser state together
5903with the type of lookahead token are looked up in a table. This table
5904entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5905specifies the new parser state, which is pushed onto the top of the
5906parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5907This means that a certain number of tokens or groupings are taken off
5908the top of the stack, and replaced by one grouping. In other words,
5909that number of states are popped from the stack, and one new state is
5910pushed.
5911
742e4900 5912There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5913is erroneous in the current state. This causes error processing to begin
5914(@pxref{Error Recovery}).
5915
342b8b6e 5916@node Reduce/Reduce
bfa74976
RS
5917@section Reduce/Reduce Conflicts
5918@cindex reduce/reduce conflict
5919@cindex conflicts, reduce/reduce
5920
5921A reduce/reduce conflict occurs if there are two or more rules that apply
5922to the same sequence of input. This usually indicates a serious error
5923in the grammar.
5924
5925For example, here is an erroneous attempt to define a sequence
5926of zero or more @code{word} groupings.
5927
5928@example
5929sequence: /* empty */
5930 @{ printf ("empty sequence\n"); @}
5931 | maybeword
5932 | sequence word
5933 @{ printf ("added word %s\n", $2); @}
5934 ;
5935
5936maybeword: /* empty */
5937 @{ printf ("empty maybeword\n"); @}
5938 | word
5939 @{ printf ("single word %s\n", $1); @}
5940 ;
5941@end example
5942
5943@noindent
5944The error is an ambiguity: there is more than one way to parse a single
5945@code{word} into a @code{sequence}. It could be reduced to a
5946@code{maybeword} and then into a @code{sequence} via the second rule.
5947Alternatively, nothing-at-all could be reduced into a @code{sequence}
5948via the first rule, and this could be combined with the @code{word}
5949using the third rule for @code{sequence}.
5950
5951There is also more than one way to reduce nothing-at-all into a
5952@code{sequence}. This can be done directly via the first rule,
5953or indirectly via @code{maybeword} and then the second rule.
5954
5955You might think that this is a distinction without a difference, because it
5956does not change whether any particular input is valid or not. But it does
5957affect which actions are run. One parsing order runs the second rule's
5958action; the other runs the first rule's action and the third rule's action.
5959In this example, the output of the program changes.
5960
5961Bison resolves a reduce/reduce conflict by choosing to use the rule that
5962appears first in the grammar, but it is very risky to rely on this. Every
5963reduce/reduce conflict must be studied and usually eliminated. Here is the
5964proper way to define @code{sequence}:
5965
5966@example
5967sequence: /* empty */
5968 @{ printf ("empty sequence\n"); @}
5969 | sequence word
5970 @{ printf ("added word %s\n", $2); @}
5971 ;
5972@end example
5973
5974Here is another common error that yields a reduce/reduce conflict:
5975
5976@example
5977sequence: /* empty */
5978 | sequence words
5979 | sequence redirects
5980 ;
5981
5982words: /* empty */
5983 | words word
5984 ;
5985
5986redirects:/* empty */
5987 | redirects redirect
5988 ;
5989@end example
5990
5991@noindent
5992The intention here is to define a sequence which can contain either
5993@code{word} or @code{redirect} groupings. The individual definitions of
5994@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5995three together make a subtle ambiguity: even an empty input can be parsed
5996in infinitely many ways!
5997
5998Consider: nothing-at-all could be a @code{words}. Or it could be two
5999@code{words} in a row, or three, or any number. It could equally well be a
6000@code{redirects}, or two, or any number. Or it could be a @code{words}
6001followed by three @code{redirects} and another @code{words}. And so on.
6002
6003Here are two ways to correct these rules. First, to make it a single level
6004of sequence:
6005
6006@example
6007sequence: /* empty */
6008 | sequence word
6009 | sequence redirect
6010 ;
6011@end example
6012
6013Second, to prevent either a @code{words} or a @code{redirects}
6014from being empty:
6015
6016@example
6017sequence: /* empty */
6018 | sequence words
6019 | sequence redirects
6020 ;
6021
6022words: word
6023 | words word
6024 ;
6025
6026redirects:redirect
6027 | redirects redirect
6028 ;
6029@end example
6030
342b8b6e 6031@node Mystery Conflicts
bfa74976
RS
6032@section Mysterious Reduce/Reduce Conflicts
6033
6034Sometimes reduce/reduce conflicts can occur that don't look warranted.
6035Here is an example:
6036
6037@example
6038@group
6039%token ID
6040
6041%%
6042def: param_spec return_spec ','
6043 ;
6044param_spec:
6045 type
6046 | name_list ':' type
6047 ;
6048@end group
6049@group
6050return_spec:
6051 type
6052 | name ':' type
6053 ;
6054@end group
6055@group
6056type: ID
6057 ;
6058@end group
6059@group
6060name: ID
6061 ;
6062name_list:
6063 name
6064 | name ',' name_list
6065 ;
6066@end group
6067@end example
6068
6069It would seem that this grammar can be parsed with only a single token
742e4900 6070of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6071a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6072@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6073
c827f760
PE
6074@cindex @acronym{LR}(1)
6075@cindex @acronym{LALR}(1)
bfa74976 6076However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6077@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6078an @code{ID}
bfa74976
RS
6079at the beginning of a @code{param_spec} and likewise at the beginning of
6080a @code{return_spec}, are similar enough that Bison assumes they are the
6081same. They appear similar because the same set of rules would be
6082active---the rule for reducing to a @code{name} and that for reducing to
6083a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6084that the rules would require different lookahead tokens in the two
bfa74976
RS
6085contexts, so it makes a single parser state for them both. Combining
6086the two contexts causes a conflict later. In parser terminology, this
c827f760 6087occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6088
6089In general, it is better to fix deficiencies than to document them. But
6090this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6091generators that can handle @acronym{LR}(1) grammars are hard to write
6092and tend to
bfa74976
RS
6093produce parsers that are very large. In practice, Bison is more useful
6094as it is now.
6095
6096When the problem arises, you can often fix it by identifying the two
a220f555
MA
6097parser states that are being confused, and adding something to make them
6098look distinct. In the above example, adding one rule to
bfa74976
RS
6099@code{return_spec} as follows makes the problem go away:
6100
6101@example
6102@group
6103%token BOGUS
6104@dots{}
6105%%
6106@dots{}
6107return_spec:
6108 type
6109 | name ':' type
6110 /* This rule is never used. */
6111 | ID BOGUS
6112 ;
6113@end group
6114@end example
6115
6116This corrects the problem because it introduces the possibility of an
6117additional active rule in the context after the @code{ID} at the beginning of
6118@code{return_spec}. This rule is not active in the corresponding context
6119in a @code{param_spec}, so the two contexts receive distinct parser states.
6120As long as the token @code{BOGUS} is never generated by @code{yylex},
6121the added rule cannot alter the way actual input is parsed.
6122
6123In this particular example, there is another way to solve the problem:
6124rewrite the rule for @code{return_spec} to use @code{ID} directly
6125instead of via @code{name}. This also causes the two confusing
6126contexts to have different sets of active rules, because the one for
6127@code{return_spec} activates the altered rule for @code{return_spec}
6128rather than the one for @code{name}.
6129
6130@example
6131param_spec:
6132 type
6133 | name_list ':' type
6134 ;
6135return_spec:
6136 type
6137 | ID ':' type
6138 ;
6139@end example
6140
e054b190
PE
6141For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6142generators, please see:
6143Frank DeRemer and Thomas Pennello, Efficient Computation of
6144@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6145Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6146pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6147
fae437e8 6148@node Generalized LR Parsing
c827f760
PE
6149@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6150@cindex @acronym{GLR} parsing
6151@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6152@cindex ambiguous grammars
9d9b8b70 6153@cindex nondeterministic parsing
676385e2 6154
fae437e8
AD
6155Bison produces @emph{deterministic} parsers that choose uniquely
6156when to reduce and which reduction to apply
742e4900 6157based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6158As a result, normal Bison handles a proper subset of the family of
6159context-free languages.
fae437e8 6160Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6161sequence of reductions cannot have deterministic parsers in this sense.
6162The same is true of languages that require more than one symbol of
742e4900 6163lookahead, since the parser lacks the information necessary to make a
676385e2 6164decision at the point it must be made in a shift-reduce parser.
fae437e8 6165Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6166there are languages where Bison's particular choice of how to
6167summarize the input seen so far loses necessary information.
6168
6169When you use the @samp{%glr-parser} declaration in your grammar file,
6170Bison generates a parser that uses a different algorithm, called
c827f760
PE
6171Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6172parser uses the same basic
676385e2
PH
6173algorithm for parsing as an ordinary Bison parser, but behaves
6174differently in cases where there is a shift-reduce conflict that has not
fae437e8 6175been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6176reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6177situation, it
fae437e8 6178effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6179shift or reduction. These parsers then proceed as usual, consuming
6180tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6181and split further, with the result that instead of a sequence of states,
c827f760 6182a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6183
6184In effect, each stack represents a guess as to what the proper parse
6185is. Additional input may indicate that a guess was wrong, in which case
6186the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6187actions generated in each stack are saved, rather than being executed
676385e2 6188immediately. When a stack disappears, its saved semantic actions never
fae437e8 6189get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6190their sets of semantic actions are both saved with the state that
6191results from the reduction. We say that two stacks are equivalent
fae437e8 6192when they both represent the same sequence of states,
676385e2
PH
6193and each pair of corresponding states represents a
6194grammar symbol that produces the same segment of the input token
6195stream.
6196
6197Whenever the parser makes a transition from having multiple
c827f760 6198states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6199algorithm, after resolving and executing the saved-up actions.
6200At this transition, some of the states on the stack will have semantic
6201values that are sets (actually multisets) of possible actions. The
6202parser tries to pick one of the actions by first finding one whose rule
6203has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6204declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6205precedence, but there the same merging function is declared for both
fae437e8 6206rules by the @samp{%merge} declaration,
676385e2
PH
6207Bison resolves and evaluates both and then calls the merge function on
6208the result. Otherwise, it reports an ambiguity.
6209
c827f760
PE
6210It is possible to use a data structure for the @acronym{GLR} parsing tree that
6211permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6212size of the input), any unambiguous (not necessarily
6213@acronym{LALR}(1)) grammar in
fae437e8 6214quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6215context-free grammar in cubic worst-case time. However, Bison currently
6216uses a simpler data structure that requires time proportional to the
6217length of the input times the maximum number of stacks required for any
9d9b8b70 6218prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6219grammars can require exponential time and space to process. Such badly
6220behaving examples, however, are not generally of practical interest.
9d9b8b70 6221Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6222doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6223structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6224grammar, in particular, it is only slightly slower than with the default
6225Bison parser.
6226
fa7e68c3 6227For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6228Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6229Generalised @acronym{LR} Parsers, Royal Holloway, University of
6230London, Department of Computer Science, TR-00-12,
6231@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6232(2000-12-24).
6233
1a059451
PE
6234@node Memory Management
6235@section Memory Management, and How to Avoid Memory Exhaustion
6236@cindex memory exhaustion
6237@cindex memory management
bfa74976
RS
6238@cindex stack overflow
6239@cindex parser stack overflow
6240@cindex overflow of parser stack
6241
1a059451 6242The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6243not reduced. When this happens, the parser function @code{yyparse}
1a059451 6244calls @code{yyerror} and then returns 2.
bfa74976 6245
c827f760 6246Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6247usually results from using a right recursion instead of a left
6248recursion, @xref{Recursion, ,Recursive Rules}.
6249
bfa74976
RS
6250@vindex YYMAXDEPTH
6251By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6252parser stack can become before memory is exhausted. Define the
bfa74976
RS
6253macro with a value that is an integer. This value is the maximum number
6254of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6255
6256The stack space allowed is not necessarily allocated. If you specify a
1a059451 6257large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6258stack at first, and then makes it bigger by stages as needed. This
6259increasing allocation happens automatically and silently. Therefore,
6260you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6261space for ordinary inputs that do not need much stack.
6262
d7e14fc0
PE
6263However, do not allow @code{YYMAXDEPTH} to be a value so large that
6264arithmetic overflow could occur when calculating the size of the stack
6265space. Also, do not allow @code{YYMAXDEPTH} to be less than
6266@code{YYINITDEPTH}.
6267
bfa74976
RS
6268@cindex default stack limit
6269The default value of @code{YYMAXDEPTH}, if you do not define it, is
627010000.
6271
6272@vindex YYINITDEPTH
6273You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6274macro @code{YYINITDEPTH} to a positive integer. For the C
6275@acronym{LALR}(1) parser, this value must be a compile-time constant
6276unless you are assuming C99 or some other target language or compiler
6277that allows variable-length arrays. The default is 200.
6278
1a059451 6279Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6280
d1a1114f 6281@c FIXME: C++ output.
c827f760 6282Because of semantical differences between C and C++, the
1a059451
PE
6283@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6284by C++ compilers. In this precise case (compiling a C parser as C++) you are
6285suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6286this deficiency in a future release.
d1a1114f 6287
342b8b6e 6288@node Error Recovery
bfa74976
RS
6289@chapter Error Recovery
6290@cindex error recovery
6291@cindex recovery from errors
6292
6e649e65 6293It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6294error. For example, a compiler should recover sufficiently to parse the
6295rest of the input file and check it for errors; a calculator should accept
6296another expression.
6297
6298In a simple interactive command parser where each input is one line, it may
6299be sufficient to allow @code{yyparse} to return 1 on error and have the
6300caller ignore the rest of the input line when that happens (and then call
6301@code{yyparse} again). But this is inadequate for a compiler, because it
6302forgets all the syntactic context leading up to the error. A syntax error
6303deep within a function in the compiler input should not cause the compiler
6304to treat the following line like the beginning of a source file.
6305
6306@findex error
6307You can define how to recover from a syntax error by writing rules to
6308recognize the special token @code{error}. This is a terminal symbol that
6309is always defined (you need not declare it) and reserved for error
6310handling. The Bison parser generates an @code{error} token whenever a
6311syntax error happens; if you have provided a rule to recognize this token
13863333 6312in the current context, the parse can continue.
bfa74976
RS
6313
6314For example:
6315
6316@example
6317stmnts: /* empty string */
6318 | stmnts '\n'
6319 | stmnts exp '\n'
6320 | stmnts error '\n'
6321@end example
6322
6323The fourth rule in this example says that an error followed by a newline
6324makes a valid addition to any @code{stmnts}.
6325
6326What happens if a syntax error occurs in the middle of an @code{exp}? The
6327error recovery rule, interpreted strictly, applies to the precise sequence
6328of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6329the middle of an @code{exp}, there will probably be some additional tokens
6330and subexpressions on the stack after the last @code{stmnts}, and there
6331will be tokens to read before the next newline. So the rule is not
6332applicable in the ordinary way.
6333
6334But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6335the semantic context and part of the input. First it discards states
6336and objects from the stack until it gets back to a state in which the
bfa74976 6337@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6338already parsed are discarded, back to the last complete @code{stmnts}.)
6339At this point the @code{error} token can be shifted. Then, if the old
742e4900 6340lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6341tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6342this example, Bison reads and discards input until the next newline so
6343that the fourth rule can apply. Note that discarded symbols are
6344possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6345Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6346
6347The choice of error rules in the grammar is a choice of strategies for
6348error recovery. A simple and useful strategy is simply to skip the rest of
6349the current input line or current statement if an error is detected:
6350
6351@example
72d2299c 6352stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6353@end example
6354
6355It is also useful to recover to the matching close-delimiter of an
6356opening-delimiter that has already been parsed. Otherwise the
6357close-delimiter will probably appear to be unmatched, and generate another,
6358spurious error message:
6359
6360@example
6361primary: '(' expr ')'
6362 | '(' error ')'
6363 @dots{}
6364 ;
6365@end example
6366
6367Error recovery strategies are necessarily guesses. When they guess wrong,
6368one syntax error often leads to another. In the above example, the error
6369recovery rule guesses that an error is due to bad input within one
6370@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6371middle of a valid @code{stmnt}. After the error recovery rule recovers
6372from the first error, another syntax error will be found straightaway,
6373since the text following the spurious semicolon is also an invalid
6374@code{stmnt}.
6375
6376To prevent an outpouring of error messages, the parser will output no error
6377message for another syntax error that happens shortly after the first; only
6378after three consecutive input tokens have been successfully shifted will
6379error messages resume.
6380
6381Note that rules which accept the @code{error} token may have actions, just
6382as any other rules can.
6383
6384@findex yyerrok
6385You can make error messages resume immediately by using the macro
6386@code{yyerrok} in an action. If you do this in the error rule's action, no
6387error messages will be suppressed. This macro requires no arguments;
6388@samp{yyerrok;} is a valid C statement.
6389
6390@findex yyclearin
742e4900 6391The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6392this is unacceptable, then the macro @code{yyclearin} may be used to clear
6393this token. Write the statement @samp{yyclearin;} in the error rule's
6394action.
32c29292 6395@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6396
6e649e65 6397For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6398called that advances the input stream to some point where parsing should
6399once again commence. The next symbol returned by the lexical scanner is
742e4900 6400probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6401with @samp{yyclearin;}.
6402
6403@vindex YYRECOVERING
02103984
PE
6404The expression @code{YYRECOVERING ()} yields 1 when the parser
6405is recovering from a syntax error, and 0 otherwise.
6406Syntax error diagnostics are suppressed while recovering from a syntax
6407error.
bfa74976 6408
342b8b6e 6409@node Context Dependency
bfa74976
RS
6410@chapter Handling Context Dependencies
6411
6412The Bison paradigm is to parse tokens first, then group them into larger
6413syntactic units. In many languages, the meaning of a token is affected by
6414its context. Although this violates the Bison paradigm, certain techniques
6415(known as @dfn{kludges}) may enable you to write Bison parsers for such
6416languages.
6417
6418@menu
6419* Semantic Tokens:: Token parsing can depend on the semantic context.
6420* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6421* Tie-in Recovery:: Lexical tie-ins have implications for how
6422 error recovery rules must be written.
6423@end menu
6424
6425(Actually, ``kludge'' means any technique that gets its job done but is
6426neither clean nor robust.)
6427
342b8b6e 6428@node Semantic Tokens
bfa74976
RS
6429@section Semantic Info in Token Types
6430
6431The C language has a context dependency: the way an identifier is used
6432depends on what its current meaning is. For example, consider this:
6433
6434@example
6435foo (x);
6436@end example
6437
6438This looks like a function call statement, but if @code{foo} is a typedef
6439name, then this is actually a declaration of @code{x}. How can a Bison
6440parser for C decide how to parse this input?
6441
c827f760 6442The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6443@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6444identifier, it looks up the current declaration of the identifier in order
6445to decide which token type to return: @code{TYPENAME} if the identifier is
6446declared as a typedef, @code{IDENTIFIER} otherwise.
6447
6448The grammar rules can then express the context dependency by the choice of
6449token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6450but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6451@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6452is @emph{not} significant, such as in declarations that can shadow a
6453typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6454accepted---there is one rule for each of the two token types.
6455
6456This technique is simple to use if the decision of which kinds of
6457identifiers to allow is made at a place close to where the identifier is
6458parsed. But in C this is not always so: C allows a declaration to
6459redeclare a typedef name provided an explicit type has been specified
6460earlier:
6461
6462@example
3a4f411f
PE
6463typedef int foo, bar;
6464int baz (void)
6465@{
6466 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6467 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6468 return foo (bar);
6469@}
bfa74976
RS
6470@end example
6471
6472Unfortunately, the name being declared is separated from the declaration
6473construct itself by a complicated syntactic structure---the ``declarator''.
6474
9ecbd125 6475As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6476all the nonterminal names changed: once for parsing a declaration in
6477which a typedef name can be redefined, and once for parsing a
6478declaration in which that can't be done. Here is a part of the
6479duplication, with actions omitted for brevity:
bfa74976
RS
6480
6481@example
6482initdcl:
6483 declarator maybeasm '='
6484 init
6485 | declarator maybeasm
6486 ;
6487
6488notype_initdcl:
6489 notype_declarator maybeasm '='
6490 init
6491 | notype_declarator maybeasm
6492 ;
6493@end example
6494
6495@noindent
6496Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6497cannot. The distinction between @code{declarator} and
6498@code{notype_declarator} is the same sort of thing.
6499
6500There is some similarity between this technique and a lexical tie-in
6501(described next), in that information which alters the lexical analysis is
6502changed during parsing by other parts of the program. The difference is
6503here the information is global, and is used for other purposes in the
6504program. A true lexical tie-in has a special-purpose flag controlled by
6505the syntactic context.
6506
342b8b6e 6507@node Lexical Tie-ins
bfa74976
RS
6508@section Lexical Tie-ins
6509@cindex lexical tie-in
6510
6511One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6512which is set by Bison actions, whose purpose is to alter the way tokens are
6513parsed.
6514
6515For example, suppose we have a language vaguely like C, but with a special
6516construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6517an expression in parentheses in which all integers are hexadecimal. In
6518particular, the token @samp{a1b} must be treated as an integer rather than
6519as an identifier if it appears in that context. Here is how you can do it:
6520
6521@example
6522@group
6523%@{
38a92d50
PE
6524 int hexflag;
6525 int yylex (void);
6526 void yyerror (char const *);
bfa74976
RS
6527%@}
6528%%
6529@dots{}
6530@end group
6531@group
6532expr: IDENTIFIER
6533 | constant
6534 | HEX '('
6535 @{ hexflag = 1; @}
6536 expr ')'
6537 @{ hexflag = 0;
6538 $$ = $4; @}
6539 | expr '+' expr
6540 @{ $$ = make_sum ($1, $3); @}
6541 @dots{}
6542 ;
6543@end group
6544
6545@group
6546constant:
6547 INTEGER
6548 | STRING
6549 ;
6550@end group
6551@end example
6552
6553@noindent
6554Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6555it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6556with letters are parsed as integers if possible.
6557
342b8b6e
AD
6558The declaration of @code{hexflag} shown in the prologue of the parser file
6559is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6560You must also write the code in @code{yylex} to obey the flag.
bfa74976 6561
342b8b6e 6562@node Tie-in Recovery
bfa74976
RS
6563@section Lexical Tie-ins and Error Recovery
6564
6565Lexical tie-ins make strict demands on any error recovery rules you have.
6566@xref{Error Recovery}.
6567
6568The reason for this is that the purpose of an error recovery rule is to
6569abort the parsing of one construct and resume in some larger construct.
6570For example, in C-like languages, a typical error recovery rule is to skip
6571tokens until the next semicolon, and then start a new statement, like this:
6572
6573@example
6574stmt: expr ';'
6575 | IF '(' expr ')' stmt @{ @dots{} @}
6576 @dots{}
6577 error ';'
6578 @{ hexflag = 0; @}
6579 ;
6580@end example
6581
6582If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6583construct, this error rule will apply, and then the action for the
6584completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6585remain set for the entire rest of the input, or until the next @code{hex}
6586keyword, causing identifiers to be misinterpreted as integers.
6587
6588To avoid this problem the error recovery rule itself clears @code{hexflag}.
6589
6590There may also be an error recovery rule that works within expressions.
6591For example, there could be a rule which applies within parentheses
6592and skips to the close-parenthesis:
6593
6594@example
6595@group
6596expr: @dots{}
6597 | '(' expr ')'
6598 @{ $$ = $2; @}
6599 | '(' error ')'
6600 @dots{}
6601@end group
6602@end example
6603
6604If this rule acts within the @code{hex} construct, it is not going to abort
6605that construct (since it applies to an inner level of parentheses within
6606the construct). Therefore, it should not clear the flag: the rest of
6607the @code{hex} construct should be parsed with the flag still in effect.
6608
6609What if there is an error recovery rule which might abort out of the
6610@code{hex} construct or might not, depending on circumstances? There is no
6611way you can write the action to determine whether a @code{hex} construct is
6612being aborted or not. So if you are using a lexical tie-in, you had better
6613make sure your error recovery rules are not of this kind. Each rule must
6614be such that you can be sure that it always will, or always won't, have to
6615clear the flag.
6616
ec3bc396
AD
6617@c ================================================== Debugging Your Parser
6618
342b8b6e 6619@node Debugging
bfa74976 6620@chapter Debugging Your Parser
ec3bc396
AD
6621
6622Developing a parser can be a challenge, especially if you don't
6623understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6624Algorithm}). Even so, sometimes a detailed description of the automaton
6625can help (@pxref{Understanding, , Understanding Your Parser}), or
6626tracing the execution of the parser can give some insight on why it
6627behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6628
6629@menu
6630* Understanding:: Understanding the structure of your parser.
6631* Tracing:: Tracing the execution of your parser.
6632@end menu
6633
6634@node Understanding
6635@section Understanding Your Parser
6636
6637As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6638Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6639frequent than one would hope), looking at this automaton is required to
6640tune or simply fix a parser. Bison provides two different
35fe0834 6641representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6642
6643The textual file is generated when the options @option{--report} or
6644@option{--verbose} are specified, see @xref{Invocation, , Invoking
6645Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6646the parser output file name, and adding @samp{.output} instead.
6647Therefore, if the input file is @file{foo.y}, then the parser file is
6648called @file{foo.tab.c} by default. As a consequence, the verbose
6649output file is called @file{foo.output}.
6650
6651The following grammar file, @file{calc.y}, will be used in the sequel:
6652
6653@example
6654%token NUM STR
6655%left '+' '-'
6656%left '*'
6657%%
6658exp: exp '+' exp
6659 | exp '-' exp
6660 | exp '*' exp
6661 | exp '/' exp
6662 | NUM
6663 ;
6664useless: STR;
6665%%
6666@end example
6667
88bce5a2
AD
6668@command{bison} reports:
6669
6670@example
6671calc.y: warning: 1 useless nonterminal and 1 useless rule
6672calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6673calc.y:11.10-12: warning: useless rule: useless: STR
6674calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6675@end example
6676
6677When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6678creates a file @file{calc.output} with contents detailed below. The
6679order of the output and the exact presentation might vary, but the
6680interpretation is the same.
ec3bc396
AD
6681
6682The first section includes details on conflicts that were solved thanks
6683to precedence and/or associativity:
6684
6685@example
6686Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6687Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6688Conflict in state 8 between rule 2 and token '*' resolved as shift.
6689@exdent @dots{}
6690@end example
6691
6692@noindent
6693The next section lists states that still have conflicts.
6694
6695@example
5a99098d
PE
6696State 8 conflicts: 1 shift/reduce
6697State 9 conflicts: 1 shift/reduce
6698State 10 conflicts: 1 shift/reduce
6699State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6700@end example
6701
6702@noindent
6703@cindex token, useless
6704@cindex useless token
6705@cindex nonterminal, useless
6706@cindex useless nonterminal
6707@cindex rule, useless
6708@cindex useless rule
6709The next section reports useless tokens, nonterminal and rules. Useless
6710nonterminals and rules are removed in order to produce a smaller parser,
6711but useless tokens are preserved, since they might be used by the
6712scanner (note the difference between ``useless'' and ``not used''
6713below):
6714
6715@example
6716Useless nonterminals:
6717 useless
6718
6719Terminals which are not used:
6720 STR
6721
6722Useless rules:
6723#6 useless: STR;
6724@end example
6725
6726@noindent
6727The next section reproduces the exact grammar that Bison used:
6728
6729@example
6730Grammar
6731
6732 Number, Line, Rule
88bce5a2 6733 0 5 $accept -> exp $end
ec3bc396
AD
6734 1 5 exp -> exp '+' exp
6735 2 6 exp -> exp '-' exp
6736 3 7 exp -> exp '*' exp
6737 4 8 exp -> exp '/' exp
6738 5 9 exp -> NUM
6739@end example
6740
6741@noindent
6742and reports the uses of the symbols:
6743
6744@example
6745Terminals, with rules where they appear
6746
88bce5a2 6747$end (0) 0
ec3bc396
AD
6748'*' (42) 3
6749'+' (43) 1
6750'-' (45) 2
6751'/' (47) 4
6752error (256)
6753NUM (258) 5
6754
6755Nonterminals, with rules where they appear
6756
88bce5a2 6757$accept (8)
ec3bc396
AD
6758 on left: 0
6759exp (9)
6760 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6761@end example
6762
6763@noindent
6764@cindex item
6765@cindex pointed rule
6766@cindex rule, pointed
6767Bison then proceeds onto the automaton itself, describing each state
6768with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6769item is a production rule together with a point (marked by @samp{.})
6770that the input cursor.
6771
6772@example
6773state 0
6774
88bce5a2 6775 $accept -> . exp $ (rule 0)
ec3bc396 6776
2a8d363a 6777 NUM shift, and go to state 1
ec3bc396 6778
2a8d363a 6779 exp go to state 2
ec3bc396
AD
6780@end example
6781
6782This reads as follows: ``state 0 corresponds to being at the very
6783beginning of the parsing, in the initial rule, right before the start
6784symbol (here, @code{exp}). When the parser returns to this state right
6785after having reduced a rule that produced an @code{exp}, the control
6786flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6787symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6788the parse stack, and the control flow jumps to state 1. Any other
742e4900 6789lookahead triggers a syntax error.''
ec3bc396
AD
6790
6791@cindex core, item set
6792@cindex item set core
6793@cindex kernel, item set
6794@cindex item set core
6795Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6796report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6797at the beginning of any rule deriving an @code{exp}. By default Bison
6798reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6799you want to see more detail you can invoke @command{bison} with
6800@option{--report=itemset} to list all the items, include those that can
6801be derived:
6802
6803@example
6804state 0
6805
88bce5a2 6806 $accept -> . exp $ (rule 0)
ec3bc396
AD
6807 exp -> . exp '+' exp (rule 1)
6808 exp -> . exp '-' exp (rule 2)
6809 exp -> . exp '*' exp (rule 3)
6810 exp -> . exp '/' exp (rule 4)
6811 exp -> . NUM (rule 5)
6812
6813 NUM shift, and go to state 1
6814
6815 exp go to state 2
6816@end example
6817
6818@noindent
6819In the state 1...
6820
6821@example
6822state 1
6823
6824 exp -> NUM . (rule 5)
6825
2a8d363a 6826 $default reduce using rule 5 (exp)
ec3bc396
AD
6827@end example
6828
6829@noindent
742e4900 6830the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6831(@samp{$default}), the parser will reduce it. If it was coming from
6832state 0, then, after this reduction it will return to state 0, and will
6833jump to state 2 (@samp{exp: go to state 2}).
6834
6835@example
6836state 2
6837
88bce5a2 6838 $accept -> exp . $ (rule 0)
ec3bc396
AD
6839 exp -> exp . '+' exp (rule 1)
6840 exp -> exp . '-' exp (rule 2)
6841 exp -> exp . '*' exp (rule 3)
6842 exp -> exp . '/' exp (rule 4)
6843
2a8d363a
AD
6844 $ shift, and go to state 3
6845 '+' shift, and go to state 4
6846 '-' shift, and go to state 5
6847 '*' shift, and go to state 6
6848 '/' shift, and go to state 7
ec3bc396
AD
6849@end example
6850
6851@noindent
6852In state 2, the automaton can only shift a symbol. For instance,
742e4900 6853because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6854@samp{+}, it will be shifted on the parse stack, and the automaton
6855control will jump to state 4, corresponding to the item @samp{exp -> exp
6856'+' . exp}. Since there is no default action, any other token than
6e649e65 6857those listed above will trigger a syntax error.
ec3bc396
AD
6858
6859The state 3 is named the @dfn{final state}, or the @dfn{accepting
6860state}:
6861
6862@example
6863state 3
6864
88bce5a2 6865 $accept -> exp $ . (rule 0)
ec3bc396 6866
2a8d363a 6867 $default accept
ec3bc396
AD
6868@end example
6869
6870@noindent
6871the initial rule is completed (the start symbol and the end
6872of input were read), the parsing exits successfully.
6873
6874The interpretation of states 4 to 7 is straightforward, and is left to
6875the reader.
6876
6877@example
6878state 4
6879
6880 exp -> exp '+' . exp (rule 1)
6881
2a8d363a 6882 NUM shift, and go to state 1
ec3bc396 6883
2a8d363a 6884 exp go to state 8
ec3bc396
AD
6885
6886state 5
6887
6888 exp -> exp '-' . exp (rule 2)
6889
2a8d363a 6890 NUM shift, and go to state 1
ec3bc396 6891
2a8d363a 6892 exp go to state 9
ec3bc396
AD
6893
6894state 6
6895
6896 exp -> exp '*' . exp (rule 3)
6897
2a8d363a 6898 NUM shift, and go to state 1
ec3bc396 6899
2a8d363a 6900 exp go to state 10
ec3bc396
AD
6901
6902state 7
6903
6904 exp -> exp '/' . exp (rule 4)
6905
2a8d363a 6906 NUM shift, and go to state 1
ec3bc396 6907
2a8d363a 6908 exp go to state 11
ec3bc396
AD
6909@end example
6910
5a99098d
PE
6911As was announced in beginning of the report, @samp{State 8 conflicts:
69121 shift/reduce}:
ec3bc396
AD
6913
6914@example
6915state 8
6916
6917 exp -> exp . '+' exp (rule 1)
6918 exp -> exp '+' exp . (rule 1)
6919 exp -> exp . '-' exp (rule 2)
6920 exp -> exp . '*' exp (rule 3)
6921 exp -> exp . '/' exp (rule 4)
6922
2a8d363a
AD
6923 '*' shift, and go to state 6
6924 '/' shift, and go to state 7
ec3bc396 6925
2a8d363a
AD
6926 '/' [reduce using rule 1 (exp)]
6927 $default reduce using rule 1 (exp)
ec3bc396
AD
6928@end example
6929
742e4900 6930Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6931either shifting (and going to state 7), or reducing rule 1. The
6932conflict means that either the grammar is ambiguous, or the parser lacks
6933information to make the right decision. Indeed the grammar is
6934ambiguous, as, since we did not specify the precedence of @samp{/}, the
6935sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6936NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6937NUM}, which corresponds to reducing rule 1.
6938
c827f760 6939Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6940arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6941Shift/Reduce Conflicts}. Discarded actions are reported in between
6942square brackets.
6943
6944Note that all the previous states had a single possible action: either
6945shifting the next token and going to the corresponding state, or
6946reducing a single rule. In the other cases, i.e., when shifting
6947@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6948possible, the lookahead is required to select the action. State 8 is
6949one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6950is shifting, otherwise the action is reducing rule 1. In other words,
6951the first two items, corresponding to rule 1, are not eligible when the
742e4900 6952lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6953precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6954with some set of possible lookahead tokens. When run with
6955@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6956
6957@example
6958state 8
6959
6960 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6961 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6962 exp -> exp . '-' exp (rule 2)
6963 exp -> exp . '*' exp (rule 3)
6964 exp -> exp . '/' exp (rule 4)
6965
6966 '*' shift, and go to state 6
6967 '/' shift, and go to state 7
6968
6969 '/' [reduce using rule 1 (exp)]
6970 $default reduce using rule 1 (exp)
6971@end example
6972
6973The remaining states are similar:
6974
6975@example
6976state 9
6977
6978 exp -> exp . '+' exp (rule 1)
6979 exp -> exp . '-' exp (rule 2)
6980 exp -> exp '-' exp . (rule 2)
6981 exp -> exp . '*' exp (rule 3)
6982 exp -> exp . '/' exp (rule 4)
6983
2a8d363a
AD
6984 '*' shift, and go to state 6
6985 '/' shift, and go to state 7
ec3bc396 6986
2a8d363a
AD
6987 '/' [reduce using rule 2 (exp)]
6988 $default reduce using rule 2 (exp)
ec3bc396
AD
6989
6990state 10
6991
6992 exp -> exp . '+' exp (rule 1)
6993 exp -> exp . '-' exp (rule 2)
6994 exp -> exp . '*' exp (rule 3)
6995 exp -> exp '*' exp . (rule 3)
6996 exp -> exp . '/' exp (rule 4)
6997
2a8d363a 6998 '/' shift, and go to state 7
ec3bc396 6999
2a8d363a
AD
7000 '/' [reduce using rule 3 (exp)]
7001 $default reduce using rule 3 (exp)
ec3bc396
AD
7002
7003state 11
7004
7005 exp -> exp . '+' exp (rule 1)
7006 exp -> exp . '-' exp (rule 2)
7007 exp -> exp . '*' exp (rule 3)
7008 exp -> exp . '/' exp (rule 4)
7009 exp -> exp '/' exp . (rule 4)
7010
2a8d363a
AD
7011 '+' shift, and go to state 4
7012 '-' shift, and go to state 5
7013 '*' shift, and go to state 6
7014 '/' shift, and go to state 7
ec3bc396 7015
2a8d363a
AD
7016 '+' [reduce using rule 4 (exp)]
7017 '-' [reduce using rule 4 (exp)]
7018 '*' [reduce using rule 4 (exp)]
7019 '/' [reduce using rule 4 (exp)]
7020 $default reduce using rule 4 (exp)
ec3bc396
AD
7021@end example
7022
7023@noindent
fa7e68c3
PE
7024Observe that state 11 contains conflicts not only due to the lack of
7025precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7026@samp{*}, but also because the
ec3bc396
AD
7027associativity of @samp{/} is not specified.
7028
7029
7030@node Tracing
7031@section Tracing Your Parser
bfa74976
RS
7032@findex yydebug
7033@cindex debugging
7034@cindex tracing the parser
7035
7036If a Bison grammar compiles properly but doesn't do what you want when it
7037runs, the @code{yydebug} parser-trace feature can help you figure out why.
7038
3ded9a63
AD
7039There are several means to enable compilation of trace facilities:
7040
7041@table @asis
7042@item the macro @code{YYDEBUG}
7043@findex YYDEBUG
7044Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7045parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7046@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7047YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7048Prologue}).
7049
7050@item the option @option{-t}, @option{--debug}
7051Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7052,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7053
7054@item the directive @samp{%debug}
7055@findex %debug
7056Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7057Declaration Summary}). This is a Bison extension, which will prove
7058useful when Bison will output parsers for languages that don't use a
c827f760
PE
7059preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7060you, this is
3ded9a63
AD
7061the preferred solution.
7062@end table
7063
7064We suggest that you always enable the debug option so that debugging is
7065always possible.
bfa74976 7066
02a81e05 7067The trace facility outputs messages with macro calls of the form
e2742e46 7068@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 7069@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
7070arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7071define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7072and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7073
7074Once you have compiled the program with trace facilities, the way to
7075request a trace is to store a nonzero value in the variable @code{yydebug}.
7076You can do this by making the C code do it (in @code{main}, perhaps), or
7077you can alter the value with a C debugger.
7078
7079Each step taken by the parser when @code{yydebug} is nonzero produces a
7080line or two of trace information, written on @code{stderr}. The trace
7081messages tell you these things:
7082
7083@itemize @bullet
7084@item
7085Each time the parser calls @code{yylex}, what kind of token was read.
7086
7087@item
7088Each time a token is shifted, the depth and complete contents of the
7089state stack (@pxref{Parser States}).
7090
7091@item
7092Each time a rule is reduced, which rule it is, and the complete contents
7093of the state stack afterward.
7094@end itemize
7095
7096To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7097produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7098Bison}). This file shows the meaning of each state in terms of
7099positions in various rules, and also what each state will do with each
7100possible input token. As you read the successive trace messages, you
7101can see that the parser is functioning according to its specification in
7102the listing file. Eventually you will arrive at the place where
7103something undesirable happens, and you will see which parts of the
7104grammar are to blame.
bfa74976
RS
7105
7106The parser file is a C program and you can use C debuggers on it, but it's
7107not easy to interpret what it is doing. The parser function is a
7108finite-state machine interpreter, and aside from the actions it executes
7109the same code over and over. Only the values of variables show where in
7110the grammar it is working.
7111
7112@findex YYPRINT
7113The debugging information normally gives the token type of each token
7114read, but not its semantic value. You can optionally define a macro
7115named @code{YYPRINT} to provide a way to print the value. If you define
7116@code{YYPRINT}, it should take three arguments. The parser will pass a
7117standard I/O stream, the numeric code for the token type, and the token
7118value (from @code{yylval}).
7119
7120Here is an example of @code{YYPRINT} suitable for the multi-function
7121calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7122
7123@smallexample
38a92d50
PE
7124%@{
7125 static void print_token_value (FILE *, int, YYSTYPE);
7126 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7127%@}
7128
7129@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7130
7131static void
831d3c99 7132print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7133@{
7134 if (type == VAR)
d3c4e709 7135 fprintf (file, "%s", value.tptr->name);
bfa74976 7136 else if (type == NUM)
d3c4e709 7137 fprintf (file, "%d", value.val);
bfa74976
RS
7138@}
7139@end smallexample
7140
ec3bc396
AD
7141@c ================================================= Invoking Bison
7142
342b8b6e 7143@node Invocation
bfa74976
RS
7144@chapter Invoking Bison
7145@cindex invoking Bison
7146@cindex Bison invocation
7147@cindex options for invoking Bison
7148
7149The usual way to invoke Bison is as follows:
7150
7151@example
7152bison @var{infile}
7153@end example
7154
7155Here @var{infile} is the grammar file name, which usually ends in
7156@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7157with @samp{.tab.c} and removing any leading directory. Thus, the
7158@samp{bison foo.y} file name yields
7159@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7160@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7161C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7162or @file{foo.y++}. Then, the output files will take an extension like
7163the given one as input (respectively @file{foo.tab.cpp} and
7164@file{foo.tab.c++}).
fa4d969f 7165This feature takes effect with all options that manipulate file names like
234a3be3
AD
7166@samp{-o} or @samp{-d}.
7167
7168For example :
7169
7170@example
7171bison -d @var{infile.yxx}
7172@end example
84163231 7173@noindent
72d2299c 7174will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7175
7176@example
b56471a6 7177bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7178@end example
84163231 7179@noindent
234a3be3
AD
7180will produce @file{output.c++} and @file{outfile.h++}.
7181
397ec073
PE
7182For compatibility with @acronym{POSIX}, the standard Bison
7183distribution also contains a shell script called @command{yacc} that
7184invokes Bison with the @option{-y} option.
7185
bfa74976 7186@menu
13863333 7187* Bison Options:: All the options described in detail,
c827f760 7188 in alphabetical order by short options.
bfa74976 7189* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7190* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7191@end menu
7192
342b8b6e 7193@node Bison Options
bfa74976
RS
7194@section Bison Options
7195
7196Bison supports both traditional single-letter options and mnemonic long
7197option names. Long option names are indicated with @samp{--} instead of
7198@samp{-}. Abbreviations for option names are allowed as long as they
7199are unique. When a long option takes an argument, like
7200@samp{--file-prefix}, connect the option name and the argument with
7201@samp{=}.
7202
7203Here is a list of options that can be used with Bison, alphabetized by
7204short option. It is followed by a cross key alphabetized by long
7205option.
7206
89cab50d
AD
7207@c Please, keep this ordered as in `bison --help'.
7208@noindent
7209Operations modes:
7210@table @option
7211@item -h
7212@itemx --help
7213Print a summary of the command-line options to Bison and exit.
bfa74976 7214
89cab50d
AD
7215@item -V
7216@itemx --version
7217Print the version number of Bison and exit.
bfa74976 7218
f7ab6a50
PE
7219@item --print-localedir
7220Print the name of the directory containing locale-dependent data.
7221
89cab50d
AD
7222@item -y
7223@itemx --yacc
54662697
PE
7224Act more like the traditional Yacc command. This can cause
7225different diagnostics to be generated, and may change behavior in
7226other minor ways. Most importantly, imitate Yacc's output
7227file name conventions, so that the parser output file is called
89cab50d 7228@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7229@file{y.tab.h}.
7230Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7231statements in addition to an @code{enum} to associate token numbers with token
7232names.
7233Thus, the following shell script can substitute for Yacc, and the Bison
7234distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7235
89cab50d 7236@example
397ec073 7237#! /bin/sh
26e06a21 7238bison -y "$@@"
89cab50d 7239@end example
54662697
PE
7240
7241The @option{-y}/@option{--yacc} option is intended for use with
7242traditional Yacc grammars. If your grammar uses a Bison extension
7243like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7244this option is specified.
7245
89cab50d
AD
7246@end table
7247
7248@noindent
7249Tuning the parser:
7250
7251@table @option
cd5bd6ac
AD
7252@item -S @var{file}
7253@itemx --skeleton=@var{file}
7254Specify the skeleton to use. You probably don't need this option unless
7255you are developing Bison.
7256
89cab50d
AD
7257@item -t
7258@itemx --debug
4947ebdb
PE
7259In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7260already defined, so that the debugging facilities are compiled.
ec3bc396 7261@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
7262
7263@item --locations
d8988b2f 7264Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7265
7266@item -p @var{prefix}
7267@itemx --name-prefix=@var{prefix}
d8988b2f
AD
7268Pretend that @code{%name-prefix="@var{prefix}"} was specified.
7269@xref{Decl Summary}.
bfa74976
RS
7270
7271@item -l
7272@itemx --no-lines
7273Don't put any @code{#line} preprocessor commands in the parser file.
7274Ordinarily Bison puts them in the parser file so that the C compiler
7275and debuggers will associate errors with your source file, the
7276grammar file. This option causes them to associate errors with the
95e742f7 7277parser file, treating it as an independent source file in its own right.
bfa74976 7278
931c7513
RS
7279@item -n
7280@itemx --no-parser
d8988b2f 7281Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7282
89cab50d
AD
7283@item -k
7284@itemx --token-table
d8988b2f 7285Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7286@end table
bfa74976 7287
89cab50d
AD
7288@noindent
7289Adjust the output:
bfa74976 7290
89cab50d
AD
7291@table @option
7292@item -d
d8988b2f
AD
7293@itemx --defines
7294Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7295file containing macro definitions for the token type names defined in
4bfd5e4e 7296the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7297
342b8b6e 7298@item --defines=@var{defines-file}
d8988b2f 7299Same as above, but save in the file @var{defines-file}.
342b8b6e 7300
89cab50d
AD
7301@item -b @var{file-prefix}
7302@itemx --file-prefix=@var{prefix}
9c437126 7303Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7304for all Bison output file names. @xref{Decl Summary}.
bfa74976 7305
ec3bc396
AD
7306@item -r @var{things}
7307@itemx --report=@var{things}
7308Write an extra output file containing verbose description of the comma
7309separated list of @var{things} among:
7310
7311@table @code
7312@item state
7313Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7314@acronym{LALR} automaton.
ec3bc396 7315
742e4900 7316@item lookahead
ec3bc396 7317Implies @code{state} and augments the description of the automaton with
742e4900 7318each rule's lookahead set.
ec3bc396
AD
7319
7320@item itemset
7321Implies @code{state} and augments the description of the automaton with
7322the full set of items for each state, instead of its core only.
7323@end table
7324
bfa74976
RS
7325@item -v
7326@itemx --verbose
9c437126 7327Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7328file containing verbose descriptions of the grammar and
72d2299c 7329parser. @xref{Decl Summary}.
bfa74976 7330
fa4d969f
PE
7331@item -o @var{file}
7332@itemx --output=@var{file}
7333Specify the @var{file} for the parser file.
bfa74976 7334
fa4d969f 7335The other output files' names are constructed from @var{file} as
d8988b2f 7336described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7337
7338@item -g
35fe0834
PE
7339Output a graphical representation of the @acronym{LALR}(1) grammar
7340automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7341@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7342If the grammar file is @file{foo.y}, the output file will
7343be @file{foo.dot}.
342b8b6e
AD
7344
7345@item --graph=@var{graph-file}
72d2299c
PE
7346The behavior of @var{--graph} is the same than @samp{-g}. The only
7347difference is that it has an optional argument which is the name of
fa4d969f 7348the output graph file.
bfa74976
RS
7349@end table
7350
342b8b6e 7351@node Option Cross Key
bfa74976
RS
7352@section Option Cross Key
7353
aa08666d 7354@c FIXME: How about putting the directives too?
bfa74976
RS
7355Here is a list of options, alphabetized by long option, to help you find
7356the corresponding short option.
7357
aa08666d
AD
7358@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7359@headitem Long Option @tab Short Option
7360@item @option{--debug} @tab @option{-t}
7361@item @option{--defines=@var{defines-file}} @tab @option{-d}
7362@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7363@item @option{--graph=@var{graph-file}} @tab @option{-d}
7364@item @option{--help} @tab @option{-h}
7365@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7366@item @option{--no-lines} @tab @option{-l}
7367@item @option{--no-parser} @tab @option{-n}
7368@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7369@item @option{--print-localedir} @tab
7370@item @option{--token-table} @tab @option{-k}
7371@item @option{--verbose} @tab @option{-v}
7372@item @option{--version} @tab @option{-V}
7373@item @option{--yacc} @tab @option{-y}
7374@end multitable
bfa74976 7375
93dd49ab
PE
7376@node Yacc Library
7377@section Yacc Library
7378
7379The Yacc library contains default implementations of the
7380@code{yyerror} and @code{main} functions. These default
7381implementations are normally not useful, but @acronym{POSIX} requires
7382them. To use the Yacc library, link your program with the
7383@option{-ly} option. Note that Bison's implementation of the Yacc
7384library is distributed under the terms of the @acronym{GNU} General
7385Public License (@pxref{Copying}).
7386
7387If you use the Yacc library's @code{yyerror} function, you should
7388declare @code{yyerror} as follows:
7389
7390@example
7391int yyerror (char const *);
7392@end example
7393
7394Bison ignores the @code{int} value returned by this @code{yyerror}.
7395If you use the Yacc library's @code{main} function, your
7396@code{yyparse} function should have the following type signature:
7397
7398@example
7399int yyparse (void);
7400@end example
7401
12545799
AD
7402@c ================================================= C++ Bison
7403
7404@node C++ Language Interface
7405@chapter C++ Language Interface
7406
7407@menu
7408* C++ Parsers:: The interface to generate C++ parser classes
7409* A Complete C++ Example:: Demonstrating their use
7410@end menu
7411
7412@node C++ Parsers
7413@section C++ Parsers
7414
7415@menu
7416* C++ Bison Interface:: Asking for C++ parser generation
7417* C++ Semantic Values:: %union vs. C++
7418* C++ Location Values:: The position and location classes
7419* C++ Parser Interface:: Instantiating and running the parser
7420* C++ Scanner Interface:: Exchanges between yylex and parse
7421@end menu
7422
7423@node C++ Bison Interface
7424@subsection C++ Bison Interface
7425@c - %skeleton "lalr1.cc"
7426@c - Always pure
7427@c - initial action
7428
aa08666d
AD
7429The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7430select it, you may either pass the option @option{--skeleton=lalr1.cc}
7431to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7432grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7433entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7434directive to change the namespace name, see @ref{Decl Summary}. The
7435various classes are generated in the following files:
7436
12545799
AD
7437@table @file
7438@item position.hh
7439@itemx location.hh
7440The definition of the classes @code{position} and @code{location},
7441used for location tracking. @xref{C++ Location Values}.
7442
7443@item stack.hh
7444An auxiliary class @code{stack} used by the parser.
7445
fa4d969f
PE
7446@item @var{file}.hh
7447@itemx @var{file}.cc
cd8b5791
AD
7448(Assuming the extension of the input file was @samp{.yy}.) The
7449declaration and implementation of the C++ parser class. The basename
7450and extension of these two files follow the same rules as with regular C
7451parsers (@pxref{Invocation}).
12545799 7452
cd8b5791
AD
7453The header is @emph{mandatory}; you must either pass
7454@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7455@samp{%defines} directive.
7456@end table
7457
7458All these files are documented using Doxygen; run @command{doxygen}
7459for a complete and accurate documentation.
7460
7461@node C++ Semantic Values
7462@subsection C++ Semantic Values
7463@c - No objects in unions
7464@c - YSTYPE
7465@c - Printer and destructor
7466
7467The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7468Collection of Value Types}. In particular it produces a genuine
7469@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7470within pseudo-unions (similar to Boost variants) might be implemented to
7471alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7472@itemize @minus
7473@item
fb9712a9
AD
7474The type @code{YYSTYPE} is defined but its use is discouraged: rather
7475you should refer to the parser's encapsulated type
7476@code{yy::parser::semantic_type}.
12545799
AD
7477@item
7478Non POD (Plain Old Data) types cannot be used. C++ forbids any
7479instance of classes with constructors in unions: only @emph{pointers}
7480to such objects are allowed.
7481@end itemize
7482
7483Because objects have to be stored via pointers, memory is not
7484reclaimed automatically: using the @code{%destructor} directive is the
7485only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7486Symbols}.
7487
7488
7489@node C++ Location Values
7490@subsection C++ Location Values
7491@c - %locations
7492@c - class Position
7493@c - class Location
b47dbebe 7494@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7495
7496When the directive @code{%locations} is used, the C++ parser supports
7497location tracking, see @ref{Locations, , Locations Overview}. Two
7498auxiliary classes define a @code{position}, a single point in a file,
7499and a @code{location}, a range composed of a pair of
7500@code{position}s (possibly spanning several files).
7501
fa4d969f 7502@deftypemethod {position} {std::string*} file
12545799
AD
7503The name of the file. It will always be handled as a pointer, the
7504parser will never duplicate nor deallocate it. As an experimental
7505feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7506"filename_type" "@var{type}"}.
12545799
AD
7507@end deftypemethod
7508
7509@deftypemethod {position} {unsigned int} line
7510The line, starting at 1.
7511@end deftypemethod
7512
7513@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7514Advance by @var{height} lines, resetting the column number.
7515@end deftypemethod
7516
7517@deftypemethod {position} {unsigned int} column
7518The column, starting at 0.
7519@end deftypemethod
7520
7521@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7522Advance by @var{width} columns, without changing the line number.
7523@end deftypemethod
7524
7525@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7526@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7527@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7528@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7529Various forms of syntactic sugar for @code{columns}.
7530@end deftypemethod
7531
7532@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7533Report @var{p} on @var{o} like this:
fa4d969f
PE
7534@samp{@var{file}:@var{line}.@var{column}}, or
7535@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7536@end deftypemethod
7537
7538@deftypemethod {location} {position} begin
7539@deftypemethodx {location} {position} end
7540The first, inclusive, position of the range, and the first beyond.
7541@end deftypemethod
7542
7543@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7544@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7545Advance the @code{end} position.
7546@end deftypemethod
7547
7548@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7549@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7550@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7551Various forms of syntactic sugar.
7552@end deftypemethod
7553
7554@deftypemethod {location} {void} step ()
7555Move @code{begin} onto @code{end}.
7556@end deftypemethod
7557
7558
7559@node C++ Parser Interface
7560@subsection C++ Parser Interface
7561@c - define parser_class_name
7562@c - Ctor
7563@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7564@c debug_stream.
7565@c - Reporting errors
7566
7567The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7568declare and define the parser class in the namespace @code{yy}. The
7569class name defaults to @code{parser}, but may be changed using
7570@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7571this class is detailed below. It can be extended using the
12545799
AD
7572@code{%parse-param} feature: its semantics is slightly changed since
7573it describes an additional member of the parser class, and an
7574additional argument for its constructor.
7575
8a0adb01
AD
7576@defcv {Type} {parser} {semantic_value_type}
7577@defcvx {Type} {parser} {location_value_type}
12545799 7578The types for semantics value and locations.
8a0adb01 7579@end defcv
12545799
AD
7580
7581@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7582Build a new parser object. There are no arguments by default, unless
7583@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7584@end deftypemethod
7585
7586@deftypemethod {parser} {int} parse ()
7587Run the syntactic analysis, and return 0 on success, 1 otherwise.
7588@end deftypemethod
7589
7590@deftypemethod {parser} {std::ostream&} debug_stream ()
7591@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7592Get or set the stream used for tracing the parsing. It defaults to
7593@code{std::cerr}.
7594@end deftypemethod
7595
7596@deftypemethod {parser} {debug_level_type} debug_level ()
7597@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7598Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7599or nonzero, full tracing.
12545799
AD
7600@end deftypemethod
7601
7602@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7603The definition for this member function must be supplied by the user:
7604the parser uses it to report a parser error occurring at @var{l},
7605described by @var{m}.
7606@end deftypemethod
7607
7608
7609@node C++ Scanner Interface
7610@subsection C++ Scanner Interface
7611@c - prefix for yylex.
7612@c - Pure interface to yylex
7613@c - %lex-param
7614
7615The parser invokes the scanner by calling @code{yylex}. Contrary to C
7616parsers, C++ parsers are always pure: there is no point in using the
7617@code{%pure-parser} directive. Therefore the interface is as follows.
7618
7619@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7620Return the next token. Its type is the return value, its semantic
7621value and location being @var{yylval} and @var{yylloc}. Invocations of
7622@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7623@end deftypemethod
7624
7625
7626@node A Complete C++ Example
7627@section A Complete C++ Example
7628
7629This section demonstrates the use of a C++ parser with a simple but
7630complete example. This example should be available on your system,
7631ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7632focuses on the use of Bison, therefore the design of the various C++
7633classes is very naive: no accessors, no encapsulation of members etc.
7634We will use a Lex scanner, and more precisely, a Flex scanner, to
7635demonstrate the various interaction. A hand written scanner is
7636actually easier to interface with.
7637
7638@menu
7639* Calc++ --- C++ Calculator:: The specifications
7640* Calc++ Parsing Driver:: An active parsing context
7641* Calc++ Parser:: A parser class
7642* Calc++ Scanner:: A pure C++ Flex scanner
7643* Calc++ Top Level:: Conducting the band
7644@end menu
7645
7646@node Calc++ --- C++ Calculator
7647@subsection Calc++ --- C++ Calculator
7648
7649Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7650expression, possibly preceded by variable assignments. An
12545799
AD
7651environment containing possibly predefined variables such as
7652@code{one} and @code{two}, is exchanged with the parser. An example
7653of valid input follows.
7654
7655@example
7656three := 3
7657seven := one + two * three
7658seven * seven
7659@end example
7660
7661@node Calc++ Parsing Driver
7662@subsection Calc++ Parsing Driver
7663@c - An env
7664@c - A place to store error messages
7665@c - A place for the result
7666
7667To support a pure interface with the parser (and the scanner) the
7668technique of the ``parsing context'' is convenient: a structure
7669containing all the data to exchange. Since, in addition to simply
7670launch the parsing, there are several auxiliary tasks to execute (open
7671the file for parsing, instantiate the parser etc.), we recommend
7672transforming the simple parsing context structure into a fully blown
7673@dfn{parsing driver} class.
7674
7675The declaration of this driver class, @file{calc++-driver.hh}, is as
7676follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7677required standard library components, and the declaration of the parser
7678class.
12545799 7679
1c59e0a1 7680@comment file: calc++-driver.hh
12545799
AD
7681@example
7682#ifndef CALCXX_DRIVER_HH
7683# define CALCXX_DRIVER_HH
7684# include <string>
7685# include <map>
fb9712a9 7686# include "calc++-parser.hh"
12545799
AD
7687@end example
7688
12545799
AD
7689
7690@noindent
7691Then comes the declaration of the scanning function. Flex expects
7692the signature of @code{yylex} to be defined in the macro
7693@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7694factor both as follows.
1c59e0a1
AD
7695
7696@comment file: calc++-driver.hh
12545799 7697@example
3dc5e96b
PE
7698// Tell Flex the lexer's prototype ...
7699# define YY_DECL \
c095d689
AD
7700 yy::calcxx_parser::token_type \
7701 yylex (yy::calcxx_parser::semantic_type* yylval, \
7702 yy::calcxx_parser::location_type* yylloc, \
7703 calcxx_driver& driver)
12545799
AD
7704// ... and declare it for the parser's sake.
7705YY_DECL;
7706@end example
7707
7708@noindent
7709The @code{calcxx_driver} class is then declared with its most obvious
7710members.
7711
1c59e0a1 7712@comment file: calc++-driver.hh
12545799
AD
7713@example
7714// Conducting the whole scanning and parsing of Calc++.
7715class calcxx_driver
7716@{
7717public:
7718 calcxx_driver ();
7719 virtual ~calcxx_driver ();
7720
7721 std::map<std::string, int> variables;
7722
7723 int result;
7724@end example
7725
7726@noindent
7727To encapsulate the coordination with the Flex scanner, it is useful to
7728have two members function to open and close the scanning phase.
12545799 7729
1c59e0a1 7730@comment file: calc++-driver.hh
12545799
AD
7731@example
7732 // Handling the scanner.
7733 void scan_begin ();
7734 void scan_end ();
7735 bool trace_scanning;
7736@end example
7737
7738@noindent
7739Similarly for the parser itself.
7740
1c59e0a1 7741@comment file: calc++-driver.hh
12545799
AD
7742@example
7743 // Handling the parser.
7744 void parse (const std::string& f);
7745 std::string file;
7746 bool trace_parsing;
7747@end example
7748
7749@noindent
7750To demonstrate pure handling of parse errors, instead of simply
7751dumping them on the standard error output, we will pass them to the
7752compiler driver using the following two member functions. Finally, we
7753close the class declaration and CPP guard.
7754
1c59e0a1 7755@comment file: calc++-driver.hh
12545799
AD
7756@example
7757 // Error handling.
7758 void error (const yy::location& l, const std::string& m);
7759 void error (const std::string& m);
7760@};
7761#endif // ! CALCXX_DRIVER_HH
7762@end example
7763
7764The implementation of the driver is straightforward. The @code{parse}
7765member function deserves some attention. The @code{error} functions
7766are simple stubs, they should actually register the located error
7767messages and set error state.
7768
1c59e0a1 7769@comment file: calc++-driver.cc
12545799
AD
7770@example
7771#include "calc++-driver.hh"
7772#include "calc++-parser.hh"
7773
7774calcxx_driver::calcxx_driver ()
7775 : trace_scanning (false), trace_parsing (false)
7776@{
7777 variables["one"] = 1;
7778 variables["two"] = 2;
7779@}
7780
7781calcxx_driver::~calcxx_driver ()
7782@{
7783@}
7784
7785void
7786calcxx_driver::parse (const std::string &f)
7787@{
7788 file = f;
7789 scan_begin ();
7790 yy::calcxx_parser parser (*this);
7791 parser.set_debug_level (trace_parsing);
7792 parser.parse ();
7793 scan_end ();
7794@}
7795
7796void
7797calcxx_driver::error (const yy::location& l, const std::string& m)
7798@{
7799 std::cerr << l << ": " << m << std::endl;
7800@}
7801
7802void
7803calcxx_driver::error (const std::string& m)
7804@{
7805 std::cerr << m << std::endl;
7806@}
7807@end example
7808
7809@node Calc++ Parser
7810@subsection Calc++ Parser
7811
b50d2359
AD
7812The parser definition file @file{calc++-parser.yy} starts by asking for
7813the C++ LALR(1) skeleton, the creation of the parser header file, and
7814specifies the name of the parser class. Because the C++ skeleton
7815changed several times, it is safer to require the version you designed
7816the grammar for.
1c59e0a1
AD
7817
7818@comment file: calc++-parser.yy
12545799
AD
7819@example
7820%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7821%require "2.1a"
12545799 7822%defines
fb9712a9
AD
7823%define "parser_class_name" "calcxx_parser"
7824@end example
7825
7826@noindent
136a0f76 7827@findex %requires
fb9712a9
AD
7828Then come the declarations/inclusions needed to define the
7829@code{%union}. Because the parser uses the parsing driver and
7830reciprocally, both cannot include the header of the other. Because the
7831driver's header needs detailed knowledge about the parser class (in
7832particular its inner types), it is the parser's header which will simply
7833use a forward declaration of the driver.
136a0f76 7834@xref{Table of Symbols, ,%requires}.
fb9712a9
AD
7835
7836@comment file: calc++-parser.yy
7837@example
136a0f76 7838%requires @{
12545799 7839# include <string>
fb9712a9 7840class calcxx_driver;
9bc0dd67 7841@}
12545799
AD
7842@end example
7843
7844@noindent
7845The driver is passed by reference to the parser and to the scanner.
7846This provides a simple but effective pure interface, not relying on
7847global variables.
7848
1c59e0a1 7849@comment file: calc++-parser.yy
12545799
AD
7850@example
7851// The parsing context.
7852%parse-param @{ calcxx_driver& driver @}
7853%lex-param @{ calcxx_driver& driver @}
7854@end example
7855
7856@noindent
7857Then we request the location tracking feature, and initialize the
7858first location's file name. Afterwards new locations are computed
7859relatively to the previous locations: the file name will be
7860automatically propagated.
7861
1c59e0a1 7862@comment file: calc++-parser.yy
12545799
AD
7863@example
7864%locations
7865%initial-action
7866@{
7867 // Initialize the initial location.
b47dbebe 7868 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7869@};
7870@end example
7871
7872@noindent
7873Use the two following directives to enable parser tracing and verbose
7874error messages.
7875
1c59e0a1 7876@comment file: calc++-parser.yy
12545799
AD
7877@example
7878%debug
7879%error-verbose
7880@end example
7881
7882@noindent
7883Semantic values cannot use ``real'' objects, but only pointers to
7884them.
7885
1c59e0a1 7886@comment file: calc++-parser.yy
12545799
AD
7887@example
7888// Symbols.
7889%union
7890@{
7891 int ival;
7892 std::string *sval;
7893@};
7894@end example
7895
fb9712a9 7896@noindent
136a0f76
PB
7897@findex %code
7898The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7899@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7900
7901@comment file: calc++-parser.yy
7902@example
136a0f76 7903%code @{
fb9712a9 7904# include "calc++-driver.hh"
34f98f46 7905@}
fb9712a9
AD
7906@end example
7907
7908
12545799
AD
7909@noindent
7910The token numbered as 0 corresponds to end of file; the following line
7911allows for nicer error messages referring to ``end of file'' instead
7912of ``$end''. Similarly user friendly named are provided for each
7913symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7914avoid name clashes.
7915
1c59e0a1 7916@comment file: calc++-parser.yy
12545799 7917@example
fb9712a9
AD
7918%token END 0 "end of file"
7919%token ASSIGN ":="
7920%token <sval> IDENTIFIER "identifier"
7921%token <ival> NUMBER "number"
7922%type <ival> exp "expression"
12545799
AD
7923@end example
7924
7925@noindent
7926To enable memory deallocation during error recovery, use
7927@code{%destructor}.
7928
287c78f6 7929@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7930@comment file: calc++-parser.yy
12545799
AD
7931@example
7932%printer @{ debug_stream () << *$$; @} "identifier"
7933%destructor @{ delete $$; @} "identifier"
7934
7935%printer @{ debug_stream () << $$; @} "number" "expression"
7936@end example
7937
7938@noindent
7939The grammar itself is straightforward.
7940
1c59e0a1 7941@comment file: calc++-parser.yy
12545799
AD
7942@example
7943%%
7944%start unit;
7945unit: assignments exp @{ driver.result = $2; @};
7946
7947assignments: assignments assignment @{@}
9d9b8b70 7948 | /* Nothing. */ @{@};
12545799 7949
3dc5e96b
PE
7950assignment:
7951 "identifier" ":=" exp
7952 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7953
7954%left '+' '-';
7955%left '*' '/';
7956exp: exp '+' exp @{ $$ = $1 + $3; @}
7957 | exp '-' exp @{ $$ = $1 - $3; @}
7958 | exp '*' exp @{ $$ = $1 * $3; @}
7959 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7960 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 7961 | "number" @{ $$ = $1; @};
12545799
AD
7962%%
7963@end example
7964
7965@noindent
7966Finally the @code{error} member function registers the errors to the
7967driver.
7968
1c59e0a1 7969@comment file: calc++-parser.yy
12545799
AD
7970@example
7971void
1c59e0a1
AD
7972yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7973 const std::string& m)
12545799
AD
7974@{
7975 driver.error (l, m);
7976@}
7977@end example
7978
7979@node Calc++ Scanner
7980@subsection Calc++ Scanner
7981
7982The Flex scanner first includes the driver declaration, then the
7983parser's to get the set of defined tokens.
7984
1c59e0a1 7985@comment file: calc++-scanner.ll
12545799
AD
7986@example
7987%@{ /* -*- C++ -*- */
04098407
PE
7988# include <cstdlib>
7989# include <errno.h>
7990# include <limits.h>
12545799
AD
7991# include <string>
7992# include "calc++-driver.hh"
7993# include "calc++-parser.hh"
eaea13f5
PE
7994
7995/* Work around an incompatibility in flex (at least versions
7996 2.5.31 through 2.5.33): it generates code that does
7997 not conform to C89. See Debian bug 333231
7998 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7999# undef yywrap
8000# define yywrap() 1
eaea13f5 8001
c095d689
AD
8002/* By default yylex returns int, we use token_type.
8003 Unfortunately yyterminate by default returns 0, which is
8004 not of token_type. */
8c5b881d 8005#define yyterminate() return token::END
12545799
AD
8006%@}
8007@end example
8008
8009@noindent
8010Because there is no @code{#include}-like feature we don't need
8011@code{yywrap}, we don't need @code{unput} either, and we parse an
8012actual file, this is not an interactive session with the user.
8013Finally we enable the scanner tracing features.
8014
1c59e0a1 8015@comment file: calc++-scanner.ll
12545799
AD
8016@example
8017%option noyywrap nounput batch debug
8018@end example
8019
8020@noindent
8021Abbreviations allow for more readable rules.
8022
1c59e0a1 8023@comment file: calc++-scanner.ll
12545799
AD
8024@example
8025id [a-zA-Z][a-zA-Z_0-9]*
8026int [0-9]+
8027blank [ \t]
8028@end example
8029
8030@noindent
9d9b8b70 8031The following paragraph suffices to track locations accurately. Each
12545799
AD
8032time @code{yylex} is invoked, the begin position is moved onto the end
8033position. Then when a pattern is matched, the end position is
8034advanced of its width. In case it matched ends of lines, the end
8035cursor is adjusted, and each time blanks are matched, the begin cursor
8036is moved onto the end cursor to effectively ignore the blanks
8037preceding tokens. Comments would be treated equally.
8038
1c59e0a1 8039@comment file: calc++-scanner.ll
12545799 8040@example
828c373b
AD
8041%@{
8042# define YY_USER_ACTION yylloc->columns (yyleng);
8043%@}
12545799
AD
8044%%
8045%@{
8046 yylloc->step ();
12545799
AD
8047%@}
8048@{blank@}+ yylloc->step ();
8049[\n]+ yylloc->lines (yyleng); yylloc->step ();
8050@end example
8051
8052@noindent
fb9712a9
AD
8053The rules are simple, just note the use of the driver to report errors.
8054It is convenient to use a typedef to shorten
8055@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8056@code{token::identifier} for instance.
12545799 8057
1c59e0a1 8058@comment file: calc++-scanner.ll
12545799 8059@example
fb9712a9
AD
8060%@{
8061 typedef yy::calcxx_parser::token token;
8062%@}
8c5b881d 8063 /* Convert ints to the actual type of tokens. */
c095d689 8064[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8065":=" return token::ASSIGN;
04098407
PE
8066@{int@} @{
8067 errno = 0;
8068 long n = strtol (yytext, NULL, 10);
8069 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8070 driver.error (*yylloc, "integer is out of range");
8071 yylval->ival = n;
fb9712a9 8072 return token::NUMBER;
04098407 8073@}
fb9712a9 8074@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8075. driver.error (*yylloc, "invalid character");
8076%%
8077@end example
8078
8079@noindent
8080Finally, because the scanner related driver's member function depend
8081on the scanner's data, it is simpler to implement them in this file.
8082
1c59e0a1 8083@comment file: calc++-scanner.ll
12545799
AD
8084@example
8085void
8086calcxx_driver::scan_begin ()
8087@{
8088 yy_flex_debug = trace_scanning;
8089 if (!(yyin = fopen (file.c_str (), "r")))
8090 error (std::string ("cannot open ") + file);
8091@}
8092
8093void
8094calcxx_driver::scan_end ()
8095@{
8096 fclose (yyin);
8097@}
8098@end example
8099
8100@node Calc++ Top Level
8101@subsection Calc++ Top Level
8102
8103The top level file, @file{calc++.cc}, poses no problem.
8104
1c59e0a1 8105@comment file: calc++.cc
12545799
AD
8106@example
8107#include <iostream>
8108#include "calc++-driver.hh"
8109
8110int
fa4d969f 8111main (int argc, char *argv[])
12545799
AD
8112@{
8113 calcxx_driver driver;
8114 for (++argv; argv[0]; ++argv)
8115 if (*argv == std::string ("-p"))
8116 driver.trace_parsing = true;
8117 else if (*argv == std::string ("-s"))
8118 driver.trace_scanning = true;
8119 else
8120 @{
3dc5e96b
PE
8121 driver.parse (*argv);
8122 std::cout << driver.result << std::endl;
12545799
AD
8123 @}
8124@}
8125@end example
8126
8127@c ================================================= FAQ
d1a1114f
AD
8128
8129@node FAQ
8130@chapter Frequently Asked Questions
8131@cindex frequently asked questions
8132@cindex questions
8133
8134Several questions about Bison come up occasionally. Here some of them
8135are addressed.
8136
8137@menu
55ba27be
AD
8138* Memory Exhausted:: Breaking the Stack Limits
8139* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8140* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8141* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8142* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8143* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8144* I can't build Bison:: Troubleshooting
8145* Where can I find help?:: Troubleshouting
8146* Bug Reports:: Troublereporting
8147* Other Languages:: Parsers in Java and others
8148* Beta Testing:: Experimenting development versions
8149* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8150@end menu
8151
1a059451
PE
8152@node Memory Exhausted
8153@section Memory Exhausted
d1a1114f
AD
8154
8155@display
1a059451 8156My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8157message. What can I do?
8158@end display
8159
8160This question is already addressed elsewhere, @xref{Recursion,
8161,Recursive Rules}.
8162
e64fec0a
PE
8163@node How Can I Reset the Parser
8164@section How Can I Reset the Parser
5b066063 8165
0e14ad77
PE
8166The following phenomenon has several symptoms, resulting in the
8167following typical questions:
5b066063
AD
8168
8169@display
8170I invoke @code{yyparse} several times, and on correct input it works
8171properly; but when a parse error is found, all the other calls fail
0e14ad77 8172too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8173@end display
8174
8175@noindent
8176or
8177
8178@display
0e14ad77 8179My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8180which case I run @code{yyparse} from @code{yyparse}. This fails
8181although I did specify I needed a @code{%pure-parser}.
8182@end display
8183
0e14ad77
PE
8184These problems typically come not from Bison itself, but from
8185Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8186speed, they might not notice a change of input file. As a
8187demonstration, consider the following source file,
8188@file{first-line.l}:
8189
8190@verbatim
8191%{
8192#include <stdio.h>
8193#include <stdlib.h>
8194%}
8195%%
8196.*\n ECHO; return 1;
8197%%
8198int
0e14ad77 8199yyparse (char const *file)
5b066063
AD
8200{
8201 yyin = fopen (file, "r");
8202 if (!yyin)
8203 exit (2);
fa7e68c3 8204 /* One token only. */
5b066063 8205 yylex ();
0e14ad77 8206 if (fclose (yyin) != 0)
5b066063
AD
8207 exit (3);
8208 return 0;
8209}
8210
8211int
0e14ad77 8212main (void)
5b066063
AD
8213{
8214 yyparse ("input");
8215 yyparse ("input");
8216 return 0;
8217}
8218@end verbatim
8219
8220@noindent
8221If the file @file{input} contains
8222
8223@verbatim
8224input:1: Hello,
8225input:2: World!
8226@end verbatim
8227
8228@noindent
0e14ad77 8229then instead of getting the first line twice, you get:
5b066063
AD
8230
8231@example
8232$ @kbd{flex -ofirst-line.c first-line.l}
8233$ @kbd{gcc -ofirst-line first-line.c -ll}
8234$ @kbd{./first-line}
8235input:1: Hello,
8236input:2: World!
8237@end example
8238
0e14ad77
PE
8239Therefore, whenever you change @code{yyin}, you must tell the
8240Lex-generated scanner to discard its current buffer and switch to the
8241new one. This depends upon your implementation of Lex; see its
8242documentation for more. For Flex, it suffices to call
8243@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8244Flex-generated scanner needs to read from several input streams to
8245handle features like include files, you might consider using Flex
8246functions like @samp{yy_switch_to_buffer} that manipulate multiple
8247input buffers.
5b066063 8248
b165c324
AD
8249If your Flex-generated scanner uses start conditions (@pxref{Start
8250conditions, , Start conditions, flex, The Flex Manual}), you might
8251also want to reset the scanner's state, i.e., go back to the initial
8252start condition, through a call to @samp{BEGIN (0)}.
8253
fef4cb51
AD
8254@node Strings are Destroyed
8255@section Strings are Destroyed
8256
8257@display
c7e441b4 8258My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8259them. Instead of reporting @samp{"foo", "bar"}, it reports
8260@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8261@end display
8262
8263This error is probably the single most frequent ``bug report'' sent to
8264Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8265of the scanner. Consider the following Lex code:
fef4cb51
AD
8266
8267@verbatim
8268%{
8269#include <stdio.h>
8270char *yylval = NULL;
8271%}
8272%%
8273.* yylval = yytext; return 1;
8274\n /* IGNORE */
8275%%
8276int
8277main ()
8278{
fa7e68c3 8279 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8280 char *fst = (yylex (), yylval);
8281 char *snd = (yylex (), yylval);
8282 printf ("\"%s\", \"%s\"\n", fst, snd);
8283 return 0;
8284}
8285@end verbatim
8286
8287If you compile and run this code, you get:
8288
8289@example
8290$ @kbd{flex -osplit-lines.c split-lines.l}
8291$ @kbd{gcc -osplit-lines split-lines.c -ll}
8292$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8293"one
8294two", "two"
8295@end example
8296
8297@noindent
8298this is because @code{yytext} is a buffer provided for @emph{reading}
8299in the action, but if you want to keep it, you have to duplicate it
8300(e.g., using @code{strdup}). Note that the output may depend on how
8301your implementation of Lex handles @code{yytext}. For instance, when
8302given the Lex compatibility option @option{-l} (which triggers the
8303option @samp{%array}) Flex generates a different behavior:
8304
8305@example
8306$ @kbd{flex -l -osplit-lines.c split-lines.l}
8307$ @kbd{gcc -osplit-lines split-lines.c -ll}
8308$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8309"two", "two"
8310@end example
8311
8312
2fa09258
AD
8313@node Implementing Gotos/Loops
8314@section Implementing Gotos/Loops
a06ea4aa
AD
8315
8316@display
8317My simple calculator supports variables, assignments, and functions,
2fa09258 8318but how can I implement gotos, or loops?
a06ea4aa
AD
8319@end display
8320
8321Although very pedagogical, the examples included in the document blur
a1c84f45 8322the distinction to make between the parser---whose job is to recover
a06ea4aa 8323the structure of a text and to transmit it to subsequent modules of
a1c84f45 8324the program---and the processing (such as the execution) of this
a06ea4aa
AD
8325structure. This works well with so called straight line programs,
8326i.e., precisely those that have a straightforward execution model:
8327execute simple instructions one after the others.
8328
8329@cindex abstract syntax tree
8330@cindex @acronym{AST}
8331If you want a richer model, you will probably need to use the parser
8332to construct a tree that does represent the structure it has
8333recovered; this tree is usually called the @dfn{abstract syntax tree},
8334or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8335traversing it in various ways, will enable treatments such as its
8336execution or its translation, which will result in an interpreter or a
8337compiler.
8338
8339This topic is way beyond the scope of this manual, and the reader is
8340invited to consult the dedicated literature.
8341
8342
ed2e6384
AD
8343@node Multiple start-symbols
8344@section Multiple start-symbols
8345
8346@display
8347I have several closely related grammars, and I would like to share their
8348implementations. In fact, I could use a single grammar but with
8349multiple entry points.
8350@end display
8351
8352Bison does not support multiple start-symbols, but there is a very
8353simple means to simulate them. If @code{foo} and @code{bar} are the two
8354pseudo start-symbols, then introduce two new tokens, say
8355@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8356real start-symbol:
8357
8358@example
8359%token START_FOO START_BAR;
8360%start start;
8361start: START_FOO foo
8362 | START_BAR bar;
8363@end example
8364
8365These tokens prevents the introduction of new conflicts. As far as the
8366parser goes, that is all that is needed.
8367
8368Now the difficult part is ensuring that the scanner will send these
8369tokens first. If your scanner is hand-written, that should be
8370straightforward. If your scanner is generated by Lex, them there is
8371simple means to do it: recall that anything between @samp{%@{ ... %@}}
8372after the first @code{%%} is copied verbatim in the top of the generated
8373@code{yylex} function. Make sure a variable @code{start_token} is
8374available in the scanner (e.g., a global variable or using
8375@code{%lex-param} etc.), and use the following:
8376
8377@example
8378 /* @r{Prologue.} */
8379%%
8380%@{
8381 if (start_token)
8382 @{
8383 int t = start_token;
8384 start_token = 0;
8385 return t;
8386 @}
8387%@}
8388 /* @r{The rules.} */
8389@end example
8390
8391
55ba27be
AD
8392@node Secure? Conform?
8393@section Secure? Conform?
8394
8395@display
8396Is Bison secure? Does it conform to POSIX?
8397@end display
8398
8399If you're looking for a guarantee or certification, we don't provide it.
8400However, Bison is intended to be a reliable program that conforms to the
8401@acronym{POSIX} specification for Yacc. If you run into problems,
8402please send us a bug report.
8403
8404@node I can't build Bison
8405@section I can't build Bison
8406
8407@display
8c5b881d
PE
8408I can't build Bison because @command{make} complains that
8409@code{msgfmt} is not found.
55ba27be
AD
8410What should I do?
8411@end display
8412
8413Like most GNU packages with internationalization support, that feature
8414is turned on by default. If you have problems building in the @file{po}
8415subdirectory, it indicates that your system's internationalization
8416support is lacking. You can re-configure Bison with
8417@option{--disable-nls} to turn off this support, or you can install GNU
8418gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8419Bison. See the file @file{ABOUT-NLS} for more information.
8420
8421
8422@node Where can I find help?
8423@section Where can I find help?
8424
8425@display
8426I'm having trouble using Bison. Where can I find help?
8427@end display
8428
8429First, read this fine manual. Beyond that, you can send mail to
8430@email{help-bison@@gnu.org}. This mailing list is intended to be
8431populated with people who are willing to answer questions about using
8432and installing Bison. Please keep in mind that (most of) the people on
8433the list have aspects of their lives which are not related to Bison (!),
8434so you may not receive an answer to your question right away. This can
8435be frustrating, but please try not to honk them off; remember that any
8436help they provide is purely voluntary and out of the kindness of their
8437hearts.
8438
8439@node Bug Reports
8440@section Bug Reports
8441
8442@display
8443I found a bug. What should I include in the bug report?
8444@end display
8445
8446Before you send a bug report, make sure you are using the latest
8447version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8448mirrors. Be sure to include the version number in your bug report. If
8449the bug is present in the latest version but not in a previous version,
8450try to determine the most recent version which did not contain the bug.
8451
8452If the bug is parser-related, you should include the smallest grammar
8453you can which demonstrates the bug. The grammar file should also be
8454complete (i.e., I should be able to run it through Bison without having
8455to edit or add anything). The smaller and simpler the grammar, the
8456easier it will be to fix the bug.
8457
8458Include information about your compilation environment, including your
8459operating system's name and version and your compiler's name and
8460version. If you have trouble compiling, you should also include a
8461transcript of the build session, starting with the invocation of
8462`configure'. Depending on the nature of the bug, you may be asked to
8463send additional files as well (such as `config.h' or `config.cache').
8464
8465Patches are most welcome, but not required. That is, do not hesitate to
8466send a bug report just because you can not provide a fix.
8467
8468Send bug reports to @email{bug-bison@@gnu.org}.
8469
8470@node Other Languages
8471@section Other Languages
8472
8473@display
8474Will Bison ever have C++ support? How about Java or @var{insert your
8475favorite language here}?
8476@end display
8477
8478C++ support is there now, and is documented. We'd love to add other
8479languages; contributions are welcome.
8480
8481@node Beta Testing
8482@section Beta Testing
8483
8484@display
8485What is involved in being a beta tester?
8486@end display
8487
8488It's not terribly involved. Basically, you would download a test
8489release, compile it, and use it to build and run a parser or two. After
8490that, you would submit either a bug report or a message saying that
8491everything is okay. It is important to report successes as well as
8492failures because test releases eventually become mainstream releases,
8493but only if they are adequately tested. If no one tests, development is
8494essentially halted.
8495
8496Beta testers are particularly needed for operating systems to which the
8497developers do not have easy access. They currently have easy access to
8498recent GNU/Linux and Solaris versions. Reports about other operating
8499systems are especially welcome.
8500
8501@node Mailing Lists
8502@section Mailing Lists
8503
8504@display
8505How do I join the help-bison and bug-bison mailing lists?
8506@end display
8507
8508See @url{http://lists.gnu.org/}.
a06ea4aa 8509
d1a1114f
AD
8510@c ================================================= Table of Symbols
8511
342b8b6e 8512@node Table of Symbols
bfa74976
RS
8513@appendix Bison Symbols
8514@cindex Bison symbols, table of
8515@cindex symbols in Bison, table of
8516
18b519c0 8517@deffn {Variable} @@$
3ded9a63 8518In an action, the location of the left-hand side of the rule.
88bce5a2 8519@xref{Locations, , Locations Overview}.
18b519c0 8520@end deffn
3ded9a63 8521
18b519c0 8522@deffn {Variable} @@@var{n}
3ded9a63
AD
8523In an action, the location of the @var{n}-th symbol of the right-hand
8524side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8525@end deffn
3ded9a63 8526
18b519c0 8527@deffn {Variable} $$
3ded9a63
AD
8528In an action, the semantic value of the left-hand side of the rule.
8529@xref{Actions}.
18b519c0 8530@end deffn
3ded9a63 8531
18b519c0 8532@deffn {Variable} $@var{n}
3ded9a63
AD
8533In an action, the semantic value of the @var{n}-th symbol of the
8534right-hand side of the rule. @xref{Actions}.
18b519c0 8535@end deffn
3ded9a63 8536
dd8d9022
AD
8537@deffn {Delimiter} %%
8538Delimiter used to separate the grammar rule section from the
8539Bison declarations section or the epilogue.
8540@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8541@end deffn
bfa74976 8542
dd8d9022
AD
8543@c Don't insert spaces, or check the DVI output.
8544@deffn {Delimiter} %@{@var{code}%@}
8545All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8546the output file uninterpreted. Such code forms the prologue of the input
8547file. @xref{Grammar Outline, ,Outline of a Bison
8548Grammar}.
18b519c0 8549@end deffn
bfa74976 8550
dd8d9022
AD
8551@deffn {Construct} /*@dots{}*/
8552Comment delimiters, as in C.
18b519c0 8553@end deffn
bfa74976 8554
dd8d9022
AD
8555@deffn {Delimiter} :
8556Separates a rule's result from its components. @xref{Rules, ,Syntax of
8557Grammar Rules}.
18b519c0 8558@end deffn
bfa74976 8559
dd8d9022
AD
8560@deffn {Delimiter} ;
8561Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8562@end deffn
bfa74976 8563
dd8d9022
AD
8564@deffn {Delimiter} |
8565Separates alternate rules for the same result nonterminal.
8566@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8567@end deffn
bfa74976 8568
12e35840
JD
8569@deffn {Directive} <*>
8570Used to define a default tagged @code{%destructor} or default tagged
8571@code{%printer}.
8572@xref{Destructor Decl, , Freeing Discarded Symbols}.
8573@end deffn
8574
8575@deffn {Directive} <!>
8576Used to define a default tagless @code{%destructor} or default tagless
8577@code{%printer}.
8578@xref{Destructor Decl, , Freeing Discarded Symbols}.
8579@end deffn
8580
dd8d9022
AD
8581@deffn {Symbol} $accept
8582The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8583$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8584Start-Symbol}. It cannot be used in the grammar.
18b519c0 8585@end deffn
bfa74976 8586
136a0f76 8587@deffn {Directive} %code @{@var{code}@}
2cbe6b7f
JD
8588Other than semantic actions, this is probably the most common place you should
8589write verbatim code for the parser implementation.
8590For C/C++, it replaces the traditional Yacc prologue,
8591@code{%@{@var{code}%@}}, for most purposes.
8592For Java, it inserts code into the parser class.
9bc0dd67
JD
8593
8594@cindex Prologue
9bc0dd67 8595@findex %union
2cbe6b7f
JD
8596Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8597appearing after the first @code{%union @{@var{code}@}} in a C/C++ based grammar
8598file.
8599While Bison will continue to support @code{%@{@var{code}%@}} for backward
8600compatibility, @code{%code @{@var{code}@}} is cleaner as its functionality does
8601not depend on its position in the grammar file relative to any
8602@code{%union @{@var{code}@}}.
8603Specifically, @code{%code @{@var{code}@}} always inserts your @var{code} into
8604the parser code file after the usual contents of the parser header file.
8605
8606@xref{Prologue Alternatives}.
8607@end deffn
8608
8609@deffn {Directive} %code-top @{@var{code}@}
8610Occasionally for C/C++ it is desirable to insert code near the top of the
8611parser code file.
8612For example:
9bc0dd67
JD
8613
8614@smallexample
2cbe6b7f
JD
8615%code-top @{
8616 #define _GNU_SOURCE
8617 #include <stdio.h>
9bc0dd67 8618@}
9bc0dd67
JD
8619@end smallexample
8620
2cbe6b7f
JD
8621@noindent
8622For Java, @code{%code-top @{@var{code}@}} is currently unused.
8623
8624@cindex Prologue
8625@findex %union
8626Compare with @code{%@{@var{code}%@}} appearing before the first
8627@code{%union @{@var{code}@}} in a C/C++ based grammar file.
8628@code{%code-top @{@var{code}@}} is cleaner as its functionality does not depend
8629on its position in the grammar file relative to any
8630@code{%union @{@var{code}@}}.
34f98f46 8631
2cbe6b7f 8632@xref{Prologue Alternatives}.
9bc0dd67
JD
8633@end deffn
8634
8635@deffn {Directive} %debug
8636Equip the parser for debugging. @xref{Decl Summary}.
8637@end deffn
8638
18b519c0 8639@deffn {Directive} %debug
6deb4447 8640Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8641@end deffn
6deb4447 8642
91d2c560 8643@ifset defaultprec
22fccf95
PE
8644@deffn {Directive} %default-prec
8645Assign a precedence to rules that lack an explicit @samp{%prec}
8646modifier. @xref{Contextual Precedence, ,Context-Dependent
8647Precedence}.
39a06c25 8648@end deffn
91d2c560 8649@end ifset
39a06c25 8650
18b519c0 8651@deffn {Directive} %defines
6deb4447
AD
8652Bison declaration to create a header file meant for the scanner.
8653@xref{Decl Summary}.
18b519c0 8654@end deffn
6deb4447 8655
18b519c0 8656@deffn {Directive} %destructor
258b75ca 8657Specify how the parser should reclaim the memory associated to
fa7e68c3 8658discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8659@end deffn
72f889cc 8660
18b519c0 8661@deffn {Directive} %dprec
676385e2 8662Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8663time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8664@acronym{GLR} Parsers}.
18b519c0 8665@end deffn
676385e2 8666
dd8d9022
AD
8667@deffn {Symbol} $end
8668The predefined token marking the end of the token stream. It cannot be
8669used in the grammar.
8670@end deffn
8671
8672@deffn {Symbol} error
8673A token name reserved for error recovery. This token may be used in
8674grammar rules so as to allow the Bison parser to recognize an error in
8675the grammar without halting the process. In effect, a sentence
8676containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8677token @code{error} becomes the current lookahead token. Actions
8678corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8679token is reset to the token that originally caused the violation.
8680@xref{Error Recovery}.
18d192f0
AD
8681@end deffn
8682
18b519c0 8683@deffn {Directive} %error-verbose
2a8d363a
AD
8684Bison declaration to request verbose, specific error message strings
8685when @code{yyerror} is called.
18b519c0 8686@end deffn
2a8d363a 8687
18b519c0 8688@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8689Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8690Summary}.
18b519c0 8691@end deffn
d8988b2f 8692
18b519c0 8693@deffn {Directive} %glr-parser
c827f760
PE
8694Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8695Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8696@end deffn
676385e2 8697
dd8d9022
AD
8698@deffn {Directive} %initial-action
8699Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8700@end deffn
8701
18b519c0 8702@deffn {Directive} %left
bfa74976
RS
8703Bison declaration to assign left associativity to token(s).
8704@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8705@end deffn
bfa74976 8706
feeb0eda 8707@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8708Bison declaration to specifying an additional parameter that
8709@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8710for Pure Parsers}.
18b519c0 8711@end deffn
2a8d363a 8712
18b519c0 8713@deffn {Directive} %merge
676385e2 8714Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8715reduce/reduce conflict with a rule having the same merging function, the
676385e2 8716function is applied to the two semantic values to get a single result.
c827f760 8717@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8718@end deffn
676385e2 8719
18b519c0 8720@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8721Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8722@end deffn
d8988b2f 8723
91d2c560 8724@ifset defaultprec
22fccf95
PE
8725@deffn {Directive} %no-default-prec
8726Do not assign a precedence to rules that lack an explicit @samp{%prec}
8727modifier. @xref{Contextual Precedence, ,Context-Dependent
8728Precedence}.
8729@end deffn
91d2c560 8730@end ifset
22fccf95 8731
18b519c0 8732@deffn {Directive} %no-lines
931c7513
RS
8733Bison declaration to avoid generating @code{#line} directives in the
8734parser file. @xref{Decl Summary}.
18b519c0 8735@end deffn
931c7513 8736
18b519c0 8737@deffn {Directive} %nonassoc
9d9b8b70 8738Bison declaration to assign nonassociativity to token(s).
bfa74976 8739@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8740@end deffn
bfa74976 8741
fa4d969f 8742@deffn {Directive} %output="@var{file}"
72d2299c 8743Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8744Summary}.
18b519c0 8745@end deffn
d8988b2f 8746
feeb0eda 8747@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8748Bison declaration to specifying an additional parameter that
8749@code{yyparse} should accept. @xref{Parser Function,, The Parser
8750Function @code{yyparse}}.
18b519c0 8751@end deffn
2a8d363a 8752
18b519c0 8753@deffn {Directive} %prec
bfa74976
RS
8754Bison declaration to assign a precedence to a specific rule.
8755@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8756@end deffn
bfa74976 8757
2cbe6b7f
JD
8758@deffn {Directive} %provides @{@var{code}@}
8759This is the right place to write additional definitions you would like Bison to
8760expose externally.
8761For C/C++, this directive inserts your @var{code} both into the parser header
8762file (if generated; @pxref{Table of Symbols, ,%defines}) and into the parser
8763code file after Bison's required definitions.
8764For Java, it inserts your @var{code} into the parser java file after the parser
8765class.
8766
8767@xref{Prologue Alternatives}.
8768@end deffn
8769
18b519c0 8770@deffn {Directive} %pure-parser
bfa74976
RS
8771Bison declaration to request a pure (reentrant) parser.
8772@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8773@end deffn
bfa74976 8774
b50d2359 8775@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8776Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8777Require a Version of Bison}.
b50d2359
AD
8778@end deffn
8779
2cbe6b7f
JD
8780@deffn {Directive} %requires @{@var{code}@}
8781This is the right place to write dependency code for externally exposed
8782definitions required by Bison.
8783For C/C++, such exposed definitions are those usually appearing in the parser
8784header file.
8785Thus, this is the right place to define types referenced in
8786@code{%union @{@var{code}@}} directives, and it is the right place to override
8787Bison's default @code{YYSTYPE} and @code{YYLTYPE} definitions.
8788For Java, this is the right place to write import directives.
8789
8790@cindex Prologue
8791@findex %union
8792Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8793appearing before the first @code{%union @{@var{code}@}} in a C/C++ based
8794grammar file.
8795Unlike @code{%@{@var{code}%@}}, @code{%requires @{@var{code}@}} inserts your
8796@var{code} both into the parser code file and into the parser header file (if
8797generated; @pxref{Table of Symbols, ,%defines}) since Bison's required
8798definitions should depend on it in both places.
8799
8800@xref{Prologue Alternatives}.
8801@end deffn
8802
18b519c0 8803@deffn {Directive} %right
bfa74976
RS
8804Bison declaration to assign right associativity to token(s).
8805@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8806@end deffn
bfa74976 8807
18b519c0 8808@deffn {Directive} %start
704a47c4
AD
8809Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8810Start-Symbol}.
18b519c0 8811@end deffn
bfa74976 8812
18b519c0 8813@deffn {Directive} %token
bfa74976
RS
8814Bison declaration to declare token(s) without specifying precedence.
8815@xref{Token Decl, ,Token Type Names}.
18b519c0 8816@end deffn
bfa74976 8817
18b519c0 8818@deffn {Directive} %token-table
931c7513
RS
8819Bison declaration to include a token name table in the parser file.
8820@xref{Decl Summary}.
18b519c0 8821@end deffn
931c7513 8822
18b519c0 8823@deffn {Directive} %type
704a47c4
AD
8824Bison declaration to declare nonterminals. @xref{Type Decl,
8825,Nonterminal Symbols}.
18b519c0 8826@end deffn
bfa74976 8827
dd8d9022
AD
8828@deffn {Symbol} $undefined
8829The predefined token onto which all undefined values returned by
8830@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8831@code{error}.
8832@end deffn
8833
18b519c0 8834@deffn {Directive} %union
bfa74976
RS
8835Bison declaration to specify several possible data types for semantic
8836values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8837@end deffn
bfa74976 8838
dd8d9022
AD
8839@deffn {Macro} YYABORT
8840Macro to pretend that an unrecoverable syntax error has occurred, by
8841making @code{yyparse} return 1 immediately. The error reporting
8842function @code{yyerror} is not called. @xref{Parser Function, ,The
8843Parser Function @code{yyparse}}.
8844@end deffn
3ded9a63 8845
dd8d9022
AD
8846@deffn {Macro} YYACCEPT
8847Macro to pretend that a complete utterance of the language has been
8848read, by making @code{yyparse} return 0 immediately.
8849@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8850@end deffn
bfa74976 8851
dd8d9022 8852@deffn {Macro} YYBACKUP
742e4900 8853Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8854token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8855@end deffn
bfa74976 8856
dd8d9022 8857@deffn {Variable} yychar
32c29292 8858External integer variable that contains the integer value of the
742e4900 8859lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8860@code{yyparse}.) Error-recovery rule actions may examine this variable.
8861@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8862@end deffn
bfa74976 8863
dd8d9022
AD
8864@deffn {Variable} yyclearin
8865Macro used in error-recovery rule actions. It clears the previous
742e4900 8866lookahead token. @xref{Error Recovery}.
18b519c0 8867@end deffn
bfa74976 8868
dd8d9022
AD
8869@deffn {Macro} YYDEBUG
8870Macro to define to equip the parser with tracing code. @xref{Tracing,
8871,Tracing Your Parser}.
18b519c0 8872@end deffn
bfa74976 8873
dd8d9022
AD
8874@deffn {Variable} yydebug
8875External integer variable set to zero by default. If @code{yydebug}
8876is given a nonzero value, the parser will output information on input
8877symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8878@end deffn
bfa74976 8879
dd8d9022
AD
8880@deffn {Macro} yyerrok
8881Macro to cause parser to recover immediately to its normal mode
8882after a syntax error. @xref{Error Recovery}.
8883@end deffn
8884
8885@deffn {Macro} YYERROR
8886Macro to pretend that a syntax error has just been detected: call
8887@code{yyerror} and then perform normal error recovery if possible
8888(@pxref{Error Recovery}), or (if recovery is impossible) make
8889@code{yyparse} return 1. @xref{Error Recovery}.
8890@end deffn
8891
8892@deffn {Function} yyerror
8893User-supplied function to be called by @code{yyparse} on error.
8894@xref{Error Reporting, ,The Error
8895Reporting Function @code{yyerror}}.
8896@end deffn
8897
8898@deffn {Macro} YYERROR_VERBOSE
8899An obsolete macro that you define with @code{#define} in the prologue
8900to request verbose, specific error message strings
8901when @code{yyerror} is called. It doesn't matter what definition you
8902use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8903@code{%error-verbose} is preferred.
8904@end deffn
8905
8906@deffn {Macro} YYINITDEPTH
8907Macro for specifying the initial size of the parser stack.
1a059451 8908@xref{Memory Management}.
dd8d9022
AD
8909@end deffn
8910
8911@deffn {Function} yylex
8912User-supplied lexical analyzer function, called with no arguments to get
8913the next token. @xref{Lexical, ,The Lexical Analyzer Function
8914@code{yylex}}.
8915@end deffn
8916
8917@deffn {Macro} YYLEX_PARAM
8918An obsolete macro for specifying an extra argument (or list of extra
32c29292 8919arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8920macro is deprecated, and is supported only for Yacc like parsers.
8921@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8922@end deffn
8923
8924@deffn {Variable} yylloc
8925External variable in which @code{yylex} should place the line and column
8926numbers associated with a token. (In a pure parser, it is a local
8927variable within @code{yyparse}, and its address is passed to
32c29292
JD
8928@code{yylex}.)
8929You can ignore this variable if you don't use the @samp{@@} feature in the
8930grammar actions.
8931@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8932In semantic actions, it stores the location of the lookahead token.
32c29292 8933@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8934@end deffn
8935
8936@deffn {Type} YYLTYPE
8937Data type of @code{yylloc}; by default, a structure with four
8938members. @xref{Location Type, , Data Types of Locations}.
8939@end deffn
8940
8941@deffn {Variable} yylval
8942External variable in which @code{yylex} should place the semantic
8943value associated with a token. (In a pure parser, it is a local
8944variable within @code{yyparse}, and its address is passed to
32c29292
JD
8945@code{yylex}.)
8946@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8947In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8948@xref{Actions, ,Actions}.
dd8d9022
AD
8949@end deffn
8950
8951@deffn {Macro} YYMAXDEPTH
1a059451
PE
8952Macro for specifying the maximum size of the parser stack. @xref{Memory
8953Management}.
dd8d9022
AD
8954@end deffn
8955
8956@deffn {Variable} yynerrs
8a2800e7 8957Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8958(In a pure parser, it is a local variable within @code{yyparse}.)
8959@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8960@end deffn
8961
8962@deffn {Function} yyparse
8963The parser function produced by Bison; call this function to start
8964parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8965@end deffn
8966
8967@deffn {Macro} YYPARSE_PARAM
8968An obsolete macro for specifying the name of a parameter that
8969@code{yyparse} should accept. The use of this macro is deprecated, and
8970is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8971Conventions for Pure Parsers}.
8972@end deffn
8973
8974@deffn {Macro} YYRECOVERING
02103984
PE
8975The expression @code{YYRECOVERING ()} yields 1 when the parser
8976is recovering from a syntax error, and 0 otherwise.
8977@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8978@end deffn
8979
8980@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8981Macro used to control the use of @code{alloca} when the C
8982@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8983the parser will use @code{malloc} to extend its stacks. If defined to
89841, the parser will use @code{alloca}. Values other than 0 and 1 are
8985reserved for future Bison extensions. If not defined,
8986@code{YYSTACK_USE_ALLOCA} defaults to 0.
8987
55289366 8988In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8989limited stack and with unreliable stack-overflow checking, you should
8990set @code{YYMAXDEPTH} to a value that cannot possibly result in
8991unchecked stack overflow on any of your target hosts when
8992@code{alloca} is called. You can inspect the code that Bison
8993generates in order to determine the proper numeric values. This will
8994require some expertise in low-level implementation details.
dd8d9022
AD
8995@end deffn
8996
8997@deffn {Type} YYSTYPE
8998Data type of semantic values; @code{int} by default.
8999@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9000@end deffn
bfa74976 9001
342b8b6e 9002@node Glossary
bfa74976
RS
9003@appendix Glossary
9004@cindex glossary
9005
9006@table @asis
c827f760
PE
9007@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9008Formal method of specifying context-free grammars originally proposed
9009by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9010committee document contributing to what became the Algol 60 report.
9011@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9012
9013@item Context-free grammars
9014Grammars specified as rules that can be applied regardless of context.
9015Thus, if there is a rule which says that an integer can be used as an
9016expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9017permitted. @xref{Language and Grammar, ,Languages and Context-Free
9018Grammars}.
bfa74976
RS
9019
9020@item Dynamic allocation
9021Allocation of memory that occurs during execution, rather than at
9022compile time or on entry to a function.
9023
9024@item Empty string
9025Analogous to the empty set in set theory, the empty string is a
9026character string of length zero.
9027
9028@item Finite-state stack machine
9029A ``machine'' that has discrete states in which it is said to exist at
9030each instant in time. As input to the machine is processed, the
9031machine moves from state to state as specified by the logic of the
9032machine. In the case of the parser, the input is the language being
9033parsed, and the states correspond to various stages in the grammar
c827f760 9034rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9035
c827f760 9036@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9037A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9038that are not @acronym{LALR}(1). It resolves situations that Bison's
9039usual @acronym{LALR}(1)
676385e2
PH
9040algorithm cannot by effectively splitting off multiple parsers, trying all
9041possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9042right context. @xref{Generalized LR Parsing, ,Generalized
9043@acronym{LR} Parsing}.
676385e2 9044
bfa74976
RS
9045@item Grouping
9046A language construct that is (in general) grammatically divisible;
c827f760 9047for example, `expression' or `declaration' in C@.
bfa74976
RS
9048@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9049
9050@item Infix operator
9051An arithmetic operator that is placed between the operands on which it
9052performs some operation.
9053
9054@item Input stream
9055A continuous flow of data between devices or programs.
9056
9057@item Language construct
9058One of the typical usage schemas of the language. For example, one of
9059the constructs of the C language is the @code{if} statement.
9060@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9061
9062@item Left associativity
9063Operators having left associativity are analyzed from left to right:
9064@samp{a+b+c} first computes @samp{a+b} and then combines with
9065@samp{c}. @xref{Precedence, ,Operator Precedence}.
9066
9067@item Left recursion
89cab50d
AD
9068A rule whose result symbol is also its first component symbol; for
9069example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9070Rules}.
bfa74976
RS
9071
9072@item Left-to-right parsing
9073Parsing a sentence of a language by analyzing it token by token from
c827f760 9074left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9075
9076@item Lexical analyzer (scanner)
9077A function that reads an input stream and returns tokens one by one.
9078@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9079
9080@item Lexical tie-in
9081A flag, set by actions in the grammar rules, which alters the way
9082tokens are parsed. @xref{Lexical Tie-ins}.
9083
931c7513 9084@item Literal string token
14ded682 9085A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9086
742e4900
JD
9087@item Lookahead token
9088A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9089Tokens}.
bfa74976 9090
c827f760 9091@item @acronym{LALR}(1)
bfa74976 9092The class of context-free grammars that Bison (like most other parser
c827f760
PE
9093generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9094Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9095
c827f760 9096@item @acronym{LR}(1)
bfa74976 9097The class of context-free grammars in which at most one token of
742e4900 9098lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9099
9100@item Nonterminal symbol
9101A grammar symbol standing for a grammatical construct that can
9102be expressed through rules in terms of smaller constructs; in other
9103words, a construct that is not a token. @xref{Symbols}.
9104
bfa74976
RS
9105@item Parser
9106A function that recognizes valid sentences of a language by analyzing
9107the syntax structure of a set of tokens passed to it from a lexical
9108analyzer.
9109
9110@item Postfix operator
9111An arithmetic operator that is placed after the operands upon which it
9112performs some operation.
9113
9114@item Reduction
9115Replacing a string of nonterminals and/or terminals with a single
89cab50d 9116nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9117Parser Algorithm}.
bfa74976
RS
9118
9119@item Reentrant
9120A reentrant subprogram is a subprogram which can be in invoked any
9121number of times in parallel, without interference between the various
9122invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9123
9124@item Reverse polish notation
9125A language in which all operators are postfix operators.
9126
9127@item Right recursion
89cab50d
AD
9128A rule whose result symbol is also its last component symbol; for
9129example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9130Rules}.
bfa74976
RS
9131
9132@item Semantics
9133In computer languages, the semantics are specified by the actions
9134taken for each instance of the language, i.e., the meaning of
9135each statement. @xref{Semantics, ,Defining Language Semantics}.
9136
9137@item Shift
9138A parser is said to shift when it makes the choice of analyzing
9139further input from the stream rather than reducing immediately some
c827f760 9140already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9141
9142@item Single-character literal
9143A single character that is recognized and interpreted as is.
9144@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9145
9146@item Start symbol
9147The nonterminal symbol that stands for a complete valid utterance in
9148the language being parsed. The start symbol is usually listed as the
13863333 9149first nonterminal symbol in a language specification.
bfa74976
RS
9150@xref{Start Decl, ,The Start-Symbol}.
9151
9152@item Symbol table
9153A data structure where symbol names and associated data are stored
9154during parsing to allow for recognition and use of existing
9155information in repeated uses of a symbol. @xref{Multi-function Calc}.
9156
6e649e65
PE
9157@item Syntax error
9158An error encountered during parsing of an input stream due to invalid
9159syntax. @xref{Error Recovery}.
9160
bfa74976
RS
9161@item Token
9162A basic, grammatically indivisible unit of a language. The symbol
9163that describes a token in the grammar is a terminal symbol.
9164The input of the Bison parser is a stream of tokens which comes from
9165the lexical analyzer. @xref{Symbols}.
9166
9167@item Terminal symbol
89cab50d
AD
9168A grammar symbol that has no rules in the grammar and therefore is
9169grammatically indivisible. The piece of text it represents is a token.
9170@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9171@end table
9172
342b8b6e 9173@node Copying This Manual
f2b5126e 9174@appendix Copying This Manual
f9a8293a 9175
f2b5126e
PB
9176@menu
9177* GNU Free Documentation License:: License for copying this manual.
9178@end menu
f9a8293a 9179
f2b5126e
PB
9180@include fdl.texi
9181
342b8b6e 9182@node Index
bfa74976
RS
9183@unnumbered Index
9184
9185@printindex cp
9186
bfa74976 9187@bye
a06ea4aa
AD
9188
9189@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9190@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9191@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9192@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9193@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9194@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9195@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9196@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9197@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9198@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9199@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9200@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
9201@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
9202@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9203@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9204@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9205@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
9206@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
9207@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9208@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9209@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9210@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9211@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9212@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9213@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9214@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa
AD
9215@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
9216@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
9217@c LocalWords: YYSTACK DVI fdl printindex