]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* NEWS: The -g and --graph options now output graphs in Graphviz
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
194* Bison Declarations:: Syntax and usage of the Bison declarations section.
195* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 196* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
197
198Defining Language Semantics
199
200* Value Type:: Specifying one data type for all semantic values.
201* Multiple Types:: Specifying several alternative data types.
202* Actions:: An action is the semantic definition of a grammar rule.
203* Action Types:: Specifying data types for actions to operate on.
204* Mid-Rule Actions:: Most actions go at the end of a rule.
205 This says when, why and how to use the exceptional
206 action in the middle of a rule.
207
93dd49ab
PE
208Tracking Locations
209
210* Location Type:: Specifying a data type for locations.
211* Actions and Locations:: Using locations in actions.
212* Location Default Action:: Defining a general way to compute locations.
213
bfa74976
RS
214Bison Declarations
215
b50d2359 216* Require Decl:: Requiring a Bison version.
bfa74976
RS
217* Token Decl:: Declaring terminal symbols.
218* Precedence Decl:: Declaring terminals with precedence and associativity.
219* Union Decl:: Declaring the set of all semantic value types.
220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 221* Initial Action Decl:: Code run before parsing starts.
72f889cc 222* Destructor Decl:: Declaring how symbols are freed.
d6328241 223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
224* Start Decl:: Specifying the start symbol.
225* Pure Decl:: Requesting a reentrant parser.
226* Decl Summary:: Table of all Bison declarations.
227
228Parser C-Language Interface
229
230* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 231* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
232 which reads tokens.
233* Error Reporting:: You must supply a function @code{yyerror}.
234* Action Features:: Special features for use in actions.
f7ab6a50
PE
235* Internationalization:: How to let the parser speak in the user's
236 native language.
bfa74976
RS
237
238The Lexical Analyzer Function @code{yylex}
239
240* Calling Convention:: How @code{yyparse} calls @code{yylex}.
241* Token Values:: How @code{yylex} must return the semantic value
242 of the token it has read.
95923bd6 243* Token Locations:: How @code{yylex} must return the text location
bfa74976 244 (line number, etc.) of the token, if the
93dd49ab 245 actions want that.
bfa74976
RS
246* Pure Calling:: How the calling convention differs
247 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
248
13863333 249The Bison Parser Algorithm
bfa74976 250
742e4900 251* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
252* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
253* Precedence:: Operator precedence works by resolving conflicts.
254* Contextual Precedence:: When an operator's precedence depends on context.
255* Parser States:: The parser is a finite-state-machine with stack.
256* Reduce/Reduce:: When two rules are applicable in the same situation.
257* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 258* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 259* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
260
261Operator Precedence
262
263* Why Precedence:: An example showing why precedence is needed.
264* Using Precedence:: How to specify precedence in Bison grammars.
265* Precedence Examples:: How these features are used in the previous example.
266* How Precedence:: How they work.
267
268Handling Context Dependencies
269
270* Semantic Tokens:: Token parsing can depend on the semantic context.
271* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
272* Tie-in Recovery:: Lexical tie-ins have implications for how
273 error recovery rules must be written.
274
93dd49ab 275Debugging Your Parser
ec3bc396
AD
276
277* Understanding:: Understanding the structure of your parser.
278* Tracing:: Tracing the execution of your parser.
279
bfa74976
RS
280Invoking Bison
281
13863333 282* Bison Options:: All the options described in detail,
c827f760 283 in alphabetical order by short options.
bfa74976 284* Option Cross Key:: Alphabetical list of long options.
93dd49ab 285* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 286
12545799
AD
287C++ Language Interface
288
289* C++ Parsers:: The interface to generate C++ parser classes
290* A Complete C++ Example:: Demonstrating their use
291
292C++ Parsers
293
294* C++ Bison Interface:: Asking for C++ parser generation
295* C++ Semantic Values:: %union vs. C++
296* C++ Location Values:: The position and location classes
297* C++ Parser Interface:: Instantiating and running the parser
298* C++ Scanner Interface:: Exchanges between yylex and parse
299
300A Complete C++ Example
301
302* Calc++ --- C++ Calculator:: The specifications
303* Calc++ Parsing Driver:: An active parsing context
304* Calc++ Parser:: A parser class
305* Calc++ Scanner:: A pure C++ Flex scanner
306* Calc++ Top Level:: Conducting the band
307
d1a1114f
AD
308Frequently Asked Questions
309
1a059451 310* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 311* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 312* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 313* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 314* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
315* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
316* I can't build Bison:: Troubleshooting
317* Where can I find help?:: Troubleshouting
318* Bug Reports:: Troublereporting
319* Other Languages:: Parsers in Java and others
320* Beta Testing:: Experimenting development versions
321* Mailing Lists:: Meeting other Bison users
d1a1114f 322
f2b5126e
PB
323Copying This Manual
324
325* GNU Free Documentation License:: License for copying this manual.
326
342b8b6e 327@end detailmenu
bfa74976
RS
328@end menu
329
342b8b6e 330@node Introduction
bfa74976
RS
331@unnumbered Introduction
332@cindex introduction
333
6077da58
PE
334@dfn{Bison} is a general-purpose parser generator that converts an
335annotated context-free grammar into an @acronym{LALR}(1) or
336@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 337Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
338used in simple desk calculators to complex programming languages.
339
340Bison is upward compatible with Yacc: all properly-written Yacc grammars
341ought to work with Bison with no change. Anyone familiar with Yacc
342should be able to use Bison with little trouble. You need to be fluent in
1e137b71 343C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
344
345We begin with tutorial chapters that explain the basic concepts of using
346Bison and show three explained examples, each building on the last. If you
347don't know Bison or Yacc, start by reading these chapters. Reference
348chapters follow which describe specific aspects of Bison in detail.
349
931c7513
RS
350Bison was written primarily by Robert Corbett; Richard Stallman made it
351Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 352multi-character string literals and other features.
931c7513 353
df1af54c 354This edition corresponds to version @value{VERSION} of Bison.
bfa74976 355
342b8b6e 356@node Conditions
bfa74976
RS
357@unnumbered Conditions for Using Bison
358
193d7c70
PE
359The distribution terms for Bison-generated parsers permit using the
360parsers in nonfree programs. Before Bison version 2.2, these extra
361permissions applied only when Bison was generating @acronym{LALR}(1)
362parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
374parser's implementation. (The actions from your grammar are inserted
375into this implementation at one point, but most of the rest of the
376implementation is not changed.) When we applied the @acronym{GPL}
377terms to the skeleton code for the parser's implementation,
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
193d7c70
PE
387This exception applies when Bison is generating code for a parser.
388You can tell whether the exception applies to a Bison output file by
389inspecting the file for text beginning with ``As a special
390exception@dots{}''. The text spells out the exact terms of the
391exception.
262aa8dd 392
c67a198d 393@include gpl.texi
bfa74976 394
342b8b6e 395@node Concepts
bfa74976
RS
396@chapter The Concepts of Bison
397
398This chapter introduces many of the basic concepts without which the
399details of Bison will not make sense. If you do not already know how to
400use Bison or Yacc, we suggest you start by reading this chapter carefully.
401
402@menu
403* Language and Grammar:: Languages and context-free grammars,
404 as mathematical ideas.
405* Grammar in Bison:: How we represent grammars for Bison's sake.
406* Semantic Values:: Each token or syntactic grouping can have
407 a semantic value (the value of an integer,
408 the name of an identifier, etc.).
409* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 410* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 411* Locations Overview:: Tracking Locations.
bfa74976
RS
412* Bison Parser:: What are Bison's input and output,
413 how is the output used?
414* Stages:: Stages in writing and running Bison grammars.
415* Grammar Layout:: Overall structure of a Bison grammar file.
416@end menu
417
342b8b6e 418@node Language and Grammar
bfa74976
RS
419@section Languages and Context-Free Grammars
420
bfa74976
RS
421@cindex context-free grammar
422@cindex grammar, context-free
423In order for Bison to parse a language, it must be described by a
424@dfn{context-free grammar}. This means that you specify one or more
425@dfn{syntactic groupings} and give rules for constructing them from their
426parts. For example, in the C language, one kind of grouping is called an
427`expression'. One rule for making an expression might be, ``An expression
428can be made of a minus sign and another expression''. Another would be,
429``An expression can be an integer''. As you can see, rules are often
430recursive, but there must be at least one rule which leads out of the
431recursion.
432
c827f760 433@cindex @acronym{BNF}
bfa74976
RS
434@cindex Backus-Naur form
435The most common formal system for presenting such rules for humans to read
c827f760
PE
436is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
437order to specify the language Algol 60. Any grammar expressed in
438@acronym{BNF} is a context-free grammar. The input to Bison is
439essentially machine-readable @acronym{BNF}.
bfa74976 440
c827f760
PE
441@cindex @acronym{LALR}(1) grammars
442@cindex @acronym{LR}(1) grammars
676385e2
PH
443There are various important subclasses of context-free grammar. Although it
444can handle almost all context-free grammars, Bison is optimized for what
c827f760 445are called @acronym{LALR}(1) grammars.
676385e2 446In brief, in these grammars, it must be possible to
bfa74976 447tell how to parse any portion of an input string with just a single
742e4900 448token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
449@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
450restrictions that are
bfa74976 451hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
452@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
453@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
454more information on this.
bfa74976 455
c827f760
PE
456@cindex @acronym{GLR} parsing
457@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 458@cindex ambiguous grammars
9d9b8b70 459@cindex nondeterministic parsing
9501dc6e
AD
460
461Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
462roughly that the next grammar rule to apply at any point in the input is
463uniquely determined by the preceding input and a fixed, finite portion
742e4900 464(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 465grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 466apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 467grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 468lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
469With the proper declarations, Bison is also able to parse these more
470general context-free grammars, using a technique known as @acronym{GLR}
471parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
472are able to handle any context-free grammar for which the number of
473possible parses of any given string is finite.
676385e2 474
bfa74976
RS
475@cindex symbols (abstract)
476@cindex token
477@cindex syntactic grouping
478@cindex grouping, syntactic
9501dc6e
AD
479In the formal grammatical rules for a language, each kind of syntactic
480unit or grouping is named by a @dfn{symbol}. Those which are built by
481grouping smaller constructs according to grammatical rules are called
bfa74976
RS
482@dfn{nonterminal symbols}; those which can't be subdivided are called
483@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
484corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 485corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
486
487We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
488nonterminal, mean. The tokens of C are identifiers, constants (numeric
489and string), and the various keywords, arithmetic operators and
490punctuation marks. So the terminal symbols of a grammar for C include
491`identifier', `number', `string', plus one symbol for each keyword,
492operator or punctuation mark: `if', `return', `const', `static', `int',
493`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
494(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
495lexicography, not grammar.)
496
497Here is a simple C function subdivided into tokens:
498
9edcd895
AD
499@ifinfo
500@example
501int /* @r{keyword `int'} */
14d4662b 502square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
503 @r{identifier, close-paren} */
504@{ /* @r{open-brace} */
aa08666d
AD
505 return x * x; /* @r{keyword `return', identifier, asterisk,}
506 @r{identifier, semicolon} */
9edcd895
AD
507@} /* @r{close-brace} */
508@end example
509@end ifinfo
510@ifnotinfo
bfa74976
RS
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 514@{ /* @r{open-brace} */
9edcd895 515 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
516@} /* @r{close-brace} */
517@end example
9edcd895 518@end ifnotinfo
bfa74976
RS
519
520The syntactic groupings of C include the expression, the statement, the
521declaration, and the function definition. These are represented in the
522grammar of C by nonterminal symbols `expression', `statement',
523`declaration' and `function definition'. The full grammar uses dozens of
524additional language constructs, each with its own nonterminal symbol, in
525order to express the meanings of these four. The example above is a
526function definition; it contains one declaration, and one statement. In
527the statement, each @samp{x} is an expression and so is @samp{x * x}.
528
529Each nonterminal symbol must have grammatical rules showing how it is made
530out of simpler constructs. For example, one kind of C statement is the
531@code{return} statement; this would be described with a grammar rule which
532reads informally as follows:
533
534@quotation
535A `statement' can be made of a `return' keyword, an `expression' and a
536`semicolon'.
537@end quotation
538
539@noindent
540There would be many other rules for `statement', one for each kind of
541statement in C.
542
543@cindex start symbol
544One nonterminal symbol must be distinguished as the special one which
545defines a complete utterance in the language. It is called the @dfn{start
546symbol}. In a compiler, this means a complete input program. In the C
547language, the nonterminal symbol `sequence of definitions and declarations'
548plays this role.
549
550For example, @samp{1 + 2} is a valid C expression---a valid part of a C
551program---but it is not valid as an @emph{entire} C program. In the
552context-free grammar of C, this follows from the fact that `expression' is
553not the start symbol.
554
555The Bison parser reads a sequence of tokens as its input, and groups the
556tokens using the grammar rules. If the input is valid, the end result is
557that the entire token sequence reduces to a single grouping whose symbol is
558the grammar's start symbol. If we use a grammar for C, the entire input
559must be a `sequence of definitions and declarations'. If not, the parser
560reports a syntax error.
561
342b8b6e 562@node Grammar in Bison
bfa74976
RS
563@section From Formal Rules to Bison Input
564@cindex Bison grammar
565@cindex grammar, Bison
566@cindex formal grammar
567
568A formal grammar is a mathematical construct. To define the language
569for Bison, you must write a file expressing the grammar in Bison syntax:
570a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
571
572A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 573as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
574in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
575
576The Bison representation for a terminal symbol is also called a @dfn{token
577type}. Token types as well can be represented as C-like identifiers. By
578convention, these identifiers should be upper case to distinguish them from
579nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
580@code{RETURN}. A terminal symbol that stands for a particular keyword in
581the language should be named after that keyword converted to upper case.
582The terminal symbol @code{error} is reserved for error recovery.
931c7513 583@xref{Symbols}.
bfa74976
RS
584
585A terminal symbol can also be represented as a character literal, just like
586a C character constant. You should do this whenever a token is just a
587single character (parenthesis, plus-sign, etc.): use that same character in
588a literal as the terminal symbol for that token.
589
931c7513
RS
590A third way to represent a terminal symbol is with a C string constant
591containing several characters. @xref{Symbols}, for more information.
592
bfa74976
RS
593The grammar rules also have an expression in Bison syntax. For example,
594here is the Bison rule for a C @code{return} statement. The semicolon in
595quotes is a literal character token, representing part of the C syntax for
596the statement; the naked semicolon, and the colon, are Bison punctuation
597used in every rule.
598
599@example
600stmt: RETURN expr ';'
601 ;
602@end example
603
604@noindent
605@xref{Rules, ,Syntax of Grammar Rules}.
606
342b8b6e 607@node Semantic Values
bfa74976
RS
608@section Semantic Values
609@cindex semantic value
610@cindex value, semantic
611
612A formal grammar selects tokens only by their classifications: for example,
613if a rule mentions the terminal symbol `integer constant', it means that
614@emph{any} integer constant is grammatically valid in that position. The
615precise value of the constant is irrelevant to how to parse the input: if
616@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 617grammatical.
bfa74976
RS
618
619But the precise value is very important for what the input means once it is
620parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6213989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
622has both a token type and a @dfn{semantic value}. @xref{Semantics,
623,Defining Language Semantics},
bfa74976
RS
624for details.
625
626The token type is a terminal symbol defined in the grammar, such as
627@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
628you need to know to decide where the token may validly appear and how to
629group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 630except their types.
bfa74976
RS
631
632The semantic value has all the rest of the information about the
633meaning of the token, such as the value of an integer, or the name of an
634identifier. (A token such as @code{','} which is just punctuation doesn't
635need to have any semantic value.)
636
637For example, an input token might be classified as token type
638@code{INTEGER} and have the semantic value 4. Another input token might
639have the same token type @code{INTEGER} but value 3989. When a grammar
640rule says that @code{INTEGER} is allowed, either of these tokens is
641acceptable because each is an @code{INTEGER}. When the parser accepts the
642token, it keeps track of the token's semantic value.
643
644Each grouping can also have a semantic value as well as its nonterminal
645symbol. For example, in a calculator, an expression typically has a
646semantic value that is a number. In a compiler for a programming
647language, an expression typically has a semantic value that is a tree
648structure describing the meaning of the expression.
649
342b8b6e 650@node Semantic Actions
bfa74976
RS
651@section Semantic Actions
652@cindex semantic actions
653@cindex actions, semantic
654
655In order to be useful, a program must do more than parse input; it must
656also produce some output based on the input. In a Bison grammar, a grammar
657rule can have an @dfn{action} made up of C statements. Each time the
658parser recognizes a match for that rule, the action is executed.
659@xref{Actions}.
13863333 660
bfa74976
RS
661Most of the time, the purpose of an action is to compute the semantic value
662of the whole construct from the semantic values of its parts. For example,
663suppose we have a rule which says an expression can be the sum of two
664expressions. When the parser recognizes such a sum, each of the
665subexpressions has a semantic value which describes how it was built up.
666The action for this rule should create a similar sort of value for the
667newly recognized larger expression.
668
669For example, here is a rule that says an expression can be the sum of
670two subexpressions:
671
672@example
673expr: expr '+' expr @{ $$ = $1 + $3; @}
674 ;
675@end example
676
677@noindent
678The action says how to produce the semantic value of the sum expression
679from the values of the two subexpressions.
680
676385e2 681@node GLR Parsers
c827f760
PE
682@section Writing @acronym{GLR} Parsers
683@cindex @acronym{GLR} parsing
684@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
685@findex %glr-parser
686@cindex conflicts
687@cindex shift/reduce conflicts
fa7e68c3 688@cindex reduce/reduce conflicts
676385e2 689
fa7e68c3 690In some grammars, Bison's standard
9501dc6e
AD
691@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
692certain grammar rule at a given point. That is, it may not be able to
693decide (on the basis of the input read so far) which of two possible
694reductions (applications of a grammar rule) applies, or whether to apply
695a reduction or read more of the input and apply a reduction later in the
696input. These are known respectively as @dfn{reduce/reduce} conflicts
697(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
698(@pxref{Shift/Reduce}).
699
700To use a grammar that is not easily modified to be @acronym{LALR}(1), a
701more general parsing algorithm is sometimes necessary. If you include
676385e2 702@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 703(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
704(@acronym{GLR}) parser. These parsers handle Bison grammars that
705contain no unresolved conflicts (i.e., after applying precedence
706declarations) identically to @acronym{LALR}(1) parsers. However, when
707faced with unresolved shift/reduce and reduce/reduce conflicts,
708@acronym{GLR} parsers use the simple expedient of doing both,
709effectively cloning the parser to follow both possibilities. Each of
710the resulting parsers can again split, so that at any given time, there
711can be any number of possible parses being explored. The parsers
676385e2
PH
712proceed in lockstep; that is, all of them consume (shift) a given input
713symbol before any of them proceed to the next. Each of the cloned
714parsers eventually meets one of two possible fates: either it runs into
715a parsing error, in which case it simply vanishes, or it merges with
716another parser, because the two of them have reduced the input to an
717identical set of symbols.
718
719During the time that there are multiple parsers, semantic actions are
720recorded, but not performed. When a parser disappears, its recorded
721semantic actions disappear as well, and are never performed. When a
722reduction makes two parsers identical, causing them to merge, Bison
723records both sets of semantic actions. Whenever the last two parsers
724merge, reverting to the single-parser case, Bison resolves all the
725outstanding actions either by precedences given to the grammar rules
726involved, or by performing both actions, and then calling a designated
727user-defined function on the resulting values to produce an arbitrary
728merged result.
729
fa7e68c3 730@menu
32c29292
JD
731* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
732* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
733* GLR Semantic Actions:: Deferred semantic actions have special concerns.
734* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
735@end menu
736
737@node Simple GLR Parsers
738@subsection Using @acronym{GLR} on Unambiguous Grammars
739@cindex @acronym{GLR} parsing, unambiguous grammars
740@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
741@findex %glr-parser
742@findex %expect-rr
743@cindex conflicts
744@cindex reduce/reduce conflicts
745@cindex shift/reduce conflicts
746
747In the simplest cases, you can use the @acronym{GLR} algorithm
748to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 749Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
750or (in rare cases) fall into the category of grammars in which the
751@acronym{LALR}(1) algorithm throws away too much information (they are in
752@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
753
754Consider a problem that
755arises in the declaration of enumerated and subrange types in the
756programming language Pascal. Here are some examples:
757
758@example
759type subrange = lo .. hi;
760type enum = (a, b, c);
761@end example
762
763@noindent
764The original language standard allows only numeric
765literals and constant identifiers for the subrange bounds (@samp{lo}
766and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76710206) and many other
768Pascal implementations allow arbitrary expressions there. This gives
769rise to the following situation, containing a superfluous pair of
770parentheses:
771
772@example
773type subrange = (a) .. b;
774@end example
775
776@noindent
777Compare this to the following declaration of an enumerated
778type with only one value:
779
780@example
781type enum = (a);
782@end example
783
784@noindent
785(These declarations are contrived, but they are syntactically
786valid, and more-complicated cases can come up in practical programs.)
787
788These two declarations look identical until the @samp{..} token.
742e4900 789With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
790possible to decide between the two forms when the identifier
791@samp{a} is parsed. It is, however, desirable
792for a parser to decide this, since in the latter case
793@samp{a} must become a new identifier to represent the enumeration
794value, while in the former case @samp{a} must be evaluated with its
795current meaning, which may be a constant or even a function call.
796
797You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
798to be resolved later, but this typically requires substantial
799contortions in both semantic actions and large parts of the
800grammar, where the parentheses are nested in the recursive rules for
801expressions.
802
803You might think of using the lexer to distinguish between the two
804forms by returning different tokens for currently defined and
805undefined identifiers. But if these declarations occur in a local
806scope, and @samp{a} is defined in an outer scope, then both forms
807are possible---either locally redefining @samp{a}, or using the
808value of @samp{a} from the outer scope. So this approach cannot
809work.
810
e757bb10 811A simple solution to this problem is to declare the parser to
fa7e68c3
PE
812use the @acronym{GLR} algorithm.
813When the @acronym{GLR} parser reaches the critical state, it
814merely splits into two branches and pursues both syntax rules
815simultaneously. Sooner or later, one of them runs into a parsing
816error. If there is a @samp{..} token before the next
817@samp{;}, the rule for enumerated types fails since it cannot
818accept @samp{..} anywhere; otherwise, the subrange type rule
819fails since it requires a @samp{..} token. So one of the branches
820fails silently, and the other one continues normally, performing
821all the intermediate actions that were postponed during the split.
822
823If the input is syntactically incorrect, both branches fail and the parser
824reports a syntax error as usual.
825
826The effect of all this is that the parser seems to ``guess'' the
827correct branch to take, or in other words, it seems to use more
742e4900 828lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
829for. In this example, @acronym{LALR}(2) would suffice, but also some cases
830that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
831
832In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
833and the current Bison parser even takes exponential time and space
834for some grammars. In practice, this rarely happens, and for many
835grammars it is possible to prove that it cannot happen.
836The present example contains only one conflict between two
837rules, and the type-declaration context containing the conflict
838cannot be nested. So the number of
839branches that can exist at any time is limited by the constant 2,
840and the parsing time is still linear.
841
842Here is a Bison grammar corresponding to the example above. It
843parses a vastly simplified form of Pascal type declarations.
844
845@example
846%token TYPE DOTDOT ID
847
848@group
849%left '+' '-'
850%left '*' '/'
851@end group
852
853%%
854
855@group
856type_decl : TYPE ID '=' type ';'
857 ;
858@end group
859
860@group
861type : '(' id_list ')'
862 | expr DOTDOT expr
863 ;
864@end group
865
866@group
867id_list : ID
868 | id_list ',' ID
869 ;
870@end group
871
872@group
873expr : '(' expr ')'
874 | expr '+' expr
875 | expr '-' expr
876 | expr '*' expr
877 | expr '/' expr
878 | ID
879 ;
880@end group
881@end example
882
883When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
884about one reduce/reduce conflict. In the conflicting situation the
885parser chooses one of the alternatives, arbitrarily the one
886declared first. Therefore the following correct input is not
887recognized:
888
889@example
890type t = (a) .. b;
891@end example
892
893The parser can be turned into a @acronym{GLR} parser, while also telling Bison
894to be silent about the one known reduce/reduce conflict, by
e757bb10 895adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
896@samp{%%}):
897
898@example
899%glr-parser
900%expect-rr 1
901@end example
902
903@noindent
904No change in the grammar itself is required. Now the
905parser recognizes all valid declarations, according to the
906limited syntax above, transparently. In fact, the user does not even
907notice when the parser splits.
908
f8e1c9e5
AD
909So here we have a case where we can use the benefits of @acronym{GLR},
910almost without disadvantages. Even in simple cases like this, however,
911there are at least two potential problems to beware. First, always
912analyze the conflicts reported by Bison to make sure that @acronym{GLR}
913splitting is only done where it is intended. A @acronym{GLR} parser
914splitting inadvertently may cause problems less obvious than an
915@acronym{LALR} parser statically choosing the wrong alternative in a
916conflict. Second, consider interactions with the lexer (@pxref{Semantic
917Tokens}) with great care. Since a split parser consumes tokens without
918performing any actions during the split, the lexer cannot obtain
919information via parser actions. Some cases of lexer interactions can be
920eliminated by using @acronym{GLR} to shift the complications from the
921lexer to the parser. You must check the remaining cases for
922correctness.
923
924In our example, it would be safe for the lexer to return tokens based on
925their current meanings in some symbol table, because no new symbols are
926defined in the middle of a type declaration. Though it is possible for
927a parser to define the enumeration constants as they are parsed, before
928the type declaration is completed, it actually makes no difference since
929they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
930
931@node Merging GLR Parses
932@subsection Using @acronym{GLR} to Resolve Ambiguities
933@cindex @acronym{GLR} parsing, ambiguous grammars
934@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
935@findex %dprec
936@findex %merge
937@cindex conflicts
938@cindex reduce/reduce conflicts
939
2a8d363a 940Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
941
942@example
943%@{
38a92d50
PE
944 #include <stdio.h>
945 #define YYSTYPE char const *
946 int yylex (void);
947 void yyerror (char const *);
676385e2
PH
948%@}
949
950%token TYPENAME ID
951
952%right '='
953%left '+'
954
955%glr-parser
956
957%%
958
fae437e8 959prog :
676385e2
PH
960 | prog stmt @{ printf ("\n"); @}
961 ;
962
963stmt : expr ';' %dprec 1
964 | decl %dprec 2
965 ;
966
2a8d363a 967expr : ID @{ printf ("%s ", $$); @}
fae437e8 968 | TYPENAME '(' expr ')'
2a8d363a
AD
969 @{ printf ("%s <cast> ", $1); @}
970 | expr '+' expr @{ printf ("+ "); @}
971 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
972 ;
973
fae437e8 974decl : TYPENAME declarator ';'
2a8d363a 975 @{ printf ("%s <declare> ", $1); @}
676385e2 976 | TYPENAME declarator '=' expr ';'
2a8d363a 977 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
978 ;
979
2a8d363a 980declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
981 | '(' declarator ')'
982 ;
983@end example
984
985@noindent
986This models a problematic part of the C++ grammar---the ambiguity between
987certain declarations and statements. For example,
988
989@example
990T (x) = y+z;
991@end example
992
993@noindent
994parses as either an @code{expr} or a @code{stmt}
c827f760
PE
995(assuming that @samp{T} is recognized as a @code{TYPENAME} and
996@samp{x} as an @code{ID}).
676385e2 997Bison detects this as a reduce/reduce conflict between the rules
fae437e8 998@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
999time it encounters @code{x} in the example above. Since this is a
1000@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1001each choice of resolving the reduce/reduce conflict.
1002Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1003however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1004ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1005the other reduces @code{stmt : decl}, after which both parsers are in an
1006identical state: they've seen @samp{prog stmt} and have the same unprocessed
1007input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1008
1009At this point, the @acronym{GLR} parser requires a specification in the
1010grammar of how to choose between the competing parses.
1011In the example above, the two @code{%dprec}
e757bb10 1012declarations specify that Bison is to give precedence
fa7e68c3 1013to the parse that interprets the example as a
676385e2
PH
1014@code{decl}, which implies that @code{x} is a declarator.
1015The parser therefore prints
1016
1017@example
fae437e8 1018"x" y z + T <init-declare>
676385e2
PH
1019@end example
1020
fa7e68c3
PE
1021The @code{%dprec} declarations only come into play when more than one
1022parse survives. Consider a different input string for this parser:
676385e2
PH
1023
1024@example
1025T (x) + y;
1026@end example
1027
1028@noindent
e757bb10 1029This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1030construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1031Here, there is no ambiguity (this cannot be parsed as a declaration).
1032However, at the time the Bison parser encounters @code{x}, it does not
1033have enough information to resolve the reduce/reduce conflict (again,
1034between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1035case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1036into two, one assuming that @code{x} is an @code{expr}, and the other
1037assuming @code{x} is a @code{declarator}. The second of these parsers
1038then vanishes when it sees @code{+}, and the parser prints
1039
1040@example
fae437e8 1041x T <cast> y +
676385e2
PH
1042@end example
1043
1044Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1045the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1046actions of the two possible parsers, rather than choosing one over the
1047other. To do so, you could change the declaration of @code{stmt} as
1048follows:
1049
1050@example
1051stmt : expr ';' %merge <stmtMerge>
1052 | decl %merge <stmtMerge>
1053 ;
1054@end example
1055
1056@noindent
676385e2
PH
1057and define the @code{stmtMerge} function as:
1058
1059@example
38a92d50
PE
1060static YYSTYPE
1061stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1062@{
1063 printf ("<OR> ");
1064 return "";
1065@}
1066@end example
1067
1068@noindent
1069with an accompanying forward declaration
1070in the C declarations at the beginning of the file:
1071
1072@example
1073%@{
38a92d50 1074 #define YYSTYPE char const *
676385e2
PH
1075 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1076%@}
1077@end example
1078
1079@noindent
fa7e68c3
PE
1080With these declarations, the resulting parser parses the first example
1081as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1082
1083@example
fae437e8 1084"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1085@end example
1086
fa7e68c3 1087Bison requires that all of the
e757bb10 1088productions that participate in any particular merge have identical
fa7e68c3
PE
1089@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1090and the parser will report an error during any parse that results in
1091the offending merge.
9501dc6e 1092
32c29292
JD
1093@node GLR Semantic Actions
1094@subsection GLR Semantic Actions
1095
1096@cindex deferred semantic actions
1097By definition, a deferred semantic action is not performed at the same time as
1098the associated reduction.
1099This raises caveats for several Bison features you might use in a semantic
1100action in a @acronym{GLR} parser.
1101
1102@vindex yychar
1103@cindex @acronym{GLR} parsers and @code{yychar}
1104@vindex yylval
1105@cindex @acronym{GLR} parsers and @code{yylval}
1106@vindex yylloc
1107@cindex @acronym{GLR} parsers and @code{yylloc}
1108In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1109the lookahead token present at the time of the associated reduction.
32c29292
JD
1110After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1111you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1112lookahead token's semantic value and location, if any.
32c29292
JD
1113In a nondeferred semantic action, you can also modify any of these variables to
1114influence syntax analysis.
742e4900 1115@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1116
1117@findex yyclearin
1118@cindex @acronym{GLR} parsers and @code{yyclearin}
1119In a deferred semantic action, it's too late to influence syntax analysis.
1120In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1121shallow copies of the values they had at the time of the associated reduction.
1122For this reason alone, modifying them is dangerous.
1123Moreover, the result of modifying them is undefined and subject to change with
1124future versions of Bison.
1125For example, if a semantic action might be deferred, you should never write it
1126to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1127memory referenced by @code{yylval}.
1128
1129@findex YYERROR
1130@cindex @acronym{GLR} parsers and @code{YYERROR}
1131Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1132(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1133initiate error recovery.
1134During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1135the same as its effect in an @acronym{LALR}(1) parser.
1136In a deferred semantic action, its effect is undefined.
1137@c The effect is probably a syntax error at the split point.
1138
8710fc41
JD
1139Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1140describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1141
fa7e68c3
PE
1142@node Compiler Requirements
1143@subsection Considerations when Compiling @acronym{GLR} Parsers
1144@cindex @code{inline}
9501dc6e 1145@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1146
38a92d50
PE
1147The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1148later. In addition, they use the @code{inline} keyword, which is not
1149C89, but is C99 and is a common extension in pre-C99 compilers. It is
1150up to the user of these parsers to handle
9501dc6e
AD
1151portability issues. For instance, if using Autoconf and the Autoconf
1152macro @code{AC_C_INLINE}, a mere
1153
1154@example
1155%@{
38a92d50 1156 #include <config.h>
9501dc6e
AD
1157%@}
1158@end example
1159
1160@noindent
1161will suffice. Otherwise, we suggest
1162
1163@example
1164%@{
38a92d50
PE
1165 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1166 #define inline
1167 #endif
9501dc6e
AD
1168%@}
1169@end example
676385e2 1170
342b8b6e 1171@node Locations Overview
847bf1f5
AD
1172@section Locations
1173@cindex location
95923bd6
AD
1174@cindex textual location
1175@cindex location, textual
847bf1f5
AD
1176
1177Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1178and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1179the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1180Bison provides a mechanism for handling these locations.
1181
72d2299c 1182Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1183associated location, but the type of locations is the same for all tokens and
72d2299c 1184groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1185structure for storing locations (@pxref{Locations}, for more details).
1186
1187Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1188set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1189is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1190@code{@@3}.
1191
1192When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1193of its left hand side (@pxref{Actions}). In the same way, another default
1194action is used for locations. However, the action for locations is general
847bf1f5 1195enough for most cases, meaning there is usually no need to describe for each
72d2299c 1196rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1197grouping, the default behavior of the output parser is to take the beginning
1198of the first symbol, and the end of the last symbol.
1199
342b8b6e 1200@node Bison Parser
bfa74976
RS
1201@section Bison Output: the Parser File
1202@cindex Bison parser
1203@cindex Bison utility
1204@cindex lexical analyzer, purpose
1205@cindex parser
1206
1207When you run Bison, you give it a Bison grammar file as input. The output
1208is a C source file that parses the language described by the grammar.
1209This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1210utility and the Bison parser are two distinct programs: the Bison utility
1211is a program whose output is the Bison parser that becomes part of your
1212program.
1213
1214The job of the Bison parser is to group tokens into groupings according to
1215the grammar rules---for example, to build identifiers and operators into
1216expressions. As it does this, it runs the actions for the grammar rules it
1217uses.
1218
704a47c4
AD
1219The tokens come from a function called the @dfn{lexical analyzer} that
1220you must supply in some fashion (such as by writing it in C). The Bison
1221parser calls the lexical analyzer each time it wants a new token. It
1222doesn't know what is ``inside'' the tokens (though their semantic values
1223may reflect this). Typically the lexical analyzer makes the tokens by
1224parsing characters of text, but Bison does not depend on this.
1225@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1226
1227The Bison parser file is C code which defines a function named
1228@code{yyparse} which implements that grammar. This function does not make
1229a complete C program: you must supply some additional functions. One is
1230the lexical analyzer. Another is an error-reporting function which the
1231parser calls to report an error. In addition, a complete C program must
1232start with a function called @code{main}; you have to provide this, and
1233arrange for it to call @code{yyparse} or the parser will never run.
1234@xref{Interface, ,Parser C-Language Interface}.
1235
f7ab6a50 1236Aside from the token type names and the symbols in the actions you
7093d0f5 1237write, all symbols defined in the Bison parser file itself
bfa74976
RS
1238begin with @samp{yy} or @samp{YY}. This includes interface functions
1239such as the lexical analyzer function @code{yylex}, the error reporting
1240function @code{yyerror} and the parser function @code{yyparse} itself.
1241This also includes numerous identifiers used for internal purposes.
1242Therefore, you should avoid using C identifiers starting with @samp{yy}
1243or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1244this manual. Also, you should avoid using the C identifiers
1245@samp{malloc} and @samp{free} for anything other than their usual
1246meanings.
bfa74976 1247
7093d0f5
AD
1248In some cases the Bison parser file includes system headers, and in
1249those cases your code should respect the identifiers reserved by those
55289366 1250headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1251@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1252declare memory allocators and related types. @code{<libintl.h>} is
1253included if message translation is in use
1254(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1255be included if you define @code{YYDEBUG} to a nonzero value
1256(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1257
342b8b6e 1258@node Stages
bfa74976
RS
1259@section Stages in Using Bison
1260@cindex stages in using Bison
1261@cindex using Bison
1262
1263The actual language-design process using Bison, from grammar specification
1264to a working compiler or interpreter, has these parts:
1265
1266@enumerate
1267@item
1268Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1269(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1270in the language, describe the action that is to be taken when an
1271instance of that rule is recognized. The action is described by a
1272sequence of C statements.
bfa74976
RS
1273
1274@item
704a47c4
AD
1275Write a lexical analyzer to process input and pass tokens to the parser.
1276The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1277Lexical Analyzer Function @code{yylex}}). It could also be produced
1278using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1279
1280@item
1281Write a controlling function that calls the Bison-produced parser.
1282
1283@item
1284Write error-reporting routines.
1285@end enumerate
1286
1287To turn this source code as written into a runnable program, you
1288must follow these steps:
1289
1290@enumerate
1291@item
1292Run Bison on the grammar to produce the parser.
1293
1294@item
1295Compile the code output by Bison, as well as any other source files.
1296
1297@item
1298Link the object files to produce the finished product.
1299@end enumerate
1300
342b8b6e 1301@node Grammar Layout
bfa74976
RS
1302@section The Overall Layout of a Bison Grammar
1303@cindex grammar file
1304@cindex file format
1305@cindex format of grammar file
1306@cindex layout of Bison grammar
1307
1308The input file for the Bison utility is a @dfn{Bison grammar file}. The
1309general form of a Bison grammar file is as follows:
1310
1311@example
1312%@{
08e49d20 1313@var{Prologue}
bfa74976
RS
1314%@}
1315
1316@var{Bison declarations}
1317
1318%%
1319@var{Grammar rules}
1320%%
08e49d20 1321@var{Epilogue}
bfa74976
RS
1322@end example
1323
1324@noindent
1325The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1326in every Bison grammar file to separate the sections.
1327
72d2299c 1328The prologue may define types and variables used in the actions. You can
342b8b6e 1329also use preprocessor commands to define macros used there, and use
bfa74976 1330@code{#include} to include header files that do any of these things.
38a92d50
PE
1331You need to declare the lexical analyzer @code{yylex} and the error
1332printer @code{yyerror} here, along with any other global identifiers
1333used by the actions in the grammar rules.
bfa74976
RS
1334
1335The Bison declarations declare the names of the terminal and nonterminal
1336symbols, and may also describe operator precedence and the data types of
1337semantic values of various symbols.
1338
1339The grammar rules define how to construct each nonterminal symbol from its
1340parts.
1341
38a92d50
PE
1342The epilogue can contain any code you want to use. Often the
1343definitions of functions declared in the prologue go here. In a
1344simple program, all the rest of the program can go here.
bfa74976 1345
342b8b6e 1346@node Examples
bfa74976
RS
1347@chapter Examples
1348@cindex simple examples
1349@cindex examples, simple
1350
1351Now we show and explain three sample programs written using Bison: a
1352reverse polish notation calculator, an algebraic (infix) notation
1353calculator, and a multi-function calculator. All three have been tested
1354under BSD Unix 4.3; each produces a usable, though limited, interactive
1355desk-top calculator.
1356
1357These examples are simple, but Bison grammars for real programming
aa08666d
AD
1358languages are written the same way. You can copy these examples into a
1359source file to try them.
bfa74976
RS
1360
1361@menu
1362* RPN Calc:: Reverse polish notation calculator;
1363 a first example with no operator precedence.
1364* Infix Calc:: Infix (algebraic) notation calculator.
1365 Operator precedence is introduced.
1366* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1367* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1368* Multi-function Calc:: Calculator with memory and trig functions.
1369 It uses multiple data-types for semantic values.
1370* Exercises:: Ideas for improving the multi-function calculator.
1371@end menu
1372
342b8b6e 1373@node RPN Calc
bfa74976
RS
1374@section Reverse Polish Notation Calculator
1375@cindex reverse polish notation
1376@cindex polish notation calculator
1377@cindex @code{rpcalc}
1378@cindex calculator, simple
1379
1380The first example is that of a simple double-precision @dfn{reverse polish
1381notation} calculator (a calculator using postfix operators). This example
1382provides a good starting point, since operator precedence is not an issue.
1383The second example will illustrate how operator precedence is handled.
1384
1385The source code for this calculator is named @file{rpcalc.y}. The
1386@samp{.y} extension is a convention used for Bison input files.
1387
1388@menu
75f5aaea 1389* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1390* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1391* Lexer: Rpcalc Lexer. The lexical analyzer.
1392* Main: Rpcalc Main. The controlling function.
1393* Error: Rpcalc Error. The error reporting function.
1394* Gen: Rpcalc Gen. Running Bison on the grammar file.
1395* Comp: Rpcalc Compile. Run the C compiler on the output code.
1396@end menu
1397
342b8b6e 1398@node Rpcalc Decls
bfa74976
RS
1399@subsection Declarations for @code{rpcalc}
1400
1401Here are the C and Bison declarations for the reverse polish notation
1402calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1403
1404@example
72d2299c 1405/* Reverse polish notation calculator. */
bfa74976
RS
1406
1407%@{
38a92d50
PE
1408 #define YYSTYPE double
1409 #include <math.h>
1410 int yylex (void);
1411 void yyerror (char const *);
bfa74976
RS
1412%@}
1413
1414%token NUM
1415
72d2299c 1416%% /* Grammar rules and actions follow. */
bfa74976
RS
1417@end example
1418
75f5aaea 1419The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1420preprocessor directives and two forward declarations.
bfa74976
RS
1421
1422The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1423specifying the C data type for semantic values of both tokens and
1424groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1425Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1426don't define it, @code{int} is the default. Because we specify
1427@code{double}, each token and each expression has an associated value,
1428which is a floating point number.
bfa74976
RS
1429
1430The @code{#include} directive is used to declare the exponentiation
1431function @code{pow}.
1432
38a92d50
PE
1433The forward declarations for @code{yylex} and @code{yyerror} are
1434needed because the C language requires that functions be declared
1435before they are used. These functions will be defined in the
1436epilogue, but the parser calls them so they must be declared in the
1437prologue.
1438
704a47c4
AD
1439The second section, Bison declarations, provides information to Bison
1440about the token types (@pxref{Bison Declarations, ,The Bison
1441Declarations Section}). Each terminal symbol that is not a
1442single-character literal must be declared here. (Single-character
bfa74976
RS
1443literals normally don't need to be declared.) In this example, all the
1444arithmetic operators are designated by single-character literals, so the
1445only terminal symbol that needs to be declared is @code{NUM}, the token
1446type for numeric constants.
1447
342b8b6e 1448@node Rpcalc Rules
bfa74976
RS
1449@subsection Grammar Rules for @code{rpcalc}
1450
1451Here are the grammar rules for the reverse polish notation calculator.
1452
1453@example
1454input: /* empty */
1455 | input line
1456;
1457
1458line: '\n'
18b519c0 1459 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1460;
1461
18b519c0
AD
1462exp: NUM @{ $$ = $1; @}
1463 | exp exp '+' @{ $$ = $1 + $2; @}
1464 | exp exp '-' @{ $$ = $1 - $2; @}
1465 | exp exp '*' @{ $$ = $1 * $2; @}
1466 | exp exp '/' @{ $$ = $1 / $2; @}
1467 /* Exponentiation */
1468 | exp exp '^' @{ $$ = pow ($1, $2); @}
1469 /* Unary minus */
1470 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1471;
1472%%
1473@end example
1474
1475The groupings of the rpcalc ``language'' defined here are the expression
1476(given the name @code{exp}), the line of input (@code{line}), and the
1477complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1478symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1479which is read as ``or''. The following sections explain what these rules
1480mean.
1481
1482The semantics of the language is determined by the actions taken when a
1483grouping is recognized. The actions are the C code that appears inside
1484braces. @xref{Actions}.
1485
1486You must specify these actions in C, but Bison provides the means for
1487passing semantic values between the rules. In each action, the
1488pseudo-variable @code{$$} stands for the semantic value for the grouping
1489that the rule is going to construct. Assigning a value to @code{$$} is the
1490main job of most actions. The semantic values of the components of the
1491rule are referred to as @code{$1}, @code{$2}, and so on.
1492
1493@menu
13863333
AD
1494* Rpcalc Input::
1495* Rpcalc Line::
1496* Rpcalc Expr::
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node Rpcalc Input
bfa74976
RS
1500@subsubsection Explanation of @code{input}
1501
1502Consider the definition of @code{input}:
1503
1504@example
1505input: /* empty */
1506 | input line
1507;
1508@end example
1509
1510This definition reads as follows: ``A complete input is either an empty
1511string, or a complete input followed by an input line''. Notice that
1512``complete input'' is defined in terms of itself. This definition is said
1513to be @dfn{left recursive} since @code{input} appears always as the
1514leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1515
1516The first alternative is empty because there are no symbols between the
1517colon and the first @samp{|}; this means that @code{input} can match an
1518empty string of input (no tokens). We write the rules this way because it
1519is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1520It's conventional to put an empty alternative first and write the comment
1521@samp{/* empty */} in it.
1522
1523The second alternate rule (@code{input line}) handles all nontrivial input.
1524It means, ``After reading any number of lines, read one more line if
1525possible.'' The left recursion makes this rule into a loop. Since the
1526first alternative matches empty input, the loop can be executed zero or
1527more times.
1528
1529The parser function @code{yyparse} continues to process input until a
1530grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1531input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1532
342b8b6e 1533@node Rpcalc Line
bfa74976
RS
1534@subsubsection Explanation of @code{line}
1535
1536Now consider the definition of @code{line}:
1537
1538@example
1539line: '\n'
1540 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1541;
1542@end example
1543
1544The first alternative is a token which is a newline character; this means
1545that rpcalc accepts a blank line (and ignores it, since there is no
1546action). The second alternative is an expression followed by a newline.
1547This is the alternative that makes rpcalc useful. The semantic value of
1548the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1549question is the first symbol in the alternative. The action prints this
1550value, which is the result of the computation the user asked for.
1551
1552This action is unusual because it does not assign a value to @code{$$}. As
1553a consequence, the semantic value associated with the @code{line} is
1554uninitialized (its value will be unpredictable). This would be a bug if
1555that value were ever used, but we don't use it: once rpcalc has printed the
1556value of the user's input line, that value is no longer needed.
1557
342b8b6e 1558@node Rpcalc Expr
bfa74976
RS
1559@subsubsection Explanation of @code{expr}
1560
1561The @code{exp} grouping has several rules, one for each kind of expression.
1562The first rule handles the simplest expressions: those that are just numbers.
1563The second handles an addition-expression, which looks like two expressions
1564followed by a plus-sign. The third handles subtraction, and so on.
1565
1566@example
1567exp: NUM
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 @dots{}
1571 ;
1572@end example
1573
1574We have used @samp{|} to join all the rules for @code{exp}, but we could
1575equally well have written them separately:
1576
1577@example
1578exp: NUM ;
1579exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1580exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1581 @dots{}
1582@end example
1583
1584Most of the rules have actions that compute the value of the expression in
1585terms of the value of its parts. For example, in the rule for addition,
1586@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1587the second one. The third component, @code{'+'}, has no meaningful
1588associated semantic value, but if it had one you could refer to it as
1589@code{$3}. When @code{yyparse} recognizes a sum expression using this
1590rule, the sum of the two subexpressions' values is produced as the value of
1591the entire expression. @xref{Actions}.
1592
1593You don't have to give an action for every rule. When a rule has no
1594action, Bison by default copies the value of @code{$1} into @code{$$}.
1595This is what happens in the first rule (the one that uses @code{NUM}).
1596
1597The formatting shown here is the recommended convention, but Bison does
72d2299c 1598not require it. You can add or change white space as much as you wish.
bfa74976
RS
1599For example, this:
1600
1601@example
99a9344e 1602exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1603@end example
1604
1605@noindent
1606means the same thing as this:
1607
1608@example
1609exp: NUM
1610 | exp exp '+' @{ $$ = $1 + $2; @}
1611 | @dots{}
99a9344e 1612;
bfa74976
RS
1613@end example
1614
1615@noindent
1616The latter, however, is much more readable.
1617
342b8b6e 1618@node Rpcalc Lexer
bfa74976
RS
1619@subsection The @code{rpcalc} Lexical Analyzer
1620@cindex writing a lexical analyzer
1621@cindex lexical analyzer, writing
1622
704a47c4
AD
1623The lexical analyzer's job is low-level parsing: converting characters
1624or sequences of characters into tokens. The Bison parser gets its
1625tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1626Analyzer Function @code{yylex}}.
bfa74976 1627
c827f760
PE
1628Only a simple lexical analyzer is needed for the @acronym{RPN}
1629calculator. This
bfa74976
RS
1630lexical analyzer skips blanks and tabs, then reads in numbers as
1631@code{double} and returns them as @code{NUM} tokens. Any other character
1632that isn't part of a number is a separate token. Note that the token-code
1633for such a single-character token is the character itself.
1634
1635The return value of the lexical analyzer function is a numeric code which
1636represents a token type. The same text used in Bison rules to stand for
1637this token type is also a C expression for the numeric code for the type.
1638This works in two ways. If the token type is a character literal, then its
e966383b 1639numeric code is that of the character; you can use the same
bfa74976
RS
1640character literal in the lexical analyzer to express the number. If the
1641token type is an identifier, that identifier is defined by Bison as a C
1642macro whose definition is the appropriate number. In this example,
1643therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1644
1964ad8c
AD
1645The semantic value of the token (if it has one) is stored into the
1646global variable @code{yylval}, which is where the Bison parser will look
1647for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1648defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1649,Declarations for @code{rpcalc}}.)
bfa74976 1650
72d2299c
PE
1651A token type code of zero is returned if the end-of-input is encountered.
1652(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1653
1654Here is the code for the lexical analyzer:
1655
1656@example
1657@group
72d2299c 1658/* The lexical analyzer returns a double floating point
e966383b 1659 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1660 of the character read if not a number. It skips all blanks
1661 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1662
1663#include <ctype.h>
1664@end group
1665
1666@group
13863333
AD
1667int
1668yylex (void)
bfa74976
RS
1669@{
1670 int c;
1671
72d2299c 1672 /* Skip white space. */
13863333 1673 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1674 ;
1675@end group
1676@group
72d2299c 1677 /* Process numbers. */
13863333 1678 if (c == '.' || isdigit (c))
bfa74976
RS
1679 @{
1680 ungetc (c, stdin);
1681 scanf ("%lf", &yylval);
1682 return NUM;
1683 @}
1684@end group
1685@group
72d2299c 1686 /* Return end-of-input. */
13863333 1687 if (c == EOF)
bfa74976 1688 return 0;
72d2299c 1689 /* Return a single char. */
13863333 1690 return c;
bfa74976
RS
1691@}
1692@end group
1693@end example
1694
342b8b6e 1695@node Rpcalc Main
bfa74976
RS
1696@subsection The Controlling Function
1697@cindex controlling function
1698@cindex main function in simple example
1699
1700In keeping with the spirit of this example, the controlling function is
1701kept to the bare minimum. The only requirement is that it call
1702@code{yyparse} to start the process of parsing.
1703
1704@example
1705@group
13863333
AD
1706int
1707main (void)
bfa74976 1708@{
13863333 1709 return yyparse ();
bfa74976
RS
1710@}
1711@end group
1712@end example
1713
342b8b6e 1714@node Rpcalc Error
bfa74976
RS
1715@subsection The Error Reporting Routine
1716@cindex error reporting routine
1717
1718When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1719function @code{yyerror} to print an error message (usually but not
6e649e65 1720always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1721@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1722here is the definition we will use:
bfa74976
RS
1723
1724@example
1725@group
1726#include <stdio.h>
1727
38a92d50 1728/* Called by yyparse on error. */
13863333 1729void
38a92d50 1730yyerror (char const *s)
bfa74976 1731@{
4e03e201 1732 fprintf (stderr, "%s\n", s);
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
1737After @code{yyerror} returns, the Bison parser may recover from the error
1738and continue parsing if the grammar contains a suitable error rule
1739(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1740have not written any error rules in this example, so any invalid input will
1741cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1742real calculator, but it is adequate for the first example.
bfa74976 1743
342b8b6e 1744@node Rpcalc Gen
bfa74976
RS
1745@subsection Running Bison to Make the Parser
1746@cindex running Bison (introduction)
1747
ceed8467
AD
1748Before running Bison to produce a parser, we need to decide how to
1749arrange all the source code in one or more source files. For such a
1750simple example, the easiest thing is to put everything in one file. The
1751definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1752end, in the epilogue of the file
75f5aaea 1753(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1754
1755For a large project, you would probably have several source files, and use
1756@code{make} to arrange to recompile them.
1757
1758With all the source in a single file, you use the following command to
1759convert it into a parser file:
1760
1761@example
fa4d969f 1762bison @var{file}.y
bfa74976
RS
1763@end example
1764
1765@noindent
1766In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1767@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1768removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1769Bison contains the source code for @code{yyparse}. The additional
1770functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1771are copied verbatim to the output.
1772
342b8b6e 1773@node Rpcalc Compile
bfa74976
RS
1774@subsection Compiling the Parser File
1775@cindex compiling the parser
1776
1777Here is how to compile and run the parser file:
1778
1779@example
1780@group
1781# @r{List files in current directory.}
9edcd895 1782$ @kbd{ls}
bfa74976
RS
1783rpcalc.tab.c rpcalc.y
1784@end group
1785
1786@group
1787# @r{Compile the Bison parser.}
1788# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1789$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1790@end group
1791
1792@group
1793# @r{List files again.}
9edcd895 1794$ @kbd{ls}
bfa74976
RS
1795rpcalc rpcalc.tab.c rpcalc.y
1796@end group
1797@end example
1798
1799The file @file{rpcalc} now contains the executable code. Here is an
1800example session using @code{rpcalc}.
1801
1802@example
9edcd895
AD
1803$ @kbd{rpcalc}
1804@kbd{4 9 +}
bfa74976 180513
9edcd895 1806@kbd{3 7 + 3 4 5 *+-}
bfa74976 1807-13
9edcd895 1808@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 180913
9edcd895 1810@kbd{5 6 / 4 n +}
bfa74976 1811-3.166666667
9edcd895 1812@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181381
9edcd895
AD
1814@kbd{^D} @r{End-of-file indicator}
1815$
bfa74976
RS
1816@end example
1817
342b8b6e 1818@node Infix Calc
bfa74976
RS
1819@section Infix Notation Calculator: @code{calc}
1820@cindex infix notation calculator
1821@cindex @code{calc}
1822@cindex calculator, infix notation
1823
1824We now modify rpcalc to handle infix operators instead of postfix. Infix
1825notation involves the concept of operator precedence and the need for
1826parentheses nested to arbitrary depth. Here is the Bison code for
1827@file{calc.y}, an infix desk-top calculator.
1828
1829@example
38a92d50 1830/* Infix notation calculator. */
bfa74976
RS
1831
1832%@{
38a92d50
PE
1833 #define YYSTYPE double
1834 #include <math.h>
1835 #include <stdio.h>
1836 int yylex (void);
1837 void yyerror (char const *);
bfa74976
RS
1838%@}
1839
38a92d50 1840/* Bison declarations. */
bfa74976
RS
1841%token NUM
1842%left '-' '+'
1843%left '*' '/'
1844%left NEG /* negation--unary minus */
38a92d50 1845%right '^' /* exponentiation */
bfa74976 1846
38a92d50
PE
1847%% /* The grammar follows. */
1848input: /* empty */
bfa74976
RS
1849 | input line
1850;
1851
1852line: '\n'
1853 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1854;
1855
1856exp: NUM @{ $$ = $1; @}
1857 | exp '+' exp @{ $$ = $1 + $3; @}
1858 | exp '-' exp @{ $$ = $1 - $3; @}
1859 | exp '*' exp @{ $$ = $1 * $3; @}
1860 | exp '/' exp @{ $$ = $1 / $3; @}
1861 | '-' exp %prec NEG @{ $$ = -$2; @}
1862 | exp '^' exp @{ $$ = pow ($1, $3); @}
1863 | '(' exp ')' @{ $$ = $2; @}
1864;
1865%%
1866@end example
1867
1868@noindent
ceed8467
AD
1869The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1870same as before.
bfa74976
RS
1871
1872There are two important new features shown in this code.
1873
1874In the second section (Bison declarations), @code{%left} declares token
1875types and says they are left-associative operators. The declarations
1876@code{%left} and @code{%right} (right associativity) take the place of
1877@code{%token} which is used to declare a token type name without
1878associativity. (These tokens are single-character literals, which
1879ordinarily don't need to be declared. We declare them here to specify
1880the associativity.)
1881
1882Operator precedence is determined by the line ordering of the
1883declarations; the higher the line number of the declaration (lower on
1884the page or screen), the higher the precedence. Hence, exponentiation
1885has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1886by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1887Precedence}.
bfa74976 1888
704a47c4
AD
1889The other important new feature is the @code{%prec} in the grammar
1890section for the unary minus operator. The @code{%prec} simply instructs
1891Bison that the rule @samp{| '-' exp} has the same precedence as
1892@code{NEG}---in this case the next-to-highest. @xref{Contextual
1893Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1894
1895Here is a sample run of @file{calc.y}:
1896
1897@need 500
1898@example
9edcd895
AD
1899$ @kbd{calc}
1900@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19016.880952381
9edcd895 1902@kbd{-56 + 2}
bfa74976 1903-54
9edcd895 1904@kbd{3 ^ 2}
bfa74976
RS
19059
1906@end example
1907
342b8b6e 1908@node Simple Error Recovery
bfa74976
RS
1909@section Simple Error Recovery
1910@cindex error recovery, simple
1911
1912Up to this point, this manual has not addressed the issue of @dfn{error
1913recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1914error. All we have handled is error reporting with @code{yyerror}.
1915Recall that by default @code{yyparse} returns after calling
1916@code{yyerror}. This means that an erroneous input line causes the
1917calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1918
1919The Bison language itself includes the reserved word @code{error}, which
1920may be included in the grammar rules. In the example below it has
1921been added to one of the alternatives for @code{line}:
1922
1923@example
1924@group
1925line: '\n'
1926 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1927 | error '\n' @{ yyerrok; @}
1928;
1929@end group
1930@end example
1931
ceed8467 1932This addition to the grammar allows for simple error recovery in the
6e649e65 1933event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1934read, the error will be recognized by the third rule for @code{line},
1935and parsing will continue. (The @code{yyerror} function is still called
1936upon to print its message as well.) The action executes the statement
1937@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1938that error recovery is complete (@pxref{Error Recovery}). Note the
1939difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1940misprint.
bfa74976
RS
1941
1942This form of error recovery deals with syntax errors. There are other
1943kinds of errors; for example, division by zero, which raises an exception
1944signal that is normally fatal. A real calculator program must handle this
1945signal and use @code{longjmp} to return to @code{main} and resume parsing
1946input lines; it would also have to discard the rest of the current line of
1947input. We won't discuss this issue further because it is not specific to
1948Bison programs.
1949
342b8b6e
AD
1950@node Location Tracking Calc
1951@section Location Tracking Calculator: @code{ltcalc}
1952@cindex location tracking calculator
1953@cindex @code{ltcalc}
1954@cindex calculator, location tracking
1955
9edcd895
AD
1956This example extends the infix notation calculator with location
1957tracking. This feature will be used to improve the error messages. For
1958the sake of clarity, this example is a simple integer calculator, since
1959most of the work needed to use locations will be done in the lexical
72d2299c 1960analyzer.
342b8b6e
AD
1961
1962@menu
1963* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1964* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1965* Lexer: Ltcalc Lexer. The lexical analyzer.
1966@end menu
1967
1968@node Ltcalc Decls
1969@subsection Declarations for @code{ltcalc}
1970
9edcd895
AD
1971The C and Bison declarations for the location tracking calculator are
1972the same as the declarations for the infix notation calculator.
342b8b6e
AD
1973
1974@example
1975/* Location tracking calculator. */
1976
1977%@{
38a92d50
PE
1978 #define YYSTYPE int
1979 #include <math.h>
1980 int yylex (void);
1981 void yyerror (char const *);
342b8b6e
AD
1982%@}
1983
1984/* Bison declarations. */
1985%token NUM
1986
1987%left '-' '+'
1988%left '*' '/'
1989%left NEG
1990%right '^'
1991
38a92d50 1992%% /* The grammar follows. */
342b8b6e
AD
1993@end example
1994
9edcd895
AD
1995@noindent
1996Note there are no declarations specific to locations. Defining a data
1997type for storing locations is not needed: we will use the type provided
1998by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1999four member structure with the following integer fields:
2000@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2001@code{last_column}. By conventions, and in accordance with the GNU
2002Coding Standards and common practice, the line and column count both
2003start at 1.
342b8b6e
AD
2004
2005@node Ltcalc Rules
2006@subsection Grammar Rules for @code{ltcalc}
2007
9edcd895
AD
2008Whether handling locations or not has no effect on the syntax of your
2009language. Therefore, grammar rules for this example will be very close
2010to those of the previous example: we will only modify them to benefit
2011from the new information.
342b8b6e 2012
9edcd895
AD
2013Here, we will use locations to report divisions by zero, and locate the
2014wrong expressions or subexpressions.
342b8b6e
AD
2015
2016@example
2017@group
2018input : /* empty */
2019 | input line
2020;
2021@end group
2022
2023@group
2024line : '\n'
2025 | exp '\n' @{ printf ("%d\n", $1); @}
2026;
2027@end group
2028
2029@group
2030exp : NUM @{ $$ = $1; @}
2031 | exp '+' exp @{ $$ = $1 + $3; @}
2032 | exp '-' exp @{ $$ = $1 - $3; @}
2033 | exp '*' exp @{ $$ = $1 * $3; @}
2034@end group
342b8b6e 2035@group
9edcd895 2036 | exp '/' exp
342b8b6e
AD
2037 @{
2038 if ($3)
2039 $$ = $1 / $3;
2040 else
2041 @{
2042 $$ = 1;
9edcd895
AD
2043 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2044 @@3.first_line, @@3.first_column,
2045 @@3.last_line, @@3.last_column);
342b8b6e
AD
2046 @}
2047 @}
2048@end group
2049@group
2050 | '-' exp %preg NEG @{ $$ = -$2; @}
2051 | exp '^' exp @{ $$ = pow ($1, $3); @}
2052 | '(' exp ')' @{ $$ = $2; @}
2053@end group
2054@end example
2055
2056This code shows how to reach locations inside of semantic actions, by
2057using the pseudo-variables @code{@@@var{n}} for rule components, and the
2058pseudo-variable @code{@@$} for groupings.
2059
9edcd895
AD
2060We don't need to assign a value to @code{@@$}: the output parser does it
2061automatically. By default, before executing the C code of each action,
2062@code{@@$} is set to range from the beginning of @code{@@1} to the end
2063of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2064can be redefined (@pxref{Location Default Action, , Default Action for
2065Locations}), and for very specific rules, @code{@@$} can be computed by
2066hand.
342b8b6e
AD
2067
2068@node Ltcalc Lexer
2069@subsection The @code{ltcalc} Lexical Analyzer.
2070
9edcd895 2071Until now, we relied on Bison's defaults to enable location
72d2299c 2072tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2073able to feed the parser with the token locations, as it already does for
2074semantic values.
342b8b6e 2075
9edcd895
AD
2076To this end, we must take into account every single character of the
2077input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2078
2079@example
2080@group
2081int
2082yylex (void)
2083@{
2084 int c;
18b519c0 2085@end group
342b8b6e 2086
18b519c0 2087@group
72d2299c 2088 /* Skip white space. */
342b8b6e
AD
2089 while ((c = getchar ()) == ' ' || c == '\t')
2090 ++yylloc.last_column;
18b519c0 2091@end group
342b8b6e 2092
18b519c0 2093@group
72d2299c 2094 /* Step. */
342b8b6e
AD
2095 yylloc.first_line = yylloc.last_line;
2096 yylloc.first_column = yylloc.last_column;
2097@end group
2098
2099@group
72d2299c 2100 /* Process numbers. */
342b8b6e
AD
2101 if (isdigit (c))
2102 @{
2103 yylval = c - '0';
2104 ++yylloc.last_column;
2105 while (isdigit (c = getchar ()))
2106 @{
2107 ++yylloc.last_column;
2108 yylval = yylval * 10 + c - '0';
2109 @}
2110 ungetc (c, stdin);
2111 return NUM;
2112 @}
2113@end group
2114
72d2299c 2115 /* Return end-of-input. */
342b8b6e
AD
2116 if (c == EOF)
2117 return 0;
2118
72d2299c 2119 /* Return a single char, and update location. */
342b8b6e
AD
2120 if (c == '\n')
2121 @{
2122 ++yylloc.last_line;
2123 yylloc.last_column = 0;
2124 @}
2125 else
2126 ++yylloc.last_column;
2127 return c;
2128@}
2129@end example
2130
9edcd895
AD
2131Basically, the lexical analyzer performs the same processing as before:
2132it skips blanks and tabs, and reads numbers or single-character tokens.
2133In addition, it updates @code{yylloc}, the global variable (of type
2134@code{YYLTYPE}) containing the token's location.
342b8b6e 2135
9edcd895 2136Now, each time this function returns a token, the parser has its number
72d2299c 2137as well as its semantic value, and its location in the text. The last
9edcd895
AD
2138needed change is to initialize @code{yylloc}, for example in the
2139controlling function:
342b8b6e
AD
2140
2141@example
9edcd895 2142@group
342b8b6e
AD
2143int
2144main (void)
2145@{
2146 yylloc.first_line = yylloc.last_line = 1;
2147 yylloc.first_column = yylloc.last_column = 0;
2148 return yyparse ();
2149@}
9edcd895 2150@end group
342b8b6e
AD
2151@end example
2152
9edcd895
AD
2153Remember that computing locations is not a matter of syntax. Every
2154character must be associated to a location update, whether it is in
2155valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2156
2157@node Multi-function Calc
bfa74976
RS
2158@section Multi-Function Calculator: @code{mfcalc}
2159@cindex multi-function calculator
2160@cindex @code{mfcalc}
2161@cindex calculator, multi-function
2162
2163Now that the basics of Bison have been discussed, it is time to move on to
2164a more advanced problem. The above calculators provided only five
2165functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2166be nice to have a calculator that provides other mathematical functions such
2167as @code{sin}, @code{cos}, etc.
2168
2169It is easy to add new operators to the infix calculator as long as they are
2170only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2171back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2172adding a new operator. But we want something more flexible: built-in
2173functions whose syntax has this form:
2174
2175@example
2176@var{function_name} (@var{argument})
2177@end example
2178
2179@noindent
2180At the same time, we will add memory to the calculator, by allowing you
2181to create named variables, store values in them, and use them later.
2182Here is a sample session with the multi-function calculator:
2183
2184@example
9edcd895
AD
2185$ @kbd{mfcalc}
2186@kbd{pi = 3.141592653589}
bfa74976 21873.1415926536
9edcd895 2188@kbd{sin(pi)}
bfa74976 21890.0000000000
9edcd895 2190@kbd{alpha = beta1 = 2.3}
bfa74976 21912.3000000000
9edcd895 2192@kbd{alpha}
bfa74976 21932.3000000000
9edcd895 2194@kbd{ln(alpha)}
bfa74976 21950.8329091229
9edcd895 2196@kbd{exp(ln(beta1))}
bfa74976 21972.3000000000
9edcd895 2198$
bfa74976
RS
2199@end example
2200
2201Note that multiple assignment and nested function calls are permitted.
2202
2203@menu
2204* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2205* Rules: Mfcalc Rules. Grammar rules for the calculator.
2206* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2207@end menu
2208
342b8b6e 2209@node Mfcalc Decl
bfa74976
RS
2210@subsection Declarations for @code{mfcalc}
2211
2212Here are the C and Bison declarations for the multi-function calculator.
2213
2214@smallexample
18b519c0 2215@group
bfa74976 2216%@{
38a92d50
PE
2217 #include <math.h> /* For math functions, cos(), sin(), etc. */
2218 #include "calc.h" /* Contains definition of `symrec'. */
2219 int yylex (void);
2220 void yyerror (char const *);
bfa74976 2221%@}
18b519c0
AD
2222@end group
2223@group
bfa74976 2224%union @{
38a92d50
PE
2225 double val; /* For returning numbers. */
2226 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2227@}
18b519c0 2228@end group
38a92d50
PE
2229%token <val> NUM /* Simple double precision number. */
2230%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2231%type <val> exp
2232
18b519c0 2233@group
bfa74976
RS
2234%right '='
2235%left '-' '+'
2236%left '*' '/'
38a92d50
PE
2237%left NEG /* negation--unary minus */
2238%right '^' /* exponentiation */
18b519c0 2239@end group
38a92d50 2240%% /* The grammar follows. */
bfa74976
RS
2241@end smallexample
2242
2243The above grammar introduces only two new features of the Bison language.
2244These features allow semantic values to have various data types
2245(@pxref{Multiple Types, ,More Than One Value Type}).
2246
2247The @code{%union} declaration specifies the entire list of possible types;
2248this is instead of defining @code{YYSTYPE}. The allowable types are now
2249double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2250the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2251
2252Since values can now have various types, it is necessary to associate a
2253type with each grammar symbol whose semantic value is used. These symbols
2254are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2255declarations are augmented with information about their data type (placed
2256between angle brackets).
2257
704a47c4
AD
2258The Bison construct @code{%type} is used for declaring nonterminal
2259symbols, just as @code{%token} is used for declaring token types. We
2260have not used @code{%type} before because nonterminal symbols are
2261normally declared implicitly by the rules that define them. But
2262@code{exp} must be declared explicitly so we can specify its value type.
2263@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2264
342b8b6e 2265@node Mfcalc Rules
bfa74976
RS
2266@subsection Grammar Rules for @code{mfcalc}
2267
2268Here are the grammar rules for the multi-function calculator.
2269Most of them are copied directly from @code{calc}; three rules,
2270those which mention @code{VAR} or @code{FNCT}, are new.
2271
2272@smallexample
18b519c0 2273@group
bfa74976
RS
2274input: /* empty */
2275 | input line
2276;
18b519c0 2277@end group
bfa74976 2278
18b519c0 2279@group
bfa74976
RS
2280line:
2281 '\n'
2282 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2283 | error '\n' @{ yyerrok; @}
2284;
18b519c0 2285@end group
bfa74976 2286
18b519c0 2287@group
bfa74976
RS
2288exp: NUM @{ $$ = $1; @}
2289 | VAR @{ $$ = $1->value.var; @}
2290 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2291 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2292 | exp '+' exp @{ $$ = $1 + $3; @}
2293 | exp '-' exp @{ $$ = $1 - $3; @}
2294 | exp '*' exp @{ $$ = $1 * $3; @}
2295 | exp '/' exp @{ $$ = $1 / $3; @}
2296 | '-' exp %prec NEG @{ $$ = -$2; @}
2297 | exp '^' exp @{ $$ = pow ($1, $3); @}
2298 | '(' exp ')' @{ $$ = $2; @}
2299;
18b519c0 2300@end group
38a92d50 2301/* End of grammar. */
bfa74976
RS
2302%%
2303@end smallexample
2304
342b8b6e 2305@node Mfcalc Symtab
bfa74976
RS
2306@subsection The @code{mfcalc} Symbol Table
2307@cindex symbol table example
2308
2309The multi-function calculator requires a symbol table to keep track of the
2310names and meanings of variables and functions. This doesn't affect the
2311grammar rules (except for the actions) or the Bison declarations, but it
2312requires some additional C functions for support.
2313
2314The symbol table itself consists of a linked list of records. Its
2315definition, which is kept in the header @file{calc.h}, is as follows. It
2316provides for either functions or variables to be placed in the table.
2317
2318@smallexample
2319@group
38a92d50 2320/* Function type. */
32dfccf8 2321typedef double (*func_t) (double);
72f889cc 2322@end group
32dfccf8 2323
72f889cc 2324@group
38a92d50 2325/* Data type for links in the chain of symbols. */
bfa74976
RS
2326struct symrec
2327@{
38a92d50 2328 char *name; /* name of symbol */
bfa74976 2329 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2330 union
2331 @{
38a92d50
PE
2332 double var; /* value of a VAR */
2333 func_t fnctptr; /* value of a FNCT */
bfa74976 2334 @} value;
38a92d50 2335 struct symrec *next; /* link field */
bfa74976
RS
2336@};
2337@end group
2338
2339@group
2340typedef struct symrec symrec;
2341
38a92d50 2342/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2343extern symrec *sym_table;
2344
a730d142 2345symrec *putsym (char const *, int);
38a92d50 2346symrec *getsym (char const *);
bfa74976
RS
2347@end group
2348@end smallexample
2349
2350The new version of @code{main} includes a call to @code{init_table}, a
2351function that initializes the symbol table. Here it is, and
2352@code{init_table} as well:
2353
2354@smallexample
bfa74976
RS
2355#include <stdio.h>
2356
18b519c0 2357@group
38a92d50 2358/* Called by yyparse on error. */
13863333 2359void
38a92d50 2360yyerror (char const *s)
bfa74976
RS
2361@{
2362 printf ("%s\n", s);
2363@}
18b519c0 2364@end group
bfa74976 2365
18b519c0 2366@group
bfa74976
RS
2367struct init
2368@{
38a92d50
PE
2369 char const *fname;
2370 double (*fnct) (double);
bfa74976
RS
2371@};
2372@end group
2373
2374@group
38a92d50 2375struct init const arith_fncts[] =
13863333 2376@{
32dfccf8
AD
2377 "sin", sin,
2378 "cos", cos,
13863333 2379 "atan", atan,
32dfccf8
AD
2380 "ln", log,
2381 "exp", exp,
13863333
AD
2382 "sqrt", sqrt,
2383 0, 0
2384@};
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976 2388/* The symbol table: a chain of `struct symrec'. */
38a92d50 2389symrec *sym_table;
bfa74976
RS
2390@end group
2391
2392@group
72d2299c 2393/* Put arithmetic functions in table. */
13863333
AD
2394void
2395init_table (void)
bfa74976
RS
2396@{
2397 int i;
2398 symrec *ptr;
2399 for (i = 0; arith_fncts[i].fname != 0; i++)
2400 @{
2401 ptr = putsym (arith_fncts[i].fname, FNCT);
2402 ptr->value.fnctptr = arith_fncts[i].fnct;
2403 @}
2404@}
2405@end group
38a92d50
PE
2406
2407@group
2408int
2409main (void)
2410@{
2411 init_table ();
2412 return yyparse ();
2413@}
2414@end group
bfa74976
RS
2415@end smallexample
2416
2417By simply editing the initialization list and adding the necessary include
2418files, you can add additional functions to the calculator.
2419
2420Two important functions allow look-up and installation of symbols in the
2421symbol table. The function @code{putsym} is passed a name and the type
2422(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2423linked to the front of the list, and a pointer to the object is returned.
2424The function @code{getsym} is passed the name of the symbol to look up. If
2425found, a pointer to that symbol is returned; otherwise zero is returned.
2426
2427@smallexample
2428symrec *
38a92d50 2429putsym (char const *sym_name, int sym_type)
bfa74976
RS
2430@{
2431 symrec *ptr;
2432 ptr = (symrec *) malloc (sizeof (symrec));
2433 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2434 strcpy (ptr->name,sym_name);
2435 ptr->type = sym_type;
72d2299c 2436 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2437 ptr->next = (struct symrec *)sym_table;
2438 sym_table = ptr;
2439 return ptr;
2440@}
2441
2442symrec *
38a92d50 2443getsym (char const *sym_name)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 for (ptr = sym_table; ptr != (symrec *) 0;
2447 ptr = (symrec *)ptr->next)
2448 if (strcmp (ptr->name,sym_name) == 0)
2449 return ptr;
2450 return 0;
2451@}
2452@end smallexample
2453
2454The function @code{yylex} must now recognize variables, numeric values, and
2455the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2456characters with a leading letter are recognized as either variables or
bfa74976
RS
2457functions depending on what the symbol table says about them.
2458
2459The string is passed to @code{getsym} for look up in the symbol table. If
2460the name appears in the table, a pointer to its location and its type
2461(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2462already in the table, then it is installed as a @code{VAR} using
2463@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2464returned to @code{yyparse}.
bfa74976
RS
2465
2466No change is needed in the handling of numeric values and arithmetic
2467operators in @code{yylex}.
2468
2469@smallexample
2470@group
2471#include <ctype.h>
18b519c0 2472@end group
13863333 2473
18b519c0 2474@group
13863333
AD
2475int
2476yylex (void)
bfa74976
RS
2477@{
2478 int c;
2479
72d2299c 2480 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2481 while ((c = getchar ()) == ' ' || c == '\t');
2482
2483 if (c == EOF)
2484 return 0;
2485@end group
2486
2487@group
2488 /* Char starts a number => parse the number. */
2489 if (c == '.' || isdigit (c))
2490 @{
2491 ungetc (c, stdin);
2492 scanf ("%lf", &yylval.val);
2493 return NUM;
2494 @}
2495@end group
2496
2497@group
2498 /* Char starts an identifier => read the name. */
2499 if (isalpha (c))
2500 @{
2501 symrec *s;
2502 static char *symbuf = 0;
2503 static int length = 0;
2504 int i;
2505@end group
2506
2507@group
2508 /* Initially make the buffer long enough
2509 for a 40-character symbol name. */
2510 if (length == 0)
2511 length = 40, symbuf = (char *)malloc (length + 1);
2512
2513 i = 0;
2514 do
2515@end group
2516@group
2517 @{
2518 /* If buffer is full, make it bigger. */
2519 if (i == length)
2520 @{
2521 length *= 2;
18b519c0 2522 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2523 @}
2524 /* Add this character to the buffer. */
2525 symbuf[i++] = c;
2526 /* Get another character. */
2527 c = getchar ();
2528 @}
2529@end group
2530@group
72d2299c 2531 while (isalnum (c));
bfa74976
RS
2532
2533 ungetc (c, stdin);
2534 symbuf[i] = '\0';
2535@end group
2536
2537@group
2538 s = getsym (symbuf);
2539 if (s == 0)
2540 s = putsym (symbuf, VAR);
2541 yylval.tptr = s;
2542 return s->type;
2543 @}
2544
2545 /* Any other character is a token by itself. */
2546 return c;
2547@}
2548@end group
2549@end smallexample
2550
72d2299c 2551This program is both powerful and flexible. You may easily add new
704a47c4
AD
2552functions, and it is a simple job to modify this code to install
2553predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2554
342b8b6e 2555@node Exercises
bfa74976
RS
2556@section Exercises
2557@cindex exercises
2558
2559@enumerate
2560@item
2561Add some new functions from @file{math.h} to the initialization list.
2562
2563@item
2564Add another array that contains constants and their values. Then
2565modify @code{init_table} to add these constants to the symbol table.
2566It will be easiest to give the constants type @code{VAR}.
2567
2568@item
2569Make the program report an error if the user refers to an
2570uninitialized variable in any way except to store a value in it.
2571@end enumerate
2572
342b8b6e 2573@node Grammar File
bfa74976
RS
2574@chapter Bison Grammar Files
2575
2576Bison takes as input a context-free grammar specification and produces a
2577C-language function that recognizes correct instances of the grammar.
2578
2579The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2580@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2581
2582@menu
2583* Grammar Outline:: Overall layout of the grammar file.
2584* Symbols:: Terminal and nonterminal symbols.
2585* Rules:: How to write grammar rules.
2586* Recursion:: Writing recursive rules.
2587* Semantics:: Semantic values and actions.
847bf1f5 2588* Locations:: Locations and actions.
bfa74976
RS
2589* Declarations:: All kinds of Bison declarations are described here.
2590* Multiple Parsers:: Putting more than one Bison parser in one program.
2591@end menu
2592
342b8b6e 2593@node Grammar Outline
bfa74976
RS
2594@section Outline of a Bison Grammar
2595
2596A Bison grammar file has four main sections, shown here with the
2597appropriate delimiters:
2598
2599@example
2600%@{
38a92d50 2601 @var{Prologue}
bfa74976
RS
2602%@}
2603
2604@var{Bison declarations}
2605
2606%%
2607@var{Grammar rules}
2608%%
2609
75f5aaea 2610@var{Epilogue}
bfa74976
RS
2611@end example
2612
2613Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2614As a @acronym{GNU} extension, @samp{//} introduces a comment that
2615continues until end of line.
bfa74976
RS
2616
2617@menu
75f5aaea 2618* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2619* Bison Declarations:: Syntax and usage of the Bison declarations section.
2620* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2621* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2622@end menu
2623
38a92d50 2624@node Prologue
75f5aaea
MA
2625@subsection The prologue
2626@cindex declarations section
2627@cindex Prologue
2628@cindex declarations
bfa74976 2629
f8e1c9e5
AD
2630The @var{Prologue} section contains macro definitions and declarations
2631of functions and variables that are used in the actions in the grammar
2632rules. These are copied to the beginning of the parser file so that
2633they precede the definition of @code{yyparse}. You can use
2634@samp{#include} to get the declarations from a header file. If you
2635don't need any C declarations, you may omit the @samp{%@{} and
2636@samp{%@}} delimiters that bracket this section.
bfa74976 2637
9c437126 2638The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2639of @samp{%@}} that is outside a comment, a string literal, or a
2640character constant.
2641
c732d2c6
AD
2642You may have more than one @var{Prologue} section, intermixed with the
2643@var{Bison declarations}. This allows you to have C and Bison
2644declarations that refer to each other. For example, the @code{%union}
2645declaration may use types defined in a header file, and you may wish to
2646prototype functions that take arguments of type @code{YYSTYPE}. This
2647can be done with two @var{Prologue} blocks, one before and one after the
2648@code{%union} declaration.
2649
2650@smallexample
2651%@{
aef3da86 2652 #define _GNU_SOURCE
38a92d50
PE
2653 #include <stdio.h>
2654 #include "ptypes.h"
c732d2c6
AD
2655%@}
2656
2657%union @{
779e7ceb 2658 long int n;
c732d2c6
AD
2659 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2660@}
2661
2662%@{
38a92d50
PE
2663 static void print_token_value (FILE *, int, YYSTYPE);
2664 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2665%@}
2666
2667@dots{}
2668@end smallexample
2669
aef3da86
PE
2670When in doubt, it is usually safer to put prologue code before all
2671Bison declarations, rather than after. For example, any definitions
2672of feature test macros like @code{_GNU_SOURCE} or
2673@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2674feature test macros can affect the behavior of Bison-generated
2675@code{#include} directives.
2676
34f98f46
JD
2677@findex %before-header
2678@findex %start-header
2679@findex %after-header
9bc0dd67
JD
2680If you've instructed Bison to generate a header file (@pxref{Table of Symbols,
2681,%defines}), you probably want @code{#include "ptypes.h"} to appear
2682in that header file as well.
34f98f46
JD
2683In that case, use @code{%before-header}, @code{%start-header}, and
2684@code{%after-header} instead of @var{Prologue} sections
2685(@pxref{Table of Symbols, ,%start-header}):
9bc0dd67
JD
2686
2687@smallexample
34f98f46 2688%before-header @{
9bc0dd67 2689 #include <stdio.h>
34f98f46 2690@}
9bc0dd67 2691
34f98f46 2692%start-header @{
9bc0dd67
JD
2693 #include "ptypes.h"
2694@}
2695%union @{
2696 long int n;
2697 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2698@}
2699
34f98f46 2700%after-header @{
9bc0dd67
JD
2701 static void print_token_value (FILE *, int, YYSTYPE);
2702 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2703@}
9bc0dd67
JD
2704
2705@dots{}
2706@end smallexample
2707
342b8b6e 2708@node Bison Declarations
bfa74976
RS
2709@subsection The Bison Declarations Section
2710@cindex Bison declarations (introduction)
2711@cindex declarations, Bison (introduction)
2712
2713The @var{Bison declarations} section contains declarations that define
2714terminal and nonterminal symbols, specify precedence, and so on.
2715In some simple grammars you may not need any declarations.
2716@xref{Declarations, ,Bison Declarations}.
2717
342b8b6e 2718@node Grammar Rules
bfa74976
RS
2719@subsection The Grammar Rules Section
2720@cindex grammar rules section
2721@cindex rules section for grammar
2722
2723The @dfn{grammar rules} section contains one or more Bison grammar
2724rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2725
2726There must always be at least one grammar rule, and the first
2727@samp{%%} (which precedes the grammar rules) may never be omitted even
2728if it is the first thing in the file.
2729
38a92d50 2730@node Epilogue
75f5aaea 2731@subsection The epilogue
bfa74976 2732@cindex additional C code section
75f5aaea 2733@cindex epilogue
bfa74976
RS
2734@cindex C code, section for additional
2735
08e49d20
PE
2736The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2737the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2738place to put anything that you want to have in the parser file but which need
2739not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2740definitions of @code{yylex} and @code{yyerror} often go here. Because
2741C requires functions to be declared before being used, you often need
2742to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2743even if you define them in the Epilogue.
75f5aaea 2744@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2745
2746If the last section is empty, you may omit the @samp{%%} that separates it
2747from the grammar rules.
2748
f8e1c9e5
AD
2749The Bison parser itself contains many macros and identifiers whose names
2750start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2751any such names (except those documented in this manual) in the epilogue
2752of the grammar file.
bfa74976 2753
342b8b6e 2754@node Symbols
bfa74976
RS
2755@section Symbols, Terminal and Nonterminal
2756@cindex nonterminal symbol
2757@cindex terminal symbol
2758@cindex token type
2759@cindex symbol
2760
2761@dfn{Symbols} in Bison grammars represent the grammatical classifications
2762of the language.
2763
2764A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2765class of syntactically equivalent tokens. You use the symbol in grammar
2766rules to mean that a token in that class is allowed. The symbol is
2767represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2768function returns a token type code to indicate what kind of token has
2769been read. You don't need to know what the code value is; you can use
2770the symbol to stand for it.
bfa74976 2771
f8e1c9e5
AD
2772A @dfn{nonterminal symbol} stands for a class of syntactically
2773equivalent groupings. The symbol name is used in writing grammar rules.
2774By convention, it should be all lower case.
bfa74976
RS
2775
2776Symbol names can contain letters, digits (not at the beginning),
2777underscores and periods. Periods make sense only in nonterminals.
2778
931c7513 2779There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2780
2781@itemize @bullet
2782@item
2783A @dfn{named token type} is written with an identifier, like an
c827f760 2784identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2785such name must be defined with a Bison declaration such as
2786@code{%token}. @xref{Token Decl, ,Token Type Names}.
2787
2788@item
2789@cindex character token
2790@cindex literal token
2791@cindex single-character literal
931c7513
RS
2792A @dfn{character token type} (or @dfn{literal character token}) is
2793written in the grammar using the same syntax used in C for character
2794constants; for example, @code{'+'} is a character token type. A
2795character token type doesn't need to be declared unless you need to
2796specify its semantic value data type (@pxref{Value Type, ,Data Types of
2797Semantic Values}), associativity, or precedence (@pxref{Precedence,
2798,Operator Precedence}).
bfa74976
RS
2799
2800By convention, a character token type is used only to represent a
2801token that consists of that particular character. Thus, the token
2802type @code{'+'} is used to represent the character @samp{+} as a
2803token. Nothing enforces this convention, but if you depart from it,
2804your program will confuse other readers.
2805
2806All the usual escape sequences used in character literals in C can be
2807used in Bison as well, but you must not use the null character as a
72d2299c
PE
2808character literal because its numeric code, zero, signifies
2809end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2810for @code{yylex}}). Also, unlike standard C, trigraphs have no
2811special meaning in Bison character literals, nor is backslash-newline
2812allowed.
931c7513
RS
2813
2814@item
2815@cindex string token
2816@cindex literal string token
9ecbd125 2817@cindex multicharacter literal
931c7513
RS
2818A @dfn{literal string token} is written like a C string constant; for
2819example, @code{"<="} is a literal string token. A literal string token
2820doesn't need to be declared unless you need to specify its semantic
14ded682 2821value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2822(@pxref{Precedence}).
2823
2824You can associate the literal string token with a symbolic name as an
2825alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2826Declarations}). If you don't do that, the lexical analyzer has to
2827retrieve the token number for the literal string token from the
2828@code{yytname} table (@pxref{Calling Convention}).
2829
c827f760 2830@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2831
2832By convention, a literal string token is used only to represent a token
2833that consists of that particular string. Thus, you should use the token
2834type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2835does not enforce this convention, but if you depart from it, people who
931c7513
RS
2836read your program will be confused.
2837
2838All the escape sequences used in string literals in C can be used in
92ac3705
PE
2839Bison as well, except that you must not use a null character within a
2840string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2841meaning in Bison string literals, nor is backslash-newline allowed. A
2842literal string token must contain two or more characters; for a token
2843containing just one character, use a character token (see above).
bfa74976
RS
2844@end itemize
2845
2846How you choose to write a terminal symbol has no effect on its
2847grammatical meaning. That depends only on where it appears in rules and
2848on when the parser function returns that symbol.
2849
72d2299c
PE
2850The value returned by @code{yylex} is always one of the terminal
2851symbols, except that a zero or negative value signifies end-of-input.
2852Whichever way you write the token type in the grammar rules, you write
2853it the same way in the definition of @code{yylex}. The numeric code
2854for a character token type is simply the positive numeric code of the
2855character, so @code{yylex} can use the identical value to generate the
2856requisite code, though you may need to convert it to @code{unsigned
2857char} to avoid sign-extension on hosts where @code{char} is signed.
2858Each named token type becomes a C macro in
bfa74976 2859the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2860(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2861@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2862
2863If @code{yylex} is defined in a separate file, you need to arrange for the
2864token-type macro definitions to be available there. Use the @samp{-d}
2865option when you run Bison, so that it will write these macro definitions
2866into a separate header file @file{@var{name}.tab.h} which you can include
2867in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2868
72d2299c 2869If you want to write a grammar that is portable to any Standard C
9d9b8b70 2870host, you must use only nonnull character tokens taken from the basic
c827f760 2871execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2872digits, the 52 lower- and upper-case English letters, and the
2873characters in the following C-language string:
2874
2875@example
2876"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2877@end example
2878
f8e1c9e5
AD
2879The @code{yylex} function and Bison must use a consistent character set
2880and encoding for character tokens. For example, if you run Bison in an
2881@acronym{ASCII} environment, but then compile and run the resulting
2882program in an environment that uses an incompatible character set like
2883@acronym{EBCDIC}, the resulting program may not work because the tables
2884generated by Bison will assume @acronym{ASCII} numeric values for
2885character tokens. It is standard practice for software distributions to
2886contain C source files that were generated by Bison in an
2887@acronym{ASCII} environment, so installers on platforms that are
2888incompatible with @acronym{ASCII} must rebuild those files before
2889compiling them.
e966383b 2890
bfa74976
RS
2891The symbol @code{error} is a terminal symbol reserved for error recovery
2892(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2893In particular, @code{yylex} should never return this value. The default
2894value of the error token is 256, unless you explicitly assigned 256 to
2895one of your tokens with a @code{%token} declaration.
bfa74976 2896
342b8b6e 2897@node Rules
bfa74976
RS
2898@section Syntax of Grammar Rules
2899@cindex rule syntax
2900@cindex grammar rule syntax
2901@cindex syntax of grammar rules
2902
2903A Bison grammar rule has the following general form:
2904
2905@example
e425e872 2906@group
bfa74976
RS
2907@var{result}: @var{components}@dots{}
2908 ;
e425e872 2909@end group
bfa74976
RS
2910@end example
2911
2912@noindent
9ecbd125 2913where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2914and @var{components} are various terminal and nonterminal symbols that
13863333 2915are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2916
2917For example,
2918
2919@example
2920@group
2921exp: exp '+' exp
2922 ;
2923@end group
2924@end example
2925
2926@noindent
2927says that two groupings of type @code{exp}, with a @samp{+} token in between,
2928can be combined into a larger grouping of type @code{exp}.
2929
72d2299c
PE
2930White space in rules is significant only to separate symbols. You can add
2931extra white space as you wish.
bfa74976
RS
2932
2933Scattered among the components can be @var{actions} that determine
2934the semantics of the rule. An action looks like this:
2935
2936@example
2937@{@var{C statements}@}
2938@end example
2939
2940@noindent
287c78f6
PE
2941@cindex braced code
2942This is an example of @dfn{braced code}, that is, C code surrounded by
2943braces, much like a compound statement in C@. Braced code can contain
2944any sequence of C tokens, so long as its braces are balanced. Bison
2945does not check the braced code for correctness directly; it merely
2946copies the code to the output file, where the C compiler can check it.
2947
2948Within braced code, the balanced-brace count is not affected by braces
2949within comments, string literals, or character constants, but it is
2950affected by the C digraphs @samp{<%} and @samp{%>} that represent
2951braces. At the top level braced code must be terminated by @samp{@}}
2952and not by a digraph. Bison does not look for trigraphs, so if braced
2953code uses trigraphs you should ensure that they do not affect the
2954nesting of braces or the boundaries of comments, string literals, or
2955character constants.
2956
bfa74976
RS
2957Usually there is only one action and it follows the components.
2958@xref{Actions}.
2959
2960@findex |
2961Multiple rules for the same @var{result} can be written separately or can
2962be joined with the vertical-bar character @samp{|} as follows:
2963
bfa74976
RS
2964@example
2965@group
2966@var{result}: @var{rule1-components}@dots{}
2967 | @var{rule2-components}@dots{}
2968 @dots{}
2969 ;
2970@end group
2971@end example
bfa74976
RS
2972
2973@noindent
2974They are still considered distinct rules even when joined in this way.
2975
2976If @var{components} in a rule is empty, it means that @var{result} can
2977match the empty string. For example, here is how to define a
2978comma-separated sequence of zero or more @code{exp} groupings:
2979
2980@example
2981@group
2982expseq: /* empty */
2983 | expseq1
2984 ;
2985@end group
2986
2987@group
2988expseq1: exp
2989 | expseq1 ',' exp
2990 ;
2991@end group
2992@end example
2993
2994@noindent
2995It is customary to write a comment @samp{/* empty */} in each rule
2996with no components.
2997
342b8b6e 2998@node Recursion
bfa74976
RS
2999@section Recursive Rules
3000@cindex recursive rule
3001
f8e1c9e5
AD
3002A rule is called @dfn{recursive} when its @var{result} nonterminal
3003appears also on its right hand side. Nearly all Bison grammars need to
3004use recursion, because that is the only way to define a sequence of any
3005number of a particular thing. Consider this recursive definition of a
9ecbd125 3006comma-separated sequence of one or more expressions:
bfa74976
RS
3007
3008@example
3009@group
3010expseq1: exp
3011 | expseq1 ',' exp
3012 ;
3013@end group
3014@end example
3015
3016@cindex left recursion
3017@cindex right recursion
3018@noindent
3019Since the recursive use of @code{expseq1} is the leftmost symbol in the
3020right hand side, we call this @dfn{left recursion}. By contrast, here
3021the same construct is defined using @dfn{right recursion}:
3022
3023@example
3024@group
3025expseq1: exp
3026 | exp ',' expseq1
3027 ;
3028@end group
3029@end example
3030
3031@noindent
ec3bc396
AD
3032Any kind of sequence can be defined using either left recursion or right
3033recursion, but you should always use left recursion, because it can
3034parse a sequence of any number of elements with bounded stack space.
3035Right recursion uses up space on the Bison stack in proportion to the
3036number of elements in the sequence, because all the elements must be
3037shifted onto the stack before the rule can be applied even once.
3038@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3039of this.
bfa74976
RS
3040
3041@cindex mutual recursion
3042@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3043rule does not appear directly on its right hand side, but does appear
3044in rules for other nonterminals which do appear on its right hand
13863333 3045side.
bfa74976
RS
3046
3047For example:
3048
3049@example
3050@group
3051expr: primary
3052 | primary '+' primary
3053 ;
3054@end group
3055
3056@group
3057primary: constant
3058 | '(' expr ')'
3059 ;
3060@end group
3061@end example
3062
3063@noindent
3064defines two mutually-recursive nonterminals, since each refers to the
3065other.
3066
342b8b6e 3067@node Semantics
bfa74976
RS
3068@section Defining Language Semantics
3069@cindex defining language semantics
13863333 3070@cindex language semantics, defining
bfa74976
RS
3071
3072The grammar rules for a language determine only the syntax. The semantics
3073are determined by the semantic values associated with various tokens and
3074groupings, and by the actions taken when various groupings are recognized.
3075
3076For example, the calculator calculates properly because the value
3077associated with each expression is the proper number; it adds properly
3078because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3079the numbers associated with @var{x} and @var{y}.
3080
3081@menu
3082* Value Type:: Specifying one data type for all semantic values.
3083* Multiple Types:: Specifying several alternative data types.
3084* Actions:: An action is the semantic definition of a grammar rule.
3085* Action Types:: Specifying data types for actions to operate on.
3086* Mid-Rule Actions:: Most actions go at the end of a rule.
3087 This says when, why and how to use the exceptional
3088 action in the middle of a rule.
3089@end menu
3090
342b8b6e 3091@node Value Type
bfa74976
RS
3092@subsection Data Types of Semantic Values
3093@cindex semantic value type
3094@cindex value type, semantic
3095@cindex data types of semantic values
3096@cindex default data type
3097
3098In a simple program it may be sufficient to use the same data type for
3099the semantic values of all language constructs. This was true in the
c827f760 3100@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3101Notation Calculator}).
bfa74976 3102
ddc8ede1
PE
3103Bison normally uses the type @code{int} for semantic values if your
3104program uses the same data type for all language constructs. To
bfa74976
RS
3105specify some other type, define @code{YYSTYPE} as a macro, like this:
3106
3107@example
3108#define YYSTYPE double
3109@end example
3110
3111@noindent
50cce58e
PE
3112@code{YYSTYPE}'s replacement list should be a type name
3113that does not contain parentheses or square brackets.
342b8b6e 3114This macro definition must go in the prologue of the grammar file
75f5aaea 3115(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3116
342b8b6e 3117@node Multiple Types
bfa74976
RS
3118@subsection More Than One Value Type
3119
3120In most programs, you will need different data types for different kinds
3121of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3122@code{int} or @code{long int}, while a string constant needs type
3123@code{char *}, and an identifier might need a pointer to an entry in the
3124symbol table.
bfa74976
RS
3125
3126To use more than one data type for semantic values in one parser, Bison
3127requires you to do two things:
3128
3129@itemize @bullet
3130@item
ddc8ede1 3131Specify the entire collection of possible data types, either by using the
704a47c4 3132@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3133Value Types}), or by using a @code{typedef} or a @code{#define} to
3134define @code{YYSTYPE} to be a union type whose member names are
3135the type tags.
bfa74976
RS
3136
3137@item
14ded682
AD
3138Choose one of those types for each symbol (terminal or nonterminal) for
3139which semantic values are used. This is done for tokens with the
3140@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3141and for groupings with the @code{%type} Bison declaration (@pxref{Type
3142Decl, ,Nonterminal Symbols}).
bfa74976
RS
3143@end itemize
3144
342b8b6e 3145@node Actions
bfa74976
RS
3146@subsection Actions
3147@cindex action
3148@vindex $$
3149@vindex $@var{n}
3150
3151An action accompanies a syntactic rule and contains C code to be executed
3152each time an instance of that rule is recognized. The task of most actions
3153is to compute a semantic value for the grouping built by the rule from the
3154semantic values associated with tokens or smaller groupings.
3155
287c78f6
PE
3156An action consists of braced code containing C statements, and can be
3157placed at any position in the rule;
704a47c4
AD
3158it is executed at that position. Most rules have just one action at the
3159end of the rule, following all the components. Actions in the middle of
3160a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3161Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3162
3163The C code in an action can refer to the semantic values of the components
3164matched by the rule with the construct @code{$@var{n}}, which stands for
3165the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3166being constructed is @code{$$}. Bison translates both of these
3167constructs into expressions of the appropriate type when it copies the
3168actions into the parser file. @code{$$} is translated to a modifiable
3169lvalue, so it can be assigned to.
bfa74976
RS
3170
3171Here is a typical example:
3172
3173@example
3174@group
3175exp: @dots{}
3176 | exp '+' exp
3177 @{ $$ = $1 + $3; @}
3178@end group
3179@end example
3180
3181@noindent
3182This rule constructs an @code{exp} from two smaller @code{exp} groupings
3183connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3184refer to the semantic values of the two component @code{exp} groupings,
3185which are the first and third symbols on the right hand side of the rule.
3186The sum is stored into @code{$$} so that it becomes the semantic value of
3187the addition-expression just recognized by the rule. If there were a
3188useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3189referred to as @code{$2}.
bfa74976 3190
3ded9a63
AD
3191Note that the vertical-bar character @samp{|} is really a rule
3192separator, and actions are attached to a single rule. This is a
3193difference with tools like Flex, for which @samp{|} stands for either
3194``or'', or ``the same action as that of the next rule''. In the
3195following example, the action is triggered only when @samp{b} is found:
3196
3197@example
3198@group
3199a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3200@end group
3201@end example
3202
bfa74976
RS
3203@cindex default action
3204If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3205@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3206becomes the value of the whole rule. Of course, the default action is
3207valid only if the two data types match. There is no meaningful default
3208action for an empty rule; every empty rule must have an explicit action
3209unless the rule's value does not matter.
bfa74976
RS
3210
3211@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3212to tokens and groupings on the stack @emph{before} those that match the
3213current rule. This is a very risky practice, and to use it reliably
3214you must be certain of the context in which the rule is applied. Here
3215is a case in which you can use this reliably:
3216
3217@example
3218@group
3219foo: expr bar '+' expr @{ @dots{} @}
3220 | expr bar '-' expr @{ @dots{} @}
3221 ;
3222@end group
3223
3224@group
3225bar: /* empty */
3226 @{ previous_expr = $0; @}
3227 ;
3228@end group
3229@end example
3230
3231As long as @code{bar} is used only in the fashion shown here, @code{$0}
3232always refers to the @code{expr} which precedes @code{bar} in the
3233definition of @code{foo}.
3234
32c29292 3235@vindex yylval
742e4900 3236It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3237any, from a semantic action.
3238This semantic value is stored in @code{yylval}.
3239@xref{Action Features, ,Special Features for Use in Actions}.
3240
342b8b6e 3241@node Action Types
bfa74976
RS
3242@subsection Data Types of Values in Actions
3243@cindex action data types
3244@cindex data types in actions
3245
3246If you have chosen a single data type for semantic values, the @code{$$}
3247and @code{$@var{n}} constructs always have that data type.
3248
3249If you have used @code{%union} to specify a variety of data types, then you
3250must declare a choice among these types for each terminal or nonterminal
3251symbol that can have a semantic value. Then each time you use @code{$$} or
3252@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3253in the rule. In this example,
bfa74976
RS
3254
3255@example
3256@group
3257exp: @dots{}
3258 | exp '+' exp
3259 @{ $$ = $1 + $3; @}
3260@end group
3261@end example
3262
3263@noindent
3264@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3265have the data type declared for the nonterminal symbol @code{exp}. If
3266@code{$2} were used, it would have the data type declared for the
e0c471a9 3267terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3268
3269Alternatively, you can specify the data type when you refer to the value,
3270by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3271reference. For example, if you have defined types as shown here:
3272
3273@example
3274@group
3275%union @{
3276 int itype;
3277 double dtype;
3278@}
3279@end group
3280@end example
3281
3282@noindent
3283then you can write @code{$<itype>1} to refer to the first subunit of the
3284rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3285
342b8b6e 3286@node Mid-Rule Actions
bfa74976
RS
3287@subsection Actions in Mid-Rule
3288@cindex actions in mid-rule
3289@cindex mid-rule actions
3290
3291Occasionally it is useful to put an action in the middle of a rule.
3292These actions are written just like usual end-of-rule actions, but they
3293are executed before the parser even recognizes the following components.
3294
3295A mid-rule action may refer to the components preceding it using
3296@code{$@var{n}}, but it may not refer to subsequent components because
3297it is run before they are parsed.
3298
3299The mid-rule action itself counts as one of the components of the rule.
3300This makes a difference when there is another action later in the same rule
3301(and usually there is another at the end): you have to count the actions
3302along with the symbols when working out which number @var{n} to use in
3303@code{$@var{n}}.
3304
3305The mid-rule action can also have a semantic value. The action can set
3306its value with an assignment to @code{$$}, and actions later in the rule
3307can refer to the value using @code{$@var{n}}. Since there is no symbol
3308to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3309in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3310specify a data type each time you refer to this value.
bfa74976
RS
3311
3312There is no way to set the value of the entire rule with a mid-rule
3313action, because assignments to @code{$$} do not have that effect. The
3314only way to set the value for the entire rule is with an ordinary action
3315at the end of the rule.
3316
3317Here is an example from a hypothetical compiler, handling a @code{let}
3318statement that looks like @samp{let (@var{variable}) @var{statement}} and
3319serves to create a variable named @var{variable} temporarily for the
3320duration of @var{statement}. To parse this construct, we must put
3321@var{variable} into the symbol table while @var{statement} is parsed, then
3322remove it afterward. Here is how it is done:
3323
3324@example
3325@group
3326stmt: LET '(' var ')'
3327 @{ $<context>$ = push_context ();
3328 declare_variable ($3); @}
3329 stmt @{ $$ = $6;
3330 pop_context ($<context>5); @}
3331@end group
3332@end example
3333
3334@noindent
3335As soon as @samp{let (@var{variable})} has been recognized, the first
3336action is run. It saves a copy of the current semantic context (the
3337list of accessible variables) as its semantic value, using alternative
3338@code{context} in the data-type union. Then it calls
3339@code{declare_variable} to add the new variable to that list. Once the
3340first action is finished, the embedded statement @code{stmt} can be
3341parsed. Note that the mid-rule action is component number 5, so the
3342@samp{stmt} is component number 6.
3343
3344After the embedded statement is parsed, its semantic value becomes the
3345value of the entire @code{let}-statement. Then the semantic value from the
3346earlier action is used to restore the prior list of variables. This
3347removes the temporary @code{let}-variable from the list so that it won't
3348appear to exist while the rest of the program is parsed.
3349
841a7737
JD
3350@findex %destructor
3351@cindex discarded symbols, mid-rule actions
3352@cindex error recovery, mid-rule actions
3353In the above example, if the parser initiates error recovery (@pxref{Error
3354Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3355it might discard the previous semantic context @code{$<context>5} without
3356restoring it.
3357Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3358Discarded Symbols}).
ec5479ce
JD
3359However, Bison currently provides no means to declare a destructor specific to
3360a particular mid-rule action's semantic value.
841a7737
JD
3361
3362One solution is to bury the mid-rule action inside a nonterminal symbol and to
3363declare a destructor for that symbol:
3364
3365@example
3366@group
3367%type <context> let
3368%destructor @{ pop_context ($$); @} let
3369
3370%%
3371
3372stmt: let stmt
3373 @{ $$ = $2;
3374 pop_context ($1); @}
3375 ;
3376
3377let: LET '(' var ')'
3378 @{ $$ = push_context ();
3379 declare_variable ($3); @}
3380 ;
3381
3382@end group
3383@end example
3384
3385@noindent
3386Note that the action is now at the end of its rule.
3387Any mid-rule action can be converted to an end-of-rule action in this way, and
3388this is what Bison actually does to implement mid-rule actions.
3389
bfa74976
RS
3390Taking action before a rule is completely recognized often leads to
3391conflicts since the parser must commit to a parse in order to execute the
3392action. For example, the following two rules, without mid-rule actions,
3393can coexist in a working parser because the parser can shift the open-brace
3394token and look at what follows before deciding whether there is a
3395declaration or not:
3396
3397@example
3398@group
3399compound: '@{' declarations statements '@}'
3400 | '@{' statements '@}'
3401 ;
3402@end group
3403@end example
3404
3405@noindent
3406But when we add a mid-rule action as follows, the rules become nonfunctional:
3407
3408@example
3409@group
3410compound: @{ prepare_for_local_variables (); @}
3411 '@{' declarations statements '@}'
3412@end group
3413@group
3414 | '@{' statements '@}'
3415 ;
3416@end group
3417@end example
3418
3419@noindent
3420Now the parser is forced to decide whether to run the mid-rule action
3421when it has read no farther than the open-brace. In other words, it
3422must commit to using one rule or the other, without sufficient
3423information to do it correctly. (The open-brace token is what is called
742e4900
JD
3424the @dfn{lookahead} token at this time, since the parser is still
3425deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3426
3427You might think that you could correct the problem by putting identical
3428actions into the two rules, like this:
3429
3430@example
3431@group
3432compound: @{ prepare_for_local_variables (); @}
3433 '@{' declarations statements '@}'
3434 | @{ prepare_for_local_variables (); @}
3435 '@{' statements '@}'
3436 ;
3437@end group
3438@end example
3439
3440@noindent
3441But this does not help, because Bison does not realize that the two actions
3442are identical. (Bison never tries to understand the C code in an action.)
3443
3444If the grammar is such that a declaration can be distinguished from a
3445statement by the first token (which is true in C), then one solution which
3446does work is to put the action after the open-brace, like this:
3447
3448@example
3449@group
3450compound: '@{' @{ prepare_for_local_variables (); @}
3451 declarations statements '@}'
3452 | '@{' statements '@}'
3453 ;
3454@end group
3455@end example
3456
3457@noindent
3458Now the first token of the following declaration or statement,
3459which would in any case tell Bison which rule to use, can still do so.
3460
3461Another solution is to bury the action inside a nonterminal symbol which
3462serves as a subroutine:
3463
3464@example
3465@group
3466subroutine: /* empty */
3467 @{ prepare_for_local_variables (); @}
3468 ;
3469
3470@end group
3471
3472@group
3473compound: subroutine
3474 '@{' declarations statements '@}'
3475 | subroutine
3476 '@{' statements '@}'
3477 ;
3478@end group
3479@end example
3480
3481@noindent
3482Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3483deciding which rule for @code{compound} it will eventually use.
bfa74976 3484
342b8b6e 3485@node Locations
847bf1f5
AD
3486@section Tracking Locations
3487@cindex location
95923bd6
AD
3488@cindex textual location
3489@cindex location, textual
847bf1f5
AD
3490
3491Though grammar rules and semantic actions are enough to write a fully
72d2299c 3492functional parser, it can be useful to process some additional information,
3e259915
MA
3493especially symbol locations.
3494
704a47c4
AD
3495The way locations are handled is defined by providing a data type, and
3496actions to take when rules are matched.
847bf1f5
AD
3497
3498@menu
3499* Location Type:: Specifying a data type for locations.
3500* Actions and Locations:: Using locations in actions.
3501* Location Default Action:: Defining a general way to compute locations.
3502@end menu
3503
342b8b6e 3504@node Location Type
847bf1f5
AD
3505@subsection Data Type of Locations
3506@cindex data type of locations
3507@cindex default location type
3508
3509Defining a data type for locations is much simpler than for semantic values,
3510since all tokens and groupings always use the same type.
3511
50cce58e
PE
3512You can specify the type of locations by defining a macro called
3513@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3514defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3515When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3516four members:
3517
3518@example
6273355b 3519typedef struct YYLTYPE
847bf1f5
AD
3520@{
3521 int first_line;
3522 int first_column;
3523 int last_line;
3524 int last_column;
6273355b 3525@} YYLTYPE;
847bf1f5
AD
3526@end example
3527
cd48d21d
AD
3528At the beginning of the parsing, Bison initializes all these fields to 1
3529for @code{yylloc}.
3530
342b8b6e 3531@node Actions and Locations
847bf1f5
AD
3532@subsection Actions and Locations
3533@cindex location actions
3534@cindex actions, location
3535@vindex @@$
3536@vindex @@@var{n}
3537
3538Actions are not only useful for defining language semantics, but also for
3539describing the behavior of the output parser with locations.
3540
3541The most obvious way for building locations of syntactic groupings is very
72d2299c 3542similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3543constructs can be used to access the locations of the elements being matched.
3544The location of the @var{n}th component of the right hand side is
3545@code{@@@var{n}}, while the location of the left hand side grouping is
3546@code{@@$}.
3547
3e259915 3548Here is a basic example using the default data type for locations:
847bf1f5
AD
3549
3550@example
3551@group
3552exp: @dots{}
3e259915 3553 | exp '/' exp
847bf1f5 3554 @{
3e259915
MA
3555 @@$.first_column = @@1.first_column;
3556 @@$.first_line = @@1.first_line;
847bf1f5
AD
3557 @@$.last_column = @@3.last_column;
3558 @@$.last_line = @@3.last_line;
3e259915
MA
3559 if ($3)
3560 $$ = $1 / $3;
3561 else
3562 @{
3563 $$ = 1;
4e03e201
AD
3564 fprintf (stderr,
3565 "Division by zero, l%d,c%d-l%d,c%d",
3566 @@3.first_line, @@3.first_column,
3567 @@3.last_line, @@3.last_column);
3e259915 3568 @}
847bf1f5
AD
3569 @}
3570@end group
3571@end example
3572
3e259915 3573As for semantic values, there is a default action for locations that is
72d2299c 3574run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3575beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3576last symbol.
3e259915 3577
72d2299c 3578With this default action, the location tracking can be fully automatic. The
3e259915
MA
3579example above simply rewrites this way:
3580
3581@example
3582@group
3583exp: @dots{}
3584 | exp '/' exp
3585 @{
3586 if ($3)
3587 $$ = $1 / $3;
3588 else
3589 @{
3590 $$ = 1;
4e03e201
AD
3591 fprintf (stderr,
3592 "Division by zero, l%d,c%d-l%d,c%d",
3593 @@3.first_line, @@3.first_column,
3594 @@3.last_line, @@3.last_column);
3e259915
MA
3595 @}
3596 @}
3597@end group
3598@end example
847bf1f5 3599
32c29292 3600@vindex yylloc
742e4900 3601It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3602from a semantic action.
3603This location is stored in @code{yylloc}.
3604@xref{Action Features, ,Special Features for Use in Actions}.
3605
342b8b6e 3606@node Location Default Action
847bf1f5
AD
3607@subsection Default Action for Locations
3608@vindex YYLLOC_DEFAULT
8710fc41 3609@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3610
72d2299c 3611Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3612locations are much more general than semantic values, there is room in
3613the output parser to redefine the default action to take for each
72d2299c 3614rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3615matched, before the associated action is run. It is also invoked
3616while processing a syntax error, to compute the error's location.
8710fc41
JD
3617Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3618parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3619of that ambiguity.
847bf1f5 3620
3e259915 3621Most of the time, this macro is general enough to suppress location
79282c6c 3622dedicated code from semantic actions.
847bf1f5 3623
72d2299c 3624The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3625the location of the grouping (the result of the computation). When a
766de5eb 3626rule is matched, the second parameter identifies locations of
96b93a3d 3627all right hand side elements of the rule being matched, and the third
8710fc41
JD
3628parameter is the size of the rule's right hand side.
3629When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3630right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3631When processing a syntax error, the second parameter identifies locations
3632of the symbols that were discarded during error processing, and the third
96b93a3d 3633parameter is the number of discarded symbols.
847bf1f5 3634
766de5eb 3635By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3636
766de5eb 3637@smallexample
847bf1f5 3638@group
766de5eb
PE
3639# define YYLLOC_DEFAULT(Current, Rhs, N) \
3640 do \
3641 if (N) \
3642 @{ \
3643 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3644 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3645 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3646 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3647 @} \
3648 else \
3649 @{ \
3650 (Current).first_line = (Current).last_line = \
3651 YYRHSLOC(Rhs, 0).last_line; \
3652 (Current).first_column = (Current).last_column = \
3653 YYRHSLOC(Rhs, 0).last_column; \
3654 @} \
3655 while (0)
847bf1f5 3656@end group
766de5eb 3657@end smallexample
676385e2 3658
766de5eb
PE
3659where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3660in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3661just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3662
3e259915 3663When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3664
3e259915 3665@itemize @bullet
79282c6c 3666@item
72d2299c 3667All arguments are free of side-effects. However, only the first one (the
3e259915 3668result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3669
3e259915 3670@item
766de5eb
PE
3671For consistency with semantic actions, valid indexes within the
3672right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3673valid index, and it refers to the symbol just before the reduction.
3674During error processing @var{n} is always positive.
0ae99356
PE
3675
3676@item
3677Your macro should parenthesize its arguments, if need be, since the
3678actual arguments may not be surrounded by parentheses. Also, your
3679macro should expand to something that can be used as a single
3680statement when it is followed by a semicolon.
3e259915 3681@end itemize
847bf1f5 3682
342b8b6e 3683@node Declarations
bfa74976
RS
3684@section Bison Declarations
3685@cindex declarations, Bison
3686@cindex Bison declarations
3687
3688The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3689used in formulating the grammar and the data types of semantic values.
3690@xref{Symbols}.
3691
3692All token type names (but not single-character literal tokens such as
3693@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3694declared if you need to specify which data type to use for the semantic
3695value (@pxref{Multiple Types, ,More Than One Value Type}).
3696
3697The first rule in the file also specifies the start symbol, by default.
3698If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3699it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3700Grammars}).
bfa74976
RS
3701
3702@menu
b50d2359 3703* Require Decl:: Requiring a Bison version.
bfa74976
RS
3704* Token Decl:: Declaring terminal symbols.
3705* Precedence Decl:: Declaring terminals with precedence and associativity.
3706* Union Decl:: Declaring the set of all semantic value types.
3707* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3708* Initial Action Decl:: Code run before parsing starts.
72f889cc 3709* Destructor Decl:: Declaring how symbols are freed.
d6328241 3710* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3711* Start Decl:: Specifying the start symbol.
3712* Pure Decl:: Requesting a reentrant parser.
3713* Decl Summary:: Table of all Bison declarations.
3714@end menu
3715
b50d2359
AD
3716@node Require Decl
3717@subsection Require a Version of Bison
3718@cindex version requirement
3719@cindex requiring a version of Bison
3720@findex %require
3721
3722You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3723the requirement is not met, @command{bison} exits with an error (exit
3724status 63).
b50d2359
AD
3725
3726@example
3727%require "@var{version}"
3728@end example
3729
342b8b6e 3730@node Token Decl
bfa74976
RS
3731@subsection Token Type Names
3732@cindex declaring token type names
3733@cindex token type names, declaring
931c7513 3734@cindex declaring literal string tokens
bfa74976
RS
3735@findex %token
3736
3737The basic way to declare a token type name (terminal symbol) is as follows:
3738
3739@example
3740%token @var{name}
3741@end example
3742
3743Bison will convert this into a @code{#define} directive in
3744the parser, so that the function @code{yylex} (if it is in this file)
3745can use the name @var{name} to stand for this token type's code.
3746
14ded682
AD
3747Alternatively, you can use @code{%left}, @code{%right}, or
3748@code{%nonassoc} instead of @code{%token}, if you wish to specify
3749associativity and precedence. @xref{Precedence Decl, ,Operator
3750Precedence}.
bfa74976
RS
3751
3752You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3753a decimal or hexadecimal integer value in the field immediately
3754following the token name:
bfa74976
RS
3755
3756@example
3757%token NUM 300
1452af69 3758%token XNUM 0x12d // a GNU extension
bfa74976
RS
3759@end example
3760
3761@noindent
3762It is generally best, however, to let Bison choose the numeric codes for
3763all token types. Bison will automatically select codes that don't conflict
e966383b 3764with each other or with normal characters.
bfa74976
RS
3765
3766In the event that the stack type is a union, you must augment the
3767@code{%token} or other token declaration to include the data type
704a47c4
AD
3768alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3769Than One Value Type}).
bfa74976
RS
3770
3771For example:
3772
3773@example
3774@group
3775%union @{ /* define stack type */
3776 double val;
3777 symrec *tptr;
3778@}
3779%token <val> NUM /* define token NUM and its type */
3780@end group
3781@end example
3782
931c7513
RS
3783You can associate a literal string token with a token type name by
3784writing the literal string at the end of a @code{%token}
3785declaration which declares the name. For example:
3786
3787@example
3788%token arrow "=>"
3789@end example
3790
3791@noindent
3792For example, a grammar for the C language might specify these names with
3793equivalent literal string tokens:
3794
3795@example
3796%token <operator> OR "||"
3797%token <operator> LE 134 "<="
3798%left OR "<="
3799@end example
3800
3801@noindent
3802Once you equate the literal string and the token name, you can use them
3803interchangeably in further declarations or the grammar rules. The
3804@code{yylex} function can use the token name or the literal string to
3805obtain the token type code number (@pxref{Calling Convention}).
3806
342b8b6e 3807@node Precedence Decl
bfa74976
RS
3808@subsection Operator Precedence
3809@cindex precedence declarations
3810@cindex declaring operator precedence
3811@cindex operator precedence, declaring
3812
3813Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3814declare a token and specify its precedence and associativity, all at
3815once. These are called @dfn{precedence declarations}.
704a47c4
AD
3816@xref{Precedence, ,Operator Precedence}, for general information on
3817operator precedence.
bfa74976
RS
3818
3819The syntax of a precedence declaration is the same as that of
3820@code{%token}: either
3821
3822@example
3823%left @var{symbols}@dots{}
3824@end example
3825
3826@noindent
3827or
3828
3829@example
3830%left <@var{type}> @var{symbols}@dots{}
3831@end example
3832
3833And indeed any of these declarations serves the purposes of @code{%token}.
3834But in addition, they specify the associativity and relative precedence for
3835all the @var{symbols}:
3836
3837@itemize @bullet
3838@item
3839The associativity of an operator @var{op} determines how repeated uses
3840of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3841@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3842grouping @var{y} with @var{z} first. @code{%left} specifies
3843left-associativity (grouping @var{x} with @var{y} first) and
3844@code{%right} specifies right-associativity (grouping @var{y} with
3845@var{z} first). @code{%nonassoc} specifies no associativity, which
3846means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3847considered a syntax error.
3848
3849@item
3850The precedence of an operator determines how it nests with other operators.
3851All the tokens declared in a single precedence declaration have equal
3852precedence and nest together according to their associativity.
3853When two tokens declared in different precedence declarations associate,
3854the one declared later has the higher precedence and is grouped first.
3855@end itemize
3856
342b8b6e 3857@node Union Decl
bfa74976
RS
3858@subsection The Collection of Value Types
3859@cindex declaring value types
3860@cindex value types, declaring
3861@findex %union
3862
287c78f6
PE
3863The @code{%union} declaration specifies the entire collection of
3864possible data types for semantic values. The keyword @code{%union} is
3865followed by braced code containing the same thing that goes inside a
3866@code{union} in C@.
bfa74976
RS
3867
3868For example:
3869
3870@example
3871@group
3872%union @{
3873 double val;
3874 symrec *tptr;
3875@}
3876@end group
3877@end example
3878
3879@noindent
3880This says that the two alternative types are @code{double} and @code{symrec
3881*}. They are given names @code{val} and @code{tptr}; these names are used
3882in the @code{%token} and @code{%type} declarations to pick one of the types
3883for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3884
6273355b
PE
3885As an extension to @acronym{POSIX}, a tag is allowed after the
3886@code{union}. For example:
3887
3888@example
3889@group
3890%union value @{
3891 double val;
3892 symrec *tptr;
3893@}
3894@end group
3895@end example
3896
d6ca7905 3897@noindent
6273355b
PE
3898specifies the union tag @code{value}, so the corresponding C type is
3899@code{union value}. If you do not specify a tag, it defaults to
3900@code{YYSTYPE}.
3901
d6ca7905
PE
3902As another extension to @acronym{POSIX}, you may specify multiple
3903@code{%union} declarations; their contents are concatenated. However,
3904only the first @code{%union} declaration can specify a tag.
3905
6273355b 3906Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3907a semicolon after the closing brace.
3908
ddc8ede1
PE
3909Instead of @code{%union}, you can define and use your own union type
3910@code{YYSTYPE} if your grammar contains at least one
3911@samp{<@var{type}>} tag. For example, you can put the following into
3912a header file @file{parser.h}:
3913
3914@example
3915@group
3916union YYSTYPE @{
3917 double val;
3918 symrec *tptr;
3919@};
3920typedef union YYSTYPE YYSTYPE;
3921@end group
3922@end example
3923
3924@noindent
3925and then your grammar can use the following
3926instead of @code{%union}:
3927
3928@example
3929@group
3930%@{
3931#include "parser.h"
3932%@}
3933%type <val> expr
3934%token <tptr> ID
3935@end group
3936@end example
3937
342b8b6e 3938@node Type Decl
bfa74976
RS
3939@subsection Nonterminal Symbols
3940@cindex declaring value types, nonterminals
3941@cindex value types, nonterminals, declaring
3942@findex %type
3943
3944@noindent
3945When you use @code{%union} to specify multiple value types, you must
3946declare the value type of each nonterminal symbol for which values are
3947used. This is done with a @code{%type} declaration, like this:
3948
3949@example
3950%type <@var{type}> @var{nonterminal}@dots{}
3951@end example
3952
3953@noindent
704a47c4
AD
3954Here @var{nonterminal} is the name of a nonterminal symbol, and
3955@var{type} is the name given in the @code{%union} to the alternative
3956that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3957can give any number of nonterminal symbols in the same @code{%type}
3958declaration, if they have the same value type. Use spaces to separate
3959the symbol names.
bfa74976 3960
931c7513
RS
3961You can also declare the value type of a terminal symbol. To do this,
3962use the same @code{<@var{type}>} construction in a declaration for the
3963terminal symbol. All kinds of token declarations allow
3964@code{<@var{type}>}.
3965
18d192f0
AD
3966@node Initial Action Decl
3967@subsection Performing Actions before Parsing
3968@findex %initial-action
3969
3970Sometimes your parser needs to perform some initializations before
3971parsing. The @code{%initial-action} directive allows for such arbitrary
3972code.
3973
3974@deffn {Directive} %initial-action @{ @var{code} @}
3975@findex %initial-action
287c78f6 3976Declare that the braced @var{code} must be invoked before parsing each time
451364ed 3977@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 3978@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 3979@code{%parse-param}.
18d192f0
AD
3980@end deffn
3981
451364ed
AD
3982For instance, if your locations use a file name, you may use
3983
3984@example
48b16bbc 3985%parse-param @{ char const *file_name @};
451364ed
AD
3986%initial-action
3987@{
4626a15d 3988 @@$.initialize (file_name);
451364ed
AD
3989@};
3990@end example
3991
18d192f0 3992
72f889cc
AD
3993@node Destructor Decl
3994@subsection Freeing Discarded Symbols
3995@cindex freeing discarded symbols
3996@findex %destructor
3be03b13 3997@findex %symbol-default
72f889cc 3998
a85284cf
AD
3999During error recovery (@pxref{Error Recovery}), symbols already pushed
4000on the stack and tokens coming from the rest of the file are discarded
4001until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4002or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4003symbols on the stack must be discarded. Even if the parser succeeds, it
4004must discard the start symbol.
258b75ca
PE
4005
4006When discarded symbols convey heap based information, this memory is
4007lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4008in traditional compilers, it is unacceptable for programs like shells or
4009protocol implementations that may parse and execute indefinitely.
258b75ca 4010
a85284cf
AD
4011The @code{%destructor} directive defines code that is called when a
4012symbol is automatically discarded.
72f889cc
AD
4013
4014@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4015@findex %destructor
287c78f6
PE
4016Invoke the braced @var{code} whenever the parser discards one of the
4017@var{symbols}.
4b367315 4018Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4019with the discarded symbol, and @code{@@$} designates its location.
4020The additional parser parameters are also available (@pxref{Parser Function, ,
4021The Parser Function @code{yyparse}}).
ec5479ce 4022
b2a0b7ca
JD
4023When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4024per-symbol @code{%destructor}.
4025You may also define a per-type @code{%destructor} by listing a semantic type
4026among @var{symbols}.
4027In that case, the parser will invoke this @var{code} whenever it discards any
4028grammar symbol that has that semantic type unless that symbol has its own
4029per-symbol @code{%destructor}.
4030
4031Finally, you may define a default @code{%destructor} by placing
4032@code{%symbol-default} in the @var{symbols} list of exactly one
4033@code{%destructor} declaration in your grammar file.
4034In that case, the parser will invoke the associated @var{code} whenever it
4035discards any user-defined grammar symbol for which there is no per-type or
4036per-symbol @code{%destructor}.
72f889cc
AD
4037@end deffn
4038
b2a0b7ca 4039@noindent
72f889cc
AD
4040For instance:
4041
4042@smallexample
ec5479ce
JD
4043%union @{ char *string; @}
4044%token <string> STRING1
4045%token <string> STRING2
4046%type <string> string1
4047%type <string> string2
b2a0b7ca
JD
4048%union @{ char character; @}
4049%token <character> CHR
4050%type <character> chr
3be03b13 4051%destructor @{ free ($$); @} %symbol-default
ec5479ce 4052%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
b2a0b7ca 4053%destructor @{ @} <character>
72f889cc
AD
4054@end smallexample
4055
4056@noindent
b2a0b7ca
JD
4057guarantees that, when the parser discards any user-defined symbol that has a
4058semantic type tag other than @code{<character>}, it passes its semantic value
4059to @code{free}.
ec5479ce
JD
4060However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4061prints its line number to @code{stdout}.
4062It performs only the second @code{%destructor} in this case, so it invokes
4063@code{free} only once.
72f889cc 4064
3508ce36
JD
4065Notice that a Bison-generated parser invokes the default @code{%destructor}
4066only for user-defined as opposed to Bison-defined symbols.
4067For example, the parser will not invoke it for the special Bison-defined
4068symbols @code{$accept}, @code{$undefined}, or @code{$end} (@pxref{Table of
4069Symbols, ,Bison Symbols}), none of which you can reference in your grammar.
4070It also will not invoke it for the @code{error} token (@pxref{Table of Symbols,
4071,error}), which is always defined by Bison regardless of whether you reference
4072it in your grammar.
4073However, it will invoke it for the end token (token 0) if you redefine it from
4074@code{$end} to, for example, @code{END}:
4075
4076@smallexample
4077%token END 0
4078@end smallexample
4079
4080@ignore
4081@noindent
4082In the future, it may be possible to redefine the @code{error} token as a
4083nonterminal that captures the discarded symbols.
4084In that case, the parser will invoke the default destructor for it as well.
4085@end ignore
4086
e757bb10
AD
4087@sp 1
4088
4089@cindex discarded symbols
4090@dfn{Discarded symbols} are the following:
4091
4092@itemize
4093@item
4094stacked symbols popped during the first phase of error recovery,
4095@item
4096incoming terminals during the second phase of error recovery,
4097@item
742e4900 4098the current lookahead and the entire stack (except the current
9d9b8b70 4099right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4100@item
4101the start symbol, when the parser succeeds.
e757bb10
AD
4102@end itemize
4103
9d9b8b70
PE
4104The parser can @dfn{return immediately} because of an explicit call to
4105@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4106exhaustion.
4107
4108Right-hand size symbols of a rule that explicitly triggers a syntax
4109error via @code{YYERROR} are not discarded automatically. As a rule
4110of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4111the memory.
e757bb10 4112
342b8b6e 4113@node Expect Decl
bfa74976
RS
4114@subsection Suppressing Conflict Warnings
4115@cindex suppressing conflict warnings
4116@cindex preventing warnings about conflicts
4117@cindex warnings, preventing
4118@cindex conflicts, suppressing warnings of
4119@findex %expect
d6328241 4120@findex %expect-rr
bfa74976
RS
4121
4122Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4123(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4124have harmless shift/reduce conflicts which are resolved in a predictable
4125way and would be difficult to eliminate. It is desirable to suppress
4126the warning about these conflicts unless the number of conflicts
4127changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4128
4129The declaration looks like this:
4130
4131@example
4132%expect @var{n}
4133@end example
4134
035aa4a0
PE
4135Here @var{n} is a decimal integer. The declaration says there should
4136be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4137Bison reports an error if the number of shift/reduce conflicts differs
4138from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4139
035aa4a0
PE
4140For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4141serious, and should be eliminated entirely. Bison will always report
4142reduce/reduce conflicts for these parsers. With @acronym{GLR}
4143parsers, however, both kinds of conflicts are routine; otherwise,
4144there would be no need to use @acronym{GLR} parsing. Therefore, it is
4145also possible to specify an expected number of reduce/reduce conflicts
4146in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4147
4148@example
4149%expect-rr @var{n}
4150@end example
4151
bfa74976
RS
4152In general, using @code{%expect} involves these steps:
4153
4154@itemize @bullet
4155@item
4156Compile your grammar without @code{%expect}. Use the @samp{-v} option
4157to get a verbose list of where the conflicts occur. Bison will also
4158print the number of conflicts.
4159
4160@item
4161Check each of the conflicts to make sure that Bison's default
4162resolution is what you really want. If not, rewrite the grammar and
4163go back to the beginning.
4164
4165@item
4166Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4167number which Bison printed. With @acronym{GLR} parsers, add an
4168@code{%expect-rr} declaration as well.
bfa74976
RS
4169@end itemize
4170
035aa4a0
PE
4171Now Bison will warn you if you introduce an unexpected conflict, but
4172will keep silent otherwise.
bfa74976 4173
342b8b6e 4174@node Start Decl
bfa74976
RS
4175@subsection The Start-Symbol
4176@cindex declaring the start symbol
4177@cindex start symbol, declaring
4178@cindex default start symbol
4179@findex %start
4180
4181Bison assumes by default that the start symbol for the grammar is the first
4182nonterminal specified in the grammar specification section. The programmer
4183may override this restriction with the @code{%start} declaration as follows:
4184
4185@example
4186%start @var{symbol}
4187@end example
4188
342b8b6e 4189@node Pure Decl
bfa74976
RS
4190@subsection A Pure (Reentrant) Parser
4191@cindex reentrant parser
4192@cindex pure parser
8c9a50be 4193@findex %pure-parser
bfa74976
RS
4194
4195A @dfn{reentrant} program is one which does not alter in the course of
4196execution; in other words, it consists entirely of @dfn{pure} (read-only)
4197code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4198for example, a nonreentrant program may not be safe to call from a signal
4199handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4200program must be called only within interlocks.
4201
70811b85 4202Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4203suitable for most uses, and it permits compatibility with Yacc. (The
4204standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4205statically allocated variables for communication with @code{yylex},
4206including @code{yylval} and @code{yylloc}.)
bfa74976 4207
70811b85 4208Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4209declaration @code{%pure-parser} says that you want the parser to be
70811b85 4210reentrant. It looks like this:
bfa74976
RS
4211
4212@example
8c9a50be 4213%pure-parser
bfa74976
RS
4214@end example
4215
70811b85
RS
4216The result is that the communication variables @code{yylval} and
4217@code{yylloc} become local variables in @code{yyparse}, and a different
4218calling convention is used for the lexical analyzer function
4219@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4220Parsers}, for the details of this. The variable @code{yynerrs} also
4221becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4222Reporting Function @code{yyerror}}). The convention for calling
4223@code{yyparse} itself is unchanged.
4224
4225Whether the parser is pure has nothing to do with the grammar rules.
4226You can generate either a pure parser or a nonreentrant parser from any
4227valid grammar.
bfa74976 4228
342b8b6e 4229@node Decl Summary
bfa74976
RS
4230@subsection Bison Declaration Summary
4231@cindex Bison declaration summary
4232@cindex declaration summary
4233@cindex summary, Bison declaration
4234
d8988b2f 4235Here is a summary of the declarations used to define a grammar:
bfa74976 4236
18b519c0 4237@deffn {Directive} %union
bfa74976
RS
4238Declare the collection of data types that semantic values may have
4239(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4240@end deffn
bfa74976 4241
18b519c0 4242@deffn {Directive} %token
bfa74976
RS
4243Declare a terminal symbol (token type name) with no precedence
4244or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4245@end deffn
bfa74976 4246
18b519c0 4247@deffn {Directive} %right
bfa74976
RS
4248Declare a terminal symbol (token type name) that is right-associative
4249(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4250@end deffn
bfa74976 4251
18b519c0 4252@deffn {Directive} %left
bfa74976
RS
4253Declare a terminal symbol (token type name) that is left-associative
4254(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4255@end deffn
bfa74976 4256
18b519c0 4257@deffn {Directive} %nonassoc
bfa74976 4258Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4259(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4260Using it in a way that would be associative is a syntax error.
4261@end deffn
4262
91d2c560 4263@ifset defaultprec
39a06c25 4264@deffn {Directive} %default-prec
22fccf95 4265Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4266(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4267@end deffn
91d2c560 4268@end ifset
bfa74976 4269
18b519c0 4270@deffn {Directive} %type
bfa74976
RS
4271Declare the type of semantic values for a nonterminal symbol
4272(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4273@end deffn
bfa74976 4274
18b519c0 4275@deffn {Directive} %start
89cab50d
AD
4276Specify the grammar's start symbol (@pxref{Start Decl, ,The
4277Start-Symbol}).
18b519c0 4278@end deffn
bfa74976 4279
18b519c0 4280@deffn {Directive} %expect
bfa74976
RS
4281Declare the expected number of shift-reduce conflicts
4282(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4283@end deffn
4284
bfa74976 4285
d8988b2f
AD
4286@sp 1
4287@noindent
4288In order to change the behavior of @command{bison}, use the following
4289directives:
4290
18b519c0 4291@deffn {Directive} %debug
4947ebdb
PE
4292In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4293already defined, so that the debugging facilities are compiled.
18b519c0 4294@end deffn
ec3bc396 4295@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4296
18b519c0 4297@deffn {Directive} %defines
4bfd5e4e
PE
4298Write a header file containing macro definitions for the token type
4299names defined in the grammar as well as a few other declarations.
d8988b2f 4300If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4301is named @file{@var{name}.h}.
d8988b2f 4302
b321737f 4303For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4304@code{YYSTYPE} is already defined as a macro or you have used a
4305@code{<@var{type}>} tag without using @code{%union}.
4306Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4307(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4308require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4309or type definition
f8e1c9e5
AD
4310(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4311arrange for these definitions to be propagated to all modules, e.g., by
4312putting them in a prerequisite header that is included both by your
4313parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4314
4315Unless your parser is pure, the output header declares @code{yylval}
4316as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4317Parser}.
4318
4319If you have also used locations, the output header declares
4320@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4321the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4322Locations}.
4323
f8e1c9e5
AD
4324This output file is normally essential if you wish to put the definition
4325of @code{yylex} in a separate source file, because @code{yylex}
4326typically needs to be able to refer to the above-mentioned declarations
4327and to the token type codes. @xref{Token Values, ,Semantic Values of
4328Tokens}.
9bc0dd67 4329
34f98f46
JD
4330@findex %start-header
4331@findex %end-header
4332If you have declared @code{%start-header} or @code{%end-header}, the output
4333header also contains their code.
4334@xref{Table of Symbols, ,%start-header}.
18b519c0 4335@end deffn
d8988b2f 4336
18b519c0 4337@deffn {Directive} %destructor
258b75ca 4338Specify how the parser should reclaim the memory associated to
fa7e68c3 4339discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4340@end deffn
72f889cc 4341
18b519c0 4342@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4343Specify a prefix to use for all Bison output file names. The names are
4344chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4345@end deffn
d8988b2f 4346
18b519c0 4347@deffn {Directive} %locations
89cab50d
AD
4348Generate the code processing the locations (@pxref{Action Features,
4349,Special Features for Use in Actions}). This mode is enabled as soon as
4350the grammar uses the special @samp{@@@var{n}} tokens, but if your
4351grammar does not use it, using @samp{%locations} allows for more
6e649e65 4352accurate syntax error messages.
18b519c0 4353@end deffn
89cab50d 4354
18b519c0 4355@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4356Rename the external symbols used in the parser so that they start with
4357@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4358in C parsers
d8988b2f 4359is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4360@code{yylval}, @code{yychar}, @code{yydebug}, and
4361(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4362@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4363and so on. In C++ parsers, it is only the surrounding namespace which is
4364named @var{prefix} instead of @samp{yy}.
4365@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4366@end deffn
931c7513 4367
91d2c560 4368@ifset defaultprec
22fccf95
PE
4369@deffn {Directive} %no-default-prec
4370Do not assign a precedence to rules lacking an explicit @code{%prec}
4371modifier (@pxref{Contextual Precedence, ,Context-Dependent
4372Precedence}).
4373@end deffn
91d2c560 4374@end ifset
22fccf95 4375
18b519c0 4376@deffn {Directive} %no-parser
6deb4447
AD
4377Do not include any C code in the parser file; generate tables only. The
4378parser file contains just @code{#define} directives and static variable
4379declarations.
4380
4381This option also tells Bison to write the C code for the grammar actions
fa4d969f 4382into a file named @file{@var{file}.act}, in the form of a
6deb4447 4383brace-surrounded body fit for a @code{switch} statement.
18b519c0 4384@end deffn
6deb4447 4385
18b519c0 4386@deffn {Directive} %no-lines
931c7513
RS
4387Don't generate any @code{#line} preprocessor commands in the parser
4388file. Ordinarily Bison writes these commands in the parser file so that
4389the C compiler and debuggers will associate errors and object code with
4390your source file (the grammar file). This directive causes them to
4391associate errors with the parser file, treating it an independent source
4392file in its own right.
18b519c0 4393@end deffn
931c7513 4394
fa4d969f
PE
4395@deffn {Directive} %output="@var{file}"
4396Specify @var{file} for the parser file.
18b519c0 4397@end deffn
6deb4447 4398
18b519c0 4399@deffn {Directive} %pure-parser
d8988b2f
AD
4400Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4401(Reentrant) Parser}).
18b519c0 4402@end deffn
6deb4447 4403
b50d2359 4404@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4405Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4406Require a Version of Bison}.
b50d2359
AD
4407@end deffn
4408
18b519c0 4409@deffn {Directive} %token-table
931c7513
RS
4410Generate an array of token names in the parser file. The name of the
4411array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4412token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4413three elements of @code{yytname} correspond to the predefined tokens
4414@code{"$end"},
88bce5a2
AD
4415@code{"error"}, and @code{"$undefined"}; after these come the symbols
4416defined in the grammar file.
931c7513 4417
9e0876fb
PE
4418The name in the table includes all the characters needed to represent
4419the token in Bison. For single-character literals and literal
4420strings, this includes the surrounding quoting characters and any
4421escape sequences. For example, the Bison single-character literal
4422@code{'+'} corresponds to a three-character name, represented in C as
4423@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4424corresponds to a five-character name, represented in C as
4425@code{"\"\\\\/\""}.
931c7513 4426
8c9a50be 4427When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4428definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4429@code{YYNRULES}, and @code{YYNSTATES}:
4430
4431@table @code
4432@item YYNTOKENS
4433The highest token number, plus one.
4434@item YYNNTS
9ecbd125 4435The number of nonterminal symbols.
931c7513
RS
4436@item YYNRULES
4437The number of grammar rules,
4438@item YYNSTATES
4439The number of parser states (@pxref{Parser States}).
4440@end table
18b519c0 4441@end deffn
d8988b2f 4442
18b519c0 4443@deffn {Directive} %verbose
d8988b2f 4444Write an extra output file containing verbose descriptions of the
742e4900 4445parser states and what is done for each type of lookahead token in
72d2299c 4446that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4447information.
18b519c0 4448@end deffn
d8988b2f 4449
18b519c0 4450@deffn {Directive} %yacc
d8988b2f
AD
4451Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4452including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4453@end deffn
d8988b2f
AD
4454
4455
342b8b6e 4456@node Multiple Parsers
bfa74976
RS
4457@section Multiple Parsers in the Same Program
4458
4459Most programs that use Bison parse only one language and therefore contain
4460only one Bison parser. But what if you want to parse more than one
4461language with the same program? Then you need to avoid a name conflict
4462between different definitions of @code{yyparse}, @code{yylval}, and so on.
4463
4464The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4465(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4466functions and variables of the Bison parser to start with @var{prefix}
4467instead of @samp{yy}. You can use this to give each parser distinct
4468names that do not conflict.
bfa74976
RS
4469
4470The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4471@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4472@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4473the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4474
4475@strong{All the other variables and macros associated with Bison are not
4476renamed.} These others are not global; there is no conflict if the same
4477name is used in different parsers. For example, @code{YYSTYPE} is not
4478renamed, but defining this in different ways in different parsers causes
4479no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4480
4481The @samp{-p} option works by adding macro definitions to the beginning
4482of the parser source file, defining @code{yyparse} as
4483@code{@var{prefix}parse}, and so on. This effectively substitutes one
4484name for the other in the entire parser file.
4485
342b8b6e 4486@node Interface
bfa74976
RS
4487@chapter Parser C-Language Interface
4488@cindex C-language interface
4489@cindex interface
4490
4491The Bison parser is actually a C function named @code{yyparse}. Here we
4492describe the interface conventions of @code{yyparse} and the other
4493functions that it needs to use.
4494
4495Keep in mind that the parser uses many C identifiers starting with
4496@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4497identifier (aside from those in this manual) in an action or in epilogue
4498in the grammar file, you are likely to run into trouble.
bfa74976
RS
4499
4500@menu
4501* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4502* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4503 which reads tokens.
4504* Error Reporting:: You must supply a function @code{yyerror}.
4505* Action Features:: Special features for use in actions.
f7ab6a50
PE
4506* Internationalization:: How to let the parser speak in the user's
4507 native language.
bfa74976
RS
4508@end menu
4509
342b8b6e 4510@node Parser Function
bfa74976
RS
4511@section The Parser Function @code{yyparse}
4512@findex yyparse
4513
4514You call the function @code{yyparse} to cause parsing to occur. This
4515function reads tokens, executes actions, and ultimately returns when it
4516encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4517write an action which directs @code{yyparse} to return immediately
4518without reading further.
bfa74976 4519
2a8d363a
AD
4520
4521@deftypefun int yyparse (void)
bfa74976
RS
4522The value returned by @code{yyparse} is 0 if parsing was successful (return
4523is due to end-of-input).
4524
b47dbebe
PE
4525The value is 1 if parsing failed because of invalid input, i.e., input
4526that contains a syntax error or that causes @code{YYABORT} to be
4527invoked.
4528
4529The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4530@end deftypefun
bfa74976
RS
4531
4532In an action, you can cause immediate return from @code{yyparse} by using
4533these macros:
4534
2a8d363a 4535@defmac YYACCEPT
bfa74976
RS
4536@findex YYACCEPT
4537Return immediately with value 0 (to report success).
2a8d363a 4538@end defmac
bfa74976 4539
2a8d363a 4540@defmac YYABORT
bfa74976
RS
4541@findex YYABORT
4542Return immediately with value 1 (to report failure).
2a8d363a
AD
4543@end defmac
4544
4545If you use a reentrant parser, you can optionally pass additional
4546parameter information to it in a reentrant way. To do so, use the
4547declaration @code{%parse-param}:
4548
feeb0eda 4549@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4550@findex %parse-param
287c78f6
PE
4551Declare that an argument declared by the braced-code
4552@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4553The @var{argument-declaration} is used when declaring
feeb0eda
PE
4554functions or prototypes. The last identifier in
4555@var{argument-declaration} must be the argument name.
2a8d363a
AD
4556@end deffn
4557
4558Here's an example. Write this in the parser:
4559
4560@example
feeb0eda
PE
4561%parse-param @{int *nastiness@}
4562%parse-param @{int *randomness@}
2a8d363a
AD
4563@end example
4564
4565@noindent
4566Then call the parser like this:
4567
4568@example
4569@{
4570 int nastiness, randomness;
4571 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4572 value = yyparse (&nastiness, &randomness);
4573 @dots{}
4574@}
4575@end example
4576
4577@noindent
4578In the grammar actions, use expressions like this to refer to the data:
4579
4580@example
4581exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4582@end example
4583
bfa74976 4584
342b8b6e 4585@node Lexical
bfa74976
RS
4586@section The Lexical Analyzer Function @code{yylex}
4587@findex yylex
4588@cindex lexical analyzer
4589
4590The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4591the input stream and returns them to the parser. Bison does not create
4592this function automatically; you must write it so that @code{yyparse} can
4593call it. The function is sometimes referred to as a lexical scanner.
4594
4595In simple programs, @code{yylex} is often defined at the end of the Bison
4596grammar file. If @code{yylex} is defined in a separate source file, you
4597need to arrange for the token-type macro definitions to be available there.
4598To do this, use the @samp{-d} option when you run Bison, so that it will
4599write these macro definitions into a separate header file
4600@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4601that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4602
4603@menu
4604* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4605* Token Values:: How @code{yylex} must return the semantic value
4606 of the token it has read.
95923bd6 4607* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4608 (line number, etc.) of the token, if the
4609 actions want that.
4610* Pure Calling:: How the calling convention differs
4611 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4612@end menu
4613
342b8b6e 4614@node Calling Convention
bfa74976
RS
4615@subsection Calling Convention for @code{yylex}
4616
72d2299c
PE
4617The value that @code{yylex} returns must be the positive numeric code
4618for the type of token it has just found; a zero or negative value
4619signifies end-of-input.
bfa74976
RS
4620
4621When a token is referred to in the grammar rules by a name, that name
4622in the parser file becomes a C macro whose definition is the proper
4623numeric code for that token type. So @code{yylex} can use the name
4624to indicate that type. @xref{Symbols}.
4625
4626When a token is referred to in the grammar rules by a character literal,
4627the numeric code for that character is also the code for the token type.
72d2299c
PE
4628So @code{yylex} can simply return that character code, possibly converted
4629to @code{unsigned char} to avoid sign-extension. The null character
4630must not be used this way, because its code is zero and that
bfa74976
RS
4631signifies end-of-input.
4632
4633Here is an example showing these things:
4634
4635@example
13863333
AD
4636int
4637yylex (void)
bfa74976
RS
4638@{
4639 @dots{}
72d2299c 4640 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4641 return 0;
4642 @dots{}
4643 if (c == '+' || c == '-')
72d2299c 4644 return c; /* Assume token type for `+' is '+'. */
bfa74976 4645 @dots{}
72d2299c 4646 return INT; /* Return the type of the token. */
bfa74976
RS
4647 @dots{}
4648@}
4649@end example
4650
4651@noindent
4652This interface has been designed so that the output from the @code{lex}
4653utility can be used without change as the definition of @code{yylex}.
4654
931c7513
RS
4655If the grammar uses literal string tokens, there are two ways that
4656@code{yylex} can determine the token type codes for them:
4657
4658@itemize @bullet
4659@item
4660If the grammar defines symbolic token names as aliases for the
4661literal string tokens, @code{yylex} can use these symbolic names like
4662all others. In this case, the use of the literal string tokens in
4663the grammar file has no effect on @code{yylex}.
4664
4665@item
9ecbd125 4666@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4667table. The index of the token in the table is the token type's code.
9ecbd125 4668The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4669double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4670token's characters are escaped as necessary to be suitable as input
4671to Bison.
931c7513 4672
9e0876fb
PE
4673Here's code for looking up a multicharacter token in @code{yytname},
4674assuming that the characters of the token are stored in
4675@code{token_buffer}, and assuming that the token does not contain any
4676characters like @samp{"} that require escaping.
931c7513
RS
4677
4678@smallexample
4679for (i = 0; i < YYNTOKENS; i++)
4680 @{
4681 if (yytname[i] != 0
4682 && yytname[i][0] == '"'
68449b3a
PE
4683 && ! strncmp (yytname[i] + 1, token_buffer,
4684 strlen (token_buffer))
931c7513
RS
4685 && yytname[i][strlen (token_buffer) + 1] == '"'
4686 && yytname[i][strlen (token_buffer) + 2] == 0)
4687 break;
4688 @}
4689@end smallexample
4690
4691The @code{yytname} table is generated only if you use the
8c9a50be 4692@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4693@end itemize
4694
342b8b6e 4695@node Token Values
bfa74976
RS
4696@subsection Semantic Values of Tokens
4697
4698@vindex yylval
9d9b8b70 4699In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4700be stored into the global variable @code{yylval}. When you are using
4701just one data type for semantic values, @code{yylval} has that type.
4702Thus, if the type is @code{int} (the default), you might write this in
4703@code{yylex}:
4704
4705@example
4706@group
4707 @dots{}
72d2299c
PE
4708 yylval = value; /* Put value onto Bison stack. */
4709 return INT; /* Return the type of the token. */
bfa74976
RS
4710 @dots{}
4711@end group
4712@end example
4713
4714When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4715made from the @code{%union} declaration (@pxref{Union Decl, ,The
4716Collection of Value Types}). So when you store a token's value, you
4717must use the proper member of the union. If the @code{%union}
4718declaration looks like this:
bfa74976
RS
4719
4720@example
4721@group
4722%union @{
4723 int intval;
4724 double val;
4725 symrec *tptr;
4726@}
4727@end group
4728@end example
4729
4730@noindent
4731then the code in @code{yylex} might look like this:
4732
4733@example
4734@group
4735 @dots{}
72d2299c
PE
4736 yylval.intval = value; /* Put value onto Bison stack. */
4737 return INT; /* Return the type of the token. */
bfa74976
RS
4738 @dots{}
4739@end group
4740@end example
4741
95923bd6
AD
4742@node Token Locations
4743@subsection Textual Locations of Tokens
bfa74976
RS
4744
4745@vindex yylloc
847bf1f5 4746If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4747Tracking Locations}) in actions to keep track of the textual locations
4748of tokens and groupings, then you must provide this information in
4749@code{yylex}. The function @code{yyparse} expects to find the textual
4750location of a token just parsed in the global variable @code{yylloc}.
4751So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4752
4753By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4754initialize the members that are going to be used by the actions. The
4755four members are called @code{first_line}, @code{first_column},
4756@code{last_line} and @code{last_column}. Note that the use of this
4757feature makes the parser noticeably slower.
bfa74976
RS
4758
4759@tindex YYLTYPE
4760The data type of @code{yylloc} has the name @code{YYLTYPE}.
4761
342b8b6e 4762@node Pure Calling
c656404a 4763@subsection Calling Conventions for Pure Parsers
bfa74976 4764
8c9a50be 4765When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4766pure, reentrant parser, the global communication variables @code{yylval}
4767and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4768Parser}.) In such parsers the two global variables are replaced by
4769pointers passed as arguments to @code{yylex}. You must declare them as
4770shown here, and pass the information back by storing it through those
4771pointers.
bfa74976
RS
4772
4773@example
13863333
AD
4774int
4775yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4776@{
4777 @dots{}
4778 *lvalp = value; /* Put value onto Bison stack. */
4779 return INT; /* Return the type of the token. */
4780 @dots{}
4781@}
4782@end example
4783
4784If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4785textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4786this case, omit the second argument; @code{yylex} will be called with
4787only one argument.
4788
e425e872 4789
2a8d363a
AD
4790If you wish to pass the additional parameter data to @code{yylex}, use
4791@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4792Function}).
e425e872 4793
feeb0eda 4794@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4795@findex %lex-param
287c78f6
PE
4796Declare that the braced-code @var{argument-declaration} is an
4797additional @code{yylex} argument declaration.
2a8d363a 4798@end deffn
e425e872 4799
2a8d363a 4800For instance:
e425e872
RS
4801
4802@example
feeb0eda
PE
4803%parse-param @{int *nastiness@}
4804%lex-param @{int *nastiness@}
4805%parse-param @{int *randomness@}
e425e872
RS
4806@end example
4807
4808@noindent
2a8d363a 4809results in the following signature:
e425e872
RS
4810
4811@example
2a8d363a
AD
4812int yylex (int *nastiness);
4813int yyparse (int *nastiness, int *randomness);
e425e872
RS
4814@end example
4815
2a8d363a 4816If @code{%pure-parser} is added:
c656404a
RS
4817
4818@example
2a8d363a
AD
4819int yylex (YYSTYPE *lvalp, int *nastiness);
4820int yyparse (int *nastiness, int *randomness);
c656404a
RS
4821@end example
4822
2a8d363a
AD
4823@noindent
4824and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4825
2a8d363a
AD
4826@example
4827int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4828int yyparse (int *nastiness, int *randomness);
4829@end example
931c7513 4830
342b8b6e 4831@node Error Reporting
bfa74976
RS
4832@section The Error Reporting Function @code{yyerror}
4833@cindex error reporting function
4834@findex yyerror
4835@cindex parse error
4836@cindex syntax error
4837
6e649e65 4838The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4839whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4840action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4841macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4842in Actions}).
bfa74976
RS
4843
4844The Bison parser expects to report the error by calling an error
4845reporting function named @code{yyerror}, which you must supply. It is
4846called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4847receives one argument. For a syntax error, the string is normally
4848@w{@code{"syntax error"}}.
bfa74976 4849
2a8d363a
AD
4850@findex %error-verbose
4851If you invoke the directive @code{%error-verbose} in the Bison
4852declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4853Section}), then Bison provides a more verbose and specific error message
6e649e65 4854string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4855
1a059451
PE
4856The parser can detect one other kind of error: memory exhaustion. This
4857can happen when the input contains constructions that are very deeply
bfa74976 4858nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4859parser normally extends its stack automatically up to a very large limit. But
4860if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4861fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4862
4863In some cases diagnostics like @w{@code{"syntax error"}} are
4864translated automatically from English to some other language before
4865they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4866
4867The following definition suffices in simple programs:
4868
4869@example
4870@group
13863333 4871void
38a92d50 4872yyerror (char const *s)
bfa74976
RS
4873@{
4874@end group
4875@group
4876 fprintf (stderr, "%s\n", s);
4877@}
4878@end group
4879@end example
4880
4881After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4882error recovery if you have written suitable error recovery grammar rules
4883(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4884immediately return 1.
4885
93724f13 4886Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4887an access to the current location.
4888This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4889parsers, but not for the Yacc parser, for historical reasons. I.e., if
4890@samp{%locations %pure-parser} is passed then the prototypes for
4891@code{yyerror} are:
4892
4893@example
38a92d50
PE
4894void yyerror (char const *msg); /* Yacc parsers. */
4895void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4896@end example
4897
feeb0eda 4898If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4899
4900@example
b317297e
PE
4901void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4902void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4903@end example
4904
fa7e68c3 4905Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4906convention for absolutely pure parsers, i.e., when the calling
4907convention of @code{yylex} @emph{and} the calling convention of
4908@code{%pure-parser} are pure. I.e.:
4909
4910@example
4911/* Location tracking. */
4912%locations
4913/* Pure yylex. */
4914%pure-parser
feeb0eda 4915%lex-param @{int *nastiness@}
2a8d363a 4916/* Pure yyparse. */
feeb0eda
PE
4917%parse-param @{int *nastiness@}
4918%parse-param @{int *randomness@}
2a8d363a
AD
4919@end example
4920
4921@noindent
4922results in the following signatures for all the parser kinds:
4923
4924@example
4925int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4926int yyparse (int *nastiness, int *randomness);
93724f13
AD
4927void yyerror (YYLTYPE *locp,
4928 int *nastiness, int *randomness,
38a92d50 4929 char const *msg);
2a8d363a
AD
4930@end example
4931
1c0c3e95 4932@noindent
38a92d50
PE
4933The prototypes are only indications of how the code produced by Bison
4934uses @code{yyerror}. Bison-generated code always ignores the returned
4935value, so @code{yyerror} can return any type, including @code{void}.
4936Also, @code{yyerror} can be a variadic function; that is why the
4937message is always passed last.
4938
4939Traditionally @code{yyerror} returns an @code{int} that is always
4940ignored, but this is purely for historical reasons, and @code{void} is
4941preferable since it more accurately describes the return type for
4942@code{yyerror}.
93724f13 4943
bfa74976
RS
4944@vindex yynerrs
4945The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4946reported so far. Normally this variable is global; but if you
704a47c4
AD
4947request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4948then it is a local variable which only the actions can access.
bfa74976 4949
342b8b6e 4950@node Action Features
bfa74976
RS
4951@section Special Features for Use in Actions
4952@cindex summary, action features
4953@cindex action features summary
4954
4955Here is a table of Bison constructs, variables and macros that
4956are useful in actions.
4957
18b519c0 4958@deffn {Variable} $$
bfa74976
RS
4959Acts like a variable that contains the semantic value for the
4960grouping made by the current rule. @xref{Actions}.
18b519c0 4961@end deffn
bfa74976 4962
18b519c0 4963@deffn {Variable} $@var{n}
bfa74976
RS
4964Acts like a variable that contains the semantic value for the
4965@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4966@end deffn
bfa74976 4967
18b519c0 4968@deffn {Variable} $<@var{typealt}>$
bfa74976 4969Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4970specified by the @code{%union} declaration. @xref{Action Types, ,Data
4971Types of Values in Actions}.
18b519c0 4972@end deffn
bfa74976 4973
18b519c0 4974@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4975Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4976union specified by the @code{%union} declaration.
e0c471a9 4977@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4978@end deffn
bfa74976 4979
18b519c0 4980@deffn {Macro} YYABORT;
bfa74976
RS
4981Return immediately from @code{yyparse}, indicating failure.
4982@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4983@end deffn
bfa74976 4984
18b519c0 4985@deffn {Macro} YYACCEPT;
bfa74976
RS
4986Return immediately from @code{yyparse}, indicating success.
4987@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4988@end deffn
bfa74976 4989
18b519c0 4990@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4991@findex YYBACKUP
4992Unshift a token. This macro is allowed only for rules that reduce
742e4900 4993a single value, and only when there is no lookahead token.
c827f760 4994It is also disallowed in @acronym{GLR} parsers.
742e4900 4995It installs a lookahead token with token type @var{token} and
bfa74976
RS
4996semantic value @var{value}; then it discards the value that was
4997going to be reduced by this rule.
4998
4999If the macro is used when it is not valid, such as when there is
742e4900 5000a lookahead token already, then it reports a syntax error with
bfa74976
RS
5001a message @samp{cannot back up} and performs ordinary error
5002recovery.
5003
5004In either case, the rest of the action is not executed.
18b519c0 5005@end deffn
bfa74976 5006
18b519c0 5007@deffn {Macro} YYEMPTY
bfa74976 5008@vindex YYEMPTY
742e4900 5009Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5010@end deffn
bfa74976 5011
32c29292
JD
5012@deffn {Macro} YYEOF
5013@vindex YYEOF
742e4900 5014Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5015stream.
5016@end deffn
5017
18b519c0 5018@deffn {Macro} YYERROR;
bfa74976
RS
5019@findex YYERROR
5020Cause an immediate syntax error. This statement initiates error
5021recovery just as if the parser itself had detected an error; however, it
5022does not call @code{yyerror}, and does not print any message. If you
5023want to print an error message, call @code{yyerror} explicitly before
5024the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5025@end deffn
bfa74976 5026
18b519c0 5027@deffn {Macro} YYRECOVERING
02103984
PE
5028@findex YYRECOVERING
5029The expression @code{YYRECOVERING ()} yields 1 when the parser
5030is recovering from a syntax error, and 0 otherwise.
bfa74976 5031@xref{Error Recovery}.
18b519c0 5032@end deffn
bfa74976 5033
18b519c0 5034@deffn {Variable} yychar
742e4900
JD
5035Variable containing either the lookahead token, or @code{YYEOF} when the
5036lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5037has been performed so the next token is not yet known.
5038Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5039Actions}).
742e4900 5040@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5041@end deffn
bfa74976 5042
18b519c0 5043@deffn {Macro} yyclearin;
742e4900 5044Discard the current lookahead token. This is useful primarily in
32c29292
JD
5045error rules.
5046Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5047Semantic Actions}).
5048@xref{Error Recovery}.
18b519c0 5049@end deffn
bfa74976 5050
18b519c0 5051@deffn {Macro} yyerrok;
bfa74976 5052Resume generating error messages immediately for subsequent syntax
13863333 5053errors. This is useful primarily in error rules.
bfa74976 5054@xref{Error Recovery}.
18b519c0 5055@end deffn
bfa74976 5056
32c29292 5057@deffn {Variable} yylloc
742e4900 5058Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5059to @code{YYEMPTY} or @code{YYEOF}.
5060Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5061Actions}).
5062@xref{Actions and Locations, ,Actions and Locations}.
5063@end deffn
5064
5065@deffn {Variable} yylval
742e4900 5066Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5067not set to @code{YYEMPTY} or @code{YYEOF}.
5068Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5069Actions}).
5070@xref{Actions, ,Actions}.
5071@end deffn
5072
18b519c0 5073@deffn {Value} @@$
847bf1f5 5074@findex @@$
95923bd6 5075Acts like a structure variable containing information on the textual location
847bf1f5
AD
5076of the grouping made by the current rule. @xref{Locations, ,
5077Tracking Locations}.
bfa74976 5078
847bf1f5
AD
5079@c Check if those paragraphs are still useful or not.
5080
5081@c @example
5082@c struct @{
5083@c int first_line, last_line;
5084@c int first_column, last_column;
5085@c @};
5086@c @end example
5087
5088@c Thus, to get the starting line number of the third component, you would
5089@c use @samp{@@3.first_line}.
bfa74976 5090
847bf1f5
AD
5091@c In order for the members of this structure to contain valid information,
5092@c you must make @code{yylex} supply this information about each token.
5093@c If you need only certain members, then @code{yylex} need only fill in
5094@c those members.
bfa74976 5095
847bf1f5 5096@c The use of this feature makes the parser noticeably slower.
18b519c0 5097@end deffn
847bf1f5 5098
18b519c0 5099@deffn {Value} @@@var{n}
847bf1f5 5100@findex @@@var{n}
95923bd6 5101Acts like a structure variable containing information on the textual location
847bf1f5
AD
5102of the @var{n}th component of the current rule. @xref{Locations, ,
5103Tracking Locations}.
18b519c0 5104@end deffn
bfa74976 5105
f7ab6a50
PE
5106@node Internationalization
5107@section Parser Internationalization
5108@cindex internationalization
5109@cindex i18n
5110@cindex NLS
5111@cindex gettext
5112@cindex bison-po
5113
5114A Bison-generated parser can print diagnostics, including error and
5115tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5116also supports outputting diagnostics in the user's native language. To
5117make this work, the user should set the usual environment variables.
5118@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5119For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5120set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5121encoding. The exact set of available locales depends on the user's
5122installation.
5123
5124The maintainer of a package that uses a Bison-generated parser enables
5125the internationalization of the parser's output through the following
5126steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5127@acronym{GNU} Automake.
5128
5129@enumerate
5130@item
30757c8c 5131@cindex bison-i18n.m4
f7ab6a50
PE
5132Into the directory containing the @acronym{GNU} Autoconf macros used
5133by the package---often called @file{m4}---copy the
5134@file{bison-i18n.m4} file installed by Bison under
5135@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5136For example:
5137
5138@example
5139cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5140@end example
5141
5142@item
30757c8c
PE
5143@findex BISON_I18N
5144@vindex BISON_LOCALEDIR
5145@vindex YYENABLE_NLS
f7ab6a50
PE
5146In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5147invocation, add an invocation of @code{BISON_I18N}. This macro is
5148defined in the file @file{bison-i18n.m4} that you copied earlier. It
5149causes @samp{configure} to find the value of the
30757c8c
PE
5150@code{BISON_LOCALEDIR} variable, and it defines the source-language
5151symbol @code{YYENABLE_NLS} to enable translations in the
5152Bison-generated parser.
f7ab6a50
PE
5153
5154@item
5155In the @code{main} function of your program, designate the directory
5156containing Bison's runtime message catalog, through a call to
5157@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5158For example:
5159
5160@example
5161bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5162@end example
5163
5164Typically this appears after any other call @code{bindtextdomain
5165(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5166@samp{BISON_LOCALEDIR} to be defined as a string through the
5167@file{Makefile}.
5168
5169@item
5170In the @file{Makefile.am} that controls the compilation of the @code{main}
5171function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5172either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5173
5174@example
5175DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5176@end example
5177
5178or:
5179
5180@example
5181AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5182@end example
5183
5184@item
5185Finally, invoke the command @command{autoreconf} to generate the build
5186infrastructure.
5187@end enumerate
5188
bfa74976 5189
342b8b6e 5190@node Algorithm
13863333
AD
5191@chapter The Bison Parser Algorithm
5192@cindex Bison parser algorithm
bfa74976
RS
5193@cindex algorithm of parser
5194@cindex shifting
5195@cindex reduction
5196@cindex parser stack
5197@cindex stack, parser
5198
5199As Bison reads tokens, it pushes them onto a stack along with their
5200semantic values. The stack is called the @dfn{parser stack}. Pushing a
5201token is traditionally called @dfn{shifting}.
5202
5203For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5204@samp{3} to come. The stack will have four elements, one for each token
5205that was shifted.
5206
5207But the stack does not always have an element for each token read. When
5208the last @var{n} tokens and groupings shifted match the components of a
5209grammar rule, they can be combined according to that rule. This is called
5210@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5211single grouping whose symbol is the result (left hand side) of that rule.
5212Running the rule's action is part of the process of reduction, because this
5213is what computes the semantic value of the resulting grouping.
5214
5215For example, if the infix calculator's parser stack contains this:
5216
5217@example
52181 + 5 * 3
5219@end example
5220
5221@noindent
5222and the next input token is a newline character, then the last three
5223elements can be reduced to 15 via the rule:
5224
5225@example
5226expr: expr '*' expr;
5227@end example
5228
5229@noindent
5230Then the stack contains just these three elements:
5231
5232@example
52331 + 15
5234@end example
5235
5236@noindent
5237At this point, another reduction can be made, resulting in the single value
523816. Then the newline token can be shifted.
5239
5240The parser tries, by shifts and reductions, to reduce the entire input down
5241to a single grouping whose symbol is the grammar's start-symbol
5242(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5243
5244This kind of parser is known in the literature as a bottom-up parser.
5245
5246@menu
742e4900 5247* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5248* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5249* Precedence:: Operator precedence works by resolving conflicts.
5250* Contextual Precedence:: When an operator's precedence depends on context.
5251* Parser States:: The parser is a finite-state-machine with stack.
5252* Reduce/Reduce:: When two rules are applicable in the same situation.
5253* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5254* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5255* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5256@end menu
5257
742e4900
JD
5258@node Lookahead
5259@section Lookahead Tokens
5260@cindex lookahead token
bfa74976
RS
5261
5262The Bison parser does @emph{not} always reduce immediately as soon as the
5263last @var{n} tokens and groupings match a rule. This is because such a
5264simple strategy is inadequate to handle most languages. Instead, when a
5265reduction is possible, the parser sometimes ``looks ahead'' at the next
5266token in order to decide what to do.
5267
5268When a token is read, it is not immediately shifted; first it becomes the
742e4900 5269@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5270perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5271the lookahead token remains off to the side. When no more reductions
5272should take place, the lookahead token is shifted onto the stack. This
bfa74976 5273does not mean that all possible reductions have been done; depending on the
742e4900 5274token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5275application.
5276
742e4900 5277Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5278expressions which contain binary addition operators and postfix unary
5279factorial operators (@samp{!}), and allow parentheses for grouping.
5280
5281@example
5282@group
5283expr: term '+' expr
5284 | term
5285 ;
5286@end group
5287
5288@group
5289term: '(' expr ')'
5290 | term '!'
5291 | NUMBER
5292 ;
5293@end group
5294@end example
5295
5296Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5297should be done? If the following token is @samp{)}, then the first three
5298tokens must be reduced to form an @code{expr}. This is the only valid
5299course, because shifting the @samp{)} would produce a sequence of symbols
5300@w{@code{term ')'}}, and no rule allows this.
5301
5302If the following token is @samp{!}, then it must be shifted immediately so
5303that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5304parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5305@code{expr}. It would then be impossible to shift the @samp{!} because
5306doing so would produce on the stack the sequence of symbols @code{expr
5307'!'}. No rule allows that sequence.
5308
5309@vindex yychar
32c29292
JD
5310@vindex yylval
5311@vindex yylloc
742e4900 5312The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5313Its semantic value and location, if any, are stored in the variables
5314@code{yylval} and @code{yylloc}.
bfa74976
RS
5315@xref{Action Features, ,Special Features for Use in Actions}.
5316
342b8b6e 5317@node Shift/Reduce
bfa74976
RS
5318@section Shift/Reduce Conflicts
5319@cindex conflicts
5320@cindex shift/reduce conflicts
5321@cindex dangling @code{else}
5322@cindex @code{else}, dangling
5323
5324Suppose we are parsing a language which has if-then and if-then-else
5325statements, with a pair of rules like this:
5326
5327@example
5328@group
5329if_stmt:
5330 IF expr THEN stmt
5331 | IF expr THEN stmt ELSE stmt
5332 ;
5333@end group
5334@end example
5335
5336@noindent
5337Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5338terminal symbols for specific keyword tokens.
5339
742e4900 5340When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5341contents of the stack (assuming the input is valid) are just right for
5342reduction by the first rule. But it is also legitimate to shift the
5343@code{ELSE}, because that would lead to eventual reduction by the second
5344rule.
5345
5346This situation, where either a shift or a reduction would be valid, is
5347called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5348these conflicts by choosing to shift, unless otherwise directed by
5349operator precedence declarations. To see the reason for this, let's
5350contrast it with the other alternative.
5351
5352Since the parser prefers to shift the @code{ELSE}, the result is to attach
5353the else-clause to the innermost if-statement, making these two inputs
5354equivalent:
5355
5356@example
5357if x then if y then win (); else lose;
5358
5359if x then do; if y then win (); else lose; end;
5360@end example
5361
5362But if the parser chose to reduce when possible rather than shift, the
5363result would be to attach the else-clause to the outermost if-statement,
5364making these two inputs equivalent:
5365
5366@example
5367if x then if y then win (); else lose;
5368
5369if x then do; if y then win (); end; else lose;
5370@end example
5371
5372The conflict exists because the grammar as written is ambiguous: either
5373parsing of the simple nested if-statement is legitimate. The established
5374convention is that these ambiguities are resolved by attaching the
5375else-clause to the innermost if-statement; this is what Bison accomplishes
5376by choosing to shift rather than reduce. (It would ideally be cleaner to
5377write an unambiguous grammar, but that is very hard to do in this case.)
5378This particular ambiguity was first encountered in the specifications of
5379Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5380
5381To avoid warnings from Bison about predictable, legitimate shift/reduce
5382conflicts, use the @code{%expect @var{n}} declaration. There will be no
5383warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5384@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5385
5386The definition of @code{if_stmt} above is solely to blame for the
5387conflict, but the conflict does not actually appear without additional
5388rules. Here is a complete Bison input file that actually manifests the
5389conflict:
5390
5391@example
5392@group
5393%token IF THEN ELSE variable
5394%%
5395@end group
5396@group
5397stmt: expr
5398 | if_stmt
5399 ;
5400@end group
5401
5402@group
5403if_stmt:
5404 IF expr THEN stmt
5405 | IF expr THEN stmt ELSE stmt
5406 ;
5407@end group
5408
5409expr: variable
5410 ;
5411@end example
5412
342b8b6e 5413@node Precedence
bfa74976
RS
5414@section Operator Precedence
5415@cindex operator precedence
5416@cindex precedence of operators
5417
5418Another situation where shift/reduce conflicts appear is in arithmetic
5419expressions. Here shifting is not always the preferred resolution; the
5420Bison declarations for operator precedence allow you to specify when to
5421shift and when to reduce.
5422
5423@menu
5424* Why Precedence:: An example showing why precedence is needed.
5425* Using Precedence:: How to specify precedence in Bison grammars.
5426* Precedence Examples:: How these features are used in the previous example.
5427* How Precedence:: How they work.
5428@end menu
5429
342b8b6e 5430@node Why Precedence
bfa74976
RS
5431@subsection When Precedence is Needed
5432
5433Consider the following ambiguous grammar fragment (ambiguous because the
5434input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5435
5436@example
5437@group
5438expr: expr '-' expr
5439 | expr '*' expr
5440 | expr '<' expr
5441 | '(' expr ')'
5442 @dots{}
5443 ;
5444@end group
5445@end example
5446
5447@noindent
5448Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5449should it reduce them via the rule for the subtraction operator? It
5450depends on the next token. Of course, if the next token is @samp{)}, we
5451must reduce; shifting is invalid because no single rule can reduce the
5452token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5453the next token is @samp{*} or @samp{<}, we have a choice: either
5454shifting or reduction would allow the parse to complete, but with
5455different results.
5456
5457To decide which one Bison should do, we must consider the results. If
5458the next operator token @var{op} is shifted, then it must be reduced
5459first in order to permit another opportunity to reduce the difference.
5460The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5461hand, if the subtraction is reduced before shifting @var{op}, the result
5462is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5463reduce should depend on the relative precedence of the operators
5464@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5465@samp{<}.
bfa74976
RS
5466
5467@cindex associativity
5468What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5469@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5470operators we prefer the former, which is called @dfn{left association}.
5471The latter alternative, @dfn{right association}, is desirable for
5472assignment operators. The choice of left or right association is a
5473matter of whether the parser chooses to shift or reduce when the stack
742e4900 5474contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5475makes right-associativity.
bfa74976 5476
342b8b6e 5477@node Using Precedence
bfa74976
RS
5478@subsection Specifying Operator Precedence
5479@findex %left
5480@findex %right
5481@findex %nonassoc
5482
5483Bison allows you to specify these choices with the operator precedence
5484declarations @code{%left} and @code{%right}. Each such declaration
5485contains a list of tokens, which are operators whose precedence and
5486associativity is being declared. The @code{%left} declaration makes all
5487those operators left-associative and the @code{%right} declaration makes
5488them right-associative. A third alternative is @code{%nonassoc}, which
5489declares that it is a syntax error to find the same operator twice ``in a
5490row''.
5491
5492The relative precedence of different operators is controlled by the
5493order in which they are declared. The first @code{%left} or
5494@code{%right} declaration in the file declares the operators whose
5495precedence is lowest, the next such declaration declares the operators
5496whose precedence is a little higher, and so on.
5497
342b8b6e 5498@node Precedence Examples
bfa74976
RS
5499@subsection Precedence Examples
5500
5501In our example, we would want the following declarations:
5502
5503@example
5504%left '<'
5505%left '-'
5506%left '*'
5507@end example
5508
5509In a more complete example, which supports other operators as well, we
5510would declare them in groups of equal precedence. For example, @code{'+'} is
5511declared with @code{'-'}:
5512
5513@example
5514%left '<' '>' '=' NE LE GE
5515%left '+' '-'
5516%left '*' '/'
5517@end example
5518
5519@noindent
5520(Here @code{NE} and so on stand for the operators for ``not equal''
5521and so on. We assume that these tokens are more than one character long
5522and therefore are represented by names, not character literals.)
5523
342b8b6e 5524@node How Precedence
bfa74976
RS
5525@subsection How Precedence Works
5526
5527The first effect of the precedence declarations is to assign precedence
5528levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5529precedence levels to certain rules: each rule gets its precedence from
5530the last terminal symbol mentioned in the components. (You can also
5531specify explicitly the precedence of a rule. @xref{Contextual
5532Precedence, ,Context-Dependent Precedence}.)
5533
5534Finally, the resolution of conflicts works by comparing the precedence
742e4900 5535of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5536token's precedence is higher, the choice is to shift. If the rule's
5537precedence is higher, the choice is to reduce. If they have equal
5538precedence, the choice is made based on the associativity of that
5539precedence level. The verbose output file made by @samp{-v}
5540(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5541resolved.
bfa74976
RS
5542
5543Not all rules and not all tokens have precedence. If either the rule or
742e4900 5544the lookahead token has no precedence, then the default is to shift.
bfa74976 5545
342b8b6e 5546@node Contextual Precedence
bfa74976
RS
5547@section Context-Dependent Precedence
5548@cindex context-dependent precedence
5549@cindex unary operator precedence
5550@cindex precedence, context-dependent
5551@cindex precedence, unary operator
5552@findex %prec
5553
5554Often the precedence of an operator depends on the context. This sounds
5555outlandish at first, but it is really very common. For example, a minus
5556sign typically has a very high precedence as a unary operator, and a
5557somewhat lower precedence (lower than multiplication) as a binary operator.
5558
5559The Bison precedence declarations, @code{%left}, @code{%right} and
5560@code{%nonassoc}, can only be used once for a given token; so a token has
5561only one precedence declared in this way. For context-dependent
5562precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5563modifier for rules.
bfa74976
RS
5564
5565The @code{%prec} modifier declares the precedence of a particular rule by
5566specifying a terminal symbol whose precedence should be used for that rule.
5567It's not necessary for that symbol to appear otherwise in the rule. The
5568modifier's syntax is:
5569
5570@example
5571%prec @var{terminal-symbol}
5572@end example
5573
5574@noindent
5575and it is written after the components of the rule. Its effect is to
5576assign the rule the precedence of @var{terminal-symbol}, overriding
5577the precedence that would be deduced for it in the ordinary way. The
5578altered rule precedence then affects how conflicts involving that rule
5579are resolved (@pxref{Precedence, ,Operator Precedence}).
5580
5581Here is how @code{%prec} solves the problem of unary minus. First, declare
5582a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5583are no tokens of this type, but the symbol serves to stand for its
5584precedence:
5585
5586@example
5587@dots{}
5588%left '+' '-'
5589%left '*'
5590%left UMINUS
5591@end example
5592
5593Now the precedence of @code{UMINUS} can be used in specific rules:
5594
5595@example
5596@group
5597exp: @dots{}
5598 | exp '-' exp
5599 @dots{}
5600 | '-' exp %prec UMINUS
5601@end group
5602@end example
5603
91d2c560 5604@ifset defaultprec
39a06c25
PE
5605If you forget to append @code{%prec UMINUS} to the rule for unary
5606minus, Bison silently assumes that minus has its usual precedence.
5607This kind of problem can be tricky to debug, since one typically
5608discovers the mistake only by testing the code.
5609
22fccf95 5610The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5611this kind of problem systematically. It causes rules that lack a
5612@code{%prec} modifier to have no precedence, even if the last terminal
5613symbol mentioned in their components has a declared precedence.
5614
22fccf95 5615If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5616for all rules that participate in precedence conflict resolution.
5617Then you will see any shift/reduce conflict until you tell Bison how
5618to resolve it, either by changing your grammar or by adding an
5619explicit precedence. This will probably add declarations to the
5620grammar, but it helps to protect against incorrect rule precedences.
5621
22fccf95
PE
5622The effect of @code{%no-default-prec;} can be reversed by giving
5623@code{%default-prec;}, which is the default.
91d2c560 5624@end ifset
39a06c25 5625
342b8b6e 5626@node Parser States
bfa74976
RS
5627@section Parser States
5628@cindex finite-state machine
5629@cindex parser state
5630@cindex state (of parser)
5631
5632The function @code{yyparse} is implemented using a finite-state machine.
5633The values pushed on the parser stack are not simply token type codes; they
5634represent the entire sequence of terminal and nonterminal symbols at or
5635near the top of the stack. The current state collects all the information
5636about previous input which is relevant to deciding what to do next.
5637
742e4900
JD
5638Each time a lookahead token is read, the current parser state together
5639with the type of lookahead token are looked up in a table. This table
5640entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5641specifies the new parser state, which is pushed onto the top of the
5642parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5643This means that a certain number of tokens or groupings are taken off
5644the top of the stack, and replaced by one grouping. In other words,
5645that number of states are popped from the stack, and one new state is
5646pushed.
5647
742e4900 5648There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5649is erroneous in the current state. This causes error processing to begin
5650(@pxref{Error Recovery}).
5651
342b8b6e 5652@node Reduce/Reduce
bfa74976
RS
5653@section Reduce/Reduce Conflicts
5654@cindex reduce/reduce conflict
5655@cindex conflicts, reduce/reduce
5656
5657A reduce/reduce conflict occurs if there are two or more rules that apply
5658to the same sequence of input. This usually indicates a serious error
5659in the grammar.
5660
5661For example, here is an erroneous attempt to define a sequence
5662of zero or more @code{word} groupings.
5663
5664@example
5665sequence: /* empty */
5666 @{ printf ("empty sequence\n"); @}
5667 | maybeword
5668 | sequence word
5669 @{ printf ("added word %s\n", $2); @}
5670 ;
5671
5672maybeword: /* empty */
5673 @{ printf ("empty maybeword\n"); @}
5674 | word
5675 @{ printf ("single word %s\n", $1); @}
5676 ;
5677@end example
5678
5679@noindent
5680The error is an ambiguity: there is more than one way to parse a single
5681@code{word} into a @code{sequence}. It could be reduced to a
5682@code{maybeword} and then into a @code{sequence} via the second rule.
5683Alternatively, nothing-at-all could be reduced into a @code{sequence}
5684via the first rule, and this could be combined with the @code{word}
5685using the third rule for @code{sequence}.
5686
5687There is also more than one way to reduce nothing-at-all into a
5688@code{sequence}. This can be done directly via the first rule,
5689or indirectly via @code{maybeword} and then the second rule.
5690
5691You might think that this is a distinction without a difference, because it
5692does not change whether any particular input is valid or not. But it does
5693affect which actions are run. One parsing order runs the second rule's
5694action; the other runs the first rule's action and the third rule's action.
5695In this example, the output of the program changes.
5696
5697Bison resolves a reduce/reduce conflict by choosing to use the rule that
5698appears first in the grammar, but it is very risky to rely on this. Every
5699reduce/reduce conflict must be studied and usually eliminated. Here is the
5700proper way to define @code{sequence}:
5701
5702@example
5703sequence: /* empty */
5704 @{ printf ("empty sequence\n"); @}
5705 | sequence word
5706 @{ printf ("added word %s\n", $2); @}
5707 ;
5708@end example
5709
5710Here is another common error that yields a reduce/reduce conflict:
5711
5712@example
5713sequence: /* empty */
5714 | sequence words
5715 | sequence redirects
5716 ;
5717
5718words: /* empty */
5719 | words word
5720 ;
5721
5722redirects:/* empty */
5723 | redirects redirect
5724 ;
5725@end example
5726
5727@noindent
5728The intention here is to define a sequence which can contain either
5729@code{word} or @code{redirect} groupings. The individual definitions of
5730@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5731three together make a subtle ambiguity: even an empty input can be parsed
5732in infinitely many ways!
5733
5734Consider: nothing-at-all could be a @code{words}. Or it could be two
5735@code{words} in a row, or three, or any number. It could equally well be a
5736@code{redirects}, or two, or any number. Or it could be a @code{words}
5737followed by three @code{redirects} and another @code{words}. And so on.
5738
5739Here are two ways to correct these rules. First, to make it a single level
5740of sequence:
5741
5742@example
5743sequence: /* empty */
5744 | sequence word
5745 | sequence redirect
5746 ;
5747@end example
5748
5749Second, to prevent either a @code{words} or a @code{redirects}
5750from being empty:
5751
5752@example
5753sequence: /* empty */
5754 | sequence words
5755 | sequence redirects
5756 ;
5757
5758words: word
5759 | words word
5760 ;
5761
5762redirects:redirect
5763 | redirects redirect
5764 ;
5765@end example
5766
342b8b6e 5767@node Mystery Conflicts
bfa74976
RS
5768@section Mysterious Reduce/Reduce Conflicts
5769
5770Sometimes reduce/reduce conflicts can occur that don't look warranted.
5771Here is an example:
5772
5773@example
5774@group
5775%token ID
5776
5777%%
5778def: param_spec return_spec ','
5779 ;
5780param_spec:
5781 type
5782 | name_list ':' type
5783 ;
5784@end group
5785@group
5786return_spec:
5787 type
5788 | name ':' type
5789 ;
5790@end group
5791@group
5792type: ID
5793 ;
5794@end group
5795@group
5796name: ID
5797 ;
5798name_list:
5799 name
5800 | name ',' name_list
5801 ;
5802@end group
5803@end example
5804
5805It would seem that this grammar can be parsed with only a single token
742e4900 5806of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5807a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5808@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5809
c827f760
PE
5810@cindex @acronym{LR}(1)
5811@cindex @acronym{LALR}(1)
bfa74976 5812However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5813@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5814an @code{ID}
bfa74976
RS
5815at the beginning of a @code{param_spec} and likewise at the beginning of
5816a @code{return_spec}, are similar enough that Bison assumes they are the
5817same. They appear similar because the same set of rules would be
5818active---the rule for reducing to a @code{name} and that for reducing to
5819a @code{type}. Bison is unable to determine at that stage of processing
742e4900 5820that the rules would require different lookahead tokens in the two
bfa74976
RS
5821contexts, so it makes a single parser state for them both. Combining
5822the two contexts causes a conflict later. In parser terminology, this
c827f760 5823occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5824
5825In general, it is better to fix deficiencies than to document them. But
5826this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5827generators that can handle @acronym{LR}(1) grammars are hard to write
5828and tend to
bfa74976
RS
5829produce parsers that are very large. In practice, Bison is more useful
5830as it is now.
5831
5832When the problem arises, you can often fix it by identifying the two
a220f555
MA
5833parser states that are being confused, and adding something to make them
5834look distinct. In the above example, adding one rule to
bfa74976
RS
5835@code{return_spec} as follows makes the problem go away:
5836
5837@example
5838@group
5839%token BOGUS
5840@dots{}
5841%%
5842@dots{}
5843return_spec:
5844 type
5845 | name ':' type
5846 /* This rule is never used. */
5847 | ID BOGUS
5848 ;
5849@end group
5850@end example
5851
5852This corrects the problem because it introduces the possibility of an
5853additional active rule in the context after the @code{ID} at the beginning of
5854@code{return_spec}. This rule is not active in the corresponding context
5855in a @code{param_spec}, so the two contexts receive distinct parser states.
5856As long as the token @code{BOGUS} is never generated by @code{yylex},
5857the added rule cannot alter the way actual input is parsed.
5858
5859In this particular example, there is another way to solve the problem:
5860rewrite the rule for @code{return_spec} to use @code{ID} directly
5861instead of via @code{name}. This also causes the two confusing
5862contexts to have different sets of active rules, because the one for
5863@code{return_spec} activates the altered rule for @code{return_spec}
5864rather than the one for @code{name}.
5865
5866@example
5867param_spec:
5868 type
5869 | name_list ':' type
5870 ;
5871return_spec:
5872 type
5873 | ID ':' type
5874 ;
5875@end example
5876
e054b190
PE
5877For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5878generators, please see:
5879Frank DeRemer and Thomas Pennello, Efficient Computation of
5880@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5881Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5882pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5883
fae437e8 5884@node Generalized LR Parsing
c827f760
PE
5885@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5886@cindex @acronym{GLR} parsing
5887@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5888@cindex ambiguous grammars
9d9b8b70 5889@cindex nondeterministic parsing
676385e2 5890
fae437e8
AD
5891Bison produces @emph{deterministic} parsers that choose uniquely
5892when to reduce and which reduction to apply
742e4900 5893based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
5894As a result, normal Bison handles a proper subset of the family of
5895context-free languages.
fae437e8 5896Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5897sequence of reductions cannot have deterministic parsers in this sense.
5898The same is true of languages that require more than one symbol of
742e4900 5899lookahead, since the parser lacks the information necessary to make a
676385e2 5900decision at the point it must be made in a shift-reduce parser.
fae437e8 5901Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5902there are languages where Bison's particular choice of how to
5903summarize the input seen so far loses necessary information.
5904
5905When you use the @samp{%glr-parser} declaration in your grammar file,
5906Bison generates a parser that uses a different algorithm, called
c827f760
PE
5907Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5908parser uses the same basic
676385e2
PH
5909algorithm for parsing as an ordinary Bison parser, but behaves
5910differently in cases where there is a shift-reduce conflict that has not
fae437e8 5911been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5912reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5913situation, it
fae437e8 5914effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5915shift or reduction. These parsers then proceed as usual, consuming
5916tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5917and split further, with the result that instead of a sequence of states,
c827f760 5918a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5919
5920In effect, each stack represents a guess as to what the proper parse
5921is. Additional input may indicate that a guess was wrong, in which case
5922the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5923actions generated in each stack are saved, rather than being executed
676385e2 5924immediately. When a stack disappears, its saved semantic actions never
fae437e8 5925get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5926their sets of semantic actions are both saved with the state that
5927results from the reduction. We say that two stacks are equivalent
fae437e8 5928when they both represent the same sequence of states,
676385e2
PH
5929and each pair of corresponding states represents a
5930grammar symbol that produces the same segment of the input token
5931stream.
5932
5933Whenever the parser makes a transition from having multiple
c827f760 5934states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5935algorithm, after resolving and executing the saved-up actions.
5936At this transition, some of the states on the stack will have semantic
5937values that are sets (actually multisets) of possible actions. The
5938parser tries to pick one of the actions by first finding one whose rule
5939has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5940declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5941precedence, but there the same merging function is declared for both
fae437e8 5942rules by the @samp{%merge} declaration,
676385e2
PH
5943Bison resolves and evaluates both and then calls the merge function on
5944the result. Otherwise, it reports an ambiguity.
5945
c827f760
PE
5946It is possible to use a data structure for the @acronym{GLR} parsing tree that
5947permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5948size of the input), any unambiguous (not necessarily
5949@acronym{LALR}(1)) grammar in
fae437e8 5950quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5951context-free grammar in cubic worst-case time. However, Bison currently
5952uses a simpler data structure that requires time proportional to the
5953length of the input times the maximum number of stacks required for any
9d9b8b70 5954prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5955grammars can require exponential time and space to process. Such badly
5956behaving examples, however, are not generally of practical interest.
9d9b8b70 5957Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5958doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5959structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5960grammar, in particular, it is only slightly slower than with the default
5961Bison parser.
5962
fa7e68c3 5963For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5964Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5965Generalised @acronym{LR} Parsers, Royal Holloway, University of
5966London, Department of Computer Science, TR-00-12,
5967@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5968(2000-12-24).
5969
1a059451
PE
5970@node Memory Management
5971@section Memory Management, and How to Avoid Memory Exhaustion
5972@cindex memory exhaustion
5973@cindex memory management
bfa74976
RS
5974@cindex stack overflow
5975@cindex parser stack overflow
5976@cindex overflow of parser stack
5977
1a059451 5978The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5979not reduced. When this happens, the parser function @code{yyparse}
1a059451 5980calls @code{yyerror} and then returns 2.
bfa74976 5981
c827f760 5982Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5983usually results from using a right recursion instead of a left
5984recursion, @xref{Recursion, ,Recursive Rules}.
5985
bfa74976
RS
5986@vindex YYMAXDEPTH
5987By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5988parser stack can become before memory is exhausted. Define the
bfa74976
RS
5989macro with a value that is an integer. This value is the maximum number
5990of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5991
5992The stack space allowed is not necessarily allocated. If you specify a
1a059451 5993large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5994stack at first, and then makes it bigger by stages as needed. This
5995increasing allocation happens automatically and silently. Therefore,
5996you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5997space for ordinary inputs that do not need much stack.
5998
d7e14fc0
PE
5999However, do not allow @code{YYMAXDEPTH} to be a value so large that
6000arithmetic overflow could occur when calculating the size of the stack
6001space. Also, do not allow @code{YYMAXDEPTH} to be less than
6002@code{YYINITDEPTH}.
6003
bfa74976
RS
6004@cindex default stack limit
6005The default value of @code{YYMAXDEPTH}, if you do not define it, is
600610000.
6007
6008@vindex YYINITDEPTH
6009You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6010macro @code{YYINITDEPTH} to a positive integer. For the C
6011@acronym{LALR}(1) parser, this value must be a compile-time constant
6012unless you are assuming C99 or some other target language or compiler
6013that allows variable-length arrays. The default is 200.
6014
1a059451 6015Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6016
d1a1114f 6017@c FIXME: C++ output.
c827f760 6018Because of semantical differences between C and C++, the
1a059451
PE
6019@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6020by C++ compilers. In this precise case (compiling a C parser as C++) you are
6021suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6022this deficiency in a future release.
d1a1114f 6023
342b8b6e 6024@node Error Recovery
bfa74976
RS
6025@chapter Error Recovery
6026@cindex error recovery
6027@cindex recovery from errors
6028
6e649e65 6029It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6030error. For example, a compiler should recover sufficiently to parse the
6031rest of the input file and check it for errors; a calculator should accept
6032another expression.
6033
6034In a simple interactive command parser where each input is one line, it may
6035be sufficient to allow @code{yyparse} to return 1 on error and have the
6036caller ignore the rest of the input line when that happens (and then call
6037@code{yyparse} again). But this is inadequate for a compiler, because it
6038forgets all the syntactic context leading up to the error. A syntax error
6039deep within a function in the compiler input should not cause the compiler
6040to treat the following line like the beginning of a source file.
6041
6042@findex error
6043You can define how to recover from a syntax error by writing rules to
6044recognize the special token @code{error}. This is a terminal symbol that
6045is always defined (you need not declare it) and reserved for error
6046handling. The Bison parser generates an @code{error} token whenever a
6047syntax error happens; if you have provided a rule to recognize this token
13863333 6048in the current context, the parse can continue.
bfa74976
RS
6049
6050For example:
6051
6052@example
6053stmnts: /* empty string */
6054 | stmnts '\n'
6055 | stmnts exp '\n'
6056 | stmnts error '\n'
6057@end example
6058
6059The fourth rule in this example says that an error followed by a newline
6060makes a valid addition to any @code{stmnts}.
6061
6062What happens if a syntax error occurs in the middle of an @code{exp}? The
6063error recovery rule, interpreted strictly, applies to the precise sequence
6064of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6065the middle of an @code{exp}, there will probably be some additional tokens
6066and subexpressions on the stack after the last @code{stmnts}, and there
6067will be tokens to read before the next newline. So the rule is not
6068applicable in the ordinary way.
6069
6070But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6071the semantic context and part of the input. First it discards states
6072and objects from the stack until it gets back to a state in which the
bfa74976 6073@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6074already parsed are discarded, back to the last complete @code{stmnts}.)
6075At this point the @code{error} token can be shifted. Then, if the old
742e4900 6076lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6077tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6078this example, Bison reads and discards input until the next newline so
6079that the fourth rule can apply. Note that discarded symbols are
6080possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6081Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6082
6083The choice of error rules in the grammar is a choice of strategies for
6084error recovery. A simple and useful strategy is simply to skip the rest of
6085the current input line or current statement if an error is detected:
6086
6087@example
72d2299c 6088stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6089@end example
6090
6091It is also useful to recover to the matching close-delimiter of an
6092opening-delimiter that has already been parsed. Otherwise the
6093close-delimiter will probably appear to be unmatched, and generate another,
6094spurious error message:
6095
6096@example
6097primary: '(' expr ')'
6098 | '(' error ')'
6099 @dots{}
6100 ;
6101@end example
6102
6103Error recovery strategies are necessarily guesses. When they guess wrong,
6104one syntax error often leads to another. In the above example, the error
6105recovery rule guesses that an error is due to bad input within one
6106@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6107middle of a valid @code{stmnt}. After the error recovery rule recovers
6108from the first error, another syntax error will be found straightaway,
6109since the text following the spurious semicolon is also an invalid
6110@code{stmnt}.
6111
6112To prevent an outpouring of error messages, the parser will output no error
6113message for another syntax error that happens shortly after the first; only
6114after three consecutive input tokens have been successfully shifted will
6115error messages resume.
6116
6117Note that rules which accept the @code{error} token may have actions, just
6118as any other rules can.
6119
6120@findex yyerrok
6121You can make error messages resume immediately by using the macro
6122@code{yyerrok} in an action. If you do this in the error rule's action, no
6123error messages will be suppressed. This macro requires no arguments;
6124@samp{yyerrok;} is a valid C statement.
6125
6126@findex yyclearin
742e4900 6127The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6128this is unacceptable, then the macro @code{yyclearin} may be used to clear
6129this token. Write the statement @samp{yyclearin;} in the error rule's
6130action.
32c29292 6131@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6132
6e649e65 6133For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6134called that advances the input stream to some point where parsing should
6135once again commence. The next symbol returned by the lexical scanner is
742e4900 6136probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6137with @samp{yyclearin;}.
6138
6139@vindex YYRECOVERING
02103984
PE
6140The expression @code{YYRECOVERING ()} yields 1 when the parser
6141is recovering from a syntax error, and 0 otherwise.
6142Syntax error diagnostics are suppressed while recovering from a syntax
6143error.
bfa74976 6144
342b8b6e 6145@node Context Dependency
bfa74976
RS
6146@chapter Handling Context Dependencies
6147
6148The Bison paradigm is to parse tokens first, then group them into larger
6149syntactic units. In many languages, the meaning of a token is affected by
6150its context. Although this violates the Bison paradigm, certain techniques
6151(known as @dfn{kludges}) may enable you to write Bison parsers for such
6152languages.
6153
6154@menu
6155* Semantic Tokens:: Token parsing can depend on the semantic context.
6156* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6157* Tie-in Recovery:: Lexical tie-ins have implications for how
6158 error recovery rules must be written.
6159@end menu
6160
6161(Actually, ``kludge'' means any technique that gets its job done but is
6162neither clean nor robust.)
6163
342b8b6e 6164@node Semantic Tokens
bfa74976
RS
6165@section Semantic Info in Token Types
6166
6167The C language has a context dependency: the way an identifier is used
6168depends on what its current meaning is. For example, consider this:
6169
6170@example
6171foo (x);
6172@end example
6173
6174This looks like a function call statement, but if @code{foo} is a typedef
6175name, then this is actually a declaration of @code{x}. How can a Bison
6176parser for C decide how to parse this input?
6177
c827f760 6178The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6179@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6180identifier, it looks up the current declaration of the identifier in order
6181to decide which token type to return: @code{TYPENAME} if the identifier is
6182declared as a typedef, @code{IDENTIFIER} otherwise.
6183
6184The grammar rules can then express the context dependency by the choice of
6185token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6186but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6187@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6188is @emph{not} significant, such as in declarations that can shadow a
6189typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6190accepted---there is one rule for each of the two token types.
6191
6192This technique is simple to use if the decision of which kinds of
6193identifiers to allow is made at a place close to where the identifier is
6194parsed. But in C this is not always so: C allows a declaration to
6195redeclare a typedef name provided an explicit type has been specified
6196earlier:
6197
6198@example
3a4f411f
PE
6199typedef int foo, bar;
6200int baz (void)
6201@{
6202 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6203 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6204 return foo (bar);
6205@}
bfa74976
RS
6206@end example
6207
6208Unfortunately, the name being declared is separated from the declaration
6209construct itself by a complicated syntactic structure---the ``declarator''.
6210
9ecbd125 6211As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6212all the nonterminal names changed: once for parsing a declaration in
6213which a typedef name can be redefined, and once for parsing a
6214declaration in which that can't be done. Here is a part of the
6215duplication, with actions omitted for brevity:
bfa74976
RS
6216
6217@example
6218initdcl:
6219 declarator maybeasm '='
6220 init
6221 | declarator maybeasm
6222 ;
6223
6224notype_initdcl:
6225 notype_declarator maybeasm '='
6226 init
6227 | notype_declarator maybeasm
6228 ;
6229@end example
6230
6231@noindent
6232Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6233cannot. The distinction between @code{declarator} and
6234@code{notype_declarator} is the same sort of thing.
6235
6236There is some similarity between this technique and a lexical tie-in
6237(described next), in that information which alters the lexical analysis is
6238changed during parsing by other parts of the program. The difference is
6239here the information is global, and is used for other purposes in the
6240program. A true lexical tie-in has a special-purpose flag controlled by
6241the syntactic context.
6242
342b8b6e 6243@node Lexical Tie-ins
bfa74976
RS
6244@section Lexical Tie-ins
6245@cindex lexical tie-in
6246
6247One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6248which is set by Bison actions, whose purpose is to alter the way tokens are
6249parsed.
6250
6251For example, suppose we have a language vaguely like C, but with a special
6252construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6253an expression in parentheses in which all integers are hexadecimal. In
6254particular, the token @samp{a1b} must be treated as an integer rather than
6255as an identifier if it appears in that context. Here is how you can do it:
6256
6257@example
6258@group
6259%@{
38a92d50
PE
6260 int hexflag;
6261 int yylex (void);
6262 void yyerror (char const *);
bfa74976
RS
6263%@}
6264%%
6265@dots{}
6266@end group
6267@group
6268expr: IDENTIFIER
6269 | constant
6270 | HEX '('
6271 @{ hexflag = 1; @}
6272 expr ')'
6273 @{ hexflag = 0;
6274 $$ = $4; @}
6275 | expr '+' expr
6276 @{ $$ = make_sum ($1, $3); @}
6277 @dots{}
6278 ;
6279@end group
6280
6281@group
6282constant:
6283 INTEGER
6284 | STRING
6285 ;
6286@end group
6287@end example
6288
6289@noindent
6290Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6291it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6292with letters are parsed as integers if possible.
6293
342b8b6e
AD
6294The declaration of @code{hexflag} shown in the prologue of the parser file
6295is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6296You must also write the code in @code{yylex} to obey the flag.
bfa74976 6297
342b8b6e 6298@node Tie-in Recovery
bfa74976
RS
6299@section Lexical Tie-ins and Error Recovery
6300
6301Lexical tie-ins make strict demands on any error recovery rules you have.
6302@xref{Error Recovery}.
6303
6304The reason for this is that the purpose of an error recovery rule is to
6305abort the parsing of one construct and resume in some larger construct.
6306For example, in C-like languages, a typical error recovery rule is to skip
6307tokens until the next semicolon, and then start a new statement, like this:
6308
6309@example
6310stmt: expr ';'
6311 | IF '(' expr ')' stmt @{ @dots{} @}
6312 @dots{}
6313 error ';'
6314 @{ hexflag = 0; @}
6315 ;
6316@end example
6317
6318If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6319construct, this error rule will apply, and then the action for the
6320completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6321remain set for the entire rest of the input, or until the next @code{hex}
6322keyword, causing identifiers to be misinterpreted as integers.
6323
6324To avoid this problem the error recovery rule itself clears @code{hexflag}.
6325
6326There may also be an error recovery rule that works within expressions.
6327For example, there could be a rule which applies within parentheses
6328and skips to the close-parenthesis:
6329
6330@example
6331@group
6332expr: @dots{}
6333 | '(' expr ')'
6334 @{ $$ = $2; @}
6335 | '(' error ')'
6336 @dots{}
6337@end group
6338@end example
6339
6340If this rule acts within the @code{hex} construct, it is not going to abort
6341that construct (since it applies to an inner level of parentheses within
6342the construct). Therefore, it should not clear the flag: the rest of
6343the @code{hex} construct should be parsed with the flag still in effect.
6344
6345What if there is an error recovery rule which might abort out of the
6346@code{hex} construct or might not, depending on circumstances? There is no
6347way you can write the action to determine whether a @code{hex} construct is
6348being aborted or not. So if you are using a lexical tie-in, you had better
6349make sure your error recovery rules are not of this kind. Each rule must
6350be such that you can be sure that it always will, or always won't, have to
6351clear the flag.
6352
ec3bc396
AD
6353@c ================================================== Debugging Your Parser
6354
342b8b6e 6355@node Debugging
bfa74976 6356@chapter Debugging Your Parser
ec3bc396
AD
6357
6358Developing a parser can be a challenge, especially if you don't
6359understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6360Algorithm}). Even so, sometimes a detailed description of the automaton
6361can help (@pxref{Understanding, , Understanding Your Parser}), or
6362tracing the execution of the parser can give some insight on why it
6363behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6364
6365@menu
6366* Understanding:: Understanding the structure of your parser.
6367* Tracing:: Tracing the execution of your parser.
6368@end menu
6369
6370@node Understanding
6371@section Understanding Your Parser
6372
6373As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6374Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6375frequent than one would hope), looking at this automaton is required to
6376tune or simply fix a parser. Bison provides two different
35fe0834 6377representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6378
6379The textual file is generated when the options @option{--report} or
6380@option{--verbose} are specified, see @xref{Invocation, , Invoking
6381Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6382the parser output file name, and adding @samp{.output} instead.
6383Therefore, if the input file is @file{foo.y}, then the parser file is
6384called @file{foo.tab.c} by default. As a consequence, the verbose
6385output file is called @file{foo.output}.
6386
6387The following grammar file, @file{calc.y}, will be used in the sequel:
6388
6389@example
6390%token NUM STR
6391%left '+' '-'
6392%left '*'
6393%%
6394exp: exp '+' exp
6395 | exp '-' exp
6396 | exp '*' exp
6397 | exp '/' exp
6398 | NUM
6399 ;
6400useless: STR;
6401%%
6402@end example
6403
88bce5a2
AD
6404@command{bison} reports:
6405
6406@example
6407calc.y: warning: 1 useless nonterminal and 1 useless rule
6408calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6409calc.y:11.10-12: warning: useless rule: useless: STR
6410calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6411@end example
6412
6413When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6414creates a file @file{calc.output} with contents detailed below. The
6415order of the output and the exact presentation might vary, but the
6416interpretation is the same.
ec3bc396
AD
6417
6418The first section includes details on conflicts that were solved thanks
6419to precedence and/or associativity:
6420
6421@example
6422Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6423Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6424Conflict in state 8 between rule 2 and token '*' resolved as shift.
6425@exdent @dots{}
6426@end example
6427
6428@noindent
6429The next section lists states that still have conflicts.
6430
6431@example
5a99098d
PE
6432State 8 conflicts: 1 shift/reduce
6433State 9 conflicts: 1 shift/reduce
6434State 10 conflicts: 1 shift/reduce
6435State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6436@end example
6437
6438@noindent
6439@cindex token, useless
6440@cindex useless token
6441@cindex nonterminal, useless
6442@cindex useless nonterminal
6443@cindex rule, useless
6444@cindex useless rule
6445The next section reports useless tokens, nonterminal and rules. Useless
6446nonterminals and rules are removed in order to produce a smaller parser,
6447but useless tokens are preserved, since they might be used by the
6448scanner (note the difference between ``useless'' and ``not used''
6449below):
6450
6451@example
6452Useless nonterminals:
6453 useless
6454
6455Terminals which are not used:
6456 STR
6457
6458Useless rules:
6459#6 useless: STR;
6460@end example
6461
6462@noindent
6463The next section reproduces the exact grammar that Bison used:
6464
6465@example
6466Grammar
6467
6468 Number, Line, Rule
88bce5a2 6469 0 5 $accept -> exp $end
ec3bc396
AD
6470 1 5 exp -> exp '+' exp
6471 2 6 exp -> exp '-' exp
6472 3 7 exp -> exp '*' exp
6473 4 8 exp -> exp '/' exp
6474 5 9 exp -> NUM
6475@end example
6476
6477@noindent
6478and reports the uses of the symbols:
6479
6480@example
6481Terminals, with rules where they appear
6482
88bce5a2 6483$end (0) 0
ec3bc396
AD
6484'*' (42) 3
6485'+' (43) 1
6486'-' (45) 2
6487'/' (47) 4
6488error (256)
6489NUM (258) 5
6490
6491Nonterminals, with rules where they appear
6492
88bce5a2 6493$accept (8)
ec3bc396
AD
6494 on left: 0
6495exp (9)
6496 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6497@end example
6498
6499@noindent
6500@cindex item
6501@cindex pointed rule
6502@cindex rule, pointed
6503Bison then proceeds onto the automaton itself, describing each state
6504with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6505item is a production rule together with a point (marked by @samp{.})
6506that the input cursor.
6507
6508@example
6509state 0
6510
88bce5a2 6511 $accept -> . exp $ (rule 0)
ec3bc396 6512
2a8d363a 6513 NUM shift, and go to state 1
ec3bc396 6514
2a8d363a 6515 exp go to state 2
ec3bc396
AD
6516@end example
6517
6518This reads as follows: ``state 0 corresponds to being at the very
6519beginning of the parsing, in the initial rule, right before the start
6520symbol (here, @code{exp}). When the parser returns to this state right
6521after having reduced a rule that produced an @code{exp}, the control
6522flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6523symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6524the parse stack, and the control flow jumps to state 1. Any other
742e4900 6525lookahead triggers a syntax error.''
ec3bc396
AD
6526
6527@cindex core, item set
6528@cindex item set core
6529@cindex kernel, item set
6530@cindex item set core
6531Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6532report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6533at the beginning of any rule deriving an @code{exp}. By default Bison
6534reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6535you want to see more detail you can invoke @command{bison} with
6536@option{--report=itemset} to list all the items, include those that can
6537be derived:
6538
6539@example
6540state 0
6541
88bce5a2 6542 $accept -> . exp $ (rule 0)
ec3bc396
AD
6543 exp -> . exp '+' exp (rule 1)
6544 exp -> . exp '-' exp (rule 2)
6545 exp -> . exp '*' exp (rule 3)
6546 exp -> . exp '/' exp (rule 4)
6547 exp -> . NUM (rule 5)
6548
6549 NUM shift, and go to state 1
6550
6551 exp go to state 2
6552@end example
6553
6554@noindent
6555In the state 1...
6556
6557@example
6558state 1
6559
6560 exp -> NUM . (rule 5)
6561
2a8d363a 6562 $default reduce using rule 5 (exp)
ec3bc396
AD
6563@end example
6564
6565@noindent
742e4900 6566the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6567(@samp{$default}), the parser will reduce it. If it was coming from
6568state 0, then, after this reduction it will return to state 0, and will
6569jump to state 2 (@samp{exp: go to state 2}).
6570
6571@example
6572state 2
6573
88bce5a2 6574 $accept -> exp . $ (rule 0)
ec3bc396
AD
6575 exp -> exp . '+' exp (rule 1)
6576 exp -> exp . '-' exp (rule 2)
6577 exp -> exp . '*' exp (rule 3)
6578 exp -> exp . '/' exp (rule 4)
6579
2a8d363a
AD
6580 $ shift, and go to state 3
6581 '+' shift, and go to state 4
6582 '-' shift, and go to state 5
6583 '*' shift, and go to state 6
6584 '/' shift, and go to state 7
ec3bc396
AD
6585@end example
6586
6587@noindent
6588In state 2, the automaton can only shift a symbol. For instance,
742e4900 6589because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6590@samp{+}, it will be shifted on the parse stack, and the automaton
6591control will jump to state 4, corresponding to the item @samp{exp -> exp
6592'+' . exp}. Since there is no default action, any other token than
6e649e65 6593those listed above will trigger a syntax error.
ec3bc396
AD
6594
6595The state 3 is named the @dfn{final state}, or the @dfn{accepting
6596state}:
6597
6598@example
6599state 3
6600
88bce5a2 6601 $accept -> exp $ . (rule 0)
ec3bc396 6602
2a8d363a 6603 $default accept
ec3bc396
AD
6604@end example
6605
6606@noindent
6607the initial rule is completed (the start symbol and the end
6608of input were read), the parsing exits successfully.
6609
6610The interpretation of states 4 to 7 is straightforward, and is left to
6611the reader.
6612
6613@example
6614state 4
6615
6616 exp -> exp '+' . exp (rule 1)
6617
2a8d363a 6618 NUM shift, and go to state 1
ec3bc396 6619
2a8d363a 6620 exp go to state 8
ec3bc396
AD
6621
6622state 5
6623
6624 exp -> exp '-' . exp (rule 2)
6625
2a8d363a 6626 NUM shift, and go to state 1
ec3bc396 6627
2a8d363a 6628 exp go to state 9
ec3bc396
AD
6629
6630state 6
6631
6632 exp -> exp '*' . exp (rule 3)
6633
2a8d363a 6634 NUM shift, and go to state 1
ec3bc396 6635
2a8d363a 6636 exp go to state 10
ec3bc396
AD
6637
6638state 7
6639
6640 exp -> exp '/' . exp (rule 4)
6641
2a8d363a 6642 NUM shift, and go to state 1
ec3bc396 6643
2a8d363a 6644 exp go to state 11
ec3bc396
AD
6645@end example
6646
5a99098d
PE
6647As was announced in beginning of the report, @samp{State 8 conflicts:
66481 shift/reduce}:
ec3bc396
AD
6649
6650@example
6651state 8
6652
6653 exp -> exp . '+' exp (rule 1)
6654 exp -> exp '+' exp . (rule 1)
6655 exp -> exp . '-' exp (rule 2)
6656 exp -> exp . '*' exp (rule 3)
6657 exp -> exp . '/' exp (rule 4)
6658
2a8d363a
AD
6659 '*' shift, and go to state 6
6660 '/' shift, and go to state 7
ec3bc396 6661
2a8d363a
AD
6662 '/' [reduce using rule 1 (exp)]
6663 $default reduce using rule 1 (exp)
ec3bc396
AD
6664@end example
6665
742e4900 6666Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6667either shifting (and going to state 7), or reducing rule 1. The
6668conflict means that either the grammar is ambiguous, or the parser lacks
6669information to make the right decision. Indeed the grammar is
6670ambiguous, as, since we did not specify the precedence of @samp{/}, the
6671sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6672NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6673NUM}, which corresponds to reducing rule 1.
6674
c827f760 6675Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6676arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6677Shift/Reduce Conflicts}. Discarded actions are reported in between
6678square brackets.
6679
6680Note that all the previous states had a single possible action: either
6681shifting the next token and going to the corresponding state, or
6682reducing a single rule. In the other cases, i.e., when shifting
6683@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6684possible, the lookahead is required to select the action. State 8 is
6685one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6686is shifting, otherwise the action is reducing rule 1. In other words,
6687the first two items, corresponding to rule 1, are not eligible when the
742e4900 6688lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6689precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6690with some set of possible lookahead tokens. When run with
6691@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6692
6693@example
6694state 8
6695
6696 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6697 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6698 exp -> exp . '-' exp (rule 2)
6699 exp -> exp . '*' exp (rule 3)
6700 exp -> exp . '/' exp (rule 4)
6701
6702 '*' shift, and go to state 6
6703 '/' shift, and go to state 7
6704
6705 '/' [reduce using rule 1 (exp)]
6706 $default reduce using rule 1 (exp)
6707@end example
6708
6709The remaining states are similar:
6710
6711@example
6712state 9
6713
6714 exp -> exp . '+' exp (rule 1)
6715 exp -> exp . '-' exp (rule 2)
6716 exp -> exp '-' exp . (rule 2)
6717 exp -> exp . '*' exp (rule 3)
6718 exp -> exp . '/' exp (rule 4)
6719
2a8d363a
AD
6720 '*' shift, and go to state 6
6721 '/' shift, and go to state 7
ec3bc396 6722
2a8d363a
AD
6723 '/' [reduce using rule 2 (exp)]
6724 $default reduce using rule 2 (exp)
ec3bc396
AD
6725
6726state 10
6727
6728 exp -> exp . '+' exp (rule 1)
6729 exp -> exp . '-' exp (rule 2)
6730 exp -> exp . '*' exp (rule 3)
6731 exp -> exp '*' exp . (rule 3)
6732 exp -> exp . '/' exp (rule 4)
6733
2a8d363a 6734 '/' shift, and go to state 7
ec3bc396 6735
2a8d363a
AD
6736 '/' [reduce using rule 3 (exp)]
6737 $default reduce using rule 3 (exp)
ec3bc396
AD
6738
6739state 11
6740
6741 exp -> exp . '+' exp (rule 1)
6742 exp -> exp . '-' exp (rule 2)
6743 exp -> exp . '*' exp (rule 3)
6744 exp -> exp . '/' exp (rule 4)
6745 exp -> exp '/' exp . (rule 4)
6746
2a8d363a
AD
6747 '+' shift, and go to state 4
6748 '-' shift, and go to state 5
6749 '*' shift, and go to state 6
6750 '/' shift, and go to state 7
ec3bc396 6751
2a8d363a
AD
6752 '+' [reduce using rule 4 (exp)]
6753 '-' [reduce using rule 4 (exp)]
6754 '*' [reduce using rule 4 (exp)]
6755 '/' [reduce using rule 4 (exp)]
6756 $default reduce using rule 4 (exp)
ec3bc396
AD
6757@end example
6758
6759@noindent
fa7e68c3
PE
6760Observe that state 11 contains conflicts not only due to the lack of
6761precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6762@samp{*}, but also because the
ec3bc396
AD
6763associativity of @samp{/} is not specified.
6764
6765
6766@node Tracing
6767@section Tracing Your Parser
bfa74976
RS
6768@findex yydebug
6769@cindex debugging
6770@cindex tracing the parser
6771
6772If a Bison grammar compiles properly but doesn't do what you want when it
6773runs, the @code{yydebug} parser-trace feature can help you figure out why.
6774
3ded9a63
AD
6775There are several means to enable compilation of trace facilities:
6776
6777@table @asis
6778@item the macro @code{YYDEBUG}
6779@findex YYDEBUG
6780Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6781parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6782@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6783YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6784Prologue}).
6785
6786@item the option @option{-t}, @option{--debug}
6787Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6788,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6789
6790@item the directive @samp{%debug}
6791@findex %debug
6792Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6793Declaration Summary}). This is a Bison extension, which will prove
6794useful when Bison will output parsers for languages that don't use a
c827f760
PE
6795preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6796you, this is
3ded9a63
AD
6797the preferred solution.
6798@end table
6799
6800We suggest that you always enable the debug option so that debugging is
6801always possible.
bfa74976 6802
02a81e05 6803The trace facility outputs messages with macro calls of the form
e2742e46 6804@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6805@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6806arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6807define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 6808and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6809
6810Once you have compiled the program with trace facilities, the way to
6811request a trace is to store a nonzero value in the variable @code{yydebug}.
6812You can do this by making the C code do it (in @code{main}, perhaps), or
6813you can alter the value with a C debugger.
6814
6815Each step taken by the parser when @code{yydebug} is nonzero produces a
6816line or two of trace information, written on @code{stderr}. The trace
6817messages tell you these things:
6818
6819@itemize @bullet
6820@item
6821Each time the parser calls @code{yylex}, what kind of token was read.
6822
6823@item
6824Each time a token is shifted, the depth and complete contents of the
6825state stack (@pxref{Parser States}).
6826
6827@item
6828Each time a rule is reduced, which rule it is, and the complete contents
6829of the state stack afterward.
6830@end itemize
6831
6832To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6833produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6834Bison}). This file shows the meaning of each state in terms of
6835positions in various rules, and also what each state will do with each
6836possible input token. As you read the successive trace messages, you
6837can see that the parser is functioning according to its specification in
6838the listing file. Eventually you will arrive at the place where
6839something undesirable happens, and you will see which parts of the
6840grammar are to blame.
bfa74976
RS
6841
6842The parser file is a C program and you can use C debuggers on it, but it's
6843not easy to interpret what it is doing. The parser function is a
6844finite-state machine interpreter, and aside from the actions it executes
6845the same code over and over. Only the values of variables show where in
6846the grammar it is working.
6847
6848@findex YYPRINT
6849The debugging information normally gives the token type of each token
6850read, but not its semantic value. You can optionally define a macro
6851named @code{YYPRINT} to provide a way to print the value. If you define
6852@code{YYPRINT}, it should take three arguments. The parser will pass a
6853standard I/O stream, the numeric code for the token type, and the token
6854value (from @code{yylval}).
6855
6856Here is an example of @code{YYPRINT} suitable for the multi-function
6857calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6858
6859@smallexample
38a92d50
PE
6860%@{
6861 static void print_token_value (FILE *, int, YYSTYPE);
6862 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6863%@}
6864
6865@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6866
6867static void
831d3c99 6868print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6869@{
6870 if (type == VAR)
d3c4e709 6871 fprintf (file, "%s", value.tptr->name);
bfa74976 6872 else if (type == NUM)
d3c4e709 6873 fprintf (file, "%d", value.val);
bfa74976
RS
6874@}
6875@end smallexample
6876
ec3bc396
AD
6877@c ================================================= Invoking Bison
6878
342b8b6e 6879@node Invocation
bfa74976
RS
6880@chapter Invoking Bison
6881@cindex invoking Bison
6882@cindex Bison invocation
6883@cindex options for invoking Bison
6884
6885The usual way to invoke Bison is as follows:
6886
6887@example
6888bison @var{infile}
6889@end example
6890
6891Here @var{infile} is the grammar file name, which usually ends in
6892@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6893with @samp{.tab.c} and removing any leading directory. Thus, the
6894@samp{bison foo.y} file name yields
6895@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6896@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6897C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6898or @file{foo.y++}. Then, the output files will take an extension like
6899the given one as input (respectively @file{foo.tab.cpp} and
6900@file{foo.tab.c++}).
fa4d969f 6901This feature takes effect with all options that manipulate file names like
234a3be3
AD
6902@samp{-o} or @samp{-d}.
6903
6904For example :
6905
6906@example
6907bison -d @var{infile.yxx}
6908@end example
84163231 6909@noindent
72d2299c 6910will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6911
6912@example
b56471a6 6913bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6914@end example
84163231 6915@noindent
234a3be3
AD
6916will produce @file{output.c++} and @file{outfile.h++}.
6917
397ec073
PE
6918For compatibility with @acronym{POSIX}, the standard Bison
6919distribution also contains a shell script called @command{yacc} that
6920invokes Bison with the @option{-y} option.
6921
bfa74976 6922@menu
13863333 6923* Bison Options:: All the options described in detail,
c827f760 6924 in alphabetical order by short options.
bfa74976 6925* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6926* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6927@end menu
6928
342b8b6e 6929@node Bison Options
bfa74976
RS
6930@section Bison Options
6931
6932Bison supports both traditional single-letter options and mnemonic long
6933option names. Long option names are indicated with @samp{--} instead of
6934@samp{-}. Abbreviations for option names are allowed as long as they
6935are unique. When a long option takes an argument, like
6936@samp{--file-prefix}, connect the option name and the argument with
6937@samp{=}.
6938
6939Here is a list of options that can be used with Bison, alphabetized by
6940short option. It is followed by a cross key alphabetized by long
6941option.
6942
89cab50d
AD
6943@c Please, keep this ordered as in `bison --help'.
6944@noindent
6945Operations modes:
6946@table @option
6947@item -h
6948@itemx --help
6949Print a summary of the command-line options to Bison and exit.
bfa74976 6950
89cab50d
AD
6951@item -V
6952@itemx --version
6953Print the version number of Bison and exit.
bfa74976 6954
f7ab6a50
PE
6955@item --print-localedir
6956Print the name of the directory containing locale-dependent data.
6957
89cab50d
AD
6958@item -y
6959@itemx --yacc
54662697
PE
6960Act more like the traditional Yacc command. This can cause
6961different diagnostics to be generated, and may change behavior in
6962other minor ways. Most importantly, imitate Yacc's output
6963file name conventions, so that the parser output file is called
89cab50d 6964@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
6965@file{y.tab.h}.
6966Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
6967statements in addition to an @code{enum} to associate token numbers with token
6968names.
6969Thus, the following shell script can substitute for Yacc, and the Bison
6970distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 6971
89cab50d 6972@example
397ec073 6973#! /bin/sh
26e06a21 6974bison -y "$@@"
89cab50d 6975@end example
54662697
PE
6976
6977The @option{-y}/@option{--yacc} option is intended for use with
6978traditional Yacc grammars. If your grammar uses a Bison extension
6979like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6980this option is specified.
6981
89cab50d
AD
6982@end table
6983
6984@noindent
6985Tuning the parser:
6986
6987@table @option
cd5bd6ac
AD
6988@item -S @var{file}
6989@itemx --skeleton=@var{file}
6990Specify the skeleton to use. You probably don't need this option unless
6991you are developing Bison.
6992
89cab50d
AD
6993@item -t
6994@itemx --debug
4947ebdb
PE
6995In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6996already defined, so that the debugging facilities are compiled.
ec3bc396 6997@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6998
6999@item --locations
d8988b2f 7000Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7001
7002@item -p @var{prefix}
7003@itemx --name-prefix=@var{prefix}
d8988b2f
AD
7004Pretend that @code{%name-prefix="@var{prefix}"} was specified.
7005@xref{Decl Summary}.
bfa74976
RS
7006
7007@item -l
7008@itemx --no-lines
7009Don't put any @code{#line} preprocessor commands in the parser file.
7010Ordinarily Bison puts them in the parser file so that the C compiler
7011and debuggers will associate errors with your source file, the
7012grammar file. This option causes them to associate errors with the
95e742f7 7013parser file, treating it as an independent source file in its own right.
bfa74976 7014
931c7513
RS
7015@item -n
7016@itemx --no-parser
d8988b2f 7017Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7018
89cab50d
AD
7019@item -k
7020@itemx --token-table
d8988b2f 7021Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7022@end table
bfa74976 7023
89cab50d
AD
7024@noindent
7025Adjust the output:
bfa74976 7026
89cab50d
AD
7027@table @option
7028@item -d
d8988b2f
AD
7029@itemx --defines
7030Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7031file containing macro definitions for the token type names defined in
4bfd5e4e 7032the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7033
342b8b6e 7034@item --defines=@var{defines-file}
d8988b2f 7035Same as above, but save in the file @var{defines-file}.
342b8b6e 7036
89cab50d
AD
7037@item -b @var{file-prefix}
7038@itemx --file-prefix=@var{prefix}
9c437126 7039Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7040for all Bison output file names. @xref{Decl Summary}.
bfa74976 7041
ec3bc396
AD
7042@item -r @var{things}
7043@itemx --report=@var{things}
7044Write an extra output file containing verbose description of the comma
7045separated list of @var{things} among:
7046
7047@table @code
7048@item state
7049Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7050@acronym{LALR} automaton.
ec3bc396 7051
742e4900 7052@item lookahead
ec3bc396 7053Implies @code{state} and augments the description of the automaton with
742e4900 7054each rule's lookahead set.
ec3bc396
AD
7055
7056@item itemset
7057Implies @code{state} and augments the description of the automaton with
7058the full set of items for each state, instead of its core only.
7059@end table
7060
bfa74976
RS
7061@item -v
7062@itemx --verbose
9c437126 7063Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7064file containing verbose descriptions of the grammar and
72d2299c 7065parser. @xref{Decl Summary}.
bfa74976 7066
fa4d969f
PE
7067@item -o @var{file}
7068@itemx --output=@var{file}
7069Specify the @var{file} for the parser file.
bfa74976 7070
fa4d969f 7071The other output files' names are constructed from @var{file} as
d8988b2f 7072described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7073
7074@item -g
35fe0834
PE
7075Output a graphical representation of the @acronym{LALR}(1) grammar
7076automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7077@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7078If the grammar file is @file{foo.y}, the output file will
7079be @file{foo.dot}.
342b8b6e
AD
7080
7081@item --graph=@var{graph-file}
72d2299c
PE
7082The behavior of @var{--graph} is the same than @samp{-g}. The only
7083difference is that it has an optional argument which is the name of
fa4d969f 7084the output graph file.
bfa74976
RS
7085@end table
7086
342b8b6e 7087@node Option Cross Key
bfa74976
RS
7088@section Option Cross Key
7089
aa08666d 7090@c FIXME: How about putting the directives too?
bfa74976
RS
7091Here is a list of options, alphabetized by long option, to help you find
7092the corresponding short option.
7093
aa08666d
AD
7094@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7095@headitem Long Option @tab Short Option
7096@item @option{--debug} @tab @option{-t}
7097@item @option{--defines=@var{defines-file}} @tab @option{-d}
7098@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7099@item @option{--graph=@var{graph-file}} @tab @option{-d}
7100@item @option{--help} @tab @option{-h}
7101@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7102@item @option{--no-lines} @tab @option{-l}
7103@item @option{--no-parser} @tab @option{-n}
7104@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7105@item @option{--print-localedir} @tab
7106@item @option{--token-table} @tab @option{-k}
7107@item @option{--verbose} @tab @option{-v}
7108@item @option{--version} @tab @option{-V}
7109@item @option{--yacc} @tab @option{-y}
7110@end multitable
bfa74976 7111
93dd49ab
PE
7112@node Yacc Library
7113@section Yacc Library
7114
7115The Yacc library contains default implementations of the
7116@code{yyerror} and @code{main} functions. These default
7117implementations are normally not useful, but @acronym{POSIX} requires
7118them. To use the Yacc library, link your program with the
7119@option{-ly} option. Note that Bison's implementation of the Yacc
7120library is distributed under the terms of the @acronym{GNU} General
7121Public License (@pxref{Copying}).
7122
7123If you use the Yacc library's @code{yyerror} function, you should
7124declare @code{yyerror} as follows:
7125
7126@example
7127int yyerror (char const *);
7128@end example
7129
7130Bison ignores the @code{int} value returned by this @code{yyerror}.
7131If you use the Yacc library's @code{main} function, your
7132@code{yyparse} function should have the following type signature:
7133
7134@example
7135int yyparse (void);
7136@end example
7137
12545799
AD
7138@c ================================================= C++ Bison
7139
7140@node C++ Language Interface
7141@chapter C++ Language Interface
7142
7143@menu
7144* C++ Parsers:: The interface to generate C++ parser classes
7145* A Complete C++ Example:: Demonstrating their use
7146@end menu
7147
7148@node C++ Parsers
7149@section C++ Parsers
7150
7151@menu
7152* C++ Bison Interface:: Asking for C++ parser generation
7153* C++ Semantic Values:: %union vs. C++
7154* C++ Location Values:: The position and location classes
7155* C++ Parser Interface:: Instantiating and running the parser
7156* C++ Scanner Interface:: Exchanges between yylex and parse
7157@end menu
7158
7159@node C++ Bison Interface
7160@subsection C++ Bison Interface
7161@c - %skeleton "lalr1.cc"
7162@c - Always pure
7163@c - initial action
7164
aa08666d
AD
7165The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7166select it, you may either pass the option @option{--skeleton=lalr1.cc}
7167to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7168grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7169entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7170directive to change the namespace name, see @ref{Decl Summary}. The
7171various classes are generated in the following files:
7172
12545799
AD
7173@table @file
7174@item position.hh
7175@itemx location.hh
7176The definition of the classes @code{position} and @code{location},
7177used for location tracking. @xref{C++ Location Values}.
7178
7179@item stack.hh
7180An auxiliary class @code{stack} used by the parser.
7181
fa4d969f
PE
7182@item @var{file}.hh
7183@itemx @var{file}.cc
cd8b5791
AD
7184(Assuming the extension of the input file was @samp{.yy}.) The
7185declaration and implementation of the C++ parser class. The basename
7186and extension of these two files follow the same rules as with regular C
7187parsers (@pxref{Invocation}).
12545799 7188
cd8b5791
AD
7189The header is @emph{mandatory}; you must either pass
7190@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7191@samp{%defines} directive.
7192@end table
7193
7194All these files are documented using Doxygen; run @command{doxygen}
7195for a complete and accurate documentation.
7196
7197@node C++ Semantic Values
7198@subsection C++ Semantic Values
7199@c - No objects in unions
7200@c - YSTYPE
7201@c - Printer and destructor
7202
7203The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7204Collection of Value Types}. In particular it produces a genuine
7205@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7206within pseudo-unions (similar to Boost variants) might be implemented to
7207alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7208@itemize @minus
7209@item
fb9712a9
AD
7210The type @code{YYSTYPE} is defined but its use is discouraged: rather
7211you should refer to the parser's encapsulated type
7212@code{yy::parser::semantic_type}.
12545799
AD
7213@item
7214Non POD (Plain Old Data) types cannot be used. C++ forbids any
7215instance of classes with constructors in unions: only @emph{pointers}
7216to such objects are allowed.
7217@end itemize
7218
7219Because objects have to be stored via pointers, memory is not
7220reclaimed automatically: using the @code{%destructor} directive is the
7221only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7222Symbols}.
7223
7224
7225@node C++ Location Values
7226@subsection C++ Location Values
7227@c - %locations
7228@c - class Position
7229@c - class Location
b47dbebe 7230@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7231
7232When the directive @code{%locations} is used, the C++ parser supports
7233location tracking, see @ref{Locations, , Locations Overview}. Two
7234auxiliary classes define a @code{position}, a single point in a file,
7235and a @code{location}, a range composed of a pair of
7236@code{position}s (possibly spanning several files).
7237
fa4d969f 7238@deftypemethod {position} {std::string*} file
12545799
AD
7239The name of the file. It will always be handled as a pointer, the
7240parser will never duplicate nor deallocate it. As an experimental
7241feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7242"filename_type" "@var{type}"}.
12545799
AD
7243@end deftypemethod
7244
7245@deftypemethod {position} {unsigned int} line
7246The line, starting at 1.
7247@end deftypemethod
7248
7249@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7250Advance by @var{height} lines, resetting the column number.
7251@end deftypemethod
7252
7253@deftypemethod {position} {unsigned int} column
7254The column, starting at 0.
7255@end deftypemethod
7256
7257@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7258Advance by @var{width} columns, without changing the line number.
7259@end deftypemethod
7260
7261@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7262@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7263@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7264@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7265Various forms of syntactic sugar for @code{columns}.
7266@end deftypemethod
7267
7268@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7269Report @var{p} on @var{o} like this:
fa4d969f
PE
7270@samp{@var{file}:@var{line}.@var{column}}, or
7271@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7272@end deftypemethod
7273
7274@deftypemethod {location} {position} begin
7275@deftypemethodx {location} {position} end
7276The first, inclusive, position of the range, and the first beyond.
7277@end deftypemethod
7278
7279@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7280@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7281Advance the @code{end} position.
7282@end deftypemethod
7283
7284@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7285@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7286@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7287Various forms of syntactic sugar.
7288@end deftypemethod
7289
7290@deftypemethod {location} {void} step ()
7291Move @code{begin} onto @code{end}.
7292@end deftypemethod
7293
7294
7295@node C++ Parser Interface
7296@subsection C++ Parser Interface
7297@c - define parser_class_name
7298@c - Ctor
7299@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7300@c debug_stream.
7301@c - Reporting errors
7302
7303The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7304declare and define the parser class in the namespace @code{yy}. The
7305class name defaults to @code{parser}, but may be changed using
7306@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7307this class is detailed below. It can be extended using the
12545799
AD
7308@code{%parse-param} feature: its semantics is slightly changed since
7309it describes an additional member of the parser class, and an
7310additional argument for its constructor.
7311
8a0adb01
AD
7312@defcv {Type} {parser} {semantic_value_type}
7313@defcvx {Type} {parser} {location_value_type}
12545799 7314The types for semantics value and locations.
8a0adb01 7315@end defcv
12545799
AD
7316
7317@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7318Build a new parser object. There are no arguments by default, unless
7319@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7320@end deftypemethod
7321
7322@deftypemethod {parser} {int} parse ()
7323Run the syntactic analysis, and return 0 on success, 1 otherwise.
7324@end deftypemethod
7325
7326@deftypemethod {parser} {std::ostream&} debug_stream ()
7327@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7328Get or set the stream used for tracing the parsing. It defaults to
7329@code{std::cerr}.
7330@end deftypemethod
7331
7332@deftypemethod {parser} {debug_level_type} debug_level ()
7333@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7334Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7335or nonzero, full tracing.
12545799
AD
7336@end deftypemethod
7337
7338@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7339The definition for this member function must be supplied by the user:
7340the parser uses it to report a parser error occurring at @var{l},
7341described by @var{m}.
7342@end deftypemethod
7343
7344
7345@node C++ Scanner Interface
7346@subsection C++ Scanner Interface
7347@c - prefix for yylex.
7348@c - Pure interface to yylex
7349@c - %lex-param
7350
7351The parser invokes the scanner by calling @code{yylex}. Contrary to C
7352parsers, C++ parsers are always pure: there is no point in using the
7353@code{%pure-parser} directive. Therefore the interface is as follows.
7354
7355@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7356Return the next token. Its type is the return value, its semantic
7357value and location being @var{yylval} and @var{yylloc}. Invocations of
7358@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7359@end deftypemethod
7360
7361
7362@node A Complete C++ Example
7363@section A Complete C++ Example
7364
7365This section demonstrates the use of a C++ parser with a simple but
7366complete example. This example should be available on your system,
7367ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7368focuses on the use of Bison, therefore the design of the various C++
7369classes is very naive: no accessors, no encapsulation of members etc.
7370We will use a Lex scanner, and more precisely, a Flex scanner, to
7371demonstrate the various interaction. A hand written scanner is
7372actually easier to interface with.
7373
7374@menu
7375* Calc++ --- C++ Calculator:: The specifications
7376* Calc++ Parsing Driver:: An active parsing context
7377* Calc++ Parser:: A parser class
7378* Calc++ Scanner:: A pure C++ Flex scanner
7379* Calc++ Top Level:: Conducting the band
7380@end menu
7381
7382@node Calc++ --- C++ Calculator
7383@subsection Calc++ --- C++ Calculator
7384
7385Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7386expression, possibly preceded by variable assignments. An
12545799
AD
7387environment containing possibly predefined variables such as
7388@code{one} and @code{two}, is exchanged with the parser. An example
7389of valid input follows.
7390
7391@example
7392three := 3
7393seven := one + two * three
7394seven * seven
7395@end example
7396
7397@node Calc++ Parsing Driver
7398@subsection Calc++ Parsing Driver
7399@c - An env
7400@c - A place to store error messages
7401@c - A place for the result
7402
7403To support a pure interface with the parser (and the scanner) the
7404technique of the ``parsing context'' is convenient: a structure
7405containing all the data to exchange. Since, in addition to simply
7406launch the parsing, there are several auxiliary tasks to execute (open
7407the file for parsing, instantiate the parser etc.), we recommend
7408transforming the simple parsing context structure into a fully blown
7409@dfn{parsing driver} class.
7410
7411The declaration of this driver class, @file{calc++-driver.hh}, is as
7412follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7413required standard library components, and the declaration of the parser
7414class.
12545799 7415
1c59e0a1 7416@comment file: calc++-driver.hh
12545799
AD
7417@example
7418#ifndef CALCXX_DRIVER_HH
7419# define CALCXX_DRIVER_HH
7420# include <string>
7421# include <map>
fb9712a9 7422# include "calc++-parser.hh"
12545799
AD
7423@end example
7424
12545799
AD
7425
7426@noindent
7427Then comes the declaration of the scanning function. Flex expects
7428the signature of @code{yylex} to be defined in the macro
7429@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7430factor both as follows.
1c59e0a1
AD
7431
7432@comment file: calc++-driver.hh
12545799 7433@example
3dc5e96b
PE
7434// Tell Flex the lexer's prototype ...
7435# define YY_DECL \
c095d689
AD
7436 yy::calcxx_parser::token_type \
7437 yylex (yy::calcxx_parser::semantic_type* yylval, \
7438 yy::calcxx_parser::location_type* yylloc, \
7439 calcxx_driver& driver)
12545799
AD
7440// ... and declare it for the parser's sake.
7441YY_DECL;
7442@end example
7443
7444@noindent
7445The @code{calcxx_driver} class is then declared with its most obvious
7446members.
7447
1c59e0a1 7448@comment file: calc++-driver.hh
12545799
AD
7449@example
7450// Conducting the whole scanning and parsing of Calc++.
7451class calcxx_driver
7452@{
7453public:
7454 calcxx_driver ();
7455 virtual ~calcxx_driver ();
7456
7457 std::map<std::string, int> variables;
7458
7459 int result;
7460@end example
7461
7462@noindent
7463To encapsulate the coordination with the Flex scanner, it is useful to
7464have two members function to open and close the scanning phase.
12545799 7465
1c59e0a1 7466@comment file: calc++-driver.hh
12545799
AD
7467@example
7468 // Handling the scanner.
7469 void scan_begin ();
7470 void scan_end ();
7471 bool trace_scanning;
7472@end example
7473
7474@noindent
7475Similarly for the parser itself.
7476
1c59e0a1 7477@comment file: calc++-driver.hh
12545799
AD
7478@example
7479 // Handling the parser.
7480 void parse (const std::string& f);
7481 std::string file;
7482 bool trace_parsing;
7483@end example
7484
7485@noindent
7486To demonstrate pure handling of parse errors, instead of simply
7487dumping them on the standard error output, we will pass them to the
7488compiler driver using the following two member functions. Finally, we
7489close the class declaration and CPP guard.
7490
1c59e0a1 7491@comment file: calc++-driver.hh
12545799
AD
7492@example
7493 // Error handling.
7494 void error (const yy::location& l, const std::string& m);
7495 void error (const std::string& m);
7496@};
7497#endif // ! CALCXX_DRIVER_HH
7498@end example
7499
7500The implementation of the driver is straightforward. The @code{parse}
7501member function deserves some attention. The @code{error} functions
7502are simple stubs, they should actually register the located error
7503messages and set error state.
7504
1c59e0a1 7505@comment file: calc++-driver.cc
12545799
AD
7506@example
7507#include "calc++-driver.hh"
7508#include "calc++-parser.hh"
7509
7510calcxx_driver::calcxx_driver ()
7511 : trace_scanning (false), trace_parsing (false)
7512@{
7513 variables["one"] = 1;
7514 variables["two"] = 2;
7515@}
7516
7517calcxx_driver::~calcxx_driver ()
7518@{
7519@}
7520
7521void
7522calcxx_driver::parse (const std::string &f)
7523@{
7524 file = f;
7525 scan_begin ();
7526 yy::calcxx_parser parser (*this);
7527 parser.set_debug_level (trace_parsing);
7528 parser.parse ();
7529 scan_end ();
7530@}
7531
7532void
7533calcxx_driver::error (const yy::location& l, const std::string& m)
7534@{
7535 std::cerr << l << ": " << m << std::endl;
7536@}
7537
7538void
7539calcxx_driver::error (const std::string& m)
7540@{
7541 std::cerr << m << std::endl;
7542@}
7543@end example
7544
7545@node Calc++ Parser
7546@subsection Calc++ Parser
7547
b50d2359
AD
7548The parser definition file @file{calc++-parser.yy} starts by asking for
7549the C++ LALR(1) skeleton, the creation of the parser header file, and
7550specifies the name of the parser class. Because the C++ skeleton
7551changed several times, it is safer to require the version you designed
7552the grammar for.
1c59e0a1
AD
7553
7554@comment file: calc++-parser.yy
12545799
AD
7555@example
7556%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7557%require "2.1a"
12545799 7558%defines
fb9712a9
AD
7559%define "parser_class_name" "calcxx_parser"
7560@end example
7561
7562@noindent
34f98f46 7563@findex %start-header
fb9712a9
AD
7564Then come the declarations/inclusions needed to define the
7565@code{%union}. Because the parser uses the parsing driver and
7566reciprocally, both cannot include the header of the other. Because the
7567driver's header needs detailed knowledge about the parser class (in
7568particular its inner types), it is the parser's header which will simply
7569use a forward declaration of the driver.
34f98f46 7570@xref{Table of Symbols, ,%start-header}.
fb9712a9
AD
7571
7572@comment file: calc++-parser.yy
7573@example
34f98f46 7574%start-header @{
12545799 7575# include <string>
fb9712a9 7576class calcxx_driver;
9bc0dd67 7577@}
12545799
AD
7578@end example
7579
7580@noindent
7581The driver is passed by reference to the parser and to the scanner.
7582This provides a simple but effective pure interface, not relying on
7583global variables.
7584
1c59e0a1 7585@comment file: calc++-parser.yy
12545799
AD
7586@example
7587// The parsing context.
7588%parse-param @{ calcxx_driver& driver @}
7589%lex-param @{ calcxx_driver& driver @}
7590@end example
7591
7592@noindent
7593Then we request the location tracking feature, and initialize the
7594first location's file name. Afterwards new locations are computed
7595relatively to the previous locations: the file name will be
7596automatically propagated.
7597
1c59e0a1 7598@comment file: calc++-parser.yy
12545799
AD
7599@example
7600%locations
7601%initial-action
7602@{
7603 // Initialize the initial location.
b47dbebe 7604 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7605@};
7606@end example
7607
7608@noindent
7609Use the two following directives to enable parser tracing and verbose
7610error messages.
7611
1c59e0a1 7612@comment file: calc++-parser.yy
12545799
AD
7613@example
7614%debug
7615%error-verbose
7616@end example
7617
7618@noindent
7619Semantic values cannot use ``real'' objects, but only pointers to
7620them.
7621
1c59e0a1 7622@comment file: calc++-parser.yy
12545799
AD
7623@example
7624// Symbols.
7625%union
7626@{
7627 int ival;
7628 std::string *sval;
7629@};
7630@end example
7631
fb9712a9 7632@noindent
34f98f46
JD
7633@findex %after-header
7634The code between @samp{%after-header @{} and @samp{@}} is output in the
7635@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7636
7637@comment file: calc++-parser.yy
7638@example
34f98f46 7639%after-header @{
fb9712a9 7640# include "calc++-driver.hh"
34f98f46 7641@}
fb9712a9
AD
7642@end example
7643
7644
12545799
AD
7645@noindent
7646The token numbered as 0 corresponds to end of file; the following line
7647allows for nicer error messages referring to ``end of file'' instead
7648of ``$end''. Similarly user friendly named are provided for each
7649symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7650avoid name clashes.
7651
1c59e0a1 7652@comment file: calc++-parser.yy
12545799 7653@example
fb9712a9
AD
7654%token END 0 "end of file"
7655%token ASSIGN ":="
7656%token <sval> IDENTIFIER "identifier"
7657%token <ival> NUMBER "number"
7658%type <ival> exp "expression"
12545799
AD
7659@end example
7660
7661@noindent
7662To enable memory deallocation during error recovery, use
7663@code{%destructor}.
7664
287c78f6 7665@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7666@comment file: calc++-parser.yy
12545799
AD
7667@example
7668%printer @{ debug_stream () << *$$; @} "identifier"
7669%destructor @{ delete $$; @} "identifier"
7670
7671%printer @{ debug_stream () << $$; @} "number" "expression"
7672@end example
7673
7674@noindent
7675The grammar itself is straightforward.
7676
1c59e0a1 7677@comment file: calc++-parser.yy
12545799
AD
7678@example
7679%%
7680%start unit;
7681unit: assignments exp @{ driver.result = $2; @};
7682
7683assignments: assignments assignment @{@}
9d9b8b70 7684 | /* Nothing. */ @{@};
12545799 7685
3dc5e96b
PE
7686assignment:
7687 "identifier" ":=" exp
7688 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7689
7690%left '+' '-';
7691%left '*' '/';
7692exp: exp '+' exp @{ $$ = $1 + $3; @}
7693 | exp '-' exp @{ $$ = $1 - $3; @}
7694 | exp '*' exp @{ $$ = $1 * $3; @}
7695 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7696 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 7697 | "number" @{ $$ = $1; @};
12545799
AD
7698%%
7699@end example
7700
7701@noindent
7702Finally the @code{error} member function registers the errors to the
7703driver.
7704
1c59e0a1 7705@comment file: calc++-parser.yy
12545799
AD
7706@example
7707void
1c59e0a1
AD
7708yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7709 const std::string& m)
12545799
AD
7710@{
7711 driver.error (l, m);
7712@}
7713@end example
7714
7715@node Calc++ Scanner
7716@subsection Calc++ Scanner
7717
7718The Flex scanner first includes the driver declaration, then the
7719parser's to get the set of defined tokens.
7720
1c59e0a1 7721@comment file: calc++-scanner.ll
12545799
AD
7722@example
7723%@{ /* -*- C++ -*- */
04098407
PE
7724# include <cstdlib>
7725# include <errno.h>
7726# include <limits.h>
12545799
AD
7727# include <string>
7728# include "calc++-driver.hh"
7729# include "calc++-parser.hh"
eaea13f5
PE
7730
7731/* Work around an incompatibility in flex (at least versions
7732 2.5.31 through 2.5.33): it generates code that does
7733 not conform to C89. See Debian bug 333231
7734 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7735# undef yywrap
7736# define yywrap() 1
eaea13f5 7737
c095d689
AD
7738/* By default yylex returns int, we use token_type.
7739 Unfortunately yyterminate by default returns 0, which is
7740 not of token_type. */
8c5b881d 7741#define yyterminate() return token::END
12545799
AD
7742%@}
7743@end example
7744
7745@noindent
7746Because there is no @code{#include}-like feature we don't need
7747@code{yywrap}, we don't need @code{unput} either, and we parse an
7748actual file, this is not an interactive session with the user.
7749Finally we enable the scanner tracing features.
7750
1c59e0a1 7751@comment file: calc++-scanner.ll
12545799
AD
7752@example
7753%option noyywrap nounput batch debug
7754@end example
7755
7756@noindent
7757Abbreviations allow for more readable rules.
7758
1c59e0a1 7759@comment file: calc++-scanner.ll
12545799
AD
7760@example
7761id [a-zA-Z][a-zA-Z_0-9]*
7762int [0-9]+
7763blank [ \t]
7764@end example
7765
7766@noindent
9d9b8b70 7767The following paragraph suffices to track locations accurately. Each
12545799
AD
7768time @code{yylex} is invoked, the begin position is moved onto the end
7769position. Then when a pattern is matched, the end position is
7770advanced of its width. In case it matched ends of lines, the end
7771cursor is adjusted, and each time blanks are matched, the begin cursor
7772is moved onto the end cursor to effectively ignore the blanks
7773preceding tokens. Comments would be treated equally.
7774
1c59e0a1 7775@comment file: calc++-scanner.ll
12545799 7776@example
828c373b
AD
7777%@{
7778# define YY_USER_ACTION yylloc->columns (yyleng);
7779%@}
12545799
AD
7780%%
7781%@{
7782 yylloc->step ();
12545799
AD
7783%@}
7784@{blank@}+ yylloc->step ();
7785[\n]+ yylloc->lines (yyleng); yylloc->step ();
7786@end example
7787
7788@noindent
fb9712a9
AD
7789The rules are simple, just note the use of the driver to report errors.
7790It is convenient to use a typedef to shorten
7791@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7792@code{token::identifier} for instance.
12545799 7793
1c59e0a1 7794@comment file: calc++-scanner.ll
12545799 7795@example
fb9712a9
AD
7796%@{
7797 typedef yy::calcxx_parser::token token;
7798%@}
8c5b881d 7799 /* Convert ints to the actual type of tokens. */
c095d689 7800[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7801":=" return token::ASSIGN;
04098407
PE
7802@{int@} @{
7803 errno = 0;
7804 long n = strtol (yytext, NULL, 10);
7805 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7806 driver.error (*yylloc, "integer is out of range");
7807 yylval->ival = n;
fb9712a9 7808 return token::NUMBER;
04098407 7809@}
fb9712a9 7810@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7811. driver.error (*yylloc, "invalid character");
7812%%
7813@end example
7814
7815@noindent
7816Finally, because the scanner related driver's member function depend
7817on the scanner's data, it is simpler to implement them in this file.
7818
1c59e0a1 7819@comment file: calc++-scanner.ll
12545799
AD
7820@example
7821void
7822calcxx_driver::scan_begin ()
7823@{
7824 yy_flex_debug = trace_scanning;
7825 if (!(yyin = fopen (file.c_str (), "r")))
7826 error (std::string ("cannot open ") + file);
7827@}
7828
7829void
7830calcxx_driver::scan_end ()
7831@{
7832 fclose (yyin);
7833@}
7834@end example
7835
7836@node Calc++ Top Level
7837@subsection Calc++ Top Level
7838
7839The top level file, @file{calc++.cc}, poses no problem.
7840
1c59e0a1 7841@comment file: calc++.cc
12545799
AD
7842@example
7843#include <iostream>
7844#include "calc++-driver.hh"
7845
7846int
fa4d969f 7847main (int argc, char *argv[])
12545799
AD
7848@{
7849 calcxx_driver driver;
7850 for (++argv; argv[0]; ++argv)
7851 if (*argv == std::string ("-p"))
7852 driver.trace_parsing = true;
7853 else if (*argv == std::string ("-s"))
7854 driver.trace_scanning = true;
7855 else
7856 @{
3dc5e96b
PE
7857 driver.parse (*argv);
7858 std::cout << driver.result << std::endl;
12545799
AD
7859 @}
7860@}
7861@end example
7862
7863@c ================================================= FAQ
d1a1114f
AD
7864
7865@node FAQ
7866@chapter Frequently Asked Questions
7867@cindex frequently asked questions
7868@cindex questions
7869
7870Several questions about Bison come up occasionally. Here some of them
7871are addressed.
7872
7873@menu
55ba27be
AD
7874* Memory Exhausted:: Breaking the Stack Limits
7875* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7876* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7877* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 7878* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
7879* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7880* I can't build Bison:: Troubleshooting
7881* Where can I find help?:: Troubleshouting
7882* Bug Reports:: Troublereporting
7883* Other Languages:: Parsers in Java and others
7884* Beta Testing:: Experimenting development versions
7885* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7886@end menu
7887
1a059451
PE
7888@node Memory Exhausted
7889@section Memory Exhausted
d1a1114f
AD
7890
7891@display
1a059451 7892My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7893message. What can I do?
7894@end display
7895
7896This question is already addressed elsewhere, @xref{Recursion,
7897,Recursive Rules}.
7898
e64fec0a
PE
7899@node How Can I Reset the Parser
7900@section How Can I Reset the Parser
5b066063 7901
0e14ad77
PE
7902The following phenomenon has several symptoms, resulting in the
7903following typical questions:
5b066063
AD
7904
7905@display
7906I invoke @code{yyparse} several times, and on correct input it works
7907properly; but when a parse error is found, all the other calls fail
0e14ad77 7908too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7909@end display
7910
7911@noindent
7912or
7913
7914@display
0e14ad77 7915My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7916which case I run @code{yyparse} from @code{yyparse}. This fails
7917although I did specify I needed a @code{%pure-parser}.
7918@end display
7919
0e14ad77
PE
7920These problems typically come not from Bison itself, but from
7921Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7922speed, they might not notice a change of input file. As a
7923demonstration, consider the following source file,
7924@file{first-line.l}:
7925
7926@verbatim
7927%{
7928#include <stdio.h>
7929#include <stdlib.h>
7930%}
7931%%
7932.*\n ECHO; return 1;
7933%%
7934int
0e14ad77 7935yyparse (char const *file)
5b066063
AD
7936{
7937 yyin = fopen (file, "r");
7938 if (!yyin)
7939 exit (2);
fa7e68c3 7940 /* One token only. */
5b066063 7941 yylex ();
0e14ad77 7942 if (fclose (yyin) != 0)
5b066063
AD
7943 exit (3);
7944 return 0;
7945}
7946
7947int
0e14ad77 7948main (void)
5b066063
AD
7949{
7950 yyparse ("input");
7951 yyparse ("input");
7952 return 0;
7953}
7954@end verbatim
7955
7956@noindent
7957If the file @file{input} contains
7958
7959@verbatim
7960input:1: Hello,
7961input:2: World!
7962@end verbatim
7963
7964@noindent
0e14ad77 7965then instead of getting the first line twice, you get:
5b066063
AD
7966
7967@example
7968$ @kbd{flex -ofirst-line.c first-line.l}
7969$ @kbd{gcc -ofirst-line first-line.c -ll}
7970$ @kbd{./first-line}
7971input:1: Hello,
7972input:2: World!
7973@end example
7974
0e14ad77
PE
7975Therefore, whenever you change @code{yyin}, you must tell the
7976Lex-generated scanner to discard its current buffer and switch to the
7977new one. This depends upon your implementation of Lex; see its
7978documentation for more. For Flex, it suffices to call
7979@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7980Flex-generated scanner needs to read from several input streams to
7981handle features like include files, you might consider using Flex
7982functions like @samp{yy_switch_to_buffer} that manipulate multiple
7983input buffers.
5b066063 7984
b165c324
AD
7985If your Flex-generated scanner uses start conditions (@pxref{Start
7986conditions, , Start conditions, flex, The Flex Manual}), you might
7987also want to reset the scanner's state, i.e., go back to the initial
7988start condition, through a call to @samp{BEGIN (0)}.
7989
fef4cb51
AD
7990@node Strings are Destroyed
7991@section Strings are Destroyed
7992
7993@display
c7e441b4 7994My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7995them. Instead of reporting @samp{"foo", "bar"}, it reports
7996@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7997@end display
7998
7999This error is probably the single most frequent ``bug report'' sent to
8000Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8001of the scanner. Consider the following Lex code:
fef4cb51
AD
8002
8003@verbatim
8004%{
8005#include <stdio.h>
8006char *yylval = NULL;
8007%}
8008%%
8009.* yylval = yytext; return 1;
8010\n /* IGNORE */
8011%%
8012int
8013main ()
8014{
fa7e68c3 8015 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8016 char *fst = (yylex (), yylval);
8017 char *snd = (yylex (), yylval);
8018 printf ("\"%s\", \"%s\"\n", fst, snd);
8019 return 0;
8020}
8021@end verbatim
8022
8023If you compile and run this code, you get:
8024
8025@example
8026$ @kbd{flex -osplit-lines.c split-lines.l}
8027$ @kbd{gcc -osplit-lines split-lines.c -ll}
8028$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8029"one
8030two", "two"
8031@end example
8032
8033@noindent
8034this is because @code{yytext} is a buffer provided for @emph{reading}
8035in the action, but if you want to keep it, you have to duplicate it
8036(e.g., using @code{strdup}). Note that the output may depend on how
8037your implementation of Lex handles @code{yytext}. For instance, when
8038given the Lex compatibility option @option{-l} (which triggers the
8039option @samp{%array}) Flex generates a different behavior:
8040
8041@example
8042$ @kbd{flex -l -osplit-lines.c split-lines.l}
8043$ @kbd{gcc -osplit-lines split-lines.c -ll}
8044$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8045"two", "two"
8046@end example
8047
8048
2fa09258
AD
8049@node Implementing Gotos/Loops
8050@section Implementing Gotos/Loops
a06ea4aa
AD
8051
8052@display
8053My simple calculator supports variables, assignments, and functions,
2fa09258 8054but how can I implement gotos, or loops?
a06ea4aa
AD
8055@end display
8056
8057Although very pedagogical, the examples included in the document blur
a1c84f45 8058the distinction to make between the parser---whose job is to recover
a06ea4aa 8059the structure of a text and to transmit it to subsequent modules of
a1c84f45 8060the program---and the processing (such as the execution) of this
a06ea4aa
AD
8061structure. This works well with so called straight line programs,
8062i.e., precisely those that have a straightforward execution model:
8063execute simple instructions one after the others.
8064
8065@cindex abstract syntax tree
8066@cindex @acronym{AST}
8067If you want a richer model, you will probably need to use the parser
8068to construct a tree that does represent the structure it has
8069recovered; this tree is usually called the @dfn{abstract syntax tree},
8070or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8071traversing it in various ways, will enable treatments such as its
8072execution or its translation, which will result in an interpreter or a
8073compiler.
8074
8075This topic is way beyond the scope of this manual, and the reader is
8076invited to consult the dedicated literature.
8077
8078
ed2e6384
AD
8079@node Multiple start-symbols
8080@section Multiple start-symbols
8081
8082@display
8083I have several closely related grammars, and I would like to share their
8084implementations. In fact, I could use a single grammar but with
8085multiple entry points.
8086@end display
8087
8088Bison does not support multiple start-symbols, but there is a very
8089simple means to simulate them. If @code{foo} and @code{bar} are the two
8090pseudo start-symbols, then introduce two new tokens, say
8091@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8092real start-symbol:
8093
8094@example
8095%token START_FOO START_BAR;
8096%start start;
8097start: START_FOO foo
8098 | START_BAR bar;
8099@end example
8100
8101These tokens prevents the introduction of new conflicts. As far as the
8102parser goes, that is all that is needed.
8103
8104Now the difficult part is ensuring that the scanner will send these
8105tokens first. If your scanner is hand-written, that should be
8106straightforward. If your scanner is generated by Lex, them there is
8107simple means to do it: recall that anything between @samp{%@{ ... %@}}
8108after the first @code{%%} is copied verbatim in the top of the generated
8109@code{yylex} function. Make sure a variable @code{start_token} is
8110available in the scanner (e.g., a global variable or using
8111@code{%lex-param} etc.), and use the following:
8112
8113@example
8114 /* @r{Prologue.} */
8115%%
8116%@{
8117 if (start_token)
8118 @{
8119 int t = start_token;
8120 start_token = 0;
8121 return t;
8122 @}
8123%@}
8124 /* @r{The rules.} */
8125@end example
8126
8127
55ba27be
AD
8128@node Secure? Conform?
8129@section Secure? Conform?
8130
8131@display
8132Is Bison secure? Does it conform to POSIX?
8133@end display
8134
8135If you're looking for a guarantee or certification, we don't provide it.
8136However, Bison is intended to be a reliable program that conforms to the
8137@acronym{POSIX} specification for Yacc. If you run into problems,
8138please send us a bug report.
8139
8140@node I can't build Bison
8141@section I can't build Bison
8142
8143@display
8c5b881d
PE
8144I can't build Bison because @command{make} complains that
8145@code{msgfmt} is not found.
55ba27be
AD
8146What should I do?
8147@end display
8148
8149Like most GNU packages with internationalization support, that feature
8150is turned on by default. If you have problems building in the @file{po}
8151subdirectory, it indicates that your system's internationalization
8152support is lacking. You can re-configure Bison with
8153@option{--disable-nls} to turn off this support, or you can install GNU
8154gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8155Bison. See the file @file{ABOUT-NLS} for more information.
8156
8157
8158@node Where can I find help?
8159@section Where can I find help?
8160
8161@display
8162I'm having trouble using Bison. Where can I find help?
8163@end display
8164
8165First, read this fine manual. Beyond that, you can send mail to
8166@email{help-bison@@gnu.org}. This mailing list is intended to be
8167populated with people who are willing to answer questions about using
8168and installing Bison. Please keep in mind that (most of) the people on
8169the list have aspects of their lives which are not related to Bison (!),
8170so you may not receive an answer to your question right away. This can
8171be frustrating, but please try not to honk them off; remember that any
8172help they provide is purely voluntary and out of the kindness of their
8173hearts.
8174
8175@node Bug Reports
8176@section Bug Reports
8177
8178@display
8179I found a bug. What should I include in the bug report?
8180@end display
8181
8182Before you send a bug report, make sure you are using the latest
8183version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8184mirrors. Be sure to include the version number in your bug report. If
8185the bug is present in the latest version but not in a previous version,
8186try to determine the most recent version which did not contain the bug.
8187
8188If the bug is parser-related, you should include the smallest grammar
8189you can which demonstrates the bug. The grammar file should also be
8190complete (i.e., I should be able to run it through Bison without having
8191to edit or add anything). The smaller and simpler the grammar, the
8192easier it will be to fix the bug.
8193
8194Include information about your compilation environment, including your
8195operating system's name and version and your compiler's name and
8196version. If you have trouble compiling, you should also include a
8197transcript of the build session, starting with the invocation of
8198`configure'. Depending on the nature of the bug, you may be asked to
8199send additional files as well (such as `config.h' or `config.cache').
8200
8201Patches are most welcome, but not required. That is, do not hesitate to
8202send a bug report just because you can not provide a fix.
8203
8204Send bug reports to @email{bug-bison@@gnu.org}.
8205
8206@node Other Languages
8207@section Other Languages
8208
8209@display
8210Will Bison ever have C++ support? How about Java or @var{insert your
8211favorite language here}?
8212@end display
8213
8214C++ support is there now, and is documented. We'd love to add other
8215languages; contributions are welcome.
8216
8217@node Beta Testing
8218@section Beta Testing
8219
8220@display
8221What is involved in being a beta tester?
8222@end display
8223
8224It's not terribly involved. Basically, you would download a test
8225release, compile it, and use it to build and run a parser or two. After
8226that, you would submit either a bug report or a message saying that
8227everything is okay. It is important to report successes as well as
8228failures because test releases eventually become mainstream releases,
8229but only if they are adequately tested. If no one tests, development is
8230essentially halted.
8231
8232Beta testers are particularly needed for operating systems to which the
8233developers do not have easy access. They currently have easy access to
8234recent GNU/Linux and Solaris versions. Reports about other operating
8235systems are especially welcome.
8236
8237@node Mailing Lists
8238@section Mailing Lists
8239
8240@display
8241How do I join the help-bison and bug-bison mailing lists?
8242@end display
8243
8244See @url{http://lists.gnu.org/}.
a06ea4aa 8245
d1a1114f
AD
8246@c ================================================= Table of Symbols
8247
342b8b6e 8248@node Table of Symbols
bfa74976
RS
8249@appendix Bison Symbols
8250@cindex Bison symbols, table of
8251@cindex symbols in Bison, table of
8252
18b519c0 8253@deffn {Variable} @@$
3ded9a63 8254In an action, the location of the left-hand side of the rule.
88bce5a2 8255@xref{Locations, , Locations Overview}.
18b519c0 8256@end deffn
3ded9a63 8257
18b519c0 8258@deffn {Variable} @@@var{n}
3ded9a63
AD
8259In an action, the location of the @var{n}-th symbol of the right-hand
8260side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8261@end deffn
3ded9a63 8262
18b519c0 8263@deffn {Variable} $$
3ded9a63
AD
8264In an action, the semantic value of the left-hand side of the rule.
8265@xref{Actions}.
18b519c0 8266@end deffn
3ded9a63 8267
18b519c0 8268@deffn {Variable} $@var{n}
3ded9a63
AD
8269In an action, the semantic value of the @var{n}-th symbol of the
8270right-hand side of the rule. @xref{Actions}.
18b519c0 8271@end deffn
3ded9a63 8272
dd8d9022
AD
8273@deffn {Delimiter} %%
8274Delimiter used to separate the grammar rule section from the
8275Bison declarations section or the epilogue.
8276@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8277@end deffn
bfa74976 8278
dd8d9022
AD
8279@c Don't insert spaces, or check the DVI output.
8280@deffn {Delimiter} %@{@var{code}%@}
8281All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8282the output file uninterpreted. Such code forms the prologue of the input
8283file. @xref{Grammar Outline, ,Outline of a Bison
8284Grammar}.
18b519c0 8285@end deffn
bfa74976 8286
dd8d9022
AD
8287@deffn {Construct} /*@dots{}*/
8288Comment delimiters, as in C.
18b519c0 8289@end deffn
bfa74976 8290
dd8d9022
AD
8291@deffn {Delimiter} :
8292Separates a rule's result from its components. @xref{Rules, ,Syntax of
8293Grammar Rules}.
18b519c0 8294@end deffn
bfa74976 8295
dd8d9022
AD
8296@deffn {Delimiter} ;
8297Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8298@end deffn
bfa74976 8299
dd8d9022
AD
8300@deffn {Delimiter} |
8301Separates alternate rules for the same result nonterminal.
8302@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8303@end deffn
bfa74976 8304
dd8d9022
AD
8305@deffn {Symbol} $accept
8306The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8307$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8308Start-Symbol}. It cannot be used in the grammar.
18b519c0 8309@end deffn
bfa74976 8310
34f98f46
JD
8311@deffn {Directive} %after-header @{@var{code}@}
8312Specifies code to be inserted into the code file after the contents of the
8313header file.
8314@xref{Table of Symbols, ,%start-header}.
8315@end deffn
8316
8317@deffn {Directive} %before-header @{@var{code}@}
8318Specifies code to be inserted into the code file before the contents of the
8319header file.
8320@xref{Table of Symbols, ,%start-header}.
8321@end deffn
8322
8323@deffn {Directive} %end-header @{@var{code}@}
9bc0dd67
JD
8324Specifies code to be inserted both into the header file (if generated;
8325@pxref{Table of Symbols, ,%defines}) and into the code file after any
8326Bison-generated definitions.
34f98f46 8327@xref{Table of Symbols, ,%start-header}.
9bc0dd67
JD
8328@end deffn
8329
34f98f46 8330@deffn {Directive} %start-header @{@var{code}@}
9bc0dd67
JD
8331Specifies code to be inserted both into the header file (if generated;
8332@pxref{Table of Symbols, ,%defines}) and into the code file before any
8333Bison-generated definitions.
8334
8335@cindex Prologue
34f98f46 8336@findex %before-header
9bc0dd67 8337@findex %union
34f98f46
JD
8338@findex %end-header
8339@findex %after-header
8340For example, the following declaration order in the grammar file reflects the
8341order in which Bison will output these code blocks. However, you are free to
8342declare these code blocks in your grammar file in whatever order is most
8343convenient for you:
9bc0dd67
JD
8344
8345@smallexample
34f98f46
JD
8346%before-header @{
8347 /* Bison treats this block like a pre-prologue block: it inserts it
8348 * into the code file before the contents of the header file. It
8349 * does *not* insert it into the header file. This is a good place
8350 * to put #include's that you want at the top of your code file. A
8351 * common example is `#include "system.h"'. */
8352@}
8353%start-header @{
8354 /* Bison inserts this block into both the header file and the code
8355 * file. In both files, the point of insertion is before any
8356 * Bison-generated token, semantic type, location type, and class
8357 * definitions. This is a good place to define %union
8358 * dependencies, for example. */
9bc0dd67
JD
8359@}
8360%union @{
34f98f46
JD
8361 /* Unlike the traditional Yacc prologue blocks, the output order
8362 * for the %*-header blocks is not affected by their declaration
8363 * position relative to any %union in the grammar file. */
9bc0dd67 8364@}
34f98f46
JD
8365%end-header @{
8366 /* Bison inserts this block into both the header file and the code
8367 * file. In both files, the point of insertion is after the
8368 * Bison-generated definitions. This is a good place to declare or
8369 * define public functions or data structures that depend on the
8370 * Bison-generated definitions. */
8371@}
8372%after-header @{
8373 /* Bison treats this block like a post-prologue block: it inserts
8374 * it into the code file after the contents of the header file. It
8375 * does *not* insert it into the header file. This is a good place
8376 * to declare or define internal functions or data structures that
8377 * depend on the Bison-generated definitions. */
9bc0dd67 8378@}
9bc0dd67
JD
8379@end smallexample
8380
34f98f46
JD
8381If you have multiple occurrences of any one of the above declarations, Bison
8382will concatenate the contents in declaration order.
8383
9bc0dd67
JD
8384@xref{Prologue, ,The Prologue}.
8385@end deffn
8386
8387@deffn {Directive} %debug
8388Equip the parser for debugging. @xref{Decl Summary}.
8389@end deffn
8390
18b519c0 8391@deffn {Directive} %debug
6deb4447 8392Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8393@end deffn
6deb4447 8394
91d2c560 8395@ifset defaultprec
22fccf95
PE
8396@deffn {Directive} %default-prec
8397Assign a precedence to rules that lack an explicit @samp{%prec}
8398modifier. @xref{Contextual Precedence, ,Context-Dependent
8399Precedence}.
39a06c25 8400@end deffn
91d2c560 8401@end ifset
39a06c25 8402
18b519c0 8403@deffn {Directive} %defines
6deb4447
AD
8404Bison declaration to create a header file meant for the scanner.
8405@xref{Decl Summary}.
18b519c0 8406@end deffn
6deb4447 8407
18b519c0 8408@deffn {Directive} %destructor
258b75ca 8409Specify how the parser should reclaim the memory associated to
fa7e68c3 8410discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8411@end deffn
72f889cc 8412
18b519c0 8413@deffn {Directive} %dprec
676385e2 8414Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8415time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8416@acronym{GLR} Parsers}.
18b519c0 8417@end deffn
676385e2 8418
dd8d9022
AD
8419@deffn {Symbol} $end
8420The predefined token marking the end of the token stream. It cannot be
8421used in the grammar.
8422@end deffn
8423
8424@deffn {Symbol} error
8425A token name reserved for error recovery. This token may be used in
8426grammar rules so as to allow the Bison parser to recognize an error in
8427the grammar without halting the process. In effect, a sentence
8428containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8429token @code{error} becomes the current lookahead token. Actions
8430corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8431token is reset to the token that originally caused the violation.
8432@xref{Error Recovery}.
18d192f0
AD
8433@end deffn
8434
18b519c0 8435@deffn {Directive} %error-verbose
2a8d363a
AD
8436Bison declaration to request verbose, specific error message strings
8437when @code{yyerror} is called.
18b519c0 8438@end deffn
2a8d363a 8439
18b519c0 8440@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8441Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8442Summary}.
18b519c0 8443@end deffn
d8988b2f 8444
18b519c0 8445@deffn {Directive} %glr-parser
c827f760
PE
8446Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8447Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8448@end deffn
676385e2 8449
dd8d9022
AD
8450@deffn {Directive} %initial-action
8451Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8452@end deffn
8453
18b519c0 8454@deffn {Directive} %left
bfa74976
RS
8455Bison declaration to assign left associativity to token(s).
8456@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8457@end deffn
bfa74976 8458
feeb0eda 8459@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8460Bison declaration to specifying an additional parameter that
8461@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8462for Pure Parsers}.
18b519c0 8463@end deffn
2a8d363a 8464
18b519c0 8465@deffn {Directive} %merge
676385e2 8466Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8467reduce/reduce conflict with a rule having the same merging function, the
676385e2 8468function is applied to the two semantic values to get a single result.
c827f760 8469@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8470@end deffn
676385e2 8471
18b519c0 8472@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8473Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8474@end deffn
d8988b2f 8475
91d2c560 8476@ifset defaultprec
22fccf95
PE
8477@deffn {Directive} %no-default-prec
8478Do not assign a precedence to rules that lack an explicit @samp{%prec}
8479modifier. @xref{Contextual Precedence, ,Context-Dependent
8480Precedence}.
8481@end deffn
91d2c560 8482@end ifset
22fccf95 8483
18b519c0 8484@deffn {Directive} %no-lines
931c7513
RS
8485Bison declaration to avoid generating @code{#line} directives in the
8486parser file. @xref{Decl Summary}.
18b519c0 8487@end deffn
931c7513 8488
18b519c0 8489@deffn {Directive} %nonassoc
9d9b8b70 8490Bison declaration to assign nonassociativity to token(s).
bfa74976 8491@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8492@end deffn
bfa74976 8493
fa4d969f 8494@deffn {Directive} %output="@var{file}"
72d2299c 8495Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8496Summary}.
18b519c0 8497@end deffn
d8988b2f 8498
feeb0eda 8499@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8500Bison declaration to specifying an additional parameter that
8501@code{yyparse} should accept. @xref{Parser Function,, The Parser
8502Function @code{yyparse}}.
18b519c0 8503@end deffn
2a8d363a 8504
18b519c0 8505@deffn {Directive} %prec
bfa74976
RS
8506Bison declaration to assign a precedence to a specific rule.
8507@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8508@end deffn
bfa74976 8509
18b519c0 8510@deffn {Directive} %pure-parser
bfa74976
RS
8511Bison declaration to request a pure (reentrant) parser.
8512@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8513@end deffn
bfa74976 8514
b50d2359 8515@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8516Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8517Require a Version of Bison}.
b50d2359
AD
8518@end deffn
8519
18b519c0 8520@deffn {Directive} %right
bfa74976
RS
8521Bison declaration to assign right associativity to token(s).
8522@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8523@end deffn
bfa74976 8524
18b519c0 8525@deffn {Directive} %start
704a47c4
AD
8526Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8527Start-Symbol}.
18b519c0 8528@end deffn
bfa74976 8529
3be03b13
JD
8530@deffn {Directive} %symbol-default
8531Used to declare a default @code{%destructor} or default @code{%printer}.
8532@xref{Destructor Decl, , Freeing Discarded Symbols}.
8533@end deffn
8534
18b519c0 8535@deffn {Directive} %token
bfa74976
RS
8536Bison declaration to declare token(s) without specifying precedence.
8537@xref{Token Decl, ,Token Type Names}.
18b519c0 8538@end deffn
bfa74976 8539
18b519c0 8540@deffn {Directive} %token-table
931c7513
RS
8541Bison declaration to include a token name table in the parser file.
8542@xref{Decl Summary}.
18b519c0 8543@end deffn
931c7513 8544
18b519c0 8545@deffn {Directive} %type
704a47c4
AD
8546Bison declaration to declare nonterminals. @xref{Type Decl,
8547,Nonterminal Symbols}.
18b519c0 8548@end deffn
bfa74976 8549
dd8d9022
AD
8550@deffn {Symbol} $undefined
8551The predefined token onto which all undefined values returned by
8552@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8553@code{error}.
8554@end deffn
8555
18b519c0 8556@deffn {Directive} %union
bfa74976
RS
8557Bison declaration to specify several possible data types for semantic
8558values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8559@end deffn
bfa74976 8560
dd8d9022
AD
8561@deffn {Macro} YYABORT
8562Macro to pretend that an unrecoverable syntax error has occurred, by
8563making @code{yyparse} return 1 immediately. The error reporting
8564function @code{yyerror} is not called. @xref{Parser Function, ,The
8565Parser Function @code{yyparse}}.
8566@end deffn
3ded9a63 8567
dd8d9022
AD
8568@deffn {Macro} YYACCEPT
8569Macro to pretend that a complete utterance of the language has been
8570read, by making @code{yyparse} return 0 immediately.
8571@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8572@end deffn
bfa74976 8573
dd8d9022 8574@deffn {Macro} YYBACKUP
742e4900 8575Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8576token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8577@end deffn
bfa74976 8578
dd8d9022 8579@deffn {Variable} yychar
32c29292 8580External integer variable that contains the integer value of the
742e4900 8581lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8582@code{yyparse}.) Error-recovery rule actions may examine this variable.
8583@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8584@end deffn
bfa74976 8585
dd8d9022
AD
8586@deffn {Variable} yyclearin
8587Macro used in error-recovery rule actions. It clears the previous
742e4900 8588lookahead token. @xref{Error Recovery}.
18b519c0 8589@end deffn
bfa74976 8590
dd8d9022
AD
8591@deffn {Macro} YYDEBUG
8592Macro to define to equip the parser with tracing code. @xref{Tracing,
8593,Tracing Your Parser}.
18b519c0 8594@end deffn
bfa74976 8595
dd8d9022
AD
8596@deffn {Variable} yydebug
8597External integer variable set to zero by default. If @code{yydebug}
8598is given a nonzero value, the parser will output information on input
8599symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8600@end deffn
bfa74976 8601
dd8d9022
AD
8602@deffn {Macro} yyerrok
8603Macro to cause parser to recover immediately to its normal mode
8604after a syntax error. @xref{Error Recovery}.
8605@end deffn
8606
8607@deffn {Macro} YYERROR
8608Macro to pretend that a syntax error has just been detected: call
8609@code{yyerror} and then perform normal error recovery if possible
8610(@pxref{Error Recovery}), or (if recovery is impossible) make
8611@code{yyparse} return 1. @xref{Error Recovery}.
8612@end deffn
8613
8614@deffn {Function} yyerror
8615User-supplied function to be called by @code{yyparse} on error.
8616@xref{Error Reporting, ,The Error
8617Reporting Function @code{yyerror}}.
8618@end deffn
8619
8620@deffn {Macro} YYERROR_VERBOSE
8621An obsolete macro that you define with @code{#define} in the prologue
8622to request verbose, specific error message strings
8623when @code{yyerror} is called. It doesn't matter what definition you
8624use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8625@code{%error-verbose} is preferred.
8626@end deffn
8627
8628@deffn {Macro} YYINITDEPTH
8629Macro for specifying the initial size of the parser stack.
1a059451 8630@xref{Memory Management}.
dd8d9022
AD
8631@end deffn
8632
8633@deffn {Function} yylex
8634User-supplied lexical analyzer function, called with no arguments to get
8635the next token. @xref{Lexical, ,The Lexical Analyzer Function
8636@code{yylex}}.
8637@end deffn
8638
8639@deffn {Macro} YYLEX_PARAM
8640An obsolete macro for specifying an extra argument (or list of extra
32c29292 8641arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8642macro is deprecated, and is supported only for Yacc like parsers.
8643@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8644@end deffn
8645
8646@deffn {Variable} yylloc
8647External variable in which @code{yylex} should place the line and column
8648numbers associated with a token. (In a pure parser, it is a local
8649variable within @code{yyparse}, and its address is passed to
32c29292
JD
8650@code{yylex}.)
8651You can ignore this variable if you don't use the @samp{@@} feature in the
8652grammar actions.
8653@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8654In semantic actions, it stores the location of the lookahead token.
32c29292 8655@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8656@end deffn
8657
8658@deffn {Type} YYLTYPE
8659Data type of @code{yylloc}; by default, a structure with four
8660members. @xref{Location Type, , Data Types of Locations}.
8661@end deffn
8662
8663@deffn {Variable} yylval
8664External variable in which @code{yylex} should place the semantic
8665value associated with a token. (In a pure parser, it is a local
8666variable within @code{yyparse}, and its address is passed to
32c29292
JD
8667@code{yylex}.)
8668@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8669In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8670@xref{Actions, ,Actions}.
dd8d9022
AD
8671@end deffn
8672
8673@deffn {Macro} YYMAXDEPTH
1a059451
PE
8674Macro for specifying the maximum size of the parser stack. @xref{Memory
8675Management}.
dd8d9022
AD
8676@end deffn
8677
8678@deffn {Variable} yynerrs
8a2800e7 8679Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8680(In a pure parser, it is a local variable within @code{yyparse}.)
8681@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8682@end deffn
8683
8684@deffn {Function} yyparse
8685The parser function produced by Bison; call this function to start
8686parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8687@end deffn
8688
8689@deffn {Macro} YYPARSE_PARAM
8690An obsolete macro for specifying the name of a parameter that
8691@code{yyparse} should accept. The use of this macro is deprecated, and
8692is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8693Conventions for Pure Parsers}.
8694@end deffn
8695
8696@deffn {Macro} YYRECOVERING
02103984
PE
8697The expression @code{YYRECOVERING ()} yields 1 when the parser
8698is recovering from a syntax error, and 0 otherwise.
8699@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8700@end deffn
8701
8702@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8703Macro used to control the use of @code{alloca} when the C
8704@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8705the parser will use @code{malloc} to extend its stacks. If defined to
87061, the parser will use @code{alloca}. Values other than 0 and 1 are
8707reserved for future Bison extensions. If not defined,
8708@code{YYSTACK_USE_ALLOCA} defaults to 0.
8709
55289366 8710In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8711limited stack and with unreliable stack-overflow checking, you should
8712set @code{YYMAXDEPTH} to a value that cannot possibly result in
8713unchecked stack overflow on any of your target hosts when
8714@code{alloca} is called. You can inspect the code that Bison
8715generates in order to determine the proper numeric values. This will
8716require some expertise in low-level implementation details.
dd8d9022
AD
8717@end deffn
8718
8719@deffn {Type} YYSTYPE
8720Data type of semantic values; @code{int} by default.
8721@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8722@end deffn
bfa74976 8723
342b8b6e 8724@node Glossary
bfa74976
RS
8725@appendix Glossary
8726@cindex glossary
8727
8728@table @asis
c827f760
PE
8729@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8730Formal method of specifying context-free grammars originally proposed
8731by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8732committee document contributing to what became the Algol 60 report.
8733@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8734
8735@item Context-free grammars
8736Grammars specified as rules that can be applied regardless of context.
8737Thus, if there is a rule which says that an integer can be used as an
8738expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8739permitted. @xref{Language and Grammar, ,Languages and Context-Free
8740Grammars}.
bfa74976
RS
8741
8742@item Dynamic allocation
8743Allocation of memory that occurs during execution, rather than at
8744compile time or on entry to a function.
8745
8746@item Empty string
8747Analogous to the empty set in set theory, the empty string is a
8748character string of length zero.
8749
8750@item Finite-state stack machine
8751A ``machine'' that has discrete states in which it is said to exist at
8752each instant in time. As input to the machine is processed, the
8753machine moves from state to state as specified by the logic of the
8754machine. In the case of the parser, the input is the language being
8755parsed, and the states correspond to various stages in the grammar
c827f760 8756rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8757
c827f760 8758@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8759A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8760that are not @acronym{LALR}(1). It resolves situations that Bison's
8761usual @acronym{LALR}(1)
676385e2
PH
8762algorithm cannot by effectively splitting off multiple parsers, trying all
8763possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8764right context. @xref{Generalized LR Parsing, ,Generalized
8765@acronym{LR} Parsing}.
676385e2 8766
bfa74976
RS
8767@item Grouping
8768A language construct that is (in general) grammatically divisible;
c827f760 8769for example, `expression' or `declaration' in C@.
bfa74976
RS
8770@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8771
8772@item Infix operator
8773An arithmetic operator that is placed between the operands on which it
8774performs some operation.
8775
8776@item Input stream
8777A continuous flow of data between devices or programs.
8778
8779@item Language construct
8780One of the typical usage schemas of the language. For example, one of
8781the constructs of the C language is the @code{if} statement.
8782@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8783
8784@item Left associativity
8785Operators having left associativity are analyzed from left to right:
8786@samp{a+b+c} first computes @samp{a+b} and then combines with
8787@samp{c}. @xref{Precedence, ,Operator Precedence}.
8788
8789@item Left recursion
89cab50d
AD
8790A rule whose result symbol is also its first component symbol; for
8791example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8792Rules}.
bfa74976
RS
8793
8794@item Left-to-right parsing
8795Parsing a sentence of a language by analyzing it token by token from
c827f760 8796left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8797
8798@item Lexical analyzer (scanner)
8799A function that reads an input stream and returns tokens one by one.
8800@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8801
8802@item Lexical tie-in
8803A flag, set by actions in the grammar rules, which alters the way
8804tokens are parsed. @xref{Lexical Tie-ins}.
8805
931c7513 8806@item Literal string token
14ded682 8807A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8808
742e4900
JD
8809@item Lookahead token
8810A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 8811Tokens}.
bfa74976 8812
c827f760 8813@item @acronym{LALR}(1)
bfa74976 8814The class of context-free grammars that Bison (like most other parser
c827f760
PE
8815generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8816Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8817
c827f760 8818@item @acronym{LR}(1)
bfa74976 8819The class of context-free grammars in which at most one token of
742e4900 8820lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
8821
8822@item Nonterminal symbol
8823A grammar symbol standing for a grammatical construct that can
8824be expressed through rules in terms of smaller constructs; in other
8825words, a construct that is not a token. @xref{Symbols}.
8826
bfa74976
RS
8827@item Parser
8828A function that recognizes valid sentences of a language by analyzing
8829the syntax structure of a set of tokens passed to it from a lexical
8830analyzer.
8831
8832@item Postfix operator
8833An arithmetic operator that is placed after the operands upon which it
8834performs some operation.
8835
8836@item Reduction
8837Replacing a string of nonterminals and/or terminals with a single
89cab50d 8838nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8839Parser Algorithm}.
bfa74976
RS
8840
8841@item Reentrant
8842A reentrant subprogram is a subprogram which can be in invoked any
8843number of times in parallel, without interference between the various
8844invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8845
8846@item Reverse polish notation
8847A language in which all operators are postfix operators.
8848
8849@item Right recursion
89cab50d
AD
8850A rule whose result symbol is also its last component symbol; for
8851example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8852Rules}.
bfa74976
RS
8853
8854@item Semantics
8855In computer languages, the semantics are specified by the actions
8856taken for each instance of the language, i.e., the meaning of
8857each statement. @xref{Semantics, ,Defining Language Semantics}.
8858
8859@item Shift
8860A parser is said to shift when it makes the choice of analyzing
8861further input from the stream rather than reducing immediately some
c827f760 8862already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8863
8864@item Single-character literal
8865A single character that is recognized and interpreted as is.
8866@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8867
8868@item Start symbol
8869The nonterminal symbol that stands for a complete valid utterance in
8870the language being parsed. The start symbol is usually listed as the
13863333 8871first nonterminal symbol in a language specification.
bfa74976
RS
8872@xref{Start Decl, ,The Start-Symbol}.
8873
8874@item Symbol table
8875A data structure where symbol names and associated data are stored
8876during parsing to allow for recognition and use of existing
8877information in repeated uses of a symbol. @xref{Multi-function Calc}.
8878
6e649e65
PE
8879@item Syntax error
8880An error encountered during parsing of an input stream due to invalid
8881syntax. @xref{Error Recovery}.
8882
bfa74976
RS
8883@item Token
8884A basic, grammatically indivisible unit of a language. The symbol
8885that describes a token in the grammar is a terminal symbol.
8886The input of the Bison parser is a stream of tokens which comes from
8887the lexical analyzer. @xref{Symbols}.
8888
8889@item Terminal symbol
89cab50d
AD
8890A grammar symbol that has no rules in the grammar and therefore is
8891grammatically indivisible. The piece of text it represents is a token.
8892@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8893@end table
8894
342b8b6e 8895@node Copying This Manual
f2b5126e 8896@appendix Copying This Manual
f9a8293a 8897
f2b5126e
PB
8898@menu
8899* GNU Free Documentation License:: License for copying this manual.
8900@end menu
f9a8293a 8901
f2b5126e
PB
8902@include fdl.texi
8903
342b8b6e 8904@node Index
bfa74976
RS
8905@unnumbered Index
8906
8907@printindex cp
8908
bfa74976 8909@bye
a06ea4aa
AD
8910
8911@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8912@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8913@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8914@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8915@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8916@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8917@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8918@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8919@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8920@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8921@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8922@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8923@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8924@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8925@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8926@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8927@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8928@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8929@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8930@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8931@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8932@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 8933@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 8934@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 8935@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 8936@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa
AD
8937@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8938@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8939@c LocalWords: YYSTACK DVI fdl printindex