]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Don't put the pre-prologue in the header file. For the yacc.c code
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
194* Bison Declarations:: Syntax and usage of the Bison declarations section.
195* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 196* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
197
198Defining Language Semantics
199
200* Value Type:: Specifying one data type for all semantic values.
201* Multiple Types:: Specifying several alternative data types.
202* Actions:: An action is the semantic definition of a grammar rule.
203* Action Types:: Specifying data types for actions to operate on.
204* Mid-Rule Actions:: Most actions go at the end of a rule.
205 This says when, why and how to use the exceptional
206 action in the middle of a rule.
207
93dd49ab
PE
208Tracking Locations
209
210* Location Type:: Specifying a data type for locations.
211* Actions and Locations:: Using locations in actions.
212* Location Default Action:: Defining a general way to compute locations.
213
bfa74976
RS
214Bison Declarations
215
b50d2359 216* Require Decl:: Requiring a Bison version.
bfa74976
RS
217* Token Decl:: Declaring terminal symbols.
218* Precedence Decl:: Declaring terminals with precedence and associativity.
219* Union Decl:: Declaring the set of all semantic value types.
220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 221* Initial Action Decl:: Code run before parsing starts.
72f889cc 222* Destructor Decl:: Declaring how symbols are freed.
d6328241 223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
224* Start Decl:: Specifying the start symbol.
225* Pure Decl:: Requesting a reentrant parser.
226* Decl Summary:: Table of all Bison declarations.
227
228Parser C-Language Interface
229
230* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 231* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
232 which reads tokens.
233* Error Reporting:: You must supply a function @code{yyerror}.
234* Action Features:: Special features for use in actions.
f7ab6a50
PE
235* Internationalization:: How to let the parser speak in the user's
236 native language.
bfa74976
RS
237
238The Lexical Analyzer Function @code{yylex}
239
240* Calling Convention:: How @code{yyparse} calls @code{yylex}.
241* Token Values:: How @code{yylex} must return the semantic value
242 of the token it has read.
95923bd6 243* Token Locations:: How @code{yylex} must return the text location
bfa74976 244 (line number, etc.) of the token, if the
93dd49ab 245 actions want that.
bfa74976
RS
246* Pure Calling:: How the calling convention differs
247 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
248
13863333 249The Bison Parser Algorithm
bfa74976 250
742e4900 251* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
252* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
253* Precedence:: Operator precedence works by resolving conflicts.
254* Contextual Precedence:: When an operator's precedence depends on context.
255* Parser States:: The parser is a finite-state-machine with stack.
256* Reduce/Reduce:: When two rules are applicable in the same situation.
257* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 258* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 259* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
260
261Operator Precedence
262
263* Why Precedence:: An example showing why precedence is needed.
264* Using Precedence:: How to specify precedence in Bison grammars.
265* Precedence Examples:: How these features are used in the previous example.
266* How Precedence:: How they work.
267
268Handling Context Dependencies
269
270* Semantic Tokens:: Token parsing can depend on the semantic context.
271* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
272* Tie-in Recovery:: Lexical tie-ins have implications for how
273 error recovery rules must be written.
274
93dd49ab 275Debugging Your Parser
ec3bc396
AD
276
277* Understanding:: Understanding the structure of your parser.
278* Tracing:: Tracing the execution of your parser.
279
bfa74976
RS
280Invoking Bison
281
13863333 282* Bison Options:: All the options described in detail,
c827f760 283 in alphabetical order by short options.
bfa74976 284* Option Cross Key:: Alphabetical list of long options.
93dd49ab 285* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 286
12545799
AD
287C++ Language Interface
288
289* C++ Parsers:: The interface to generate C++ parser classes
290* A Complete C++ Example:: Demonstrating their use
291
292C++ Parsers
293
294* C++ Bison Interface:: Asking for C++ parser generation
295* C++ Semantic Values:: %union vs. C++
296* C++ Location Values:: The position and location classes
297* C++ Parser Interface:: Instantiating and running the parser
298* C++ Scanner Interface:: Exchanges between yylex and parse
299
300A Complete C++ Example
301
302* Calc++ --- C++ Calculator:: The specifications
303* Calc++ Parsing Driver:: An active parsing context
304* Calc++ Parser:: A parser class
305* Calc++ Scanner:: A pure C++ Flex scanner
306* Calc++ Top Level:: Conducting the band
307
d1a1114f
AD
308Frequently Asked Questions
309
1a059451 310* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 311* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 312* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 313* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 314* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
315* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
316* I can't build Bison:: Troubleshooting
317* Where can I find help?:: Troubleshouting
318* Bug Reports:: Troublereporting
319* Other Languages:: Parsers in Java and others
320* Beta Testing:: Experimenting development versions
321* Mailing Lists:: Meeting other Bison users
d1a1114f 322
f2b5126e
PB
323Copying This Manual
324
325* GNU Free Documentation License:: License for copying this manual.
326
342b8b6e 327@end detailmenu
bfa74976
RS
328@end menu
329
342b8b6e 330@node Introduction
bfa74976
RS
331@unnumbered Introduction
332@cindex introduction
333
6077da58
PE
334@dfn{Bison} is a general-purpose parser generator that converts an
335annotated context-free grammar into an @acronym{LALR}(1) or
336@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 337Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
338used in simple desk calculators to complex programming languages.
339
340Bison is upward compatible with Yacc: all properly-written Yacc grammars
341ought to work with Bison with no change. Anyone familiar with Yacc
342should be able to use Bison with little trouble. You need to be fluent in
1e137b71 343C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
344
345We begin with tutorial chapters that explain the basic concepts of using
346Bison and show three explained examples, each building on the last. If you
347don't know Bison or Yacc, start by reading these chapters. Reference
348chapters follow which describe specific aspects of Bison in detail.
349
931c7513
RS
350Bison was written primarily by Robert Corbett; Richard Stallman made it
351Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 352multi-character string literals and other features.
931c7513 353
df1af54c 354This edition corresponds to version @value{VERSION} of Bison.
bfa74976 355
342b8b6e 356@node Conditions
bfa74976
RS
357@unnumbered Conditions for Using Bison
358
193d7c70
PE
359The distribution terms for Bison-generated parsers permit using the
360parsers in nonfree programs. Before Bison version 2.2, these extra
361permissions applied only when Bison was generating @acronym{LALR}(1)
362parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
374parser's implementation. (The actions from your grammar are inserted
375into this implementation at one point, but most of the rest of the
376implementation is not changed.) When we applied the @acronym{GPL}
377terms to the skeleton code for the parser's implementation,
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
193d7c70
PE
387This exception applies when Bison is generating code for a parser.
388You can tell whether the exception applies to a Bison output file by
389inspecting the file for text beginning with ``As a special
390exception@dots{}''. The text spells out the exact terms of the
391exception.
262aa8dd 392
c67a198d 393@include gpl.texi
bfa74976 394
342b8b6e 395@node Concepts
bfa74976
RS
396@chapter The Concepts of Bison
397
398This chapter introduces many of the basic concepts without which the
399details of Bison will not make sense. If you do not already know how to
400use Bison or Yacc, we suggest you start by reading this chapter carefully.
401
402@menu
403* Language and Grammar:: Languages and context-free grammars,
404 as mathematical ideas.
405* Grammar in Bison:: How we represent grammars for Bison's sake.
406* Semantic Values:: Each token or syntactic grouping can have
407 a semantic value (the value of an integer,
408 the name of an identifier, etc.).
409* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 410* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 411* Locations Overview:: Tracking Locations.
bfa74976
RS
412* Bison Parser:: What are Bison's input and output,
413 how is the output used?
414* Stages:: Stages in writing and running Bison grammars.
415* Grammar Layout:: Overall structure of a Bison grammar file.
416@end menu
417
342b8b6e 418@node Language and Grammar
bfa74976
RS
419@section Languages and Context-Free Grammars
420
bfa74976
RS
421@cindex context-free grammar
422@cindex grammar, context-free
423In order for Bison to parse a language, it must be described by a
424@dfn{context-free grammar}. This means that you specify one or more
425@dfn{syntactic groupings} and give rules for constructing them from their
426parts. For example, in the C language, one kind of grouping is called an
427`expression'. One rule for making an expression might be, ``An expression
428can be made of a minus sign and another expression''. Another would be,
429``An expression can be an integer''. As you can see, rules are often
430recursive, but there must be at least one rule which leads out of the
431recursion.
432
c827f760 433@cindex @acronym{BNF}
bfa74976
RS
434@cindex Backus-Naur form
435The most common formal system for presenting such rules for humans to read
c827f760
PE
436is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
437order to specify the language Algol 60. Any grammar expressed in
438@acronym{BNF} is a context-free grammar. The input to Bison is
439essentially machine-readable @acronym{BNF}.
bfa74976 440
c827f760
PE
441@cindex @acronym{LALR}(1) grammars
442@cindex @acronym{LR}(1) grammars
676385e2
PH
443There are various important subclasses of context-free grammar. Although it
444can handle almost all context-free grammars, Bison is optimized for what
c827f760 445are called @acronym{LALR}(1) grammars.
676385e2 446In brief, in these grammars, it must be possible to
bfa74976 447tell how to parse any portion of an input string with just a single
742e4900 448token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
449@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
450restrictions that are
bfa74976 451hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
452@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
453@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
454more information on this.
bfa74976 455
c827f760
PE
456@cindex @acronym{GLR} parsing
457@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 458@cindex ambiguous grammars
9d9b8b70 459@cindex nondeterministic parsing
9501dc6e
AD
460
461Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
462roughly that the next grammar rule to apply at any point in the input is
463uniquely determined by the preceding input and a fixed, finite portion
742e4900 464(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 465grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 466apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 467grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 468lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
469With the proper declarations, Bison is also able to parse these more
470general context-free grammars, using a technique known as @acronym{GLR}
471parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
472are able to handle any context-free grammar for which the number of
473possible parses of any given string is finite.
676385e2 474
bfa74976
RS
475@cindex symbols (abstract)
476@cindex token
477@cindex syntactic grouping
478@cindex grouping, syntactic
9501dc6e
AD
479In the formal grammatical rules for a language, each kind of syntactic
480unit or grouping is named by a @dfn{symbol}. Those which are built by
481grouping smaller constructs according to grammatical rules are called
bfa74976
RS
482@dfn{nonterminal symbols}; those which can't be subdivided are called
483@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
484corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 485corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
486
487We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
488nonterminal, mean. The tokens of C are identifiers, constants (numeric
489and string), and the various keywords, arithmetic operators and
490punctuation marks. So the terminal symbols of a grammar for C include
491`identifier', `number', `string', plus one symbol for each keyword,
492operator or punctuation mark: `if', `return', `const', `static', `int',
493`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
494(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
495lexicography, not grammar.)
496
497Here is a simple C function subdivided into tokens:
498
9edcd895
AD
499@ifinfo
500@example
501int /* @r{keyword `int'} */
14d4662b 502square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
503 @r{identifier, close-paren} */
504@{ /* @r{open-brace} */
aa08666d
AD
505 return x * x; /* @r{keyword `return', identifier, asterisk,}
506 @r{identifier, semicolon} */
9edcd895
AD
507@} /* @r{close-brace} */
508@end example
509@end ifinfo
510@ifnotinfo
bfa74976
RS
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 514@{ /* @r{open-brace} */
9edcd895 515 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
516@} /* @r{close-brace} */
517@end example
9edcd895 518@end ifnotinfo
bfa74976
RS
519
520The syntactic groupings of C include the expression, the statement, the
521declaration, and the function definition. These are represented in the
522grammar of C by nonterminal symbols `expression', `statement',
523`declaration' and `function definition'. The full grammar uses dozens of
524additional language constructs, each with its own nonterminal symbol, in
525order to express the meanings of these four. The example above is a
526function definition; it contains one declaration, and one statement. In
527the statement, each @samp{x} is an expression and so is @samp{x * x}.
528
529Each nonterminal symbol must have grammatical rules showing how it is made
530out of simpler constructs. For example, one kind of C statement is the
531@code{return} statement; this would be described with a grammar rule which
532reads informally as follows:
533
534@quotation
535A `statement' can be made of a `return' keyword, an `expression' and a
536`semicolon'.
537@end quotation
538
539@noindent
540There would be many other rules for `statement', one for each kind of
541statement in C.
542
543@cindex start symbol
544One nonterminal symbol must be distinguished as the special one which
545defines a complete utterance in the language. It is called the @dfn{start
546symbol}. In a compiler, this means a complete input program. In the C
547language, the nonterminal symbol `sequence of definitions and declarations'
548plays this role.
549
550For example, @samp{1 + 2} is a valid C expression---a valid part of a C
551program---but it is not valid as an @emph{entire} C program. In the
552context-free grammar of C, this follows from the fact that `expression' is
553not the start symbol.
554
555The Bison parser reads a sequence of tokens as its input, and groups the
556tokens using the grammar rules. If the input is valid, the end result is
557that the entire token sequence reduces to a single grouping whose symbol is
558the grammar's start symbol. If we use a grammar for C, the entire input
559must be a `sequence of definitions and declarations'. If not, the parser
560reports a syntax error.
561
342b8b6e 562@node Grammar in Bison
bfa74976
RS
563@section From Formal Rules to Bison Input
564@cindex Bison grammar
565@cindex grammar, Bison
566@cindex formal grammar
567
568A formal grammar is a mathematical construct. To define the language
569for Bison, you must write a file expressing the grammar in Bison syntax:
570a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
571
572A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 573as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
574in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
575
576The Bison representation for a terminal symbol is also called a @dfn{token
577type}. Token types as well can be represented as C-like identifiers. By
578convention, these identifiers should be upper case to distinguish them from
579nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
580@code{RETURN}. A terminal symbol that stands for a particular keyword in
581the language should be named after that keyword converted to upper case.
582The terminal symbol @code{error} is reserved for error recovery.
931c7513 583@xref{Symbols}.
bfa74976
RS
584
585A terminal symbol can also be represented as a character literal, just like
586a C character constant. You should do this whenever a token is just a
587single character (parenthesis, plus-sign, etc.): use that same character in
588a literal as the terminal symbol for that token.
589
931c7513
RS
590A third way to represent a terminal symbol is with a C string constant
591containing several characters. @xref{Symbols}, for more information.
592
bfa74976
RS
593The grammar rules also have an expression in Bison syntax. For example,
594here is the Bison rule for a C @code{return} statement. The semicolon in
595quotes is a literal character token, representing part of the C syntax for
596the statement; the naked semicolon, and the colon, are Bison punctuation
597used in every rule.
598
599@example
600stmt: RETURN expr ';'
601 ;
602@end example
603
604@noindent
605@xref{Rules, ,Syntax of Grammar Rules}.
606
342b8b6e 607@node Semantic Values
bfa74976
RS
608@section Semantic Values
609@cindex semantic value
610@cindex value, semantic
611
612A formal grammar selects tokens only by their classifications: for example,
613if a rule mentions the terminal symbol `integer constant', it means that
614@emph{any} integer constant is grammatically valid in that position. The
615precise value of the constant is irrelevant to how to parse the input: if
616@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 617grammatical.
bfa74976
RS
618
619But the precise value is very important for what the input means once it is
620parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6213989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
622has both a token type and a @dfn{semantic value}. @xref{Semantics,
623,Defining Language Semantics},
bfa74976
RS
624for details.
625
626The token type is a terminal symbol defined in the grammar, such as
627@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
628you need to know to decide where the token may validly appear and how to
629group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 630except their types.
bfa74976
RS
631
632The semantic value has all the rest of the information about the
633meaning of the token, such as the value of an integer, or the name of an
634identifier. (A token such as @code{','} which is just punctuation doesn't
635need to have any semantic value.)
636
637For example, an input token might be classified as token type
638@code{INTEGER} and have the semantic value 4. Another input token might
639have the same token type @code{INTEGER} but value 3989. When a grammar
640rule says that @code{INTEGER} is allowed, either of these tokens is
641acceptable because each is an @code{INTEGER}. When the parser accepts the
642token, it keeps track of the token's semantic value.
643
644Each grouping can also have a semantic value as well as its nonterminal
645symbol. For example, in a calculator, an expression typically has a
646semantic value that is a number. In a compiler for a programming
647language, an expression typically has a semantic value that is a tree
648structure describing the meaning of the expression.
649
342b8b6e 650@node Semantic Actions
bfa74976
RS
651@section Semantic Actions
652@cindex semantic actions
653@cindex actions, semantic
654
655In order to be useful, a program must do more than parse input; it must
656also produce some output based on the input. In a Bison grammar, a grammar
657rule can have an @dfn{action} made up of C statements. Each time the
658parser recognizes a match for that rule, the action is executed.
659@xref{Actions}.
13863333 660
bfa74976
RS
661Most of the time, the purpose of an action is to compute the semantic value
662of the whole construct from the semantic values of its parts. For example,
663suppose we have a rule which says an expression can be the sum of two
664expressions. When the parser recognizes such a sum, each of the
665subexpressions has a semantic value which describes how it was built up.
666The action for this rule should create a similar sort of value for the
667newly recognized larger expression.
668
669For example, here is a rule that says an expression can be the sum of
670two subexpressions:
671
672@example
673expr: expr '+' expr @{ $$ = $1 + $3; @}
674 ;
675@end example
676
677@noindent
678The action says how to produce the semantic value of the sum expression
679from the values of the two subexpressions.
680
676385e2 681@node GLR Parsers
c827f760
PE
682@section Writing @acronym{GLR} Parsers
683@cindex @acronym{GLR} parsing
684@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
685@findex %glr-parser
686@cindex conflicts
687@cindex shift/reduce conflicts
fa7e68c3 688@cindex reduce/reduce conflicts
676385e2 689
fa7e68c3 690In some grammars, Bison's standard
9501dc6e
AD
691@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
692certain grammar rule at a given point. That is, it may not be able to
693decide (on the basis of the input read so far) which of two possible
694reductions (applications of a grammar rule) applies, or whether to apply
695a reduction or read more of the input and apply a reduction later in the
696input. These are known respectively as @dfn{reduce/reduce} conflicts
697(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
698(@pxref{Shift/Reduce}).
699
700To use a grammar that is not easily modified to be @acronym{LALR}(1), a
701more general parsing algorithm is sometimes necessary. If you include
676385e2 702@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 703(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
704(@acronym{GLR}) parser. These parsers handle Bison grammars that
705contain no unresolved conflicts (i.e., after applying precedence
706declarations) identically to @acronym{LALR}(1) parsers. However, when
707faced with unresolved shift/reduce and reduce/reduce conflicts,
708@acronym{GLR} parsers use the simple expedient of doing both,
709effectively cloning the parser to follow both possibilities. Each of
710the resulting parsers can again split, so that at any given time, there
711can be any number of possible parses being explored. The parsers
676385e2
PH
712proceed in lockstep; that is, all of them consume (shift) a given input
713symbol before any of them proceed to the next. Each of the cloned
714parsers eventually meets one of two possible fates: either it runs into
715a parsing error, in which case it simply vanishes, or it merges with
716another parser, because the two of them have reduced the input to an
717identical set of symbols.
718
719During the time that there are multiple parsers, semantic actions are
720recorded, but not performed. When a parser disappears, its recorded
721semantic actions disappear as well, and are never performed. When a
722reduction makes two parsers identical, causing them to merge, Bison
723records both sets of semantic actions. Whenever the last two parsers
724merge, reverting to the single-parser case, Bison resolves all the
725outstanding actions either by precedences given to the grammar rules
726involved, or by performing both actions, and then calling a designated
727user-defined function on the resulting values to produce an arbitrary
728merged result.
729
fa7e68c3 730@menu
32c29292
JD
731* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
732* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
733* GLR Semantic Actions:: Deferred semantic actions have special concerns.
734* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
735@end menu
736
737@node Simple GLR Parsers
738@subsection Using @acronym{GLR} on Unambiguous Grammars
739@cindex @acronym{GLR} parsing, unambiguous grammars
740@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
741@findex %glr-parser
742@findex %expect-rr
743@cindex conflicts
744@cindex reduce/reduce conflicts
745@cindex shift/reduce conflicts
746
747In the simplest cases, you can use the @acronym{GLR} algorithm
748to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 749Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
750or (in rare cases) fall into the category of grammars in which the
751@acronym{LALR}(1) algorithm throws away too much information (they are in
752@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
753
754Consider a problem that
755arises in the declaration of enumerated and subrange types in the
756programming language Pascal. Here are some examples:
757
758@example
759type subrange = lo .. hi;
760type enum = (a, b, c);
761@end example
762
763@noindent
764The original language standard allows only numeric
765literals and constant identifiers for the subrange bounds (@samp{lo}
766and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76710206) and many other
768Pascal implementations allow arbitrary expressions there. This gives
769rise to the following situation, containing a superfluous pair of
770parentheses:
771
772@example
773type subrange = (a) .. b;
774@end example
775
776@noindent
777Compare this to the following declaration of an enumerated
778type with only one value:
779
780@example
781type enum = (a);
782@end example
783
784@noindent
785(These declarations are contrived, but they are syntactically
786valid, and more-complicated cases can come up in practical programs.)
787
788These two declarations look identical until the @samp{..} token.
742e4900 789With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
790possible to decide between the two forms when the identifier
791@samp{a} is parsed. It is, however, desirable
792for a parser to decide this, since in the latter case
793@samp{a} must become a new identifier to represent the enumeration
794value, while in the former case @samp{a} must be evaluated with its
795current meaning, which may be a constant or even a function call.
796
797You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
798to be resolved later, but this typically requires substantial
799contortions in both semantic actions and large parts of the
800grammar, where the parentheses are nested in the recursive rules for
801expressions.
802
803You might think of using the lexer to distinguish between the two
804forms by returning different tokens for currently defined and
805undefined identifiers. But if these declarations occur in a local
806scope, and @samp{a} is defined in an outer scope, then both forms
807are possible---either locally redefining @samp{a}, or using the
808value of @samp{a} from the outer scope. So this approach cannot
809work.
810
e757bb10 811A simple solution to this problem is to declare the parser to
fa7e68c3
PE
812use the @acronym{GLR} algorithm.
813When the @acronym{GLR} parser reaches the critical state, it
814merely splits into two branches and pursues both syntax rules
815simultaneously. Sooner or later, one of them runs into a parsing
816error. If there is a @samp{..} token before the next
817@samp{;}, the rule for enumerated types fails since it cannot
818accept @samp{..} anywhere; otherwise, the subrange type rule
819fails since it requires a @samp{..} token. So one of the branches
820fails silently, and the other one continues normally, performing
821all the intermediate actions that were postponed during the split.
822
823If the input is syntactically incorrect, both branches fail and the parser
824reports a syntax error as usual.
825
826The effect of all this is that the parser seems to ``guess'' the
827correct branch to take, or in other words, it seems to use more
742e4900 828lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
829for. In this example, @acronym{LALR}(2) would suffice, but also some cases
830that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
831
832In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
833and the current Bison parser even takes exponential time and space
834for some grammars. In practice, this rarely happens, and for many
835grammars it is possible to prove that it cannot happen.
836The present example contains only one conflict between two
837rules, and the type-declaration context containing the conflict
838cannot be nested. So the number of
839branches that can exist at any time is limited by the constant 2,
840and the parsing time is still linear.
841
842Here is a Bison grammar corresponding to the example above. It
843parses a vastly simplified form of Pascal type declarations.
844
845@example
846%token TYPE DOTDOT ID
847
848@group
849%left '+' '-'
850%left '*' '/'
851@end group
852
853%%
854
855@group
856type_decl : TYPE ID '=' type ';'
857 ;
858@end group
859
860@group
861type : '(' id_list ')'
862 | expr DOTDOT expr
863 ;
864@end group
865
866@group
867id_list : ID
868 | id_list ',' ID
869 ;
870@end group
871
872@group
873expr : '(' expr ')'
874 | expr '+' expr
875 | expr '-' expr
876 | expr '*' expr
877 | expr '/' expr
878 | ID
879 ;
880@end group
881@end example
882
883When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
884about one reduce/reduce conflict. In the conflicting situation the
885parser chooses one of the alternatives, arbitrarily the one
886declared first. Therefore the following correct input is not
887recognized:
888
889@example
890type t = (a) .. b;
891@end example
892
893The parser can be turned into a @acronym{GLR} parser, while also telling Bison
894to be silent about the one known reduce/reduce conflict, by
e757bb10 895adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
896@samp{%%}):
897
898@example
899%glr-parser
900%expect-rr 1
901@end example
902
903@noindent
904No change in the grammar itself is required. Now the
905parser recognizes all valid declarations, according to the
906limited syntax above, transparently. In fact, the user does not even
907notice when the parser splits.
908
f8e1c9e5
AD
909So here we have a case where we can use the benefits of @acronym{GLR},
910almost without disadvantages. Even in simple cases like this, however,
911there are at least two potential problems to beware. First, always
912analyze the conflicts reported by Bison to make sure that @acronym{GLR}
913splitting is only done where it is intended. A @acronym{GLR} parser
914splitting inadvertently may cause problems less obvious than an
915@acronym{LALR} parser statically choosing the wrong alternative in a
916conflict. Second, consider interactions with the lexer (@pxref{Semantic
917Tokens}) with great care. Since a split parser consumes tokens without
918performing any actions during the split, the lexer cannot obtain
919information via parser actions. Some cases of lexer interactions can be
920eliminated by using @acronym{GLR} to shift the complications from the
921lexer to the parser. You must check the remaining cases for
922correctness.
923
924In our example, it would be safe for the lexer to return tokens based on
925their current meanings in some symbol table, because no new symbols are
926defined in the middle of a type declaration. Though it is possible for
927a parser to define the enumeration constants as they are parsed, before
928the type declaration is completed, it actually makes no difference since
929they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
930
931@node Merging GLR Parses
932@subsection Using @acronym{GLR} to Resolve Ambiguities
933@cindex @acronym{GLR} parsing, ambiguous grammars
934@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
935@findex %dprec
936@findex %merge
937@cindex conflicts
938@cindex reduce/reduce conflicts
939
2a8d363a 940Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
941
942@example
943%@{
38a92d50
PE
944 #include <stdio.h>
945 #define YYSTYPE char const *
946 int yylex (void);
947 void yyerror (char const *);
676385e2
PH
948%@}
949
950%token TYPENAME ID
951
952%right '='
953%left '+'
954
955%glr-parser
956
957%%
958
fae437e8 959prog :
676385e2
PH
960 | prog stmt @{ printf ("\n"); @}
961 ;
962
963stmt : expr ';' %dprec 1
964 | decl %dprec 2
965 ;
966
2a8d363a 967expr : ID @{ printf ("%s ", $$); @}
fae437e8 968 | TYPENAME '(' expr ')'
2a8d363a
AD
969 @{ printf ("%s <cast> ", $1); @}
970 | expr '+' expr @{ printf ("+ "); @}
971 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
972 ;
973
fae437e8 974decl : TYPENAME declarator ';'
2a8d363a 975 @{ printf ("%s <declare> ", $1); @}
676385e2 976 | TYPENAME declarator '=' expr ';'
2a8d363a 977 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
978 ;
979
2a8d363a 980declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
981 | '(' declarator ')'
982 ;
983@end example
984
985@noindent
986This models a problematic part of the C++ grammar---the ambiguity between
987certain declarations and statements. For example,
988
989@example
990T (x) = y+z;
991@end example
992
993@noindent
994parses as either an @code{expr} or a @code{stmt}
c827f760
PE
995(assuming that @samp{T} is recognized as a @code{TYPENAME} and
996@samp{x} as an @code{ID}).
676385e2 997Bison detects this as a reduce/reduce conflict between the rules
fae437e8 998@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
999time it encounters @code{x} in the example above. Since this is a
1000@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1001each choice of resolving the reduce/reduce conflict.
1002Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1003however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1004ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1005the other reduces @code{stmt : decl}, after which both parsers are in an
1006identical state: they've seen @samp{prog stmt} and have the same unprocessed
1007input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1008
1009At this point, the @acronym{GLR} parser requires a specification in the
1010grammar of how to choose between the competing parses.
1011In the example above, the two @code{%dprec}
e757bb10 1012declarations specify that Bison is to give precedence
fa7e68c3 1013to the parse that interprets the example as a
676385e2
PH
1014@code{decl}, which implies that @code{x} is a declarator.
1015The parser therefore prints
1016
1017@example
fae437e8 1018"x" y z + T <init-declare>
676385e2
PH
1019@end example
1020
fa7e68c3
PE
1021The @code{%dprec} declarations only come into play when more than one
1022parse survives. Consider a different input string for this parser:
676385e2
PH
1023
1024@example
1025T (x) + y;
1026@end example
1027
1028@noindent
e757bb10 1029This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1030construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1031Here, there is no ambiguity (this cannot be parsed as a declaration).
1032However, at the time the Bison parser encounters @code{x}, it does not
1033have enough information to resolve the reduce/reduce conflict (again,
1034between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1035case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1036into two, one assuming that @code{x} is an @code{expr}, and the other
1037assuming @code{x} is a @code{declarator}. The second of these parsers
1038then vanishes when it sees @code{+}, and the parser prints
1039
1040@example
fae437e8 1041x T <cast> y +
676385e2
PH
1042@end example
1043
1044Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1045the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1046actions of the two possible parsers, rather than choosing one over the
1047other. To do so, you could change the declaration of @code{stmt} as
1048follows:
1049
1050@example
1051stmt : expr ';' %merge <stmtMerge>
1052 | decl %merge <stmtMerge>
1053 ;
1054@end example
1055
1056@noindent
676385e2
PH
1057and define the @code{stmtMerge} function as:
1058
1059@example
38a92d50
PE
1060static YYSTYPE
1061stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1062@{
1063 printf ("<OR> ");
1064 return "";
1065@}
1066@end example
1067
1068@noindent
1069with an accompanying forward declaration
1070in the C declarations at the beginning of the file:
1071
1072@example
1073%@{
38a92d50 1074 #define YYSTYPE char const *
676385e2
PH
1075 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1076%@}
1077@end example
1078
1079@noindent
fa7e68c3
PE
1080With these declarations, the resulting parser parses the first example
1081as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1082
1083@example
fae437e8 1084"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1085@end example
1086
fa7e68c3 1087Bison requires that all of the
e757bb10 1088productions that participate in any particular merge have identical
fa7e68c3
PE
1089@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1090and the parser will report an error during any parse that results in
1091the offending merge.
9501dc6e 1092
32c29292
JD
1093@node GLR Semantic Actions
1094@subsection GLR Semantic Actions
1095
1096@cindex deferred semantic actions
1097By definition, a deferred semantic action is not performed at the same time as
1098the associated reduction.
1099This raises caveats for several Bison features you might use in a semantic
1100action in a @acronym{GLR} parser.
1101
1102@vindex yychar
1103@cindex @acronym{GLR} parsers and @code{yychar}
1104@vindex yylval
1105@cindex @acronym{GLR} parsers and @code{yylval}
1106@vindex yylloc
1107@cindex @acronym{GLR} parsers and @code{yylloc}
1108In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1109the lookahead token present at the time of the associated reduction.
32c29292
JD
1110After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1111you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1112lookahead token's semantic value and location, if any.
32c29292
JD
1113In a nondeferred semantic action, you can also modify any of these variables to
1114influence syntax analysis.
742e4900 1115@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1116
1117@findex yyclearin
1118@cindex @acronym{GLR} parsers and @code{yyclearin}
1119In a deferred semantic action, it's too late to influence syntax analysis.
1120In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1121shallow copies of the values they had at the time of the associated reduction.
1122For this reason alone, modifying them is dangerous.
1123Moreover, the result of modifying them is undefined and subject to change with
1124future versions of Bison.
1125For example, if a semantic action might be deferred, you should never write it
1126to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1127memory referenced by @code{yylval}.
1128
1129@findex YYERROR
1130@cindex @acronym{GLR} parsers and @code{YYERROR}
1131Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1132(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1133initiate error recovery.
1134During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1135the same as its effect in an @acronym{LALR}(1) parser.
1136In a deferred semantic action, its effect is undefined.
1137@c The effect is probably a syntax error at the split point.
1138
8710fc41
JD
1139Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1140describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1141
fa7e68c3
PE
1142@node Compiler Requirements
1143@subsection Considerations when Compiling @acronym{GLR} Parsers
1144@cindex @code{inline}
9501dc6e 1145@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1146
38a92d50
PE
1147The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1148later. In addition, they use the @code{inline} keyword, which is not
1149C89, but is C99 and is a common extension in pre-C99 compilers. It is
1150up to the user of these parsers to handle
9501dc6e
AD
1151portability issues. For instance, if using Autoconf and the Autoconf
1152macro @code{AC_C_INLINE}, a mere
1153
1154@example
1155%@{
38a92d50 1156 #include <config.h>
9501dc6e
AD
1157%@}
1158@end example
1159
1160@noindent
1161will suffice. Otherwise, we suggest
1162
1163@example
1164%@{
38a92d50
PE
1165 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1166 #define inline
1167 #endif
9501dc6e
AD
1168%@}
1169@end example
676385e2 1170
342b8b6e 1171@node Locations Overview
847bf1f5
AD
1172@section Locations
1173@cindex location
95923bd6
AD
1174@cindex textual location
1175@cindex location, textual
847bf1f5
AD
1176
1177Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1178and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1179the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1180Bison provides a mechanism for handling these locations.
1181
72d2299c 1182Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1183associated location, but the type of locations is the same for all tokens and
72d2299c 1184groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1185structure for storing locations (@pxref{Locations}, for more details).
1186
1187Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1188set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1189is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1190@code{@@3}.
1191
1192When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1193of its left hand side (@pxref{Actions}). In the same way, another default
1194action is used for locations. However, the action for locations is general
847bf1f5 1195enough for most cases, meaning there is usually no need to describe for each
72d2299c 1196rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1197grouping, the default behavior of the output parser is to take the beginning
1198of the first symbol, and the end of the last symbol.
1199
342b8b6e 1200@node Bison Parser
bfa74976
RS
1201@section Bison Output: the Parser File
1202@cindex Bison parser
1203@cindex Bison utility
1204@cindex lexical analyzer, purpose
1205@cindex parser
1206
1207When you run Bison, you give it a Bison grammar file as input. The output
1208is a C source file that parses the language described by the grammar.
1209This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1210utility and the Bison parser are two distinct programs: the Bison utility
1211is a program whose output is the Bison parser that becomes part of your
1212program.
1213
1214The job of the Bison parser is to group tokens into groupings according to
1215the grammar rules---for example, to build identifiers and operators into
1216expressions. As it does this, it runs the actions for the grammar rules it
1217uses.
1218
704a47c4
AD
1219The tokens come from a function called the @dfn{lexical analyzer} that
1220you must supply in some fashion (such as by writing it in C). The Bison
1221parser calls the lexical analyzer each time it wants a new token. It
1222doesn't know what is ``inside'' the tokens (though their semantic values
1223may reflect this). Typically the lexical analyzer makes the tokens by
1224parsing characters of text, but Bison does not depend on this.
1225@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1226
1227The Bison parser file is C code which defines a function named
1228@code{yyparse} which implements that grammar. This function does not make
1229a complete C program: you must supply some additional functions. One is
1230the lexical analyzer. Another is an error-reporting function which the
1231parser calls to report an error. In addition, a complete C program must
1232start with a function called @code{main}; you have to provide this, and
1233arrange for it to call @code{yyparse} or the parser will never run.
1234@xref{Interface, ,Parser C-Language Interface}.
1235
f7ab6a50 1236Aside from the token type names and the symbols in the actions you
7093d0f5 1237write, all symbols defined in the Bison parser file itself
bfa74976
RS
1238begin with @samp{yy} or @samp{YY}. This includes interface functions
1239such as the lexical analyzer function @code{yylex}, the error reporting
1240function @code{yyerror} and the parser function @code{yyparse} itself.
1241This also includes numerous identifiers used for internal purposes.
1242Therefore, you should avoid using C identifiers starting with @samp{yy}
1243or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1244this manual. Also, you should avoid using the C identifiers
1245@samp{malloc} and @samp{free} for anything other than their usual
1246meanings.
bfa74976 1247
7093d0f5
AD
1248In some cases the Bison parser file includes system headers, and in
1249those cases your code should respect the identifiers reserved by those
55289366 1250headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1251@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1252declare memory allocators and related types. @code{<libintl.h>} is
1253included if message translation is in use
1254(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1255be included if you define @code{YYDEBUG} to a nonzero value
1256(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1257
342b8b6e 1258@node Stages
bfa74976
RS
1259@section Stages in Using Bison
1260@cindex stages in using Bison
1261@cindex using Bison
1262
1263The actual language-design process using Bison, from grammar specification
1264to a working compiler or interpreter, has these parts:
1265
1266@enumerate
1267@item
1268Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1269(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1270in the language, describe the action that is to be taken when an
1271instance of that rule is recognized. The action is described by a
1272sequence of C statements.
bfa74976
RS
1273
1274@item
704a47c4
AD
1275Write a lexical analyzer to process input and pass tokens to the parser.
1276The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1277Lexical Analyzer Function @code{yylex}}). It could also be produced
1278using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1279
1280@item
1281Write a controlling function that calls the Bison-produced parser.
1282
1283@item
1284Write error-reporting routines.
1285@end enumerate
1286
1287To turn this source code as written into a runnable program, you
1288must follow these steps:
1289
1290@enumerate
1291@item
1292Run Bison on the grammar to produce the parser.
1293
1294@item
1295Compile the code output by Bison, as well as any other source files.
1296
1297@item
1298Link the object files to produce the finished product.
1299@end enumerate
1300
342b8b6e 1301@node Grammar Layout
bfa74976
RS
1302@section The Overall Layout of a Bison Grammar
1303@cindex grammar file
1304@cindex file format
1305@cindex format of grammar file
1306@cindex layout of Bison grammar
1307
1308The input file for the Bison utility is a @dfn{Bison grammar file}. The
1309general form of a Bison grammar file is as follows:
1310
1311@example
1312%@{
08e49d20 1313@var{Prologue}
bfa74976
RS
1314%@}
1315
1316@var{Bison declarations}
1317
1318%%
1319@var{Grammar rules}
1320%%
08e49d20 1321@var{Epilogue}
bfa74976
RS
1322@end example
1323
1324@noindent
1325The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1326in every Bison grammar file to separate the sections.
1327
72d2299c 1328The prologue may define types and variables used in the actions. You can
342b8b6e 1329also use preprocessor commands to define macros used there, and use
bfa74976 1330@code{#include} to include header files that do any of these things.
38a92d50
PE
1331You need to declare the lexical analyzer @code{yylex} and the error
1332printer @code{yyerror} here, along with any other global identifiers
1333used by the actions in the grammar rules.
bfa74976
RS
1334
1335The Bison declarations declare the names of the terminal and nonterminal
1336symbols, and may also describe operator precedence and the data types of
1337semantic values of various symbols.
1338
1339The grammar rules define how to construct each nonterminal symbol from its
1340parts.
1341
38a92d50
PE
1342The epilogue can contain any code you want to use. Often the
1343definitions of functions declared in the prologue go here. In a
1344simple program, all the rest of the program can go here.
bfa74976 1345
342b8b6e 1346@node Examples
bfa74976
RS
1347@chapter Examples
1348@cindex simple examples
1349@cindex examples, simple
1350
1351Now we show and explain three sample programs written using Bison: a
1352reverse polish notation calculator, an algebraic (infix) notation
1353calculator, and a multi-function calculator. All three have been tested
1354under BSD Unix 4.3; each produces a usable, though limited, interactive
1355desk-top calculator.
1356
1357These examples are simple, but Bison grammars for real programming
aa08666d
AD
1358languages are written the same way. You can copy these examples into a
1359source file to try them.
bfa74976
RS
1360
1361@menu
1362* RPN Calc:: Reverse polish notation calculator;
1363 a first example with no operator precedence.
1364* Infix Calc:: Infix (algebraic) notation calculator.
1365 Operator precedence is introduced.
1366* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1367* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1368* Multi-function Calc:: Calculator with memory and trig functions.
1369 It uses multiple data-types for semantic values.
1370* Exercises:: Ideas for improving the multi-function calculator.
1371@end menu
1372
342b8b6e 1373@node RPN Calc
bfa74976
RS
1374@section Reverse Polish Notation Calculator
1375@cindex reverse polish notation
1376@cindex polish notation calculator
1377@cindex @code{rpcalc}
1378@cindex calculator, simple
1379
1380The first example is that of a simple double-precision @dfn{reverse polish
1381notation} calculator (a calculator using postfix operators). This example
1382provides a good starting point, since operator precedence is not an issue.
1383The second example will illustrate how operator precedence is handled.
1384
1385The source code for this calculator is named @file{rpcalc.y}. The
1386@samp{.y} extension is a convention used for Bison input files.
1387
1388@menu
75f5aaea 1389* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1390* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1391* Lexer: Rpcalc Lexer. The lexical analyzer.
1392* Main: Rpcalc Main. The controlling function.
1393* Error: Rpcalc Error. The error reporting function.
1394* Gen: Rpcalc Gen. Running Bison on the grammar file.
1395* Comp: Rpcalc Compile. Run the C compiler on the output code.
1396@end menu
1397
342b8b6e 1398@node Rpcalc Decls
bfa74976
RS
1399@subsection Declarations for @code{rpcalc}
1400
1401Here are the C and Bison declarations for the reverse polish notation
1402calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1403
1404@example
72d2299c 1405/* Reverse polish notation calculator. */
bfa74976
RS
1406
1407%@{
38a92d50
PE
1408 #define YYSTYPE double
1409 #include <math.h>
1410 int yylex (void);
1411 void yyerror (char const *);
bfa74976
RS
1412%@}
1413
1414%token NUM
1415
72d2299c 1416%% /* Grammar rules and actions follow. */
bfa74976
RS
1417@end example
1418
75f5aaea 1419The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1420preprocessor directives and two forward declarations.
bfa74976
RS
1421
1422The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1423specifying the C data type for semantic values of both tokens and
1424groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1425Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1426don't define it, @code{int} is the default. Because we specify
1427@code{double}, each token and each expression has an associated value,
1428which is a floating point number.
bfa74976
RS
1429
1430The @code{#include} directive is used to declare the exponentiation
1431function @code{pow}.
1432
38a92d50
PE
1433The forward declarations for @code{yylex} and @code{yyerror} are
1434needed because the C language requires that functions be declared
1435before they are used. These functions will be defined in the
1436epilogue, but the parser calls them so they must be declared in the
1437prologue.
1438
704a47c4
AD
1439The second section, Bison declarations, provides information to Bison
1440about the token types (@pxref{Bison Declarations, ,The Bison
1441Declarations Section}). Each terminal symbol that is not a
1442single-character literal must be declared here. (Single-character
bfa74976
RS
1443literals normally don't need to be declared.) In this example, all the
1444arithmetic operators are designated by single-character literals, so the
1445only terminal symbol that needs to be declared is @code{NUM}, the token
1446type for numeric constants.
1447
342b8b6e 1448@node Rpcalc Rules
bfa74976
RS
1449@subsection Grammar Rules for @code{rpcalc}
1450
1451Here are the grammar rules for the reverse polish notation calculator.
1452
1453@example
1454input: /* empty */
1455 | input line
1456;
1457
1458line: '\n'
18b519c0 1459 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1460;
1461
18b519c0
AD
1462exp: NUM @{ $$ = $1; @}
1463 | exp exp '+' @{ $$ = $1 + $2; @}
1464 | exp exp '-' @{ $$ = $1 - $2; @}
1465 | exp exp '*' @{ $$ = $1 * $2; @}
1466 | exp exp '/' @{ $$ = $1 / $2; @}
1467 /* Exponentiation */
1468 | exp exp '^' @{ $$ = pow ($1, $2); @}
1469 /* Unary minus */
1470 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1471;
1472%%
1473@end example
1474
1475The groupings of the rpcalc ``language'' defined here are the expression
1476(given the name @code{exp}), the line of input (@code{line}), and the
1477complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1478symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1479which is read as ``or''. The following sections explain what these rules
1480mean.
1481
1482The semantics of the language is determined by the actions taken when a
1483grouping is recognized. The actions are the C code that appears inside
1484braces. @xref{Actions}.
1485
1486You must specify these actions in C, but Bison provides the means for
1487passing semantic values between the rules. In each action, the
1488pseudo-variable @code{$$} stands for the semantic value for the grouping
1489that the rule is going to construct. Assigning a value to @code{$$} is the
1490main job of most actions. The semantic values of the components of the
1491rule are referred to as @code{$1}, @code{$2}, and so on.
1492
1493@menu
13863333
AD
1494* Rpcalc Input::
1495* Rpcalc Line::
1496* Rpcalc Expr::
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node Rpcalc Input
bfa74976
RS
1500@subsubsection Explanation of @code{input}
1501
1502Consider the definition of @code{input}:
1503
1504@example
1505input: /* empty */
1506 | input line
1507;
1508@end example
1509
1510This definition reads as follows: ``A complete input is either an empty
1511string, or a complete input followed by an input line''. Notice that
1512``complete input'' is defined in terms of itself. This definition is said
1513to be @dfn{left recursive} since @code{input} appears always as the
1514leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1515
1516The first alternative is empty because there are no symbols between the
1517colon and the first @samp{|}; this means that @code{input} can match an
1518empty string of input (no tokens). We write the rules this way because it
1519is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1520It's conventional to put an empty alternative first and write the comment
1521@samp{/* empty */} in it.
1522
1523The second alternate rule (@code{input line}) handles all nontrivial input.
1524It means, ``After reading any number of lines, read one more line if
1525possible.'' The left recursion makes this rule into a loop. Since the
1526first alternative matches empty input, the loop can be executed zero or
1527more times.
1528
1529The parser function @code{yyparse} continues to process input until a
1530grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1531input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1532
342b8b6e 1533@node Rpcalc Line
bfa74976
RS
1534@subsubsection Explanation of @code{line}
1535
1536Now consider the definition of @code{line}:
1537
1538@example
1539line: '\n'
1540 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1541;
1542@end example
1543
1544The first alternative is a token which is a newline character; this means
1545that rpcalc accepts a blank line (and ignores it, since there is no
1546action). The second alternative is an expression followed by a newline.
1547This is the alternative that makes rpcalc useful. The semantic value of
1548the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1549question is the first symbol in the alternative. The action prints this
1550value, which is the result of the computation the user asked for.
1551
1552This action is unusual because it does not assign a value to @code{$$}. As
1553a consequence, the semantic value associated with the @code{line} is
1554uninitialized (its value will be unpredictable). This would be a bug if
1555that value were ever used, but we don't use it: once rpcalc has printed the
1556value of the user's input line, that value is no longer needed.
1557
342b8b6e 1558@node Rpcalc Expr
bfa74976
RS
1559@subsubsection Explanation of @code{expr}
1560
1561The @code{exp} grouping has several rules, one for each kind of expression.
1562The first rule handles the simplest expressions: those that are just numbers.
1563The second handles an addition-expression, which looks like two expressions
1564followed by a plus-sign. The third handles subtraction, and so on.
1565
1566@example
1567exp: NUM
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 @dots{}
1571 ;
1572@end example
1573
1574We have used @samp{|} to join all the rules for @code{exp}, but we could
1575equally well have written them separately:
1576
1577@example
1578exp: NUM ;
1579exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1580exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1581 @dots{}
1582@end example
1583
1584Most of the rules have actions that compute the value of the expression in
1585terms of the value of its parts. For example, in the rule for addition,
1586@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1587the second one. The third component, @code{'+'}, has no meaningful
1588associated semantic value, but if it had one you could refer to it as
1589@code{$3}. When @code{yyparse} recognizes a sum expression using this
1590rule, the sum of the two subexpressions' values is produced as the value of
1591the entire expression. @xref{Actions}.
1592
1593You don't have to give an action for every rule. When a rule has no
1594action, Bison by default copies the value of @code{$1} into @code{$$}.
1595This is what happens in the first rule (the one that uses @code{NUM}).
1596
1597The formatting shown here is the recommended convention, but Bison does
72d2299c 1598not require it. You can add or change white space as much as you wish.
bfa74976
RS
1599For example, this:
1600
1601@example
99a9344e 1602exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1603@end example
1604
1605@noindent
1606means the same thing as this:
1607
1608@example
1609exp: NUM
1610 | exp exp '+' @{ $$ = $1 + $2; @}
1611 | @dots{}
99a9344e 1612;
bfa74976
RS
1613@end example
1614
1615@noindent
1616The latter, however, is much more readable.
1617
342b8b6e 1618@node Rpcalc Lexer
bfa74976
RS
1619@subsection The @code{rpcalc} Lexical Analyzer
1620@cindex writing a lexical analyzer
1621@cindex lexical analyzer, writing
1622
704a47c4
AD
1623The lexical analyzer's job is low-level parsing: converting characters
1624or sequences of characters into tokens. The Bison parser gets its
1625tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1626Analyzer Function @code{yylex}}.
bfa74976 1627
c827f760
PE
1628Only a simple lexical analyzer is needed for the @acronym{RPN}
1629calculator. This
bfa74976
RS
1630lexical analyzer skips blanks and tabs, then reads in numbers as
1631@code{double} and returns them as @code{NUM} tokens. Any other character
1632that isn't part of a number is a separate token. Note that the token-code
1633for such a single-character token is the character itself.
1634
1635The return value of the lexical analyzer function is a numeric code which
1636represents a token type. The same text used in Bison rules to stand for
1637this token type is also a C expression for the numeric code for the type.
1638This works in two ways. If the token type is a character literal, then its
e966383b 1639numeric code is that of the character; you can use the same
bfa74976
RS
1640character literal in the lexical analyzer to express the number. If the
1641token type is an identifier, that identifier is defined by Bison as a C
1642macro whose definition is the appropriate number. In this example,
1643therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1644
1964ad8c
AD
1645The semantic value of the token (if it has one) is stored into the
1646global variable @code{yylval}, which is where the Bison parser will look
1647for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1648defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1649,Declarations for @code{rpcalc}}.)
bfa74976 1650
72d2299c
PE
1651A token type code of zero is returned if the end-of-input is encountered.
1652(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1653
1654Here is the code for the lexical analyzer:
1655
1656@example
1657@group
72d2299c 1658/* The lexical analyzer returns a double floating point
e966383b 1659 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1660 of the character read if not a number. It skips all blanks
1661 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1662
1663#include <ctype.h>
1664@end group
1665
1666@group
13863333
AD
1667int
1668yylex (void)
bfa74976
RS
1669@{
1670 int c;
1671
72d2299c 1672 /* Skip white space. */
13863333 1673 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1674 ;
1675@end group
1676@group
72d2299c 1677 /* Process numbers. */
13863333 1678 if (c == '.' || isdigit (c))
bfa74976
RS
1679 @{
1680 ungetc (c, stdin);
1681 scanf ("%lf", &yylval);
1682 return NUM;
1683 @}
1684@end group
1685@group
72d2299c 1686 /* Return end-of-input. */
13863333 1687 if (c == EOF)
bfa74976 1688 return 0;
72d2299c 1689 /* Return a single char. */
13863333 1690 return c;
bfa74976
RS
1691@}
1692@end group
1693@end example
1694
342b8b6e 1695@node Rpcalc Main
bfa74976
RS
1696@subsection The Controlling Function
1697@cindex controlling function
1698@cindex main function in simple example
1699
1700In keeping with the spirit of this example, the controlling function is
1701kept to the bare minimum. The only requirement is that it call
1702@code{yyparse} to start the process of parsing.
1703
1704@example
1705@group
13863333
AD
1706int
1707main (void)
bfa74976 1708@{
13863333 1709 return yyparse ();
bfa74976
RS
1710@}
1711@end group
1712@end example
1713
342b8b6e 1714@node Rpcalc Error
bfa74976
RS
1715@subsection The Error Reporting Routine
1716@cindex error reporting routine
1717
1718When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1719function @code{yyerror} to print an error message (usually but not
6e649e65 1720always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1721@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1722here is the definition we will use:
bfa74976
RS
1723
1724@example
1725@group
1726#include <stdio.h>
1727
38a92d50 1728/* Called by yyparse on error. */
13863333 1729void
38a92d50 1730yyerror (char const *s)
bfa74976 1731@{
4e03e201 1732 fprintf (stderr, "%s\n", s);
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
1737After @code{yyerror} returns, the Bison parser may recover from the error
1738and continue parsing if the grammar contains a suitable error rule
1739(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1740have not written any error rules in this example, so any invalid input will
1741cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1742real calculator, but it is adequate for the first example.
bfa74976 1743
342b8b6e 1744@node Rpcalc Gen
bfa74976
RS
1745@subsection Running Bison to Make the Parser
1746@cindex running Bison (introduction)
1747
ceed8467
AD
1748Before running Bison to produce a parser, we need to decide how to
1749arrange all the source code in one or more source files. For such a
1750simple example, the easiest thing is to put everything in one file. The
1751definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1752end, in the epilogue of the file
75f5aaea 1753(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1754
1755For a large project, you would probably have several source files, and use
1756@code{make} to arrange to recompile them.
1757
1758With all the source in a single file, you use the following command to
1759convert it into a parser file:
1760
1761@example
fa4d969f 1762bison @var{file}.y
bfa74976
RS
1763@end example
1764
1765@noindent
1766In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1767@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1768removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1769Bison contains the source code for @code{yyparse}. The additional
1770functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1771are copied verbatim to the output.
1772
342b8b6e 1773@node Rpcalc Compile
bfa74976
RS
1774@subsection Compiling the Parser File
1775@cindex compiling the parser
1776
1777Here is how to compile and run the parser file:
1778
1779@example
1780@group
1781# @r{List files in current directory.}
9edcd895 1782$ @kbd{ls}
bfa74976
RS
1783rpcalc.tab.c rpcalc.y
1784@end group
1785
1786@group
1787# @r{Compile the Bison parser.}
1788# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1789$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1790@end group
1791
1792@group
1793# @r{List files again.}
9edcd895 1794$ @kbd{ls}
bfa74976
RS
1795rpcalc rpcalc.tab.c rpcalc.y
1796@end group
1797@end example
1798
1799The file @file{rpcalc} now contains the executable code. Here is an
1800example session using @code{rpcalc}.
1801
1802@example
9edcd895
AD
1803$ @kbd{rpcalc}
1804@kbd{4 9 +}
bfa74976 180513
9edcd895 1806@kbd{3 7 + 3 4 5 *+-}
bfa74976 1807-13
9edcd895 1808@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 180913
9edcd895 1810@kbd{5 6 / 4 n +}
bfa74976 1811-3.166666667
9edcd895 1812@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181381
9edcd895
AD
1814@kbd{^D} @r{End-of-file indicator}
1815$
bfa74976
RS
1816@end example
1817
342b8b6e 1818@node Infix Calc
bfa74976
RS
1819@section Infix Notation Calculator: @code{calc}
1820@cindex infix notation calculator
1821@cindex @code{calc}
1822@cindex calculator, infix notation
1823
1824We now modify rpcalc to handle infix operators instead of postfix. Infix
1825notation involves the concept of operator precedence and the need for
1826parentheses nested to arbitrary depth. Here is the Bison code for
1827@file{calc.y}, an infix desk-top calculator.
1828
1829@example
38a92d50 1830/* Infix notation calculator. */
bfa74976
RS
1831
1832%@{
38a92d50
PE
1833 #define YYSTYPE double
1834 #include <math.h>
1835 #include <stdio.h>
1836 int yylex (void);
1837 void yyerror (char const *);
bfa74976
RS
1838%@}
1839
38a92d50 1840/* Bison declarations. */
bfa74976
RS
1841%token NUM
1842%left '-' '+'
1843%left '*' '/'
1844%left NEG /* negation--unary minus */
38a92d50 1845%right '^' /* exponentiation */
bfa74976 1846
38a92d50
PE
1847%% /* The grammar follows. */
1848input: /* empty */
bfa74976
RS
1849 | input line
1850;
1851
1852line: '\n'
1853 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1854;
1855
1856exp: NUM @{ $$ = $1; @}
1857 | exp '+' exp @{ $$ = $1 + $3; @}
1858 | exp '-' exp @{ $$ = $1 - $3; @}
1859 | exp '*' exp @{ $$ = $1 * $3; @}
1860 | exp '/' exp @{ $$ = $1 / $3; @}
1861 | '-' exp %prec NEG @{ $$ = -$2; @}
1862 | exp '^' exp @{ $$ = pow ($1, $3); @}
1863 | '(' exp ')' @{ $$ = $2; @}
1864;
1865%%
1866@end example
1867
1868@noindent
ceed8467
AD
1869The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1870same as before.
bfa74976
RS
1871
1872There are two important new features shown in this code.
1873
1874In the second section (Bison declarations), @code{%left} declares token
1875types and says they are left-associative operators. The declarations
1876@code{%left} and @code{%right} (right associativity) take the place of
1877@code{%token} which is used to declare a token type name without
1878associativity. (These tokens are single-character literals, which
1879ordinarily don't need to be declared. We declare them here to specify
1880the associativity.)
1881
1882Operator precedence is determined by the line ordering of the
1883declarations; the higher the line number of the declaration (lower on
1884the page or screen), the higher the precedence. Hence, exponentiation
1885has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1886by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1887Precedence}.
bfa74976 1888
704a47c4
AD
1889The other important new feature is the @code{%prec} in the grammar
1890section for the unary minus operator. The @code{%prec} simply instructs
1891Bison that the rule @samp{| '-' exp} has the same precedence as
1892@code{NEG}---in this case the next-to-highest. @xref{Contextual
1893Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1894
1895Here is a sample run of @file{calc.y}:
1896
1897@need 500
1898@example
9edcd895
AD
1899$ @kbd{calc}
1900@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19016.880952381
9edcd895 1902@kbd{-56 + 2}
bfa74976 1903-54
9edcd895 1904@kbd{3 ^ 2}
bfa74976
RS
19059
1906@end example
1907
342b8b6e 1908@node Simple Error Recovery
bfa74976
RS
1909@section Simple Error Recovery
1910@cindex error recovery, simple
1911
1912Up to this point, this manual has not addressed the issue of @dfn{error
1913recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1914error. All we have handled is error reporting with @code{yyerror}.
1915Recall that by default @code{yyparse} returns after calling
1916@code{yyerror}. This means that an erroneous input line causes the
1917calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1918
1919The Bison language itself includes the reserved word @code{error}, which
1920may be included in the grammar rules. In the example below it has
1921been added to one of the alternatives for @code{line}:
1922
1923@example
1924@group
1925line: '\n'
1926 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1927 | error '\n' @{ yyerrok; @}
1928;
1929@end group
1930@end example
1931
ceed8467 1932This addition to the grammar allows for simple error recovery in the
6e649e65 1933event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1934read, the error will be recognized by the third rule for @code{line},
1935and parsing will continue. (The @code{yyerror} function is still called
1936upon to print its message as well.) The action executes the statement
1937@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1938that error recovery is complete (@pxref{Error Recovery}). Note the
1939difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1940misprint.
bfa74976
RS
1941
1942This form of error recovery deals with syntax errors. There are other
1943kinds of errors; for example, division by zero, which raises an exception
1944signal that is normally fatal. A real calculator program must handle this
1945signal and use @code{longjmp} to return to @code{main} and resume parsing
1946input lines; it would also have to discard the rest of the current line of
1947input. We won't discuss this issue further because it is not specific to
1948Bison programs.
1949
342b8b6e
AD
1950@node Location Tracking Calc
1951@section Location Tracking Calculator: @code{ltcalc}
1952@cindex location tracking calculator
1953@cindex @code{ltcalc}
1954@cindex calculator, location tracking
1955
9edcd895
AD
1956This example extends the infix notation calculator with location
1957tracking. This feature will be used to improve the error messages. For
1958the sake of clarity, this example is a simple integer calculator, since
1959most of the work needed to use locations will be done in the lexical
72d2299c 1960analyzer.
342b8b6e
AD
1961
1962@menu
1963* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1964* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1965* Lexer: Ltcalc Lexer. The lexical analyzer.
1966@end menu
1967
1968@node Ltcalc Decls
1969@subsection Declarations for @code{ltcalc}
1970
9edcd895
AD
1971The C and Bison declarations for the location tracking calculator are
1972the same as the declarations for the infix notation calculator.
342b8b6e
AD
1973
1974@example
1975/* Location tracking calculator. */
1976
1977%@{
38a92d50
PE
1978 #define YYSTYPE int
1979 #include <math.h>
1980 int yylex (void);
1981 void yyerror (char const *);
342b8b6e
AD
1982%@}
1983
1984/* Bison declarations. */
1985%token NUM
1986
1987%left '-' '+'
1988%left '*' '/'
1989%left NEG
1990%right '^'
1991
38a92d50 1992%% /* The grammar follows. */
342b8b6e
AD
1993@end example
1994
9edcd895
AD
1995@noindent
1996Note there are no declarations specific to locations. Defining a data
1997type for storing locations is not needed: we will use the type provided
1998by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1999four member structure with the following integer fields:
2000@code{first_line}, @code{first_column}, @code{last_line} and
2001@code{last_column}.
342b8b6e
AD
2002
2003@node Ltcalc Rules
2004@subsection Grammar Rules for @code{ltcalc}
2005
9edcd895
AD
2006Whether handling locations or not has no effect on the syntax of your
2007language. Therefore, grammar rules for this example will be very close
2008to those of the previous example: we will only modify them to benefit
2009from the new information.
342b8b6e 2010
9edcd895
AD
2011Here, we will use locations to report divisions by zero, and locate the
2012wrong expressions or subexpressions.
342b8b6e
AD
2013
2014@example
2015@group
2016input : /* empty */
2017 | input line
2018;
2019@end group
2020
2021@group
2022line : '\n'
2023 | exp '\n' @{ printf ("%d\n", $1); @}
2024;
2025@end group
2026
2027@group
2028exp : NUM @{ $$ = $1; @}
2029 | exp '+' exp @{ $$ = $1 + $3; @}
2030 | exp '-' exp @{ $$ = $1 - $3; @}
2031 | exp '*' exp @{ $$ = $1 * $3; @}
2032@end group
342b8b6e 2033@group
9edcd895 2034 | exp '/' exp
342b8b6e
AD
2035 @{
2036 if ($3)
2037 $$ = $1 / $3;
2038 else
2039 @{
2040 $$ = 1;
9edcd895
AD
2041 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2042 @@3.first_line, @@3.first_column,
2043 @@3.last_line, @@3.last_column);
342b8b6e
AD
2044 @}
2045 @}
2046@end group
2047@group
2048 | '-' exp %preg NEG @{ $$ = -$2; @}
2049 | exp '^' exp @{ $$ = pow ($1, $3); @}
2050 | '(' exp ')' @{ $$ = $2; @}
2051@end group
2052@end example
2053
2054This code shows how to reach locations inside of semantic actions, by
2055using the pseudo-variables @code{@@@var{n}} for rule components, and the
2056pseudo-variable @code{@@$} for groupings.
2057
9edcd895
AD
2058We don't need to assign a value to @code{@@$}: the output parser does it
2059automatically. By default, before executing the C code of each action,
2060@code{@@$} is set to range from the beginning of @code{@@1} to the end
2061of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2062can be redefined (@pxref{Location Default Action, , Default Action for
2063Locations}), and for very specific rules, @code{@@$} can be computed by
2064hand.
342b8b6e
AD
2065
2066@node Ltcalc Lexer
2067@subsection The @code{ltcalc} Lexical Analyzer.
2068
9edcd895 2069Until now, we relied on Bison's defaults to enable location
72d2299c 2070tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2071able to feed the parser with the token locations, as it already does for
2072semantic values.
342b8b6e 2073
9edcd895
AD
2074To this end, we must take into account every single character of the
2075input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2076
2077@example
2078@group
2079int
2080yylex (void)
2081@{
2082 int c;
18b519c0 2083@end group
342b8b6e 2084
18b519c0 2085@group
72d2299c 2086 /* Skip white space. */
342b8b6e
AD
2087 while ((c = getchar ()) == ' ' || c == '\t')
2088 ++yylloc.last_column;
18b519c0 2089@end group
342b8b6e 2090
18b519c0 2091@group
72d2299c 2092 /* Step. */
342b8b6e
AD
2093 yylloc.first_line = yylloc.last_line;
2094 yylloc.first_column = yylloc.last_column;
2095@end group
2096
2097@group
72d2299c 2098 /* Process numbers. */
342b8b6e
AD
2099 if (isdigit (c))
2100 @{
2101 yylval = c - '0';
2102 ++yylloc.last_column;
2103 while (isdigit (c = getchar ()))
2104 @{
2105 ++yylloc.last_column;
2106 yylval = yylval * 10 + c - '0';
2107 @}
2108 ungetc (c, stdin);
2109 return NUM;
2110 @}
2111@end group
2112
72d2299c 2113 /* Return end-of-input. */
342b8b6e
AD
2114 if (c == EOF)
2115 return 0;
2116
72d2299c 2117 /* Return a single char, and update location. */
342b8b6e
AD
2118 if (c == '\n')
2119 @{
2120 ++yylloc.last_line;
2121 yylloc.last_column = 0;
2122 @}
2123 else
2124 ++yylloc.last_column;
2125 return c;
2126@}
2127@end example
2128
9edcd895
AD
2129Basically, the lexical analyzer performs the same processing as before:
2130it skips blanks and tabs, and reads numbers or single-character tokens.
2131In addition, it updates @code{yylloc}, the global variable (of type
2132@code{YYLTYPE}) containing the token's location.
342b8b6e 2133
9edcd895 2134Now, each time this function returns a token, the parser has its number
72d2299c 2135as well as its semantic value, and its location in the text. The last
9edcd895
AD
2136needed change is to initialize @code{yylloc}, for example in the
2137controlling function:
342b8b6e
AD
2138
2139@example
9edcd895 2140@group
342b8b6e
AD
2141int
2142main (void)
2143@{
2144 yylloc.first_line = yylloc.last_line = 1;
2145 yylloc.first_column = yylloc.last_column = 0;
2146 return yyparse ();
2147@}
9edcd895 2148@end group
342b8b6e
AD
2149@end example
2150
9edcd895
AD
2151Remember that computing locations is not a matter of syntax. Every
2152character must be associated to a location update, whether it is in
2153valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2154
2155@node Multi-function Calc
bfa74976
RS
2156@section Multi-Function Calculator: @code{mfcalc}
2157@cindex multi-function calculator
2158@cindex @code{mfcalc}
2159@cindex calculator, multi-function
2160
2161Now that the basics of Bison have been discussed, it is time to move on to
2162a more advanced problem. The above calculators provided only five
2163functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2164be nice to have a calculator that provides other mathematical functions such
2165as @code{sin}, @code{cos}, etc.
2166
2167It is easy to add new operators to the infix calculator as long as they are
2168only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2169back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2170adding a new operator. But we want something more flexible: built-in
2171functions whose syntax has this form:
2172
2173@example
2174@var{function_name} (@var{argument})
2175@end example
2176
2177@noindent
2178At the same time, we will add memory to the calculator, by allowing you
2179to create named variables, store values in them, and use them later.
2180Here is a sample session with the multi-function calculator:
2181
2182@example
9edcd895
AD
2183$ @kbd{mfcalc}
2184@kbd{pi = 3.141592653589}
bfa74976 21853.1415926536
9edcd895 2186@kbd{sin(pi)}
bfa74976 21870.0000000000
9edcd895 2188@kbd{alpha = beta1 = 2.3}
bfa74976 21892.3000000000
9edcd895 2190@kbd{alpha}
bfa74976 21912.3000000000
9edcd895 2192@kbd{ln(alpha)}
bfa74976 21930.8329091229
9edcd895 2194@kbd{exp(ln(beta1))}
bfa74976 21952.3000000000
9edcd895 2196$
bfa74976
RS
2197@end example
2198
2199Note that multiple assignment and nested function calls are permitted.
2200
2201@menu
2202* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2203* Rules: Mfcalc Rules. Grammar rules for the calculator.
2204* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2205@end menu
2206
342b8b6e 2207@node Mfcalc Decl
bfa74976
RS
2208@subsection Declarations for @code{mfcalc}
2209
2210Here are the C and Bison declarations for the multi-function calculator.
2211
2212@smallexample
18b519c0 2213@group
bfa74976 2214%@{
38a92d50
PE
2215 #include <math.h> /* For math functions, cos(), sin(), etc. */
2216 #include "calc.h" /* Contains definition of `symrec'. */
2217 int yylex (void);
2218 void yyerror (char const *);
bfa74976 2219%@}
18b519c0
AD
2220@end group
2221@group
bfa74976 2222%union @{
38a92d50
PE
2223 double val; /* For returning numbers. */
2224 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2225@}
18b519c0 2226@end group
38a92d50
PE
2227%token <val> NUM /* Simple double precision number. */
2228%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2229%type <val> exp
2230
18b519c0 2231@group
bfa74976
RS
2232%right '='
2233%left '-' '+'
2234%left '*' '/'
38a92d50
PE
2235%left NEG /* negation--unary minus */
2236%right '^' /* exponentiation */
18b519c0 2237@end group
38a92d50 2238%% /* The grammar follows. */
bfa74976
RS
2239@end smallexample
2240
2241The above grammar introduces only two new features of the Bison language.
2242These features allow semantic values to have various data types
2243(@pxref{Multiple Types, ,More Than One Value Type}).
2244
2245The @code{%union} declaration specifies the entire list of possible types;
2246this is instead of defining @code{YYSTYPE}. The allowable types are now
2247double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2248the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2249
2250Since values can now have various types, it is necessary to associate a
2251type with each grammar symbol whose semantic value is used. These symbols
2252are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2253declarations are augmented with information about their data type (placed
2254between angle brackets).
2255
704a47c4
AD
2256The Bison construct @code{%type} is used for declaring nonterminal
2257symbols, just as @code{%token} is used for declaring token types. We
2258have not used @code{%type} before because nonterminal symbols are
2259normally declared implicitly by the rules that define them. But
2260@code{exp} must be declared explicitly so we can specify its value type.
2261@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2262
342b8b6e 2263@node Mfcalc Rules
bfa74976
RS
2264@subsection Grammar Rules for @code{mfcalc}
2265
2266Here are the grammar rules for the multi-function calculator.
2267Most of them are copied directly from @code{calc}; three rules,
2268those which mention @code{VAR} or @code{FNCT}, are new.
2269
2270@smallexample
18b519c0 2271@group
bfa74976
RS
2272input: /* empty */
2273 | input line
2274;
18b519c0 2275@end group
bfa74976 2276
18b519c0 2277@group
bfa74976
RS
2278line:
2279 '\n'
2280 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2281 | error '\n' @{ yyerrok; @}
2282;
18b519c0 2283@end group
bfa74976 2284
18b519c0 2285@group
bfa74976
RS
2286exp: NUM @{ $$ = $1; @}
2287 | VAR @{ $$ = $1->value.var; @}
2288 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2289 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2290 | exp '+' exp @{ $$ = $1 + $3; @}
2291 | exp '-' exp @{ $$ = $1 - $3; @}
2292 | exp '*' exp @{ $$ = $1 * $3; @}
2293 | exp '/' exp @{ $$ = $1 / $3; @}
2294 | '-' exp %prec NEG @{ $$ = -$2; @}
2295 | exp '^' exp @{ $$ = pow ($1, $3); @}
2296 | '(' exp ')' @{ $$ = $2; @}
2297;
18b519c0 2298@end group
38a92d50 2299/* End of grammar. */
bfa74976
RS
2300%%
2301@end smallexample
2302
342b8b6e 2303@node Mfcalc Symtab
bfa74976
RS
2304@subsection The @code{mfcalc} Symbol Table
2305@cindex symbol table example
2306
2307The multi-function calculator requires a symbol table to keep track of the
2308names and meanings of variables and functions. This doesn't affect the
2309grammar rules (except for the actions) or the Bison declarations, but it
2310requires some additional C functions for support.
2311
2312The symbol table itself consists of a linked list of records. Its
2313definition, which is kept in the header @file{calc.h}, is as follows. It
2314provides for either functions or variables to be placed in the table.
2315
2316@smallexample
2317@group
38a92d50 2318/* Function type. */
32dfccf8 2319typedef double (*func_t) (double);
72f889cc 2320@end group
32dfccf8 2321
72f889cc 2322@group
38a92d50 2323/* Data type for links in the chain of symbols. */
bfa74976
RS
2324struct symrec
2325@{
38a92d50 2326 char *name; /* name of symbol */
bfa74976 2327 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2328 union
2329 @{
38a92d50
PE
2330 double var; /* value of a VAR */
2331 func_t fnctptr; /* value of a FNCT */
bfa74976 2332 @} value;
38a92d50 2333 struct symrec *next; /* link field */
bfa74976
RS
2334@};
2335@end group
2336
2337@group
2338typedef struct symrec symrec;
2339
38a92d50 2340/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2341extern symrec *sym_table;
2342
a730d142 2343symrec *putsym (char const *, int);
38a92d50 2344symrec *getsym (char const *);
bfa74976
RS
2345@end group
2346@end smallexample
2347
2348The new version of @code{main} includes a call to @code{init_table}, a
2349function that initializes the symbol table. Here it is, and
2350@code{init_table} as well:
2351
2352@smallexample
bfa74976
RS
2353#include <stdio.h>
2354
18b519c0 2355@group
38a92d50 2356/* Called by yyparse on error. */
13863333 2357void
38a92d50 2358yyerror (char const *s)
bfa74976
RS
2359@{
2360 printf ("%s\n", s);
2361@}
18b519c0 2362@end group
bfa74976 2363
18b519c0 2364@group
bfa74976
RS
2365struct init
2366@{
38a92d50
PE
2367 char const *fname;
2368 double (*fnct) (double);
bfa74976
RS
2369@};
2370@end group
2371
2372@group
38a92d50 2373struct init const arith_fncts[] =
13863333 2374@{
32dfccf8
AD
2375 "sin", sin,
2376 "cos", cos,
13863333 2377 "atan", atan,
32dfccf8
AD
2378 "ln", log,
2379 "exp", exp,
13863333
AD
2380 "sqrt", sqrt,
2381 0, 0
2382@};
18b519c0 2383@end group
bfa74976 2384
18b519c0 2385@group
bfa74976 2386/* The symbol table: a chain of `struct symrec'. */
38a92d50 2387symrec *sym_table;
bfa74976
RS
2388@end group
2389
2390@group
72d2299c 2391/* Put arithmetic functions in table. */
13863333
AD
2392void
2393init_table (void)
bfa74976
RS
2394@{
2395 int i;
2396 symrec *ptr;
2397 for (i = 0; arith_fncts[i].fname != 0; i++)
2398 @{
2399 ptr = putsym (arith_fncts[i].fname, FNCT);
2400 ptr->value.fnctptr = arith_fncts[i].fnct;
2401 @}
2402@}
2403@end group
38a92d50
PE
2404
2405@group
2406int
2407main (void)
2408@{
2409 init_table ();
2410 return yyparse ();
2411@}
2412@end group
bfa74976
RS
2413@end smallexample
2414
2415By simply editing the initialization list and adding the necessary include
2416files, you can add additional functions to the calculator.
2417
2418Two important functions allow look-up and installation of symbols in the
2419symbol table. The function @code{putsym} is passed a name and the type
2420(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2421linked to the front of the list, and a pointer to the object is returned.
2422The function @code{getsym} is passed the name of the symbol to look up. If
2423found, a pointer to that symbol is returned; otherwise zero is returned.
2424
2425@smallexample
2426symrec *
38a92d50 2427putsym (char const *sym_name, int sym_type)
bfa74976
RS
2428@{
2429 symrec *ptr;
2430 ptr = (symrec *) malloc (sizeof (symrec));
2431 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2432 strcpy (ptr->name,sym_name);
2433 ptr->type = sym_type;
72d2299c 2434 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2435 ptr->next = (struct symrec *)sym_table;
2436 sym_table = ptr;
2437 return ptr;
2438@}
2439
2440symrec *
38a92d50 2441getsym (char const *sym_name)
bfa74976
RS
2442@{
2443 symrec *ptr;
2444 for (ptr = sym_table; ptr != (symrec *) 0;
2445 ptr = (symrec *)ptr->next)
2446 if (strcmp (ptr->name,sym_name) == 0)
2447 return ptr;
2448 return 0;
2449@}
2450@end smallexample
2451
2452The function @code{yylex} must now recognize variables, numeric values, and
2453the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2454characters with a leading letter are recognized as either variables or
bfa74976
RS
2455functions depending on what the symbol table says about them.
2456
2457The string is passed to @code{getsym} for look up in the symbol table. If
2458the name appears in the table, a pointer to its location and its type
2459(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2460already in the table, then it is installed as a @code{VAR} using
2461@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2462returned to @code{yyparse}.
bfa74976
RS
2463
2464No change is needed in the handling of numeric values and arithmetic
2465operators in @code{yylex}.
2466
2467@smallexample
2468@group
2469#include <ctype.h>
18b519c0 2470@end group
13863333 2471
18b519c0 2472@group
13863333
AD
2473int
2474yylex (void)
bfa74976
RS
2475@{
2476 int c;
2477
72d2299c 2478 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2479 while ((c = getchar ()) == ' ' || c == '\t');
2480
2481 if (c == EOF)
2482 return 0;
2483@end group
2484
2485@group
2486 /* Char starts a number => parse the number. */
2487 if (c == '.' || isdigit (c))
2488 @{
2489 ungetc (c, stdin);
2490 scanf ("%lf", &yylval.val);
2491 return NUM;
2492 @}
2493@end group
2494
2495@group
2496 /* Char starts an identifier => read the name. */
2497 if (isalpha (c))
2498 @{
2499 symrec *s;
2500 static char *symbuf = 0;
2501 static int length = 0;
2502 int i;
2503@end group
2504
2505@group
2506 /* Initially make the buffer long enough
2507 for a 40-character symbol name. */
2508 if (length == 0)
2509 length = 40, symbuf = (char *)malloc (length + 1);
2510
2511 i = 0;
2512 do
2513@end group
2514@group
2515 @{
2516 /* If buffer is full, make it bigger. */
2517 if (i == length)
2518 @{
2519 length *= 2;
18b519c0 2520 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2521 @}
2522 /* Add this character to the buffer. */
2523 symbuf[i++] = c;
2524 /* Get another character. */
2525 c = getchar ();
2526 @}
2527@end group
2528@group
72d2299c 2529 while (isalnum (c));
bfa74976
RS
2530
2531 ungetc (c, stdin);
2532 symbuf[i] = '\0';
2533@end group
2534
2535@group
2536 s = getsym (symbuf);
2537 if (s == 0)
2538 s = putsym (symbuf, VAR);
2539 yylval.tptr = s;
2540 return s->type;
2541 @}
2542
2543 /* Any other character is a token by itself. */
2544 return c;
2545@}
2546@end group
2547@end smallexample
2548
72d2299c 2549This program is both powerful and flexible. You may easily add new
704a47c4
AD
2550functions, and it is a simple job to modify this code to install
2551predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2552
342b8b6e 2553@node Exercises
bfa74976
RS
2554@section Exercises
2555@cindex exercises
2556
2557@enumerate
2558@item
2559Add some new functions from @file{math.h} to the initialization list.
2560
2561@item
2562Add another array that contains constants and their values. Then
2563modify @code{init_table} to add these constants to the symbol table.
2564It will be easiest to give the constants type @code{VAR}.
2565
2566@item
2567Make the program report an error if the user refers to an
2568uninitialized variable in any way except to store a value in it.
2569@end enumerate
2570
342b8b6e 2571@node Grammar File
bfa74976
RS
2572@chapter Bison Grammar Files
2573
2574Bison takes as input a context-free grammar specification and produces a
2575C-language function that recognizes correct instances of the grammar.
2576
2577The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2578@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2579
2580@menu
2581* Grammar Outline:: Overall layout of the grammar file.
2582* Symbols:: Terminal and nonterminal symbols.
2583* Rules:: How to write grammar rules.
2584* Recursion:: Writing recursive rules.
2585* Semantics:: Semantic values and actions.
847bf1f5 2586* Locations:: Locations and actions.
bfa74976
RS
2587* Declarations:: All kinds of Bison declarations are described here.
2588* Multiple Parsers:: Putting more than one Bison parser in one program.
2589@end menu
2590
342b8b6e 2591@node Grammar Outline
bfa74976
RS
2592@section Outline of a Bison Grammar
2593
2594A Bison grammar file has four main sections, shown here with the
2595appropriate delimiters:
2596
2597@example
2598%@{
38a92d50 2599 @var{Prologue}
bfa74976
RS
2600%@}
2601
2602@var{Bison declarations}
2603
2604%%
2605@var{Grammar rules}
2606%%
2607
75f5aaea 2608@var{Epilogue}
bfa74976
RS
2609@end example
2610
2611Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2612As a @acronym{GNU} extension, @samp{//} introduces a comment that
2613continues until end of line.
bfa74976
RS
2614
2615@menu
75f5aaea 2616* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2617* Bison Declarations:: Syntax and usage of the Bison declarations section.
2618* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2619* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2620@end menu
2621
38a92d50 2622@node Prologue
75f5aaea
MA
2623@subsection The prologue
2624@cindex declarations section
2625@cindex Prologue
2626@cindex declarations
bfa74976 2627
f8e1c9e5
AD
2628The @var{Prologue} section contains macro definitions and declarations
2629of functions and variables that are used in the actions in the grammar
2630rules. These are copied to the beginning of the parser file so that
2631they precede the definition of @code{yyparse}. You can use
2632@samp{#include} to get the declarations from a header file. If you
2633don't need any C declarations, you may omit the @samp{%@{} and
2634@samp{%@}} delimiters that bracket this section.
bfa74976 2635
287c78f6
PE
2636The @var{Prologue} section is terminated by the the first occurrence
2637of @samp{%@}} that is outside a comment, a string literal, or a
2638character constant.
2639
c732d2c6
AD
2640You may have more than one @var{Prologue} section, intermixed with the
2641@var{Bison declarations}. This allows you to have C and Bison
2642declarations that refer to each other. For example, the @code{%union}
2643declaration may use types defined in a header file, and you may wish to
2644prototype functions that take arguments of type @code{YYSTYPE}. This
2645can be done with two @var{Prologue} blocks, one before and one after the
2646@code{%union} declaration.
2647
2648@smallexample
2649%@{
38a92d50
PE
2650 #include <stdio.h>
2651 #include "ptypes.h"
c732d2c6
AD
2652%@}
2653
2654%union @{
779e7ceb 2655 long int n;
c732d2c6
AD
2656 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2657@}
2658
2659%@{
38a92d50
PE
2660 static void print_token_value (FILE *, int, YYSTYPE);
2661 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2662%@}
2663
2664@dots{}
2665@end smallexample
2666
9bc0dd67
JD
2667@findex %before-definitions
2668If you've instructed Bison to generate a header file (@pxref{Table of Symbols,
2669,%defines}), you probably want @code{#include "ptypes.h"} to appear
2670in that header file as well.
2671In that case, use @code{%before-definitions} instead of a @var{Prologue}
2672section (@pxref{Table of Symbols, ,%before-definitions}):
2673
2674@smallexample
2675%@{
2676 #include <stdio.h>
2677%@}
2678
2679%before-definitions @{
2680 #include "ptypes.h"
2681@}
2682%union @{
2683 long int n;
2684 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2685@}
2686
2687%@{
2688 static void print_token_value (FILE *, int, YYSTYPE);
2689 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2690%@}
2691
2692@dots{}
2693@end smallexample
2694
342b8b6e 2695@node Bison Declarations
bfa74976
RS
2696@subsection The Bison Declarations Section
2697@cindex Bison declarations (introduction)
2698@cindex declarations, Bison (introduction)
2699
2700The @var{Bison declarations} section contains declarations that define
2701terminal and nonterminal symbols, specify precedence, and so on.
2702In some simple grammars you may not need any declarations.
2703@xref{Declarations, ,Bison Declarations}.
2704
342b8b6e 2705@node Grammar Rules
bfa74976
RS
2706@subsection The Grammar Rules Section
2707@cindex grammar rules section
2708@cindex rules section for grammar
2709
2710The @dfn{grammar rules} section contains one or more Bison grammar
2711rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2712
2713There must always be at least one grammar rule, and the first
2714@samp{%%} (which precedes the grammar rules) may never be omitted even
2715if it is the first thing in the file.
2716
38a92d50 2717@node Epilogue
75f5aaea 2718@subsection The epilogue
bfa74976 2719@cindex additional C code section
75f5aaea 2720@cindex epilogue
bfa74976
RS
2721@cindex C code, section for additional
2722
08e49d20
PE
2723The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2724the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2725place to put anything that you want to have in the parser file but which need
2726not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2727definitions of @code{yylex} and @code{yyerror} often go here. Because
2728C requires functions to be declared before being used, you often need
2729to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2730even if you define them in the Epilogue.
75f5aaea 2731@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2732
2733If the last section is empty, you may omit the @samp{%%} that separates it
2734from the grammar rules.
2735
f8e1c9e5
AD
2736The Bison parser itself contains many macros and identifiers whose names
2737start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2738any such names (except those documented in this manual) in the epilogue
2739of the grammar file.
bfa74976 2740
342b8b6e 2741@node Symbols
bfa74976
RS
2742@section Symbols, Terminal and Nonterminal
2743@cindex nonterminal symbol
2744@cindex terminal symbol
2745@cindex token type
2746@cindex symbol
2747
2748@dfn{Symbols} in Bison grammars represent the grammatical classifications
2749of the language.
2750
2751A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2752class of syntactically equivalent tokens. You use the symbol in grammar
2753rules to mean that a token in that class is allowed. The symbol is
2754represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2755function returns a token type code to indicate what kind of token has
2756been read. You don't need to know what the code value is; you can use
2757the symbol to stand for it.
bfa74976 2758
f8e1c9e5
AD
2759A @dfn{nonterminal symbol} stands for a class of syntactically
2760equivalent groupings. The symbol name is used in writing grammar rules.
2761By convention, it should be all lower case.
bfa74976
RS
2762
2763Symbol names can contain letters, digits (not at the beginning),
2764underscores and periods. Periods make sense only in nonterminals.
2765
931c7513 2766There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2767
2768@itemize @bullet
2769@item
2770A @dfn{named token type} is written with an identifier, like an
c827f760 2771identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2772such name must be defined with a Bison declaration such as
2773@code{%token}. @xref{Token Decl, ,Token Type Names}.
2774
2775@item
2776@cindex character token
2777@cindex literal token
2778@cindex single-character literal
931c7513
RS
2779A @dfn{character token type} (or @dfn{literal character token}) is
2780written in the grammar using the same syntax used in C for character
2781constants; for example, @code{'+'} is a character token type. A
2782character token type doesn't need to be declared unless you need to
2783specify its semantic value data type (@pxref{Value Type, ,Data Types of
2784Semantic Values}), associativity, or precedence (@pxref{Precedence,
2785,Operator Precedence}).
bfa74976
RS
2786
2787By convention, a character token type is used only to represent a
2788token that consists of that particular character. Thus, the token
2789type @code{'+'} is used to represent the character @samp{+} as a
2790token. Nothing enforces this convention, but if you depart from it,
2791your program will confuse other readers.
2792
2793All the usual escape sequences used in character literals in C can be
2794used in Bison as well, but you must not use the null character as a
72d2299c
PE
2795character literal because its numeric code, zero, signifies
2796end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2797for @code{yylex}}). Also, unlike standard C, trigraphs have no
2798special meaning in Bison character literals, nor is backslash-newline
2799allowed.
931c7513
RS
2800
2801@item
2802@cindex string token
2803@cindex literal string token
9ecbd125 2804@cindex multicharacter literal
931c7513
RS
2805A @dfn{literal string token} is written like a C string constant; for
2806example, @code{"<="} is a literal string token. A literal string token
2807doesn't need to be declared unless you need to specify its semantic
14ded682 2808value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2809(@pxref{Precedence}).
2810
2811You can associate the literal string token with a symbolic name as an
2812alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2813Declarations}). If you don't do that, the lexical analyzer has to
2814retrieve the token number for the literal string token from the
2815@code{yytname} table (@pxref{Calling Convention}).
2816
c827f760 2817@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2818
2819By convention, a literal string token is used only to represent a token
2820that consists of that particular string. Thus, you should use the token
2821type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2822does not enforce this convention, but if you depart from it, people who
931c7513
RS
2823read your program will be confused.
2824
2825All the escape sequences used in string literals in C can be used in
92ac3705
PE
2826Bison as well, except that you must not use a null character within a
2827string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2828meaning in Bison string literals, nor is backslash-newline allowed. A
2829literal string token must contain two or more characters; for a token
2830containing just one character, use a character token (see above).
bfa74976
RS
2831@end itemize
2832
2833How you choose to write a terminal symbol has no effect on its
2834grammatical meaning. That depends only on where it appears in rules and
2835on when the parser function returns that symbol.
2836
72d2299c
PE
2837The value returned by @code{yylex} is always one of the terminal
2838symbols, except that a zero or negative value signifies end-of-input.
2839Whichever way you write the token type in the grammar rules, you write
2840it the same way in the definition of @code{yylex}. The numeric code
2841for a character token type is simply the positive numeric code of the
2842character, so @code{yylex} can use the identical value to generate the
2843requisite code, though you may need to convert it to @code{unsigned
2844char} to avoid sign-extension on hosts where @code{char} is signed.
2845Each named token type becomes a C macro in
bfa74976 2846the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2847(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2848@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2849
2850If @code{yylex} is defined in a separate file, you need to arrange for the
2851token-type macro definitions to be available there. Use the @samp{-d}
2852option when you run Bison, so that it will write these macro definitions
2853into a separate header file @file{@var{name}.tab.h} which you can include
2854in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2855
72d2299c 2856If you want to write a grammar that is portable to any Standard C
9d9b8b70 2857host, you must use only nonnull character tokens taken from the basic
c827f760 2858execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2859digits, the 52 lower- and upper-case English letters, and the
2860characters in the following C-language string:
2861
2862@example
2863"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2864@end example
2865
f8e1c9e5
AD
2866The @code{yylex} function and Bison must use a consistent character set
2867and encoding for character tokens. For example, if you run Bison in an
2868@acronym{ASCII} environment, but then compile and run the resulting
2869program in an environment that uses an incompatible character set like
2870@acronym{EBCDIC}, the resulting program may not work because the tables
2871generated by Bison will assume @acronym{ASCII} numeric values for
2872character tokens. It is standard practice for software distributions to
2873contain C source files that were generated by Bison in an
2874@acronym{ASCII} environment, so installers on platforms that are
2875incompatible with @acronym{ASCII} must rebuild those files before
2876compiling them.
e966383b 2877
bfa74976
RS
2878The symbol @code{error} is a terminal symbol reserved for error recovery
2879(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2880In particular, @code{yylex} should never return this value. The default
2881value of the error token is 256, unless you explicitly assigned 256 to
2882one of your tokens with a @code{%token} declaration.
bfa74976 2883
342b8b6e 2884@node Rules
bfa74976
RS
2885@section Syntax of Grammar Rules
2886@cindex rule syntax
2887@cindex grammar rule syntax
2888@cindex syntax of grammar rules
2889
2890A Bison grammar rule has the following general form:
2891
2892@example
e425e872 2893@group
bfa74976
RS
2894@var{result}: @var{components}@dots{}
2895 ;
e425e872 2896@end group
bfa74976
RS
2897@end example
2898
2899@noindent
9ecbd125 2900where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2901and @var{components} are various terminal and nonterminal symbols that
13863333 2902are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2903
2904For example,
2905
2906@example
2907@group
2908exp: exp '+' exp
2909 ;
2910@end group
2911@end example
2912
2913@noindent
2914says that two groupings of type @code{exp}, with a @samp{+} token in between,
2915can be combined into a larger grouping of type @code{exp}.
2916
72d2299c
PE
2917White space in rules is significant only to separate symbols. You can add
2918extra white space as you wish.
bfa74976
RS
2919
2920Scattered among the components can be @var{actions} that determine
2921the semantics of the rule. An action looks like this:
2922
2923@example
2924@{@var{C statements}@}
2925@end example
2926
2927@noindent
287c78f6
PE
2928@cindex braced code
2929This is an example of @dfn{braced code}, that is, C code surrounded by
2930braces, much like a compound statement in C@. Braced code can contain
2931any sequence of C tokens, so long as its braces are balanced. Bison
2932does not check the braced code for correctness directly; it merely
2933copies the code to the output file, where the C compiler can check it.
2934
2935Within braced code, the balanced-brace count is not affected by braces
2936within comments, string literals, or character constants, but it is
2937affected by the C digraphs @samp{<%} and @samp{%>} that represent
2938braces. At the top level braced code must be terminated by @samp{@}}
2939and not by a digraph. Bison does not look for trigraphs, so if braced
2940code uses trigraphs you should ensure that they do not affect the
2941nesting of braces or the boundaries of comments, string literals, or
2942character constants.
2943
bfa74976
RS
2944Usually there is only one action and it follows the components.
2945@xref{Actions}.
2946
2947@findex |
2948Multiple rules for the same @var{result} can be written separately or can
2949be joined with the vertical-bar character @samp{|} as follows:
2950
bfa74976
RS
2951@example
2952@group
2953@var{result}: @var{rule1-components}@dots{}
2954 | @var{rule2-components}@dots{}
2955 @dots{}
2956 ;
2957@end group
2958@end example
bfa74976
RS
2959
2960@noindent
2961They are still considered distinct rules even when joined in this way.
2962
2963If @var{components} in a rule is empty, it means that @var{result} can
2964match the empty string. For example, here is how to define a
2965comma-separated sequence of zero or more @code{exp} groupings:
2966
2967@example
2968@group
2969expseq: /* empty */
2970 | expseq1
2971 ;
2972@end group
2973
2974@group
2975expseq1: exp
2976 | expseq1 ',' exp
2977 ;
2978@end group
2979@end example
2980
2981@noindent
2982It is customary to write a comment @samp{/* empty */} in each rule
2983with no components.
2984
342b8b6e 2985@node Recursion
bfa74976
RS
2986@section Recursive Rules
2987@cindex recursive rule
2988
f8e1c9e5
AD
2989A rule is called @dfn{recursive} when its @var{result} nonterminal
2990appears also on its right hand side. Nearly all Bison grammars need to
2991use recursion, because that is the only way to define a sequence of any
2992number of a particular thing. Consider this recursive definition of a
9ecbd125 2993comma-separated sequence of one or more expressions:
bfa74976
RS
2994
2995@example
2996@group
2997expseq1: exp
2998 | expseq1 ',' exp
2999 ;
3000@end group
3001@end example
3002
3003@cindex left recursion
3004@cindex right recursion
3005@noindent
3006Since the recursive use of @code{expseq1} is the leftmost symbol in the
3007right hand side, we call this @dfn{left recursion}. By contrast, here
3008the same construct is defined using @dfn{right recursion}:
3009
3010@example
3011@group
3012expseq1: exp
3013 | exp ',' expseq1
3014 ;
3015@end group
3016@end example
3017
3018@noindent
ec3bc396
AD
3019Any kind of sequence can be defined using either left recursion or right
3020recursion, but you should always use left recursion, because it can
3021parse a sequence of any number of elements with bounded stack space.
3022Right recursion uses up space on the Bison stack in proportion to the
3023number of elements in the sequence, because all the elements must be
3024shifted onto the stack before the rule can be applied even once.
3025@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3026of this.
bfa74976
RS
3027
3028@cindex mutual recursion
3029@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3030rule does not appear directly on its right hand side, but does appear
3031in rules for other nonterminals which do appear on its right hand
13863333 3032side.
bfa74976
RS
3033
3034For example:
3035
3036@example
3037@group
3038expr: primary
3039 | primary '+' primary
3040 ;
3041@end group
3042
3043@group
3044primary: constant
3045 | '(' expr ')'
3046 ;
3047@end group
3048@end example
3049
3050@noindent
3051defines two mutually-recursive nonterminals, since each refers to the
3052other.
3053
342b8b6e 3054@node Semantics
bfa74976
RS
3055@section Defining Language Semantics
3056@cindex defining language semantics
13863333 3057@cindex language semantics, defining
bfa74976
RS
3058
3059The grammar rules for a language determine only the syntax. The semantics
3060are determined by the semantic values associated with various tokens and
3061groupings, and by the actions taken when various groupings are recognized.
3062
3063For example, the calculator calculates properly because the value
3064associated with each expression is the proper number; it adds properly
3065because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3066the numbers associated with @var{x} and @var{y}.
3067
3068@menu
3069* Value Type:: Specifying one data type for all semantic values.
3070* Multiple Types:: Specifying several alternative data types.
3071* Actions:: An action is the semantic definition of a grammar rule.
3072* Action Types:: Specifying data types for actions to operate on.
3073* Mid-Rule Actions:: Most actions go at the end of a rule.
3074 This says when, why and how to use the exceptional
3075 action in the middle of a rule.
3076@end menu
3077
342b8b6e 3078@node Value Type
bfa74976
RS
3079@subsection Data Types of Semantic Values
3080@cindex semantic value type
3081@cindex value type, semantic
3082@cindex data types of semantic values
3083@cindex default data type
3084
3085In a simple program it may be sufficient to use the same data type for
3086the semantic values of all language constructs. This was true in the
c827f760 3087@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3088Notation Calculator}).
bfa74976
RS
3089
3090Bison's default is to use type @code{int} for all semantic values. To
3091specify some other type, define @code{YYSTYPE} as a macro, like this:
3092
3093@example
3094#define YYSTYPE double
3095@end example
3096
3097@noindent
50cce58e
PE
3098@code{YYSTYPE}'s replacement list should be a type name
3099that does not contain parentheses or square brackets.
342b8b6e 3100This macro definition must go in the prologue of the grammar file
75f5aaea 3101(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3102
342b8b6e 3103@node Multiple Types
bfa74976
RS
3104@subsection More Than One Value Type
3105
3106In most programs, you will need different data types for different kinds
3107of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3108@code{int} or @code{long int}, while a string constant needs type
3109@code{char *}, and an identifier might need a pointer to an entry in the
3110symbol table.
bfa74976
RS
3111
3112To use more than one data type for semantic values in one parser, Bison
3113requires you to do two things:
3114
3115@itemize @bullet
3116@item
3117Specify the entire collection of possible data types, with the
704a47c4
AD
3118@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3119Value Types}).
bfa74976
RS
3120
3121@item
14ded682
AD
3122Choose one of those types for each symbol (terminal or nonterminal) for
3123which semantic values are used. This is done for tokens with the
3124@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3125and for groupings with the @code{%type} Bison declaration (@pxref{Type
3126Decl, ,Nonterminal Symbols}).
bfa74976
RS
3127@end itemize
3128
342b8b6e 3129@node Actions
bfa74976
RS
3130@subsection Actions
3131@cindex action
3132@vindex $$
3133@vindex $@var{n}
3134
3135An action accompanies a syntactic rule and contains C code to be executed
3136each time an instance of that rule is recognized. The task of most actions
3137is to compute a semantic value for the grouping built by the rule from the
3138semantic values associated with tokens or smaller groupings.
3139
287c78f6
PE
3140An action consists of braced code containing C statements, and can be
3141placed at any position in the rule;
704a47c4
AD
3142it is executed at that position. Most rules have just one action at the
3143end of the rule, following all the components. Actions in the middle of
3144a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3145Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3146
3147The C code in an action can refer to the semantic values of the components
3148matched by the rule with the construct @code{$@var{n}}, which stands for
3149the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3150being constructed is @code{$$}. Bison translates both of these
3151constructs into expressions of the appropriate type when it copies the
3152actions into the parser file. @code{$$} is translated to a modifiable
3153lvalue, so it can be assigned to.
bfa74976
RS
3154
3155Here is a typical example:
3156
3157@example
3158@group
3159exp: @dots{}
3160 | exp '+' exp
3161 @{ $$ = $1 + $3; @}
3162@end group
3163@end example
3164
3165@noindent
3166This rule constructs an @code{exp} from two smaller @code{exp} groupings
3167connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3168refer to the semantic values of the two component @code{exp} groupings,
3169which are the first and third symbols on the right hand side of the rule.
3170The sum is stored into @code{$$} so that it becomes the semantic value of
3171the addition-expression just recognized by the rule. If there were a
3172useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3173referred to as @code{$2}.
bfa74976 3174
3ded9a63
AD
3175Note that the vertical-bar character @samp{|} is really a rule
3176separator, and actions are attached to a single rule. This is a
3177difference with tools like Flex, for which @samp{|} stands for either
3178``or'', or ``the same action as that of the next rule''. In the
3179following example, the action is triggered only when @samp{b} is found:
3180
3181@example
3182@group
3183a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3184@end group
3185@end example
3186
bfa74976
RS
3187@cindex default action
3188If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3189@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3190becomes the value of the whole rule. Of course, the default action is
3191valid only if the two data types match. There is no meaningful default
3192action for an empty rule; every empty rule must have an explicit action
3193unless the rule's value does not matter.
bfa74976
RS
3194
3195@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3196to tokens and groupings on the stack @emph{before} those that match the
3197current rule. This is a very risky practice, and to use it reliably
3198you must be certain of the context in which the rule is applied. Here
3199is a case in which you can use this reliably:
3200
3201@example
3202@group
3203foo: expr bar '+' expr @{ @dots{} @}
3204 | expr bar '-' expr @{ @dots{} @}
3205 ;
3206@end group
3207
3208@group
3209bar: /* empty */
3210 @{ previous_expr = $0; @}
3211 ;
3212@end group
3213@end example
3214
3215As long as @code{bar} is used only in the fashion shown here, @code{$0}
3216always refers to the @code{expr} which precedes @code{bar} in the
3217definition of @code{foo}.
3218
32c29292 3219@vindex yylval
742e4900 3220It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3221any, from a semantic action.
3222This semantic value is stored in @code{yylval}.
3223@xref{Action Features, ,Special Features for Use in Actions}.
3224
342b8b6e 3225@node Action Types
bfa74976
RS
3226@subsection Data Types of Values in Actions
3227@cindex action data types
3228@cindex data types in actions
3229
3230If you have chosen a single data type for semantic values, the @code{$$}
3231and @code{$@var{n}} constructs always have that data type.
3232
3233If you have used @code{%union} to specify a variety of data types, then you
3234must declare a choice among these types for each terminal or nonterminal
3235symbol that can have a semantic value. Then each time you use @code{$$} or
3236@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3237in the rule. In this example,
bfa74976
RS
3238
3239@example
3240@group
3241exp: @dots{}
3242 | exp '+' exp
3243 @{ $$ = $1 + $3; @}
3244@end group
3245@end example
3246
3247@noindent
3248@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3249have the data type declared for the nonterminal symbol @code{exp}. If
3250@code{$2} were used, it would have the data type declared for the
e0c471a9 3251terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3252
3253Alternatively, you can specify the data type when you refer to the value,
3254by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3255reference. For example, if you have defined types as shown here:
3256
3257@example
3258@group
3259%union @{
3260 int itype;
3261 double dtype;
3262@}
3263@end group
3264@end example
3265
3266@noindent
3267then you can write @code{$<itype>1} to refer to the first subunit of the
3268rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3269
342b8b6e 3270@node Mid-Rule Actions
bfa74976
RS
3271@subsection Actions in Mid-Rule
3272@cindex actions in mid-rule
3273@cindex mid-rule actions
3274
3275Occasionally it is useful to put an action in the middle of a rule.
3276These actions are written just like usual end-of-rule actions, but they
3277are executed before the parser even recognizes the following components.
3278
3279A mid-rule action may refer to the components preceding it using
3280@code{$@var{n}}, but it may not refer to subsequent components because
3281it is run before they are parsed.
3282
3283The mid-rule action itself counts as one of the components of the rule.
3284This makes a difference when there is another action later in the same rule
3285(and usually there is another at the end): you have to count the actions
3286along with the symbols when working out which number @var{n} to use in
3287@code{$@var{n}}.
3288
3289The mid-rule action can also have a semantic value. The action can set
3290its value with an assignment to @code{$$}, and actions later in the rule
3291can refer to the value using @code{$@var{n}}. Since there is no symbol
3292to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3293in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3294specify a data type each time you refer to this value.
bfa74976
RS
3295
3296There is no way to set the value of the entire rule with a mid-rule
3297action, because assignments to @code{$$} do not have that effect. The
3298only way to set the value for the entire rule is with an ordinary action
3299at the end of the rule.
3300
3301Here is an example from a hypothetical compiler, handling a @code{let}
3302statement that looks like @samp{let (@var{variable}) @var{statement}} and
3303serves to create a variable named @var{variable} temporarily for the
3304duration of @var{statement}. To parse this construct, we must put
3305@var{variable} into the symbol table while @var{statement} is parsed, then
3306remove it afterward. Here is how it is done:
3307
3308@example
3309@group
3310stmt: LET '(' var ')'
3311 @{ $<context>$ = push_context ();
3312 declare_variable ($3); @}
3313 stmt @{ $$ = $6;
3314 pop_context ($<context>5); @}
3315@end group
3316@end example
3317
3318@noindent
3319As soon as @samp{let (@var{variable})} has been recognized, the first
3320action is run. It saves a copy of the current semantic context (the
3321list of accessible variables) as its semantic value, using alternative
3322@code{context} in the data-type union. Then it calls
3323@code{declare_variable} to add the new variable to that list. Once the
3324first action is finished, the embedded statement @code{stmt} can be
3325parsed. Note that the mid-rule action is component number 5, so the
3326@samp{stmt} is component number 6.
3327
3328After the embedded statement is parsed, its semantic value becomes the
3329value of the entire @code{let}-statement. Then the semantic value from the
3330earlier action is used to restore the prior list of variables. This
3331removes the temporary @code{let}-variable from the list so that it won't
3332appear to exist while the rest of the program is parsed.
3333
841a7737
JD
3334@findex %destructor
3335@cindex discarded symbols, mid-rule actions
3336@cindex error recovery, mid-rule actions
3337In the above example, if the parser initiates error recovery (@pxref{Error
3338Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3339it might discard the previous semantic context @code{$<context>5} without
3340restoring it.
3341Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3342Discarded Symbols}).
3343However, Bison currently provides no means to declare a destructor for a
3344mid-rule action's semantic value.
3345
3346One solution is to bury the mid-rule action inside a nonterminal symbol and to
3347declare a destructor for that symbol:
3348
3349@example
3350@group
3351%type <context> let
3352%destructor @{ pop_context ($$); @} let
3353
3354%%
3355
3356stmt: let stmt
3357 @{ $$ = $2;
3358 pop_context ($1); @}
3359 ;
3360
3361let: LET '(' var ')'
3362 @{ $$ = push_context ();
3363 declare_variable ($3); @}
3364 ;
3365
3366@end group
3367@end example
3368
3369@noindent
3370Note that the action is now at the end of its rule.
3371Any mid-rule action can be converted to an end-of-rule action in this way, and
3372this is what Bison actually does to implement mid-rule actions.
3373
bfa74976
RS
3374Taking action before a rule is completely recognized often leads to
3375conflicts since the parser must commit to a parse in order to execute the
3376action. For example, the following two rules, without mid-rule actions,
3377can coexist in a working parser because the parser can shift the open-brace
3378token and look at what follows before deciding whether there is a
3379declaration or not:
3380
3381@example
3382@group
3383compound: '@{' declarations statements '@}'
3384 | '@{' statements '@}'
3385 ;
3386@end group
3387@end example
3388
3389@noindent
3390But when we add a mid-rule action as follows, the rules become nonfunctional:
3391
3392@example
3393@group
3394compound: @{ prepare_for_local_variables (); @}
3395 '@{' declarations statements '@}'
3396@end group
3397@group
3398 | '@{' statements '@}'
3399 ;
3400@end group
3401@end example
3402
3403@noindent
3404Now the parser is forced to decide whether to run the mid-rule action
3405when it has read no farther than the open-brace. In other words, it
3406must commit to using one rule or the other, without sufficient
3407information to do it correctly. (The open-brace token is what is called
742e4900
JD
3408the @dfn{lookahead} token at this time, since the parser is still
3409deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3410
3411You might think that you could correct the problem by putting identical
3412actions into the two rules, like this:
3413
3414@example
3415@group
3416compound: @{ prepare_for_local_variables (); @}
3417 '@{' declarations statements '@}'
3418 | @{ prepare_for_local_variables (); @}
3419 '@{' statements '@}'
3420 ;
3421@end group
3422@end example
3423
3424@noindent
3425But this does not help, because Bison does not realize that the two actions
3426are identical. (Bison never tries to understand the C code in an action.)
3427
3428If the grammar is such that a declaration can be distinguished from a
3429statement by the first token (which is true in C), then one solution which
3430does work is to put the action after the open-brace, like this:
3431
3432@example
3433@group
3434compound: '@{' @{ prepare_for_local_variables (); @}
3435 declarations statements '@}'
3436 | '@{' statements '@}'
3437 ;
3438@end group
3439@end example
3440
3441@noindent
3442Now the first token of the following declaration or statement,
3443which would in any case tell Bison which rule to use, can still do so.
3444
3445Another solution is to bury the action inside a nonterminal symbol which
3446serves as a subroutine:
3447
3448@example
3449@group
3450subroutine: /* empty */
3451 @{ prepare_for_local_variables (); @}
3452 ;
3453
3454@end group
3455
3456@group
3457compound: subroutine
3458 '@{' declarations statements '@}'
3459 | subroutine
3460 '@{' statements '@}'
3461 ;
3462@end group
3463@end example
3464
3465@noindent
3466Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3467deciding which rule for @code{compound} it will eventually use.
bfa74976 3468
342b8b6e 3469@node Locations
847bf1f5
AD
3470@section Tracking Locations
3471@cindex location
95923bd6
AD
3472@cindex textual location
3473@cindex location, textual
847bf1f5
AD
3474
3475Though grammar rules and semantic actions are enough to write a fully
72d2299c 3476functional parser, it can be useful to process some additional information,
3e259915
MA
3477especially symbol locations.
3478
704a47c4
AD
3479The way locations are handled is defined by providing a data type, and
3480actions to take when rules are matched.
847bf1f5
AD
3481
3482@menu
3483* Location Type:: Specifying a data type for locations.
3484* Actions and Locations:: Using locations in actions.
3485* Location Default Action:: Defining a general way to compute locations.
3486@end menu
3487
342b8b6e 3488@node Location Type
847bf1f5
AD
3489@subsection Data Type of Locations
3490@cindex data type of locations
3491@cindex default location type
3492
3493Defining a data type for locations is much simpler than for semantic values,
3494since all tokens and groupings always use the same type.
3495
50cce58e
PE
3496You can specify the type of locations by defining a macro called
3497@code{YYLTYPE}, just as you can specify the semantic value type by
3498defining @code{YYSTYPE} (@pxref{Value Type}).
847bf1f5
AD
3499When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3500four members:
3501
3502@example
6273355b 3503typedef struct YYLTYPE
847bf1f5
AD
3504@{
3505 int first_line;
3506 int first_column;
3507 int last_line;
3508 int last_column;
6273355b 3509@} YYLTYPE;
847bf1f5
AD
3510@end example
3511
342b8b6e 3512@node Actions and Locations
847bf1f5
AD
3513@subsection Actions and Locations
3514@cindex location actions
3515@cindex actions, location
3516@vindex @@$
3517@vindex @@@var{n}
3518
3519Actions are not only useful for defining language semantics, but also for
3520describing the behavior of the output parser with locations.
3521
3522The most obvious way for building locations of syntactic groupings is very
72d2299c 3523similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3524constructs can be used to access the locations of the elements being matched.
3525The location of the @var{n}th component of the right hand side is
3526@code{@@@var{n}}, while the location of the left hand side grouping is
3527@code{@@$}.
3528
3e259915 3529Here is a basic example using the default data type for locations:
847bf1f5
AD
3530
3531@example
3532@group
3533exp: @dots{}
3e259915 3534 | exp '/' exp
847bf1f5 3535 @{
3e259915
MA
3536 @@$.first_column = @@1.first_column;
3537 @@$.first_line = @@1.first_line;
847bf1f5
AD
3538 @@$.last_column = @@3.last_column;
3539 @@$.last_line = @@3.last_line;
3e259915
MA
3540 if ($3)
3541 $$ = $1 / $3;
3542 else
3543 @{
3544 $$ = 1;
4e03e201
AD
3545 fprintf (stderr,
3546 "Division by zero, l%d,c%d-l%d,c%d",
3547 @@3.first_line, @@3.first_column,
3548 @@3.last_line, @@3.last_column);
3e259915 3549 @}
847bf1f5
AD
3550 @}
3551@end group
3552@end example
3553
3e259915 3554As for semantic values, there is a default action for locations that is
72d2299c 3555run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3556beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3557last symbol.
3e259915 3558
72d2299c 3559With this default action, the location tracking can be fully automatic. The
3e259915
MA
3560example above simply rewrites this way:
3561
3562@example
3563@group
3564exp: @dots{}
3565 | exp '/' exp
3566 @{
3567 if ($3)
3568 $$ = $1 / $3;
3569 else
3570 @{
3571 $$ = 1;
4e03e201
AD
3572 fprintf (stderr,
3573 "Division by zero, l%d,c%d-l%d,c%d",
3574 @@3.first_line, @@3.first_column,
3575 @@3.last_line, @@3.last_column);
3e259915
MA
3576 @}
3577 @}
3578@end group
3579@end example
847bf1f5 3580
32c29292 3581@vindex yylloc
742e4900 3582It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3583from a semantic action.
3584This location is stored in @code{yylloc}.
3585@xref{Action Features, ,Special Features for Use in Actions}.
3586
342b8b6e 3587@node Location Default Action
847bf1f5
AD
3588@subsection Default Action for Locations
3589@vindex YYLLOC_DEFAULT
8710fc41 3590@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3591
72d2299c 3592Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3593locations are much more general than semantic values, there is room in
3594the output parser to redefine the default action to take for each
72d2299c 3595rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3596matched, before the associated action is run. It is also invoked
3597while processing a syntax error, to compute the error's location.
8710fc41
JD
3598Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3599parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3600of that ambiguity.
847bf1f5 3601
3e259915 3602Most of the time, this macro is general enough to suppress location
79282c6c 3603dedicated code from semantic actions.
847bf1f5 3604
72d2299c 3605The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3606the location of the grouping (the result of the computation). When a
766de5eb 3607rule is matched, the second parameter identifies locations of
96b93a3d 3608all right hand side elements of the rule being matched, and the third
8710fc41
JD
3609parameter is the size of the rule's right hand side.
3610When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3611right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3612When processing a syntax error, the second parameter identifies locations
3613of the symbols that were discarded during error processing, and the third
96b93a3d 3614parameter is the number of discarded symbols.
847bf1f5 3615
766de5eb 3616By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3617
766de5eb 3618@smallexample
847bf1f5 3619@group
766de5eb
PE
3620# define YYLLOC_DEFAULT(Current, Rhs, N) \
3621 do \
3622 if (N) \
3623 @{ \
3624 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3625 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3626 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3627 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3628 @} \
3629 else \
3630 @{ \
3631 (Current).first_line = (Current).last_line = \
3632 YYRHSLOC(Rhs, 0).last_line; \
3633 (Current).first_column = (Current).last_column = \
3634 YYRHSLOC(Rhs, 0).last_column; \
3635 @} \
3636 while (0)
847bf1f5 3637@end group
766de5eb 3638@end smallexample
676385e2 3639
766de5eb
PE
3640where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3641in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3642just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3643
3e259915 3644When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3645
3e259915 3646@itemize @bullet
79282c6c 3647@item
72d2299c 3648All arguments are free of side-effects. However, only the first one (the
3e259915 3649result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3650
3e259915 3651@item
766de5eb
PE
3652For consistency with semantic actions, valid indexes within the
3653right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3654valid index, and it refers to the symbol just before the reduction.
3655During error processing @var{n} is always positive.
0ae99356
PE
3656
3657@item
3658Your macro should parenthesize its arguments, if need be, since the
3659actual arguments may not be surrounded by parentheses. Also, your
3660macro should expand to something that can be used as a single
3661statement when it is followed by a semicolon.
3e259915 3662@end itemize
847bf1f5 3663
342b8b6e 3664@node Declarations
bfa74976
RS
3665@section Bison Declarations
3666@cindex declarations, Bison
3667@cindex Bison declarations
3668
3669The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3670used in formulating the grammar and the data types of semantic values.
3671@xref{Symbols}.
3672
3673All token type names (but not single-character literal tokens such as
3674@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3675declared if you need to specify which data type to use for the semantic
3676value (@pxref{Multiple Types, ,More Than One Value Type}).
3677
3678The first rule in the file also specifies the start symbol, by default.
3679If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3680it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3681Grammars}).
bfa74976
RS
3682
3683@menu
b50d2359 3684* Require Decl:: Requiring a Bison version.
bfa74976
RS
3685* Token Decl:: Declaring terminal symbols.
3686* Precedence Decl:: Declaring terminals with precedence and associativity.
3687* Union Decl:: Declaring the set of all semantic value types.
3688* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3689* Initial Action Decl:: Code run before parsing starts.
72f889cc 3690* Destructor Decl:: Declaring how symbols are freed.
d6328241 3691* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3692* Start Decl:: Specifying the start symbol.
3693* Pure Decl:: Requesting a reentrant parser.
3694* Decl Summary:: Table of all Bison declarations.
3695@end menu
3696
b50d2359
AD
3697@node Require Decl
3698@subsection Require a Version of Bison
3699@cindex version requirement
3700@cindex requiring a version of Bison
3701@findex %require
3702
3703You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3704the requirement is not met, @command{bison} exits with an error (exit
3705status 63).
b50d2359
AD
3706
3707@example
3708%require "@var{version}"
3709@end example
3710
342b8b6e 3711@node Token Decl
bfa74976
RS
3712@subsection Token Type Names
3713@cindex declaring token type names
3714@cindex token type names, declaring
931c7513 3715@cindex declaring literal string tokens
bfa74976
RS
3716@findex %token
3717
3718The basic way to declare a token type name (terminal symbol) is as follows:
3719
3720@example
3721%token @var{name}
3722@end example
3723
3724Bison will convert this into a @code{#define} directive in
3725the parser, so that the function @code{yylex} (if it is in this file)
3726can use the name @var{name} to stand for this token type's code.
3727
14ded682
AD
3728Alternatively, you can use @code{%left}, @code{%right}, or
3729@code{%nonassoc} instead of @code{%token}, if you wish to specify
3730associativity and precedence. @xref{Precedence Decl, ,Operator
3731Precedence}.
bfa74976
RS
3732
3733You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3734a decimal or hexadecimal integer value in the field immediately
3735following the token name:
bfa74976
RS
3736
3737@example
3738%token NUM 300
1452af69 3739%token XNUM 0x12d // a GNU extension
bfa74976
RS
3740@end example
3741
3742@noindent
3743It is generally best, however, to let Bison choose the numeric codes for
3744all token types. Bison will automatically select codes that don't conflict
e966383b 3745with each other or with normal characters.
bfa74976
RS
3746
3747In the event that the stack type is a union, you must augment the
3748@code{%token} or other token declaration to include the data type
704a47c4
AD
3749alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3750Than One Value Type}).
bfa74976
RS
3751
3752For example:
3753
3754@example
3755@group
3756%union @{ /* define stack type */
3757 double val;
3758 symrec *tptr;
3759@}
3760%token <val> NUM /* define token NUM and its type */
3761@end group
3762@end example
3763
931c7513
RS
3764You can associate a literal string token with a token type name by
3765writing the literal string at the end of a @code{%token}
3766declaration which declares the name. For example:
3767
3768@example
3769%token arrow "=>"
3770@end example
3771
3772@noindent
3773For example, a grammar for the C language might specify these names with
3774equivalent literal string tokens:
3775
3776@example
3777%token <operator> OR "||"
3778%token <operator> LE 134 "<="
3779%left OR "<="
3780@end example
3781
3782@noindent
3783Once you equate the literal string and the token name, you can use them
3784interchangeably in further declarations or the grammar rules. The
3785@code{yylex} function can use the token name or the literal string to
3786obtain the token type code number (@pxref{Calling Convention}).
3787
342b8b6e 3788@node Precedence Decl
bfa74976
RS
3789@subsection Operator Precedence
3790@cindex precedence declarations
3791@cindex declaring operator precedence
3792@cindex operator precedence, declaring
3793
3794Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3795declare a token and specify its precedence and associativity, all at
3796once. These are called @dfn{precedence declarations}.
704a47c4
AD
3797@xref{Precedence, ,Operator Precedence}, for general information on
3798operator precedence.
bfa74976
RS
3799
3800The syntax of a precedence declaration is the same as that of
3801@code{%token}: either
3802
3803@example
3804%left @var{symbols}@dots{}
3805@end example
3806
3807@noindent
3808or
3809
3810@example
3811%left <@var{type}> @var{symbols}@dots{}
3812@end example
3813
3814And indeed any of these declarations serves the purposes of @code{%token}.
3815But in addition, they specify the associativity and relative precedence for
3816all the @var{symbols}:
3817
3818@itemize @bullet
3819@item
3820The associativity of an operator @var{op} determines how repeated uses
3821of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3822@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3823grouping @var{y} with @var{z} first. @code{%left} specifies
3824left-associativity (grouping @var{x} with @var{y} first) and
3825@code{%right} specifies right-associativity (grouping @var{y} with
3826@var{z} first). @code{%nonassoc} specifies no associativity, which
3827means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3828considered a syntax error.
3829
3830@item
3831The precedence of an operator determines how it nests with other operators.
3832All the tokens declared in a single precedence declaration have equal
3833precedence and nest together according to their associativity.
3834When two tokens declared in different precedence declarations associate,
3835the one declared later has the higher precedence and is grouped first.
3836@end itemize
3837
342b8b6e 3838@node Union Decl
bfa74976
RS
3839@subsection The Collection of Value Types
3840@cindex declaring value types
3841@cindex value types, declaring
3842@findex %union
3843
287c78f6
PE
3844The @code{%union} declaration specifies the entire collection of
3845possible data types for semantic values. The keyword @code{%union} is
3846followed by braced code containing the same thing that goes inside a
3847@code{union} in C@.
bfa74976
RS
3848
3849For example:
3850
3851@example
3852@group
3853%union @{
3854 double val;
3855 symrec *tptr;
3856@}
3857@end group
3858@end example
3859
3860@noindent
3861This says that the two alternative types are @code{double} and @code{symrec
3862*}. They are given names @code{val} and @code{tptr}; these names are used
3863in the @code{%token} and @code{%type} declarations to pick one of the types
3864for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3865
6273355b
PE
3866As an extension to @acronym{POSIX}, a tag is allowed after the
3867@code{union}. For example:
3868
3869@example
3870@group
3871%union value @{
3872 double val;
3873 symrec *tptr;
3874@}
3875@end group
3876@end example
3877
d6ca7905 3878@noindent
6273355b
PE
3879specifies the union tag @code{value}, so the corresponding C type is
3880@code{union value}. If you do not specify a tag, it defaults to
3881@code{YYSTYPE}.
3882
d6ca7905
PE
3883As another extension to @acronym{POSIX}, you may specify multiple
3884@code{%union} declarations; their contents are concatenated. However,
3885only the first @code{%union} declaration can specify a tag.
3886
6273355b 3887Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3888a semicolon after the closing brace.
3889
342b8b6e 3890@node Type Decl
bfa74976
RS
3891@subsection Nonterminal Symbols
3892@cindex declaring value types, nonterminals
3893@cindex value types, nonterminals, declaring
3894@findex %type
3895
3896@noindent
3897When you use @code{%union} to specify multiple value types, you must
3898declare the value type of each nonterminal symbol for which values are
3899used. This is done with a @code{%type} declaration, like this:
3900
3901@example
3902%type <@var{type}> @var{nonterminal}@dots{}
3903@end example
3904
3905@noindent
704a47c4
AD
3906Here @var{nonterminal} is the name of a nonterminal symbol, and
3907@var{type} is the name given in the @code{%union} to the alternative
3908that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3909can give any number of nonterminal symbols in the same @code{%type}
3910declaration, if they have the same value type. Use spaces to separate
3911the symbol names.
bfa74976 3912
931c7513
RS
3913You can also declare the value type of a terminal symbol. To do this,
3914use the same @code{<@var{type}>} construction in a declaration for the
3915terminal symbol. All kinds of token declarations allow
3916@code{<@var{type}>}.
3917
18d192f0
AD
3918@node Initial Action Decl
3919@subsection Performing Actions before Parsing
3920@findex %initial-action
3921
3922Sometimes your parser needs to perform some initializations before
3923parsing. The @code{%initial-action} directive allows for such arbitrary
3924code.
3925
3926@deffn {Directive} %initial-action @{ @var{code} @}
3927@findex %initial-action
287c78f6 3928Declare that the braced @var{code} must be invoked before parsing each time
451364ed 3929@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 3930@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 3931@code{%parse-param}.
18d192f0
AD
3932@end deffn
3933
451364ed
AD
3934For instance, if your locations use a file name, you may use
3935
3936@example
48b16bbc 3937%parse-param @{ char const *file_name @};
451364ed
AD
3938%initial-action
3939@{
4626a15d 3940 @@$.initialize (file_name);
451364ed
AD
3941@};
3942@end example
3943
18d192f0 3944
72f889cc
AD
3945@node Destructor Decl
3946@subsection Freeing Discarded Symbols
3947@cindex freeing discarded symbols
3948@findex %destructor
3949
a85284cf
AD
3950During error recovery (@pxref{Error Recovery}), symbols already pushed
3951on the stack and tokens coming from the rest of the file are discarded
3952until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3953or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3954symbols on the stack must be discarded. Even if the parser succeeds, it
3955must discard the start symbol.
258b75ca
PE
3956
3957When discarded symbols convey heap based information, this memory is
3958lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3959in traditional compilers, it is unacceptable for programs like shells or
3960protocol implementations that may parse and execute indefinitely.
258b75ca 3961
a85284cf
AD
3962The @code{%destructor} directive defines code that is called when a
3963symbol is automatically discarded.
72f889cc
AD
3964
3965@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3966@findex %destructor
287c78f6
PE
3967Invoke the braced @var{code} whenever the parser discards one of the
3968@var{symbols}.
4b367315
AD
3969Within @var{code}, @code{$$} designates the semantic value associated
3970with the discarded symbol. The additional parser parameters are also
3971available (@pxref{Parser Function, , The Parser Function
3972@code{yyparse}}).
72f889cc
AD
3973@end deffn
3974
3975For instance:
3976
3977@smallexample
3978%union
3979@{
3980 char *string;
3981@}
3982%token <string> STRING
3983%type <string> string
3984%destructor @{ free ($$); @} STRING string
3985@end smallexample
3986
3987@noindent
258b75ca 3988guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3989its associated memory will be freed.
3990
e757bb10
AD
3991@sp 1
3992
3993@cindex discarded symbols
3994@dfn{Discarded symbols} are the following:
3995
3996@itemize
3997@item
3998stacked symbols popped during the first phase of error recovery,
3999@item
4000incoming terminals during the second phase of error recovery,
4001@item
742e4900 4002the current lookahead and the entire stack (except the current
9d9b8b70 4003right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4004@item
4005the start symbol, when the parser succeeds.
e757bb10
AD
4006@end itemize
4007
9d9b8b70
PE
4008The parser can @dfn{return immediately} because of an explicit call to
4009@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4010exhaustion.
4011
4012Right-hand size symbols of a rule that explicitly triggers a syntax
4013error via @code{YYERROR} are not discarded automatically. As a rule
4014of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4015the memory.
e757bb10 4016
342b8b6e 4017@node Expect Decl
bfa74976
RS
4018@subsection Suppressing Conflict Warnings
4019@cindex suppressing conflict warnings
4020@cindex preventing warnings about conflicts
4021@cindex warnings, preventing
4022@cindex conflicts, suppressing warnings of
4023@findex %expect
d6328241 4024@findex %expect-rr
bfa74976
RS
4025
4026Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4027(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4028have harmless shift/reduce conflicts which are resolved in a predictable
4029way and would be difficult to eliminate. It is desirable to suppress
4030the warning about these conflicts unless the number of conflicts
4031changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4032
4033The declaration looks like this:
4034
4035@example
4036%expect @var{n}
4037@end example
4038
035aa4a0
PE
4039Here @var{n} is a decimal integer. The declaration says there should
4040be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4041Bison reports an error if the number of shift/reduce conflicts differs
4042from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4043
035aa4a0
PE
4044For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4045serious, and should be eliminated entirely. Bison will always report
4046reduce/reduce conflicts for these parsers. With @acronym{GLR}
4047parsers, however, both kinds of conflicts are routine; otherwise,
4048there would be no need to use @acronym{GLR} parsing. Therefore, it is
4049also possible to specify an expected number of reduce/reduce conflicts
4050in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4051
4052@example
4053%expect-rr @var{n}
4054@end example
4055
bfa74976
RS
4056In general, using @code{%expect} involves these steps:
4057
4058@itemize @bullet
4059@item
4060Compile your grammar without @code{%expect}. Use the @samp{-v} option
4061to get a verbose list of where the conflicts occur. Bison will also
4062print the number of conflicts.
4063
4064@item
4065Check each of the conflicts to make sure that Bison's default
4066resolution is what you really want. If not, rewrite the grammar and
4067go back to the beginning.
4068
4069@item
4070Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4071number which Bison printed. With @acronym{GLR} parsers, add an
4072@code{%expect-rr} declaration as well.
bfa74976
RS
4073@end itemize
4074
035aa4a0
PE
4075Now Bison will warn you if you introduce an unexpected conflict, but
4076will keep silent otherwise.
bfa74976 4077
342b8b6e 4078@node Start Decl
bfa74976
RS
4079@subsection The Start-Symbol
4080@cindex declaring the start symbol
4081@cindex start symbol, declaring
4082@cindex default start symbol
4083@findex %start
4084
4085Bison assumes by default that the start symbol for the grammar is the first
4086nonterminal specified in the grammar specification section. The programmer
4087may override this restriction with the @code{%start} declaration as follows:
4088
4089@example
4090%start @var{symbol}
4091@end example
4092
342b8b6e 4093@node Pure Decl
bfa74976
RS
4094@subsection A Pure (Reentrant) Parser
4095@cindex reentrant parser
4096@cindex pure parser
8c9a50be 4097@findex %pure-parser
bfa74976
RS
4098
4099A @dfn{reentrant} program is one which does not alter in the course of
4100execution; in other words, it consists entirely of @dfn{pure} (read-only)
4101code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4102for example, a nonreentrant program may not be safe to call from a signal
4103handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4104program must be called only within interlocks.
4105
70811b85 4106Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4107suitable for most uses, and it permits compatibility with Yacc. (The
4108standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4109statically allocated variables for communication with @code{yylex},
4110including @code{yylval} and @code{yylloc}.)
bfa74976 4111
70811b85 4112Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4113declaration @code{%pure-parser} says that you want the parser to be
70811b85 4114reentrant. It looks like this:
bfa74976
RS
4115
4116@example
8c9a50be 4117%pure-parser
bfa74976
RS
4118@end example
4119
70811b85
RS
4120The result is that the communication variables @code{yylval} and
4121@code{yylloc} become local variables in @code{yyparse}, and a different
4122calling convention is used for the lexical analyzer function
4123@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4124Parsers}, for the details of this. The variable @code{yynerrs} also
4125becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4126Reporting Function @code{yyerror}}). The convention for calling
4127@code{yyparse} itself is unchanged.
4128
4129Whether the parser is pure has nothing to do with the grammar rules.
4130You can generate either a pure parser or a nonreentrant parser from any
4131valid grammar.
bfa74976 4132
342b8b6e 4133@node Decl Summary
bfa74976
RS
4134@subsection Bison Declaration Summary
4135@cindex Bison declaration summary
4136@cindex declaration summary
4137@cindex summary, Bison declaration
4138
d8988b2f 4139Here is a summary of the declarations used to define a grammar:
bfa74976 4140
18b519c0 4141@deffn {Directive} %union
bfa74976
RS
4142Declare the collection of data types that semantic values may have
4143(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4144@end deffn
bfa74976 4145
18b519c0 4146@deffn {Directive} %token
bfa74976
RS
4147Declare a terminal symbol (token type name) with no precedence
4148or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4149@end deffn
bfa74976 4150
18b519c0 4151@deffn {Directive} %right
bfa74976
RS
4152Declare a terminal symbol (token type name) that is right-associative
4153(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4154@end deffn
bfa74976 4155
18b519c0 4156@deffn {Directive} %left
bfa74976
RS
4157Declare a terminal symbol (token type name) that is left-associative
4158(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4159@end deffn
bfa74976 4160
18b519c0 4161@deffn {Directive} %nonassoc
bfa74976 4162Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4163(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4164Using it in a way that would be associative is a syntax error.
4165@end deffn
4166
91d2c560 4167@ifset defaultprec
39a06c25 4168@deffn {Directive} %default-prec
22fccf95 4169Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4170(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4171@end deffn
91d2c560 4172@end ifset
bfa74976 4173
18b519c0 4174@deffn {Directive} %type
bfa74976
RS
4175Declare the type of semantic values for a nonterminal symbol
4176(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4177@end deffn
bfa74976 4178
18b519c0 4179@deffn {Directive} %start
89cab50d
AD
4180Specify the grammar's start symbol (@pxref{Start Decl, ,The
4181Start-Symbol}).
18b519c0 4182@end deffn
bfa74976 4183
18b519c0 4184@deffn {Directive} %expect
bfa74976
RS
4185Declare the expected number of shift-reduce conflicts
4186(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4187@end deffn
4188
bfa74976 4189
d8988b2f
AD
4190@sp 1
4191@noindent
4192In order to change the behavior of @command{bison}, use the following
4193directives:
4194
18b519c0 4195@deffn {Directive} %debug
4947ebdb
PE
4196In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4197already defined, so that the debugging facilities are compiled.
18b519c0 4198@end deffn
ec3bc396 4199@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4200
18b519c0 4201@deffn {Directive} %defines
4bfd5e4e
PE
4202Write a header file containing macro definitions for the token type
4203names defined in the grammar as well as a few other declarations.
d8988b2f 4204If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4205is named @file{@var{name}.h}.
d8988b2f 4206
4bfd5e4e 4207Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4208declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4209(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4210require other definitions, or if you have defined a @code{YYSTYPE} macro
4211(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4212arrange for these definitions to be propagated to all modules, e.g., by
4213putting them in a prerequisite header that is included both by your
4214parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4215
4216Unless your parser is pure, the output header declares @code{yylval}
4217as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4218Parser}.
4219
4220If you have also used locations, the output header declares
4221@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4222@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4223Locations}.
4224
f8e1c9e5
AD
4225This output file is normally essential if you wish to put the definition
4226of @code{yylex} in a separate source file, because @code{yylex}
4227typically needs to be able to refer to the above-mentioned declarations
4228and to the token type codes. @xref{Token Values, ,Semantic Values of
4229Tokens}.
9bc0dd67
JD
4230
4231@findex %before-definitions
4232@findex %after-definitions
4233If you have declared @code{%before-definitions} or @code{%after-definitions},
4234the output header also contains their code.
4235@xref{Table of Symbols, ,%before-definitions}.
18b519c0 4236@end deffn
d8988b2f 4237
18b519c0 4238@deffn {Directive} %destructor
258b75ca 4239Specify how the parser should reclaim the memory associated to
fa7e68c3 4240discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4241@end deffn
72f889cc 4242
18b519c0 4243@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4244Specify a prefix to use for all Bison output file names. The names are
4245chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4246@end deffn
d8988b2f 4247
18b519c0 4248@deffn {Directive} %locations
89cab50d
AD
4249Generate the code processing the locations (@pxref{Action Features,
4250,Special Features for Use in Actions}). This mode is enabled as soon as
4251the grammar uses the special @samp{@@@var{n}} tokens, but if your
4252grammar does not use it, using @samp{%locations} allows for more
6e649e65 4253accurate syntax error messages.
18b519c0 4254@end deffn
89cab50d 4255
18b519c0 4256@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4257Rename the external symbols used in the parser so that they start with
4258@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4259in C parsers
d8988b2f 4260is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4261@code{yylval}, @code{yychar}, @code{yydebug}, and
4262(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4263@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4264and so on. In C++ parsers, it is only the surrounding namespace which is
4265named @var{prefix} instead of @samp{yy}.
4266@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4267@end deffn
931c7513 4268
91d2c560 4269@ifset defaultprec
22fccf95
PE
4270@deffn {Directive} %no-default-prec
4271Do not assign a precedence to rules lacking an explicit @code{%prec}
4272modifier (@pxref{Contextual Precedence, ,Context-Dependent
4273Precedence}).
4274@end deffn
91d2c560 4275@end ifset
22fccf95 4276
18b519c0 4277@deffn {Directive} %no-parser
6deb4447
AD
4278Do not include any C code in the parser file; generate tables only. The
4279parser file contains just @code{#define} directives and static variable
4280declarations.
4281
4282This option also tells Bison to write the C code for the grammar actions
fa4d969f 4283into a file named @file{@var{file}.act}, in the form of a
6deb4447 4284brace-surrounded body fit for a @code{switch} statement.
18b519c0 4285@end deffn
6deb4447 4286
18b519c0 4287@deffn {Directive} %no-lines
931c7513
RS
4288Don't generate any @code{#line} preprocessor commands in the parser
4289file. Ordinarily Bison writes these commands in the parser file so that
4290the C compiler and debuggers will associate errors and object code with
4291your source file (the grammar file). This directive causes them to
4292associate errors with the parser file, treating it an independent source
4293file in its own right.
18b519c0 4294@end deffn
931c7513 4295
fa4d969f
PE
4296@deffn {Directive} %output="@var{file}"
4297Specify @var{file} for the parser file.
18b519c0 4298@end deffn
6deb4447 4299
18b519c0 4300@deffn {Directive} %pure-parser
d8988b2f
AD
4301Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4302(Reentrant) Parser}).
18b519c0 4303@end deffn
6deb4447 4304
b50d2359 4305@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4306Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4307Require a Version of Bison}.
b50d2359
AD
4308@end deffn
4309
18b519c0 4310@deffn {Directive} %token-table
931c7513
RS
4311Generate an array of token names in the parser file. The name of the
4312array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4313token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4314three elements of @code{yytname} correspond to the predefined tokens
4315@code{"$end"},
88bce5a2
AD
4316@code{"error"}, and @code{"$undefined"}; after these come the symbols
4317defined in the grammar file.
931c7513 4318
9e0876fb
PE
4319The name in the table includes all the characters needed to represent
4320the token in Bison. For single-character literals and literal
4321strings, this includes the surrounding quoting characters and any
4322escape sequences. For example, the Bison single-character literal
4323@code{'+'} corresponds to a three-character name, represented in C as
4324@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4325corresponds to a five-character name, represented in C as
4326@code{"\"\\\\/\""}.
931c7513 4327
8c9a50be 4328When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4329definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4330@code{YYNRULES}, and @code{YYNSTATES}:
4331
4332@table @code
4333@item YYNTOKENS
4334The highest token number, plus one.
4335@item YYNNTS
9ecbd125 4336The number of nonterminal symbols.
931c7513
RS
4337@item YYNRULES
4338The number of grammar rules,
4339@item YYNSTATES
4340The number of parser states (@pxref{Parser States}).
4341@end table
18b519c0 4342@end deffn
d8988b2f 4343
18b519c0 4344@deffn {Directive} %verbose
d8988b2f 4345Write an extra output file containing verbose descriptions of the
742e4900 4346parser states and what is done for each type of lookahead token in
72d2299c 4347that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4348information.
18b519c0 4349@end deffn
d8988b2f 4350
18b519c0 4351@deffn {Directive} %yacc
d8988b2f
AD
4352Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4353including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4354@end deffn
d8988b2f
AD
4355
4356
342b8b6e 4357@node Multiple Parsers
bfa74976
RS
4358@section Multiple Parsers in the Same Program
4359
4360Most programs that use Bison parse only one language and therefore contain
4361only one Bison parser. But what if you want to parse more than one
4362language with the same program? Then you need to avoid a name conflict
4363between different definitions of @code{yyparse}, @code{yylval}, and so on.
4364
4365The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4366(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4367functions and variables of the Bison parser to start with @var{prefix}
4368instead of @samp{yy}. You can use this to give each parser distinct
4369names that do not conflict.
bfa74976
RS
4370
4371The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4372@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4373@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4374the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4375
4376@strong{All the other variables and macros associated with Bison are not
4377renamed.} These others are not global; there is no conflict if the same
4378name is used in different parsers. For example, @code{YYSTYPE} is not
4379renamed, but defining this in different ways in different parsers causes
4380no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4381
4382The @samp{-p} option works by adding macro definitions to the beginning
4383of the parser source file, defining @code{yyparse} as
4384@code{@var{prefix}parse}, and so on. This effectively substitutes one
4385name for the other in the entire parser file.
4386
342b8b6e 4387@node Interface
bfa74976
RS
4388@chapter Parser C-Language Interface
4389@cindex C-language interface
4390@cindex interface
4391
4392The Bison parser is actually a C function named @code{yyparse}. Here we
4393describe the interface conventions of @code{yyparse} and the other
4394functions that it needs to use.
4395
4396Keep in mind that the parser uses many C identifiers starting with
4397@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4398identifier (aside from those in this manual) in an action or in epilogue
4399in the grammar file, you are likely to run into trouble.
bfa74976
RS
4400
4401@menu
4402* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4403* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4404 which reads tokens.
4405* Error Reporting:: You must supply a function @code{yyerror}.
4406* Action Features:: Special features for use in actions.
f7ab6a50
PE
4407* Internationalization:: How to let the parser speak in the user's
4408 native language.
bfa74976
RS
4409@end menu
4410
342b8b6e 4411@node Parser Function
bfa74976
RS
4412@section The Parser Function @code{yyparse}
4413@findex yyparse
4414
4415You call the function @code{yyparse} to cause parsing to occur. This
4416function reads tokens, executes actions, and ultimately returns when it
4417encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4418write an action which directs @code{yyparse} to return immediately
4419without reading further.
bfa74976 4420
2a8d363a
AD
4421
4422@deftypefun int yyparse (void)
bfa74976
RS
4423The value returned by @code{yyparse} is 0 if parsing was successful (return
4424is due to end-of-input).
4425
b47dbebe
PE
4426The value is 1 if parsing failed because of invalid input, i.e., input
4427that contains a syntax error or that causes @code{YYABORT} to be
4428invoked.
4429
4430The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4431@end deftypefun
bfa74976
RS
4432
4433In an action, you can cause immediate return from @code{yyparse} by using
4434these macros:
4435
2a8d363a 4436@defmac YYACCEPT
bfa74976
RS
4437@findex YYACCEPT
4438Return immediately with value 0 (to report success).
2a8d363a 4439@end defmac
bfa74976 4440
2a8d363a 4441@defmac YYABORT
bfa74976
RS
4442@findex YYABORT
4443Return immediately with value 1 (to report failure).
2a8d363a
AD
4444@end defmac
4445
4446If you use a reentrant parser, you can optionally pass additional
4447parameter information to it in a reentrant way. To do so, use the
4448declaration @code{%parse-param}:
4449
feeb0eda 4450@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4451@findex %parse-param
287c78f6
PE
4452Declare that an argument declared by the braced-code
4453@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4454The @var{argument-declaration} is used when declaring
feeb0eda
PE
4455functions or prototypes. The last identifier in
4456@var{argument-declaration} must be the argument name.
2a8d363a
AD
4457@end deffn
4458
4459Here's an example. Write this in the parser:
4460
4461@example
feeb0eda
PE
4462%parse-param @{int *nastiness@}
4463%parse-param @{int *randomness@}
2a8d363a
AD
4464@end example
4465
4466@noindent
4467Then call the parser like this:
4468
4469@example
4470@{
4471 int nastiness, randomness;
4472 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4473 value = yyparse (&nastiness, &randomness);
4474 @dots{}
4475@}
4476@end example
4477
4478@noindent
4479In the grammar actions, use expressions like this to refer to the data:
4480
4481@example
4482exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4483@end example
4484
bfa74976 4485
342b8b6e 4486@node Lexical
bfa74976
RS
4487@section The Lexical Analyzer Function @code{yylex}
4488@findex yylex
4489@cindex lexical analyzer
4490
4491The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4492the input stream and returns them to the parser. Bison does not create
4493this function automatically; you must write it so that @code{yyparse} can
4494call it. The function is sometimes referred to as a lexical scanner.
4495
4496In simple programs, @code{yylex} is often defined at the end of the Bison
4497grammar file. If @code{yylex} is defined in a separate source file, you
4498need to arrange for the token-type macro definitions to be available there.
4499To do this, use the @samp{-d} option when you run Bison, so that it will
4500write these macro definitions into a separate header file
4501@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4502that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4503
4504@menu
4505* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4506* Token Values:: How @code{yylex} must return the semantic value
4507 of the token it has read.
95923bd6 4508* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4509 (line number, etc.) of the token, if the
4510 actions want that.
4511* Pure Calling:: How the calling convention differs
4512 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4513@end menu
4514
342b8b6e 4515@node Calling Convention
bfa74976
RS
4516@subsection Calling Convention for @code{yylex}
4517
72d2299c
PE
4518The value that @code{yylex} returns must be the positive numeric code
4519for the type of token it has just found; a zero or negative value
4520signifies end-of-input.
bfa74976
RS
4521
4522When a token is referred to in the grammar rules by a name, that name
4523in the parser file becomes a C macro whose definition is the proper
4524numeric code for that token type. So @code{yylex} can use the name
4525to indicate that type. @xref{Symbols}.
4526
4527When a token is referred to in the grammar rules by a character literal,
4528the numeric code for that character is also the code for the token type.
72d2299c
PE
4529So @code{yylex} can simply return that character code, possibly converted
4530to @code{unsigned char} to avoid sign-extension. The null character
4531must not be used this way, because its code is zero and that
bfa74976
RS
4532signifies end-of-input.
4533
4534Here is an example showing these things:
4535
4536@example
13863333
AD
4537int
4538yylex (void)
bfa74976
RS
4539@{
4540 @dots{}
72d2299c 4541 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4542 return 0;
4543 @dots{}
4544 if (c == '+' || c == '-')
72d2299c 4545 return c; /* Assume token type for `+' is '+'. */
bfa74976 4546 @dots{}
72d2299c 4547 return INT; /* Return the type of the token. */
bfa74976
RS
4548 @dots{}
4549@}
4550@end example
4551
4552@noindent
4553This interface has been designed so that the output from the @code{lex}
4554utility can be used without change as the definition of @code{yylex}.
4555
931c7513
RS
4556If the grammar uses literal string tokens, there are two ways that
4557@code{yylex} can determine the token type codes for them:
4558
4559@itemize @bullet
4560@item
4561If the grammar defines symbolic token names as aliases for the
4562literal string tokens, @code{yylex} can use these symbolic names like
4563all others. In this case, the use of the literal string tokens in
4564the grammar file has no effect on @code{yylex}.
4565
4566@item
9ecbd125 4567@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4568table. The index of the token in the table is the token type's code.
9ecbd125 4569The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4570double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4571token's characters are escaped as necessary to be suitable as input
4572to Bison.
931c7513 4573
9e0876fb
PE
4574Here's code for looking up a multicharacter token in @code{yytname},
4575assuming that the characters of the token are stored in
4576@code{token_buffer}, and assuming that the token does not contain any
4577characters like @samp{"} that require escaping.
931c7513
RS
4578
4579@smallexample
4580for (i = 0; i < YYNTOKENS; i++)
4581 @{
4582 if (yytname[i] != 0
4583 && yytname[i][0] == '"'
68449b3a
PE
4584 && ! strncmp (yytname[i] + 1, token_buffer,
4585 strlen (token_buffer))
931c7513
RS
4586 && yytname[i][strlen (token_buffer) + 1] == '"'
4587 && yytname[i][strlen (token_buffer) + 2] == 0)
4588 break;
4589 @}
4590@end smallexample
4591
4592The @code{yytname} table is generated only if you use the
8c9a50be 4593@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4594@end itemize
4595
342b8b6e 4596@node Token Values
bfa74976
RS
4597@subsection Semantic Values of Tokens
4598
4599@vindex yylval
9d9b8b70 4600In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4601be stored into the global variable @code{yylval}. When you are using
4602just one data type for semantic values, @code{yylval} has that type.
4603Thus, if the type is @code{int} (the default), you might write this in
4604@code{yylex}:
4605
4606@example
4607@group
4608 @dots{}
72d2299c
PE
4609 yylval = value; /* Put value onto Bison stack. */
4610 return INT; /* Return the type of the token. */
bfa74976
RS
4611 @dots{}
4612@end group
4613@end example
4614
4615When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4616made from the @code{%union} declaration (@pxref{Union Decl, ,The
4617Collection of Value Types}). So when you store a token's value, you
4618must use the proper member of the union. If the @code{%union}
4619declaration looks like this:
bfa74976
RS
4620
4621@example
4622@group
4623%union @{
4624 int intval;
4625 double val;
4626 symrec *tptr;
4627@}
4628@end group
4629@end example
4630
4631@noindent
4632then the code in @code{yylex} might look like this:
4633
4634@example
4635@group
4636 @dots{}
72d2299c
PE
4637 yylval.intval = value; /* Put value onto Bison stack. */
4638 return INT; /* Return the type of the token. */
bfa74976
RS
4639 @dots{}
4640@end group
4641@end example
4642
95923bd6
AD
4643@node Token Locations
4644@subsection Textual Locations of Tokens
bfa74976
RS
4645
4646@vindex yylloc
847bf1f5 4647If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4648Tracking Locations}) in actions to keep track of the textual locations
4649of tokens and groupings, then you must provide this information in
4650@code{yylex}. The function @code{yyparse} expects to find the textual
4651location of a token just parsed in the global variable @code{yylloc}.
4652So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4653
4654By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4655initialize the members that are going to be used by the actions. The
4656four members are called @code{first_line}, @code{first_column},
4657@code{last_line} and @code{last_column}. Note that the use of this
4658feature makes the parser noticeably slower.
bfa74976
RS
4659
4660@tindex YYLTYPE
4661The data type of @code{yylloc} has the name @code{YYLTYPE}.
4662
342b8b6e 4663@node Pure Calling
c656404a 4664@subsection Calling Conventions for Pure Parsers
bfa74976 4665
8c9a50be 4666When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4667pure, reentrant parser, the global communication variables @code{yylval}
4668and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4669Parser}.) In such parsers the two global variables are replaced by
4670pointers passed as arguments to @code{yylex}. You must declare them as
4671shown here, and pass the information back by storing it through those
4672pointers.
bfa74976
RS
4673
4674@example
13863333
AD
4675int
4676yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4677@{
4678 @dots{}
4679 *lvalp = value; /* Put value onto Bison stack. */
4680 return INT; /* Return the type of the token. */
4681 @dots{}
4682@}
4683@end example
4684
4685If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4686textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4687this case, omit the second argument; @code{yylex} will be called with
4688only one argument.
4689
e425e872 4690
2a8d363a
AD
4691If you wish to pass the additional parameter data to @code{yylex}, use
4692@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4693Function}).
e425e872 4694
feeb0eda 4695@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4696@findex %lex-param
287c78f6
PE
4697Declare that the braced-code @var{argument-declaration} is an
4698additional @code{yylex} argument declaration.
2a8d363a 4699@end deffn
e425e872 4700
2a8d363a 4701For instance:
e425e872
RS
4702
4703@example
feeb0eda
PE
4704%parse-param @{int *nastiness@}
4705%lex-param @{int *nastiness@}
4706%parse-param @{int *randomness@}
e425e872
RS
4707@end example
4708
4709@noindent
2a8d363a 4710results in the following signature:
e425e872
RS
4711
4712@example
2a8d363a
AD
4713int yylex (int *nastiness);
4714int yyparse (int *nastiness, int *randomness);
e425e872
RS
4715@end example
4716
2a8d363a 4717If @code{%pure-parser} is added:
c656404a
RS
4718
4719@example
2a8d363a
AD
4720int yylex (YYSTYPE *lvalp, int *nastiness);
4721int yyparse (int *nastiness, int *randomness);
c656404a
RS
4722@end example
4723
2a8d363a
AD
4724@noindent
4725and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4726
2a8d363a
AD
4727@example
4728int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4729int yyparse (int *nastiness, int *randomness);
4730@end example
931c7513 4731
342b8b6e 4732@node Error Reporting
bfa74976
RS
4733@section The Error Reporting Function @code{yyerror}
4734@cindex error reporting function
4735@findex yyerror
4736@cindex parse error
4737@cindex syntax error
4738
6e649e65 4739The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4740whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4741action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4742macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4743in Actions}).
bfa74976
RS
4744
4745The Bison parser expects to report the error by calling an error
4746reporting function named @code{yyerror}, which you must supply. It is
4747called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4748receives one argument. For a syntax error, the string is normally
4749@w{@code{"syntax error"}}.
bfa74976 4750
2a8d363a
AD
4751@findex %error-verbose
4752If you invoke the directive @code{%error-verbose} in the Bison
4753declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4754Section}), then Bison provides a more verbose and specific error message
6e649e65 4755string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4756
1a059451
PE
4757The parser can detect one other kind of error: memory exhaustion. This
4758can happen when the input contains constructions that are very deeply
bfa74976 4759nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4760parser normally extends its stack automatically up to a very large limit. But
4761if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4762fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4763
4764In some cases diagnostics like @w{@code{"syntax error"}} are
4765translated automatically from English to some other language before
4766they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4767
4768The following definition suffices in simple programs:
4769
4770@example
4771@group
13863333 4772void
38a92d50 4773yyerror (char const *s)
bfa74976
RS
4774@{
4775@end group
4776@group
4777 fprintf (stderr, "%s\n", s);
4778@}
4779@end group
4780@end example
4781
4782After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4783error recovery if you have written suitable error recovery grammar rules
4784(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4785immediately return 1.
4786
93724f13 4787Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4788an access to the current location.
4789This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4790parsers, but not for the Yacc parser, for historical reasons. I.e., if
4791@samp{%locations %pure-parser} is passed then the prototypes for
4792@code{yyerror} are:
4793
4794@example
38a92d50
PE
4795void yyerror (char const *msg); /* Yacc parsers. */
4796void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4797@end example
4798
feeb0eda 4799If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4800
4801@example
b317297e
PE
4802void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4803void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4804@end example
4805
fa7e68c3 4806Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4807convention for absolutely pure parsers, i.e., when the calling
4808convention of @code{yylex} @emph{and} the calling convention of
4809@code{%pure-parser} are pure. I.e.:
4810
4811@example
4812/* Location tracking. */
4813%locations
4814/* Pure yylex. */
4815%pure-parser
feeb0eda 4816%lex-param @{int *nastiness@}
2a8d363a 4817/* Pure yyparse. */
feeb0eda
PE
4818%parse-param @{int *nastiness@}
4819%parse-param @{int *randomness@}
2a8d363a
AD
4820@end example
4821
4822@noindent
4823results in the following signatures for all the parser kinds:
4824
4825@example
4826int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4827int yyparse (int *nastiness, int *randomness);
93724f13
AD
4828void yyerror (YYLTYPE *locp,
4829 int *nastiness, int *randomness,
38a92d50 4830 char const *msg);
2a8d363a
AD
4831@end example
4832
1c0c3e95 4833@noindent
38a92d50
PE
4834The prototypes are only indications of how the code produced by Bison
4835uses @code{yyerror}. Bison-generated code always ignores the returned
4836value, so @code{yyerror} can return any type, including @code{void}.
4837Also, @code{yyerror} can be a variadic function; that is why the
4838message is always passed last.
4839
4840Traditionally @code{yyerror} returns an @code{int} that is always
4841ignored, but this is purely for historical reasons, and @code{void} is
4842preferable since it more accurately describes the return type for
4843@code{yyerror}.
93724f13 4844
bfa74976
RS
4845@vindex yynerrs
4846The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4847reported so far. Normally this variable is global; but if you
704a47c4
AD
4848request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4849then it is a local variable which only the actions can access.
bfa74976 4850
342b8b6e 4851@node Action Features
bfa74976
RS
4852@section Special Features for Use in Actions
4853@cindex summary, action features
4854@cindex action features summary
4855
4856Here is a table of Bison constructs, variables and macros that
4857are useful in actions.
4858
18b519c0 4859@deffn {Variable} $$
bfa74976
RS
4860Acts like a variable that contains the semantic value for the
4861grouping made by the current rule. @xref{Actions}.
18b519c0 4862@end deffn
bfa74976 4863
18b519c0 4864@deffn {Variable} $@var{n}
bfa74976
RS
4865Acts like a variable that contains the semantic value for the
4866@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4867@end deffn
bfa74976 4868
18b519c0 4869@deffn {Variable} $<@var{typealt}>$
bfa74976 4870Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4871specified by the @code{%union} declaration. @xref{Action Types, ,Data
4872Types of Values in Actions}.
18b519c0 4873@end deffn
bfa74976 4874
18b519c0 4875@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4876Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4877union specified by the @code{%union} declaration.
e0c471a9 4878@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4879@end deffn
bfa74976 4880
18b519c0 4881@deffn {Macro} YYABORT;
bfa74976
RS
4882Return immediately from @code{yyparse}, indicating failure.
4883@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4884@end deffn
bfa74976 4885
18b519c0 4886@deffn {Macro} YYACCEPT;
bfa74976
RS
4887Return immediately from @code{yyparse}, indicating success.
4888@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4889@end deffn
bfa74976 4890
18b519c0 4891@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4892@findex YYBACKUP
4893Unshift a token. This macro is allowed only for rules that reduce
742e4900 4894a single value, and only when there is no lookahead token.
c827f760 4895It is also disallowed in @acronym{GLR} parsers.
742e4900 4896It installs a lookahead token with token type @var{token} and
bfa74976
RS
4897semantic value @var{value}; then it discards the value that was
4898going to be reduced by this rule.
4899
4900If the macro is used when it is not valid, such as when there is
742e4900 4901a lookahead token already, then it reports a syntax error with
bfa74976
RS
4902a message @samp{cannot back up} and performs ordinary error
4903recovery.
4904
4905In either case, the rest of the action is not executed.
18b519c0 4906@end deffn
bfa74976 4907
18b519c0 4908@deffn {Macro} YYEMPTY
bfa74976 4909@vindex YYEMPTY
742e4900 4910Value stored in @code{yychar} when there is no lookahead token.
18b519c0 4911@end deffn
bfa74976 4912
32c29292
JD
4913@deffn {Macro} YYEOF
4914@vindex YYEOF
742e4900 4915Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
4916stream.
4917@end deffn
4918
18b519c0 4919@deffn {Macro} YYERROR;
bfa74976
RS
4920@findex YYERROR
4921Cause an immediate syntax error. This statement initiates error
4922recovery just as if the parser itself had detected an error; however, it
4923does not call @code{yyerror}, and does not print any message. If you
4924want to print an error message, call @code{yyerror} explicitly before
4925the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4926@end deffn
bfa74976 4927
18b519c0 4928@deffn {Macro} YYRECOVERING
02103984
PE
4929@findex YYRECOVERING
4930The expression @code{YYRECOVERING ()} yields 1 when the parser
4931is recovering from a syntax error, and 0 otherwise.
bfa74976 4932@xref{Error Recovery}.
18b519c0 4933@end deffn
bfa74976 4934
18b519c0 4935@deffn {Variable} yychar
742e4900
JD
4936Variable containing either the lookahead token, or @code{YYEOF} when the
4937lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
4938has been performed so the next token is not yet known.
4939Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4940Actions}).
742e4900 4941@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 4942@end deffn
bfa74976 4943
18b519c0 4944@deffn {Macro} yyclearin;
742e4900 4945Discard the current lookahead token. This is useful primarily in
32c29292
JD
4946error rules.
4947Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4948Semantic Actions}).
4949@xref{Error Recovery}.
18b519c0 4950@end deffn
bfa74976 4951
18b519c0 4952@deffn {Macro} yyerrok;
bfa74976 4953Resume generating error messages immediately for subsequent syntax
13863333 4954errors. This is useful primarily in error rules.
bfa74976 4955@xref{Error Recovery}.
18b519c0 4956@end deffn
bfa74976 4957
32c29292 4958@deffn {Variable} yylloc
742e4900 4959Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
4960to @code{YYEMPTY} or @code{YYEOF}.
4961Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4962Actions}).
4963@xref{Actions and Locations, ,Actions and Locations}.
4964@end deffn
4965
4966@deffn {Variable} yylval
742e4900 4967Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
4968not set to @code{YYEMPTY} or @code{YYEOF}.
4969Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4970Actions}).
4971@xref{Actions, ,Actions}.
4972@end deffn
4973
18b519c0 4974@deffn {Value} @@$
847bf1f5 4975@findex @@$
95923bd6 4976Acts like a structure variable containing information on the textual location
847bf1f5
AD
4977of the grouping made by the current rule. @xref{Locations, ,
4978Tracking Locations}.
bfa74976 4979
847bf1f5
AD
4980@c Check if those paragraphs are still useful or not.
4981
4982@c @example
4983@c struct @{
4984@c int first_line, last_line;
4985@c int first_column, last_column;
4986@c @};
4987@c @end example
4988
4989@c Thus, to get the starting line number of the third component, you would
4990@c use @samp{@@3.first_line}.
bfa74976 4991
847bf1f5
AD
4992@c In order for the members of this structure to contain valid information,
4993@c you must make @code{yylex} supply this information about each token.
4994@c If you need only certain members, then @code{yylex} need only fill in
4995@c those members.
bfa74976 4996
847bf1f5 4997@c The use of this feature makes the parser noticeably slower.
18b519c0 4998@end deffn
847bf1f5 4999
18b519c0 5000@deffn {Value} @@@var{n}
847bf1f5 5001@findex @@@var{n}
95923bd6 5002Acts like a structure variable containing information on the textual location
847bf1f5
AD
5003of the @var{n}th component of the current rule. @xref{Locations, ,
5004Tracking Locations}.
18b519c0 5005@end deffn
bfa74976 5006
f7ab6a50
PE
5007@node Internationalization
5008@section Parser Internationalization
5009@cindex internationalization
5010@cindex i18n
5011@cindex NLS
5012@cindex gettext
5013@cindex bison-po
5014
5015A Bison-generated parser can print diagnostics, including error and
5016tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5017also supports outputting diagnostics in the user's native language. To
5018make this work, the user should set the usual environment variables.
5019@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5020For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5021set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5022encoding. The exact set of available locales depends on the user's
5023installation.
5024
5025The maintainer of a package that uses a Bison-generated parser enables
5026the internationalization of the parser's output through the following
5027steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5028@acronym{GNU} Automake.
5029
5030@enumerate
5031@item
30757c8c 5032@cindex bison-i18n.m4
f7ab6a50
PE
5033Into the directory containing the @acronym{GNU} Autoconf macros used
5034by the package---often called @file{m4}---copy the
5035@file{bison-i18n.m4} file installed by Bison under
5036@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5037For example:
5038
5039@example
5040cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5041@end example
5042
5043@item
30757c8c
PE
5044@findex BISON_I18N
5045@vindex BISON_LOCALEDIR
5046@vindex YYENABLE_NLS
f7ab6a50
PE
5047In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5048invocation, add an invocation of @code{BISON_I18N}. This macro is
5049defined in the file @file{bison-i18n.m4} that you copied earlier. It
5050causes @samp{configure} to find the value of the
30757c8c
PE
5051@code{BISON_LOCALEDIR} variable, and it defines the source-language
5052symbol @code{YYENABLE_NLS} to enable translations in the
5053Bison-generated parser.
f7ab6a50
PE
5054
5055@item
5056In the @code{main} function of your program, designate the directory
5057containing Bison's runtime message catalog, through a call to
5058@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5059For example:
5060
5061@example
5062bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5063@end example
5064
5065Typically this appears after any other call @code{bindtextdomain
5066(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5067@samp{BISON_LOCALEDIR} to be defined as a string through the
5068@file{Makefile}.
5069
5070@item
5071In the @file{Makefile.am} that controls the compilation of the @code{main}
5072function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5073either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5074
5075@example
5076DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5077@end example
5078
5079or:
5080
5081@example
5082AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5083@end example
5084
5085@item
5086Finally, invoke the command @command{autoreconf} to generate the build
5087infrastructure.
5088@end enumerate
5089
bfa74976 5090
342b8b6e 5091@node Algorithm
13863333
AD
5092@chapter The Bison Parser Algorithm
5093@cindex Bison parser algorithm
bfa74976
RS
5094@cindex algorithm of parser
5095@cindex shifting
5096@cindex reduction
5097@cindex parser stack
5098@cindex stack, parser
5099
5100As Bison reads tokens, it pushes them onto a stack along with their
5101semantic values. The stack is called the @dfn{parser stack}. Pushing a
5102token is traditionally called @dfn{shifting}.
5103
5104For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5105@samp{3} to come. The stack will have four elements, one for each token
5106that was shifted.
5107
5108But the stack does not always have an element for each token read. When
5109the last @var{n} tokens and groupings shifted match the components of a
5110grammar rule, they can be combined according to that rule. This is called
5111@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5112single grouping whose symbol is the result (left hand side) of that rule.
5113Running the rule's action is part of the process of reduction, because this
5114is what computes the semantic value of the resulting grouping.
5115
5116For example, if the infix calculator's parser stack contains this:
5117
5118@example
51191 + 5 * 3
5120@end example
5121
5122@noindent
5123and the next input token is a newline character, then the last three
5124elements can be reduced to 15 via the rule:
5125
5126@example
5127expr: expr '*' expr;
5128@end example
5129
5130@noindent
5131Then the stack contains just these three elements:
5132
5133@example
51341 + 15
5135@end example
5136
5137@noindent
5138At this point, another reduction can be made, resulting in the single value
513916. Then the newline token can be shifted.
5140
5141The parser tries, by shifts and reductions, to reduce the entire input down
5142to a single grouping whose symbol is the grammar's start-symbol
5143(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5144
5145This kind of parser is known in the literature as a bottom-up parser.
5146
5147@menu
742e4900 5148* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5149* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5150* Precedence:: Operator precedence works by resolving conflicts.
5151* Contextual Precedence:: When an operator's precedence depends on context.
5152* Parser States:: The parser is a finite-state-machine with stack.
5153* Reduce/Reduce:: When two rules are applicable in the same situation.
5154* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5155* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5156* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5157@end menu
5158
742e4900
JD
5159@node Lookahead
5160@section Lookahead Tokens
5161@cindex lookahead token
bfa74976
RS
5162
5163The Bison parser does @emph{not} always reduce immediately as soon as the
5164last @var{n} tokens and groupings match a rule. This is because such a
5165simple strategy is inadequate to handle most languages. Instead, when a
5166reduction is possible, the parser sometimes ``looks ahead'' at the next
5167token in order to decide what to do.
5168
5169When a token is read, it is not immediately shifted; first it becomes the
742e4900 5170@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5171perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5172the lookahead token remains off to the side. When no more reductions
5173should take place, the lookahead token is shifted onto the stack. This
bfa74976 5174does not mean that all possible reductions have been done; depending on the
742e4900 5175token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5176application.
5177
742e4900 5178Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5179expressions which contain binary addition operators and postfix unary
5180factorial operators (@samp{!}), and allow parentheses for grouping.
5181
5182@example
5183@group
5184expr: term '+' expr
5185 | term
5186 ;
5187@end group
5188
5189@group
5190term: '(' expr ')'
5191 | term '!'
5192 | NUMBER
5193 ;
5194@end group
5195@end example
5196
5197Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5198should be done? If the following token is @samp{)}, then the first three
5199tokens must be reduced to form an @code{expr}. This is the only valid
5200course, because shifting the @samp{)} would produce a sequence of symbols
5201@w{@code{term ')'}}, and no rule allows this.
5202
5203If the following token is @samp{!}, then it must be shifted immediately so
5204that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5205parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5206@code{expr}. It would then be impossible to shift the @samp{!} because
5207doing so would produce on the stack the sequence of symbols @code{expr
5208'!'}. No rule allows that sequence.
5209
5210@vindex yychar
32c29292
JD
5211@vindex yylval
5212@vindex yylloc
742e4900 5213The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5214Its semantic value and location, if any, are stored in the variables
5215@code{yylval} and @code{yylloc}.
bfa74976
RS
5216@xref{Action Features, ,Special Features for Use in Actions}.
5217
342b8b6e 5218@node Shift/Reduce
bfa74976
RS
5219@section Shift/Reduce Conflicts
5220@cindex conflicts
5221@cindex shift/reduce conflicts
5222@cindex dangling @code{else}
5223@cindex @code{else}, dangling
5224
5225Suppose we are parsing a language which has if-then and if-then-else
5226statements, with a pair of rules like this:
5227
5228@example
5229@group
5230if_stmt:
5231 IF expr THEN stmt
5232 | IF expr THEN stmt ELSE stmt
5233 ;
5234@end group
5235@end example
5236
5237@noindent
5238Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5239terminal symbols for specific keyword tokens.
5240
742e4900 5241When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5242contents of the stack (assuming the input is valid) are just right for
5243reduction by the first rule. But it is also legitimate to shift the
5244@code{ELSE}, because that would lead to eventual reduction by the second
5245rule.
5246
5247This situation, where either a shift or a reduction would be valid, is
5248called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5249these conflicts by choosing to shift, unless otherwise directed by
5250operator precedence declarations. To see the reason for this, let's
5251contrast it with the other alternative.
5252
5253Since the parser prefers to shift the @code{ELSE}, the result is to attach
5254the else-clause to the innermost if-statement, making these two inputs
5255equivalent:
5256
5257@example
5258if x then if y then win (); else lose;
5259
5260if x then do; if y then win (); else lose; end;
5261@end example
5262
5263But if the parser chose to reduce when possible rather than shift, the
5264result would be to attach the else-clause to the outermost if-statement,
5265making these two inputs equivalent:
5266
5267@example
5268if x then if y then win (); else lose;
5269
5270if x then do; if y then win (); end; else lose;
5271@end example
5272
5273The conflict exists because the grammar as written is ambiguous: either
5274parsing of the simple nested if-statement is legitimate. The established
5275convention is that these ambiguities are resolved by attaching the
5276else-clause to the innermost if-statement; this is what Bison accomplishes
5277by choosing to shift rather than reduce. (It would ideally be cleaner to
5278write an unambiguous grammar, but that is very hard to do in this case.)
5279This particular ambiguity was first encountered in the specifications of
5280Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5281
5282To avoid warnings from Bison about predictable, legitimate shift/reduce
5283conflicts, use the @code{%expect @var{n}} declaration. There will be no
5284warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5285@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5286
5287The definition of @code{if_stmt} above is solely to blame for the
5288conflict, but the conflict does not actually appear without additional
5289rules. Here is a complete Bison input file that actually manifests the
5290conflict:
5291
5292@example
5293@group
5294%token IF THEN ELSE variable
5295%%
5296@end group
5297@group
5298stmt: expr
5299 | if_stmt
5300 ;
5301@end group
5302
5303@group
5304if_stmt:
5305 IF expr THEN stmt
5306 | IF expr THEN stmt ELSE stmt
5307 ;
5308@end group
5309
5310expr: variable
5311 ;
5312@end example
5313
342b8b6e 5314@node Precedence
bfa74976
RS
5315@section Operator Precedence
5316@cindex operator precedence
5317@cindex precedence of operators
5318
5319Another situation where shift/reduce conflicts appear is in arithmetic
5320expressions. Here shifting is not always the preferred resolution; the
5321Bison declarations for operator precedence allow you to specify when to
5322shift and when to reduce.
5323
5324@menu
5325* Why Precedence:: An example showing why precedence is needed.
5326* Using Precedence:: How to specify precedence in Bison grammars.
5327* Precedence Examples:: How these features are used in the previous example.
5328* How Precedence:: How they work.
5329@end menu
5330
342b8b6e 5331@node Why Precedence
bfa74976
RS
5332@subsection When Precedence is Needed
5333
5334Consider the following ambiguous grammar fragment (ambiguous because the
5335input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5336
5337@example
5338@group
5339expr: expr '-' expr
5340 | expr '*' expr
5341 | expr '<' expr
5342 | '(' expr ')'
5343 @dots{}
5344 ;
5345@end group
5346@end example
5347
5348@noindent
5349Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5350should it reduce them via the rule for the subtraction operator? It
5351depends on the next token. Of course, if the next token is @samp{)}, we
5352must reduce; shifting is invalid because no single rule can reduce the
5353token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5354the next token is @samp{*} or @samp{<}, we have a choice: either
5355shifting or reduction would allow the parse to complete, but with
5356different results.
5357
5358To decide which one Bison should do, we must consider the results. If
5359the next operator token @var{op} is shifted, then it must be reduced
5360first in order to permit another opportunity to reduce the difference.
5361The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5362hand, if the subtraction is reduced before shifting @var{op}, the result
5363is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5364reduce should depend on the relative precedence of the operators
5365@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5366@samp{<}.
bfa74976
RS
5367
5368@cindex associativity
5369What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5370@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5371operators we prefer the former, which is called @dfn{left association}.
5372The latter alternative, @dfn{right association}, is desirable for
5373assignment operators. The choice of left or right association is a
5374matter of whether the parser chooses to shift or reduce when the stack
742e4900 5375contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5376makes right-associativity.
bfa74976 5377
342b8b6e 5378@node Using Precedence
bfa74976
RS
5379@subsection Specifying Operator Precedence
5380@findex %left
5381@findex %right
5382@findex %nonassoc
5383
5384Bison allows you to specify these choices with the operator precedence
5385declarations @code{%left} and @code{%right}. Each such declaration
5386contains a list of tokens, which are operators whose precedence and
5387associativity is being declared. The @code{%left} declaration makes all
5388those operators left-associative and the @code{%right} declaration makes
5389them right-associative. A third alternative is @code{%nonassoc}, which
5390declares that it is a syntax error to find the same operator twice ``in a
5391row''.
5392
5393The relative precedence of different operators is controlled by the
5394order in which they are declared. The first @code{%left} or
5395@code{%right} declaration in the file declares the operators whose
5396precedence is lowest, the next such declaration declares the operators
5397whose precedence is a little higher, and so on.
5398
342b8b6e 5399@node Precedence Examples
bfa74976
RS
5400@subsection Precedence Examples
5401
5402In our example, we would want the following declarations:
5403
5404@example
5405%left '<'
5406%left '-'
5407%left '*'
5408@end example
5409
5410In a more complete example, which supports other operators as well, we
5411would declare them in groups of equal precedence. For example, @code{'+'} is
5412declared with @code{'-'}:
5413
5414@example
5415%left '<' '>' '=' NE LE GE
5416%left '+' '-'
5417%left '*' '/'
5418@end example
5419
5420@noindent
5421(Here @code{NE} and so on stand for the operators for ``not equal''
5422and so on. We assume that these tokens are more than one character long
5423and therefore are represented by names, not character literals.)
5424
342b8b6e 5425@node How Precedence
bfa74976
RS
5426@subsection How Precedence Works
5427
5428The first effect of the precedence declarations is to assign precedence
5429levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5430precedence levels to certain rules: each rule gets its precedence from
5431the last terminal symbol mentioned in the components. (You can also
5432specify explicitly the precedence of a rule. @xref{Contextual
5433Precedence, ,Context-Dependent Precedence}.)
5434
5435Finally, the resolution of conflicts works by comparing the precedence
742e4900 5436of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5437token's precedence is higher, the choice is to shift. If the rule's
5438precedence is higher, the choice is to reduce. If they have equal
5439precedence, the choice is made based on the associativity of that
5440precedence level. The verbose output file made by @samp{-v}
5441(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5442resolved.
bfa74976
RS
5443
5444Not all rules and not all tokens have precedence. If either the rule or
742e4900 5445the lookahead token has no precedence, then the default is to shift.
bfa74976 5446
342b8b6e 5447@node Contextual Precedence
bfa74976
RS
5448@section Context-Dependent Precedence
5449@cindex context-dependent precedence
5450@cindex unary operator precedence
5451@cindex precedence, context-dependent
5452@cindex precedence, unary operator
5453@findex %prec
5454
5455Often the precedence of an operator depends on the context. This sounds
5456outlandish at first, but it is really very common. For example, a minus
5457sign typically has a very high precedence as a unary operator, and a
5458somewhat lower precedence (lower than multiplication) as a binary operator.
5459
5460The Bison precedence declarations, @code{%left}, @code{%right} and
5461@code{%nonassoc}, can only be used once for a given token; so a token has
5462only one precedence declared in this way. For context-dependent
5463precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5464modifier for rules.
bfa74976
RS
5465
5466The @code{%prec} modifier declares the precedence of a particular rule by
5467specifying a terminal symbol whose precedence should be used for that rule.
5468It's not necessary for that symbol to appear otherwise in the rule. The
5469modifier's syntax is:
5470
5471@example
5472%prec @var{terminal-symbol}
5473@end example
5474
5475@noindent
5476and it is written after the components of the rule. Its effect is to
5477assign the rule the precedence of @var{terminal-symbol}, overriding
5478the precedence that would be deduced for it in the ordinary way. The
5479altered rule precedence then affects how conflicts involving that rule
5480are resolved (@pxref{Precedence, ,Operator Precedence}).
5481
5482Here is how @code{%prec} solves the problem of unary minus. First, declare
5483a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5484are no tokens of this type, but the symbol serves to stand for its
5485precedence:
5486
5487@example
5488@dots{}
5489%left '+' '-'
5490%left '*'
5491%left UMINUS
5492@end example
5493
5494Now the precedence of @code{UMINUS} can be used in specific rules:
5495
5496@example
5497@group
5498exp: @dots{}
5499 | exp '-' exp
5500 @dots{}
5501 | '-' exp %prec UMINUS
5502@end group
5503@end example
5504
91d2c560 5505@ifset defaultprec
39a06c25
PE
5506If you forget to append @code{%prec UMINUS} to the rule for unary
5507minus, Bison silently assumes that minus has its usual precedence.
5508This kind of problem can be tricky to debug, since one typically
5509discovers the mistake only by testing the code.
5510
22fccf95 5511The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5512this kind of problem systematically. It causes rules that lack a
5513@code{%prec} modifier to have no precedence, even if the last terminal
5514symbol mentioned in their components has a declared precedence.
5515
22fccf95 5516If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5517for all rules that participate in precedence conflict resolution.
5518Then you will see any shift/reduce conflict until you tell Bison how
5519to resolve it, either by changing your grammar or by adding an
5520explicit precedence. This will probably add declarations to the
5521grammar, but it helps to protect against incorrect rule precedences.
5522
22fccf95
PE
5523The effect of @code{%no-default-prec;} can be reversed by giving
5524@code{%default-prec;}, which is the default.
91d2c560 5525@end ifset
39a06c25 5526
342b8b6e 5527@node Parser States
bfa74976
RS
5528@section Parser States
5529@cindex finite-state machine
5530@cindex parser state
5531@cindex state (of parser)
5532
5533The function @code{yyparse} is implemented using a finite-state machine.
5534The values pushed on the parser stack are not simply token type codes; they
5535represent the entire sequence of terminal and nonterminal symbols at or
5536near the top of the stack. The current state collects all the information
5537about previous input which is relevant to deciding what to do next.
5538
742e4900
JD
5539Each time a lookahead token is read, the current parser state together
5540with the type of lookahead token are looked up in a table. This table
5541entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5542specifies the new parser state, which is pushed onto the top of the
5543parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5544This means that a certain number of tokens or groupings are taken off
5545the top of the stack, and replaced by one grouping. In other words,
5546that number of states are popped from the stack, and one new state is
5547pushed.
5548
742e4900 5549There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5550is erroneous in the current state. This causes error processing to begin
5551(@pxref{Error Recovery}).
5552
342b8b6e 5553@node Reduce/Reduce
bfa74976
RS
5554@section Reduce/Reduce Conflicts
5555@cindex reduce/reduce conflict
5556@cindex conflicts, reduce/reduce
5557
5558A reduce/reduce conflict occurs if there are two or more rules that apply
5559to the same sequence of input. This usually indicates a serious error
5560in the grammar.
5561
5562For example, here is an erroneous attempt to define a sequence
5563of zero or more @code{word} groupings.
5564
5565@example
5566sequence: /* empty */
5567 @{ printf ("empty sequence\n"); @}
5568 | maybeword
5569 | sequence word
5570 @{ printf ("added word %s\n", $2); @}
5571 ;
5572
5573maybeword: /* empty */
5574 @{ printf ("empty maybeword\n"); @}
5575 | word
5576 @{ printf ("single word %s\n", $1); @}
5577 ;
5578@end example
5579
5580@noindent
5581The error is an ambiguity: there is more than one way to parse a single
5582@code{word} into a @code{sequence}. It could be reduced to a
5583@code{maybeword} and then into a @code{sequence} via the second rule.
5584Alternatively, nothing-at-all could be reduced into a @code{sequence}
5585via the first rule, and this could be combined with the @code{word}
5586using the third rule for @code{sequence}.
5587
5588There is also more than one way to reduce nothing-at-all into a
5589@code{sequence}. This can be done directly via the first rule,
5590or indirectly via @code{maybeword} and then the second rule.
5591
5592You might think that this is a distinction without a difference, because it
5593does not change whether any particular input is valid or not. But it does
5594affect which actions are run. One parsing order runs the second rule's
5595action; the other runs the first rule's action and the third rule's action.
5596In this example, the output of the program changes.
5597
5598Bison resolves a reduce/reduce conflict by choosing to use the rule that
5599appears first in the grammar, but it is very risky to rely on this. Every
5600reduce/reduce conflict must be studied and usually eliminated. Here is the
5601proper way to define @code{sequence}:
5602
5603@example
5604sequence: /* empty */
5605 @{ printf ("empty sequence\n"); @}
5606 | sequence word
5607 @{ printf ("added word %s\n", $2); @}
5608 ;
5609@end example
5610
5611Here is another common error that yields a reduce/reduce conflict:
5612
5613@example
5614sequence: /* empty */
5615 | sequence words
5616 | sequence redirects
5617 ;
5618
5619words: /* empty */
5620 | words word
5621 ;
5622
5623redirects:/* empty */
5624 | redirects redirect
5625 ;
5626@end example
5627
5628@noindent
5629The intention here is to define a sequence which can contain either
5630@code{word} or @code{redirect} groupings. The individual definitions of
5631@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5632three together make a subtle ambiguity: even an empty input can be parsed
5633in infinitely many ways!
5634
5635Consider: nothing-at-all could be a @code{words}. Or it could be two
5636@code{words} in a row, or three, or any number. It could equally well be a
5637@code{redirects}, or two, or any number. Or it could be a @code{words}
5638followed by three @code{redirects} and another @code{words}. And so on.
5639
5640Here are two ways to correct these rules. First, to make it a single level
5641of sequence:
5642
5643@example
5644sequence: /* empty */
5645 | sequence word
5646 | sequence redirect
5647 ;
5648@end example
5649
5650Second, to prevent either a @code{words} or a @code{redirects}
5651from being empty:
5652
5653@example
5654sequence: /* empty */
5655 | sequence words
5656 | sequence redirects
5657 ;
5658
5659words: word
5660 | words word
5661 ;
5662
5663redirects:redirect
5664 | redirects redirect
5665 ;
5666@end example
5667
342b8b6e 5668@node Mystery Conflicts
bfa74976
RS
5669@section Mysterious Reduce/Reduce Conflicts
5670
5671Sometimes reduce/reduce conflicts can occur that don't look warranted.
5672Here is an example:
5673
5674@example
5675@group
5676%token ID
5677
5678%%
5679def: param_spec return_spec ','
5680 ;
5681param_spec:
5682 type
5683 | name_list ':' type
5684 ;
5685@end group
5686@group
5687return_spec:
5688 type
5689 | name ':' type
5690 ;
5691@end group
5692@group
5693type: ID
5694 ;
5695@end group
5696@group
5697name: ID
5698 ;
5699name_list:
5700 name
5701 | name ',' name_list
5702 ;
5703@end group
5704@end example
5705
5706It would seem that this grammar can be parsed with only a single token
742e4900 5707of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5708a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5709@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5710
c827f760
PE
5711@cindex @acronym{LR}(1)
5712@cindex @acronym{LALR}(1)
bfa74976 5713However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5714@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5715an @code{ID}
bfa74976
RS
5716at the beginning of a @code{param_spec} and likewise at the beginning of
5717a @code{return_spec}, are similar enough that Bison assumes they are the
5718same. They appear similar because the same set of rules would be
5719active---the rule for reducing to a @code{name} and that for reducing to
5720a @code{type}. Bison is unable to determine at that stage of processing
742e4900 5721that the rules would require different lookahead tokens in the two
bfa74976
RS
5722contexts, so it makes a single parser state for them both. Combining
5723the two contexts causes a conflict later. In parser terminology, this
c827f760 5724occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5725
5726In general, it is better to fix deficiencies than to document them. But
5727this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5728generators that can handle @acronym{LR}(1) grammars are hard to write
5729and tend to
bfa74976
RS
5730produce parsers that are very large. In practice, Bison is more useful
5731as it is now.
5732
5733When the problem arises, you can often fix it by identifying the two
a220f555
MA
5734parser states that are being confused, and adding something to make them
5735look distinct. In the above example, adding one rule to
bfa74976
RS
5736@code{return_spec} as follows makes the problem go away:
5737
5738@example
5739@group
5740%token BOGUS
5741@dots{}
5742%%
5743@dots{}
5744return_spec:
5745 type
5746 | name ':' type
5747 /* This rule is never used. */
5748 | ID BOGUS
5749 ;
5750@end group
5751@end example
5752
5753This corrects the problem because it introduces the possibility of an
5754additional active rule in the context after the @code{ID} at the beginning of
5755@code{return_spec}. This rule is not active in the corresponding context
5756in a @code{param_spec}, so the two contexts receive distinct parser states.
5757As long as the token @code{BOGUS} is never generated by @code{yylex},
5758the added rule cannot alter the way actual input is parsed.
5759
5760In this particular example, there is another way to solve the problem:
5761rewrite the rule for @code{return_spec} to use @code{ID} directly
5762instead of via @code{name}. This also causes the two confusing
5763contexts to have different sets of active rules, because the one for
5764@code{return_spec} activates the altered rule for @code{return_spec}
5765rather than the one for @code{name}.
5766
5767@example
5768param_spec:
5769 type
5770 | name_list ':' type
5771 ;
5772return_spec:
5773 type
5774 | ID ':' type
5775 ;
5776@end example
5777
e054b190
PE
5778For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5779generators, please see:
5780Frank DeRemer and Thomas Pennello, Efficient Computation of
5781@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5782Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5783pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5784
fae437e8 5785@node Generalized LR Parsing
c827f760
PE
5786@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5787@cindex @acronym{GLR} parsing
5788@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5789@cindex ambiguous grammars
9d9b8b70 5790@cindex nondeterministic parsing
676385e2 5791
fae437e8
AD
5792Bison produces @emph{deterministic} parsers that choose uniquely
5793when to reduce and which reduction to apply
742e4900 5794based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
5795As a result, normal Bison handles a proper subset of the family of
5796context-free languages.
fae437e8 5797Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5798sequence of reductions cannot have deterministic parsers in this sense.
5799The same is true of languages that require more than one symbol of
742e4900 5800lookahead, since the parser lacks the information necessary to make a
676385e2 5801decision at the point it must be made in a shift-reduce parser.
fae437e8 5802Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5803there are languages where Bison's particular choice of how to
5804summarize the input seen so far loses necessary information.
5805
5806When you use the @samp{%glr-parser} declaration in your grammar file,
5807Bison generates a parser that uses a different algorithm, called
c827f760
PE
5808Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5809parser uses the same basic
676385e2
PH
5810algorithm for parsing as an ordinary Bison parser, but behaves
5811differently in cases where there is a shift-reduce conflict that has not
fae437e8 5812been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5813reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5814situation, it
fae437e8 5815effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5816shift or reduction. These parsers then proceed as usual, consuming
5817tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5818and split further, with the result that instead of a sequence of states,
c827f760 5819a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5820
5821In effect, each stack represents a guess as to what the proper parse
5822is. Additional input may indicate that a guess was wrong, in which case
5823the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5824actions generated in each stack are saved, rather than being executed
676385e2 5825immediately. When a stack disappears, its saved semantic actions never
fae437e8 5826get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5827their sets of semantic actions are both saved with the state that
5828results from the reduction. We say that two stacks are equivalent
fae437e8 5829when they both represent the same sequence of states,
676385e2
PH
5830and each pair of corresponding states represents a
5831grammar symbol that produces the same segment of the input token
5832stream.
5833
5834Whenever the parser makes a transition from having multiple
c827f760 5835states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5836algorithm, after resolving and executing the saved-up actions.
5837At this transition, some of the states on the stack will have semantic
5838values that are sets (actually multisets) of possible actions. The
5839parser tries to pick one of the actions by first finding one whose rule
5840has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5841declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5842precedence, but there the same merging function is declared for both
fae437e8 5843rules by the @samp{%merge} declaration,
676385e2
PH
5844Bison resolves and evaluates both and then calls the merge function on
5845the result. Otherwise, it reports an ambiguity.
5846
c827f760
PE
5847It is possible to use a data structure for the @acronym{GLR} parsing tree that
5848permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5849size of the input), any unambiguous (not necessarily
5850@acronym{LALR}(1)) grammar in
fae437e8 5851quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5852context-free grammar in cubic worst-case time. However, Bison currently
5853uses a simpler data structure that requires time proportional to the
5854length of the input times the maximum number of stacks required for any
9d9b8b70 5855prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5856grammars can require exponential time and space to process. Such badly
5857behaving examples, however, are not generally of practical interest.
9d9b8b70 5858Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5859doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5860structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5861grammar, in particular, it is only slightly slower than with the default
5862Bison parser.
5863
fa7e68c3 5864For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5865Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5866Generalised @acronym{LR} Parsers, Royal Holloway, University of
5867London, Department of Computer Science, TR-00-12,
5868@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5869(2000-12-24).
5870
1a059451
PE
5871@node Memory Management
5872@section Memory Management, and How to Avoid Memory Exhaustion
5873@cindex memory exhaustion
5874@cindex memory management
bfa74976
RS
5875@cindex stack overflow
5876@cindex parser stack overflow
5877@cindex overflow of parser stack
5878
1a059451 5879The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5880not reduced. When this happens, the parser function @code{yyparse}
1a059451 5881calls @code{yyerror} and then returns 2.
bfa74976 5882
c827f760 5883Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5884usually results from using a right recursion instead of a left
5885recursion, @xref{Recursion, ,Recursive Rules}.
5886
bfa74976
RS
5887@vindex YYMAXDEPTH
5888By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5889parser stack can become before memory is exhausted. Define the
bfa74976
RS
5890macro with a value that is an integer. This value is the maximum number
5891of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5892
5893The stack space allowed is not necessarily allocated. If you specify a
1a059451 5894large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5895stack at first, and then makes it bigger by stages as needed. This
5896increasing allocation happens automatically and silently. Therefore,
5897you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5898space for ordinary inputs that do not need much stack.
5899
d7e14fc0
PE
5900However, do not allow @code{YYMAXDEPTH} to be a value so large that
5901arithmetic overflow could occur when calculating the size of the stack
5902space. Also, do not allow @code{YYMAXDEPTH} to be less than
5903@code{YYINITDEPTH}.
5904
bfa74976
RS
5905@cindex default stack limit
5906The default value of @code{YYMAXDEPTH}, if you do not define it, is
590710000.
5908
5909@vindex YYINITDEPTH
5910You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5911macro @code{YYINITDEPTH} to a positive integer. For the C
5912@acronym{LALR}(1) parser, this value must be a compile-time constant
5913unless you are assuming C99 or some other target language or compiler
5914that allows variable-length arrays. The default is 200.
5915
1a059451 5916Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5917
d1a1114f 5918@c FIXME: C++ output.
c827f760 5919Because of semantical differences between C and C++, the
1a059451
PE
5920@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5921by C++ compilers. In this precise case (compiling a C parser as C++) you are
5922suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5923this deficiency in a future release.
d1a1114f 5924
342b8b6e 5925@node Error Recovery
bfa74976
RS
5926@chapter Error Recovery
5927@cindex error recovery
5928@cindex recovery from errors
5929
6e649e65 5930It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5931error. For example, a compiler should recover sufficiently to parse the
5932rest of the input file and check it for errors; a calculator should accept
5933another expression.
5934
5935In a simple interactive command parser where each input is one line, it may
5936be sufficient to allow @code{yyparse} to return 1 on error and have the
5937caller ignore the rest of the input line when that happens (and then call
5938@code{yyparse} again). But this is inadequate for a compiler, because it
5939forgets all the syntactic context leading up to the error. A syntax error
5940deep within a function in the compiler input should not cause the compiler
5941to treat the following line like the beginning of a source file.
5942
5943@findex error
5944You can define how to recover from a syntax error by writing rules to
5945recognize the special token @code{error}. This is a terminal symbol that
5946is always defined (you need not declare it) and reserved for error
5947handling. The Bison parser generates an @code{error} token whenever a
5948syntax error happens; if you have provided a rule to recognize this token
13863333 5949in the current context, the parse can continue.
bfa74976
RS
5950
5951For example:
5952
5953@example
5954stmnts: /* empty string */
5955 | stmnts '\n'
5956 | stmnts exp '\n'
5957 | stmnts error '\n'
5958@end example
5959
5960The fourth rule in this example says that an error followed by a newline
5961makes a valid addition to any @code{stmnts}.
5962
5963What happens if a syntax error occurs in the middle of an @code{exp}? The
5964error recovery rule, interpreted strictly, applies to the precise sequence
5965of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5966the middle of an @code{exp}, there will probably be some additional tokens
5967and subexpressions on the stack after the last @code{stmnts}, and there
5968will be tokens to read before the next newline. So the rule is not
5969applicable in the ordinary way.
5970
5971But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5972the semantic context and part of the input. First it discards states
5973and objects from the stack until it gets back to a state in which the
bfa74976 5974@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5975already parsed are discarded, back to the last complete @code{stmnts}.)
5976At this point the @code{error} token can be shifted. Then, if the old
742e4900 5977lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 5978tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5979this example, Bison reads and discards input until the next newline so
5980that the fourth rule can apply. Note that discarded symbols are
5981possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5982Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5983
5984The choice of error rules in the grammar is a choice of strategies for
5985error recovery. A simple and useful strategy is simply to skip the rest of
5986the current input line or current statement if an error is detected:
5987
5988@example
72d2299c 5989stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5990@end example
5991
5992It is also useful to recover to the matching close-delimiter of an
5993opening-delimiter that has already been parsed. Otherwise the
5994close-delimiter will probably appear to be unmatched, and generate another,
5995spurious error message:
5996
5997@example
5998primary: '(' expr ')'
5999 | '(' error ')'
6000 @dots{}
6001 ;
6002@end example
6003
6004Error recovery strategies are necessarily guesses. When they guess wrong,
6005one syntax error often leads to another. In the above example, the error
6006recovery rule guesses that an error is due to bad input within one
6007@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6008middle of a valid @code{stmnt}. After the error recovery rule recovers
6009from the first error, another syntax error will be found straightaway,
6010since the text following the spurious semicolon is also an invalid
6011@code{stmnt}.
6012
6013To prevent an outpouring of error messages, the parser will output no error
6014message for another syntax error that happens shortly after the first; only
6015after three consecutive input tokens have been successfully shifted will
6016error messages resume.
6017
6018Note that rules which accept the @code{error} token may have actions, just
6019as any other rules can.
6020
6021@findex yyerrok
6022You can make error messages resume immediately by using the macro
6023@code{yyerrok} in an action. If you do this in the error rule's action, no
6024error messages will be suppressed. This macro requires no arguments;
6025@samp{yyerrok;} is a valid C statement.
6026
6027@findex yyclearin
742e4900 6028The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6029this is unacceptable, then the macro @code{yyclearin} may be used to clear
6030this token. Write the statement @samp{yyclearin;} in the error rule's
6031action.
32c29292 6032@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6033
6e649e65 6034For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6035called that advances the input stream to some point where parsing should
6036once again commence. The next symbol returned by the lexical scanner is
742e4900 6037probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6038with @samp{yyclearin;}.
6039
6040@vindex YYRECOVERING
02103984
PE
6041The expression @code{YYRECOVERING ()} yields 1 when the parser
6042is recovering from a syntax error, and 0 otherwise.
6043Syntax error diagnostics are suppressed while recovering from a syntax
6044error.
bfa74976 6045
342b8b6e 6046@node Context Dependency
bfa74976
RS
6047@chapter Handling Context Dependencies
6048
6049The Bison paradigm is to parse tokens first, then group them into larger
6050syntactic units. In many languages, the meaning of a token is affected by
6051its context. Although this violates the Bison paradigm, certain techniques
6052(known as @dfn{kludges}) may enable you to write Bison parsers for such
6053languages.
6054
6055@menu
6056* Semantic Tokens:: Token parsing can depend on the semantic context.
6057* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6058* Tie-in Recovery:: Lexical tie-ins have implications for how
6059 error recovery rules must be written.
6060@end menu
6061
6062(Actually, ``kludge'' means any technique that gets its job done but is
6063neither clean nor robust.)
6064
342b8b6e 6065@node Semantic Tokens
bfa74976
RS
6066@section Semantic Info in Token Types
6067
6068The C language has a context dependency: the way an identifier is used
6069depends on what its current meaning is. For example, consider this:
6070
6071@example
6072foo (x);
6073@end example
6074
6075This looks like a function call statement, but if @code{foo} is a typedef
6076name, then this is actually a declaration of @code{x}. How can a Bison
6077parser for C decide how to parse this input?
6078
c827f760 6079The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6080@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6081identifier, it looks up the current declaration of the identifier in order
6082to decide which token type to return: @code{TYPENAME} if the identifier is
6083declared as a typedef, @code{IDENTIFIER} otherwise.
6084
6085The grammar rules can then express the context dependency by the choice of
6086token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6087but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6088@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6089is @emph{not} significant, such as in declarations that can shadow a
6090typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6091accepted---there is one rule for each of the two token types.
6092
6093This technique is simple to use if the decision of which kinds of
6094identifiers to allow is made at a place close to where the identifier is
6095parsed. But in C this is not always so: C allows a declaration to
6096redeclare a typedef name provided an explicit type has been specified
6097earlier:
6098
6099@example
3a4f411f
PE
6100typedef int foo, bar;
6101int baz (void)
6102@{
6103 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6104 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6105 return foo (bar);
6106@}
bfa74976
RS
6107@end example
6108
6109Unfortunately, the name being declared is separated from the declaration
6110construct itself by a complicated syntactic structure---the ``declarator''.
6111
9ecbd125 6112As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6113all the nonterminal names changed: once for parsing a declaration in
6114which a typedef name can be redefined, and once for parsing a
6115declaration in which that can't be done. Here is a part of the
6116duplication, with actions omitted for brevity:
bfa74976
RS
6117
6118@example
6119initdcl:
6120 declarator maybeasm '='
6121 init
6122 | declarator maybeasm
6123 ;
6124
6125notype_initdcl:
6126 notype_declarator maybeasm '='
6127 init
6128 | notype_declarator maybeasm
6129 ;
6130@end example
6131
6132@noindent
6133Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6134cannot. The distinction between @code{declarator} and
6135@code{notype_declarator} is the same sort of thing.
6136
6137There is some similarity between this technique and a lexical tie-in
6138(described next), in that information which alters the lexical analysis is
6139changed during parsing by other parts of the program. The difference is
6140here the information is global, and is used for other purposes in the
6141program. A true lexical tie-in has a special-purpose flag controlled by
6142the syntactic context.
6143
342b8b6e 6144@node Lexical Tie-ins
bfa74976
RS
6145@section Lexical Tie-ins
6146@cindex lexical tie-in
6147
6148One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6149which is set by Bison actions, whose purpose is to alter the way tokens are
6150parsed.
6151
6152For example, suppose we have a language vaguely like C, but with a special
6153construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6154an expression in parentheses in which all integers are hexadecimal. In
6155particular, the token @samp{a1b} must be treated as an integer rather than
6156as an identifier if it appears in that context. Here is how you can do it:
6157
6158@example
6159@group
6160%@{
38a92d50
PE
6161 int hexflag;
6162 int yylex (void);
6163 void yyerror (char const *);
bfa74976
RS
6164%@}
6165%%
6166@dots{}
6167@end group
6168@group
6169expr: IDENTIFIER
6170 | constant
6171 | HEX '('
6172 @{ hexflag = 1; @}
6173 expr ')'
6174 @{ hexflag = 0;
6175 $$ = $4; @}
6176 | expr '+' expr
6177 @{ $$ = make_sum ($1, $3); @}
6178 @dots{}
6179 ;
6180@end group
6181
6182@group
6183constant:
6184 INTEGER
6185 | STRING
6186 ;
6187@end group
6188@end example
6189
6190@noindent
6191Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6192it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6193with letters are parsed as integers if possible.
6194
342b8b6e
AD
6195The declaration of @code{hexflag} shown in the prologue of the parser file
6196is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6197You must also write the code in @code{yylex} to obey the flag.
bfa74976 6198
342b8b6e 6199@node Tie-in Recovery
bfa74976
RS
6200@section Lexical Tie-ins and Error Recovery
6201
6202Lexical tie-ins make strict demands on any error recovery rules you have.
6203@xref{Error Recovery}.
6204
6205The reason for this is that the purpose of an error recovery rule is to
6206abort the parsing of one construct and resume in some larger construct.
6207For example, in C-like languages, a typical error recovery rule is to skip
6208tokens until the next semicolon, and then start a new statement, like this:
6209
6210@example
6211stmt: expr ';'
6212 | IF '(' expr ')' stmt @{ @dots{} @}
6213 @dots{}
6214 error ';'
6215 @{ hexflag = 0; @}
6216 ;
6217@end example
6218
6219If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6220construct, this error rule will apply, and then the action for the
6221completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6222remain set for the entire rest of the input, or until the next @code{hex}
6223keyword, causing identifiers to be misinterpreted as integers.
6224
6225To avoid this problem the error recovery rule itself clears @code{hexflag}.
6226
6227There may also be an error recovery rule that works within expressions.
6228For example, there could be a rule which applies within parentheses
6229and skips to the close-parenthesis:
6230
6231@example
6232@group
6233expr: @dots{}
6234 | '(' expr ')'
6235 @{ $$ = $2; @}
6236 | '(' error ')'
6237 @dots{}
6238@end group
6239@end example
6240
6241If this rule acts within the @code{hex} construct, it is not going to abort
6242that construct (since it applies to an inner level of parentheses within
6243the construct). Therefore, it should not clear the flag: the rest of
6244the @code{hex} construct should be parsed with the flag still in effect.
6245
6246What if there is an error recovery rule which might abort out of the
6247@code{hex} construct or might not, depending on circumstances? There is no
6248way you can write the action to determine whether a @code{hex} construct is
6249being aborted or not. So if you are using a lexical tie-in, you had better
6250make sure your error recovery rules are not of this kind. Each rule must
6251be such that you can be sure that it always will, or always won't, have to
6252clear the flag.
6253
ec3bc396
AD
6254@c ================================================== Debugging Your Parser
6255
342b8b6e 6256@node Debugging
bfa74976 6257@chapter Debugging Your Parser
ec3bc396
AD
6258
6259Developing a parser can be a challenge, especially if you don't
6260understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6261Algorithm}). Even so, sometimes a detailed description of the automaton
6262can help (@pxref{Understanding, , Understanding Your Parser}), or
6263tracing the execution of the parser can give some insight on why it
6264behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6265
6266@menu
6267* Understanding:: Understanding the structure of your parser.
6268* Tracing:: Tracing the execution of your parser.
6269@end menu
6270
6271@node Understanding
6272@section Understanding Your Parser
6273
6274As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6275Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6276frequent than one would hope), looking at this automaton is required to
6277tune or simply fix a parser. Bison provides two different
c827f760 6278representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6279file).
6280
6281The textual file is generated when the options @option{--report} or
6282@option{--verbose} are specified, see @xref{Invocation, , Invoking
6283Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6284the parser output file name, and adding @samp{.output} instead.
6285Therefore, if the input file is @file{foo.y}, then the parser file is
6286called @file{foo.tab.c} by default. As a consequence, the verbose
6287output file is called @file{foo.output}.
6288
6289The following grammar file, @file{calc.y}, will be used in the sequel:
6290
6291@example
6292%token NUM STR
6293%left '+' '-'
6294%left '*'
6295%%
6296exp: exp '+' exp
6297 | exp '-' exp
6298 | exp '*' exp
6299 | exp '/' exp
6300 | NUM
6301 ;
6302useless: STR;
6303%%
6304@end example
6305
88bce5a2
AD
6306@command{bison} reports:
6307
6308@example
6309calc.y: warning: 1 useless nonterminal and 1 useless rule
6310calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6311calc.y:11.10-12: warning: useless rule: useless: STR
6312calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6313@end example
6314
6315When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6316creates a file @file{calc.output} with contents detailed below. The
6317order of the output and the exact presentation might vary, but the
6318interpretation is the same.
ec3bc396
AD
6319
6320The first section includes details on conflicts that were solved thanks
6321to precedence and/or associativity:
6322
6323@example
6324Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6325Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6326Conflict in state 8 between rule 2 and token '*' resolved as shift.
6327@exdent @dots{}
6328@end example
6329
6330@noindent
6331The next section lists states that still have conflicts.
6332
6333@example
5a99098d
PE
6334State 8 conflicts: 1 shift/reduce
6335State 9 conflicts: 1 shift/reduce
6336State 10 conflicts: 1 shift/reduce
6337State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6338@end example
6339
6340@noindent
6341@cindex token, useless
6342@cindex useless token
6343@cindex nonterminal, useless
6344@cindex useless nonterminal
6345@cindex rule, useless
6346@cindex useless rule
6347The next section reports useless tokens, nonterminal and rules. Useless
6348nonterminals and rules are removed in order to produce a smaller parser,
6349but useless tokens are preserved, since they might be used by the
6350scanner (note the difference between ``useless'' and ``not used''
6351below):
6352
6353@example
6354Useless nonterminals:
6355 useless
6356
6357Terminals which are not used:
6358 STR
6359
6360Useless rules:
6361#6 useless: STR;
6362@end example
6363
6364@noindent
6365The next section reproduces the exact grammar that Bison used:
6366
6367@example
6368Grammar
6369
6370 Number, Line, Rule
88bce5a2 6371 0 5 $accept -> exp $end
ec3bc396
AD
6372 1 5 exp -> exp '+' exp
6373 2 6 exp -> exp '-' exp
6374 3 7 exp -> exp '*' exp
6375 4 8 exp -> exp '/' exp
6376 5 9 exp -> NUM
6377@end example
6378
6379@noindent
6380and reports the uses of the symbols:
6381
6382@example
6383Terminals, with rules where they appear
6384
88bce5a2 6385$end (0) 0
ec3bc396
AD
6386'*' (42) 3
6387'+' (43) 1
6388'-' (45) 2
6389'/' (47) 4
6390error (256)
6391NUM (258) 5
6392
6393Nonterminals, with rules where they appear
6394
88bce5a2 6395$accept (8)
ec3bc396
AD
6396 on left: 0
6397exp (9)
6398 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6399@end example
6400
6401@noindent
6402@cindex item
6403@cindex pointed rule
6404@cindex rule, pointed
6405Bison then proceeds onto the automaton itself, describing each state
6406with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6407item is a production rule together with a point (marked by @samp{.})
6408that the input cursor.
6409
6410@example
6411state 0
6412
88bce5a2 6413 $accept -> . exp $ (rule 0)
ec3bc396 6414
2a8d363a 6415 NUM shift, and go to state 1
ec3bc396 6416
2a8d363a 6417 exp go to state 2
ec3bc396
AD
6418@end example
6419
6420This reads as follows: ``state 0 corresponds to being at the very
6421beginning of the parsing, in the initial rule, right before the start
6422symbol (here, @code{exp}). When the parser returns to this state right
6423after having reduced a rule that produced an @code{exp}, the control
6424flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6425symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6426the parse stack, and the control flow jumps to state 1. Any other
742e4900 6427lookahead triggers a syntax error.''
ec3bc396
AD
6428
6429@cindex core, item set
6430@cindex item set core
6431@cindex kernel, item set
6432@cindex item set core
6433Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6434report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6435at the beginning of any rule deriving an @code{exp}. By default Bison
6436reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6437you want to see more detail you can invoke @command{bison} with
6438@option{--report=itemset} to list all the items, include those that can
6439be derived:
6440
6441@example
6442state 0
6443
88bce5a2 6444 $accept -> . exp $ (rule 0)
ec3bc396
AD
6445 exp -> . exp '+' exp (rule 1)
6446 exp -> . exp '-' exp (rule 2)
6447 exp -> . exp '*' exp (rule 3)
6448 exp -> . exp '/' exp (rule 4)
6449 exp -> . NUM (rule 5)
6450
6451 NUM shift, and go to state 1
6452
6453 exp go to state 2
6454@end example
6455
6456@noindent
6457In the state 1...
6458
6459@example
6460state 1
6461
6462 exp -> NUM . (rule 5)
6463
2a8d363a 6464 $default reduce using rule 5 (exp)
ec3bc396
AD
6465@end example
6466
6467@noindent
742e4900 6468the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6469(@samp{$default}), the parser will reduce it. If it was coming from
6470state 0, then, after this reduction it will return to state 0, and will
6471jump to state 2 (@samp{exp: go to state 2}).
6472
6473@example
6474state 2
6475
88bce5a2 6476 $accept -> exp . $ (rule 0)
ec3bc396
AD
6477 exp -> exp . '+' exp (rule 1)
6478 exp -> exp . '-' exp (rule 2)
6479 exp -> exp . '*' exp (rule 3)
6480 exp -> exp . '/' exp (rule 4)
6481
2a8d363a
AD
6482 $ shift, and go to state 3
6483 '+' shift, and go to state 4
6484 '-' shift, and go to state 5
6485 '*' shift, and go to state 6
6486 '/' shift, and go to state 7
ec3bc396
AD
6487@end example
6488
6489@noindent
6490In state 2, the automaton can only shift a symbol. For instance,
742e4900 6491because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6492@samp{+}, it will be shifted on the parse stack, and the automaton
6493control will jump to state 4, corresponding to the item @samp{exp -> exp
6494'+' . exp}. Since there is no default action, any other token than
6e649e65 6495those listed above will trigger a syntax error.
ec3bc396
AD
6496
6497The state 3 is named the @dfn{final state}, or the @dfn{accepting
6498state}:
6499
6500@example
6501state 3
6502
88bce5a2 6503 $accept -> exp $ . (rule 0)
ec3bc396 6504
2a8d363a 6505 $default accept
ec3bc396
AD
6506@end example
6507
6508@noindent
6509the initial rule is completed (the start symbol and the end
6510of input were read), the parsing exits successfully.
6511
6512The interpretation of states 4 to 7 is straightforward, and is left to
6513the reader.
6514
6515@example
6516state 4
6517
6518 exp -> exp '+' . exp (rule 1)
6519
2a8d363a 6520 NUM shift, and go to state 1
ec3bc396 6521
2a8d363a 6522 exp go to state 8
ec3bc396
AD
6523
6524state 5
6525
6526 exp -> exp '-' . exp (rule 2)
6527
2a8d363a 6528 NUM shift, and go to state 1
ec3bc396 6529
2a8d363a 6530 exp go to state 9
ec3bc396
AD
6531
6532state 6
6533
6534 exp -> exp '*' . exp (rule 3)
6535
2a8d363a 6536 NUM shift, and go to state 1
ec3bc396 6537
2a8d363a 6538 exp go to state 10
ec3bc396
AD
6539
6540state 7
6541
6542 exp -> exp '/' . exp (rule 4)
6543
2a8d363a 6544 NUM shift, and go to state 1
ec3bc396 6545
2a8d363a 6546 exp go to state 11
ec3bc396
AD
6547@end example
6548
5a99098d
PE
6549As was announced in beginning of the report, @samp{State 8 conflicts:
65501 shift/reduce}:
ec3bc396
AD
6551
6552@example
6553state 8
6554
6555 exp -> exp . '+' exp (rule 1)
6556 exp -> exp '+' exp . (rule 1)
6557 exp -> exp . '-' exp (rule 2)
6558 exp -> exp . '*' exp (rule 3)
6559 exp -> exp . '/' exp (rule 4)
6560
2a8d363a
AD
6561 '*' shift, and go to state 6
6562 '/' shift, and go to state 7
ec3bc396 6563
2a8d363a
AD
6564 '/' [reduce using rule 1 (exp)]
6565 $default reduce using rule 1 (exp)
ec3bc396
AD
6566@end example
6567
742e4900 6568Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6569either shifting (and going to state 7), or reducing rule 1. The
6570conflict means that either the grammar is ambiguous, or the parser lacks
6571information to make the right decision. Indeed the grammar is
6572ambiguous, as, since we did not specify the precedence of @samp{/}, the
6573sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6574NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6575NUM}, which corresponds to reducing rule 1.
6576
c827f760 6577Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6578arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6579Shift/Reduce Conflicts}. Discarded actions are reported in between
6580square brackets.
6581
6582Note that all the previous states had a single possible action: either
6583shifting the next token and going to the corresponding state, or
6584reducing a single rule. In the other cases, i.e., when shifting
6585@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6586possible, the lookahead is required to select the action. State 8 is
6587one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6588is shifting, otherwise the action is reducing rule 1. In other words,
6589the first two items, corresponding to rule 1, are not eligible when the
742e4900 6590lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6591precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6592with some set of possible lookahead tokens. When run with
6593@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6594
6595@example
6596state 8
6597
6598 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6599 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6600 exp -> exp . '-' exp (rule 2)
6601 exp -> exp . '*' exp (rule 3)
6602 exp -> exp . '/' exp (rule 4)
6603
6604 '*' shift, and go to state 6
6605 '/' shift, and go to state 7
6606
6607 '/' [reduce using rule 1 (exp)]
6608 $default reduce using rule 1 (exp)
6609@end example
6610
6611The remaining states are similar:
6612
6613@example
6614state 9
6615
6616 exp -> exp . '+' exp (rule 1)
6617 exp -> exp . '-' exp (rule 2)
6618 exp -> exp '-' exp . (rule 2)
6619 exp -> exp . '*' exp (rule 3)
6620 exp -> exp . '/' exp (rule 4)
6621
2a8d363a
AD
6622 '*' shift, and go to state 6
6623 '/' shift, and go to state 7
ec3bc396 6624
2a8d363a
AD
6625 '/' [reduce using rule 2 (exp)]
6626 $default reduce using rule 2 (exp)
ec3bc396
AD
6627
6628state 10
6629
6630 exp -> exp . '+' exp (rule 1)
6631 exp -> exp . '-' exp (rule 2)
6632 exp -> exp . '*' exp (rule 3)
6633 exp -> exp '*' exp . (rule 3)
6634 exp -> exp . '/' exp (rule 4)
6635
2a8d363a 6636 '/' shift, and go to state 7
ec3bc396 6637
2a8d363a
AD
6638 '/' [reduce using rule 3 (exp)]
6639 $default reduce using rule 3 (exp)
ec3bc396
AD
6640
6641state 11
6642
6643 exp -> exp . '+' exp (rule 1)
6644 exp -> exp . '-' exp (rule 2)
6645 exp -> exp . '*' exp (rule 3)
6646 exp -> exp . '/' exp (rule 4)
6647 exp -> exp '/' exp . (rule 4)
6648
2a8d363a
AD
6649 '+' shift, and go to state 4
6650 '-' shift, and go to state 5
6651 '*' shift, and go to state 6
6652 '/' shift, and go to state 7
ec3bc396 6653
2a8d363a
AD
6654 '+' [reduce using rule 4 (exp)]
6655 '-' [reduce using rule 4 (exp)]
6656 '*' [reduce using rule 4 (exp)]
6657 '/' [reduce using rule 4 (exp)]
6658 $default reduce using rule 4 (exp)
ec3bc396
AD
6659@end example
6660
6661@noindent
fa7e68c3
PE
6662Observe that state 11 contains conflicts not only due to the lack of
6663precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6664@samp{*}, but also because the
ec3bc396
AD
6665associativity of @samp{/} is not specified.
6666
6667
6668@node Tracing
6669@section Tracing Your Parser
bfa74976
RS
6670@findex yydebug
6671@cindex debugging
6672@cindex tracing the parser
6673
6674If a Bison grammar compiles properly but doesn't do what you want when it
6675runs, the @code{yydebug} parser-trace feature can help you figure out why.
6676
3ded9a63
AD
6677There are several means to enable compilation of trace facilities:
6678
6679@table @asis
6680@item the macro @code{YYDEBUG}
6681@findex YYDEBUG
6682Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6683parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6684@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6685YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6686Prologue}).
6687
6688@item the option @option{-t}, @option{--debug}
6689Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6690,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6691
6692@item the directive @samp{%debug}
6693@findex %debug
6694Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6695Declaration Summary}). This is a Bison extension, which will prove
6696useful when Bison will output parsers for languages that don't use a
c827f760
PE
6697preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6698you, this is
3ded9a63
AD
6699the preferred solution.
6700@end table
6701
6702We suggest that you always enable the debug option so that debugging is
6703always possible.
bfa74976 6704
02a81e05 6705The trace facility outputs messages with macro calls of the form
e2742e46 6706@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6707@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6708arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6709define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6710and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6711
6712Once you have compiled the program with trace facilities, the way to
6713request a trace is to store a nonzero value in the variable @code{yydebug}.
6714You can do this by making the C code do it (in @code{main}, perhaps), or
6715you can alter the value with a C debugger.
6716
6717Each step taken by the parser when @code{yydebug} is nonzero produces a
6718line or two of trace information, written on @code{stderr}. The trace
6719messages tell you these things:
6720
6721@itemize @bullet
6722@item
6723Each time the parser calls @code{yylex}, what kind of token was read.
6724
6725@item
6726Each time a token is shifted, the depth and complete contents of the
6727state stack (@pxref{Parser States}).
6728
6729@item
6730Each time a rule is reduced, which rule it is, and the complete contents
6731of the state stack afterward.
6732@end itemize
6733
6734To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6735produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6736Bison}). This file shows the meaning of each state in terms of
6737positions in various rules, and also what each state will do with each
6738possible input token. As you read the successive trace messages, you
6739can see that the parser is functioning according to its specification in
6740the listing file. Eventually you will arrive at the place where
6741something undesirable happens, and you will see which parts of the
6742grammar are to blame.
bfa74976
RS
6743
6744The parser file is a C program and you can use C debuggers on it, but it's
6745not easy to interpret what it is doing. The parser function is a
6746finite-state machine interpreter, and aside from the actions it executes
6747the same code over and over. Only the values of variables show where in
6748the grammar it is working.
6749
6750@findex YYPRINT
6751The debugging information normally gives the token type of each token
6752read, but not its semantic value. You can optionally define a macro
6753named @code{YYPRINT} to provide a way to print the value. If you define
6754@code{YYPRINT}, it should take three arguments. The parser will pass a
6755standard I/O stream, the numeric code for the token type, and the token
6756value (from @code{yylval}).
6757
6758Here is an example of @code{YYPRINT} suitable for the multi-function
6759calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6760
6761@smallexample
38a92d50
PE
6762%@{
6763 static void print_token_value (FILE *, int, YYSTYPE);
6764 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6765%@}
6766
6767@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6768
6769static void
831d3c99 6770print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6771@{
6772 if (type == VAR)
d3c4e709 6773 fprintf (file, "%s", value.tptr->name);
bfa74976 6774 else if (type == NUM)
d3c4e709 6775 fprintf (file, "%d", value.val);
bfa74976
RS
6776@}
6777@end smallexample
6778
ec3bc396
AD
6779@c ================================================= Invoking Bison
6780
342b8b6e 6781@node Invocation
bfa74976
RS
6782@chapter Invoking Bison
6783@cindex invoking Bison
6784@cindex Bison invocation
6785@cindex options for invoking Bison
6786
6787The usual way to invoke Bison is as follows:
6788
6789@example
6790bison @var{infile}
6791@end example
6792
6793Here @var{infile} is the grammar file name, which usually ends in
6794@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6795with @samp{.tab.c} and removing any leading directory. Thus, the
6796@samp{bison foo.y} file name yields
6797@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6798@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6799C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6800or @file{foo.y++}. Then, the output files will take an extension like
6801the given one as input (respectively @file{foo.tab.cpp} and
6802@file{foo.tab.c++}).
fa4d969f 6803This feature takes effect with all options that manipulate file names like
234a3be3
AD
6804@samp{-o} or @samp{-d}.
6805
6806For example :
6807
6808@example
6809bison -d @var{infile.yxx}
6810@end example
84163231 6811@noindent
72d2299c 6812will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6813
6814@example
b56471a6 6815bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6816@end example
84163231 6817@noindent
234a3be3
AD
6818will produce @file{output.c++} and @file{outfile.h++}.
6819
397ec073
PE
6820For compatibility with @acronym{POSIX}, the standard Bison
6821distribution also contains a shell script called @command{yacc} that
6822invokes Bison with the @option{-y} option.
6823
bfa74976 6824@menu
13863333 6825* Bison Options:: All the options described in detail,
c827f760 6826 in alphabetical order by short options.
bfa74976 6827* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6828* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6829@end menu
6830
342b8b6e 6831@node Bison Options
bfa74976
RS
6832@section Bison Options
6833
6834Bison supports both traditional single-letter options and mnemonic long
6835option names. Long option names are indicated with @samp{--} instead of
6836@samp{-}. Abbreviations for option names are allowed as long as they
6837are unique. When a long option takes an argument, like
6838@samp{--file-prefix}, connect the option name and the argument with
6839@samp{=}.
6840
6841Here is a list of options that can be used with Bison, alphabetized by
6842short option. It is followed by a cross key alphabetized by long
6843option.
6844
89cab50d
AD
6845@c Please, keep this ordered as in `bison --help'.
6846@noindent
6847Operations modes:
6848@table @option
6849@item -h
6850@itemx --help
6851Print a summary of the command-line options to Bison and exit.
bfa74976 6852
89cab50d
AD
6853@item -V
6854@itemx --version
6855Print the version number of Bison and exit.
bfa74976 6856
f7ab6a50
PE
6857@item --print-localedir
6858Print the name of the directory containing locale-dependent data.
6859
89cab50d
AD
6860@item -y
6861@itemx --yacc
54662697
PE
6862Act more like the traditional Yacc command. This can cause
6863different diagnostics to be generated, and may change behavior in
6864other minor ways. Most importantly, imitate Yacc's output
6865file name conventions, so that the parser output file is called
89cab50d 6866@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
6867@file{y.tab.h}.
6868Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
6869statements in addition to an @code{enum} to associate token numbers with token
6870names.
6871Thus, the following shell script can substitute for Yacc, and the Bison
6872distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 6873
89cab50d 6874@example
397ec073 6875#! /bin/sh
26e06a21 6876bison -y "$@@"
89cab50d 6877@end example
54662697
PE
6878
6879The @option{-y}/@option{--yacc} option is intended for use with
6880traditional Yacc grammars. If your grammar uses a Bison extension
6881like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6882this option is specified.
6883
89cab50d
AD
6884@end table
6885
6886@noindent
6887Tuning the parser:
6888
6889@table @option
cd5bd6ac
AD
6890@item -S @var{file}
6891@itemx --skeleton=@var{file}
6892Specify the skeleton to use. You probably don't need this option unless
6893you are developing Bison.
6894
89cab50d
AD
6895@item -t
6896@itemx --debug
4947ebdb
PE
6897In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6898already defined, so that the debugging facilities are compiled.
ec3bc396 6899@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6900
6901@item --locations
d8988b2f 6902Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6903
6904@item -p @var{prefix}
6905@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6906Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6907@xref{Decl Summary}.
bfa74976
RS
6908
6909@item -l
6910@itemx --no-lines
6911Don't put any @code{#line} preprocessor commands in the parser file.
6912Ordinarily Bison puts them in the parser file so that the C compiler
6913and debuggers will associate errors with your source file, the
6914grammar file. This option causes them to associate errors with the
95e742f7 6915parser file, treating it as an independent source file in its own right.
bfa74976 6916
931c7513
RS
6917@item -n
6918@itemx --no-parser
d8988b2f 6919Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6920
89cab50d
AD
6921@item -k
6922@itemx --token-table
d8988b2f 6923Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6924@end table
bfa74976 6925
89cab50d
AD
6926@noindent
6927Adjust the output:
bfa74976 6928
89cab50d
AD
6929@table @option
6930@item -d
d8988b2f
AD
6931@itemx --defines
6932Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6933file containing macro definitions for the token type names defined in
4bfd5e4e 6934the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6935
342b8b6e 6936@item --defines=@var{defines-file}
d8988b2f 6937Same as above, but save in the file @var{defines-file}.
342b8b6e 6938
89cab50d
AD
6939@item -b @var{file-prefix}
6940@itemx --file-prefix=@var{prefix}
aa08666d 6941Pretend that @code{%file-prefix} was specified, i.e, specify prefix to use
72d2299c 6942for all Bison output file names. @xref{Decl Summary}.
bfa74976 6943
ec3bc396
AD
6944@item -r @var{things}
6945@itemx --report=@var{things}
6946Write an extra output file containing verbose description of the comma
6947separated list of @var{things} among:
6948
6949@table @code
6950@item state
6951Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6952@acronym{LALR} automaton.
ec3bc396 6953
742e4900 6954@item lookahead
ec3bc396 6955Implies @code{state} and augments the description of the automaton with
742e4900 6956each rule's lookahead set.
ec3bc396
AD
6957
6958@item itemset
6959Implies @code{state} and augments the description of the automaton with
6960the full set of items for each state, instead of its core only.
6961@end table
6962
bfa74976
RS
6963@item -v
6964@itemx --verbose
6deb4447
AD
6965Pretend that @code{%verbose} was specified, i.e, write an extra output
6966file containing verbose descriptions of the grammar and
72d2299c 6967parser. @xref{Decl Summary}.
bfa74976 6968
fa4d969f
PE
6969@item -o @var{file}
6970@itemx --output=@var{file}
6971Specify the @var{file} for the parser file.
bfa74976 6972
fa4d969f 6973The other output files' names are constructed from @var{file} as
d8988b2f 6974described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6975
6976@item -g
c827f760
PE
6977Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6978automaton computed by Bison. If the grammar file is @file{foo.y}, the
6979@acronym{VCG} output file will
342b8b6e
AD
6980be @file{foo.vcg}.
6981
6982@item --graph=@var{graph-file}
72d2299c
PE
6983The behavior of @var{--graph} is the same than @samp{-g}. The only
6984difference is that it has an optional argument which is the name of
fa4d969f 6985the output graph file.
bfa74976
RS
6986@end table
6987
342b8b6e 6988@node Option Cross Key
bfa74976
RS
6989@section Option Cross Key
6990
aa08666d 6991@c FIXME: How about putting the directives too?
bfa74976
RS
6992Here is a list of options, alphabetized by long option, to help you find
6993the corresponding short option.
6994
aa08666d
AD
6995@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
6996@headitem Long Option @tab Short Option
6997@item @option{--debug} @tab @option{-t}
6998@item @option{--defines=@var{defines-file}} @tab @option{-d}
6999@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7000@item @option{--graph=@var{graph-file}} @tab @option{-d}
7001@item @option{--help} @tab @option{-h}
7002@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7003@item @option{--no-lines} @tab @option{-l}
7004@item @option{--no-parser} @tab @option{-n}
7005@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7006@item @option{--print-localedir} @tab
7007@item @option{--token-table} @tab @option{-k}
7008@item @option{--verbose} @tab @option{-v}
7009@item @option{--version} @tab @option{-V}
7010@item @option{--yacc} @tab @option{-y}
7011@end multitable
bfa74976 7012
93dd49ab
PE
7013@node Yacc Library
7014@section Yacc Library
7015
7016The Yacc library contains default implementations of the
7017@code{yyerror} and @code{main} functions. These default
7018implementations are normally not useful, but @acronym{POSIX} requires
7019them. To use the Yacc library, link your program with the
7020@option{-ly} option. Note that Bison's implementation of the Yacc
7021library is distributed under the terms of the @acronym{GNU} General
7022Public License (@pxref{Copying}).
7023
7024If you use the Yacc library's @code{yyerror} function, you should
7025declare @code{yyerror} as follows:
7026
7027@example
7028int yyerror (char const *);
7029@end example
7030
7031Bison ignores the @code{int} value returned by this @code{yyerror}.
7032If you use the Yacc library's @code{main} function, your
7033@code{yyparse} function should have the following type signature:
7034
7035@example
7036int yyparse (void);
7037@end example
7038
12545799
AD
7039@c ================================================= C++ Bison
7040
7041@node C++ Language Interface
7042@chapter C++ Language Interface
7043
7044@menu
7045* C++ Parsers:: The interface to generate C++ parser classes
7046* A Complete C++ Example:: Demonstrating their use
7047@end menu
7048
7049@node C++ Parsers
7050@section C++ Parsers
7051
7052@menu
7053* C++ Bison Interface:: Asking for C++ parser generation
7054* C++ Semantic Values:: %union vs. C++
7055* C++ Location Values:: The position and location classes
7056* C++ Parser Interface:: Instantiating and running the parser
7057* C++ Scanner Interface:: Exchanges between yylex and parse
7058@end menu
7059
7060@node C++ Bison Interface
7061@subsection C++ Bison Interface
7062@c - %skeleton "lalr1.cc"
7063@c - Always pure
7064@c - initial action
7065
aa08666d
AD
7066The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7067select it, you may either pass the option @option{--skeleton=lalr1.cc}
7068to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7069grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7070entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7071directive to change the namespace name, see @ref{Decl Summary}. The
7072various classes are generated in the following files:
7073
12545799
AD
7074@table @file
7075@item position.hh
7076@itemx location.hh
7077The definition of the classes @code{position} and @code{location},
7078used for location tracking. @xref{C++ Location Values}.
7079
7080@item stack.hh
7081An auxiliary class @code{stack} used by the parser.
7082
fa4d969f
PE
7083@item @var{file}.hh
7084@itemx @var{file}.cc
cd8b5791
AD
7085(Assuming the extension of the input file was @samp{.yy}.) The
7086declaration and implementation of the C++ parser class. The basename
7087and extension of these two files follow the same rules as with regular C
7088parsers (@pxref{Invocation}).
12545799 7089
cd8b5791
AD
7090The header is @emph{mandatory}; you must either pass
7091@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7092@samp{%defines} directive.
7093@end table
7094
7095All these files are documented using Doxygen; run @command{doxygen}
7096for a complete and accurate documentation.
7097
7098@node C++ Semantic Values
7099@subsection C++ Semantic Values
7100@c - No objects in unions
7101@c - YSTYPE
7102@c - Printer and destructor
7103
7104The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7105Collection of Value Types}. In particular it produces a genuine
7106@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7107within pseudo-unions (similar to Boost variants) might be implemented to
7108alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7109@itemize @minus
7110@item
fb9712a9
AD
7111The type @code{YYSTYPE} is defined but its use is discouraged: rather
7112you should refer to the parser's encapsulated type
7113@code{yy::parser::semantic_type}.
12545799
AD
7114@item
7115Non POD (Plain Old Data) types cannot be used. C++ forbids any
7116instance of classes with constructors in unions: only @emph{pointers}
7117to such objects are allowed.
7118@end itemize
7119
7120Because objects have to be stored via pointers, memory is not
7121reclaimed automatically: using the @code{%destructor} directive is the
7122only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7123Symbols}.
7124
7125
7126@node C++ Location Values
7127@subsection C++ Location Values
7128@c - %locations
7129@c - class Position
7130@c - class Location
b47dbebe 7131@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7132
7133When the directive @code{%locations} is used, the C++ parser supports
7134location tracking, see @ref{Locations, , Locations Overview}. Two
7135auxiliary classes define a @code{position}, a single point in a file,
7136and a @code{location}, a range composed of a pair of
7137@code{position}s (possibly spanning several files).
7138
fa4d969f 7139@deftypemethod {position} {std::string*} file
12545799
AD
7140The name of the file. It will always be handled as a pointer, the
7141parser will never duplicate nor deallocate it. As an experimental
7142feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7143"filename_type" "@var{type}"}.
12545799
AD
7144@end deftypemethod
7145
7146@deftypemethod {position} {unsigned int} line
7147The line, starting at 1.
7148@end deftypemethod
7149
7150@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7151Advance by @var{height} lines, resetting the column number.
7152@end deftypemethod
7153
7154@deftypemethod {position} {unsigned int} column
7155The column, starting at 0.
7156@end deftypemethod
7157
7158@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7159Advance by @var{width} columns, without changing the line number.
7160@end deftypemethod
7161
7162@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7163@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7164@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7165@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7166Various forms of syntactic sugar for @code{columns}.
7167@end deftypemethod
7168
7169@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7170Report @var{p} on @var{o} like this:
fa4d969f
PE
7171@samp{@var{file}:@var{line}.@var{column}}, or
7172@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7173@end deftypemethod
7174
7175@deftypemethod {location} {position} begin
7176@deftypemethodx {location} {position} end
7177The first, inclusive, position of the range, and the first beyond.
7178@end deftypemethod
7179
7180@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7181@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7182Advance the @code{end} position.
7183@end deftypemethod
7184
7185@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7186@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7187@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7188Various forms of syntactic sugar.
7189@end deftypemethod
7190
7191@deftypemethod {location} {void} step ()
7192Move @code{begin} onto @code{end}.
7193@end deftypemethod
7194
7195
7196@node C++ Parser Interface
7197@subsection C++ Parser Interface
7198@c - define parser_class_name
7199@c - Ctor
7200@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7201@c debug_stream.
7202@c - Reporting errors
7203
7204The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7205declare and define the parser class in the namespace @code{yy}. The
7206class name defaults to @code{parser}, but may be changed using
7207@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7208this class is detailed below. It can be extended using the
12545799
AD
7209@code{%parse-param} feature: its semantics is slightly changed since
7210it describes an additional member of the parser class, and an
7211additional argument for its constructor.
7212
8a0adb01
AD
7213@defcv {Type} {parser} {semantic_value_type}
7214@defcvx {Type} {parser} {location_value_type}
12545799 7215The types for semantics value and locations.
8a0adb01 7216@end defcv
12545799
AD
7217
7218@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7219Build a new parser object. There are no arguments by default, unless
7220@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7221@end deftypemethod
7222
7223@deftypemethod {parser} {int} parse ()
7224Run the syntactic analysis, and return 0 on success, 1 otherwise.
7225@end deftypemethod
7226
7227@deftypemethod {parser} {std::ostream&} debug_stream ()
7228@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7229Get or set the stream used for tracing the parsing. It defaults to
7230@code{std::cerr}.
7231@end deftypemethod
7232
7233@deftypemethod {parser} {debug_level_type} debug_level ()
7234@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7235Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7236or nonzero, full tracing.
12545799
AD
7237@end deftypemethod
7238
7239@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7240The definition for this member function must be supplied by the user:
7241the parser uses it to report a parser error occurring at @var{l},
7242described by @var{m}.
7243@end deftypemethod
7244
7245
7246@node C++ Scanner Interface
7247@subsection C++ Scanner Interface
7248@c - prefix for yylex.
7249@c - Pure interface to yylex
7250@c - %lex-param
7251
7252The parser invokes the scanner by calling @code{yylex}. Contrary to C
7253parsers, C++ parsers are always pure: there is no point in using the
7254@code{%pure-parser} directive. Therefore the interface is as follows.
7255
7256@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7257Return the next token. Its type is the return value, its semantic
7258value and location being @var{yylval} and @var{yylloc}. Invocations of
7259@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7260@end deftypemethod
7261
7262
7263@node A Complete C++ Example
7264@section A Complete C++ Example
7265
7266This section demonstrates the use of a C++ parser with a simple but
7267complete example. This example should be available on your system,
7268ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7269focuses on the use of Bison, therefore the design of the various C++
7270classes is very naive: no accessors, no encapsulation of members etc.
7271We will use a Lex scanner, and more precisely, a Flex scanner, to
7272demonstrate the various interaction. A hand written scanner is
7273actually easier to interface with.
7274
7275@menu
7276* Calc++ --- C++ Calculator:: The specifications
7277* Calc++ Parsing Driver:: An active parsing context
7278* Calc++ Parser:: A parser class
7279* Calc++ Scanner:: A pure C++ Flex scanner
7280* Calc++ Top Level:: Conducting the band
7281@end menu
7282
7283@node Calc++ --- C++ Calculator
7284@subsection Calc++ --- C++ Calculator
7285
7286Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7287expression, possibly preceded by variable assignments. An
12545799
AD
7288environment containing possibly predefined variables such as
7289@code{one} and @code{two}, is exchanged with the parser. An example
7290of valid input follows.
7291
7292@example
7293three := 3
7294seven := one + two * three
7295seven * seven
7296@end example
7297
7298@node Calc++ Parsing Driver
7299@subsection Calc++ Parsing Driver
7300@c - An env
7301@c - A place to store error messages
7302@c - A place for the result
7303
7304To support a pure interface with the parser (and the scanner) the
7305technique of the ``parsing context'' is convenient: a structure
7306containing all the data to exchange. Since, in addition to simply
7307launch the parsing, there are several auxiliary tasks to execute (open
7308the file for parsing, instantiate the parser etc.), we recommend
7309transforming the simple parsing context structure into a fully blown
7310@dfn{parsing driver} class.
7311
7312The declaration of this driver class, @file{calc++-driver.hh}, is as
7313follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7314required standard library components, and the declaration of the parser
7315class.
12545799 7316
1c59e0a1 7317@comment file: calc++-driver.hh
12545799
AD
7318@example
7319#ifndef CALCXX_DRIVER_HH
7320# define CALCXX_DRIVER_HH
7321# include <string>
7322# include <map>
fb9712a9 7323# include "calc++-parser.hh"
12545799
AD
7324@end example
7325
12545799
AD
7326
7327@noindent
7328Then comes the declaration of the scanning function. Flex expects
7329the signature of @code{yylex} to be defined in the macro
7330@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7331factor both as follows.
1c59e0a1
AD
7332
7333@comment file: calc++-driver.hh
12545799
AD
7334@example
7335// Announce to Flex the prototype we want for lexing function, ...
c095d689
AD
7336# define YY_DECL \
7337 yy::calcxx_parser::token_type \
7338 yylex (yy::calcxx_parser::semantic_type* yylval, \
7339 yy::calcxx_parser::location_type* yylloc, \
7340 calcxx_driver& driver)
12545799
AD
7341// ... and declare it for the parser's sake.
7342YY_DECL;
7343@end example
7344
7345@noindent
7346The @code{calcxx_driver} class is then declared with its most obvious
7347members.
7348
1c59e0a1 7349@comment file: calc++-driver.hh
12545799
AD
7350@example
7351// Conducting the whole scanning and parsing of Calc++.
7352class calcxx_driver
7353@{
7354public:
7355 calcxx_driver ();
7356 virtual ~calcxx_driver ();
7357
7358 std::map<std::string, int> variables;
7359
7360 int result;
7361@end example
7362
7363@noindent
7364To encapsulate the coordination with the Flex scanner, it is useful to
7365have two members function to open and close the scanning phase.
7366members.
7367
1c59e0a1 7368@comment file: calc++-driver.hh
12545799
AD
7369@example
7370 // Handling the scanner.
7371 void scan_begin ();
7372 void scan_end ();
7373 bool trace_scanning;
7374@end example
7375
7376@noindent
7377Similarly for the parser itself.
7378
1c59e0a1 7379@comment file: calc++-driver.hh
12545799
AD
7380@example
7381 // Handling the parser.
7382 void parse (const std::string& f);
7383 std::string file;
7384 bool trace_parsing;
7385@end example
7386
7387@noindent
7388To demonstrate pure handling of parse errors, instead of simply
7389dumping them on the standard error output, we will pass them to the
7390compiler driver using the following two member functions. Finally, we
7391close the class declaration and CPP guard.
7392
1c59e0a1 7393@comment file: calc++-driver.hh
12545799
AD
7394@example
7395 // Error handling.
7396 void error (const yy::location& l, const std::string& m);
7397 void error (const std::string& m);
7398@};
7399#endif // ! CALCXX_DRIVER_HH
7400@end example
7401
7402The implementation of the driver is straightforward. The @code{parse}
7403member function deserves some attention. The @code{error} functions
7404are simple stubs, they should actually register the located error
7405messages and set error state.
7406
1c59e0a1 7407@comment file: calc++-driver.cc
12545799
AD
7408@example
7409#include "calc++-driver.hh"
7410#include "calc++-parser.hh"
7411
7412calcxx_driver::calcxx_driver ()
7413 : trace_scanning (false), trace_parsing (false)
7414@{
7415 variables["one"] = 1;
7416 variables["two"] = 2;
7417@}
7418
7419calcxx_driver::~calcxx_driver ()
7420@{
7421@}
7422
7423void
7424calcxx_driver::parse (const std::string &f)
7425@{
7426 file = f;
7427 scan_begin ();
7428 yy::calcxx_parser parser (*this);
7429 parser.set_debug_level (trace_parsing);
7430 parser.parse ();
7431 scan_end ();
7432@}
7433
7434void
7435calcxx_driver::error (const yy::location& l, const std::string& m)
7436@{
7437 std::cerr << l << ": " << m << std::endl;
7438@}
7439
7440void
7441calcxx_driver::error (const std::string& m)
7442@{
7443 std::cerr << m << std::endl;
7444@}
7445@end example
7446
7447@node Calc++ Parser
7448@subsection Calc++ Parser
7449
b50d2359
AD
7450The parser definition file @file{calc++-parser.yy} starts by asking for
7451the C++ LALR(1) skeleton, the creation of the parser header file, and
7452specifies the name of the parser class. Because the C++ skeleton
7453changed several times, it is safer to require the version you designed
7454the grammar for.
1c59e0a1
AD
7455
7456@comment file: calc++-parser.yy
12545799
AD
7457@example
7458%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7459%require "2.1a"
12545799 7460%defines
fb9712a9
AD
7461%define "parser_class_name" "calcxx_parser"
7462@end example
7463
7464@noindent
9bc0dd67 7465@findex %before-definitions
fb9712a9
AD
7466Then come the declarations/inclusions needed to define the
7467@code{%union}. Because the parser uses the parsing driver and
7468reciprocally, both cannot include the header of the other. Because the
7469driver's header needs detailed knowledge about the parser class (in
7470particular its inner types), it is the parser's header which will simply
7471use a forward declaration of the driver.
9bc0dd67 7472@xref{Table of Symbols, ,%before-definitions}.
fb9712a9
AD
7473
7474@comment file: calc++-parser.yy
7475@example
9bc0dd67 7476%before-definitions @{
12545799 7477# include <string>
fb9712a9 7478class calcxx_driver;
9bc0dd67 7479@}
12545799
AD
7480@end example
7481
7482@noindent
7483The driver is passed by reference to the parser and to the scanner.
7484This provides a simple but effective pure interface, not relying on
7485global variables.
7486
1c59e0a1 7487@comment file: calc++-parser.yy
12545799
AD
7488@example
7489// The parsing context.
7490%parse-param @{ calcxx_driver& driver @}
7491%lex-param @{ calcxx_driver& driver @}
7492@end example
7493
7494@noindent
7495Then we request the location tracking feature, and initialize the
7496first location's file name. Afterwards new locations are computed
7497relatively to the previous locations: the file name will be
7498automatically propagated.
7499
1c59e0a1 7500@comment file: calc++-parser.yy
12545799
AD
7501@example
7502%locations
7503%initial-action
7504@{
7505 // Initialize the initial location.
b47dbebe 7506 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7507@};
7508@end example
7509
7510@noindent
7511Use the two following directives to enable parser tracing and verbose
7512error messages.
7513
1c59e0a1 7514@comment file: calc++-parser.yy
12545799
AD
7515@example
7516%debug
7517%error-verbose
7518@end example
7519
7520@noindent
7521Semantic values cannot use ``real'' objects, but only pointers to
7522them.
7523
1c59e0a1 7524@comment file: calc++-parser.yy
12545799
AD
7525@example
7526// Symbols.
7527%union
7528@{
7529 int ival;
7530 std::string *sval;
7531@};
7532@end example
7533
fb9712a9
AD
7534@noindent
7535The code between @samp{%@{} and @samp{%@}} after the introduction of the
7536@samp{%union} is output in the @file{*.cc} file; it needs detailed
7537knowledge about the driver.
7538
7539@comment file: calc++-parser.yy
7540@example
7541%@{
7542# include "calc++-driver.hh"
7543%@}
7544@end example
7545
7546
12545799
AD
7547@noindent
7548The token numbered as 0 corresponds to end of file; the following line
7549allows for nicer error messages referring to ``end of file'' instead
7550of ``$end''. Similarly user friendly named are provided for each
7551symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7552avoid name clashes.
7553
1c59e0a1 7554@comment file: calc++-parser.yy
12545799 7555@example
fb9712a9
AD
7556%token END 0 "end of file"
7557%token ASSIGN ":="
7558%token <sval> IDENTIFIER "identifier"
7559%token <ival> NUMBER "number"
7560%type <ival> exp "expression"
12545799
AD
7561@end example
7562
7563@noindent
7564To enable memory deallocation during error recovery, use
7565@code{%destructor}.
7566
287c78f6 7567@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7568@comment file: calc++-parser.yy
12545799
AD
7569@example
7570%printer @{ debug_stream () << *$$; @} "identifier"
7571%destructor @{ delete $$; @} "identifier"
7572
7573%printer @{ debug_stream () << $$; @} "number" "expression"
7574@end example
7575
7576@noindent
7577The grammar itself is straightforward.
7578
1c59e0a1 7579@comment file: calc++-parser.yy
12545799
AD
7580@example
7581%%
7582%start unit;
7583unit: assignments exp @{ driver.result = $2; @};
7584
7585assignments: assignments assignment @{@}
9d9b8b70 7586 | /* Nothing. */ @{@};
12545799 7587
fb9712a9 7588assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7589
7590%left '+' '-';
7591%left '*' '/';
7592exp: exp '+' exp @{ $$ = $1 + $3; @}
7593 | exp '-' exp @{ $$ = $1 - $3; @}
7594 | exp '*' exp @{ $$ = $1 * $3; @}
7595 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7596 | "identifier" @{ $$ = driver.variables[*$1]; @}
7597 | "number" @{ $$ = $1; @};
12545799
AD
7598%%
7599@end example
7600
7601@noindent
7602Finally the @code{error} member function registers the errors to the
7603driver.
7604
1c59e0a1 7605@comment file: calc++-parser.yy
12545799
AD
7606@example
7607void
1c59e0a1
AD
7608yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7609 const std::string& m)
12545799
AD
7610@{
7611 driver.error (l, m);
7612@}
7613@end example
7614
7615@node Calc++ Scanner
7616@subsection Calc++ Scanner
7617
7618The Flex scanner first includes the driver declaration, then the
7619parser's to get the set of defined tokens.
7620
1c59e0a1 7621@comment file: calc++-scanner.ll
12545799
AD
7622@example
7623%@{ /* -*- C++ -*- */
04098407
PE
7624# include <cstdlib>
7625# include <errno.h>
7626# include <limits.h>
12545799
AD
7627# include <string>
7628# include "calc++-driver.hh"
7629# include "calc++-parser.hh"
eaea13f5
PE
7630
7631/* Work around an incompatibility in flex (at least versions
7632 2.5.31 through 2.5.33): it generates code that does
7633 not conform to C89. See Debian bug 333231
7634 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7635# undef yywrap
7636# define yywrap() 1
eaea13f5 7637
c095d689
AD
7638/* By default yylex returns int, we use token_type.
7639 Unfortunately yyterminate by default returns 0, which is
7640 not of token_type. */
8c5b881d 7641#define yyterminate() return token::END
12545799
AD
7642%@}
7643@end example
7644
7645@noindent
7646Because there is no @code{#include}-like feature we don't need
7647@code{yywrap}, we don't need @code{unput} either, and we parse an
7648actual file, this is not an interactive session with the user.
7649Finally we enable the scanner tracing features.
7650
1c59e0a1 7651@comment file: calc++-scanner.ll
12545799
AD
7652@example
7653%option noyywrap nounput batch debug
7654@end example
7655
7656@noindent
7657Abbreviations allow for more readable rules.
7658
1c59e0a1 7659@comment file: calc++-scanner.ll
12545799
AD
7660@example
7661id [a-zA-Z][a-zA-Z_0-9]*
7662int [0-9]+
7663blank [ \t]
7664@end example
7665
7666@noindent
9d9b8b70 7667The following paragraph suffices to track locations accurately. Each
12545799
AD
7668time @code{yylex} is invoked, the begin position is moved onto the end
7669position. Then when a pattern is matched, the end position is
7670advanced of its width. In case it matched ends of lines, the end
7671cursor is adjusted, and each time blanks are matched, the begin cursor
7672is moved onto the end cursor to effectively ignore the blanks
7673preceding tokens. Comments would be treated equally.
7674
1c59e0a1 7675@comment file: calc++-scanner.ll
12545799 7676@example
828c373b
AD
7677%@{
7678# define YY_USER_ACTION yylloc->columns (yyleng);
7679%@}
12545799
AD
7680%%
7681%@{
7682 yylloc->step ();
12545799
AD
7683%@}
7684@{blank@}+ yylloc->step ();
7685[\n]+ yylloc->lines (yyleng); yylloc->step ();
7686@end example
7687
7688@noindent
fb9712a9
AD
7689The rules are simple, just note the use of the driver to report errors.
7690It is convenient to use a typedef to shorten
7691@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7692@code{token::identifier} for instance.
12545799 7693
1c59e0a1 7694@comment file: calc++-scanner.ll
12545799 7695@example
fb9712a9
AD
7696%@{
7697 typedef yy::calcxx_parser::token token;
7698%@}
8c5b881d 7699 /* Convert ints to the actual type of tokens. */
c095d689 7700[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7701":=" return token::ASSIGN;
04098407
PE
7702@{int@} @{
7703 errno = 0;
7704 long n = strtol (yytext, NULL, 10);
7705 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7706 driver.error (*yylloc, "integer is out of range");
7707 yylval->ival = n;
fb9712a9 7708 return token::NUMBER;
04098407 7709@}
fb9712a9 7710@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7711. driver.error (*yylloc, "invalid character");
7712%%
7713@end example
7714
7715@noindent
7716Finally, because the scanner related driver's member function depend
7717on the scanner's data, it is simpler to implement them in this file.
7718
1c59e0a1 7719@comment file: calc++-scanner.ll
12545799
AD
7720@example
7721void
7722calcxx_driver::scan_begin ()
7723@{
7724 yy_flex_debug = trace_scanning;
7725 if (!(yyin = fopen (file.c_str (), "r")))
7726 error (std::string ("cannot open ") + file);
7727@}
7728
7729void
7730calcxx_driver::scan_end ()
7731@{
7732 fclose (yyin);
7733@}
7734@end example
7735
7736@node Calc++ Top Level
7737@subsection Calc++ Top Level
7738
7739The top level file, @file{calc++.cc}, poses no problem.
7740
1c59e0a1 7741@comment file: calc++.cc
12545799
AD
7742@example
7743#include <iostream>
7744#include "calc++-driver.hh"
7745
7746int
fa4d969f 7747main (int argc, char *argv[])
12545799
AD
7748@{
7749 calcxx_driver driver;
7750 for (++argv; argv[0]; ++argv)
7751 if (*argv == std::string ("-p"))
7752 driver.trace_parsing = true;
7753 else if (*argv == std::string ("-s"))
7754 driver.trace_scanning = true;
7755 else
7756 @{
7757 driver.parse (*argv);
7758 std::cout << driver.result << std::endl;
7759 @}
7760@}
7761@end example
7762
7763@c ================================================= FAQ
d1a1114f
AD
7764
7765@node FAQ
7766@chapter Frequently Asked Questions
7767@cindex frequently asked questions
7768@cindex questions
7769
7770Several questions about Bison come up occasionally. Here some of them
7771are addressed.
7772
7773@menu
55ba27be
AD
7774* Memory Exhausted:: Breaking the Stack Limits
7775* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7776* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7777* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 7778* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
7779* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7780* I can't build Bison:: Troubleshooting
7781* Where can I find help?:: Troubleshouting
7782* Bug Reports:: Troublereporting
7783* Other Languages:: Parsers in Java and others
7784* Beta Testing:: Experimenting development versions
7785* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7786@end menu
7787
1a059451
PE
7788@node Memory Exhausted
7789@section Memory Exhausted
d1a1114f
AD
7790
7791@display
1a059451 7792My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7793message. What can I do?
7794@end display
7795
7796This question is already addressed elsewhere, @xref{Recursion,
7797,Recursive Rules}.
7798
e64fec0a
PE
7799@node How Can I Reset the Parser
7800@section How Can I Reset the Parser
5b066063 7801
0e14ad77
PE
7802The following phenomenon has several symptoms, resulting in the
7803following typical questions:
5b066063
AD
7804
7805@display
7806I invoke @code{yyparse} several times, and on correct input it works
7807properly; but when a parse error is found, all the other calls fail
0e14ad77 7808too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7809@end display
7810
7811@noindent
7812or
7813
7814@display
0e14ad77 7815My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7816which case I run @code{yyparse} from @code{yyparse}. This fails
7817although I did specify I needed a @code{%pure-parser}.
7818@end display
7819
0e14ad77
PE
7820These problems typically come not from Bison itself, but from
7821Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7822speed, they might not notice a change of input file. As a
7823demonstration, consider the following source file,
7824@file{first-line.l}:
7825
7826@verbatim
7827%{
7828#include <stdio.h>
7829#include <stdlib.h>
7830%}
7831%%
7832.*\n ECHO; return 1;
7833%%
7834int
0e14ad77 7835yyparse (char const *file)
5b066063
AD
7836{
7837 yyin = fopen (file, "r");
7838 if (!yyin)
7839 exit (2);
fa7e68c3 7840 /* One token only. */
5b066063 7841 yylex ();
0e14ad77 7842 if (fclose (yyin) != 0)
5b066063
AD
7843 exit (3);
7844 return 0;
7845}
7846
7847int
0e14ad77 7848main (void)
5b066063
AD
7849{
7850 yyparse ("input");
7851 yyparse ("input");
7852 return 0;
7853}
7854@end verbatim
7855
7856@noindent
7857If the file @file{input} contains
7858
7859@verbatim
7860input:1: Hello,
7861input:2: World!
7862@end verbatim
7863
7864@noindent
0e14ad77 7865then instead of getting the first line twice, you get:
5b066063
AD
7866
7867@example
7868$ @kbd{flex -ofirst-line.c first-line.l}
7869$ @kbd{gcc -ofirst-line first-line.c -ll}
7870$ @kbd{./first-line}
7871input:1: Hello,
7872input:2: World!
7873@end example
7874
0e14ad77
PE
7875Therefore, whenever you change @code{yyin}, you must tell the
7876Lex-generated scanner to discard its current buffer and switch to the
7877new one. This depends upon your implementation of Lex; see its
7878documentation for more. For Flex, it suffices to call
7879@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7880Flex-generated scanner needs to read from several input streams to
7881handle features like include files, you might consider using Flex
7882functions like @samp{yy_switch_to_buffer} that manipulate multiple
7883input buffers.
5b066063 7884
b165c324
AD
7885If your Flex-generated scanner uses start conditions (@pxref{Start
7886conditions, , Start conditions, flex, The Flex Manual}), you might
7887also want to reset the scanner's state, i.e., go back to the initial
7888start condition, through a call to @samp{BEGIN (0)}.
7889
fef4cb51
AD
7890@node Strings are Destroyed
7891@section Strings are Destroyed
7892
7893@display
c7e441b4 7894My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7895them. Instead of reporting @samp{"foo", "bar"}, it reports
7896@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7897@end display
7898
7899This error is probably the single most frequent ``bug report'' sent to
7900Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 7901of the scanner. Consider the following Lex code:
fef4cb51
AD
7902
7903@verbatim
7904%{
7905#include <stdio.h>
7906char *yylval = NULL;
7907%}
7908%%
7909.* yylval = yytext; return 1;
7910\n /* IGNORE */
7911%%
7912int
7913main ()
7914{
fa7e68c3 7915 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7916 char *fst = (yylex (), yylval);
7917 char *snd = (yylex (), yylval);
7918 printf ("\"%s\", \"%s\"\n", fst, snd);
7919 return 0;
7920}
7921@end verbatim
7922
7923If you compile and run this code, you get:
7924
7925@example
7926$ @kbd{flex -osplit-lines.c split-lines.l}
7927$ @kbd{gcc -osplit-lines split-lines.c -ll}
7928$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7929"one
7930two", "two"
7931@end example
7932
7933@noindent
7934this is because @code{yytext} is a buffer provided for @emph{reading}
7935in the action, but if you want to keep it, you have to duplicate it
7936(e.g., using @code{strdup}). Note that the output may depend on how
7937your implementation of Lex handles @code{yytext}. For instance, when
7938given the Lex compatibility option @option{-l} (which triggers the
7939option @samp{%array}) Flex generates a different behavior:
7940
7941@example
7942$ @kbd{flex -l -osplit-lines.c split-lines.l}
7943$ @kbd{gcc -osplit-lines split-lines.c -ll}
7944$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7945"two", "two"
7946@end example
7947
7948
2fa09258
AD
7949@node Implementing Gotos/Loops
7950@section Implementing Gotos/Loops
a06ea4aa
AD
7951
7952@display
7953My simple calculator supports variables, assignments, and functions,
2fa09258 7954but how can I implement gotos, or loops?
a06ea4aa
AD
7955@end display
7956
7957Although very pedagogical, the examples included in the document blur
a1c84f45 7958the distinction to make between the parser---whose job is to recover
a06ea4aa 7959the structure of a text and to transmit it to subsequent modules of
a1c84f45 7960the program---and the processing (such as the execution) of this
a06ea4aa
AD
7961structure. This works well with so called straight line programs,
7962i.e., precisely those that have a straightforward execution model:
7963execute simple instructions one after the others.
7964
7965@cindex abstract syntax tree
7966@cindex @acronym{AST}
7967If you want a richer model, you will probably need to use the parser
7968to construct a tree that does represent the structure it has
7969recovered; this tree is usually called the @dfn{abstract syntax tree},
7970or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7971traversing it in various ways, will enable treatments such as its
7972execution or its translation, which will result in an interpreter or a
7973compiler.
7974
7975This topic is way beyond the scope of this manual, and the reader is
7976invited to consult the dedicated literature.
7977
7978
ed2e6384
AD
7979@node Multiple start-symbols
7980@section Multiple start-symbols
7981
7982@display
7983I have several closely related grammars, and I would like to share their
7984implementations. In fact, I could use a single grammar but with
7985multiple entry points.
7986@end display
7987
7988Bison does not support multiple start-symbols, but there is a very
7989simple means to simulate them. If @code{foo} and @code{bar} are the two
7990pseudo start-symbols, then introduce two new tokens, say
7991@code{START_FOO} and @code{START_BAR}, and use them as switches from the
7992real start-symbol:
7993
7994@example
7995%token START_FOO START_BAR;
7996%start start;
7997start: START_FOO foo
7998 | START_BAR bar;
7999@end example
8000
8001These tokens prevents the introduction of new conflicts. As far as the
8002parser goes, that is all that is needed.
8003
8004Now the difficult part is ensuring that the scanner will send these
8005tokens first. If your scanner is hand-written, that should be
8006straightforward. If your scanner is generated by Lex, them there is
8007simple means to do it: recall that anything between @samp{%@{ ... %@}}
8008after the first @code{%%} is copied verbatim in the top of the generated
8009@code{yylex} function. Make sure a variable @code{start_token} is
8010available in the scanner (e.g., a global variable or using
8011@code{%lex-param} etc.), and use the following:
8012
8013@example
8014 /* @r{Prologue.} */
8015%%
8016%@{
8017 if (start_token)
8018 @{
8019 int t = start_token;
8020 start_token = 0;
8021 return t;
8022 @}
8023%@}
8024 /* @r{The rules.} */
8025@end example
8026
8027
55ba27be
AD
8028@node Secure? Conform?
8029@section Secure? Conform?
8030
8031@display
8032Is Bison secure? Does it conform to POSIX?
8033@end display
8034
8035If you're looking for a guarantee or certification, we don't provide it.
8036However, Bison is intended to be a reliable program that conforms to the
8037@acronym{POSIX} specification for Yacc. If you run into problems,
8038please send us a bug report.
8039
8040@node I can't build Bison
8041@section I can't build Bison
8042
8043@display
8c5b881d
PE
8044I can't build Bison because @command{make} complains that
8045@code{msgfmt} is not found.
55ba27be
AD
8046What should I do?
8047@end display
8048
8049Like most GNU packages with internationalization support, that feature
8050is turned on by default. If you have problems building in the @file{po}
8051subdirectory, it indicates that your system's internationalization
8052support is lacking. You can re-configure Bison with
8053@option{--disable-nls} to turn off this support, or you can install GNU
8054gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8055Bison. See the file @file{ABOUT-NLS} for more information.
8056
8057
8058@node Where can I find help?
8059@section Where can I find help?
8060
8061@display
8062I'm having trouble using Bison. Where can I find help?
8063@end display
8064
8065First, read this fine manual. Beyond that, you can send mail to
8066@email{help-bison@@gnu.org}. This mailing list is intended to be
8067populated with people who are willing to answer questions about using
8068and installing Bison. Please keep in mind that (most of) the people on
8069the list have aspects of their lives which are not related to Bison (!),
8070so you may not receive an answer to your question right away. This can
8071be frustrating, but please try not to honk them off; remember that any
8072help they provide is purely voluntary and out of the kindness of their
8073hearts.
8074
8075@node Bug Reports
8076@section Bug Reports
8077
8078@display
8079I found a bug. What should I include in the bug report?
8080@end display
8081
8082Before you send a bug report, make sure you are using the latest
8083version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8084mirrors. Be sure to include the version number in your bug report. If
8085the bug is present in the latest version but not in a previous version,
8086try to determine the most recent version which did not contain the bug.
8087
8088If the bug is parser-related, you should include the smallest grammar
8089you can which demonstrates the bug. The grammar file should also be
8090complete (i.e., I should be able to run it through Bison without having
8091to edit or add anything). The smaller and simpler the grammar, the
8092easier it will be to fix the bug.
8093
8094Include information about your compilation environment, including your
8095operating system's name and version and your compiler's name and
8096version. If you have trouble compiling, you should also include a
8097transcript of the build session, starting with the invocation of
8098`configure'. Depending on the nature of the bug, you may be asked to
8099send additional files as well (such as `config.h' or `config.cache').
8100
8101Patches are most welcome, but not required. That is, do not hesitate to
8102send a bug report just because you can not provide a fix.
8103
8104Send bug reports to @email{bug-bison@@gnu.org}.
8105
8106@node Other Languages
8107@section Other Languages
8108
8109@display
8110Will Bison ever have C++ support? How about Java or @var{insert your
8111favorite language here}?
8112@end display
8113
8114C++ support is there now, and is documented. We'd love to add other
8115languages; contributions are welcome.
8116
8117@node Beta Testing
8118@section Beta Testing
8119
8120@display
8121What is involved in being a beta tester?
8122@end display
8123
8124It's not terribly involved. Basically, you would download a test
8125release, compile it, and use it to build and run a parser or two. After
8126that, you would submit either a bug report or a message saying that
8127everything is okay. It is important to report successes as well as
8128failures because test releases eventually become mainstream releases,
8129but only if they are adequately tested. If no one tests, development is
8130essentially halted.
8131
8132Beta testers are particularly needed for operating systems to which the
8133developers do not have easy access. They currently have easy access to
8134recent GNU/Linux and Solaris versions. Reports about other operating
8135systems are especially welcome.
8136
8137@node Mailing Lists
8138@section Mailing Lists
8139
8140@display
8141How do I join the help-bison and bug-bison mailing lists?
8142@end display
8143
8144See @url{http://lists.gnu.org/}.
a06ea4aa 8145
d1a1114f
AD
8146@c ================================================= Table of Symbols
8147
342b8b6e 8148@node Table of Symbols
bfa74976
RS
8149@appendix Bison Symbols
8150@cindex Bison symbols, table of
8151@cindex symbols in Bison, table of
8152
18b519c0 8153@deffn {Variable} @@$
3ded9a63 8154In an action, the location of the left-hand side of the rule.
88bce5a2 8155@xref{Locations, , Locations Overview}.
18b519c0 8156@end deffn
3ded9a63 8157
18b519c0 8158@deffn {Variable} @@@var{n}
3ded9a63
AD
8159In an action, the location of the @var{n}-th symbol of the right-hand
8160side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8161@end deffn
3ded9a63 8162
18b519c0 8163@deffn {Variable} $$
3ded9a63
AD
8164In an action, the semantic value of the left-hand side of the rule.
8165@xref{Actions}.
18b519c0 8166@end deffn
3ded9a63 8167
18b519c0 8168@deffn {Variable} $@var{n}
3ded9a63
AD
8169In an action, the semantic value of the @var{n}-th symbol of the
8170right-hand side of the rule. @xref{Actions}.
18b519c0 8171@end deffn
3ded9a63 8172
dd8d9022
AD
8173@deffn {Delimiter} %%
8174Delimiter used to separate the grammar rule section from the
8175Bison declarations section or the epilogue.
8176@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8177@end deffn
bfa74976 8178
dd8d9022
AD
8179@c Don't insert spaces, or check the DVI output.
8180@deffn {Delimiter} %@{@var{code}%@}
8181All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8182the output file uninterpreted. Such code forms the prologue of the input
8183file. @xref{Grammar Outline, ,Outline of a Bison
8184Grammar}.
18b519c0 8185@end deffn
bfa74976 8186
dd8d9022
AD
8187@deffn {Construct} /*@dots{}*/
8188Comment delimiters, as in C.
18b519c0 8189@end deffn
bfa74976 8190
dd8d9022
AD
8191@deffn {Delimiter} :
8192Separates a rule's result from its components. @xref{Rules, ,Syntax of
8193Grammar Rules}.
18b519c0 8194@end deffn
bfa74976 8195
dd8d9022
AD
8196@deffn {Delimiter} ;
8197Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8198@end deffn
bfa74976 8199
dd8d9022
AD
8200@deffn {Delimiter} |
8201Separates alternate rules for the same result nonterminal.
8202@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8203@end deffn
bfa74976 8204
dd8d9022
AD
8205@deffn {Symbol} $accept
8206The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8207$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8208Start-Symbol}. It cannot be used in the grammar.
18b519c0 8209@end deffn
bfa74976 8210
9bc0dd67
JD
8211@deffn {Directive} %after-definitions @{@var{code}@}
8212Specifies code to be inserted both into the header file (if generated;
8213@pxref{Table of Symbols, ,%defines}) and into the code file after any
8214Bison-generated definitions.
8215For details, @xref{Table of Symbols, ,%before-definitions}.
8216@end deffn
8217
8218@deffn {Directive} %before-definitions @{@var{code}@}
8219Specifies code to be inserted both into the header file (if generated;
8220@pxref{Table of Symbols, ,%defines}) and into the code file before any
8221Bison-generated definitions.
8222
8223@cindex Prologue
8224@findex %after-definitions
8225@findex %union
8226For example, in your grammar file:
8227
8228@smallexample
8229%@{
8230 /* A pre-prologue block. For Yacc portability, Bison does not put
8231 * this in the header file. In the code file, Bison inserts it
8232 * before any %before-definitions blocks. */
8233%@}
8234%before-definitions @{
8235 /* Bison inserts this into both the header file and code file. In
8236 * both files, the point of insertion is before any Bison-generated
8237 * token, semantic type, location type, and class definitions.
8238 * This is a good place to define %union dependencies, for
8239 * example. */
8240@}
8241%union @{
8242 /* The first %union, %before-definitions, or %after-definitions
8243 * in your grammar file separates the pre-prologue blocks from the
8244 * post-prologue blocks. */
8245@}
8246%after-definitions @{
8247 /* If you want something in the header file and in the code file
8248 * and it depends on any of the Bison-generated definitions in the
8249 * header file, put it here. */
8250@}
8251%@{
8252 /* A post-prologue block. If you want something in the code file
8253 * but not in the header file and it depends on Bison-generated
8254 * definitions, put it here. In the code file, Bison inserts it
8255 * after any %after-definitions blocks. */
8256%@}
8257@end smallexample
8258
8259@xref{Prologue, ,The Prologue}.
8260@end deffn
8261
8262@deffn {Directive} %debug
8263Equip the parser for debugging. @xref{Decl Summary}.
8264@end deffn
8265
18b519c0 8266@deffn {Directive} %debug
6deb4447 8267Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8268@end deffn
6deb4447 8269
91d2c560 8270@ifset defaultprec
22fccf95
PE
8271@deffn {Directive} %default-prec
8272Assign a precedence to rules that lack an explicit @samp{%prec}
8273modifier. @xref{Contextual Precedence, ,Context-Dependent
8274Precedence}.
39a06c25 8275@end deffn
91d2c560 8276@end ifset
39a06c25 8277
18b519c0 8278@deffn {Directive} %defines
6deb4447
AD
8279Bison declaration to create a header file meant for the scanner.
8280@xref{Decl Summary}.
18b519c0 8281@end deffn
6deb4447 8282
18b519c0 8283@deffn {Directive} %destructor
258b75ca 8284Specify how the parser should reclaim the memory associated to
fa7e68c3 8285discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8286@end deffn
72f889cc 8287
18b519c0 8288@deffn {Directive} %dprec
676385e2 8289Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8290time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8291@acronym{GLR} Parsers}.
18b519c0 8292@end deffn
676385e2 8293
dd8d9022
AD
8294@deffn {Symbol} $end
8295The predefined token marking the end of the token stream. It cannot be
8296used in the grammar.
8297@end deffn
8298
8299@deffn {Symbol} error
8300A token name reserved for error recovery. This token may be used in
8301grammar rules so as to allow the Bison parser to recognize an error in
8302the grammar without halting the process. In effect, a sentence
8303containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8304token @code{error} becomes the current lookahead token. Actions
8305corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8306token is reset to the token that originally caused the violation.
8307@xref{Error Recovery}.
18d192f0
AD
8308@end deffn
8309
18b519c0 8310@deffn {Directive} %error-verbose
2a8d363a
AD
8311Bison declaration to request verbose, specific error message strings
8312when @code{yyerror} is called.
18b519c0 8313@end deffn
2a8d363a 8314
18b519c0 8315@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8316Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8317Summary}.
18b519c0 8318@end deffn
d8988b2f 8319
18b519c0 8320@deffn {Directive} %glr-parser
c827f760
PE
8321Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8322Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8323@end deffn
676385e2 8324
dd8d9022
AD
8325@deffn {Directive} %initial-action
8326Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8327@end deffn
8328
18b519c0 8329@deffn {Directive} %left
bfa74976
RS
8330Bison declaration to assign left associativity to token(s).
8331@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8332@end deffn
bfa74976 8333
feeb0eda 8334@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8335Bison declaration to specifying an additional parameter that
8336@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8337for Pure Parsers}.
18b519c0 8338@end deffn
2a8d363a 8339
18b519c0 8340@deffn {Directive} %merge
676385e2 8341Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8342reduce/reduce conflict with a rule having the same merging function, the
676385e2 8343function is applied to the two semantic values to get a single result.
c827f760 8344@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8345@end deffn
676385e2 8346
18b519c0 8347@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8348Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8349@end deffn
d8988b2f 8350
91d2c560 8351@ifset defaultprec
22fccf95
PE
8352@deffn {Directive} %no-default-prec
8353Do not assign a precedence to rules that lack an explicit @samp{%prec}
8354modifier. @xref{Contextual Precedence, ,Context-Dependent
8355Precedence}.
8356@end deffn
91d2c560 8357@end ifset
22fccf95 8358
18b519c0 8359@deffn {Directive} %no-lines
931c7513
RS
8360Bison declaration to avoid generating @code{#line} directives in the
8361parser file. @xref{Decl Summary}.
18b519c0 8362@end deffn
931c7513 8363
18b519c0 8364@deffn {Directive} %nonassoc
9d9b8b70 8365Bison declaration to assign nonassociativity to token(s).
bfa74976 8366@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8367@end deffn
bfa74976 8368
fa4d969f 8369@deffn {Directive} %output="@var{file}"
72d2299c 8370Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8371Summary}.
18b519c0 8372@end deffn
d8988b2f 8373
feeb0eda 8374@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8375Bison declaration to specifying an additional parameter that
8376@code{yyparse} should accept. @xref{Parser Function,, The Parser
8377Function @code{yyparse}}.
18b519c0 8378@end deffn
2a8d363a 8379
18b519c0 8380@deffn {Directive} %prec
bfa74976
RS
8381Bison declaration to assign a precedence to a specific rule.
8382@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8383@end deffn
bfa74976 8384
18b519c0 8385@deffn {Directive} %pure-parser
bfa74976
RS
8386Bison declaration to request a pure (reentrant) parser.
8387@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8388@end deffn
bfa74976 8389
b50d2359 8390@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8391Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8392Require a Version of Bison}.
b50d2359
AD
8393@end deffn
8394
18b519c0 8395@deffn {Directive} %right
bfa74976
RS
8396Bison declaration to assign right associativity to token(s).
8397@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8398@end deffn
bfa74976 8399
18b519c0 8400@deffn {Directive} %start
704a47c4
AD
8401Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8402Start-Symbol}.
18b519c0 8403@end deffn
bfa74976 8404
18b519c0 8405@deffn {Directive} %token
bfa74976
RS
8406Bison declaration to declare token(s) without specifying precedence.
8407@xref{Token Decl, ,Token Type Names}.
18b519c0 8408@end deffn
bfa74976 8409
18b519c0 8410@deffn {Directive} %token-table
931c7513
RS
8411Bison declaration to include a token name table in the parser file.
8412@xref{Decl Summary}.
18b519c0 8413@end deffn
931c7513 8414
18b519c0 8415@deffn {Directive} %type
704a47c4
AD
8416Bison declaration to declare nonterminals. @xref{Type Decl,
8417,Nonterminal Symbols}.
18b519c0 8418@end deffn
bfa74976 8419
dd8d9022
AD
8420@deffn {Symbol} $undefined
8421The predefined token onto which all undefined values returned by
8422@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8423@code{error}.
8424@end deffn
8425
18b519c0 8426@deffn {Directive} %union
bfa74976
RS
8427Bison declaration to specify several possible data types for semantic
8428values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8429@end deffn
bfa74976 8430
dd8d9022
AD
8431@deffn {Macro} YYABORT
8432Macro to pretend that an unrecoverable syntax error has occurred, by
8433making @code{yyparse} return 1 immediately. The error reporting
8434function @code{yyerror} is not called. @xref{Parser Function, ,The
8435Parser Function @code{yyparse}}.
8436@end deffn
3ded9a63 8437
dd8d9022
AD
8438@deffn {Macro} YYACCEPT
8439Macro to pretend that a complete utterance of the language has been
8440read, by making @code{yyparse} return 0 immediately.
8441@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8442@end deffn
bfa74976 8443
dd8d9022 8444@deffn {Macro} YYBACKUP
742e4900 8445Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8446token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8447@end deffn
bfa74976 8448
dd8d9022 8449@deffn {Variable} yychar
32c29292 8450External integer variable that contains the integer value of the
742e4900 8451lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8452@code{yyparse}.) Error-recovery rule actions may examine this variable.
8453@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8454@end deffn
bfa74976 8455
dd8d9022
AD
8456@deffn {Variable} yyclearin
8457Macro used in error-recovery rule actions. It clears the previous
742e4900 8458lookahead token. @xref{Error Recovery}.
18b519c0 8459@end deffn
bfa74976 8460
dd8d9022
AD
8461@deffn {Macro} YYDEBUG
8462Macro to define to equip the parser with tracing code. @xref{Tracing,
8463,Tracing Your Parser}.
18b519c0 8464@end deffn
bfa74976 8465
dd8d9022
AD
8466@deffn {Variable} yydebug
8467External integer variable set to zero by default. If @code{yydebug}
8468is given a nonzero value, the parser will output information on input
8469symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8470@end deffn
bfa74976 8471
dd8d9022
AD
8472@deffn {Macro} yyerrok
8473Macro to cause parser to recover immediately to its normal mode
8474after a syntax error. @xref{Error Recovery}.
8475@end deffn
8476
8477@deffn {Macro} YYERROR
8478Macro to pretend that a syntax error has just been detected: call
8479@code{yyerror} and then perform normal error recovery if possible
8480(@pxref{Error Recovery}), or (if recovery is impossible) make
8481@code{yyparse} return 1. @xref{Error Recovery}.
8482@end deffn
8483
8484@deffn {Function} yyerror
8485User-supplied function to be called by @code{yyparse} on error.
8486@xref{Error Reporting, ,The Error
8487Reporting Function @code{yyerror}}.
8488@end deffn
8489
8490@deffn {Macro} YYERROR_VERBOSE
8491An obsolete macro that you define with @code{#define} in the prologue
8492to request verbose, specific error message strings
8493when @code{yyerror} is called. It doesn't matter what definition you
8494use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8495@code{%error-verbose} is preferred.
8496@end deffn
8497
8498@deffn {Macro} YYINITDEPTH
8499Macro for specifying the initial size of the parser stack.
1a059451 8500@xref{Memory Management}.
dd8d9022
AD
8501@end deffn
8502
8503@deffn {Function} yylex
8504User-supplied lexical analyzer function, called with no arguments to get
8505the next token. @xref{Lexical, ,The Lexical Analyzer Function
8506@code{yylex}}.
8507@end deffn
8508
8509@deffn {Macro} YYLEX_PARAM
8510An obsolete macro for specifying an extra argument (or list of extra
32c29292 8511arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8512macro is deprecated, and is supported only for Yacc like parsers.
8513@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8514@end deffn
8515
8516@deffn {Variable} yylloc
8517External variable in which @code{yylex} should place the line and column
8518numbers associated with a token. (In a pure parser, it is a local
8519variable within @code{yyparse}, and its address is passed to
32c29292
JD
8520@code{yylex}.)
8521You can ignore this variable if you don't use the @samp{@@} feature in the
8522grammar actions.
8523@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8524In semantic actions, it stores the location of the lookahead token.
32c29292 8525@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8526@end deffn
8527
8528@deffn {Type} YYLTYPE
8529Data type of @code{yylloc}; by default, a structure with four
8530members. @xref{Location Type, , Data Types of Locations}.
8531@end deffn
8532
8533@deffn {Variable} yylval
8534External variable in which @code{yylex} should place the semantic
8535value associated with a token. (In a pure parser, it is a local
8536variable within @code{yyparse}, and its address is passed to
32c29292
JD
8537@code{yylex}.)
8538@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8539In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8540@xref{Actions, ,Actions}.
dd8d9022
AD
8541@end deffn
8542
8543@deffn {Macro} YYMAXDEPTH
1a059451
PE
8544Macro for specifying the maximum size of the parser stack. @xref{Memory
8545Management}.
dd8d9022
AD
8546@end deffn
8547
8548@deffn {Variable} yynerrs
8a2800e7 8549Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8550(In a pure parser, it is a local variable within @code{yyparse}.)
8551@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8552@end deffn
8553
8554@deffn {Function} yyparse
8555The parser function produced by Bison; call this function to start
8556parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8557@end deffn
8558
8559@deffn {Macro} YYPARSE_PARAM
8560An obsolete macro for specifying the name of a parameter that
8561@code{yyparse} should accept. The use of this macro is deprecated, and
8562is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8563Conventions for Pure Parsers}.
8564@end deffn
8565
8566@deffn {Macro} YYRECOVERING
02103984
PE
8567The expression @code{YYRECOVERING ()} yields 1 when the parser
8568is recovering from a syntax error, and 0 otherwise.
8569@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8570@end deffn
8571
8572@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8573Macro used to control the use of @code{alloca} when the C
8574@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8575the parser will use @code{malloc} to extend its stacks. If defined to
85761, the parser will use @code{alloca}. Values other than 0 and 1 are
8577reserved for future Bison extensions. If not defined,
8578@code{YYSTACK_USE_ALLOCA} defaults to 0.
8579
55289366 8580In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8581limited stack and with unreliable stack-overflow checking, you should
8582set @code{YYMAXDEPTH} to a value that cannot possibly result in
8583unchecked stack overflow on any of your target hosts when
8584@code{alloca} is called. You can inspect the code that Bison
8585generates in order to determine the proper numeric values. This will
8586require some expertise in low-level implementation details.
dd8d9022
AD
8587@end deffn
8588
8589@deffn {Type} YYSTYPE
8590Data type of semantic values; @code{int} by default.
8591@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8592@end deffn
bfa74976 8593
342b8b6e 8594@node Glossary
bfa74976
RS
8595@appendix Glossary
8596@cindex glossary
8597
8598@table @asis
c827f760
PE
8599@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8600Formal method of specifying context-free grammars originally proposed
8601by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8602committee document contributing to what became the Algol 60 report.
8603@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8604
8605@item Context-free grammars
8606Grammars specified as rules that can be applied regardless of context.
8607Thus, if there is a rule which says that an integer can be used as an
8608expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8609permitted. @xref{Language and Grammar, ,Languages and Context-Free
8610Grammars}.
bfa74976
RS
8611
8612@item Dynamic allocation
8613Allocation of memory that occurs during execution, rather than at
8614compile time or on entry to a function.
8615
8616@item Empty string
8617Analogous to the empty set in set theory, the empty string is a
8618character string of length zero.
8619
8620@item Finite-state stack machine
8621A ``machine'' that has discrete states in which it is said to exist at
8622each instant in time. As input to the machine is processed, the
8623machine moves from state to state as specified by the logic of the
8624machine. In the case of the parser, the input is the language being
8625parsed, and the states correspond to various stages in the grammar
c827f760 8626rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8627
c827f760 8628@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8629A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8630that are not @acronym{LALR}(1). It resolves situations that Bison's
8631usual @acronym{LALR}(1)
676385e2
PH
8632algorithm cannot by effectively splitting off multiple parsers, trying all
8633possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8634right context. @xref{Generalized LR Parsing, ,Generalized
8635@acronym{LR} Parsing}.
676385e2 8636
bfa74976
RS
8637@item Grouping
8638A language construct that is (in general) grammatically divisible;
c827f760 8639for example, `expression' or `declaration' in C@.
bfa74976
RS
8640@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8641
8642@item Infix operator
8643An arithmetic operator that is placed between the operands on which it
8644performs some operation.
8645
8646@item Input stream
8647A continuous flow of data between devices or programs.
8648
8649@item Language construct
8650One of the typical usage schemas of the language. For example, one of
8651the constructs of the C language is the @code{if} statement.
8652@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8653
8654@item Left associativity
8655Operators having left associativity are analyzed from left to right:
8656@samp{a+b+c} first computes @samp{a+b} and then combines with
8657@samp{c}. @xref{Precedence, ,Operator Precedence}.
8658
8659@item Left recursion
89cab50d
AD
8660A rule whose result symbol is also its first component symbol; for
8661example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8662Rules}.
bfa74976
RS
8663
8664@item Left-to-right parsing
8665Parsing a sentence of a language by analyzing it token by token from
c827f760 8666left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8667
8668@item Lexical analyzer (scanner)
8669A function that reads an input stream and returns tokens one by one.
8670@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8671
8672@item Lexical tie-in
8673A flag, set by actions in the grammar rules, which alters the way
8674tokens are parsed. @xref{Lexical Tie-ins}.
8675
931c7513 8676@item Literal string token
14ded682 8677A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8678
742e4900
JD
8679@item Lookahead token
8680A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 8681Tokens}.
bfa74976 8682
c827f760 8683@item @acronym{LALR}(1)
bfa74976 8684The class of context-free grammars that Bison (like most other parser
c827f760
PE
8685generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8686Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8687
c827f760 8688@item @acronym{LR}(1)
bfa74976 8689The class of context-free grammars in which at most one token of
742e4900 8690lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
8691
8692@item Nonterminal symbol
8693A grammar symbol standing for a grammatical construct that can
8694be expressed through rules in terms of smaller constructs; in other
8695words, a construct that is not a token. @xref{Symbols}.
8696
bfa74976
RS
8697@item Parser
8698A function that recognizes valid sentences of a language by analyzing
8699the syntax structure of a set of tokens passed to it from a lexical
8700analyzer.
8701
8702@item Postfix operator
8703An arithmetic operator that is placed after the operands upon which it
8704performs some operation.
8705
8706@item Reduction
8707Replacing a string of nonterminals and/or terminals with a single
89cab50d 8708nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8709Parser Algorithm}.
bfa74976
RS
8710
8711@item Reentrant
8712A reentrant subprogram is a subprogram which can be in invoked any
8713number of times in parallel, without interference between the various
8714invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8715
8716@item Reverse polish notation
8717A language in which all operators are postfix operators.
8718
8719@item Right recursion
89cab50d
AD
8720A rule whose result symbol is also its last component symbol; for
8721example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8722Rules}.
bfa74976
RS
8723
8724@item Semantics
8725In computer languages, the semantics are specified by the actions
8726taken for each instance of the language, i.e., the meaning of
8727each statement. @xref{Semantics, ,Defining Language Semantics}.
8728
8729@item Shift
8730A parser is said to shift when it makes the choice of analyzing
8731further input from the stream rather than reducing immediately some
c827f760 8732already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8733
8734@item Single-character literal
8735A single character that is recognized and interpreted as is.
8736@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8737
8738@item Start symbol
8739The nonterminal symbol that stands for a complete valid utterance in
8740the language being parsed. The start symbol is usually listed as the
13863333 8741first nonterminal symbol in a language specification.
bfa74976
RS
8742@xref{Start Decl, ,The Start-Symbol}.
8743
8744@item Symbol table
8745A data structure where symbol names and associated data are stored
8746during parsing to allow for recognition and use of existing
8747information in repeated uses of a symbol. @xref{Multi-function Calc}.
8748
6e649e65
PE
8749@item Syntax error
8750An error encountered during parsing of an input stream due to invalid
8751syntax. @xref{Error Recovery}.
8752
bfa74976
RS
8753@item Token
8754A basic, grammatically indivisible unit of a language. The symbol
8755that describes a token in the grammar is a terminal symbol.
8756The input of the Bison parser is a stream of tokens which comes from
8757the lexical analyzer. @xref{Symbols}.
8758
8759@item Terminal symbol
89cab50d
AD
8760A grammar symbol that has no rules in the grammar and therefore is
8761grammatically indivisible. The piece of text it represents is a token.
8762@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8763@end table
8764
342b8b6e 8765@node Copying This Manual
f2b5126e 8766@appendix Copying This Manual
f9a8293a 8767
f2b5126e
PB
8768@menu
8769* GNU Free Documentation License:: License for copying this manual.
8770@end menu
f9a8293a 8771
f2b5126e
PB
8772@include fdl.texi
8773
342b8b6e 8774@node Index
bfa74976
RS
8775@unnumbered Index
8776
8777@printindex cp
8778
bfa74976 8779@bye
a06ea4aa
AD
8780
8781@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8782@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8783@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8784@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8785@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8786@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8787@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8788@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8789@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8790@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8791@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8792@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8793@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8794@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8795@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8796@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8797@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8798@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8799@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8800@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8801@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8802@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8803@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8804@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8805@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8806@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8807@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8808@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8809@c LocalWords: YYSTACK DVI fdl printindex