]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* doc/FAQ: Remove, merged into...
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 471999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
32c29292
JD
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
150* GLR Semantic Actions:: Deferred semantic actions have special concerns.
151* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 152
bfa74976
RS
153Examples
154
155* RPN Calc:: Reverse polish notation calculator;
156 a first example with no operator precedence.
157* Infix Calc:: Infix (algebraic) notation calculator.
158 Operator precedence is introduced.
159* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 160* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
161* Multi-function Calc:: Calculator with memory and trig functions.
162 It uses multiple data-types for semantic values.
bfa74976
RS
163* Exercises:: Ideas for improving the multi-function calculator.
164
165Reverse Polish Notation Calculator
166
75f5aaea 167* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
168* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
169* Lexer: Rpcalc Lexer. The lexical analyzer.
170* Main: Rpcalc Main. The controlling function.
171* Error: Rpcalc Error. The error reporting function.
172* Gen: Rpcalc Gen. Running Bison on the grammar file.
173* Comp: Rpcalc Compile. Run the C compiler on the output code.
174
175Grammar Rules for @code{rpcalc}
176
13863333
AD
177* Rpcalc Input::
178* Rpcalc Line::
179* Rpcalc Expr::
bfa74976 180
342b8b6e
AD
181Location Tracking Calculator: @code{ltcalc}
182
183* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
184* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
185* Lexer: Ltcalc Lexer. The lexical analyzer.
186
bfa74976
RS
187Multi-Function Calculator: @code{mfcalc}
188
189* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
190* Rules: Mfcalc Rules. Grammar rules for the calculator.
191* Symtab: Mfcalc Symtab. Symbol table management subroutines.
192
193Bison Grammar Files
194
195* Grammar Outline:: Overall layout of the grammar file.
196* Symbols:: Terminal and nonterminal symbols.
197* Rules:: How to write grammar rules.
198* Recursion:: Writing recursive rules.
199* Semantics:: Semantic values and actions.
93dd49ab 200* Locations:: Locations and actions.
bfa74976
RS
201* Declarations:: All kinds of Bison declarations are described here.
202* Multiple Parsers:: Putting more than one Bison parser in one program.
203
204Outline of a Bison Grammar
205
93dd49ab 206* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
207* Bison Declarations:: Syntax and usage of the Bison declarations section.
208* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 209* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
210
211Defining Language Semantics
212
213* Value Type:: Specifying one data type for all semantic values.
214* Multiple Types:: Specifying several alternative data types.
215* Actions:: An action is the semantic definition of a grammar rule.
216* Action Types:: Specifying data types for actions to operate on.
217* Mid-Rule Actions:: Most actions go at the end of a rule.
218 This says when, why and how to use the exceptional
219 action in the middle of a rule.
220
93dd49ab
PE
221Tracking Locations
222
223* Location Type:: Specifying a data type for locations.
224* Actions and Locations:: Using locations in actions.
225* Location Default Action:: Defining a general way to compute locations.
226
bfa74976
RS
227Bison Declarations
228
b50d2359 229* Require Decl:: Requiring a Bison version.
bfa74976
RS
230* Token Decl:: Declaring terminal symbols.
231* Precedence Decl:: Declaring terminals with precedence and associativity.
232* Union Decl:: Declaring the set of all semantic value types.
233* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 234* Initial Action Decl:: Code run before parsing starts.
72f889cc 235* Destructor Decl:: Declaring how symbols are freed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
239* Decl Summary:: Table of all Bison declarations.
240
241Parser C-Language Interface
242
243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
f7ab6a50
PE
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
95923bd6 256* Token Locations:: How @code{yylex} must return the text location
bfa74976 257 (line number, etc.) of the token, if the
93dd49ab 258 actions want that.
bfa74976
RS
259* Pure Calling:: How the calling convention differs
260 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
261
13863333 262The Bison Parser Algorithm
bfa74976
RS
263
264* Look-Ahead:: Parser looks one token ahead when deciding what to do.
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
270* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 271* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 272* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
273
274Operator Precedence
275
276* Why Precedence:: An example showing why precedence is needed.
277* Using Precedence:: How to specify precedence in Bison grammars.
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
281Handling Context Dependencies
282
283* Semantic Tokens:: Token parsing can depend on the semantic context.
284* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
285* Tie-in Recovery:: Lexical tie-ins have implications for how
286 error recovery rules must be written.
287
93dd49ab 288Debugging Your Parser
ec3bc396
AD
289
290* Understanding:: Understanding the structure of your parser.
291* Tracing:: Tracing the execution of your parser.
292
bfa74976
RS
293Invoking Bison
294
13863333 295* Bison Options:: All the options described in detail,
c827f760 296 in alphabetical order by short options.
bfa74976 297* Option Cross Key:: Alphabetical list of long options.
93dd49ab 298* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 299
12545799
AD
300C++ Language Interface
301
302* C++ Parsers:: The interface to generate C++ parser classes
303* A Complete C++ Example:: Demonstrating their use
304
305C++ Parsers
306
307* C++ Bison Interface:: Asking for C++ parser generation
308* C++ Semantic Values:: %union vs. C++
309* C++ Location Values:: The position and location classes
310* C++ Parser Interface:: Instantiating and running the parser
311* C++ Scanner Interface:: Exchanges between yylex and parse
312
313A Complete C++ Example
314
315* Calc++ --- C++ Calculator:: The specifications
316* Calc++ Parsing Driver:: An active parsing context
317* Calc++ Parser:: A parser class
318* Calc++ Scanner:: A pure C++ Flex scanner
319* Calc++ Top Level:: Conducting the band
320
d1a1114f
AD
321Frequently Asked Questions
322
1a059451 323* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 324* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 325* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 326* Implementing Gotos/Loops:: Control Flow in the Calculator
55ba27be
AD
327* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
328* I can't build Bison:: Troubleshooting
329* Where can I find help?:: Troubleshouting
330* Bug Reports:: Troublereporting
331* Other Languages:: Parsers in Java and others
332* Beta Testing:: Experimenting development versions
333* Mailing Lists:: Meeting other Bison users
d1a1114f 334
f2b5126e
PB
335Copying This Manual
336
337* GNU Free Documentation License:: License for copying this manual.
338
342b8b6e 339@end detailmenu
bfa74976
RS
340@end menu
341
342b8b6e 342@node Introduction
bfa74976
RS
343@unnumbered Introduction
344@cindex introduction
345
1e137b71
JD
346@dfn{Bison} is a general-purpose parser generator that converts a grammar
347description for an @acronym{LALR}(1) or @acronym{GLR} context-free grammar
348into a C or C++ program to parse that grammar. Once you are proficient with
349Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
350used in simple desk calculators to complex programming languages.
351
352Bison is upward compatible with Yacc: all properly-written Yacc grammars
353ought to work with Bison with no change. Anyone familiar with Yacc
354should be able to use Bison with little trouble. You need to be fluent in
1e137b71 355C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
356
357We begin with tutorial chapters that explain the basic concepts of using
358Bison and show three explained examples, each building on the last. If you
359don't know Bison or Yacc, start by reading these chapters. Reference
360chapters follow which describe specific aspects of Bison in detail.
361
931c7513
RS
362Bison was written primarily by Robert Corbett; Richard Stallman made it
363Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 364multi-character string literals and other features.
931c7513 365
df1af54c 366This edition corresponds to version @value{VERSION} of Bison.
bfa74976 367
342b8b6e 368@node Conditions
bfa74976
RS
369@unnumbered Conditions for Using Bison
370
a31239f1 371As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 372@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 373Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 374parsers could be used only in programs that were free software.
a31239f1 375
c827f760
PE
376The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
377compiler, have never
9ecbd125 378had such a requirement. They could always be used for nonfree
a31239f1
RS
379software. The reason Bison was different was not due to a special
380policy decision; it resulted from applying the usual General Public
381License to all of the Bison source code.
382
383The output of the Bison utility---the Bison parser file---contains a
384verbatim copy of a sizable piece of Bison, which is the code for the
385@code{yyparse} function. (The actions from your grammar are inserted
386into this function at one point, but the rest of the function is not
c827f760
PE
387changed.) When we applied the @acronym{GPL} terms to the code for
388@code{yyparse},
a31239f1
RS
389the effect was to restrict the use of Bison output to free software.
390
391We didn't change the terms because of sympathy for people who want to
392make software proprietary. @strong{Software should be free.} But we
393concluded that limiting Bison's use to free software was doing little to
394encourage people to make other software free. So we decided to make the
395practical conditions for using Bison match the practical conditions for
c827f760 396using the other @acronym{GNU} tools.
bfa74976 397
eda42934 398This exception applies only when Bison is generating C code for an
c827f760
PE
399@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
400as usual. You can
262aa8dd
PE
401tell whether the exception applies to your @samp{.c} output file by
402inspecting it to see whether it says ``As a special exception, when
403this file is copied by Bison into a Bison output file, you may use
404that output file without restriction.''
405
c67a198d 406@include gpl.texi
bfa74976 407
342b8b6e 408@node Concepts
bfa74976
RS
409@chapter The Concepts of Bison
410
411This chapter introduces many of the basic concepts without which the
412details of Bison will not make sense. If you do not already know how to
413use Bison or Yacc, we suggest you start by reading this chapter carefully.
414
415@menu
416* Language and Grammar:: Languages and context-free grammars,
417 as mathematical ideas.
418* Grammar in Bison:: How we represent grammars for Bison's sake.
419* Semantic Values:: Each token or syntactic grouping can have
420 a semantic value (the value of an integer,
421 the name of an identifier, etc.).
422* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 423* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 424* Locations Overview:: Tracking Locations.
bfa74976
RS
425* Bison Parser:: What are Bison's input and output,
426 how is the output used?
427* Stages:: Stages in writing and running Bison grammars.
428* Grammar Layout:: Overall structure of a Bison grammar file.
429@end menu
430
342b8b6e 431@node Language and Grammar
bfa74976
RS
432@section Languages and Context-Free Grammars
433
bfa74976
RS
434@cindex context-free grammar
435@cindex grammar, context-free
436In order for Bison to parse a language, it must be described by a
437@dfn{context-free grammar}. This means that you specify one or more
438@dfn{syntactic groupings} and give rules for constructing them from their
439parts. For example, in the C language, one kind of grouping is called an
440`expression'. One rule for making an expression might be, ``An expression
441can be made of a minus sign and another expression''. Another would be,
442``An expression can be an integer''. As you can see, rules are often
443recursive, but there must be at least one rule which leads out of the
444recursion.
445
c827f760 446@cindex @acronym{BNF}
bfa74976
RS
447@cindex Backus-Naur form
448The most common formal system for presenting such rules for humans to read
c827f760
PE
449is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
450order to specify the language Algol 60. Any grammar expressed in
451@acronym{BNF} is a context-free grammar. The input to Bison is
452essentially machine-readable @acronym{BNF}.
bfa74976 453
c827f760
PE
454@cindex @acronym{LALR}(1) grammars
455@cindex @acronym{LR}(1) grammars
676385e2
PH
456There are various important subclasses of context-free grammar. Although it
457can handle almost all context-free grammars, Bison is optimized for what
c827f760 458are called @acronym{LALR}(1) grammars.
676385e2 459In brief, in these grammars, it must be possible to
bfa74976
RS
460tell how to parse any portion of an input string with just a single
461token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
462@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
463restrictions that are
bfa74976 464hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
465@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
466@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
467more information on this.
bfa74976 468
c827f760
PE
469@cindex @acronym{GLR} parsing
470@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 471@cindex ambiguous grammars
9d9b8b70 472@cindex nondeterministic parsing
9501dc6e
AD
473
474Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
475roughly that the next grammar rule to apply at any point in the input is
476uniquely determined by the preceding input and a fixed, finite portion
477(called a @dfn{look-ahead}) of the remaining input. A context-free
478grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 479apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 480grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
481look-ahead always suffices to determine the next grammar rule to apply.
482With the proper declarations, Bison is also able to parse these more
483general context-free grammars, using a technique known as @acronym{GLR}
484parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
485are able to handle any context-free grammar for which the number of
486possible parses of any given string is finite.
676385e2 487
bfa74976
RS
488@cindex symbols (abstract)
489@cindex token
490@cindex syntactic grouping
491@cindex grouping, syntactic
9501dc6e
AD
492In the formal grammatical rules for a language, each kind of syntactic
493unit or grouping is named by a @dfn{symbol}. Those which are built by
494grouping smaller constructs according to grammatical rules are called
bfa74976
RS
495@dfn{nonterminal symbols}; those which can't be subdivided are called
496@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
497corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 498corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
499
500We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
501nonterminal, mean. The tokens of C are identifiers, constants (numeric
502and string), and the various keywords, arithmetic operators and
503punctuation marks. So the terminal symbols of a grammar for C include
504`identifier', `number', `string', plus one symbol for each keyword,
505operator or punctuation mark: `if', `return', `const', `static', `int',
506`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
507(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
508lexicography, not grammar.)
509
510Here is a simple C function subdivided into tokens:
511
9edcd895
AD
512@ifinfo
513@example
514int /* @r{keyword `int'} */
14d4662b 515square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
516 @r{identifier, close-paren} */
517@{ /* @r{open-brace} */
518 return x * x; /* @r{keyword `return', identifier, asterisk,
519 identifier, semicolon} */
520@} /* @r{close-brace} */
521@end example
522@end ifinfo
523@ifnotinfo
bfa74976
RS
524@example
525int /* @r{keyword `int'} */
14d4662b 526square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 527@{ /* @r{open-brace} */
9edcd895 528 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
529@} /* @r{close-brace} */
530@end example
9edcd895 531@end ifnotinfo
bfa74976
RS
532
533The syntactic groupings of C include the expression, the statement, the
534declaration, and the function definition. These are represented in the
535grammar of C by nonterminal symbols `expression', `statement',
536`declaration' and `function definition'. The full grammar uses dozens of
537additional language constructs, each with its own nonterminal symbol, in
538order to express the meanings of these four. The example above is a
539function definition; it contains one declaration, and one statement. In
540the statement, each @samp{x} is an expression and so is @samp{x * x}.
541
542Each nonterminal symbol must have grammatical rules showing how it is made
543out of simpler constructs. For example, one kind of C statement is the
544@code{return} statement; this would be described with a grammar rule which
545reads informally as follows:
546
547@quotation
548A `statement' can be made of a `return' keyword, an `expression' and a
549`semicolon'.
550@end quotation
551
552@noindent
553There would be many other rules for `statement', one for each kind of
554statement in C.
555
556@cindex start symbol
557One nonterminal symbol must be distinguished as the special one which
558defines a complete utterance in the language. It is called the @dfn{start
559symbol}. In a compiler, this means a complete input program. In the C
560language, the nonterminal symbol `sequence of definitions and declarations'
561plays this role.
562
563For example, @samp{1 + 2} is a valid C expression---a valid part of a C
564program---but it is not valid as an @emph{entire} C program. In the
565context-free grammar of C, this follows from the fact that `expression' is
566not the start symbol.
567
568The Bison parser reads a sequence of tokens as its input, and groups the
569tokens using the grammar rules. If the input is valid, the end result is
570that the entire token sequence reduces to a single grouping whose symbol is
571the grammar's start symbol. If we use a grammar for C, the entire input
572must be a `sequence of definitions and declarations'. If not, the parser
573reports a syntax error.
574
342b8b6e 575@node Grammar in Bison
bfa74976
RS
576@section From Formal Rules to Bison Input
577@cindex Bison grammar
578@cindex grammar, Bison
579@cindex formal grammar
580
581A formal grammar is a mathematical construct. To define the language
582for Bison, you must write a file expressing the grammar in Bison syntax:
583a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
584
585A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 586as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
587in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
588
589The Bison representation for a terminal symbol is also called a @dfn{token
590type}. Token types as well can be represented as C-like identifiers. By
591convention, these identifiers should be upper case to distinguish them from
592nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
593@code{RETURN}. A terminal symbol that stands for a particular keyword in
594the language should be named after that keyword converted to upper case.
595The terminal symbol @code{error} is reserved for error recovery.
931c7513 596@xref{Symbols}.
bfa74976
RS
597
598A terminal symbol can also be represented as a character literal, just like
599a C character constant. You should do this whenever a token is just a
600single character (parenthesis, plus-sign, etc.): use that same character in
601a literal as the terminal symbol for that token.
602
931c7513
RS
603A third way to represent a terminal symbol is with a C string constant
604containing several characters. @xref{Symbols}, for more information.
605
bfa74976
RS
606The grammar rules also have an expression in Bison syntax. For example,
607here is the Bison rule for a C @code{return} statement. The semicolon in
608quotes is a literal character token, representing part of the C syntax for
609the statement; the naked semicolon, and the colon, are Bison punctuation
610used in every rule.
611
612@example
613stmt: RETURN expr ';'
614 ;
615@end example
616
617@noindent
618@xref{Rules, ,Syntax of Grammar Rules}.
619
342b8b6e 620@node Semantic Values
bfa74976
RS
621@section Semantic Values
622@cindex semantic value
623@cindex value, semantic
624
625A formal grammar selects tokens only by their classifications: for example,
626if a rule mentions the terminal symbol `integer constant', it means that
627@emph{any} integer constant is grammatically valid in that position. The
628precise value of the constant is irrelevant to how to parse the input: if
629@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 630grammatical.
bfa74976
RS
631
632But the precise value is very important for what the input means once it is
633parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6343989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
635has both a token type and a @dfn{semantic value}. @xref{Semantics,
636,Defining Language Semantics},
bfa74976
RS
637for details.
638
639The token type is a terminal symbol defined in the grammar, such as
640@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
641you need to know to decide where the token may validly appear and how to
642group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 643except their types.
bfa74976
RS
644
645The semantic value has all the rest of the information about the
646meaning of the token, such as the value of an integer, or the name of an
647identifier. (A token such as @code{','} which is just punctuation doesn't
648need to have any semantic value.)
649
650For example, an input token might be classified as token type
651@code{INTEGER} and have the semantic value 4. Another input token might
652have the same token type @code{INTEGER} but value 3989. When a grammar
653rule says that @code{INTEGER} is allowed, either of these tokens is
654acceptable because each is an @code{INTEGER}. When the parser accepts the
655token, it keeps track of the token's semantic value.
656
657Each grouping can also have a semantic value as well as its nonterminal
658symbol. For example, in a calculator, an expression typically has a
659semantic value that is a number. In a compiler for a programming
660language, an expression typically has a semantic value that is a tree
661structure describing the meaning of the expression.
662
342b8b6e 663@node Semantic Actions
bfa74976
RS
664@section Semantic Actions
665@cindex semantic actions
666@cindex actions, semantic
667
668In order to be useful, a program must do more than parse input; it must
669also produce some output based on the input. In a Bison grammar, a grammar
670rule can have an @dfn{action} made up of C statements. Each time the
671parser recognizes a match for that rule, the action is executed.
672@xref{Actions}.
13863333 673
bfa74976
RS
674Most of the time, the purpose of an action is to compute the semantic value
675of the whole construct from the semantic values of its parts. For example,
676suppose we have a rule which says an expression can be the sum of two
677expressions. When the parser recognizes such a sum, each of the
678subexpressions has a semantic value which describes how it was built up.
679The action for this rule should create a similar sort of value for the
680newly recognized larger expression.
681
682For example, here is a rule that says an expression can be the sum of
683two subexpressions:
684
685@example
686expr: expr '+' expr @{ $$ = $1 + $3; @}
687 ;
688@end example
689
690@noindent
691The action says how to produce the semantic value of the sum expression
692from the values of the two subexpressions.
693
676385e2 694@node GLR Parsers
c827f760
PE
695@section Writing @acronym{GLR} Parsers
696@cindex @acronym{GLR} parsing
697@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
698@findex %glr-parser
699@cindex conflicts
700@cindex shift/reduce conflicts
fa7e68c3 701@cindex reduce/reduce conflicts
676385e2 702
fa7e68c3 703In some grammars, Bison's standard
9501dc6e
AD
704@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
705certain grammar rule at a given point. That is, it may not be able to
706decide (on the basis of the input read so far) which of two possible
707reductions (applications of a grammar rule) applies, or whether to apply
708a reduction or read more of the input and apply a reduction later in the
709input. These are known respectively as @dfn{reduce/reduce} conflicts
710(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
711(@pxref{Shift/Reduce}).
712
713To use a grammar that is not easily modified to be @acronym{LALR}(1), a
714more general parsing algorithm is sometimes necessary. If you include
676385e2 715@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 716(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
717(@acronym{GLR}) parser. These parsers handle Bison grammars that
718contain no unresolved conflicts (i.e., after applying precedence
719declarations) identically to @acronym{LALR}(1) parsers. However, when
720faced with unresolved shift/reduce and reduce/reduce conflicts,
721@acronym{GLR} parsers use the simple expedient of doing both,
722effectively cloning the parser to follow both possibilities. Each of
723the resulting parsers can again split, so that at any given time, there
724can be any number of possible parses being explored. The parsers
676385e2
PH
725proceed in lockstep; that is, all of them consume (shift) a given input
726symbol before any of them proceed to the next. Each of the cloned
727parsers eventually meets one of two possible fates: either it runs into
728a parsing error, in which case it simply vanishes, or it merges with
729another parser, because the two of them have reduced the input to an
730identical set of symbols.
731
732During the time that there are multiple parsers, semantic actions are
733recorded, but not performed. When a parser disappears, its recorded
734semantic actions disappear as well, and are never performed. When a
735reduction makes two parsers identical, causing them to merge, Bison
736records both sets of semantic actions. Whenever the last two parsers
737merge, reverting to the single-parser case, Bison resolves all the
738outstanding actions either by precedences given to the grammar rules
739involved, or by performing both actions, and then calling a designated
740user-defined function on the resulting values to produce an arbitrary
741merged result.
742
fa7e68c3 743@menu
32c29292
JD
744* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
745* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
746* GLR Semantic Actions:: Deferred semantic actions have special concerns.
747* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
748@end menu
749
750@node Simple GLR Parsers
751@subsection Using @acronym{GLR} on Unambiguous Grammars
752@cindex @acronym{GLR} parsing, unambiguous grammars
753@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
754@findex %glr-parser
755@findex %expect-rr
756@cindex conflicts
757@cindex reduce/reduce conflicts
758@cindex shift/reduce conflicts
759
760In the simplest cases, you can use the @acronym{GLR} algorithm
761to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
762Such grammars typically require more than one symbol of look-ahead,
763or (in rare cases) fall into the category of grammars in which the
764@acronym{LALR}(1) algorithm throws away too much information (they are in
765@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
766
767Consider a problem that
768arises in the declaration of enumerated and subrange types in the
769programming language Pascal. Here are some examples:
770
771@example
772type subrange = lo .. hi;
773type enum = (a, b, c);
774@end example
775
776@noindent
777The original language standard allows only numeric
778literals and constant identifiers for the subrange bounds (@samp{lo}
779and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78010206) and many other
781Pascal implementations allow arbitrary expressions there. This gives
782rise to the following situation, containing a superfluous pair of
783parentheses:
784
785@example
786type subrange = (a) .. b;
787@end example
788
789@noindent
790Compare this to the following declaration of an enumerated
791type with only one value:
792
793@example
794type enum = (a);
795@end example
796
797@noindent
798(These declarations are contrived, but they are syntactically
799valid, and more-complicated cases can come up in practical programs.)
800
801These two declarations look identical until the @samp{..} token.
802With normal @acronym{LALR}(1) one-token look-ahead it is not
803possible to decide between the two forms when the identifier
804@samp{a} is parsed. It is, however, desirable
805for a parser to decide this, since in the latter case
806@samp{a} must become a new identifier to represent the enumeration
807value, while in the former case @samp{a} must be evaluated with its
808current meaning, which may be a constant or even a function call.
809
810You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
811to be resolved later, but this typically requires substantial
812contortions in both semantic actions and large parts of the
813grammar, where the parentheses are nested in the recursive rules for
814expressions.
815
816You might think of using the lexer to distinguish between the two
817forms by returning different tokens for currently defined and
818undefined identifiers. But if these declarations occur in a local
819scope, and @samp{a} is defined in an outer scope, then both forms
820are possible---either locally redefining @samp{a}, or using the
821value of @samp{a} from the outer scope. So this approach cannot
822work.
823
e757bb10 824A simple solution to this problem is to declare the parser to
fa7e68c3
PE
825use the @acronym{GLR} algorithm.
826When the @acronym{GLR} parser reaches the critical state, it
827merely splits into two branches and pursues both syntax rules
828simultaneously. Sooner or later, one of them runs into a parsing
829error. If there is a @samp{..} token before the next
830@samp{;}, the rule for enumerated types fails since it cannot
831accept @samp{..} anywhere; otherwise, the subrange type rule
832fails since it requires a @samp{..} token. So one of the branches
833fails silently, and the other one continues normally, performing
834all the intermediate actions that were postponed during the split.
835
836If the input is syntactically incorrect, both branches fail and the parser
837reports a syntax error as usual.
838
839The effect of all this is that the parser seems to ``guess'' the
840correct branch to take, or in other words, it seems to use more
841look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
842for. In this example, @acronym{LALR}(2) would suffice, but also some cases
843that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
844
845In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
846and the current Bison parser even takes exponential time and space
847for some grammars. In practice, this rarely happens, and for many
848grammars it is possible to prove that it cannot happen.
849The present example contains only one conflict between two
850rules, and the type-declaration context containing the conflict
851cannot be nested. So the number of
852branches that can exist at any time is limited by the constant 2,
853and the parsing time is still linear.
854
855Here is a Bison grammar corresponding to the example above. It
856parses a vastly simplified form of Pascal type declarations.
857
858@example
859%token TYPE DOTDOT ID
860
861@group
862%left '+' '-'
863%left '*' '/'
864@end group
865
866%%
867
868@group
869type_decl : TYPE ID '=' type ';'
870 ;
871@end group
872
873@group
874type : '(' id_list ')'
875 | expr DOTDOT expr
876 ;
877@end group
878
879@group
880id_list : ID
881 | id_list ',' ID
882 ;
883@end group
884
885@group
886expr : '(' expr ')'
887 | expr '+' expr
888 | expr '-' expr
889 | expr '*' expr
890 | expr '/' expr
891 | ID
892 ;
893@end group
894@end example
895
896When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
897about one reduce/reduce conflict. In the conflicting situation the
898parser chooses one of the alternatives, arbitrarily the one
899declared first. Therefore the following correct input is not
900recognized:
901
902@example
903type t = (a) .. b;
904@end example
905
906The parser can be turned into a @acronym{GLR} parser, while also telling Bison
907to be silent about the one known reduce/reduce conflict, by
e757bb10 908adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
909@samp{%%}):
910
911@example
912%glr-parser
913%expect-rr 1
914@end example
915
916@noindent
917No change in the grammar itself is required. Now the
918parser recognizes all valid declarations, according to the
919limited syntax above, transparently. In fact, the user does not even
920notice when the parser splits.
921
f8e1c9e5
AD
922So here we have a case where we can use the benefits of @acronym{GLR},
923almost without disadvantages. Even in simple cases like this, however,
924there are at least two potential problems to beware. First, always
925analyze the conflicts reported by Bison to make sure that @acronym{GLR}
926splitting is only done where it is intended. A @acronym{GLR} parser
927splitting inadvertently may cause problems less obvious than an
928@acronym{LALR} parser statically choosing the wrong alternative in a
929conflict. Second, consider interactions with the lexer (@pxref{Semantic
930Tokens}) with great care. Since a split parser consumes tokens without
931performing any actions during the split, the lexer cannot obtain
932information via parser actions. Some cases of lexer interactions can be
933eliminated by using @acronym{GLR} to shift the complications from the
934lexer to the parser. You must check the remaining cases for
935correctness.
936
937In our example, it would be safe for the lexer to return tokens based on
938their current meanings in some symbol table, because no new symbols are
939defined in the middle of a type declaration. Though it is possible for
940a parser to define the enumeration constants as they are parsed, before
941the type declaration is completed, it actually makes no difference since
942they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
943
944@node Merging GLR Parses
945@subsection Using @acronym{GLR} to Resolve Ambiguities
946@cindex @acronym{GLR} parsing, ambiguous grammars
947@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
948@findex %dprec
949@findex %merge
950@cindex conflicts
951@cindex reduce/reduce conflicts
952
2a8d363a 953Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
954
955@example
956%@{
38a92d50
PE
957 #include <stdio.h>
958 #define YYSTYPE char const *
959 int yylex (void);
960 void yyerror (char const *);
676385e2
PH
961%@}
962
963%token TYPENAME ID
964
965%right '='
966%left '+'
967
968%glr-parser
969
970%%
971
fae437e8 972prog :
676385e2
PH
973 | prog stmt @{ printf ("\n"); @}
974 ;
975
976stmt : expr ';' %dprec 1
977 | decl %dprec 2
978 ;
979
2a8d363a 980expr : ID @{ printf ("%s ", $$); @}
fae437e8 981 | TYPENAME '(' expr ')'
2a8d363a
AD
982 @{ printf ("%s <cast> ", $1); @}
983 | expr '+' expr @{ printf ("+ "); @}
984 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
985 ;
986
fae437e8 987decl : TYPENAME declarator ';'
2a8d363a 988 @{ printf ("%s <declare> ", $1); @}
676385e2 989 | TYPENAME declarator '=' expr ';'
2a8d363a 990 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
991 ;
992
2a8d363a 993declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
994 | '(' declarator ')'
995 ;
996@end example
997
998@noindent
999This models a problematic part of the C++ grammar---the ambiguity between
1000certain declarations and statements. For example,
1001
1002@example
1003T (x) = y+z;
1004@end example
1005
1006@noindent
1007parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1008(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1009@samp{x} as an @code{ID}).
676385e2 1010Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1011@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1012time it encounters @code{x} in the example above. Since this is a
1013@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1014each choice of resolving the reduce/reduce conflict.
1015Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1016however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1017ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1018the other reduces @code{stmt : decl}, after which both parsers are in an
1019identical state: they've seen @samp{prog stmt} and have the same unprocessed
1020input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1021
1022At this point, the @acronym{GLR} parser requires a specification in the
1023grammar of how to choose between the competing parses.
1024In the example above, the two @code{%dprec}
e757bb10 1025declarations specify that Bison is to give precedence
fa7e68c3 1026to the parse that interprets the example as a
676385e2
PH
1027@code{decl}, which implies that @code{x} is a declarator.
1028The parser therefore prints
1029
1030@example
fae437e8 1031"x" y z + T <init-declare>
676385e2
PH
1032@end example
1033
fa7e68c3
PE
1034The @code{%dprec} declarations only come into play when more than one
1035parse survives. Consider a different input string for this parser:
676385e2
PH
1036
1037@example
1038T (x) + y;
1039@end example
1040
1041@noindent
e757bb10 1042This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1043construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1044Here, there is no ambiguity (this cannot be parsed as a declaration).
1045However, at the time the Bison parser encounters @code{x}, it does not
1046have enough information to resolve the reduce/reduce conflict (again,
1047between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1048case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1049into two, one assuming that @code{x} is an @code{expr}, and the other
1050assuming @code{x} is a @code{declarator}. The second of these parsers
1051then vanishes when it sees @code{+}, and the parser prints
1052
1053@example
fae437e8 1054x T <cast> y +
676385e2
PH
1055@end example
1056
1057Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1058the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1059actions of the two possible parsers, rather than choosing one over the
1060other. To do so, you could change the declaration of @code{stmt} as
1061follows:
1062
1063@example
1064stmt : expr ';' %merge <stmtMerge>
1065 | decl %merge <stmtMerge>
1066 ;
1067@end example
1068
1069@noindent
676385e2
PH
1070and define the @code{stmtMerge} function as:
1071
1072@example
38a92d50
PE
1073static YYSTYPE
1074stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1075@{
1076 printf ("<OR> ");
1077 return "";
1078@}
1079@end example
1080
1081@noindent
1082with an accompanying forward declaration
1083in the C declarations at the beginning of the file:
1084
1085@example
1086%@{
38a92d50 1087 #define YYSTYPE char const *
676385e2
PH
1088 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1089%@}
1090@end example
1091
1092@noindent
fa7e68c3
PE
1093With these declarations, the resulting parser parses the first example
1094as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1095
1096@example
fae437e8 1097"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1098@end example
1099
fa7e68c3 1100Bison requires that all of the
e757bb10 1101productions that participate in any particular merge have identical
fa7e68c3
PE
1102@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1103and the parser will report an error during any parse that results in
1104the offending merge.
9501dc6e 1105
32c29292
JD
1106@node GLR Semantic Actions
1107@subsection GLR Semantic Actions
1108
1109@cindex deferred semantic actions
1110By definition, a deferred semantic action is not performed at the same time as
1111the associated reduction.
1112This raises caveats for several Bison features you might use in a semantic
1113action in a @acronym{GLR} parser.
1114
1115@vindex yychar
1116@cindex @acronym{GLR} parsers and @code{yychar}
1117@vindex yylval
1118@cindex @acronym{GLR} parsers and @code{yylval}
1119@vindex yylloc
1120@cindex @acronym{GLR} parsers and @code{yylloc}
1121In any semantic action, you can examine @code{yychar} to determine the type of
1122the look-ahead token present at the time of the associated reduction.
1123After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1124you can then examine @code{yylval} and @code{yylloc} to determine the
1125look-ahead token's semantic value and location, if any.
1126In a nondeferred semantic action, you can also modify any of these variables to
1127influence syntax analysis.
1128@xref{Look-Ahead, ,Look-Ahead Tokens}.
1129
1130@findex yyclearin
1131@cindex @acronym{GLR} parsers and @code{yyclearin}
1132In a deferred semantic action, it's too late to influence syntax analysis.
1133In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1134shallow copies of the values they had at the time of the associated reduction.
1135For this reason alone, modifying them is dangerous.
1136Moreover, the result of modifying them is undefined and subject to change with
1137future versions of Bison.
1138For example, if a semantic action might be deferred, you should never write it
1139to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1140memory referenced by @code{yylval}.
1141
1142@findex YYERROR
1143@cindex @acronym{GLR} parsers and @code{YYERROR}
1144Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1145(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1146initiate error recovery.
1147During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1148the same as its effect in an @acronym{LALR}(1) parser.
1149In a deferred semantic action, its effect is undefined.
1150@c The effect is probably a syntax error at the split point.
1151
8710fc41
JD
1152Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1153describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1154
fa7e68c3
PE
1155@node Compiler Requirements
1156@subsection Considerations when Compiling @acronym{GLR} Parsers
1157@cindex @code{inline}
9501dc6e 1158@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1159
38a92d50
PE
1160The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1161later. In addition, they use the @code{inline} keyword, which is not
1162C89, but is C99 and is a common extension in pre-C99 compilers. It is
1163up to the user of these parsers to handle
9501dc6e
AD
1164portability issues. For instance, if using Autoconf and the Autoconf
1165macro @code{AC_C_INLINE}, a mere
1166
1167@example
1168%@{
38a92d50 1169 #include <config.h>
9501dc6e
AD
1170%@}
1171@end example
1172
1173@noindent
1174will suffice. Otherwise, we suggest
1175
1176@example
1177%@{
38a92d50
PE
1178 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1179 #define inline
1180 #endif
9501dc6e
AD
1181%@}
1182@end example
676385e2 1183
342b8b6e 1184@node Locations Overview
847bf1f5
AD
1185@section Locations
1186@cindex location
95923bd6
AD
1187@cindex textual location
1188@cindex location, textual
847bf1f5
AD
1189
1190Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1191and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1192the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1193Bison provides a mechanism for handling these locations.
1194
72d2299c 1195Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1196associated location, but the type of locations is the same for all tokens and
72d2299c 1197groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1198structure for storing locations (@pxref{Locations}, for more details).
1199
1200Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1201set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1202is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1203@code{@@3}.
1204
1205When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1206of its left hand side (@pxref{Actions}). In the same way, another default
1207action is used for locations. However, the action for locations is general
847bf1f5 1208enough for most cases, meaning there is usually no need to describe for each
72d2299c 1209rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1210grouping, the default behavior of the output parser is to take the beginning
1211of the first symbol, and the end of the last symbol.
1212
342b8b6e 1213@node Bison Parser
bfa74976
RS
1214@section Bison Output: the Parser File
1215@cindex Bison parser
1216@cindex Bison utility
1217@cindex lexical analyzer, purpose
1218@cindex parser
1219
1220When you run Bison, you give it a Bison grammar file as input. The output
1221is a C source file that parses the language described by the grammar.
1222This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1223utility and the Bison parser are two distinct programs: the Bison utility
1224is a program whose output is the Bison parser that becomes part of your
1225program.
1226
1227The job of the Bison parser is to group tokens into groupings according to
1228the grammar rules---for example, to build identifiers and operators into
1229expressions. As it does this, it runs the actions for the grammar rules it
1230uses.
1231
704a47c4
AD
1232The tokens come from a function called the @dfn{lexical analyzer} that
1233you must supply in some fashion (such as by writing it in C). The Bison
1234parser calls the lexical analyzer each time it wants a new token. It
1235doesn't know what is ``inside'' the tokens (though their semantic values
1236may reflect this). Typically the lexical analyzer makes the tokens by
1237parsing characters of text, but Bison does not depend on this.
1238@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1239
1240The Bison parser file is C code which defines a function named
1241@code{yyparse} which implements that grammar. This function does not make
1242a complete C program: you must supply some additional functions. One is
1243the lexical analyzer. Another is an error-reporting function which the
1244parser calls to report an error. In addition, a complete C program must
1245start with a function called @code{main}; you have to provide this, and
1246arrange for it to call @code{yyparse} or the parser will never run.
1247@xref{Interface, ,Parser C-Language Interface}.
1248
f7ab6a50 1249Aside from the token type names and the symbols in the actions you
7093d0f5 1250write, all symbols defined in the Bison parser file itself
bfa74976
RS
1251begin with @samp{yy} or @samp{YY}. This includes interface functions
1252such as the lexical analyzer function @code{yylex}, the error reporting
1253function @code{yyerror} and the parser function @code{yyparse} itself.
1254This also includes numerous identifiers used for internal purposes.
1255Therefore, you should avoid using C identifiers starting with @samp{yy}
1256or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1257this manual. Also, you should avoid using the C identifiers
1258@samp{malloc} and @samp{free} for anything other than their usual
1259meanings.
bfa74976 1260
7093d0f5
AD
1261In some cases the Bison parser file includes system headers, and in
1262those cases your code should respect the identifiers reserved by those
55289366 1263headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1264@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1265declare memory allocators and related types. @code{<libintl.h>} is
1266included if message translation is in use
1267(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1268be included if you define @code{YYDEBUG} to a nonzero value
1269(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1270
342b8b6e 1271@node Stages
bfa74976
RS
1272@section Stages in Using Bison
1273@cindex stages in using Bison
1274@cindex using Bison
1275
1276The actual language-design process using Bison, from grammar specification
1277to a working compiler or interpreter, has these parts:
1278
1279@enumerate
1280@item
1281Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1282(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1283in the language, describe the action that is to be taken when an
1284instance of that rule is recognized. The action is described by a
1285sequence of C statements.
bfa74976
RS
1286
1287@item
704a47c4
AD
1288Write a lexical analyzer to process input and pass tokens to the parser.
1289The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1290Lexical Analyzer Function @code{yylex}}). It could also be produced
1291using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1292
1293@item
1294Write a controlling function that calls the Bison-produced parser.
1295
1296@item
1297Write error-reporting routines.
1298@end enumerate
1299
1300To turn this source code as written into a runnable program, you
1301must follow these steps:
1302
1303@enumerate
1304@item
1305Run Bison on the grammar to produce the parser.
1306
1307@item
1308Compile the code output by Bison, as well as any other source files.
1309
1310@item
1311Link the object files to produce the finished product.
1312@end enumerate
1313
342b8b6e 1314@node Grammar Layout
bfa74976
RS
1315@section The Overall Layout of a Bison Grammar
1316@cindex grammar file
1317@cindex file format
1318@cindex format of grammar file
1319@cindex layout of Bison grammar
1320
1321The input file for the Bison utility is a @dfn{Bison grammar file}. The
1322general form of a Bison grammar file is as follows:
1323
1324@example
1325%@{
08e49d20 1326@var{Prologue}
bfa74976
RS
1327%@}
1328
1329@var{Bison declarations}
1330
1331%%
1332@var{Grammar rules}
1333%%
08e49d20 1334@var{Epilogue}
bfa74976
RS
1335@end example
1336
1337@noindent
1338The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1339in every Bison grammar file to separate the sections.
1340
72d2299c 1341The prologue may define types and variables used in the actions. You can
342b8b6e 1342also use preprocessor commands to define macros used there, and use
bfa74976 1343@code{#include} to include header files that do any of these things.
38a92d50
PE
1344You need to declare the lexical analyzer @code{yylex} and the error
1345printer @code{yyerror} here, along with any other global identifiers
1346used by the actions in the grammar rules.
bfa74976
RS
1347
1348The Bison declarations declare the names of the terminal and nonterminal
1349symbols, and may also describe operator precedence and the data types of
1350semantic values of various symbols.
1351
1352The grammar rules define how to construct each nonterminal symbol from its
1353parts.
1354
38a92d50
PE
1355The epilogue can contain any code you want to use. Often the
1356definitions of functions declared in the prologue go here. In a
1357simple program, all the rest of the program can go here.
bfa74976 1358
342b8b6e 1359@node Examples
bfa74976
RS
1360@chapter Examples
1361@cindex simple examples
1362@cindex examples, simple
1363
1364Now we show and explain three sample programs written using Bison: a
1365reverse polish notation calculator, an algebraic (infix) notation
1366calculator, and a multi-function calculator. All three have been tested
1367under BSD Unix 4.3; each produces a usable, though limited, interactive
1368desk-top calculator.
1369
1370These examples are simple, but Bison grammars for real programming
1371languages are written the same way.
1372@ifinfo
1373You can copy these examples out of the Info file and into a source file
1374to try them.
1375@end ifinfo
1376
1377@menu
1378* RPN Calc:: Reverse polish notation calculator;
1379 a first example with no operator precedence.
1380* Infix Calc:: Infix (algebraic) notation calculator.
1381 Operator precedence is introduced.
1382* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1383* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1384* Multi-function Calc:: Calculator with memory and trig functions.
1385 It uses multiple data-types for semantic values.
1386* Exercises:: Ideas for improving the multi-function calculator.
1387@end menu
1388
342b8b6e 1389@node RPN Calc
bfa74976
RS
1390@section Reverse Polish Notation Calculator
1391@cindex reverse polish notation
1392@cindex polish notation calculator
1393@cindex @code{rpcalc}
1394@cindex calculator, simple
1395
1396The first example is that of a simple double-precision @dfn{reverse polish
1397notation} calculator (a calculator using postfix operators). This example
1398provides a good starting point, since operator precedence is not an issue.
1399The second example will illustrate how operator precedence is handled.
1400
1401The source code for this calculator is named @file{rpcalc.y}. The
1402@samp{.y} extension is a convention used for Bison input files.
1403
1404@menu
75f5aaea 1405* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1406* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1407* Lexer: Rpcalc Lexer. The lexical analyzer.
1408* Main: Rpcalc Main. The controlling function.
1409* Error: Rpcalc Error. The error reporting function.
1410* Gen: Rpcalc Gen. Running Bison on the grammar file.
1411* Comp: Rpcalc Compile. Run the C compiler on the output code.
1412@end menu
1413
342b8b6e 1414@node Rpcalc Decls
bfa74976
RS
1415@subsection Declarations for @code{rpcalc}
1416
1417Here are the C and Bison declarations for the reverse polish notation
1418calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1419
1420@example
72d2299c 1421/* Reverse polish notation calculator. */
bfa74976
RS
1422
1423%@{
38a92d50
PE
1424 #define YYSTYPE double
1425 #include <math.h>
1426 int yylex (void);
1427 void yyerror (char const *);
bfa74976
RS
1428%@}
1429
1430%token NUM
1431
72d2299c 1432%% /* Grammar rules and actions follow. */
bfa74976
RS
1433@end example
1434
75f5aaea 1435The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1436preprocessor directives and two forward declarations.
bfa74976
RS
1437
1438The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1439specifying the C data type for semantic values of both tokens and
1440groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1441Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1442don't define it, @code{int} is the default. Because we specify
1443@code{double}, each token and each expression has an associated value,
1444which is a floating point number.
bfa74976
RS
1445
1446The @code{#include} directive is used to declare the exponentiation
1447function @code{pow}.
1448
38a92d50
PE
1449The forward declarations for @code{yylex} and @code{yyerror} are
1450needed because the C language requires that functions be declared
1451before they are used. These functions will be defined in the
1452epilogue, but the parser calls them so they must be declared in the
1453prologue.
1454
704a47c4
AD
1455The second section, Bison declarations, provides information to Bison
1456about the token types (@pxref{Bison Declarations, ,The Bison
1457Declarations Section}). Each terminal symbol that is not a
1458single-character literal must be declared here. (Single-character
bfa74976
RS
1459literals normally don't need to be declared.) In this example, all the
1460arithmetic operators are designated by single-character literals, so the
1461only terminal symbol that needs to be declared is @code{NUM}, the token
1462type for numeric constants.
1463
342b8b6e 1464@node Rpcalc Rules
bfa74976
RS
1465@subsection Grammar Rules for @code{rpcalc}
1466
1467Here are the grammar rules for the reverse polish notation calculator.
1468
1469@example
1470input: /* empty */
1471 | input line
1472;
1473
1474line: '\n'
18b519c0 1475 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1476;
1477
18b519c0
AD
1478exp: NUM @{ $$ = $1; @}
1479 | exp exp '+' @{ $$ = $1 + $2; @}
1480 | exp exp '-' @{ $$ = $1 - $2; @}
1481 | exp exp '*' @{ $$ = $1 * $2; @}
1482 | exp exp '/' @{ $$ = $1 / $2; @}
1483 /* Exponentiation */
1484 | exp exp '^' @{ $$ = pow ($1, $2); @}
1485 /* Unary minus */
1486 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1487;
1488%%
1489@end example
1490
1491The groupings of the rpcalc ``language'' defined here are the expression
1492(given the name @code{exp}), the line of input (@code{line}), and the
1493complete input transcript (@code{input}). Each of these nonterminal
1494symbols has several alternate rules, joined by the @samp{|} punctuator
1495which is read as ``or''. The following sections explain what these rules
1496mean.
1497
1498The semantics of the language is determined by the actions taken when a
1499grouping is recognized. The actions are the C code that appears inside
1500braces. @xref{Actions}.
1501
1502You must specify these actions in C, but Bison provides the means for
1503passing semantic values between the rules. In each action, the
1504pseudo-variable @code{$$} stands for the semantic value for the grouping
1505that the rule is going to construct. Assigning a value to @code{$$} is the
1506main job of most actions. The semantic values of the components of the
1507rule are referred to as @code{$1}, @code{$2}, and so on.
1508
1509@menu
13863333
AD
1510* Rpcalc Input::
1511* Rpcalc Line::
1512* Rpcalc Expr::
bfa74976
RS
1513@end menu
1514
342b8b6e 1515@node Rpcalc Input
bfa74976
RS
1516@subsubsection Explanation of @code{input}
1517
1518Consider the definition of @code{input}:
1519
1520@example
1521input: /* empty */
1522 | input line
1523;
1524@end example
1525
1526This definition reads as follows: ``A complete input is either an empty
1527string, or a complete input followed by an input line''. Notice that
1528``complete input'' is defined in terms of itself. This definition is said
1529to be @dfn{left recursive} since @code{input} appears always as the
1530leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1531
1532The first alternative is empty because there are no symbols between the
1533colon and the first @samp{|}; this means that @code{input} can match an
1534empty string of input (no tokens). We write the rules this way because it
1535is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1536It's conventional to put an empty alternative first and write the comment
1537@samp{/* empty */} in it.
1538
1539The second alternate rule (@code{input line}) handles all nontrivial input.
1540It means, ``After reading any number of lines, read one more line if
1541possible.'' The left recursion makes this rule into a loop. Since the
1542first alternative matches empty input, the loop can be executed zero or
1543more times.
1544
1545The parser function @code{yyparse} continues to process input until a
1546grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1547input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1548
342b8b6e 1549@node Rpcalc Line
bfa74976
RS
1550@subsubsection Explanation of @code{line}
1551
1552Now consider the definition of @code{line}:
1553
1554@example
1555line: '\n'
1556 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1557;
1558@end example
1559
1560The first alternative is a token which is a newline character; this means
1561that rpcalc accepts a blank line (and ignores it, since there is no
1562action). The second alternative is an expression followed by a newline.
1563This is the alternative that makes rpcalc useful. The semantic value of
1564the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1565question is the first symbol in the alternative. The action prints this
1566value, which is the result of the computation the user asked for.
1567
1568This action is unusual because it does not assign a value to @code{$$}. As
1569a consequence, the semantic value associated with the @code{line} is
1570uninitialized (its value will be unpredictable). This would be a bug if
1571that value were ever used, but we don't use it: once rpcalc has printed the
1572value of the user's input line, that value is no longer needed.
1573
342b8b6e 1574@node Rpcalc Expr
bfa74976
RS
1575@subsubsection Explanation of @code{expr}
1576
1577The @code{exp} grouping has several rules, one for each kind of expression.
1578The first rule handles the simplest expressions: those that are just numbers.
1579The second handles an addition-expression, which looks like two expressions
1580followed by a plus-sign. The third handles subtraction, and so on.
1581
1582@example
1583exp: NUM
1584 | exp exp '+' @{ $$ = $1 + $2; @}
1585 | exp exp '-' @{ $$ = $1 - $2; @}
1586 @dots{}
1587 ;
1588@end example
1589
1590We have used @samp{|} to join all the rules for @code{exp}, but we could
1591equally well have written them separately:
1592
1593@example
1594exp: NUM ;
1595exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1596exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1597 @dots{}
1598@end example
1599
1600Most of the rules have actions that compute the value of the expression in
1601terms of the value of its parts. For example, in the rule for addition,
1602@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1603the second one. The third component, @code{'+'}, has no meaningful
1604associated semantic value, but if it had one you could refer to it as
1605@code{$3}. When @code{yyparse} recognizes a sum expression using this
1606rule, the sum of the two subexpressions' values is produced as the value of
1607the entire expression. @xref{Actions}.
1608
1609You don't have to give an action for every rule. When a rule has no
1610action, Bison by default copies the value of @code{$1} into @code{$$}.
1611This is what happens in the first rule (the one that uses @code{NUM}).
1612
1613The formatting shown here is the recommended convention, but Bison does
72d2299c 1614not require it. You can add or change white space as much as you wish.
bfa74976
RS
1615For example, this:
1616
1617@example
99a9344e 1618exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1619@end example
1620
1621@noindent
1622means the same thing as this:
1623
1624@example
1625exp: NUM
1626 | exp exp '+' @{ $$ = $1 + $2; @}
1627 | @dots{}
99a9344e 1628;
bfa74976
RS
1629@end example
1630
1631@noindent
1632The latter, however, is much more readable.
1633
342b8b6e 1634@node Rpcalc Lexer
bfa74976
RS
1635@subsection The @code{rpcalc} Lexical Analyzer
1636@cindex writing a lexical analyzer
1637@cindex lexical analyzer, writing
1638
704a47c4
AD
1639The lexical analyzer's job is low-level parsing: converting characters
1640or sequences of characters into tokens. The Bison parser gets its
1641tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1642Analyzer Function @code{yylex}}.
bfa74976 1643
c827f760
PE
1644Only a simple lexical analyzer is needed for the @acronym{RPN}
1645calculator. This
bfa74976
RS
1646lexical analyzer skips blanks and tabs, then reads in numbers as
1647@code{double} and returns them as @code{NUM} tokens. Any other character
1648that isn't part of a number is a separate token. Note that the token-code
1649for such a single-character token is the character itself.
1650
1651The return value of the lexical analyzer function is a numeric code which
1652represents a token type. The same text used in Bison rules to stand for
1653this token type is also a C expression for the numeric code for the type.
1654This works in two ways. If the token type is a character literal, then its
e966383b 1655numeric code is that of the character; you can use the same
bfa74976
RS
1656character literal in the lexical analyzer to express the number. If the
1657token type is an identifier, that identifier is defined by Bison as a C
1658macro whose definition is the appropriate number. In this example,
1659therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1660
1964ad8c
AD
1661The semantic value of the token (if it has one) is stored into the
1662global variable @code{yylval}, which is where the Bison parser will look
1663for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1664defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1665,Declarations for @code{rpcalc}}.)
bfa74976 1666
72d2299c
PE
1667A token type code of zero is returned if the end-of-input is encountered.
1668(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1669
1670Here is the code for the lexical analyzer:
1671
1672@example
1673@group
72d2299c 1674/* The lexical analyzer returns a double floating point
e966383b 1675 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1676 of the character read if not a number. It skips all blanks
1677 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1678
1679#include <ctype.h>
1680@end group
1681
1682@group
13863333
AD
1683int
1684yylex (void)
bfa74976
RS
1685@{
1686 int c;
1687
72d2299c 1688 /* Skip white space. */
13863333 1689 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1690 ;
1691@end group
1692@group
72d2299c 1693 /* Process numbers. */
13863333 1694 if (c == '.' || isdigit (c))
bfa74976
RS
1695 @{
1696 ungetc (c, stdin);
1697 scanf ("%lf", &yylval);
1698 return NUM;
1699 @}
1700@end group
1701@group
72d2299c 1702 /* Return end-of-input. */
13863333 1703 if (c == EOF)
bfa74976 1704 return 0;
72d2299c 1705 /* Return a single char. */
13863333 1706 return c;
bfa74976
RS
1707@}
1708@end group
1709@end example
1710
342b8b6e 1711@node Rpcalc Main
bfa74976
RS
1712@subsection The Controlling Function
1713@cindex controlling function
1714@cindex main function in simple example
1715
1716In keeping with the spirit of this example, the controlling function is
1717kept to the bare minimum. The only requirement is that it call
1718@code{yyparse} to start the process of parsing.
1719
1720@example
1721@group
13863333
AD
1722int
1723main (void)
bfa74976 1724@{
13863333 1725 return yyparse ();
bfa74976
RS
1726@}
1727@end group
1728@end example
1729
342b8b6e 1730@node Rpcalc Error
bfa74976
RS
1731@subsection The Error Reporting Routine
1732@cindex error reporting routine
1733
1734When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1735function @code{yyerror} to print an error message (usually but not
6e649e65 1736always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1737@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1738here is the definition we will use:
bfa74976
RS
1739
1740@example
1741@group
1742#include <stdio.h>
1743
38a92d50 1744/* Called by yyparse on error. */
13863333 1745void
38a92d50 1746yyerror (char const *s)
bfa74976 1747@{
4e03e201 1748 fprintf (stderr, "%s\n", s);
bfa74976
RS
1749@}
1750@end group
1751@end example
1752
1753After @code{yyerror} returns, the Bison parser may recover from the error
1754and continue parsing if the grammar contains a suitable error rule
1755(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1756have not written any error rules in this example, so any invalid input will
1757cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1758real calculator, but it is adequate for the first example.
bfa74976 1759
342b8b6e 1760@node Rpcalc Gen
bfa74976
RS
1761@subsection Running Bison to Make the Parser
1762@cindex running Bison (introduction)
1763
ceed8467
AD
1764Before running Bison to produce a parser, we need to decide how to
1765arrange all the source code in one or more source files. For such a
1766simple example, the easiest thing is to put everything in one file. The
1767definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1768end, in the epilogue of the file
75f5aaea 1769(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1770
1771For a large project, you would probably have several source files, and use
1772@code{make} to arrange to recompile them.
1773
1774With all the source in a single file, you use the following command to
1775convert it into a parser file:
1776
1777@example
fa4d969f 1778bison @var{file}.y
bfa74976
RS
1779@end example
1780
1781@noindent
1782In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1783@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1784removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1785Bison contains the source code for @code{yyparse}. The additional
1786functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1787are copied verbatim to the output.
1788
342b8b6e 1789@node Rpcalc Compile
bfa74976
RS
1790@subsection Compiling the Parser File
1791@cindex compiling the parser
1792
1793Here is how to compile and run the parser file:
1794
1795@example
1796@group
1797# @r{List files in current directory.}
9edcd895 1798$ @kbd{ls}
bfa74976
RS
1799rpcalc.tab.c rpcalc.y
1800@end group
1801
1802@group
1803# @r{Compile the Bison parser.}
1804# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1805$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1806@end group
1807
1808@group
1809# @r{List files again.}
9edcd895 1810$ @kbd{ls}
bfa74976
RS
1811rpcalc rpcalc.tab.c rpcalc.y
1812@end group
1813@end example
1814
1815The file @file{rpcalc} now contains the executable code. Here is an
1816example session using @code{rpcalc}.
1817
1818@example
9edcd895
AD
1819$ @kbd{rpcalc}
1820@kbd{4 9 +}
bfa74976 182113
9edcd895 1822@kbd{3 7 + 3 4 5 *+-}
bfa74976 1823-13
9edcd895 1824@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182513
9edcd895 1826@kbd{5 6 / 4 n +}
bfa74976 1827-3.166666667
9edcd895 1828@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182981
9edcd895
AD
1830@kbd{^D} @r{End-of-file indicator}
1831$
bfa74976
RS
1832@end example
1833
342b8b6e 1834@node Infix Calc
bfa74976
RS
1835@section Infix Notation Calculator: @code{calc}
1836@cindex infix notation calculator
1837@cindex @code{calc}
1838@cindex calculator, infix notation
1839
1840We now modify rpcalc to handle infix operators instead of postfix. Infix
1841notation involves the concept of operator precedence and the need for
1842parentheses nested to arbitrary depth. Here is the Bison code for
1843@file{calc.y}, an infix desk-top calculator.
1844
1845@example
38a92d50 1846/* Infix notation calculator. */
bfa74976
RS
1847
1848%@{
38a92d50
PE
1849 #define YYSTYPE double
1850 #include <math.h>
1851 #include <stdio.h>
1852 int yylex (void);
1853 void yyerror (char const *);
bfa74976
RS
1854%@}
1855
38a92d50 1856/* Bison declarations. */
bfa74976
RS
1857%token NUM
1858%left '-' '+'
1859%left '*' '/'
1860%left NEG /* negation--unary minus */
38a92d50 1861%right '^' /* exponentiation */
bfa74976 1862
38a92d50
PE
1863%% /* The grammar follows. */
1864input: /* empty */
bfa74976
RS
1865 | input line
1866;
1867
1868line: '\n'
1869 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1870;
1871
1872exp: NUM @{ $$ = $1; @}
1873 | exp '+' exp @{ $$ = $1 + $3; @}
1874 | exp '-' exp @{ $$ = $1 - $3; @}
1875 | exp '*' exp @{ $$ = $1 * $3; @}
1876 | exp '/' exp @{ $$ = $1 / $3; @}
1877 | '-' exp %prec NEG @{ $$ = -$2; @}
1878 | exp '^' exp @{ $$ = pow ($1, $3); @}
1879 | '(' exp ')' @{ $$ = $2; @}
1880;
1881%%
1882@end example
1883
1884@noindent
ceed8467
AD
1885The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1886same as before.
bfa74976
RS
1887
1888There are two important new features shown in this code.
1889
1890In the second section (Bison declarations), @code{%left} declares token
1891types and says they are left-associative operators. The declarations
1892@code{%left} and @code{%right} (right associativity) take the place of
1893@code{%token} which is used to declare a token type name without
1894associativity. (These tokens are single-character literals, which
1895ordinarily don't need to be declared. We declare them here to specify
1896the associativity.)
1897
1898Operator precedence is determined by the line ordering of the
1899declarations; the higher the line number of the declaration (lower on
1900the page or screen), the higher the precedence. Hence, exponentiation
1901has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1902by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1903Precedence}.
bfa74976 1904
704a47c4
AD
1905The other important new feature is the @code{%prec} in the grammar
1906section for the unary minus operator. The @code{%prec} simply instructs
1907Bison that the rule @samp{| '-' exp} has the same precedence as
1908@code{NEG}---in this case the next-to-highest. @xref{Contextual
1909Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1910
1911Here is a sample run of @file{calc.y}:
1912
1913@need 500
1914@example
9edcd895
AD
1915$ @kbd{calc}
1916@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19176.880952381
9edcd895 1918@kbd{-56 + 2}
bfa74976 1919-54
9edcd895 1920@kbd{3 ^ 2}
bfa74976
RS
19219
1922@end example
1923
342b8b6e 1924@node Simple Error Recovery
bfa74976
RS
1925@section Simple Error Recovery
1926@cindex error recovery, simple
1927
1928Up to this point, this manual has not addressed the issue of @dfn{error
1929recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1930error. All we have handled is error reporting with @code{yyerror}.
1931Recall that by default @code{yyparse} returns after calling
1932@code{yyerror}. This means that an erroneous input line causes the
1933calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1934
1935The Bison language itself includes the reserved word @code{error}, which
1936may be included in the grammar rules. In the example below it has
1937been added to one of the alternatives for @code{line}:
1938
1939@example
1940@group
1941line: '\n'
1942 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1943 | error '\n' @{ yyerrok; @}
1944;
1945@end group
1946@end example
1947
ceed8467 1948This addition to the grammar allows for simple error recovery in the
6e649e65 1949event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1950read, the error will be recognized by the third rule for @code{line},
1951and parsing will continue. (The @code{yyerror} function is still called
1952upon to print its message as well.) The action executes the statement
1953@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1954that error recovery is complete (@pxref{Error Recovery}). Note the
1955difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1956misprint.
bfa74976
RS
1957
1958This form of error recovery deals with syntax errors. There are other
1959kinds of errors; for example, division by zero, which raises an exception
1960signal that is normally fatal. A real calculator program must handle this
1961signal and use @code{longjmp} to return to @code{main} and resume parsing
1962input lines; it would also have to discard the rest of the current line of
1963input. We won't discuss this issue further because it is not specific to
1964Bison programs.
1965
342b8b6e
AD
1966@node Location Tracking Calc
1967@section Location Tracking Calculator: @code{ltcalc}
1968@cindex location tracking calculator
1969@cindex @code{ltcalc}
1970@cindex calculator, location tracking
1971
9edcd895
AD
1972This example extends the infix notation calculator with location
1973tracking. This feature will be used to improve the error messages. For
1974the sake of clarity, this example is a simple integer calculator, since
1975most of the work needed to use locations will be done in the lexical
72d2299c 1976analyzer.
342b8b6e
AD
1977
1978@menu
1979* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1980* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1981* Lexer: Ltcalc Lexer. The lexical analyzer.
1982@end menu
1983
1984@node Ltcalc Decls
1985@subsection Declarations for @code{ltcalc}
1986
9edcd895
AD
1987The C and Bison declarations for the location tracking calculator are
1988the same as the declarations for the infix notation calculator.
342b8b6e
AD
1989
1990@example
1991/* Location tracking calculator. */
1992
1993%@{
38a92d50
PE
1994 #define YYSTYPE int
1995 #include <math.h>
1996 int yylex (void);
1997 void yyerror (char const *);
342b8b6e
AD
1998%@}
1999
2000/* Bison declarations. */
2001%token NUM
2002
2003%left '-' '+'
2004%left '*' '/'
2005%left NEG
2006%right '^'
2007
38a92d50 2008%% /* The grammar follows. */
342b8b6e
AD
2009@end example
2010
9edcd895
AD
2011@noindent
2012Note there are no declarations specific to locations. Defining a data
2013type for storing locations is not needed: we will use the type provided
2014by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2015four member structure with the following integer fields:
2016@code{first_line}, @code{first_column}, @code{last_line} and
2017@code{last_column}.
342b8b6e
AD
2018
2019@node Ltcalc Rules
2020@subsection Grammar Rules for @code{ltcalc}
2021
9edcd895
AD
2022Whether handling locations or not has no effect on the syntax of your
2023language. Therefore, grammar rules for this example will be very close
2024to those of the previous example: we will only modify them to benefit
2025from the new information.
342b8b6e 2026
9edcd895
AD
2027Here, we will use locations to report divisions by zero, and locate the
2028wrong expressions or subexpressions.
342b8b6e
AD
2029
2030@example
2031@group
2032input : /* empty */
2033 | input line
2034;
2035@end group
2036
2037@group
2038line : '\n'
2039 | exp '\n' @{ printf ("%d\n", $1); @}
2040;
2041@end group
2042
2043@group
2044exp : NUM @{ $$ = $1; @}
2045 | exp '+' exp @{ $$ = $1 + $3; @}
2046 | exp '-' exp @{ $$ = $1 - $3; @}
2047 | exp '*' exp @{ $$ = $1 * $3; @}
2048@end group
342b8b6e 2049@group
9edcd895 2050 | exp '/' exp
342b8b6e
AD
2051 @{
2052 if ($3)
2053 $$ = $1 / $3;
2054 else
2055 @{
2056 $$ = 1;
9edcd895
AD
2057 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2058 @@3.first_line, @@3.first_column,
2059 @@3.last_line, @@3.last_column);
342b8b6e
AD
2060 @}
2061 @}
2062@end group
2063@group
2064 | '-' exp %preg NEG @{ $$ = -$2; @}
2065 | exp '^' exp @{ $$ = pow ($1, $3); @}
2066 | '(' exp ')' @{ $$ = $2; @}
2067@end group
2068@end example
2069
2070This code shows how to reach locations inside of semantic actions, by
2071using the pseudo-variables @code{@@@var{n}} for rule components, and the
2072pseudo-variable @code{@@$} for groupings.
2073
9edcd895
AD
2074We don't need to assign a value to @code{@@$}: the output parser does it
2075automatically. By default, before executing the C code of each action,
2076@code{@@$} is set to range from the beginning of @code{@@1} to the end
2077of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2078can be redefined (@pxref{Location Default Action, , Default Action for
2079Locations}), and for very specific rules, @code{@@$} can be computed by
2080hand.
342b8b6e
AD
2081
2082@node Ltcalc Lexer
2083@subsection The @code{ltcalc} Lexical Analyzer.
2084
9edcd895 2085Until now, we relied on Bison's defaults to enable location
72d2299c 2086tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2087able to feed the parser with the token locations, as it already does for
2088semantic values.
342b8b6e 2089
9edcd895
AD
2090To this end, we must take into account every single character of the
2091input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2092
2093@example
2094@group
2095int
2096yylex (void)
2097@{
2098 int c;
18b519c0 2099@end group
342b8b6e 2100
18b519c0 2101@group
72d2299c 2102 /* Skip white space. */
342b8b6e
AD
2103 while ((c = getchar ()) == ' ' || c == '\t')
2104 ++yylloc.last_column;
18b519c0 2105@end group
342b8b6e 2106
18b519c0 2107@group
72d2299c 2108 /* Step. */
342b8b6e
AD
2109 yylloc.first_line = yylloc.last_line;
2110 yylloc.first_column = yylloc.last_column;
2111@end group
2112
2113@group
72d2299c 2114 /* Process numbers. */
342b8b6e
AD
2115 if (isdigit (c))
2116 @{
2117 yylval = c - '0';
2118 ++yylloc.last_column;
2119 while (isdigit (c = getchar ()))
2120 @{
2121 ++yylloc.last_column;
2122 yylval = yylval * 10 + c - '0';
2123 @}
2124 ungetc (c, stdin);
2125 return NUM;
2126 @}
2127@end group
2128
72d2299c 2129 /* Return end-of-input. */
342b8b6e
AD
2130 if (c == EOF)
2131 return 0;
2132
72d2299c 2133 /* Return a single char, and update location. */
342b8b6e
AD
2134 if (c == '\n')
2135 @{
2136 ++yylloc.last_line;
2137 yylloc.last_column = 0;
2138 @}
2139 else
2140 ++yylloc.last_column;
2141 return c;
2142@}
2143@end example
2144
9edcd895
AD
2145Basically, the lexical analyzer performs the same processing as before:
2146it skips blanks and tabs, and reads numbers or single-character tokens.
2147In addition, it updates @code{yylloc}, the global variable (of type
2148@code{YYLTYPE}) containing the token's location.
342b8b6e 2149
9edcd895 2150Now, each time this function returns a token, the parser has its number
72d2299c 2151as well as its semantic value, and its location in the text. The last
9edcd895
AD
2152needed change is to initialize @code{yylloc}, for example in the
2153controlling function:
342b8b6e
AD
2154
2155@example
9edcd895 2156@group
342b8b6e
AD
2157int
2158main (void)
2159@{
2160 yylloc.first_line = yylloc.last_line = 1;
2161 yylloc.first_column = yylloc.last_column = 0;
2162 return yyparse ();
2163@}
9edcd895 2164@end group
342b8b6e
AD
2165@end example
2166
9edcd895
AD
2167Remember that computing locations is not a matter of syntax. Every
2168character must be associated to a location update, whether it is in
2169valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2170
2171@node Multi-function Calc
bfa74976
RS
2172@section Multi-Function Calculator: @code{mfcalc}
2173@cindex multi-function calculator
2174@cindex @code{mfcalc}
2175@cindex calculator, multi-function
2176
2177Now that the basics of Bison have been discussed, it is time to move on to
2178a more advanced problem. The above calculators provided only five
2179functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2180be nice to have a calculator that provides other mathematical functions such
2181as @code{sin}, @code{cos}, etc.
2182
2183It is easy to add new operators to the infix calculator as long as they are
2184only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2185back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2186adding a new operator. But we want something more flexible: built-in
2187functions whose syntax has this form:
2188
2189@example
2190@var{function_name} (@var{argument})
2191@end example
2192
2193@noindent
2194At the same time, we will add memory to the calculator, by allowing you
2195to create named variables, store values in them, and use them later.
2196Here is a sample session with the multi-function calculator:
2197
2198@example
9edcd895
AD
2199$ @kbd{mfcalc}
2200@kbd{pi = 3.141592653589}
bfa74976 22013.1415926536
9edcd895 2202@kbd{sin(pi)}
bfa74976 22030.0000000000
9edcd895 2204@kbd{alpha = beta1 = 2.3}
bfa74976 22052.3000000000
9edcd895 2206@kbd{alpha}
bfa74976 22072.3000000000
9edcd895 2208@kbd{ln(alpha)}
bfa74976 22090.8329091229
9edcd895 2210@kbd{exp(ln(beta1))}
bfa74976 22112.3000000000
9edcd895 2212$
bfa74976
RS
2213@end example
2214
2215Note that multiple assignment and nested function calls are permitted.
2216
2217@menu
2218* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2219* Rules: Mfcalc Rules. Grammar rules for the calculator.
2220* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2221@end menu
2222
342b8b6e 2223@node Mfcalc Decl
bfa74976
RS
2224@subsection Declarations for @code{mfcalc}
2225
2226Here are the C and Bison declarations for the multi-function calculator.
2227
2228@smallexample
18b519c0 2229@group
bfa74976 2230%@{
38a92d50
PE
2231 #include <math.h> /* For math functions, cos(), sin(), etc. */
2232 #include "calc.h" /* Contains definition of `symrec'. */
2233 int yylex (void);
2234 void yyerror (char const *);
bfa74976 2235%@}
18b519c0
AD
2236@end group
2237@group
bfa74976 2238%union @{
38a92d50
PE
2239 double val; /* For returning numbers. */
2240 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2241@}
18b519c0 2242@end group
38a92d50
PE
2243%token <val> NUM /* Simple double precision number. */
2244%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2245%type <val> exp
2246
18b519c0 2247@group
bfa74976
RS
2248%right '='
2249%left '-' '+'
2250%left '*' '/'
38a92d50
PE
2251%left NEG /* negation--unary minus */
2252%right '^' /* exponentiation */
18b519c0 2253@end group
38a92d50 2254%% /* The grammar follows. */
bfa74976
RS
2255@end smallexample
2256
2257The above grammar introduces only two new features of the Bison language.
2258These features allow semantic values to have various data types
2259(@pxref{Multiple Types, ,More Than One Value Type}).
2260
2261The @code{%union} declaration specifies the entire list of possible types;
2262this is instead of defining @code{YYSTYPE}. The allowable types are now
2263double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2264the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2265
2266Since values can now have various types, it is necessary to associate a
2267type with each grammar symbol whose semantic value is used. These symbols
2268are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2269declarations are augmented with information about their data type (placed
2270between angle brackets).
2271
704a47c4
AD
2272The Bison construct @code{%type} is used for declaring nonterminal
2273symbols, just as @code{%token} is used for declaring token types. We
2274have not used @code{%type} before because nonterminal symbols are
2275normally declared implicitly by the rules that define them. But
2276@code{exp} must be declared explicitly so we can specify its value type.
2277@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2278
342b8b6e 2279@node Mfcalc Rules
bfa74976
RS
2280@subsection Grammar Rules for @code{mfcalc}
2281
2282Here are the grammar rules for the multi-function calculator.
2283Most of them are copied directly from @code{calc}; three rules,
2284those which mention @code{VAR} or @code{FNCT}, are new.
2285
2286@smallexample
18b519c0 2287@group
bfa74976
RS
2288input: /* empty */
2289 | input line
2290;
18b519c0 2291@end group
bfa74976 2292
18b519c0 2293@group
bfa74976
RS
2294line:
2295 '\n'
2296 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2297 | error '\n' @{ yyerrok; @}
2298;
18b519c0 2299@end group
bfa74976 2300
18b519c0 2301@group
bfa74976
RS
2302exp: NUM @{ $$ = $1; @}
2303 | VAR @{ $$ = $1->value.var; @}
2304 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2305 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2306 | exp '+' exp @{ $$ = $1 + $3; @}
2307 | exp '-' exp @{ $$ = $1 - $3; @}
2308 | exp '*' exp @{ $$ = $1 * $3; @}
2309 | exp '/' exp @{ $$ = $1 / $3; @}
2310 | '-' exp %prec NEG @{ $$ = -$2; @}
2311 | exp '^' exp @{ $$ = pow ($1, $3); @}
2312 | '(' exp ')' @{ $$ = $2; @}
2313;
18b519c0 2314@end group
38a92d50 2315/* End of grammar. */
bfa74976
RS
2316%%
2317@end smallexample
2318
342b8b6e 2319@node Mfcalc Symtab
bfa74976
RS
2320@subsection The @code{mfcalc} Symbol Table
2321@cindex symbol table example
2322
2323The multi-function calculator requires a symbol table to keep track of the
2324names and meanings of variables and functions. This doesn't affect the
2325grammar rules (except for the actions) or the Bison declarations, but it
2326requires some additional C functions for support.
2327
2328The symbol table itself consists of a linked list of records. Its
2329definition, which is kept in the header @file{calc.h}, is as follows. It
2330provides for either functions or variables to be placed in the table.
2331
2332@smallexample
2333@group
38a92d50 2334/* Function type. */
32dfccf8 2335typedef double (*func_t) (double);
72f889cc 2336@end group
32dfccf8 2337
72f889cc 2338@group
38a92d50 2339/* Data type for links in the chain of symbols. */
bfa74976
RS
2340struct symrec
2341@{
38a92d50 2342 char *name; /* name of symbol */
bfa74976 2343 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2344 union
2345 @{
38a92d50
PE
2346 double var; /* value of a VAR */
2347 func_t fnctptr; /* value of a FNCT */
bfa74976 2348 @} value;
38a92d50 2349 struct symrec *next; /* link field */
bfa74976
RS
2350@};
2351@end group
2352
2353@group
2354typedef struct symrec symrec;
2355
38a92d50 2356/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2357extern symrec *sym_table;
2358
a730d142 2359symrec *putsym (char const *, int);
38a92d50 2360symrec *getsym (char const *);
bfa74976
RS
2361@end group
2362@end smallexample
2363
2364The new version of @code{main} includes a call to @code{init_table}, a
2365function that initializes the symbol table. Here it is, and
2366@code{init_table} as well:
2367
2368@smallexample
bfa74976
RS
2369#include <stdio.h>
2370
18b519c0 2371@group
38a92d50 2372/* Called by yyparse on error. */
13863333 2373void
38a92d50 2374yyerror (char const *s)
bfa74976
RS
2375@{
2376 printf ("%s\n", s);
2377@}
18b519c0 2378@end group
bfa74976 2379
18b519c0 2380@group
bfa74976
RS
2381struct init
2382@{
38a92d50
PE
2383 char const *fname;
2384 double (*fnct) (double);
bfa74976
RS
2385@};
2386@end group
2387
2388@group
38a92d50 2389struct init const arith_fncts[] =
13863333 2390@{
32dfccf8
AD
2391 "sin", sin,
2392 "cos", cos,
13863333 2393 "atan", atan,
32dfccf8
AD
2394 "ln", log,
2395 "exp", exp,
13863333
AD
2396 "sqrt", sqrt,
2397 0, 0
2398@};
18b519c0 2399@end group
bfa74976 2400
18b519c0 2401@group
bfa74976 2402/* The symbol table: a chain of `struct symrec'. */
38a92d50 2403symrec *sym_table;
bfa74976
RS
2404@end group
2405
2406@group
72d2299c 2407/* Put arithmetic functions in table. */
13863333
AD
2408void
2409init_table (void)
bfa74976
RS
2410@{
2411 int i;
2412 symrec *ptr;
2413 for (i = 0; arith_fncts[i].fname != 0; i++)
2414 @{
2415 ptr = putsym (arith_fncts[i].fname, FNCT);
2416 ptr->value.fnctptr = arith_fncts[i].fnct;
2417 @}
2418@}
2419@end group
38a92d50
PE
2420
2421@group
2422int
2423main (void)
2424@{
2425 init_table ();
2426 return yyparse ();
2427@}
2428@end group
bfa74976
RS
2429@end smallexample
2430
2431By simply editing the initialization list and adding the necessary include
2432files, you can add additional functions to the calculator.
2433
2434Two important functions allow look-up and installation of symbols in the
2435symbol table. The function @code{putsym} is passed a name and the type
2436(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2437linked to the front of the list, and a pointer to the object is returned.
2438The function @code{getsym} is passed the name of the symbol to look up. If
2439found, a pointer to that symbol is returned; otherwise zero is returned.
2440
2441@smallexample
2442symrec *
38a92d50 2443putsym (char const *sym_name, int sym_type)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 ptr = (symrec *) malloc (sizeof (symrec));
2447 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2448 strcpy (ptr->name,sym_name);
2449 ptr->type = sym_type;
72d2299c 2450 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2451 ptr->next = (struct symrec *)sym_table;
2452 sym_table = ptr;
2453 return ptr;
2454@}
2455
2456symrec *
38a92d50 2457getsym (char const *sym_name)
bfa74976
RS
2458@{
2459 symrec *ptr;
2460 for (ptr = sym_table; ptr != (symrec *) 0;
2461 ptr = (symrec *)ptr->next)
2462 if (strcmp (ptr->name,sym_name) == 0)
2463 return ptr;
2464 return 0;
2465@}
2466@end smallexample
2467
2468The function @code{yylex} must now recognize variables, numeric values, and
2469the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2470characters with a leading letter are recognized as either variables or
bfa74976
RS
2471functions depending on what the symbol table says about them.
2472
2473The string is passed to @code{getsym} for look up in the symbol table. If
2474the name appears in the table, a pointer to its location and its type
2475(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2476already in the table, then it is installed as a @code{VAR} using
2477@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2478returned to @code{yyparse}.
bfa74976
RS
2479
2480No change is needed in the handling of numeric values and arithmetic
2481operators in @code{yylex}.
2482
2483@smallexample
2484@group
2485#include <ctype.h>
18b519c0 2486@end group
13863333 2487
18b519c0 2488@group
13863333
AD
2489int
2490yylex (void)
bfa74976
RS
2491@{
2492 int c;
2493
72d2299c 2494 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2495 while ((c = getchar ()) == ' ' || c == '\t');
2496
2497 if (c == EOF)
2498 return 0;
2499@end group
2500
2501@group
2502 /* Char starts a number => parse the number. */
2503 if (c == '.' || isdigit (c))
2504 @{
2505 ungetc (c, stdin);
2506 scanf ("%lf", &yylval.val);
2507 return NUM;
2508 @}
2509@end group
2510
2511@group
2512 /* Char starts an identifier => read the name. */
2513 if (isalpha (c))
2514 @{
2515 symrec *s;
2516 static char *symbuf = 0;
2517 static int length = 0;
2518 int i;
2519@end group
2520
2521@group
2522 /* Initially make the buffer long enough
2523 for a 40-character symbol name. */
2524 if (length == 0)
2525 length = 40, symbuf = (char *)malloc (length + 1);
2526
2527 i = 0;
2528 do
2529@end group
2530@group
2531 @{
2532 /* If buffer is full, make it bigger. */
2533 if (i == length)
2534 @{
2535 length *= 2;
18b519c0 2536 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2537 @}
2538 /* Add this character to the buffer. */
2539 symbuf[i++] = c;
2540 /* Get another character. */
2541 c = getchar ();
2542 @}
2543@end group
2544@group
72d2299c 2545 while (isalnum (c));
bfa74976
RS
2546
2547 ungetc (c, stdin);
2548 symbuf[i] = '\0';
2549@end group
2550
2551@group
2552 s = getsym (symbuf);
2553 if (s == 0)
2554 s = putsym (symbuf, VAR);
2555 yylval.tptr = s;
2556 return s->type;
2557 @}
2558
2559 /* Any other character is a token by itself. */
2560 return c;
2561@}
2562@end group
2563@end smallexample
2564
72d2299c 2565This program is both powerful and flexible. You may easily add new
704a47c4
AD
2566functions, and it is a simple job to modify this code to install
2567predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2568
342b8b6e 2569@node Exercises
bfa74976
RS
2570@section Exercises
2571@cindex exercises
2572
2573@enumerate
2574@item
2575Add some new functions from @file{math.h} to the initialization list.
2576
2577@item
2578Add another array that contains constants and their values. Then
2579modify @code{init_table} to add these constants to the symbol table.
2580It will be easiest to give the constants type @code{VAR}.
2581
2582@item
2583Make the program report an error if the user refers to an
2584uninitialized variable in any way except to store a value in it.
2585@end enumerate
2586
342b8b6e 2587@node Grammar File
bfa74976
RS
2588@chapter Bison Grammar Files
2589
2590Bison takes as input a context-free grammar specification and produces a
2591C-language function that recognizes correct instances of the grammar.
2592
2593The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2594@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2595
2596@menu
2597* Grammar Outline:: Overall layout of the grammar file.
2598* Symbols:: Terminal and nonterminal symbols.
2599* Rules:: How to write grammar rules.
2600* Recursion:: Writing recursive rules.
2601* Semantics:: Semantic values and actions.
847bf1f5 2602* Locations:: Locations and actions.
bfa74976
RS
2603* Declarations:: All kinds of Bison declarations are described here.
2604* Multiple Parsers:: Putting more than one Bison parser in one program.
2605@end menu
2606
342b8b6e 2607@node Grammar Outline
bfa74976
RS
2608@section Outline of a Bison Grammar
2609
2610A Bison grammar file has four main sections, shown here with the
2611appropriate delimiters:
2612
2613@example
2614%@{
38a92d50 2615 @var{Prologue}
bfa74976
RS
2616%@}
2617
2618@var{Bison declarations}
2619
2620%%
2621@var{Grammar rules}
2622%%
2623
75f5aaea 2624@var{Epilogue}
bfa74976
RS
2625@end example
2626
2627Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2628As a @acronym{GNU} extension, @samp{//} introduces a comment that
2629continues until end of line.
bfa74976
RS
2630
2631@menu
75f5aaea 2632* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2633* Bison Declarations:: Syntax and usage of the Bison declarations section.
2634* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2635* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2636@end menu
2637
38a92d50 2638@node Prologue
75f5aaea
MA
2639@subsection The prologue
2640@cindex declarations section
2641@cindex Prologue
2642@cindex declarations
bfa74976 2643
f8e1c9e5
AD
2644The @var{Prologue} section contains macro definitions and declarations
2645of functions and variables that are used in the actions in the grammar
2646rules. These are copied to the beginning of the parser file so that
2647they precede the definition of @code{yyparse}. You can use
2648@samp{#include} to get the declarations from a header file. If you
2649don't need any C declarations, you may omit the @samp{%@{} and
2650@samp{%@}} delimiters that bracket this section.
bfa74976 2651
287c78f6
PE
2652The @var{Prologue} section is terminated by the the first occurrence
2653of @samp{%@}} that is outside a comment, a string literal, or a
2654character constant.
2655
c732d2c6
AD
2656You may have more than one @var{Prologue} section, intermixed with the
2657@var{Bison declarations}. This allows you to have C and Bison
2658declarations that refer to each other. For example, the @code{%union}
2659declaration may use types defined in a header file, and you may wish to
2660prototype functions that take arguments of type @code{YYSTYPE}. This
2661can be done with two @var{Prologue} blocks, one before and one after the
2662@code{%union} declaration.
2663
2664@smallexample
2665%@{
38a92d50
PE
2666 #include <stdio.h>
2667 #include "ptypes.h"
c732d2c6
AD
2668%@}
2669
2670%union @{
779e7ceb 2671 long int n;
c732d2c6
AD
2672 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2673@}
2674
2675%@{
38a92d50
PE
2676 static void print_token_value (FILE *, int, YYSTYPE);
2677 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2678%@}
2679
2680@dots{}
2681@end smallexample
2682
342b8b6e 2683@node Bison Declarations
bfa74976
RS
2684@subsection The Bison Declarations Section
2685@cindex Bison declarations (introduction)
2686@cindex declarations, Bison (introduction)
2687
2688The @var{Bison declarations} section contains declarations that define
2689terminal and nonterminal symbols, specify precedence, and so on.
2690In some simple grammars you may not need any declarations.
2691@xref{Declarations, ,Bison Declarations}.
2692
342b8b6e 2693@node Grammar Rules
bfa74976
RS
2694@subsection The Grammar Rules Section
2695@cindex grammar rules section
2696@cindex rules section for grammar
2697
2698The @dfn{grammar rules} section contains one or more Bison grammar
2699rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2700
2701There must always be at least one grammar rule, and the first
2702@samp{%%} (which precedes the grammar rules) may never be omitted even
2703if it is the first thing in the file.
2704
38a92d50 2705@node Epilogue
75f5aaea 2706@subsection The epilogue
bfa74976 2707@cindex additional C code section
75f5aaea 2708@cindex epilogue
bfa74976
RS
2709@cindex C code, section for additional
2710
08e49d20
PE
2711The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2712the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2713place to put anything that you want to have in the parser file but which need
2714not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2715definitions of @code{yylex} and @code{yyerror} often go here. Because
2716C requires functions to be declared before being used, you often need
2717to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2718even if you define them in the Epilogue.
75f5aaea 2719@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2720
2721If the last section is empty, you may omit the @samp{%%} that separates it
2722from the grammar rules.
2723
f8e1c9e5
AD
2724The Bison parser itself contains many macros and identifiers whose names
2725start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2726any such names (except those documented in this manual) in the epilogue
2727of the grammar file.
bfa74976 2728
342b8b6e 2729@node Symbols
bfa74976
RS
2730@section Symbols, Terminal and Nonterminal
2731@cindex nonterminal symbol
2732@cindex terminal symbol
2733@cindex token type
2734@cindex symbol
2735
2736@dfn{Symbols} in Bison grammars represent the grammatical classifications
2737of the language.
2738
2739A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2740class of syntactically equivalent tokens. You use the symbol in grammar
2741rules to mean that a token in that class is allowed. The symbol is
2742represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2743function returns a token type code to indicate what kind of token has
2744been read. You don't need to know what the code value is; you can use
2745the symbol to stand for it.
bfa74976 2746
f8e1c9e5
AD
2747A @dfn{nonterminal symbol} stands for a class of syntactically
2748equivalent groupings. The symbol name is used in writing grammar rules.
2749By convention, it should be all lower case.
bfa74976
RS
2750
2751Symbol names can contain letters, digits (not at the beginning),
2752underscores and periods. Periods make sense only in nonterminals.
2753
931c7513 2754There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2755
2756@itemize @bullet
2757@item
2758A @dfn{named token type} is written with an identifier, like an
c827f760 2759identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2760such name must be defined with a Bison declaration such as
2761@code{%token}. @xref{Token Decl, ,Token Type Names}.
2762
2763@item
2764@cindex character token
2765@cindex literal token
2766@cindex single-character literal
931c7513
RS
2767A @dfn{character token type} (or @dfn{literal character token}) is
2768written in the grammar using the same syntax used in C for character
2769constants; for example, @code{'+'} is a character token type. A
2770character token type doesn't need to be declared unless you need to
2771specify its semantic value data type (@pxref{Value Type, ,Data Types of
2772Semantic Values}), associativity, or precedence (@pxref{Precedence,
2773,Operator Precedence}).
bfa74976
RS
2774
2775By convention, a character token type is used only to represent a
2776token that consists of that particular character. Thus, the token
2777type @code{'+'} is used to represent the character @samp{+} as a
2778token. Nothing enforces this convention, but if you depart from it,
2779your program will confuse other readers.
2780
2781All the usual escape sequences used in character literals in C can be
2782used in Bison as well, but you must not use the null character as a
72d2299c
PE
2783character literal because its numeric code, zero, signifies
2784end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2785for @code{yylex}}). Also, unlike standard C, trigraphs have no
2786special meaning in Bison character literals, nor is backslash-newline
2787allowed.
931c7513
RS
2788
2789@item
2790@cindex string token
2791@cindex literal string token
9ecbd125 2792@cindex multicharacter literal
931c7513
RS
2793A @dfn{literal string token} is written like a C string constant; for
2794example, @code{"<="} is a literal string token. A literal string token
2795doesn't need to be declared unless you need to specify its semantic
14ded682 2796value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2797(@pxref{Precedence}).
2798
2799You can associate the literal string token with a symbolic name as an
2800alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2801Declarations}). If you don't do that, the lexical analyzer has to
2802retrieve the token number for the literal string token from the
2803@code{yytname} table (@pxref{Calling Convention}).
2804
c827f760 2805@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2806
2807By convention, a literal string token is used only to represent a token
2808that consists of that particular string. Thus, you should use the token
2809type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2810does not enforce this convention, but if you depart from it, people who
931c7513
RS
2811read your program will be confused.
2812
2813All the escape sequences used in string literals in C can be used in
92ac3705
PE
2814Bison as well, except that you must not use a null character within a
2815string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2816meaning in Bison string literals, nor is backslash-newline allowed. A
2817literal string token must contain two or more characters; for a token
2818containing just one character, use a character token (see above).
bfa74976
RS
2819@end itemize
2820
2821How you choose to write a terminal symbol has no effect on its
2822grammatical meaning. That depends only on where it appears in rules and
2823on when the parser function returns that symbol.
2824
72d2299c
PE
2825The value returned by @code{yylex} is always one of the terminal
2826symbols, except that a zero or negative value signifies end-of-input.
2827Whichever way you write the token type in the grammar rules, you write
2828it the same way in the definition of @code{yylex}. The numeric code
2829for a character token type is simply the positive numeric code of the
2830character, so @code{yylex} can use the identical value to generate the
2831requisite code, though you may need to convert it to @code{unsigned
2832char} to avoid sign-extension on hosts where @code{char} is signed.
2833Each named token type becomes a C macro in
bfa74976 2834the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2835(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2836@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2837
2838If @code{yylex} is defined in a separate file, you need to arrange for the
2839token-type macro definitions to be available there. Use the @samp{-d}
2840option when you run Bison, so that it will write these macro definitions
2841into a separate header file @file{@var{name}.tab.h} which you can include
2842in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2843
72d2299c 2844If you want to write a grammar that is portable to any Standard C
9d9b8b70 2845host, you must use only nonnull character tokens taken from the basic
c827f760 2846execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2847digits, the 52 lower- and upper-case English letters, and the
2848characters in the following C-language string:
2849
2850@example
2851"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2852@end example
2853
f8e1c9e5
AD
2854The @code{yylex} function and Bison must use a consistent character set
2855and encoding for character tokens. For example, if you run Bison in an
2856@acronym{ASCII} environment, but then compile and run the resulting
2857program in an environment that uses an incompatible character set like
2858@acronym{EBCDIC}, the resulting program may not work because the tables
2859generated by Bison will assume @acronym{ASCII} numeric values for
2860character tokens. It is standard practice for software distributions to
2861contain C source files that were generated by Bison in an
2862@acronym{ASCII} environment, so installers on platforms that are
2863incompatible with @acronym{ASCII} must rebuild those files before
2864compiling them.
e966383b 2865
bfa74976
RS
2866The symbol @code{error} is a terminal symbol reserved for error recovery
2867(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2868In particular, @code{yylex} should never return this value. The default
2869value of the error token is 256, unless you explicitly assigned 256 to
2870one of your tokens with a @code{%token} declaration.
bfa74976 2871
342b8b6e 2872@node Rules
bfa74976
RS
2873@section Syntax of Grammar Rules
2874@cindex rule syntax
2875@cindex grammar rule syntax
2876@cindex syntax of grammar rules
2877
2878A Bison grammar rule has the following general form:
2879
2880@example
e425e872 2881@group
bfa74976
RS
2882@var{result}: @var{components}@dots{}
2883 ;
e425e872 2884@end group
bfa74976
RS
2885@end example
2886
2887@noindent
9ecbd125 2888where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2889and @var{components} are various terminal and nonterminal symbols that
13863333 2890are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2891
2892For example,
2893
2894@example
2895@group
2896exp: exp '+' exp
2897 ;
2898@end group
2899@end example
2900
2901@noindent
2902says that two groupings of type @code{exp}, with a @samp{+} token in between,
2903can be combined into a larger grouping of type @code{exp}.
2904
72d2299c
PE
2905White space in rules is significant only to separate symbols. You can add
2906extra white space as you wish.
bfa74976
RS
2907
2908Scattered among the components can be @var{actions} that determine
2909the semantics of the rule. An action looks like this:
2910
2911@example
2912@{@var{C statements}@}
2913@end example
2914
2915@noindent
287c78f6
PE
2916@cindex braced code
2917This is an example of @dfn{braced code}, that is, C code surrounded by
2918braces, much like a compound statement in C@. Braced code can contain
2919any sequence of C tokens, so long as its braces are balanced. Bison
2920does not check the braced code for correctness directly; it merely
2921copies the code to the output file, where the C compiler can check it.
2922
2923Within braced code, the balanced-brace count is not affected by braces
2924within comments, string literals, or character constants, but it is
2925affected by the C digraphs @samp{<%} and @samp{%>} that represent
2926braces. At the top level braced code must be terminated by @samp{@}}
2927and not by a digraph. Bison does not look for trigraphs, so if braced
2928code uses trigraphs you should ensure that they do not affect the
2929nesting of braces or the boundaries of comments, string literals, or
2930character constants.
2931
bfa74976
RS
2932Usually there is only one action and it follows the components.
2933@xref{Actions}.
2934
2935@findex |
2936Multiple rules for the same @var{result} can be written separately or can
2937be joined with the vertical-bar character @samp{|} as follows:
2938
2939@ifinfo
2940@example
2941@var{result}: @var{rule1-components}@dots{}
2942 | @var{rule2-components}@dots{}
2943 @dots{}
2944 ;
2945@end example
2946@end ifinfo
2947@iftex
2948@example
2949@group
2950@var{result}: @var{rule1-components}@dots{}
2951 | @var{rule2-components}@dots{}
2952 @dots{}
2953 ;
2954@end group
2955@end example
2956@end iftex
2957
2958@noindent
2959They are still considered distinct rules even when joined in this way.
2960
2961If @var{components} in a rule is empty, it means that @var{result} can
2962match the empty string. For example, here is how to define a
2963comma-separated sequence of zero or more @code{exp} groupings:
2964
2965@example
2966@group
2967expseq: /* empty */
2968 | expseq1
2969 ;
2970@end group
2971
2972@group
2973expseq1: exp
2974 | expseq1 ',' exp
2975 ;
2976@end group
2977@end example
2978
2979@noindent
2980It is customary to write a comment @samp{/* empty */} in each rule
2981with no components.
2982
342b8b6e 2983@node Recursion
bfa74976
RS
2984@section Recursive Rules
2985@cindex recursive rule
2986
f8e1c9e5
AD
2987A rule is called @dfn{recursive} when its @var{result} nonterminal
2988appears also on its right hand side. Nearly all Bison grammars need to
2989use recursion, because that is the only way to define a sequence of any
2990number of a particular thing. Consider this recursive definition of a
9ecbd125 2991comma-separated sequence of one or more expressions:
bfa74976
RS
2992
2993@example
2994@group
2995expseq1: exp
2996 | expseq1 ',' exp
2997 ;
2998@end group
2999@end example
3000
3001@cindex left recursion
3002@cindex right recursion
3003@noindent
3004Since the recursive use of @code{expseq1} is the leftmost symbol in the
3005right hand side, we call this @dfn{left recursion}. By contrast, here
3006the same construct is defined using @dfn{right recursion}:
3007
3008@example
3009@group
3010expseq1: exp
3011 | exp ',' expseq1
3012 ;
3013@end group
3014@end example
3015
3016@noindent
ec3bc396
AD
3017Any kind of sequence can be defined using either left recursion or right
3018recursion, but you should always use left recursion, because it can
3019parse a sequence of any number of elements with bounded stack space.
3020Right recursion uses up space on the Bison stack in proportion to the
3021number of elements in the sequence, because all the elements must be
3022shifted onto the stack before the rule can be applied even once.
3023@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3024of this.
bfa74976
RS
3025
3026@cindex mutual recursion
3027@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3028rule does not appear directly on its right hand side, but does appear
3029in rules for other nonterminals which do appear on its right hand
13863333 3030side.
bfa74976
RS
3031
3032For example:
3033
3034@example
3035@group
3036expr: primary
3037 | primary '+' primary
3038 ;
3039@end group
3040
3041@group
3042primary: constant
3043 | '(' expr ')'
3044 ;
3045@end group
3046@end example
3047
3048@noindent
3049defines two mutually-recursive nonterminals, since each refers to the
3050other.
3051
342b8b6e 3052@node Semantics
bfa74976
RS
3053@section Defining Language Semantics
3054@cindex defining language semantics
13863333 3055@cindex language semantics, defining
bfa74976
RS
3056
3057The grammar rules for a language determine only the syntax. The semantics
3058are determined by the semantic values associated with various tokens and
3059groupings, and by the actions taken when various groupings are recognized.
3060
3061For example, the calculator calculates properly because the value
3062associated with each expression is the proper number; it adds properly
3063because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3064the numbers associated with @var{x} and @var{y}.
3065
3066@menu
3067* Value Type:: Specifying one data type for all semantic values.
3068* Multiple Types:: Specifying several alternative data types.
3069* Actions:: An action is the semantic definition of a grammar rule.
3070* Action Types:: Specifying data types for actions to operate on.
3071* Mid-Rule Actions:: Most actions go at the end of a rule.
3072 This says when, why and how to use the exceptional
3073 action in the middle of a rule.
3074@end menu
3075
342b8b6e 3076@node Value Type
bfa74976
RS
3077@subsection Data Types of Semantic Values
3078@cindex semantic value type
3079@cindex value type, semantic
3080@cindex data types of semantic values
3081@cindex default data type
3082
3083In a simple program it may be sufficient to use the same data type for
3084the semantic values of all language constructs. This was true in the
c827f760 3085@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3086Notation Calculator}).
bfa74976
RS
3087
3088Bison's default is to use type @code{int} for all semantic values. To
3089specify some other type, define @code{YYSTYPE} as a macro, like this:
3090
3091@example
3092#define YYSTYPE double
3093@end example
3094
3095@noindent
342b8b6e 3096This macro definition must go in the prologue of the grammar file
75f5aaea 3097(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3098
342b8b6e 3099@node Multiple Types
bfa74976
RS
3100@subsection More Than One Value Type
3101
3102In most programs, you will need different data types for different kinds
3103of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3104@code{int} or @code{long int}, while a string constant needs type
3105@code{char *}, and an identifier might need a pointer to an entry in the
3106symbol table.
bfa74976
RS
3107
3108To use more than one data type for semantic values in one parser, Bison
3109requires you to do two things:
3110
3111@itemize @bullet
3112@item
3113Specify the entire collection of possible data types, with the
704a47c4
AD
3114@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3115Value Types}).
bfa74976
RS
3116
3117@item
14ded682
AD
3118Choose one of those types for each symbol (terminal or nonterminal) for
3119which semantic values are used. This is done for tokens with the
3120@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3121and for groupings with the @code{%type} Bison declaration (@pxref{Type
3122Decl, ,Nonterminal Symbols}).
bfa74976
RS
3123@end itemize
3124
342b8b6e 3125@node Actions
bfa74976
RS
3126@subsection Actions
3127@cindex action
3128@vindex $$
3129@vindex $@var{n}
3130
3131An action accompanies a syntactic rule and contains C code to be executed
3132each time an instance of that rule is recognized. The task of most actions
3133is to compute a semantic value for the grouping built by the rule from the
3134semantic values associated with tokens or smaller groupings.
3135
287c78f6
PE
3136An action consists of braced code containing C statements, and can be
3137placed at any position in the rule;
704a47c4
AD
3138it is executed at that position. Most rules have just one action at the
3139end of the rule, following all the components. Actions in the middle of
3140a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3141Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3142
3143The C code in an action can refer to the semantic values of the components
3144matched by the rule with the construct @code{$@var{n}}, which stands for
3145the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3146being constructed is @code{$$}. Bison translates both of these
3147constructs into expressions of the appropriate type when it copies the
3148actions into the parser file. @code{$$} is translated to a modifiable
3149lvalue, so it can be assigned to.
bfa74976
RS
3150
3151Here is a typical example:
3152
3153@example
3154@group
3155exp: @dots{}
3156 | exp '+' exp
3157 @{ $$ = $1 + $3; @}
3158@end group
3159@end example
3160
3161@noindent
3162This rule constructs an @code{exp} from two smaller @code{exp} groupings
3163connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3164refer to the semantic values of the two component @code{exp} groupings,
3165which are the first and third symbols on the right hand side of the rule.
3166The sum is stored into @code{$$} so that it becomes the semantic value of
3167the addition-expression just recognized by the rule. If there were a
3168useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3169referred to as @code{$2}.
bfa74976 3170
3ded9a63
AD
3171Note that the vertical-bar character @samp{|} is really a rule
3172separator, and actions are attached to a single rule. This is a
3173difference with tools like Flex, for which @samp{|} stands for either
3174``or'', or ``the same action as that of the next rule''. In the
3175following example, the action is triggered only when @samp{b} is found:
3176
3177@example
3178@group
3179a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3180@end group
3181@end example
3182
bfa74976
RS
3183@cindex default action
3184If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3185@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3186becomes the value of the whole rule. Of course, the default action is
3187valid only if the two data types match. There is no meaningful default
3188action for an empty rule; every empty rule must have an explicit action
3189unless the rule's value does not matter.
bfa74976
RS
3190
3191@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3192to tokens and groupings on the stack @emph{before} those that match the
3193current rule. This is a very risky practice, and to use it reliably
3194you must be certain of the context in which the rule is applied. Here
3195is a case in which you can use this reliably:
3196
3197@example
3198@group
3199foo: expr bar '+' expr @{ @dots{} @}
3200 | expr bar '-' expr @{ @dots{} @}
3201 ;
3202@end group
3203
3204@group
3205bar: /* empty */
3206 @{ previous_expr = $0; @}
3207 ;
3208@end group
3209@end example
3210
3211As long as @code{bar} is used only in the fashion shown here, @code{$0}
3212always refers to the @code{expr} which precedes @code{bar} in the
3213definition of @code{foo}.
3214
32c29292
JD
3215@vindex yylval
3216It is also possible to access the semantic value of the look-ahead token, if
3217any, from a semantic action.
3218This semantic value is stored in @code{yylval}.
3219@xref{Action Features, ,Special Features for Use in Actions}.
3220
342b8b6e 3221@node Action Types
bfa74976
RS
3222@subsection Data Types of Values in Actions
3223@cindex action data types
3224@cindex data types in actions
3225
3226If you have chosen a single data type for semantic values, the @code{$$}
3227and @code{$@var{n}} constructs always have that data type.
3228
3229If you have used @code{%union} to specify a variety of data types, then you
3230must declare a choice among these types for each terminal or nonterminal
3231symbol that can have a semantic value. Then each time you use @code{$$} or
3232@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3233in the rule. In this example,
bfa74976
RS
3234
3235@example
3236@group
3237exp: @dots{}
3238 | exp '+' exp
3239 @{ $$ = $1 + $3; @}
3240@end group
3241@end example
3242
3243@noindent
3244@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3245have the data type declared for the nonterminal symbol @code{exp}. If
3246@code{$2} were used, it would have the data type declared for the
e0c471a9 3247terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3248
3249Alternatively, you can specify the data type when you refer to the value,
3250by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3251reference. For example, if you have defined types as shown here:
3252
3253@example
3254@group
3255%union @{
3256 int itype;
3257 double dtype;
3258@}
3259@end group
3260@end example
3261
3262@noindent
3263then you can write @code{$<itype>1} to refer to the first subunit of the
3264rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3265
342b8b6e 3266@node Mid-Rule Actions
bfa74976
RS
3267@subsection Actions in Mid-Rule
3268@cindex actions in mid-rule
3269@cindex mid-rule actions
3270
3271Occasionally it is useful to put an action in the middle of a rule.
3272These actions are written just like usual end-of-rule actions, but they
3273are executed before the parser even recognizes the following components.
3274
3275A mid-rule action may refer to the components preceding it using
3276@code{$@var{n}}, but it may not refer to subsequent components because
3277it is run before they are parsed.
3278
3279The mid-rule action itself counts as one of the components of the rule.
3280This makes a difference when there is another action later in the same rule
3281(and usually there is another at the end): you have to count the actions
3282along with the symbols when working out which number @var{n} to use in
3283@code{$@var{n}}.
3284
3285The mid-rule action can also have a semantic value. The action can set
3286its value with an assignment to @code{$$}, and actions later in the rule
3287can refer to the value using @code{$@var{n}}. Since there is no symbol
3288to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3289in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3290specify a data type each time you refer to this value.
bfa74976
RS
3291
3292There is no way to set the value of the entire rule with a mid-rule
3293action, because assignments to @code{$$} do not have that effect. The
3294only way to set the value for the entire rule is with an ordinary action
3295at the end of the rule.
3296
3297Here is an example from a hypothetical compiler, handling a @code{let}
3298statement that looks like @samp{let (@var{variable}) @var{statement}} and
3299serves to create a variable named @var{variable} temporarily for the
3300duration of @var{statement}. To parse this construct, we must put
3301@var{variable} into the symbol table while @var{statement} is parsed, then
3302remove it afterward. Here is how it is done:
3303
3304@example
3305@group
3306stmt: LET '(' var ')'
3307 @{ $<context>$ = push_context ();
3308 declare_variable ($3); @}
3309 stmt @{ $$ = $6;
3310 pop_context ($<context>5); @}
3311@end group
3312@end example
3313
3314@noindent
3315As soon as @samp{let (@var{variable})} has been recognized, the first
3316action is run. It saves a copy of the current semantic context (the
3317list of accessible variables) as its semantic value, using alternative
3318@code{context} in the data-type union. Then it calls
3319@code{declare_variable} to add the new variable to that list. Once the
3320first action is finished, the embedded statement @code{stmt} can be
3321parsed. Note that the mid-rule action is component number 5, so the
3322@samp{stmt} is component number 6.
3323
3324After the embedded statement is parsed, its semantic value becomes the
3325value of the entire @code{let}-statement. Then the semantic value from the
3326earlier action is used to restore the prior list of variables. This
3327removes the temporary @code{let}-variable from the list so that it won't
3328appear to exist while the rest of the program is parsed.
3329
841a7737
JD
3330@findex %destructor
3331@cindex discarded symbols, mid-rule actions
3332@cindex error recovery, mid-rule actions
3333In the above example, if the parser initiates error recovery (@pxref{Error
3334Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3335it might discard the previous semantic context @code{$<context>5} without
3336restoring it.
3337Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3338Discarded Symbols}).
3339However, Bison currently provides no means to declare a destructor for a
3340mid-rule action's semantic value.
3341
3342One solution is to bury the mid-rule action inside a nonterminal symbol and to
3343declare a destructor for that symbol:
3344
3345@example
3346@group
3347%type <context> let
3348%destructor @{ pop_context ($$); @} let
3349
3350%%
3351
3352stmt: let stmt
3353 @{ $$ = $2;
3354 pop_context ($1); @}
3355 ;
3356
3357let: LET '(' var ')'
3358 @{ $$ = push_context ();
3359 declare_variable ($3); @}
3360 ;
3361
3362@end group
3363@end example
3364
3365@noindent
3366Note that the action is now at the end of its rule.
3367Any mid-rule action can be converted to an end-of-rule action in this way, and
3368this is what Bison actually does to implement mid-rule actions.
3369
bfa74976
RS
3370Taking action before a rule is completely recognized often leads to
3371conflicts since the parser must commit to a parse in order to execute the
3372action. For example, the following two rules, without mid-rule actions,
3373can coexist in a working parser because the parser can shift the open-brace
3374token and look at what follows before deciding whether there is a
3375declaration or not:
3376
3377@example
3378@group
3379compound: '@{' declarations statements '@}'
3380 | '@{' statements '@}'
3381 ;
3382@end group
3383@end example
3384
3385@noindent
3386But when we add a mid-rule action as follows, the rules become nonfunctional:
3387
3388@example
3389@group
3390compound: @{ prepare_for_local_variables (); @}
3391 '@{' declarations statements '@}'
3392@end group
3393@group
3394 | '@{' statements '@}'
3395 ;
3396@end group
3397@end example
3398
3399@noindent
3400Now the parser is forced to decide whether to run the mid-rule action
3401when it has read no farther than the open-brace. In other words, it
3402must commit to using one rule or the other, without sufficient
3403information to do it correctly. (The open-brace token is what is called
3404the @dfn{look-ahead} token at this time, since the parser is still
3405deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3406
3407You might think that you could correct the problem by putting identical
3408actions into the two rules, like this:
3409
3410@example
3411@group
3412compound: @{ prepare_for_local_variables (); @}
3413 '@{' declarations statements '@}'
3414 | @{ prepare_for_local_variables (); @}
3415 '@{' statements '@}'
3416 ;
3417@end group
3418@end example
3419
3420@noindent
3421But this does not help, because Bison does not realize that the two actions
3422are identical. (Bison never tries to understand the C code in an action.)
3423
3424If the grammar is such that a declaration can be distinguished from a
3425statement by the first token (which is true in C), then one solution which
3426does work is to put the action after the open-brace, like this:
3427
3428@example
3429@group
3430compound: '@{' @{ prepare_for_local_variables (); @}
3431 declarations statements '@}'
3432 | '@{' statements '@}'
3433 ;
3434@end group
3435@end example
3436
3437@noindent
3438Now the first token of the following declaration or statement,
3439which would in any case tell Bison which rule to use, can still do so.
3440
3441Another solution is to bury the action inside a nonterminal symbol which
3442serves as a subroutine:
3443
3444@example
3445@group
3446subroutine: /* empty */
3447 @{ prepare_for_local_variables (); @}
3448 ;
3449
3450@end group
3451
3452@group
3453compound: subroutine
3454 '@{' declarations statements '@}'
3455 | subroutine
3456 '@{' statements '@}'
3457 ;
3458@end group
3459@end example
3460
3461@noindent
3462Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3463deciding which rule for @code{compound} it will eventually use.
bfa74976 3464
342b8b6e 3465@node Locations
847bf1f5
AD
3466@section Tracking Locations
3467@cindex location
95923bd6
AD
3468@cindex textual location
3469@cindex location, textual
847bf1f5
AD
3470
3471Though grammar rules and semantic actions are enough to write a fully
72d2299c 3472functional parser, it can be useful to process some additional information,
3e259915
MA
3473especially symbol locations.
3474
704a47c4
AD
3475The way locations are handled is defined by providing a data type, and
3476actions to take when rules are matched.
847bf1f5
AD
3477
3478@menu
3479* Location Type:: Specifying a data type for locations.
3480* Actions and Locations:: Using locations in actions.
3481* Location Default Action:: Defining a general way to compute locations.
3482@end menu
3483
342b8b6e 3484@node Location Type
847bf1f5
AD
3485@subsection Data Type of Locations
3486@cindex data type of locations
3487@cindex default location type
3488
3489Defining a data type for locations is much simpler than for semantic values,
3490since all tokens and groupings always use the same type.
3491
3492The type of locations is specified by defining a macro called @code{YYLTYPE}.
3493When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3494four members:
3495
3496@example
6273355b 3497typedef struct YYLTYPE
847bf1f5
AD
3498@{
3499 int first_line;
3500 int first_column;
3501 int last_line;
3502 int last_column;
6273355b 3503@} YYLTYPE;
847bf1f5
AD
3504@end example
3505
342b8b6e 3506@node Actions and Locations
847bf1f5
AD
3507@subsection Actions and Locations
3508@cindex location actions
3509@cindex actions, location
3510@vindex @@$
3511@vindex @@@var{n}
3512
3513Actions are not only useful for defining language semantics, but also for
3514describing the behavior of the output parser with locations.
3515
3516The most obvious way for building locations of syntactic groupings is very
72d2299c 3517similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3518constructs can be used to access the locations of the elements being matched.
3519The location of the @var{n}th component of the right hand side is
3520@code{@@@var{n}}, while the location of the left hand side grouping is
3521@code{@@$}.
3522
3e259915 3523Here is a basic example using the default data type for locations:
847bf1f5
AD
3524
3525@example
3526@group
3527exp: @dots{}
3e259915 3528 | exp '/' exp
847bf1f5 3529 @{
3e259915
MA
3530 @@$.first_column = @@1.first_column;
3531 @@$.first_line = @@1.first_line;
847bf1f5
AD
3532 @@$.last_column = @@3.last_column;
3533 @@$.last_line = @@3.last_line;
3e259915
MA
3534 if ($3)
3535 $$ = $1 / $3;
3536 else
3537 @{
3538 $$ = 1;
4e03e201
AD
3539 fprintf (stderr,
3540 "Division by zero, l%d,c%d-l%d,c%d",
3541 @@3.first_line, @@3.first_column,
3542 @@3.last_line, @@3.last_column);
3e259915 3543 @}
847bf1f5
AD
3544 @}
3545@end group
3546@end example
3547
3e259915 3548As for semantic values, there is a default action for locations that is
72d2299c 3549run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3550beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3551last symbol.
3e259915 3552
72d2299c 3553With this default action, the location tracking can be fully automatic. The
3e259915
MA
3554example above simply rewrites this way:
3555
3556@example
3557@group
3558exp: @dots{}
3559 | exp '/' exp
3560 @{
3561 if ($3)
3562 $$ = $1 / $3;
3563 else
3564 @{
3565 $$ = 1;
4e03e201
AD
3566 fprintf (stderr,
3567 "Division by zero, l%d,c%d-l%d,c%d",
3568 @@3.first_line, @@3.first_column,
3569 @@3.last_line, @@3.last_column);
3e259915
MA
3570 @}
3571 @}
3572@end group
3573@end example
847bf1f5 3574
32c29292
JD
3575@vindex yylloc
3576It is also possible to access the location of the look-ahead token, if any,
3577from a semantic action.
3578This location is stored in @code{yylloc}.
3579@xref{Action Features, ,Special Features for Use in Actions}.
3580
342b8b6e 3581@node Location Default Action
847bf1f5
AD
3582@subsection Default Action for Locations
3583@vindex YYLLOC_DEFAULT
8710fc41 3584@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3585
72d2299c 3586Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3587locations are much more general than semantic values, there is room in
3588the output parser to redefine the default action to take for each
72d2299c 3589rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3590matched, before the associated action is run. It is also invoked
3591while processing a syntax error, to compute the error's location.
8710fc41
JD
3592Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3593parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3594of that ambiguity.
847bf1f5 3595
3e259915 3596Most of the time, this macro is general enough to suppress location
79282c6c 3597dedicated code from semantic actions.
847bf1f5 3598
72d2299c 3599The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3600the location of the grouping (the result of the computation). When a
766de5eb 3601rule is matched, the second parameter identifies locations of
96b93a3d 3602all right hand side elements of the rule being matched, and the third
8710fc41
JD
3603parameter is the size of the rule's right hand side.
3604When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3605right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3606When processing a syntax error, the second parameter identifies locations
3607of the symbols that were discarded during error processing, and the third
96b93a3d 3608parameter is the number of discarded symbols.
847bf1f5 3609
766de5eb 3610By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3611
766de5eb 3612@smallexample
847bf1f5 3613@group
766de5eb
PE
3614# define YYLLOC_DEFAULT(Current, Rhs, N) \
3615 do \
3616 if (N) \
3617 @{ \
3618 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3619 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3620 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3621 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3622 @} \
3623 else \
3624 @{ \
3625 (Current).first_line = (Current).last_line = \
3626 YYRHSLOC(Rhs, 0).last_line; \
3627 (Current).first_column = (Current).last_column = \
3628 YYRHSLOC(Rhs, 0).last_column; \
3629 @} \
3630 while (0)
847bf1f5 3631@end group
766de5eb 3632@end smallexample
676385e2 3633
766de5eb
PE
3634where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3635in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3636just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3637
3e259915 3638When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3639
3e259915 3640@itemize @bullet
79282c6c 3641@item
72d2299c 3642All arguments are free of side-effects. However, only the first one (the
3e259915 3643result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3644
3e259915 3645@item
766de5eb
PE
3646For consistency with semantic actions, valid indexes within the
3647right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3648valid index, and it refers to the symbol just before the reduction.
3649During error processing @var{n} is always positive.
0ae99356
PE
3650
3651@item
3652Your macro should parenthesize its arguments, if need be, since the
3653actual arguments may not be surrounded by parentheses. Also, your
3654macro should expand to something that can be used as a single
3655statement when it is followed by a semicolon.
3e259915 3656@end itemize
847bf1f5 3657
342b8b6e 3658@node Declarations
bfa74976
RS
3659@section Bison Declarations
3660@cindex declarations, Bison
3661@cindex Bison declarations
3662
3663The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3664used in formulating the grammar and the data types of semantic values.
3665@xref{Symbols}.
3666
3667All token type names (but not single-character literal tokens such as
3668@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3669declared if you need to specify which data type to use for the semantic
3670value (@pxref{Multiple Types, ,More Than One Value Type}).
3671
3672The first rule in the file also specifies the start symbol, by default.
3673If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3674it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3675Grammars}).
bfa74976
RS
3676
3677@menu
b50d2359 3678* Require Decl:: Requiring a Bison version.
bfa74976
RS
3679* Token Decl:: Declaring terminal symbols.
3680* Precedence Decl:: Declaring terminals with precedence and associativity.
3681* Union Decl:: Declaring the set of all semantic value types.
3682* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3683* Initial Action Decl:: Code run before parsing starts.
72f889cc 3684* Destructor Decl:: Declaring how symbols are freed.
d6328241 3685* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3686* Start Decl:: Specifying the start symbol.
3687* Pure Decl:: Requesting a reentrant parser.
3688* Decl Summary:: Table of all Bison declarations.
3689@end menu
3690
b50d2359
AD
3691@node Require Decl
3692@subsection Require a Version of Bison
3693@cindex version requirement
3694@cindex requiring a version of Bison
3695@findex %require
3696
3697You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3698the requirement is not met, @command{bison} exits with an error (exit
3699status 63).
b50d2359
AD
3700
3701@example
3702%require "@var{version}"
3703@end example
3704
342b8b6e 3705@node Token Decl
bfa74976
RS
3706@subsection Token Type Names
3707@cindex declaring token type names
3708@cindex token type names, declaring
931c7513 3709@cindex declaring literal string tokens
bfa74976
RS
3710@findex %token
3711
3712The basic way to declare a token type name (terminal symbol) is as follows:
3713
3714@example
3715%token @var{name}
3716@end example
3717
3718Bison will convert this into a @code{#define} directive in
3719the parser, so that the function @code{yylex} (if it is in this file)
3720can use the name @var{name} to stand for this token type's code.
3721
14ded682
AD
3722Alternatively, you can use @code{%left}, @code{%right}, or
3723@code{%nonassoc} instead of @code{%token}, if you wish to specify
3724associativity and precedence. @xref{Precedence Decl, ,Operator
3725Precedence}.
bfa74976
RS
3726
3727You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3728a decimal or hexadecimal integer value in the field immediately
3729following the token name:
bfa74976
RS
3730
3731@example
3732%token NUM 300
1452af69 3733%token XNUM 0x12d // a GNU extension
bfa74976
RS
3734@end example
3735
3736@noindent
3737It is generally best, however, to let Bison choose the numeric codes for
3738all token types. Bison will automatically select codes that don't conflict
e966383b 3739with each other or with normal characters.
bfa74976
RS
3740
3741In the event that the stack type is a union, you must augment the
3742@code{%token} or other token declaration to include the data type
704a47c4
AD
3743alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3744Than One Value Type}).
bfa74976
RS
3745
3746For example:
3747
3748@example
3749@group
3750%union @{ /* define stack type */
3751 double val;
3752 symrec *tptr;
3753@}
3754%token <val> NUM /* define token NUM and its type */
3755@end group
3756@end example
3757
931c7513
RS
3758You can associate a literal string token with a token type name by
3759writing the literal string at the end of a @code{%token}
3760declaration which declares the name. For example:
3761
3762@example
3763%token arrow "=>"
3764@end example
3765
3766@noindent
3767For example, a grammar for the C language might specify these names with
3768equivalent literal string tokens:
3769
3770@example
3771%token <operator> OR "||"
3772%token <operator> LE 134 "<="
3773%left OR "<="
3774@end example
3775
3776@noindent
3777Once you equate the literal string and the token name, you can use them
3778interchangeably in further declarations or the grammar rules. The
3779@code{yylex} function can use the token name or the literal string to
3780obtain the token type code number (@pxref{Calling Convention}).
3781
342b8b6e 3782@node Precedence Decl
bfa74976
RS
3783@subsection Operator Precedence
3784@cindex precedence declarations
3785@cindex declaring operator precedence
3786@cindex operator precedence, declaring
3787
3788Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3789declare a token and specify its precedence and associativity, all at
3790once. These are called @dfn{precedence declarations}.
704a47c4
AD
3791@xref{Precedence, ,Operator Precedence}, for general information on
3792operator precedence.
bfa74976
RS
3793
3794The syntax of a precedence declaration is the same as that of
3795@code{%token}: either
3796
3797@example
3798%left @var{symbols}@dots{}
3799@end example
3800
3801@noindent
3802or
3803
3804@example
3805%left <@var{type}> @var{symbols}@dots{}
3806@end example
3807
3808And indeed any of these declarations serves the purposes of @code{%token}.
3809But in addition, they specify the associativity and relative precedence for
3810all the @var{symbols}:
3811
3812@itemize @bullet
3813@item
3814The associativity of an operator @var{op} determines how repeated uses
3815of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3816@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3817grouping @var{y} with @var{z} first. @code{%left} specifies
3818left-associativity (grouping @var{x} with @var{y} first) and
3819@code{%right} specifies right-associativity (grouping @var{y} with
3820@var{z} first). @code{%nonassoc} specifies no associativity, which
3821means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3822considered a syntax error.
3823
3824@item
3825The precedence of an operator determines how it nests with other operators.
3826All the tokens declared in a single precedence declaration have equal
3827precedence and nest together according to their associativity.
3828When two tokens declared in different precedence declarations associate,
3829the one declared later has the higher precedence and is grouped first.
3830@end itemize
3831
342b8b6e 3832@node Union Decl
bfa74976
RS
3833@subsection The Collection of Value Types
3834@cindex declaring value types
3835@cindex value types, declaring
3836@findex %union
3837
287c78f6
PE
3838The @code{%union} declaration specifies the entire collection of
3839possible data types for semantic values. The keyword @code{%union} is
3840followed by braced code containing the same thing that goes inside a
3841@code{union} in C@.
bfa74976
RS
3842
3843For example:
3844
3845@example
3846@group
3847%union @{
3848 double val;
3849 symrec *tptr;
3850@}
3851@end group
3852@end example
3853
3854@noindent
3855This says that the two alternative types are @code{double} and @code{symrec
3856*}. They are given names @code{val} and @code{tptr}; these names are used
3857in the @code{%token} and @code{%type} declarations to pick one of the types
3858for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3859
6273355b
PE
3860As an extension to @acronym{POSIX}, a tag is allowed after the
3861@code{union}. For example:
3862
3863@example
3864@group
3865%union value @{
3866 double val;
3867 symrec *tptr;
3868@}
3869@end group
3870@end example
3871
d6ca7905 3872@noindent
6273355b
PE
3873specifies the union tag @code{value}, so the corresponding C type is
3874@code{union value}. If you do not specify a tag, it defaults to
3875@code{YYSTYPE}.
3876
d6ca7905
PE
3877As another extension to @acronym{POSIX}, you may specify multiple
3878@code{%union} declarations; their contents are concatenated. However,
3879only the first @code{%union} declaration can specify a tag.
3880
6273355b 3881Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3882a semicolon after the closing brace.
3883
342b8b6e 3884@node Type Decl
bfa74976
RS
3885@subsection Nonterminal Symbols
3886@cindex declaring value types, nonterminals
3887@cindex value types, nonterminals, declaring
3888@findex %type
3889
3890@noindent
3891When you use @code{%union} to specify multiple value types, you must
3892declare the value type of each nonterminal symbol for which values are
3893used. This is done with a @code{%type} declaration, like this:
3894
3895@example
3896%type <@var{type}> @var{nonterminal}@dots{}
3897@end example
3898
3899@noindent
704a47c4
AD
3900Here @var{nonterminal} is the name of a nonterminal symbol, and
3901@var{type} is the name given in the @code{%union} to the alternative
3902that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3903can give any number of nonterminal symbols in the same @code{%type}
3904declaration, if they have the same value type. Use spaces to separate
3905the symbol names.
bfa74976 3906
931c7513
RS
3907You can also declare the value type of a terminal symbol. To do this,
3908use the same @code{<@var{type}>} construction in a declaration for the
3909terminal symbol. All kinds of token declarations allow
3910@code{<@var{type}>}.
3911
18d192f0
AD
3912@node Initial Action Decl
3913@subsection Performing Actions before Parsing
3914@findex %initial-action
3915
3916Sometimes your parser needs to perform some initializations before
3917parsing. The @code{%initial-action} directive allows for such arbitrary
3918code.
3919
3920@deffn {Directive} %initial-action @{ @var{code} @}
3921@findex %initial-action
287c78f6 3922Declare that the braced @var{code} must be invoked before parsing each time
451364ed
AD
3923@code{yyparse} is called. The @var{code} may use @code{$$} and
3924@code{@@$} --- initial value and location of the look-ahead --- and the
3925@code{%parse-param}.
18d192f0
AD
3926@end deffn
3927
451364ed
AD
3928For instance, if your locations use a file name, you may use
3929
3930@example
48b16bbc 3931%parse-param @{ char const *file_name @};
451364ed
AD
3932%initial-action
3933@{
4626a15d 3934 @@$.initialize (file_name);
451364ed
AD
3935@};
3936@end example
3937
18d192f0 3938
72f889cc
AD
3939@node Destructor Decl
3940@subsection Freeing Discarded Symbols
3941@cindex freeing discarded symbols
3942@findex %destructor
3943
a85284cf
AD
3944During error recovery (@pxref{Error Recovery}), symbols already pushed
3945on the stack and tokens coming from the rest of the file are discarded
3946until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3947or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3948symbols on the stack must be discarded. Even if the parser succeeds, it
3949must discard the start symbol.
258b75ca
PE
3950
3951When discarded symbols convey heap based information, this memory is
3952lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3953in traditional compilers, it is unacceptable for programs like shells or
3954protocol implementations that may parse and execute indefinitely.
258b75ca 3955
a85284cf
AD
3956The @code{%destructor} directive defines code that is called when a
3957symbol is automatically discarded.
72f889cc
AD
3958
3959@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3960@findex %destructor
287c78f6
PE
3961Invoke the braced @var{code} whenever the parser discards one of the
3962@var{symbols}.
4b367315
AD
3963Within @var{code}, @code{$$} designates the semantic value associated
3964with the discarded symbol. The additional parser parameters are also
3965available (@pxref{Parser Function, , The Parser Function
3966@code{yyparse}}).
72f889cc
AD
3967@end deffn
3968
3969For instance:
3970
3971@smallexample
3972%union
3973@{
3974 char *string;
3975@}
3976%token <string> STRING
3977%type <string> string
3978%destructor @{ free ($$); @} STRING string
3979@end smallexample
3980
3981@noindent
258b75ca 3982guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3983its associated memory will be freed.
3984
e757bb10
AD
3985@sp 1
3986
3987@cindex discarded symbols
3988@dfn{Discarded symbols} are the following:
3989
3990@itemize
3991@item
3992stacked symbols popped during the first phase of error recovery,
3993@item
3994incoming terminals during the second phase of error recovery,
3995@item
a85284cf 3996the current look-ahead and the entire stack (except the current
9d9b8b70 3997right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3998@item
3999the start symbol, when the parser succeeds.
e757bb10
AD
4000@end itemize
4001
9d9b8b70
PE
4002The parser can @dfn{return immediately} because of an explicit call to
4003@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4004exhaustion.
4005
4006Right-hand size symbols of a rule that explicitly triggers a syntax
4007error via @code{YYERROR} are not discarded automatically. As a rule
4008of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4009the memory.
e757bb10 4010
342b8b6e 4011@node Expect Decl
bfa74976
RS
4012@subsection Suppressing Conflict Warnings
4013@cindex suppressing conflict warnings
4014@cindex preventing warnings about conflicts
4015@cindex warnings, preventing
4016@cindex conflicts, suppressing warnings of
4017@findex %expect
d6328241 4018@findex %expect-rr
bfa74976
RS
4019
4020Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4021(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4022have harmless shift/reduce conflicts which are resolved in a predictable
4023way and would be difficult to eliminate. It is desirable to suppress
4024the warning about these conflicts unless the number of conflicts
4025changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4026
4027The declaration looks like this:
4028
4029@example
4030%expect @var{n}
4031@end example
4032
035aa4a0
PE
4033Here @var{n} is a decimal integer. The declaration says there should
4034be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4035Bison reports an error if the number of shift/reduce conflicts differs
4036from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4037
035aa4a0
PE
4038For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4039serious, and should be eliminated entirely. Bison will always report
4040reduce/reduce conflicts for these parsers. With @acronym{GLR}
4041parsers, however, both kinds of conflicts are routine; otherwise,
4042there would be no need to use @acronym{GLR} parsing. Therefore, it is
4043also possible to specify an expected number of reduce/reduce conflicts
4044in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4045
4046@example
4047%expect-rr @var{n}
4048@end example
4049
bfa74976
RS
4050In general, using @code{%expect} involves these steps:
4051
4052@itemize @bullet
4053@item
4054Compile your grammar without @code{%expect}. Use the @samp{-v} option
4055to get a verbose list of where the conflicts occur. Bison will also
4056print the number of conflicts.
4057
4058@item
4059Check each of the conflicts to make sure that Bison's default
4060resolution is what you really want. If not, rewrite the grammar and
4061go back to the beginning.
4062
4063@item
4064Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4065number which Bison printed. With @acronym{GLR} parsers, add an
4066@code{%expect-rr} declaration as well.
bfa74976
RS
4067@end itemize
4068
035aa4a0
PE
4069Now Bison will warn you if you introduce an unexpected conflict, but
4070will keep silent otherwise.
bfa74976 4071
342b8b6e 4072@node Start Decl
bfa74976
RS
4073@subsection The Start-Symbol
4074@cindex declaring the start symbol
4075@cindex start symbol, declaring
4076@cindex default start symbol
4077@findex %start
4078
4079Bison assumes by default that the start symbol for the grammar is the first
4080nonterminal specified in the grammar specification section. The programmer
4081may override this restriction with the @code{%start} declaration as follows:
4082
4083@example
4084%start @var{symbol}
4085@end example
4086
342b8b6e 4087@node Pure Decl
bfa74976
RS
4088@subsection A Pure (Reentrant) Parser
4089@cindex reentrant parser
4090@cindex pure parser
8c9a50be 4091@findex %pure-parser
bfa74976
RS
4092
4093A @dfn{reentrant} program is one which does not alter in the course of
4094execution; in other words, it consists entirely of @dfn{pure} (read-only)
4095code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4096for example, a nonreentrant program may not be safe to call from a signal
4097handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4098program must be called only within interlocks.
4099
70811b85 4100Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4101suitable for most uses, and it permits compatibility with Yacc. (The
4102standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4103statically allocated variables for communication with @code{yylex},
4104including @code{yylval} and @code{yylloc}.)
bfa74976 4105
70811b85 4106Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4107declaration @code{%pure-parser} says that you want the parser to be
70811b85 4108reentrant. It looks like this:
bfa74976
RS
4109
4110@example
8c9a50be 4111%pure-parser
bfa74976
RS
4112@end example
4113
70811b85
RS
4114The result is that the communication variables @code{yylval} and
4115@code{yylloc} become local variables in @code{yyparse}, and a different
4116calling convention is used for the lexical analyzer function
4117@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4118Parsers}, for the details of this. The variable @code{yynerrs} also
4119becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4120Reporting Function @code{yyerror}}). The convention for calling
4121@code{yyparse} itself is unchanged.
4122
4123Whether the parser is pure has nothing to do with the grammar rules.
4124You can generate either a pure parser or a nonreentrant parser from any
4125valid grammar.
bfa74976 4126
342b8b6e 4127@node Decl Summary
bfa74976
RS
4128@subsection Bison Declaration Summary
4129@cindex Bison declaration summary
4130@cindex declaration summary
4131@cindex summary, Bison declaration
4132
d8988b2f 4133Here is a summary of the declarations used to define a grammar:
bfa74976 4134
18b519c0 4135@deffn {Directive} %union
bfa74976
RS
4136Declare the collection of data types that semantic values may have
4137(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4138@end deffn
bfa74976 4139
18b519c0 4140@deffn {Directive} %token
bfa74976
RS
4141Declare a terminal symbol (token type name) with no precedence
4142or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4143@end deffn
bfa74976 4144
18b519c0 4145@deffn {Directive} %right
bfa74976
RS
4146Declare a terminal symbol (token type name) that is right-associative
4147(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4148@end deffn
bfa74976 4149
18b519c0 4150@deffn {Directive} %left
bfa74976
RS
4151Declare a terminal symbol (token type name) that is left-associative
4152(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4153@end deffn
bfa74976 4154
18b519c0 4155@deffn {Directive} %nonassoc
bfa74976 4156Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4157(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4158Using it in a way that would be associative is a syntax error.
4159@end deffn
4160
91d2c560 4161@ifset defaultprec
39a06c25 4162@deffn {Directive} %default-prec
22fccf95 4163Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4164(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4165@end deffn
91d2c560 4166@end ifset
bfa74976 4167
18b519c0 4168@deffn {Directive} %type
bfa74976
RS
4169Declare the type of semantic values for a nonterminal symbol
4170(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4171@end deffn
bfa74976 4172
18b519c0 4173@deffn {Directive} %start
89cab50d
AD
4174Specify the grammar's start symbol (@pxref{Start Decl, ,The
4175Start-Symbol}).
18b519c0 4176@end deffn
bfa74976 4177
18b519c0 4178@deffn {Directive} %expect
bfa74976
RS
4179Declare the expected number of shift-reduce conflicts
4180(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4181@end deffn
4182
bfa74976 4183
d8988b2f
AD
4184@sp 1
4185@noindent
4186In order to change the behavior of @command{bison}, use the following
4187directives:
4188
18b519c0 4189@deffn {Directive} %debug
4947ebdb
PE
4190In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4191already defined, so that the debugging facilities are compiled.
18b519c0 4192@end deffn
ec3bc396 4193@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4194
18b519c0 4195@deffn {Directive} %defines
4bfd5e4e
PE
4196Write a header file containing macro definitions for the token type
4197names defined in the grammar as well as a few other declarations.
d8988b2f 4198If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4199is named @file{@var{name}.h}.
d8988b2f 4200
4bfd5e4e 4201Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4202declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4203(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4204require other definitions, or if you have defined a @code{YYSTYPE} macro
4205(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4206arrange for these definitions to be propagated to all modules, e.g., by
4207putting them in a prerequisite header that is included both by your
4208parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4209
4210Unless your parser is pure, the output header declares @code{yylval}
4211as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4212Parser}.
4213
4214If you have also used locations, the output header declares
4215@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4216@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4217Locations}.
4218
f8e1c9e5
AD
4219This output file is normally essential if you wish to put the definition
4220of @code{yylex} in a separate source file, because @code{yylex}
4221typically needs to be able to refer to the above-mentioned declarations
4222and to the token type codes. @xref{Token Values, ,Semantic Values of
4223Tokens}.
18b519c0 4224@end deffn
d8988b2f 4225
18b519c0 4226@deffn {Directive} %destructor
258b75ca 4227Specify how the parser should reclaim the memory associated to
fa7e68c3 4228discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4229@end deffn
72f889cc 4230
18b519c0 4231@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4232Specify a prefix to use for all Bison output file names. The names are
4233chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4234@end deffn
d8988b2f 4235
18b519c0 4236@deffn {Directive} %locations
89cab50d
AD
4237Generate the code processing the locations (@pxref{Action Features,
4238,Special Features for Use in Actions}). This mode is enabled as soon as
4239the grammar uses the special @samp{@@@var{n}} tokens, but if your
4240grammar does not use it, using @samp{%locations} allows for more
6e649e65 4241accurate syntax error messages.
18b519c0 4242@end deffn
89cab50d 4243
18b519c0 4244@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4245Rename the external symbols used in the parser so that they start with
4246@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4247is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4248@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4249possible @code{yylloc}. For example, if you use
4250@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4251and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4252Program}.
18b519c0 4253@end deffn
931c7513 4254
91d2c560 4255@ifset defaultprec
22fccf95
PE
4256@deffn {Directive} %no-default-prec
4257Do not assign a precedence to rules lacking an explicit @code{%prec}
4258modifier (@pxref{Contextual Precedence, ,Context-Dependent
4259Precedence}).
4260@end deffn
91d2c560 4261@end ifset
22fccf95 4262
18b519c0 4263@deffn {Directive} %no-parser
6deb4447
AD
4264Do not include any C code in the parser file; generate tables only. The
4265parser file contains just @code{#define} directives and static variable
4266declarations.
4267
4268This option also tells Bison to write the C code for the grammar actions
fa4d969f 4269into a file named @file{@var{file}.act}, in the form of a
6deb4447 4270brace-surrounded body fit for a @code{switch} statement.
18b519c0 4271@end deffn
6deb4447 4272
18b519c0 4273@deffn {Directive} %no-lines
931c7513
RS
4274Don't generate any @code{#line} preprocessor commands in the parser
4275file. Ordinarily Bison writes these commands in the parser file so that
4276the C compiler and debuggers will associate errors and object code with
4277your source file (the grammar file). This directive causes them to
4278associate errors with the parser file, treating it an independent source
4279file in its own right.
18b519c0 4280@end deffn
931c7513 4281
fa4d969f
PE
4282@deffn {Directive} %output="@var{file}"
4283Specify @var{file} for the parser file.
18b519c0 4284@end deffn
6deb4447 4285
18b519c0 4286@deffn {Directive} %pure-parser
d8988b2f
AD
4287Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4288(Reentrant) Parser}).
18b519c0 4289@end deffn
6deb4447 4290
b50d2359 4291@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4292Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4293Require a Version of Bison}.
b50d2359
AD
4294@end deffn
4295
18b519c0 4296@deffn {Directive} %token-table
931c7513
RS
4297Generate an array of token names in the parser file. The name of the
4298array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4299token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4300three elements of @code{yytname} correspond to the predefined tokens
4301@code{"$end"},
88bce5a2
AD
4302@code{"error"}, and @code{"$undefined"}; after these come the symbols
4303defined in the grammar file.
931c7513 4304
9e0876fb
PE
4305The name in the table includes all the characters needed to represent
4306the token in Bison. For single-character literals and literal
4307strings, this includes the surrounding quoting characters and any
4308escape sequences. For example, the Bison single-character literal
4309@code{'+'} corresponds to a three-character name, represented in C as
4310@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4311corresponds to a five-character name, represented in C as
4312@code{"\"\\\\/\""}.
931c7513 4313
8c9a50be 4314When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4315definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4316@code{YYNRULES}, and @code{YYNSTATES}:
4317
4318@table @code
4319@item YYNTOKENS
4320The highest token number, plus one.
4321@item YYNNTS
9ecbd125 4322The number of nonterminal symbols.
931c7513
RS
4323@item YYNRULES
4324The number of grammar rules,
4325@item YYNSTATES
4326The number of parser states (@pxref{Parser States}).
4327@end table
18b519c0 4328@end deffn
d8988b2f 4329
18b519c0 4330@deffn {Directive} %verbose
d8988b2f
AD
4331Write an extra output file containing verbose descriptions of the
4332parser states and what is done for each type of look-ahead token in
72d2299c 4333that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4334information.
18b519c0 4335@end deffn
d8988b2f 4336
18b519c0 4337@deffn {Directive} %yacc
d8988b2f
AD
4338Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4339including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4340@end deffn
d8988b2f
AD
4341
4342
342b8b6e 4343@node Multiple Parsers
bfa74976
RS
4344@section Multiple Parsers in the Same Program
4345
4346Most programs that use Bison parse only one language and therefore contain
4347only one Bison parser. But what if you want to parse more than one
4348language with the same program? Then you need to avoid a name conflict
4349between different definitions of @code{yyparse}, @code{yylval}, and so on.
4350
4351The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4352(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4353functions and variables of the Bison parser to start with @var{prefix}
4354instead of @samp{yy}. You can use this to give each parser distinct
4355names that do not conflict.
bfa74976
RS
4356
4357The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4358@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4359@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4360the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4361
4362@strong{All the other variables and macros associated with Bison are not
4363renamed.} These others are not global; there is no conflict if the same
4364name is used in different parsers. For example, @code{YYSTYPE} is not
4365renamed, but defining this in different ways in different parsers causes
4366no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4367
4368The @samp{-p} option works by adding macro definitions to the beginning
4369of the parser source file, defining @code{yyparse} as
4370@code{@var{prefix}parse}, and so on. This effectively substitutes one
4371name for the other in the entire parser file.
4372
342b8b6e 4373@node Interface
bfa74976
RS
4374@chapter Parser C-Language Interface
4375@cindex C-language interface
4376@cindex interface
4377
4378The Bison parser is actually a C function named @code{yyparse}. Here we
4379describe the interface conventions of @code{yyparse} and the other
4380functions that it needs to use.
4381
4382Keep in mind that the parser uses many C identifiers starting with
4383@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4384identifier (aside from those in this manual) in an action or in epilogue
4385in the grammar file, you are likely to run into trouble.
bfa74976
RS
4386
4387@menu
4388* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4389* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4390 which reads tokens.
4391* Error Reporting:: You must supply a function @code{yyerror}.
4392* Action Features:: Special features for use in actions.
f7ab6a50
PE
4393* Internationalization:: How to let the parser speak in the user's
4394 native language.
bfa74976
RS
4395@end menu
4396
342b8b6e 4397@node Parser Function
bfa74976
RS
4398@section The Parser Function @code{yyparse}
4399@findex yyparse
4400
4401You call the function @code{yyparse} to cause parsing to occur. This
4402function reads tokens, executes actions, and ultimately returns when it
4403encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4404write an action which directs @code{yyparse} to return immediately
4405without reading further.
bfa74976 4406
2a8d363a
AD
4407
4408@deftypefun int yyparse (void)
bfa74976
RS
4409The value returned by @code{yyparse} is 0 if parsing was successful (return
4410is due to end-of-input).
4411
b47dbebe
PE
4412The value is 1 if parsing failed because of invalid input, i.e., input
4413that contains a syntax error or that causes @code{YYABORT} to be
4414invoked.
4415
4416The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4417@end deftypefun
bfa74976
RS
4418
4419In an action, you can cause immediate return from @code{yyparse} by using
4420these macros:
4421
2a8d363a 4422@defmac YYACCEPT
bfa74976
RS
4423@findex YYACCEPT
4424Return immediately with value 0 (to report success).
2a8d363a 4425@end defmac
bfa74976 4426
2a8d363a 4427@defmac YYABORT
bfa74976
RS
4428@findex YYABORT
4429Return immediately with value 1 (to report failure).
2a8d363a
AD
4430@end defmac
4431
4432If you use a reentrant parser, you can optionally pass additional
4433parameter information to it in a reentrant way. To do so, use the
4434declaration @code{%parse-param}:
4435
feeb0eda 4436@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4437@findex %parse-param
287c78f6
PE
4438Declare that an argument declared by the braced-code
4439@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4440The @var{argument-declaration} is used when declaring
feeb0eda
PE
4441functions or prototypes. The last identifier in
4442@var{argument-declaration} must be the argument name.
2a8d363a
AD
4443@end deffn
4444
4445Here's an example. Write this in the parser:
4446
4447@example
feeb0eda
PE
4448%parse-param @{int *nastiness@}
4449%parse-param @{int *randomness@}
2a8d363a
AD
4450@end example
4451
4452@noindent
4453Then call the parser like this:
4454
4455@example
4456@{
4457 int nastiness, randomness;
4458 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4459 value = yyparse (&nastiness, &randomness);
4460 @dots{}
4461@}
4462@end example
4463
4464@noindent
4465In the grammar actions, use expressions like this to refer to the data:
4466
4467@example
4468exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4469@end example
4470
bfa74976 4471
342b8b6e 4472@node Lexical
bfa74976
RS
4473@section The Lexical Analyzer Function @code{yylex}
4474@findex yylex
4475@cindex lexical analyzer
4476
4477The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4478the input stream and returns them to the parser. Bison does not create
4479this function automatically; you must write it so that @code{yyparse} can
4480call it. The function is sometimes referred to as a lexical scanner.
4481
4482In simple programs, @code{yylex} is often defined at the end of the Bison
4483grammar file. If @code{yylex} is defined in a separate source file, you
4484need to arrange for the token-type macro definitions to be available there.
4485To do this, use the @samp{-d} option when you run Bison, so that it will
4486write these macro definitions into a separate header file
4487@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4488that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4489
4490@menu
4491* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4492* Token Values:: How @code{yylex} must return the semantic value
4493 of the token it has read.
95923bd6 4494* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4495 (line number, etc.) of the token, if the
4496 actions want that.
4497* Pure Calling:: How the calling convention differs
4498 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4499@end menu
4500
342b8b6e 4501@node Calling Convention
bfa74976
RS
4502@subsection Calling Convention for @code{yylex}
4503
72d2299c
PE
4504The value that @code{yylex} returns must be the positive numeric code
4505for the type of token it has just found; a zero or negative value
4506signifies end-of-input.
bfa74976
RS
4507
4508When a token is referred to in the grammar rules by a name, that name
4509in the parser file becomes a C macro whose definition is the proper
4510numeric code for that token type. So @code{yylex} can use the name
4511to indicate that type. @xref{Symbols}.
4512
4513When a token is referred to in the grammar rules by a character literal,
4514the numeric code for that character is also the code for the token type.
72d2299c
PE
4515So @code{yylex} can simply return that character code, possibly converted
4516to @code{unsigned char} to avoid sign-extension. The null character
4517must not be used this way, because its code is zero and that
bfa74976
RS
4518signifies end-of-input.
4519
4520Here is an example showing these things:
4521
4522@example
13863333
AD
4523int
4524yylex (void)
bfa74976
RS
4525@{
4526 @dots{}
72d2299c 4527 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4528 return 0;
4529 @dots{}
4530 if (c == '+' || c == '-')
72d2299c 4531 return c; /* Assume token type for `+' is '+'. */
bfa74976 4532 @dots{}
72d2299c 4533 return INT; /* Return the type of the token. */
bfa74976
RS
4534 @dots{}
4535@}
4536@end example
4537
4538@noindent
4539This interface has been designed so that the output from the @code{lex}
4540utility can be used without change as the definition of @code{yylex}.
4541
931c7513
RS
4542If the grammar uses literal string tokens, there are two ways that
4543@code{yylex} can determine the token type codes for them:
4544
4545@itemize @bullet
4546@item
4547If the grammar defines symbolic token names as aliases for the
4548literal string tokens, @code{yylex} can use these symbolic names like
4549all others. In this case, the use of the literal string tokens in
4550the grammar file has no effect on @code{yylex}.
4551
4552@item
9ecbd125 4553@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4554table. The index of the token in the table is the token type's code.
9ecbd125 4555The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4556double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4557token's characters are escaped as necessary to be suitable as input
4558to Bison.
931c7513 4559
9e0876fb
PE
4560Here's code for looking up a multicharacter token in @code{yytname},
4561assuming that the characters of the token are stored in
4562@code{token_buffer}, and assuming that the token does not contain any
4563characters like @samp{"} that require escaping.
931c7513
RS
4564
4565@smallexample
4566for (i = 0; i < YYNTOKENS; i++)
4567 @{
4568 if (yytname[i] != 0
4569 && yytname[i][0] == '"'
68449b3a
PE
4570 && ! strncmp (yytname[i] + 1, token_buffer,
4571 strlen (token_buffer))
931c7513
RS
4572 && yytname[i][strlen (token_buffer) + 1] == '"'
4573 && yytname[i][strlen (token_buffer) + 2] == 0)
4574 break;
4575 @}
4576@end smallexample
4577
4578The @code{yytname} table is generated only if you use the
8c9a50be 4579@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4580@end itemize
4581
342b8b6e 4582@node Token Values
bfa74976
RS
4583@subsection Semantic Values of Tokens
4584
4585@vindex yylval
9d9b8b70 4586In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4587be stored into the global variable @code{yylval}. When you are using
4588just one data type for semantic values, @code{yylval} has that type.
4589Thus, if the type is @code{int} (the default), you might write this in
4590@code{yylex}:
4591
4592@example
4593@group
4594 @dots{}
72d2299c
PE
4595 yylval = value; /* Put value onto Bison stack. */
4596 return INT; /* Return the type of the token. */
bfa74976
RS
4597 @dots{}
4598@end group
4599@end example
4600
4601When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4602made from the @code{%union} declaration (@pxref{Union Decl, ,The
4603Collection of Value Types}). So when you store a token's value, you
4604must use the proper member of the union. If the @code{%union}
4605declaration looks like this:
bfa74976
RS
4606
4607@example
4608@group
4609%union @{
4610 int intval;
4611 double val;
4612 symrec *tptr;
4613@}
4614@end group
4615@end example
4616
4617@noindent
4618then the code in @code{yylex} might look like this:
4619
4620@example
4621@group
4622 @dots{}
72d2299c
PE
4623 yylval.intval = value; /* Put value onto Bison stack. */
4624 return INT; /* Return the type of the token. */
bfa74976
RS
4625 @dots{}
4626@end group
4627@end example
4628
95923bd6
AD
4629@node Token Locations
4630@subsection Textual Locations of Tokens
bfa74976
RS
4631
4632@vindex yylloc
847bf1f5 4633If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4634Tracking Locations}) in actions to keep track of the textual locations
4635of tokens and groupings, then you must provide this information in
4636@code{yylex}. The function @code{yyparse} expects to find the textual
4637location of a token just parsed in the global variable @code{yylloc}.
4638So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4639
4640By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4641initialize the members that are going to be used by the actions. The
4642four members are called @code{first_line}, @code{first_column},
4643@code{last_line} and @code{last_column}. Note that the use of this
4644feature makes the parser noticeably slower.
bfa74976
RS
4645
4646@tindex YYLTYPE
4647The data type of @code{yylloc} has the name @code{YYLTYPE}.
4648
342b8b6e 4649@node Pure Calling
c656404a 4650@subsection Calling Conventions for Pure Parsers
bfa74976 4651
8c9a50be 4652When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4653pure, reentrant parser, the global communication variables @code{yylval}
4654and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4655Parser}.) In such parsers the two global variables are replaced by
4656pointers passed as arguments to @code{yylex}. You must declare them as
4657shown here, and pass the information back by storing it through those
4658pointers.
bfa74976
RS
4659
4660@example
13863333
AD
4661int
4662yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4663@{
4664 @dots{}
4665 *lvalp = value; /* Put value onto Bison stack. */
4666 return INT; /* Return the type of the token. */
4667 @dots{}
4668@}
4669@end example
4670
4671If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4672textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4673this case, omit the second argument; @code{yylex} will be called with
4674only one argument.
4675
e425e872 4676
2a8d363a
AD
4677If you wish to pass the additional parameter data to @code{yylex}, use
4678@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4679Function}).
e425e872 4680
feeb0eda 4681@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4682@findex %lex-param
287c78f6
PE
4683Declare that the braced-code @var{argument-declaration} is an
4684additional @code{yylex} argument declaration.
2a8d363a 4685@end deffn
e425e872 4686
2a8d363a 4687For instance:
e425e872
RS
4688
4689@example
feeb0eda
PE
4690%parse-param @{int *nastiness@}
4691%lex-param @{int *nastiness@}
4692%parse-param @{int *randomness@}
e425e872
RS
4693@end example
4694
4695@noindent
2a8d363a 4696results in the following signature:
e425e872
RS
4697
4698@example
2a8d363a
AD
4699int yylex (int *nastiness);
4700int yyparse (int *nastiness, int *randomness);
e425e872
RS
4701@end example
4702
2a8d363a 4703If @code{%pure-parser} is added:
c656404a
RS
4704
4705@example
2a8d363a
AD
4706int yylex (YYSTYPE *lvalp, int *nastiness);
4707int yyparse (int *nastiness, int *randomness);
c656404a
RS
4708@end example
4709
2a8d363a
AD
4710@noindent
4711and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4712
2a8d363a
AD
4713@example
4714int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4715int yyparse (int *nastiness, int *randomness);
4716@end example
931c7513 4717
342b8b6e 4718@node Error Reporting
bfa74976
RS
4719@section The Error Reporting Function @code{yyerror}
4720@cindex error reporting function
4721@findex yyerror
4722@cindex parse error
4723@cindex syntax error
4724
6e649e65 4725The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4726whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4727action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4728macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4729in Actions}).
bfa74976
RS
4730
4731The Bison parser expects to report the error by calling an error
4732reporting function named @code{yyerror}, which you must supply. It is
4733called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4734receives one argument. For a syntax error, the string is normally
4735@w{@code{"syntax error"}}.
bfa74976 4736
2a8d363a
AD
4737@findex %error-verbose
4738If you invoke the directive @code{%error-verbose} in the Bison
4739declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4740Section}), then Bison provides a more verbose and specific error message
6e649e65 4741string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4742
1a059451
PE
4743The parser can detect one other kind of error: memory exhaustion. This
4744can happen when the input contains constructions that are very deeply
bfa74976 4745nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4746parser normally extends its stack automatically up to a very large limit. But
4747if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4748fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4749
4750In some cases diagnostics like @w{@code{"syntax error"}} are
4751translated automatically from English to some other language before
4752they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4753
4754The following definition suffices in simple programs:
4755
4756@example
4757@group
13863333 4758void
38a92d50 4759yyerror (char const *s)
bfa74976
RS
4760@{
4761@end group
4762@group
4763 fprintf (stderr, "%s\n", s);
4764@}
4765@end group
4766@end example
4767
4768After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4769error recovery if you have written suitable error recovery grammar rules
4770(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4771immediately return 1.
4772
93724f13 4773Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4774an access to the current location.
4775This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4776parsers, but not for the Yacc parser, for historical reasons. I.e., if
4777@samp{%locations %pure-parser} is passed then the prototypes for
4778@code{yyerror} are:
4779
4780@example
38a92d50
PE
4781void yyerror (char const *msg); /* Yacc parsers. */
4782void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4783@end example
4784
feeb0eda 4785If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4786
4787@example
b317297e
PE
4788void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4789void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4790@end example
4791
fa7e68c3 4792Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4793convention for absolutely pure parsers, i.e., when the calling
4794convention of @code{yylex} @emph{and} the calling convention of
4795@code{%pure-parser} are pure. I.e.:
4796
4797@example
4798/* Location tracking. */
4799%locations
4800/* Pure yylex. */
4801%pure-parser
feeb0eda 4802%lex-param @{int *nastiness@}
2a8d363a 4803/* Pure yyparse. */
feeb0eda
PE
4804%parse-param @{int *nastiness@}
4805%parse-param @{int *randomness@}
2a8d363a
AD
4806@end example
4807
4808@noindent
4809results in the following signatures for all the parser kinds:
4810
4811@example
4812int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4813int yyparse (int *nastiness, int *randomness);
93724f13
AD
4814void yyerror (YYLTYPE *locp,
4815 int *nastiness, int *randomness,
38a92d50 4816 char const *msg);
2a8d363a
AD
4817@end example
4818
1c0c3e95 4819@noindent
38a92d50
PE
4820The prototypes are only indications of how the code produced by Bison
4821uses @code{yyerror}. Bison-generated code always ignores the returned
4822value, so @code{yyerror} can return any type, including @code{void}.
4823Also, @code{yyerror} can be a variadic function; that is why the
4824message is always passed last.
4825
4826Traditionally @code{yyerror} returns an @code{int} that is always
4827ignored, but this is purely for historical reasons, and @code{void} is
4828preferable since it more accurately describes the return type for
4829@code{yyerror}.
93724f13 4830
bfa74976
RS
4831@vindex yynerrs
4832The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4833reported so far. Normally this variable is global; but if you
704a47c4
AD
4834request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4835then it is a local variable which only the actions can access.
bfa74976 4836
342b8b6e 4837@node Action Features
bfa74976
RS
4838@section Special Features for Use in Actions
4839@cindex summary, action features
4840@cindex action features summary
4841
4842Here is a table of Bison constructs, variables and macros that
4843are useful in actions.
4844
18b519c0 4845@deffn {Variable} $$
bfa74976
RS
4846Acts like a variable that contains the semantic value for the
4847grouping made by the current rule. @xref{Actions}.
18b519c0 4848@end deffn
bfa74976 4849
18b519c0 4850@deffn {Variable} $@var{n}
bfa74976
RS
4851Acts like a variable that contains the semantic value for the
4852@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4853@end deffn
bfa74976 4854
18b519c0 4855@deffn {Variable} $<@var{typealt}>$
bfa74976 4856Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4857specified by the @code{%union} declaration. @xref{Action Types, ,Data
4858Types of Values in Actions}.
18b519c0 4859@end deffn
bfa74976 4860
18b519c0 4861@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4862Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4863union specified by the @code{%union} declaration.
e0c471a9 4864@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4865@end deffn
bfa74976 4866
18b519c0 4867@deffn {Macro} YYABORT;
bfa74976
RS
4868Return immediately from @code{yyparse}, indicating failure.
4869@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4870@end deffn
bfa74976 4871
18b519c0 4872@deffn {Macro} YYACCEPT;
bfa74976
RS
4873Return immediately from @code{yyparse}, indicating success.
4874@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4875@end deffn
bfa74976 4876
18b519c0 4877@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4878@findex YYBACKUP
4879Unshift a token. This macro is allowed only for rules that reduce
4880a single value, and only when there is no look-ahead token.
c827f760 4881It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4882It installs a look-ahead token with token type @var{token} and
4883semantic value @var{value}; then it discards the value that was
4884going to be reduced by this rule.
4885
4886If the macro is used when it is not valid, such as when there is
4887a look-ahead token already, then it reports a syntax error with
4888a message @samp{cannot back up} and performs ordinary error
4889recovery.
4890
4891In either case, the rest of the action is not executed.
18b519c0 4892@end deffn
bfa74976 4893
18b519c0 4894@deffn {Macro} YYEMPTY
bfa74976
RS
4895@vindex YYEMPTY
4896Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4897@end deffn
bfa74976 4898
32c29292
JD
4899@deffn {Macro} YYEOF
4900@vindex YYEOF
4901Value stored in @code{yychar} when the look-ahead is the end of the input
4902stream.
4903@end deffn
4904
18b519c0 4905@deffn {Macro} YYERROR;
bfa74976
RS
4906@findex YYERROR
4907Cause an immediate syntax error. This statement initiates error
4908recovery just as if the parser itself had detected an error; however, it
4909does not call @code{yyerror}, and does not print any message. If you
4910want to print an error message, call @code{yyerror} explicitly before
4911the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4912@end deffn
bfa74976 4913
18b519c0 4914@deffn {Macro} YYRECOVERING
bfa74976
RS
4915This macro stands for an expression that has the value 1 when the parser
4916is recovering from a syntax error, and 0 the rest of the time.
4917@xref{Error Recovery}.
18b519c0 4918@end deffn
bfa74976 4919
18b519c0 4920@deffn {Variable} yychar
32c29292
JD
4921Variable containing either the look-ahead token, or @code{YYEOF} when the
4922look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4923has been performed so the next token is not yet known.
4924Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4925Actions}).
bfa74976 4926@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4927@end deffn
bfa74976 4928
18b519c0 4929@deffn {Macro} yyclearin;
bfa74976 4930Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4931error rules.
4932Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4933Semantic Actions}).
4934@xref{Error Recovery}.
18b519c0 4935@end deffn
bfa74976 4936
18b519c0 4937@deffn {Macro} yyerrok;
bfa74976 4938Resume generating error messages immediately for subsequent syntax
13863333 4939errors. This is useful primarily in error rules.
bfa74976 4940@xref{Error Recovery}.
18b519c0 4941@end deffn
bfa74976 4942
32c29292
JD
4943@deffn {Variable} yylloc
4944Variable containing the look-ahead token location when @code{yychar} is not set
4945to @code{YYEMPTY} or @code{YYEOF}.
4946Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4947Actions}).
4948@xref{Actions and Locations, ,Actions and Locations}.
4949@end deffn
4950
4951@deffn {Variable} yylval
4952Variable containing the look-ahead token semantic value when @code{yychar} is
4953not set to @code{YYEMPTY} or @code{YYEOF}.
4954Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4955Actions}).
4956@xref{Actions, ,Actions}.
4957@end deffn
4958
18b519c0 4959@deffn {Value} @@$
847bf1f5 4960@findex @@$
95923bd6 4961Acts like a structure variable containing information on the textual location
847bf1f5
AD
4962of the grouping made by the current rule. @xref{Locations, ,
4963Tracking Locations}.
bfa74976 4964
847bf1f5
AD
4965@c Check if those paragraphs are still useful or not.
4966
4967@c @example
4968@c struct @{
4969@c int first_line, last_line;
4970@c int first_column, last_column;
4971@c @};
4972@c @end example
4973
4974@c Thus, to get the starting line number of the third component, you would
4975@c use @samp{@@3.first_line}.
bfa74976 4976
847bf1f5
AD
4977@c In order for the members of this structure to contain valid information,
4978@c you must make @code{yylex} supply this information about each token.
4979@c If you need only certain members, then @code{yylex} need only fill in
4980@c those members.
bfa74976 4981
847bf1f5 4982@c The use of this feature makes the parser noticeably slower.
18b519c0 4983@end deffn
847bf1f5 4984
18b519c0 4985@deffn {Value} @@@var{n}
847bf1f5 4986@findex @@@var{n}
95923bd6 4987Acts like a structure variable containing information on the textual location
847bf1f5
AD
4988of the @var{n}th component of the current rule. @xref{Locations, ,
4989Tracking Locations}.
18b519c0 4990@end deffn
bfa74976 4991
f7ab6a50
PE
4992@node Internationalization
4993@section Parser Internationalization
4994@cindex internationalization
4995@cindex i18n
4996@cindex NLS
4997@cindex gettext
4998@cindex bison-po
4999
5000A Bison-generated parser can print diagnostics, including error and
5001tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5002also supports outputting diagnostics in the user's native language. To
5003make this work, the user should set the usual environment variables.
5004@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5005For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5006set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5007encoding. The exact set of available locales depends on the user's
5008installation.
5009
5010The maintainer of a package that uses a Bison-generated parser enables
5011the internationalization of the parser's output through the following
5012steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5013@acronym{GNU} Automake.
5014
5015@enumerate
5016@item
30757c8c 5017@cindex bison-i18n.m4
f7ab6a50
PE
5018Into the directory containing the @acronym{GNU} Autoconf macros used
5019by the package---often called @file{m4}---copy the
5020@file{bison-i18n.m4} file installed by Bison under
5021@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5022For example:
5023
5024@example
5025cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5026@end example
5027
5028@item
30757c8c
PE
5029@findex BISON_I18N
5030@vindex BISON_LOCALEDIR
5031@vindex YYENABLE_NLS
f7ab6a50
PE
5032In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5033invocation, add an invocation of @code{BISON_I18N}. This macro is
5034defined in the file @file{bison-i18n.m4} that you copied earlier. It
5035causes @samp{configure} to find the value of the
30757c8c
PE
5036@code{BISON_LOCALEDIR} variable, and it defines the source-language
5037symbol @code{YYENABLE_NLS} to enable translations in the
5038Bison-generated parser.
f7ab6a50
PE
5039
5040@item
5041In the @code{main} function of your program, designate the directory
5042containing Bison's runtime message catalog, through a call to
5043@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5044For example:
5045
5046@example
5047bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5048@end example
5049
5050Typically this appears after any other call @code{bindtextdomain
5051(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5052@samp{BISON_LOCALEDIR} to be defined as a string through the
5053@file{Makefile}.
5054
5055@item
5056In the @file{Makefile.am} that controls the compilation of the @code{main}
5057function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5058either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5059
5060@example
5061DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5062@end example
5063
5064or:
5065
5066@example
5067AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5068@end example
5069
5070@item
5071Finally, invoke the command @command{autoreconf} to generate the build
5072infrastructure.
5073@end enumerate
5074
bfa74976 5075
342b8b6e 5076@node Algorithm
13863333
AD
5077@chapter The Bison Parser Algorithm
5078@cindex Bison parser algorithm
bfa74976
RS
5079@cindex algorithm of parser
5080@cindex shifting
5081@cindex reduction
5082@cindex parser stack
5083@cindex stack, parser
5084
5085As Bison reads tokens, it pushes them onto a stack along with their
5086semantic values. The stack is called the @dfn{parser stack}. Pushing a
5087token is traditionally called @dfn{shifting}.
5088
5089For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5090@samp{3} to come. The stack will have four elements, one for each token
5091that was shifted.
5092
5093But the stack does not always have an element for each token read. When
5094the last @var{n} tokens and groupings shifted match the components of a
5095grammar rule, they can be combined according to that rule. This is called
5096@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5097single grouping whose symbol is the result (left hand side) of that rule.
5098Running the rule's action is part of the process of reduction, because this
5099is what computes the semantic value of the resulting grouping.
5100
5101For example, if the infix calculator's parser stack contains this:
5102
5103@example
51041 + 5 * 3
5105@end example
5106
5107@noindent
5108and the next input token is a newline character, then the last three
5109elements can be reduced to 15 via the rule:
5110
5111@example
5112expr: expr '*' expr;
5113@end example
5114
5115@noindent
5116Then the stack contains just these three elements:
5117
5118@example
51191 + 15
5120@end example
5121
5122@noindent
5123At this point, another reduction can be made, resulting in the single value
512416. Then the newline token can be shifted.
5125
5126The parser tries, by shifts and reductions, to reduce the entire input down
5127to a single grouping whose symbol is the grammar's start-symbol
5128(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5129
5130This kind of parser is known in the literature as a bottom-up parser.
5131
5132@menu
5133* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5134* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5135* Precedence:: Operator precedence works by resolving conflicts.
5136* Contextual Precedence:: When an operator's precedence depends on context.
5137* Parser States:: The parser is a finite-state-machine with stack.
5138* Reduce/Reduce:: When two rules are applicable in the same situation.
5139* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5140* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5141* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5142@end menu
5143
342b8b6e 5144@node Look-Ahead
bfa74976
RS
5145@section Look-Ahead Tokens
5146@cindex look-ahead token
5147
5148The Bison parser does @emph{not} always reduce immediately as soon as the
5149last @var{n} tokens and groupings match a rule. This is because such a
5150simple strategy is inadequate to handle most languages. Instead, when a
5151reduction is possible, the parser sometimes ``looks ahead'' at the next
5152token in order to decide what to do.
5153
5154When a token is read, it is not immediately shifted; first it becomes the
5155@dfn{look-ahead token}, which is not on the stack. Now the parser can
5156perform one or more reductions of tokens and groupings on the stack, while
5157the look-ahead token remains off to the side. When no more reductions
5158should take place, the look-ahead token is shifted onto the stack. This
5159does not mean that all possible reductions have been done; depending on the
5160token type of the look-ahead token, some rules may choose to delay their
5161application.
5162
5163Here is a simple case where look-ahead is needed. These three rules define
5164expressions which contain binary addition operators and postfix unary
5165factorial operators (@samp{!}), and allow parentheses for grouping.
5166
5167@example
5168@group
5169expr: term '+' expr
5170 | term
5171 ;
5172@end group
5173
5174@group
5175term: '(' expr ')'
5176 | term '!'
5177 | NUMBER
5178 ;
5179@end group
5180@end example
5181
5182Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5183should be done? If the following token is @samp{)}, then the first three
5184tokens must be reduced to form an @code{expr}. This is the only valid
5185course, because shifting the @samp{)} would produce a sequence of symbols
5186@w{@code{term ')'}}, and no rule allows this.
5187
5188If the following token is @samp{!}, then it must be shifted immediately so
5189that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5190parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5191@code{expr}. It would then be impossible to shift the @samp{!} because
5192doing so would produce on the stack the sequence of symbols @code{expr
5193'!'}. No rule allows that sequence.
5194
5195@vindex yychar
32c29292
JD
5196@vindex yylval
5197@vindex yylloc
5198The look-ahead token is stored in the variable @code{yychar}.
5199Its semantic value and location, if any, are stored in the variables
5200@code{yylval} and @code{yylloc}.
bfa74976
RS
5201@xref{Action Features, ,Special Features for Use in Actions}.
5202
342b8b6e 5203@node Shift/Reduce
bfa74976
RS
5204@section Shift/Reduce Conflicts
5205@cindex conflicts
5206@cindex shift/reduce conflicts
5207@cindex dangling @code{else}
5208@cindex @code{else}, dangling
5209
5210Suppose we are parsing a language which has if-then and if-then-else
5211statements, with a pair of rules like this:
5212
5213@example
5214@group
5215if_stmt:
5216 IF expr THEN stmt
5217 | IF expr THEN stmt ELSE stmt
5218 ;
5219@end group
5220@end example
5221
5222@noindent
5223Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5224terminal symbols for specific keyword tokens.
5225
5226When the @code{ELSE} token is read and becomes the look-ahead token, the
5227contents of the stack (assuming the input is valid) are just right for
5228reduction by the first rule. But it is also legitimate to shift the
5229@code{ELSE}, because that would lead to eventual reduction by the second
5230rule.
5231
5232This situation, where either a shift or a reduction would be valid, is
5233called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5234these conflicts by choosing to shift, unless otherwise directed by
5235operator precedence declarations. To see the reason for this, let's
5236contrast it with the other alternative.
5237
5238Since the parser prefers to shift the @code{ELSE}, the result is to attach
5239the else-clause to the innermost if-statement, making these two inputs
5240equivalent:
5241
5242@example
5243if x then if y then win (); else lose;
5244
5245if x then do; if y then win (); else lose; end;
5246@end example
5247
5248But if the parser chose to reduce when possible rather than shift, the
5249result would be to attach the else-clause to the outermost if-statement,
5250making these two inputs equivalent:
5251
5252@example
5253if x then if y then win (); else lose;
5254
5255if x then do; if y then win (); end; else lose;
5256@end example
5257
5258The conflict exists because the grammar as written is ambiguous: either
5259parsing of the simple nested if-statement is legitimate. The established
5260convention is that these ambiguities are resolved by attaching the
5261else-clause to the innermost if-statement; this is what Bison accomplishes
5262by choosing to shift rather than reduce. (It would ideally be cleaner to
5263write an unambiguous grammar, but that is very hard to do in this case.)
5264This particular ambiguity was first encountered in the specifications of
5265Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5266
5267To avoid warnings from Bison about predictable, legitimate shift/reduce
5268conflicts, use the @code{%expect @var{n}} declaration. There will be no
5269warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5270@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5271
5272The definition of @code{if_stmt} above is solely to blame for the
5273conflict, but the conflict does not actually appear without additional
5274rules. Here is a complete Bison input file that actually manifests the
5275conflict:
5276
5277@example
5278@group
5279%token IF THEN ELSE variable
5280%%
5281@end group
5282@group
5283stmt: expr
5284 | if_stmt
5285 ;
5286@end group
5287
5288@group
5289if_stmt:
5290 IF expr THEN stmt
5291 | IF expr THEN stmt ELSE stmt
5292 ;
5293@end group
5294
5295expr: variable
5296 ;
5297@end example
5298
342b8b6e 5299@node Precedence
bfa74976
RS
5300@section Operator Precedence
5301@cindex operator precedence
5302@cindex precedence of operators
5303
5304Another situation where shift/reduce conflicts appear is in arithmetic
5305expressions. Here shifting is not always the preferred resolution; the
5306Bison declarations for operator precedence allow you to specify when to
5307shift and when to reduce.
5308
5309@menu
5310* Why Precedence:: An example showing why precedence is needed.
5311* Using Precedence:: How to specify precedence in Bison grammars.
5312* Precedence Examples:: How these features are used in the previous example.
5313* How Precedence:: How they work.
5314@end menu
5315
342b8b6e 5316@node Why Precedence
bfa74976
RS
5317@subsection When Precedence is Needed
5318
5319Consider the following ambiguous grammar fragment (ambiguous because the
5320input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5321
5322@example
5323@group
5324expr: expr '-' expr
5325 | expr '*' expr
5326 | expr '<' expr
5327 | '(' expr ')'
5328 @dots{}
5329 ;
5330@end group
5331@end example
5332
5333@noindent
5334Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5335should it reduce them via the rule for the subtraction operator? It
5336depends on the next token. Of course, if the next token is @samp{)}, we
5337must reduce; shifting is invalid because no single rule can reduce the
5338token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5339the next token is @samp{*} or @samp{<}, we have a choice: either
5340shifting or reduction would allow the parse to complete, but with
5341different results.
5342
5343To decide which one Bison should do, we must consider the results. If
5344the next operator token @var{op} is shifted, then it must be reduced
5345first in order to permit another opportunity to reduce the difference.
5346The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5347hand, if the subtraction is reduced before shifting @var{op}, the result
5348is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5349reduce should depend on the relative precedence of the operators
5350@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5351@samp{<}.
bfa74976
RS
5352
5353@cindex associativity
5354What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5355@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5356operators we prefer the former, which is called @dfn{left association}.
5357The latter alternative, @dfn{right association}, is desirable for
5358assignment operators. The choice of left or right association is a
5359matter of whether the parser chooses to shift or reduce when the stack
5360contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5361makes right-associativity.
bfa74976 5362
342b8b6e 5363@node Using Precedence
bfa74976
RS
5364@subsection Specifying Operator Precedence
5365@findex %left
5366@findex %right
5367@findex %nonassoc
5368
5369Bison allows you to specify these choices with the operator precedence
5370declarations @code{%left} and @code{%right}. Each such declaration
5371contains a list of tokens, which are operators whose precedence and
5372associativity is being declared. The @code{%left} declaration makes all
5373those operators left-associative and the @code{%right} declaration makes
5374them right-associative. A third alternative is @code{%nonassoc}, which
5375declares that it is a syntax error to find the same operator twice ``in a
5376row''.
5377
5378The relative precedence of different operators is controlled by the
5379order in which they are declared. The first @code{%left} or
5380@code{%right} declaration in the file declares the operators whose
5381precedence is lowest, the next such declaration declares the operators
5382whose precedence is a little higher, and so on.
5383
342b8b6e 5384@node Precedence Examples
bfa74976
RS
5385@subsection Precedence Examples
5386
5387In our example, we would want the following declarations:
5388
5389@example
5390%left '<'
5391%left '-'
5392%left '*'
5393@end example
5394
5395In a more complete example, which supports other operators as well, we
5396would declare them in groups of equal precedence. For example, @code{'+'} is
5397declared with @code{'-'}:
5398
5399@example
5400%left '<' '>' '=' NE LE GE
5401%left '+' '-'
5402%left '*' '/'
5403@end example
5404
5405@noindent
5406(Here @code{NE} and so on stand for the operators for ``not equal''
5407and so on. We assume that these tokens are more than one character long
5408and therefore are represented by names, not character literals.)
5409
342b8b6e 5410@node How Precedence
bfa74976
RS
5411@subsection How Precedence Works
5412
5413The first effect of the precedence declarations is to assign precedence
5414levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5415precedence levels to certain rules: each rule gets its precedence from
5416the last terminal symbol mentioned in the components. (You can also
5417specify explicitly the precedence of a rule. @xref{Contextual
5418Precedence, ,Context-Dependent Precedence}.)
5419
5420Finally, the resolution of conflicts works by comparing the precedence
5421of the rule being considered with that of the look-ahead token. If the
5422token's precedence is higher, the choice is to shift. If the rule's
5423precedence is higher, the choice is to reduce. If they have equal
5424precedence, the choice is made based on the associativity of that
5425precedence level. The verbose output file made by @samp{-v}
5426(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5427resolved.
bfa74976
RS
5428
5429Not all rules and not all tokens have precedence. If either the rule or
5430the look-ahead token has no precedence, then the default is to shift.
5431
342b8b6e 5432@node Contextual Precedence
bfa74976
RS
5433@section Context-Dependent Precedence
5434@cindex context-dependent precedence
5435@cindex unary operator precedence
5436@cindex precedence, context-dependent
5437@cindex precedence, unary operator
5438@findex %prec
5439
5440Often the precedence of an operator depends on the context. This sounds
5441outlandish at first, but it is really very common. For example, a minus
5442sign typically has a very high precedence as a unary operator, and a
5443somewhat lower precedence (lower than multiplication) as a binary operator.
5444
5445The Bison precedence declarations, @code{%left}, @code{%right} and
5446@code{%nonassoc}, can only be used once for a given token; so a token has
5447only one precedence declared in this way. For context-dependent
5448precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5449modifier for rules.
bfa74976
RS
5450
5451The @code{%prec} modifier declares the precedence of a particular rule by
5452specifying a terminal symbol whose precedence should be used for that rule.
5453It's not necessary for that symbol to appear otherwise in the rule. The
5454modifier's syntax is:
5455
5456@example
5457%prec @var{terminal-symbol}
5458@end example
5459
5460@noindent
5461and it is written after the components of the rule. Its effect is to
5462assign the rule the precedence of @var{terminal-symbol}, overriding
5463the precedence that would be deduced for it in the ordinary way. The
5464altered rule precedence then affects how conflicts involving that rule
5465are resolved (@pxref{Precedence, ,Operator Precedence}).
5466
5467Here is how @code{%prec} solves the problem of unary minus. First, declare
5468a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5469are no tokens of this type, but the symbol serves to stand for its
5470precedence:
5471
5472@example
5473@dots{}
5474%left '+' '-'
5475%left '*'
5476%left UMINUS
5477@end example
5478
5479Now the precedence of @code{UMINUS} can be used in specific rules:
5480
5481@example
5482@group
5483exp: @dots{}
5484 | exp '-' exp
5485 @dots{}
5486 | '-' exp %prec UMINUS
5487@end group
5488@end example
5489
91d2c560 5490@ifset defaultprec
39a06c25
PE
5491If you forget to append @code{%prec UMINUS} to the rule for unary
5492minus, Bison silently assumes that minus has its usual precedence.
5493This kind of problem can be tricky to debug, since one typically
5494discovers the mistake only by testing the code.
5495
22fccf95 5496The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5497this kind of problem systematically. It causes rules that lack a
5498@code{%prec} modifier to have no precedence, even if the last terminal
5499symbol mentioned in their components has a declared precedence.
5500
22fccf95 5501If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5502for all rules that participate in precedence conflict resolution.
5503Then you will see any shift/reduce conflict until you tell Bison how
5504to resolve it, either by changing your grammar or by adding an
5505explicit precedence. This will probably add declarations to the
5506grammar, but it helps to protect against incorrect rule precedences.
5507
22fccf95
PE
5508The effect of @code{%no-default-prec;} can be reversed by giving
5509@code{%default-prec;}, which is the default.
91d2c560 5510@end ifset
39a06c25 5511
342b8b6e 5512@node Parser States
bfa74976
RS
5513@section Parser States
5514@cindex finite-state machine
5515@cindex parser state
5516@cindex state (of parser)
5517
5518The function @code{yyparse} is implemented using a finite-state machine.
5519The values pushed on the parser stack are not simply token type codes; they
5520represent the entire sequence of terminal and nonterminal symbols at or
5521near the top of the stack. The current state collects all the information
5522about previous input which is relevant to deciding what to do next.
5523
5524Each time a look-ahead token is read, the current parser state together
5525with the type of look-ahead token are looked up in a table. This table
5526entry can say, ``Shift the look-ahead token.'' In this case, it also
5527specifies the new parser state, which is pushed onto the top of the
5528parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5529This means that a certain number of tokens or groupings are taken off
5530the top of the stack, and replaced by one grouping. In other words,
5531that number of states are popped from the stack, and one new state is
5532pushed.
5533
5534There is one other alternative: the table can say that the look-ahead token
5535is erroneous in the current state. This causes error processing to begin
5536(@pxref{Error Recovery}).
5537
342b8b6e 5538@node Reduce/Reduce
bfa74976
RS
5539@section Reduce/Reduce Conflicts
5540@cindex reduce/reduce conflict
5541@cindex conflicts, reduce/reduce
5542
5543A reduce/reduce conflict occurs if there are two or more rules that apply
5544to the same sequence of input. This usually indicates a serious error
5545in the grammar.
5546
5547For example, here is an erroneous attempt to define a sequence
5548of zero or more @code{word} groupings.
5549
5550@example
5551sequence: /* empty */
5552 @{ printf ("empty sequence\n"); @}
5553 | maybeword
5554 | sequence word
5555 @{ printf ("added word %s\n", $2); @}
5556 ;
5557
5558maybeword: /* empty */
5559 @{ printf ("empty maybeword\n"); @}
5560 | word
5561 @{ printf ("single word %s\n", $1); @}
5562 ;
5563@end example
5564
5565@noindent
5566The error is an ambiguity: there is more than one way to parse a single
5567@code{word} into a @code{sequence}. It could be reduced to a
5568@code{maybeword} and then into a @code{sequence} via the second rule.
5569Alternatively, nothing-at-all could be reduced into a @code{sequence}
5570via the first rule, and this could be combined with the @code{word}
5571using the third rule for @code{sequence}.
5572
5573There is also more than one way to reduce nothing-at-all into a
5574@code{sequence}. This can be done directly via the first rule,
5575or indirectly via @code{maybeword} and then the second rule.
5576
5577You might think that this is a distinction without a difference, because it
5578does not change whether any particular input is valid or not. But it does
5579affect which actions are run. One parsing order runs the second rule's
5580action; the other runs the first rule's action and the third rule's action.
5581In this example, the output of the program changes.
5582
5583Bison resolves a reduce/reduce conflict by choosing to use the rule that
5584appears first in the grammar, but it is very risky to rely on this. Every
5585reduce/reduce conflict must be studied and usually eliminated. Here is the
5586proper way to define @code{sequence}:
5587
5588@example
5589sequence: /* empty */
5590 @{ printf ("empty sequence\n"); @}
5591 | sequence word
5592 @{ printf ("added word %s\n", $2); @}
5593 ;
5594@end example
5595
5596Here is another common error that yields a reduce/reduce conflict:
5597
5598@example
5599sequence: /* empty */
5600 | sequence words
5601 | sequence redirects
5602 ;
5603
5604words: /* empty */
5605 | words word
5606 ;
5607
5608redirects:/* empty */
5609 | redirects redirect
5610 ;
5611@end example
5612
5613@noindent
5614The intention here is to define a sequence which can contain either
5615@code{word} or @code{redirect} groupings. The individual definitions of
5616@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5617three together make a subtle ambiguity: even an empty input can be parsed
5618in infinitely many ways!
5619
5620Consider: nothing-at-all could be a @code{words}. Or it could be two
5621@code{words} in a row, or three, or any number. It could equally well be a
5622@code{redirects}, or two, or any number. Or it could be a @code{words}
5623followed by three @code{redirects} and another @code{words}. And so on.
5624
5625Here are two ways to correct these rules. First, to make it a single level
5626of sequence:
5627
5628@example
5629sequence: /* empty */
5630 | sequence word
5631 | sequence redirect
5632 ;
5633@end example
5634
5635Second, to prevent either a @code{words} or a @code{redirects}
5636from being empty:
5637
5638@example
5639sequence: /* empty */
5640 | sequence words
5641 | sequence redirects
5642 ;
5643
5644words: word
5645 | words word
5646 ;
5647
5648redirects:redirect
5649 | redirects redirect
5650 ;
5651@end example
5652
342b8b6e 5653@node Mystery Conflicts
bfa74976
RS
5654@section Mysterious Reduce/Reduce Conflicts
5655
5656Sometimes reduce/reduce conflicts can occur that don't look warranted.
5657Here is an example:
5658
5659@example
5660@group
5661%token ID
5662
5663%%
5664def: param_spec return_spec ','
5665 ;
5666param_spec:
5667 type
5668 | name_list ':' type
5669 ;
5670@end group
5671@group
5672return_spec:
5673 type
5674 | name ':' type
5675 ;
5676@end group
5677@group
5678type: ID
5679 ;
5680@end group
5681@group
5682name: ID
5683 ;
5684name_list:
5685 name
5686 | name ',' name_list
5687 ;
5688@end group
5689@end example
5690
5691It would seem that this grammar can be parsed with only a single token
13863333 5692of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5693a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5694@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5695
c827f760
PE
5696@cindex @acronym{LR}(1)
5697@cindex @acronym{LALR}(1)
bfa74976 5698However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5699@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5700an @code{ID}
bfa74976
RS
5701at the beginning of a @code{param_spec} and likewise at the beginning of
5702a @code{return_spec}, are similar enough that Bison assumes they are the
5703same. They appear similar because the same set of rules would be
5704active---the rule for reducing to a @code{name} and that for reducing to
5705a @code{type}. Bison is unable to determine at that stage of processing
5706that the rules would require different look-ahead tokens in the two
5707contexts, so it makes a single parser state for them both. Combining
5708the two contexts causes a conflict later. In parser terminology, this
c827f760 5709occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5710
5711In general, it is better to fix deficiencies than to document them. But
5712this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5713generators that can handle @acronym{LR}(1) grammars are hard to write
5714and tend to
bfa74976
RS
5715produce parsers that are very large. In practice, Bison is more useful
5716as it is now.
5717
5718When the problem arises, you can often fix it by identifying the two
a220f555
MA
5719parser states that are being confused, and adding something to make them
5720look distinct. In the above example, adding one rule to
bfa74976
RS
5721@code{return_spec} as follows makes the problem go away:
5722
5723@example
5724@group
5725%token BOGUS
5726@dots{}
5727%%
5728@dots{}
5729return_spec:
5730 type
5731 | name ':' type
5732 /* This rule is never used. */
5733 | ID BOGUS
5734 ;
5735@end group
5736@end example
5737
5738This corrects the problem because it introduces the possibility of an
5739additional active rule in the context after the @code{ID} at the beginning of
5740@code{return_spec}. This rule is not active in the corresponding context
5741in a @code{param_spec}, so the two contexts receive distinct parser states.
5742As long as the token @code{BOGUS} is never generated by @code{yylex},
5743the added rule cannot alter the way actual input is parsed.
5744
5745In this particular example, there is another way to solve the problem:
5746rewrite the rule for @code{return_spec} to use @code{ID} directly
5747instead of via @code{name}. This also causes the two confusing
5748contexts to have different sets of active rules, because the one for
5749@code{return_spec} activates the altered rule for @code{return_spec}
5750rather than the one for @code{name}.
5751
5752@example
5753param_spec:
5754 type
5755 | name_list ':' type
5756 ;
5757return_spec:
5758 type
5759 | ID ':' type
5760 ;
5761@end example
5762
e054b190
PE
5763For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5764generators, please see:
5765Frank DeRemer and Thomas Pennello, Efficient Computation of
5766@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5767Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5768pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5769
fae437e8 5770@node Generalized LR Parsing
c827f760
PE
5771@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5772@cindex @acronym{GLR} parsing
5773@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5774@cindex ambiguous grammars
9d9b8b70 5775@cindex nondeterministic parsing
676385e2 5776
fae437e8
AD
5777Bison produces @emph{deterministic} parsers that choose uniquely
5778when to reduce and which reduction to apply
8dd162d3 5779based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5780As a result, normal Bison handles a proper subset of the family of
5781context-free languages.
fae437e8 5782Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5783sequence of reductions cannot have deterministic parsers in this sense.
5784The same is true of languages that require more than one symbol of
8dd162d3 5785look-ahead, since the parser lacks the information necessary to make a
676385e2 5786decision at the point it must be made in a shift-reduce parser.
fae437e8 5787Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5788there are languages where Bison's particular choice of how to
5789summarize the input seen so far loses necessary information.
5790
5791When you use the @samp{%glr-parser} declaration in your grammar file,
5792Bison generates a parser that uses a different algorithm, called
c827f760
PE
5793Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5794parser uses the same basic
676385e2
PH
5795algorithm for parsing as an ordinary Bison parser, but behaves
5796differently in cases where there is a shift-reduce conflict that has not
fae437e8 5797been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5798reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5799situation, it
fae437e8 5800effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5801shift or reduction. These parsers then proceed as usual, consuming
5802tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5803and split further, with the result that instead of a sequence of states,
c827f760 5804a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5805
5806In effect, each stack represents a guess as to what the proper parse
5807is. Additional input may indicate that a guess was wrong, in which case
5808the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5809actions generated in each stack are saved, rather than being executed
676385e2 5810immediately. When a stack disappears, its saved semantic actions never
fae437e8 5811get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5812their sets of semantic actions are both saved with the state that
5813results from the reduction. We say that two stacks are equivalent
fae437e8 5814when they both represent the same sequence of states,
676385e2
PH
5815and each pair of corresponding states represents a
5816grammar symbol that produces the same segment of the input token
5817stream.
5818
5819Whenever the parser makes a transition from having multiple
c827f760 5820states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5821algorithm, after resolving and executing the saved-up actions.
5822At this transition, some of the states on the stack will have semantic
5823values that are sets (actually multisets) of possible actions. The
5824parser tries to pick one of the actions by first finding one whose rule
5825has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5826declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5827precedence, but there the same merging function is declared for both
fae437e8 5828rules by the @samp{%merge} declaration,
676385e2
PH
5829Bison resolves and evaluates both and then calls the merge function on
5830the result. Otherwise, it reports an ambiguity.
5831
c827f760
PE
5832It is possible to use a data structure for the @acronym{GLR} parsing tree that
5833permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5834size of the input), any unambiguous (not necessarily
5835@acronym{LALR}(1)) grammar in
fae437e8 5836quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5837context-free grammar in cubic worst-case time. However, Bison currently
5838uses a simpler data structure that requires time proportional to the
5839length of the input times the maximum number of stacks required for any
9d9b8b70 5840prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5841grammars can require exponential time and space to process. Such badly
5842behaving examples, however, are not generally of practical interest.
9d9b8b70 5843Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5844doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5845structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5846grammar, in particular, it is only slightly slower than with the default
5847Bison parser.
5848
fa7e68c3 5849For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5850Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5851Generalised @acronym{LR} Parsers, Royal Holloway, University of
5852London, Department of Computer Science, TR-00-12,
5853@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5854(2000-12-24).
5855
1a059451
PE
5856@node Memory Management
5857@section Memory Management, and How to Avoid Memory Exhaustion
5858@cindex memory exhaustion
5859@cindex memory management
bfa74976
RS
5860@cindex stack overflow
5861@cindex parser stack overflow
5862@cindex overflow of parser stack
5863
1a059451 5864The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5865not reduced. When this happens, the parser function @code{yyparse}
1a059451 5866calls @code{yyerror} and then returns 2.
bfa74976 5867
c827f760 5868Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5869usually results from using a right recursion instead of a left
5870recursion, @xref{Recursion, ,Recursive Rules}.
5871
bfa74976
RS
5872@vindex YYMAXDEPTH
5873By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5874parser stack can become before memory is exhausted. Define the
bfa74976
RS
5875macro with a value that is an integer. This value is the maximum number
5876of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5877
5878The stack space allowed is not necessarily allocated. If you specify a
1a059451 5879large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5880stack at first, and then makes it bigger by stages as needed. This
5881increasing allocation happens automatically and silently. Therefore,
5882you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5883space for ordinary inputs that do not need much stack.
5884
d7e14fc0
PE
5885However, do not allow @code{YYMAXDEPTH} to be a value so large that
5886arithmetic overflow could occur when calculating the size of the stack
5887space. Also, do not allow @code{YYMAXDEPTH} to be less than
5888@code{YYINITDEPTH}.
5889
bfa74976
RS
5890@cindex default stack limit
5891The default value of @code{YYMAXDEPTH}, if you do not define it, is
589210000.
5893
5894@vindex YYINITDEPTH
5895You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5896macro @code{YYINITDEPTH} to a positive integer. For the C
5897@acronym{LALR}(1) parser, this value must be a compile-time constant
5898unless you are assuming C99 or some other target language or compiler
5899that allows variable-length arrays. The default is 200.
5900
1a059451 5901Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5902
d1a1114f 5903@c FIXME: C++ output.
c827f760 5904Because of semantical differences between C and C++, the
1a059451
PE
5905@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5906by C++ compilers. In this precise case (compiling a C parser as C++) you are
5907suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5908this deficiency in a future release.
d1a1114f 5909
342b8b6e 5910@node Error Recovery
bfa74976
RS
5911@chapter Error Recovery
5912@cindex error recovery
5913@cindex recovery from errors
5914
6e649e65 5915It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5916error. For example, a compiler should recover sufficiently to parse the
5917rest of the input file and check it for errors; a calculator should accept
5918another expression.
5919
5920In a simple interactive command parser where each input is one line, it may
5921be sufficient to allow @code{yyparse} to return 1 on error and have the
5922caller ignore the rest of the input line when that happens (and then call
5923@code{yyparse} again). But this is inadequate for a compiler, because it
5924forgets all the syntactic context leading up to the error. A syntax error
5925deep within a function in the compiler input should not cause the compiler
5926to treat the following line like the beginning of a source file.
5927
5928@findex error
5929You can define how to recover from a syntax error by writing rules to
5930recognize the special token @code{error}. This is a terminal symbol that
5931is always defined (you need not declare it) and reserved for error
5932handling. The Bison parser generates an @code{error} token whenever a
5933syntax error happens; if you have provided a rule to recognize this token
13863333 5934in the current context, the parse can continue.
bfa74976
RS
5935
5936For example:
5937
5938@example
5939stmnts: /* empty string */
5940 | stmnts '\n'
5941 | stmnts exp '\n'
5942 | stmnts error '\n'
5943@end example
5944
5945The fourth rule in this example says that an error followed by a newline
5946makes a valid addition to any @code{stmnts}.
5947
5948What happens if a syntax error occurs in the middle of an @code{exp}? The
5949error recovery rule, interpreted strictly, applies to the precise sequence
5950of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5951the middle of an @code{exp}, there will probably be some additional tokens
5952and subexpressions on the stack after the last @code{stmnts}, and there
5953will be tokens to read before the next newline. So the rule is not
5954applicable in the ordinary way.
5955
5956But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5957the semantic context and part of the input. First it discards states
5958and objects from the stack until it gets back to a state in which the
bfa74976 5959@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5960already parsed are discarded, back to the last complete @code{stmnts}.)
5961At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5962look-ahead token is not acceptable to be shifted next, the parser reads
5963tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5964this example, Bison reads and discards input until the next newline so
5965that the fourth rule can apply. Note that discarded symbols are
5966possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5967Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5968
5969The choice of error rules in the grammar is a choice of strategies for
5970error recovery. A simple and useful strategy is simply to skip the rest of
5971the current input line or current statement if an error is detected:
5972
5973@example
72d2299c 5974stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5975@end example
5976
5977It is also useful to recover to the matching close-delimiter of an
5978opening-delimiter that has already been parsed. Otherwise the
5979close-delimiter will probably appear to be unmatched, and generate another,
5980spurious error message:
5981
5982@example
5983primary: '(' expr ')'
5984 | '(' error ')'
5985 @dots{}
5986 ;
5987@end example
5988
5989Error recovery strategies are necessarily guesses. When they guess wrong,
5990one syntax error often leads to another. In the above example, the error
5991recovery rule guesses that an error is due to bad input within one
5992@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5993middle of a valid @code{stmnt}. After the error recovery rule recovers
5994from the first error, another syntax error will be found straightaway,
5995since the text following the spurious semicolon is also an invalid
5996@code{stmnt}.
5997
5998To prevent an outpouring of error messages, the parser will output no error
5999message for another syntax error that happens shortly after the first; only
6000after three consecutive input tokens have been successfully shifted will
6001error messages resume.
6002
6003Note that rules which accept the @code{error} token may have actions, just
6004as any other rules can.
6005
6006@findex yyerrok
6007You can make error messages resume immediately by using the macro
6008@code{yyerrok} in an action. If you do this in the error rule's action, no
6009error messages will be suppressed. This macro requires no arguments;
6010@samp{yyerrok;} is a valid C statement.
6011
6012@findex yyclearin
6013The previous look-ahead token is reanalyzed immediately after an error. If
6014this is unacceptable, then the macro @code{yyclearin} may be used to clear
6015this token. Write the statement @samp{yyclearin;} in the error rule's
6016action.
32c29292 6017@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6018
6e649e65 6019For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6020called that advances the input stream to some point where parsing should
6021once again commence. The next symbol returned by the lexical scanner is
6022probably correct. The previous look-ahead token ought to be discarded
6023with @samp{yyclearin;}.
6024
6025@vindex YYRECOVERING
6026The macro @code{YYRECOVERING} stands for an expression that has the
6027value 1 when the parser is recovering from a syntax error, and 0 the
6028rest of the time. A value of 1 indicates that error messages are
6029currently suppressed for new syntax errors.
6030
342b8b6e 6031@node Context Dependency
bfa74976
RS
6032@chapter Handling Context Dependencies
6033
6034The Bison paradigm is to parse tokens first, then group them into larger
6035syntactic units. In many languages, the meaning of a token is affected by
6036its context. Although this violates the Bison paradigm, certain techniques
6037(known as @dfn{kludges}) may enable you to write Bison parsers for such
6038languages.
6039
6040@menu
6041* Semantic Tokens:: Token parsing can depend on the semantic context.
6042* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6043* Tie-in Recovery:: Lexical tie-ins have implications for how
6044 error recovery rules must be written.
6045@end menu
6046
6047(Actually, ``kludge'' means any technique that gets its job done but is
6048neither clean nor robust.)
6049
342b8b6e 6050@node Semantic Tokens
bfa74976
RS
6051@section Semantic Info in Token Types
6052
6053The C language has a context dependency: the way an identifier is used
6054depends on what its current meaning is. For example, consider this:
6055
6056@example
6057foo (x);
6058@end example
6059
6060This looks like a function call statement, but if @code{foo} is a typedef
6061name, then this is actually a declaration of @code{x}. How can a Bison
6062parser for C decide how to parse this input?
6063
c827f760 6064The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6065@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6066identifier, it looks up the current declaration of the identifier in order
6067to decide which token type to return: @code{TYPENAME} if the identifier is
6068declared as a typedef, @code{IDENTIFIER} otherwise.
6069
6070The grammar rules can then express the context dependency by the choice of
6071token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6072but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6073@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6074is @emph{not} significant, such as in declarations that can shadow a
6075typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6076accepted---there is one rule for each of the two token types.
6077
6078This technique is simple to use if the decision of which kinds of
6079identifiers to allow is made at a place close to where the identifier is
6080parsed. But in C this is not always so: C allows a declaration to
6081redeclare a typedef name provided an explicit type has been specified
6082earlier:
6083
6084@example
3a4f411f
PE
6085typedef int foo, bar;
6086int baz (void)
6087@{
6088 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6089 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6090 return foo (bar);
6091@}
bfa74976
RS
6092@end example
6093
6094Unfortunately, the name being declared is separated from the declaration
6095construct itself by a complicated syntactic structure---the ``declarator''.
6096
9ecbd125 6097As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6098all the nonterminal names changed: once for parsing a declaration in
6099which a typedef name can be redefined, and once for parsing a
6100declaration in which that can't be done. Here is a part of the
6101duplication, with actions omitted for brevity:
bfa74976
RS
6102
6103@example
6104initdcl:
6105 declarator maybeasm '='
6106 init
6107 | declarator maybeasm
6108 ;
6109
6110notype_initdcl:
6111 notype_declarator maybeasm '='
6112 init
6113 | notype_declarator maybeasm
6114 ;
6115@end example
6116
6117@noindent
6118Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6119cannot. The distinction between @code{declarator} and
6120@code{notype_declarator} is the same sort of thing.
6121
6122There is some similarity between this technique and a lexical tie-in
6123(described next), in that information which alters the lexical analysis is
6124changed during parsing by other parts of the program. The difference is
6125here the information is global, and is used for other purposes in the
6126program. A true lexical tie-in has a special-purpose flag controlled by
6127the syntactic context.
6128
342b8b6e 6129@node Lexical Tie-ins
bfa74976
RS
6130@section Lexical Tie-ins
6131@cindex lexical tie-in
6132
6133One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6134which is set by Bison actions, whose purpose is to alter the way tokens are
6135parsed.
6136
6137For example, suppose we have a language vaguely like C, but with a special
6138construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6139an expression in parentheses in which all integers are hexadecimal. In
6140particular, the token @samp{a1b} must be treated as an integer rather than
6141as an identifier if it appears in that context. Here is how you can do it:
6142
6143@example
6144@group
6145%@{
38a92d50
PE
6146 int hexflag;
6147 int yylex (void);
6148 void yyerror (char const *);
bfa74976
RS
6149%@}
6150%%
6151@dots{}
6152@end group
6153@group
6154expr: IDENTIFIER
6155 | constant
6156 | HEX '('
6157 @{ hexflag = 1; @}
6158 expr ')'
6159 @{ hexflag = 0;
6160 $$ = $4; @}
6161 | expr '+' expr
6162 @{ $$ = make_sum ($1, $3); @}
6163 @dots{}
6164 ;
6165@end group
6166
6167@group
6168constant:
6169 INTEGER
6170 | STRING
6171 ;
6172@end group
6173@end example
6174
6175@noindent
6176Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6177it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6178with letters are parsed as integers if possible.
6179
342b8b6e
AD
6180The declaration of @code{hexflag} shown in the prologue of the parser file
6181is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6182You must also write the code in @code{yylex} to obey the flag.
bfa74976 6183
342b8b6e 6184@node Tie-in Recovery
bfa74976
RS
6185@section Lexical Tie-ins and Error Recovery
6186
6187Lexical tie-ins make strict demands on any error recovery rules you have.
6188@xref{Error Recovery}.
6189
6190The reason for this is that the purpose of an error recovery rule is to
6191abort the parsing of one construct and resume in some larger construct.
6192For example, in C-like languages, a typical error recovery rule is to skip
6193tokens until the next semicolon, and then start a new statement, like this:
6194
6195@example
6196stmt: expr ';'
6197 | IF '(' expr ')' stmt @{ @dots{} @}
6198 @dots{}
6199 error ';'
6200 @{ hexflag = 0; @}
6201 ;
6202@end example
6203
6204If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6205construct, this error rule will apply, and then the action for the
6206completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6207remain set for the entire rest of the input, or until the next @code{hex}
6208keyword, causing identifiers to be misinterpreted as integers.
6209
6210To avoid this problem the error recovery rule itself clears @code{hexflag}.
6211
6212There may also be an error recovery rule that works within expressions.
6213For example, there could be a rule which applies within parentheses
6214and skips to the close-parenthesis:
6215
6216@example
6217@group
6218expr: @dots{}
6219 | '(' expr ')'
6220 @{ $$ = $2; @}
6221 | '(' error ')'
6222 @dots{}
6223@end group
6224@end example
6225
6226If this rule acts within the @code{hex} construct, it is not going to abort
6227that construct (since it applies to an inner level of parentheses within
6228the construct). Therefore, it should not clear the flag: the rest of
6229the @code{hex} construct should be parsed with the flag still in effect.
6230
6231What if there is an error recovery rule which might abort out of the
6232@code{hex} construct or might not, depending on circumstances? There is no
6233way you can write the action to determine whether a @code{hex} construct is
6234being aborted or not. So if you are using a lexical tie-in, you had better
6235make sure your error recovery rules are not of this kind. Each rule must
6236be such that you can be sure that it always will, or always won't, have to
6237clear the flag.
6238
ec3bc396
AD
6239@c ================================================== Debugging Your Parser
6240
342b8b6e 6241@node Debugging
bfa74976 6242@chapter Debugging Your Parser
ec3bc396
AD
6243
6244Developing a parser can be a challenge, especially if you don't
6245understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6246Algorithm}). Even so, sometimes a detailed description of the automaton
6247can help (@pxref{Understanding, , Understanding Your Parser}), or
6248tracing the execution of the parser can give some insight on why it
6249behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6250
6251@menu
6252* Understanding:: Understanding the structure of your parser.
6253* Tracing:: Tracing the execution of your parser.
6254@end menu
6255
6256@node Understanding
6257@section Understanding Your Parser
6258
6259As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6260Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6261frequent than one would hope), looking at this automaton is required to
6262tune or simply fix a parser. Bison provides two different
c827f760 6263representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6264file).
6265
6266The textual file is generated when the options @option{--report} or
6267@option{--verbose} are specified, see @xref{Invocation, , Invoking
6268Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6269the parser output file name, and adding @samp{.output} instead.
6270Therefore, if the input file is @file{foo.y}, then the parser file is
6271called @file{foo.tab.c} by default. As a consequence, the verbose
6272output file is called @file{foo.output}.
6273
6274The following grammar file, @file{calc.y}, will be used in the sequel:
6275
6276@example
6277%token NUM STR
6278%left '+' '-'
6279%left '*'
6280%%
6281exp: exp '+' exp
6282 | exp '-' exp
6283 | exp '*' exp
6284 | exp '/' exp
6285 | NUM
6286 ;
6287useless: STR;
6288%%
6289@end example
6290
88bce5a2
AD
6291@command{bison} reports:
6292
6293@example
6294calc.y: warning: 1 useless nonterminal and 1 useless rule
6295calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6296calc.y:11.10-12: warning: useless rule: useless: STR
6297calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6298@end example
6299
6300When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6301creates a file @file{calc.output} with contents detailed below. The
6302order of the output and the exact presentation might vary, but the
6303interpretation is the same.
ec3bc396
AD
6304
6305The first section includes details on conflicts that were solved thanks
6306to precedence and/or associativity:
6307
6308@example
6309Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6310Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6311Conflict in state 8 between rule 2 and token '*' resolved as shift.
6312@exdent @dots{}
6313@end example
6314
6315@noindent
6316The next section lists states that still have conflicts.
6317
6318@example
5a99098d
PE
6319State 8 conflicts: 1 shift/reduce
6320State 9 conflicts: 1 shift/reduce
6321State 10 conflicts: 1 shift/reduce
6322State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6323@end example
6324
6325@noindent
6326@cindex token, useless
6327@cindex useless token
6328@cindex nonterminal, useless
6329@cindex useless nonterminal
6330@cindex rule, useless
6331@cindex useless rule
6332The next section reports useless tokens, nonterminal and rules. Useless
6333nonterminals and rules are removed in order to produce a smaller parser,
6334but useless tokens are preserved, since they might be used by the
6335scanner (note the difference between ``useless'' and ``not used''
6336below):
6337
6338@example
6339Useless nonterminals:
6340 useless
6341
6342Terminals which are not used:
6343 STR
6344
6345Useless rules:
6346#6 useless: STR;
6347@end example
6348
6349@noindent
6350The next section reproduces the exact grammar that Bison used:
6351
6352@example
6353Grammar
6354
6355 Number, Line, Rule
88bce5a2 6356 0 5 $accept -> exp $end
ec3bc396
AD
6357 1 5 exp -> exp '+' exp
6358 2 6 exp -> exp '-' exp
6359 3 7 exp -> exp '*' exp
6360 4 8 exp -> exp '/' exp
6361 5 9 exp -> NUM
6362@end example
6363
6364@noindent
6365and reports the uses of the symbols:
6366
6367@example
6368Terminals, with rules where they appear
6369
88bce5a2 6370$end (0) 0
ec3bc396
AD
6371'*' (42) 3
6372'+' (43) 1
6373'-' (45) 2
6374'/' (47) 4
6375error (256)
6376NUM (258) 5
6377
6378Nonterminals, with rules where they appear
6379
88bce5a2 6380$accept (8)
ec3bc396
AD
6381 on left: 0
6382exp (9)
6383 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6384@end example
6385
6386@noindent
6387@cindex item
6388@cindex pointed rule
6389@cindex rule, pointed
6390Bison then proceeds onto the automaton itself, describing each state
6391with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6392item is a production rule together with a point (marked by @samp{.})
6393that the input cursor.
6394
6395@example
6396state 0
6397
88bce5a2 6398 $accept -> . exp $ (rule 0)
ec3bc396 6399
2a8d363a 6400 NUM shift, and go to state 1
ec3bc396 6401
2a8d363a 6402 exp go to state 2
ec3bc396
AD
6403@end example
6404
6405This reads as follows: ``state 0 corresponds to being at the very
6406beginning of the parsing, in the initial rule, right before the start
6407symbol (here, @code{exp}). When the parser returns to this state right
6408after having reduced a rule that produced an @code{exp}, the control
6409flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6410symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6411the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6412look-ahead triggers a syntax error.''
ec3bc396
AD
6413
6414@cindex core, item set
6415@cindex item set core
6416@cindex kernel, item set
6417@cindex item set core
6418Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6419report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6420at the beginning of any rule deriving an @code{exp}. By default Bison
6421reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6422you want to see more detail you can invoke @command{bison} with
6423@option{--report=itemset} to list all the items, include those that can
6424be derived:
6425
6426@example
6427state 0
6428
88bce5a2 6429 $accept -> . exp $ (rule 0)
ec3bc396
AD
6430 exp -> . exp '+' exp (rule 1)
6431 exp -> . exp '-' exp (rule 2)
6432 exp -> . exp '*' exp (rule 3)
6433 exp -> . exp '/' exp (rule 4)
6434 exp -> . NUM (rule 5)
6435
6436 NUM shift, and go to state 1
6437
6438 exp go to state 2
6439@end example
6440
6441@noindent
6442In the state 1...
6443
6444@example
6445state 1
6446
6447 exp -> NUM . (rule 5)
6448
2a8d363a 6449 $default reduce using rule 5 (exp)
ec3bc396
AD
6450@end example
6451
6452@noindent
8dd162d3 6453the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6454(@samp{$default}), the parser will reduce it. If it was coming from
6455state 0, then, after this reduction it will return to state 0, and will
6456jump to state 2 (@samp{exp: go to state 2}).
6457
6458@example
6459state 2
6460
88bce5a2 6461 $accept -> exp . $ (rule 0)
ec3bc396
AD
6462 exp -> exp . '+' exp (rule 1)
6463 exp -> exp . '-' exp (rule 2)
6464 exp -> exp . '*' exp (rule 3)
6465 exp -> exp . '/' exp (rule 4)
6466
2a8d363a
AD
6467 $ shift, and go to state 3
6468 '+' shift, and go to state 4
6469 '-' shift, and go to state 5
6470 '*' shift, and go to state 6
6471 '/' shift, and go to state 7
ec3bc396
AD
6472@end example
6473
6474@noindent
6475In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6476because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6477@samp{+}, it will be shifted on the parse stack, and the automaton
6478control will jump to state 4, corresponding to the item @samp{exp -> exp
6479'+' . exp}. Since there is no default action, any other token than
6e649e65 6480those listed above will trigger a syntax error.
ec3bc396
AD
6481
6482The state 3 is named the @dfn{final state}, or the @dfn{accepting
6483state}:
6484
6485@example
6486state 3
6487
88bce5a2 6488 $accept -> exp $ . (rule 0)
ec3bc396 6489
2a8d363a 6490 $default accept
ec3bc396
AD
6491@end example
6492
6493@noindent
6494the initial rule is completed (the start symbol and the end
6495of input were read), the parsing exits successfully.
6496
6497The interpretation of states 4 to 7 is straightforward, and is left to
6498the reader.
6499
6500@example
6501state 4
6502
6503 exp -> exp '+' . exp (rule 1)
6504
2a8d363a 6505 NUM shift, and go to state 1
ec3bc396 6506
2a8d363a 6507 exp go to state 8
ec3bc396
AD
6508
6509state 5
6510
6511 exp -> exp '-' . exp (rule 2)
6512
2a8d363a 6513 NUM shift, and go to state 1
ec3bc396 6514
2a8d363a 6515 exp go to state 9
ec3bc396
AD
6516
6517state 6
6518
6519 exp -> exp '*' . exp (rule 3)
6520
2a8d363a 6521 NUM shift, and go to state 1
ec3bc396 6522
2a8d363a 6523 exp go to state 10
ec3bc396
AD
6524
6525state 7
6526
6527 exp -> exp '/' . exp (rule 4)
6528
2a8d363a 6529 NUM shift, and go to state 1
ec3bc396 6530
2a8d363a 6531 exp go to state 11
ec3bc396
AD
6532@end example
6533
5a99098d
PE
6534As was announced in beginning of the report, @samp{State 8 conflicts:
65351 shift/reduce}:
ec3bc396
AD
6536
6537@example
6538state 8
6539
6540 exp -> exp . '+' exp (rule 1)
6541 exp -> exp '+' exp . (rule 1)
6542 exp -> exp . '-' exp (rule 2)
6543 exp -> exp . '*' exp (rule 3)
6544 exp -> exp . '/' exp (rule 4)
6545
2a8d363a
AD
6546 '*' shift, and go to state 6
6547 '/' shift, and go to state 7
ec3bc396 6548
2a8d363a
AD
6549 '/' [reduce using rule 1 (exp)]
6550 $default reduce using rule 1 (exp)
ec3bc396
AD
6551@end example
6552
8dd162d3 6553Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6554either shifting (and going to state 7), or reducing rule 1. The
6555conflict means that either the grammar is ambiguous, or the parser lacks
6556information to make the right decision. Indeed the grammar is
6557ambiguous, as, since we did not specify the precedence of @samp{/}, the
6558sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6559NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6560NUM}, which corresponds to reducing rule 1.
6561
c827f760 6562Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6563arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6564Shift/Reduce Conflicts}. Discarded actions are reported in between
6565square brackets.
6566
6567Note that all the previous states had a single possible action: either
6568shifting the next token and going to the corresponding state, or
6569reducing a single rule. In the other cases, i.e., when shifting
6570@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6571possible, the look-ahead is required to select the action. State 8 is
6572one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6573is shifting, otherwise the action is reducing rule 1. In other words,
6574the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6575look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6576precedence than @samp{+}. More generally, some items are eligible only
6577with some set of possible look-ahead tokens. When run with
6578@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6579
6580@example
6581state 8
6582
6583 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6584 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6585 exp -> exp . '-' exp (rule 2)
6586 exp -> exp . '*' exp (rule 3)
6587 exp -> exp . '/' exp (rule 4)
6588
6589 '*' shift, and go to state 6
6590 '/' shift, and go to state 7
6591
6592 '/' [reduce using rule 1 (exp)]
6593 $default reduce using rule 1 (exp)
6594@end example
6595
6596The remaining states are similar:
6597
6598@example
6599state 9
6600
6601 exp -> exp . '+' exp (rule 1)
6602 exp -> exp . '-' exp (rule 2)
6603 exp -> exp '-' exp . (rule 2)
6604 exp -> exp . '*' exp (rule 3)
6605 exp -> exp . '/' exp (rule 4)
6606
2a8d363a
AD
6607 '*' shift, and go to state 6
6608 '/' shift, and go to state 7
ec3bc396 6609
2a8d363a
AD
6610 '/' [reduce using rule 2 (exp)]
6611 $default reduce using rule 2 (exp)
ec3bc396
AD
6612
6613state 10
6614
6615 exp -> exp . '+' exp (rule 1)
6616 exp -> exp . '-' exp (rule 2)
6617 exp -> exp . '*' exp (rule 3)
6618 exp -> exp '*' exp . (rule 3)
6619 exp -> exp . '/' exp (rule 4)
6620
2a8d363a 6621 '/' shift, and go to state 7
ec3bc396 6622
2a8d363a
AD
6623 '/' [reduce using rule 3 (exp)]
6624 $default reduce using rule 3 (exp)
ec3bc396
AD
6625
6626state 11
6627
6628 exp -> exp . '+' exp (rule 1)
6629 exp -> exp . '-' exp (rule 2)
6630 exp -> exp . '*' exp (rule 3)
6631 exp -> exp . '/' exp (rule 4)
6632 exp -> exp '/' exp . (rule 4)
6633
2a8d363a
AD
6634 '+' shift, and go to state 4
6635 '-' shift, and go to state 5
6636 '*' shift, and go to state 6
6637 '/' shift, and go to state 7
ec3bc396 6638
2a8d363a
AD
6639 '+' [reduce using rule 4 (exp)]
6640 '-' [reduce using rule 4 (exp)]
6641 '*' [reduce using rule 4 (exp)]
6642 '/' [reduce using rule 4 (exp)]
6643 $default reduce using rule 4 (exp)
ec3bc396
AD
6644@end example
6645
6646@noindent
fa7e68c3
PE
6647Observe that state 11 contains conflicts not only due to the lack of
6648precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6649@samp{*}, but also because the
ec3bc396
AD
6650associativity of @samp{/} is not specified.
6651
6652
6653@node Tracing
6654@section Tracing Your Parser
bfa74976
RS
6655@findex yydebug
6656@cindex debugging
6657@cindex tracing the parser
6658
6659If a Bison grammar compiles properly but doesn't do what you want when it
6660runs, the @code{yydebug} parser-trace feature can help you figure out why.
6661
3ded9a63
AD
6662There are several means to enable compilation of trace facilities:
6663
6664@table @asis
6665@item the macro @code{YYDEBUG}
6666@findex YYDEBUG
6667Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6668parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6669@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6670YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6671Prologue}).
6672
6673@item the option @option{-t}, @option{--debug}
6674Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6675,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6676
6677@item the directive @samp{%debug}
6678@findex %debug
6679Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6680Declaration Summary}). This is a Bison extension, which will prove
6681useful when Bison will output parsers for languages that don't use a
c827f760
PE
6682preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6683you, this is
3ded9a63
AD
6684the preferred solution.
6685@end table
6686
6687We suggest that you always enable the debug option so that debugging is
6688always possible.
bfa74976 6689
02a81e05 6690The trace facility outputs messages with macro calls of the form
e2742e46 6691@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6692@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6693arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6694define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6695and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6696
6697Once you have compiled the program with trace facilities, the way to
6698request a trace is to store a nonzero value in the variable @code{yydebug}.
6699You can do this by making the C code do it (in @code{main}, perhaps), or
6700you can alter the value with a C debugger.
6701
6702Each step taken by the parser when @code{yydebug} is nonzero produces a
6703line or two of trace information, written on @code{stderr}. The trace
6704messages tell you these things:
6705
6706@itemize @bullet
6707@item
6708Each time the parser calls @code{yylex}, what kind of token was read.
6709
6710@item
6711Each time a token is shifted, the depth and complete contents of the
6712state stack (@pxref{Parser States}).
6713
6714@item
6715Each time a rule is reduced, which rule it is, and the complete contents
6716of the state stack afterward.
6717@end itemize
6718
6719To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6720produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6721Bison}). This file shows the meaning of each state in terms of
6722positions in various rules, and also what each state will do with each
6723possible input token. As you read the successive trace messages, you
6724can see that the parser is functioning according to its specification in
6725the listing file. Eventually you will arrive at the place where
6726something undesirable happens, and you will see which parts of the
6727grammar are to blame.
bfa74976
RS
6728
6729The parser file is a C program and you can use C debuggers on it, but it's
6730not easy to interpret what it is doing. The parser function is a
6731finite-state machine interpreter, and aside from the actions it executes
6732the same code over and over. Only the values of variables show where in
6733the grammar it is working.
6734
6735@findex YYPRINT
6736The debugging information normally gives the token type of each token
6737read, but not its semantic value. You can optionally define a macro
6738named @code{YYPRINT} to provide a way to print the value. If you define
6739@code{YYPRINT}, it should take three arguments. The parser will pass a
6740standard I/O stream, the numeric code for the token type, and the token
6741value (from @code{yylval}).
6742
6743Here is an example of @code{YYPRINT} suitable for the multi-function
6744calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6745
6746@smallexample
38a92d50
PE
6747%@{
6748 static void print_token_value (FILE *, int, YYSTYPE);
6749 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6750%@}
6751
6752@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6753
6754static void
831d3c99 6755print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6756@{
6757 if (type == VAR)
d3c4e709 6758 fprintf (file, "%s", value.tptr->name);
bfa74976 6759 else if (type == NUM)
d3c4e709 6760 fprintf (file, "%d", value.val);
bfa74976
RS
6761@}
6762@end smallexample
6763
ec3bc396
AD
6764@c ================================================= Invoking Bison
6765
342b8b6e 6766@node Invocation
bfa74976
RS
6767@chapter Invoking Bison
6768@cindex invoking Bison
6769@cindex Bison invocation
6770@cindex options for invoking Bison
6771
6772The usual way to invoke Bison is as follows:
6773
6774@example
6775bison @var{infile}
6776@end example
6777
6778Here @var{infile} is the grammar file name, which usually ends in
6779@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6780with @samp{.tab.c} and removing any leading directory. Thus, the
6781@samp{bison foo.y} file name yields
6782@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6783@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6784C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6785or @file{foo.y++}. Then, the output files will take an extension like
6786the given one as input (respectively @file{foo.tab.cpp} and
6787@file{foo.tab.c++}).
fa4d969f 6788This feature takes effect with all options that manipulate file names like
234a3be3
AD
6789@samp{-o} or @samp{-d}.
6790
6791For example :
6792
6793@example
6794bison -d @var{infile.yxx}
6795@end example
84163231 6796@noindent
72d2299c 6797will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6798
6799@example
b56471a6 6800bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6801@end example
84163231 6802@noindent
234a3be3
AD
6803will produce @file{output.c++} and @file{outfile.h++}.
6804
397ec073
PE
6805For compatibility with @acronym{POSIX}, the standard Bison
6806distribution also contains a shell script called @command{yacc} that
6807invokes Bison with the @option{-y} option.
6808
bfa74976 6809@menu
13863333 6810* Bison Options:: All the options described in detail,
c827f760 6811 in alphabetical order by short options.
bfa74976 6812* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6813* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6814@end menu
6815
342b8b6e 6816@node Bison Options
bfa74976
RS
6817@section Bison Options
6818
6819Bison supports both traditional single-letter options and mnemonic long
6820option names. Long option names are indicated with @samp{--} instead of
6821@samp{-}. Abbreviations for option names are allowed as long as they
6822are unique. When a long option takes an argument, like
6823@samp{--file-prefix}, connect the option name and the argument with
6824@samp{=}.
6825
6826Here is a list of options that can be used with Bison, alphabetized by
6827short option. It is followed by a cross key alphabetized by long
6828option.
6829
89cab50d
AD
6830@c Please, keep this ordered as in `bison --help'.
6831@noindent
6832Operations modes:
6833@table @option
6834@item -h
6835@itemx --help
6836Print a summary of the command-line options to Bison and exit.
bfa74976 6837
89cab50d
AD
6838@item -V
6839@itemx --version
6840Print the version number of Bison and exit.
bfa74976 6841
f7ab6a50
PE
6842@item --print-localedir
6843Print the name of the directory containing locale-dependent data.
6844
89cab50d
AD
6845@item -y
6846@itemx --yacc
54662697
PE
6847Act more like the traditional Yacc command. This can cause
6848different diagnostics to be generated, and may change behavior in
6849other minor ways. Most importantly, imitate Yacc's output
6850file name conventions, so that the parser output file is called
89cab50d 6851@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6852@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6853for Yacc, and the Bison distribution contains such a script for
6854compatibility with @acronym{POSIX}:
bfa74976 6855
89cab50d 6856@example
397ec073 6857#! /bin/sh
26e06a21 6858bison -y "$@@"
89cab50d 6859@end example
54662697
PE
6860
6861The @option{-y}/@option{--yacc} option is intended for use with
6862traditional Yacc grammars. If your grammar uses a Bison extension
6863like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6864this option is specified.
6865
89cab50d
AD
6866@end table
6867
6868@noindent
6869Tuning the parser:
6870
6871@table @option
cd5bd6ac
AD
6872@item -S @var{file}
6873@itemx --skeleton=@var{file}
6874Specify the skeleton to use. You probably don't need this option unless
6875you are developing Bison.
6876
89cab50d
AD
6877@item -t
6878@itemx --debug
4947ebdb
PE
6879In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6880already defined, so that the debugging facilities are compiled.
ec3bc396 6881@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6882
6883@item --locations
d8988b2f 6884Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6885
6886@item -p @var{prefix}
6887@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6888Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6889@xref{Decl Summary}.
bfa74976
RS
6890
6891@item -l
6892@itemx --no-lines
6893Don't put any @code{#line} preprocessor commands in the parser file.
6894Ordinarily Bison puts them in the parser file so that the C compiler
6895and debuggers will associate errors with your source file, the
6896grammar file. This option causes them to associate errors with the
95e742f7 6897parser file, treating it as an independent source file in its own right.
bfa74976 6898
931c7513
RS
6899@item -n
6900@itemx --no-parser
d8988b2f 6901Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6902
89cab50d
AD
6903@item -k
6904@itemx --token-table
d8988b2f 6905Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6906@end table
bfa74976 6907
89cab50d
AD
6908@noindent
6909Adjust the output:
bfa74976 6910
89cab50d
AD
6911@table @option
6912@item -d
d8988b2f
AD
6913@itemx --defines
6914Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6915file containing macro definitions for the token type names defined in
4bfd5e4e 6916the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6917
342b8b6e 6918@item --defines=@var{defines-file}
d8988b2f 6919Same as above, but save in the file @var{defines-file}.
342b8b6e 6920
89cab50d
AD
6921@item -b @var{file-prefix}
6922@itemx --file-prefix=@var{prefix}
d8988b2f 6923Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6924for all Bison output file names. @xref{Decl Summary}.
bfa74976 6925
ec3bc396
AD
6926@item -r @var{things}
6927@itemx --report=@var{things}
6928Write an extra output file containing verbose description of the comma
6929separated list of @var{things} among:
6930
6931@table @code
6932@item state
6933Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6934@acronym{LALR} automaton.
ec3bc396 6935
8dd162d3 6936@item look-ahead
ec3bc396 6937Implies @code{state} and augments the description of the automaton with
8dd162d3 6938each rule's look-ahead set.
ec3bc396
AD
6939
6940@item itemset
6941Implies @code{state} and augments the description of the automaton with
6942the full set of items for each state, instead of its core only.
6943@end table
6944
bfa74976
RS
6945@item -v
6946@itemx --verbose
6deb4447
AD
6947Pretend that @code{%verbose} was specified, i.e, write an extra output
6948file containing verbose descriptions of the grammar and
72d2299c 6949parser. @xref{Decl Summary}.
bfa74976 6950
fa4d969f
PE
6951@item -o @var{file}
6952@itemx --output=@var{file}
6953Specify the @var{file} for the parser file.
bfa74976 6954
fa4d969f 6955The other output files' names are constructed from @var{file} as
d8988b2f 6956described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6957
6958@item -g
c827f760
PE
6959Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6960automaton computed by Bison. If the grammar file is @file{foo.y}, the
6961@acronym{VCG} output file will
342b8b6e
AD
6962be @file{foo.vcg}.
6963
6964@item --graph=@var{graph-file}
72d2299c
PE
6965The behavior of @var{--graph} is the same than @samp{-g}. The only
6966difference is that it has an optional argument which is the name of
fa4d969f 6967the output graph file.
bfa74976
RS
6968@end table
6969
342b8b6e 6970@node Option Cross Key
bfa74976
RS
6971@section Option Cross Key
6972
6973Here is a list of options, alphabetized by long option, to help you find
6974the corresponding short option.
6975
6976@tex
6977\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6978
6979{\tt
6980\line{ --debug \leaderfill -t}
6981\line{ --defines \leaderfill -d}
6982\line{ --file-prefix \leaderfill -b}
342b8b6e 6983\line{ --graph \leaderfill -g}
ff51d159 6984\line{ --help \leaderfill -h}
bfa74976
RS
6985\line{ --name-prefix \leaderfill -p}
6986\line{ --no-lines \leaderfill -l}
931c7513 6987\line{ --no-parser \leaderfill -n}
d8988b2f 6988\line{ --output \leaderfill -o}
f7ab6a50 6989\line{ --print-localedir}
931c7513 6990\line{ --token-table \leaderfill -k}
bfa74976
RS
6991\line{ --verbose \leaderfill -v}
6992\line{ --version \leaderfill -V}
6993\line{ --yacc \leaderfill -y}
6994}
6995@end tex
6996
6997@ifinfo
6998@example
6999--debug -t
342b8b6e 7000--defines=@var{defines-file} -d
bfa74976 7001--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 7002--graph=@var{graph-file} -d
ff51d159 7003--help -h
931c7513 7004--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 7005--no-lines -l
931c7513 7006--no-parser -n
d8988b2f 7007--output=@var{outfile} -o @var{outfile}
f7ab6a50 7008--print-localedir
931c7513 7009--token-table -k
bfa74976
RS
7010--verbose -v
7011--version -V
8c9a50be 7012--yacc -y
bfa74976
RS
7013@end example
7014@end ifinfo
7015
93dd49ab
PE
7016@node Yacc Library
7017@section Yacc Library
7018
7019The Yacc library contains default implementations of the
7020@code{yyerror} and @code{main} functions. These default
7021implementations are normally not useful, but @acronym{POSIX} requires
7022them. To use the Yacc library, link your program with the
7023@option{-ly} option. Note that Bison's implementation of the Yacc
7024library is distributed under the terms of the @acronym{GNU} General
7025Public License (@pxref{Copying}).
7026
7027If you use the Yacc library's @code{yyerror} function, you should
7028declare @code{yyerror} as follows:
7029
7030@example
7031int yyerror (char const *);
7032@end example
7033
7034Bison ignores the @code{int} value returned by this @code{yyerror}.
7035If you use the Yacc library's @code{main} function, your
7036@code{yyparse} function should have the following type signature:
7037
7038@example
7039int yyparse (void);
7040@end example
7041
12545799
AD
7042@c ================================================= C++ Bison
7043
7044@node C++ Language Interface
7045@chapter C++ Language Interface
7046
7047@menu
7048* C++ Parsers:: The interface to generate C++ parser classes
7049* A Complete C++ Example:: Demonstrating their use
7050@end menu
7051
7052@node C++ Parsers
7053@section C++ Parsers
7054
7055@menu
7056* C++ Bison Interface:: Asking for C++ parser generation
7057* C++ Semantic Values:: %union vs. C++
7058* C++ Location Values:: The position and location classes
7059* C++ Parser Interface:: Instantiating and running the parser
7060* C++ Scanner Interface:: Exchanges between yylex and parse
7061@end menu
7062
7063@node C++ Bison Interface
7064@subsection C++ Bison Interface
7065@c - %skeleton "lalr1.cc"
7066@c - Always pure
7067@c - initial action
7068
e054b190 7069The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
7070it, you may either pass the option @option{--skeleton=lalr1.cc} to
7071Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
7072grammar preamble. When run, @command{bison} will create several
7073files:
7074@table @file
7075@item position.hh
7076@itemx location.hh
7077The definition of the classes @code{position} and @code{location},
7078used for location tracking. @xref{C++ Location Values}.
7079
7080@item stack.hh
7081An auxiliary class @code{stack} used by the parser.
7082
fa4d969f
PE
7083@item @var{file}.hh
7084@itemx @var{file}.cc
12545799 7085The declaration and implementation of the C++ parser class.
fa4d969f 7086@var{file} is the name of the output file. It follows the same
12545799
AD
7087rules as with regular C parsers.
7088
fa4d969f 7089Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7090work without the parser class declaration. Therefore, you must either
7091pass @option{-d}/@option{--defines} to @command{bison}, or use the
7092@samp{%defines} directive.
7093@end table
7094
7095All these files are documented using Doxygen; run @command{doxygen}
7096for a complete and accurate documentation.
7097
7098@node C++ Semantic Values
7099@subsection C++ Semantic Values
7100@c - No objects in unions
7101@c - YSTYPE
7102@c - Printer and destructor
7103
7104The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7105Collection of Value Types}. In particular it produces a genuine
7106@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7107within pseudo-unions (similar to Boost variants) might be implemented to
7108alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7109@itemize @minus
7110@item
fb9712a9
AD
7111The type @code{YYSTYPE} is defined but its use is discouraged: rather
7112you should refer to the parser's encapsulated type
7113@code{yy::parser::semantic_type}.
12545799
AD
7114@item
7115Non POD (Plain Old Data) types cannot be used. C++ forbids any
7116instance of classes with constructors in unions: only @emph{pointers}
7117to such objects are allowed.
7118@end itemize
7119
7120Because objects have to be stored via pointers, memory is not
7121reclaimed automatically: using the @code{%destructor} directive is the
7122only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7123Symbols}.
7124
7125
7126@node C++ Location Values
7127@subsection C++ Location Values
7128@c - %locations
7129@c - class Position
7130@c - class Location
b47dbebe 7131@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7132
7133When the directive @code{%locations} is used, the C++ parser supports
7134location tracking, see @ref{Locations, , Locations Overview}. Two
7135auxiliary classes define a @code{position}, a single point in a file,
7136and a @code{location}, a range composed of a pair of
7137@code{position}s (possibly spanning several files).
7138
fa4d969f 7139@deftypemethod {position} {std::string*} file
12545799
AD
7140The name of the file. It will always be handled as a pointer, the
7141parser will never duplicate nor deallocate it. As an experimental
7142feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7143"filename_type" "@var{type}"}.
12545799
AD
7144@end deftypemethod
7145
7146@deftypemethod {position} {unsigned int} line
7147The line, starting at 1.
7148@end deftypemethod
7149
7150@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7151Advance by @var{height} lines, resetting the column number.
7152@end deftypemethod
7153
7154@deftypemethod {position} {unsigned int} column
7155The column, starting at 0.
7156@end deftypemethod
7157
7158@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7159Advance by @var{width} columns, without changing the line number.
7160@end deftypemethod
7161
7162@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7163@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7164@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7165@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7166Various forms of syntactic sugar for @code{columns}.
7167@end deftypemethod
7168
7169@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7170Report @var{p} on @var{o} like this:
fa4d969f
PE
7171@samp{@var{file}:@var{line}.@var{column}}, or
7172@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7173@end deftypemethod
7174
7175@deftypemethod {location} {position} begin
7176@deftypemethodx {location} {position} end
7177The first, inclusive, position of the range, and the first beyond.
7178@end deftypemethod
7179
7180@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7181@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7182Advance the @code{end} position.
7183@end deftypemethod
7184
7185@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7186@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7187@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7188Various forms of syntactic sugar.
7189@end deftypemethod
7190
7191@deftypemethod {location} {void} step ()
7192Move @code{begin} onto @code{end}.
7193@end deftypemethod
7194
7195
7196@node C++ Parser Interface
7197@subsection C++ Parser Interface
7198@c - define parser_class_name
7199@c - Ctor
7200@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7201@c debug_stream.
7202@c - Reporting errors
7203
7204The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7205declare and define the parser class in the namespace @code{yy}. The
7206class name defaults to @code{parser}, but may be changed using
7207@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7208this class is detailed below. It can be extended using the
12545799
AD
7209@code{%parse-param} feature: its semantics is slightly changed since
7210it describes an additional member of the parser class, and an
7211additional argument for its constructor.
7212
8a0adb01
AD
7213@defcv {Type} {parser} {semantic_value_type}
7214@defcvx {Type} {parser} {location_value_type}
12545799 7215The types for semantics value and locations.
8a0adb01 7216@end defcv
12545799
AD
7217
7218@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7219Build a new parser object. There are no arguments by default, unless
7220@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7221@end deftypemethod
7222
7223@deftypemethod {parser} {int} parse ()
7224Run the syntactic analysis, and return 0 on success, 1 otherwise.
7225@end deftypemethod
7226
7227@deftypemethod {parser} {std::ostream&} debug_stream ()
7228@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7229Get or set the stream used for tracing the parsing. It defaults to
7230@code{std::cerr}.
7231@end deftypemethod
7232
7233@deftypemethod {parser} {debug_level_type} debug_level ()
7234@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7235Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7236or nonzero, full tracing.
12545799
AD
7237@end deftypemethod
7238
7239@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7240The definition for this member function must be supplied by the user:
7241the parser uses it to report a parser error occurring at @var{l},
7242described by @var{m}.
7243@end deftypemethod
7244
7245
7246@node C++ Scanner Interface
7247@subsection C++ Scanner Interface
7248@c - prefix for yylex.
7249@c - Pure interface to yylex
7250@c - %lex-param
7251
7252The parser invokes the scanner by calling @code{yylex}. Contrary to C
7253parsers, C++ parsers are always pure: there is no point in using the
7254@code{%pure-parser} directive. Therefore the interface is as follows.
7255
7256@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7257Return the next token. Its type is the return value, its semantic
7258value and location being @var{yylval} and @var{yylloc}. Invocations of
7259@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7260@end deftypemethod
7261
7262
7263@node A Complete C++ Example
7264@section A Complete C++ Example
7265
7266This section demonstrates the use of a C++ parser with a simple but
7267complete example. This example should be available on your system,
7268ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7269focuses on the use of Bison, therefore the design of the various C++
7270classes is very naive: no accessors, no encapsulation of members etc.
7271We will use a Lex scanner, and more precisely, a Flex scanner, to
7272demonstrate the various interaction. A hand written scanner is
7273actually easier to interface with.
7274
7275@menu
7276* Calc++ --- C++ Calculator:: The specifications
7277* Calc++ Parsing Driver:: An active parsing context
7278* Calc++ Parser:: A parser class
7279* Calc++ Scanner:: A pure C++ Flex scanner
7280* Calc++ Top Level:: Conducting the band
7281@end menu
7282
7283@node Calc++ --- C++ Calculator
7284@subsection Calc++ --- C++ Calculator
7285
7286Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7287expression, possibly preceded by variable assignments. An
12545799
AD
7288environment containing possibly predefined variables such as
7289@code{one} and @code{two}, is exchanged with the parser. An example
7290of valid input follows.
7291
7292@example
7293three := 3
7294seven := one + two * three
7295seven * seven
7296@end example
7297
7298@node Calc++ Parsing Driver
7299@subsection Calc++ Parsing Driver
7300@c - An env
7301@c - A place to store error messages
7302@c - A place for the result
7303
7304To support a pure interface with the parser (and the scanner) the
7305technique of the ``parsing context'' is convenient: a structure
7306containing all the data to exchange. Since, in addition to simply
7307launch the parsing, there are several auxiliary tasks to execute (open
7308the file for parsing, instantiate the parser etc.), we recommend
7309transforming the simple parsing context structure into a fully blown
7310@dfn{parsing driver} class.
7311
7312The declaration of this driver class, @file{calc++-driver.hh}, is as
7313follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7314required standard library components, and the declaration of the parser
7315class.
12545799 7316
1c59e0a1 7317@comment file: calc++-driver.hh
12545799
AD
7318@example
7319#ifndef CALCXX_DRIVER_HH
7320# define CALCXX_DRIVER_HH
7321# include <string>
7322# include <map>
fb9712a9 7323# include "calc++-parser.hh"
12545799
AD
7324@end example
7325
12545799
AD
7326
7327@noindent
7328Then comes the declaration of the scanning function. Flex expects
7329the signature of @code{yylex} to be defined in the macro
7330@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7331factor both as follows.
1c59e0a1
AD
7332
7333@comment file: calc++-driver.hh
12545799
AD
7334@example
7335// Announce to Flex the prototype we want for lexing function, ...
c095d689
AD
7336# define YY_DECL \
7337 yy::calcxx_parser::token_type \
7338 yylex (yy::calcxx_parser::semantic_type* yylval, \
7339 yy::calcxx_parser::location_type* yylloc, \
7340 calcxx_driver& driver)
12545799
AD
7341// ... and declare it for the parser's sake.
7342YY_DECL;
7343@end example
7344
7345@noindent
7346The @code{calcxx_driver} class is then declared with its most obvious
7347members.
7348
1c59e0a1 7349@comment file: calc++-driver.hh
12545799
AD
7350@example
7351// Conducting the whole scanning and parsing of Calc++.
7352class calcxx_driver
7353@{
7354public:
7355 calcxx_driver ();
7356 virtual ~calcxx_driver ();
7357
7358 std::map<std::string, int> variables;
7359
7360 int result;
7361@end example
7362
7363@noindent
7364To encapsulate the coordination with the Flex scanner, it is useful to
7365have two members function to open and close the scanning phase.
7366members.
7367
1c59e0a1 7368@comment file: calc++-driver.hh
12545799
AD
7369@example
7370 // Handling the scanner.
7371 void scan_begin ();
7372 void scan_end ();
7373 bool trace_scanning;
7374@end example
7375
7376@noindent
7377Similarly for the parser itself.
7378
1c59e0a1 7379@comment file: calc++-driver.hh
12545799
AD
7380@example
7381 // Handling the parser.
7382 void parse (const std::string& f);
7383 std::string file;
7384 bool trace_parsing;
7385@end example
7386
7387@noindent
7388To demonstrate pure handling of parse errors, instead of simply
7389dumping them on the standard error output, we will pass them to the
7390compiler driver using the following two member functions. Finally, we
7391close the class declaration and CPP guard.
7392
1c59e0a1 7393@comment file: calc++-driver.hh
12545799
AD
7394@example
7395 // Error handling.
7396 void error (const yy::location& l, const std::string& m);
7397 void error (const std::string& m);
7398@};
7399#endif // ! CALCXX_DRIVER_HH
7400@end example
7401
7402The implementation of the driver is straightforward. The @code{parse}
7403member function deserves some attention. The @code{error} functions
7404are simple stubs, they should actually register the located error
7405messages and set error state.
7406
1c59e0a1 7407@comment file: calc++-driver.cc
12545799
AD
7408@example
7409#include "calc++-driver.hh"
7410#include "calc++-parser.hh"
7411
7412calcxx_driver::calcxx_driver ()
7413 : trace_scanning (false), trace_parsing (false)
7414@{
7415 variables["one"] = 1;
7416 variables["two"] = 2;
7417@}
7418
7419calcxx_driver::~calcxx_driver ()
7420@{
7421@}
7422
7423void
7424calcxx_driver::parse (const std::string &f)
7425@{
7426 file = f;
7427 scan_begin ();
7428 yy::calcxx_parser parser (*this);
7429 parser.set_debug_level (trace_parsing);
7430 parser.parse ();
7431 scan_end ();
7432@}
7433
7434void
7435calcxx_driver::error (const yy::location& l, const std::string& m)
7436@{
7437 std::cerr << l << ": " << m << std::endl;
7438@}
7439
7440void
7441calcxx_driver::error (const std::string& m)
7442@{
7443 std::cerr << m << std::endl;
7444@}
7445@end example
7446
7447@node Calc++ Parser
7448@subsection Calc++ Parser
7449
b50d2359
AD
7450The parser definition file @file{calc++-parser.yy} starts by asking for
7451the C++ LALR(1) skeleton, the creation of the parser header file, and
7452specifies the name of the parser class. Because the C++ skeleton
7453changed several times, it is safer to require the version you designed
7454the grammar for.
1c59e0a1
AD
7455
7456@comment file: calc++-parser.yy
12545799
AD
7457@example
7458%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7459%require "2.1a"
12545799 7460%defines
fb9712a9
AD
7461%define "parser_class_name" "calcxx_parser"
7462@end example
7463
7464@noindent
7465Then come the declarations/inclusions needed to define the
7466@code{%union}. Because the parser uses the parsing driver and
7467reciprocally, both cannot include the header of the other. Because the
7468driver's header needs detailed knowledge about the parser class (in
7469particular its inner types), it is the parser's header which will simply
7470use a forward declaration of the driver.
7471
7472@comment file: calc++-parser.yy
7473@example
12545799
AD
7474%@{
7475# include <string>
fb9712a9 7476class calcxx_driver;
12545799
AD
7477%@}
7478@end example
7479
7480@noindent
7481The driver is passed by reference to the parser and to the scanner.
7482This provides a simple but effective pure interface, not relying on
7483global variables.
7484
1c59e0a1 7485@comment file: calc++-parser.yy
12545799
AD
7486@example
7487// The parsing context.
7488%parse-param @{ calcxx_driver& driver @}
7489%lex-param @{ calcxx_driver& driver @}
7490@end example
7491
7492@noindent
7493Then we request the location tracking feature, and initialize the
7494first location's file name. Afterwards new locations are computed
7495relatively to the previous locations: the file name will be
7496automatically propagated.
7497
1c59e0a1 7498@comment file: calc++-parser.yy
12545799
AD
7499@example
7500%locations
7501%initial-action
7502@{
7503 // Initialize the initial location.
b47dbebe 7504 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7505@};
7506@end example
7507
7508@noindent
7509Use the two following directives to enable parser tracing and verbose
7510error messages.
7511
1c59e0a1 7512@comment file: calc++-parser.yy
12545799
AD
7513@example
7514%debug
7515%error-verbose
7516@end example
7517
7518@noindent
7519Semantic values cannot use ``real'' objects, but only pointers to
7520them.
7521
1c59e0a1 7522@comment file: calc++-parser.yy
12545799
AD
7523@example
7524// Symbols.
7525%union
7526@{
7527 int ival;
7528 std::string *sval;
7529@};
7530@end example
7531
fb9712a9
AD
7532@noindent
7533The code between @samp{%@{} and @samp{%@}} after the introduction of the
7534@samp{%union} is output in the @file{*.cc} file; it needs detailed
7535knowledge about the driver.
7536
7537@comment file: calc++-parser.yy
7538@example
7539%@{
7540# include "calc++-driver.hh"
7541%@}
7542@end example
7543
7544
12545799
AD
7545@noindent
7546The token numbered as 0 corresponds to end of file; the following line
7547allows for nicer error messages referring to ``end of file'' instead
7548of ``$end''. Similarly user friendly named are provided for each
7549symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7550avoid name clashes.
7551
1c59e0a1 7552@comment file: calc++-parser.yy
12545799 7553@example
fb9712a9
AD
7554%token END 0 "end of file"
7555%token ASSIGN ":="
7556%token <sval> IDENTIFIER "identifier"
7557%token <ival> NUMBER "number"
7558%type <ival> exp "expression"
12545799
AD
7559@end example
7560
7561@noindent
7562To enable memory deallocation during error recovery, use
7563@code{%destructor}.
7564
287c78f6 7565@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7566@comment file: calc++-parser.yy
12545799
AD
7567@example
7568%printer @{ debug_stream () << *$$; @} "identifier"
7569%destructor @{ delete $$; @} "identifier"
7570
7571%printer @{ debug_stream () << $$; @} "number" "expression"
7572@end example
7573
7574@noindent
7575The grammar itself is straightforward.
7576
1c59e0a1 7577@comment file: calc++-parser.yy
12545799
AD
7578@example
7579%%
7580%start unit;
7581unit: assignments exp @{ driver.result = $2; @};
7582
7583assignments: assignments assignment @{@}
9d9b8b70 7584 | /* Nothing. */ @{@};
12545799 7585
fb9712a9 7586assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7587
7588%left '+' '-';
7589%left '*' '/';
7590exp: exp '+' exp @{ $$ = $1 + $3; @}
7591 | exp '-' exp @{ $$ = $1 - $3; @}
7592 | exp '*' exp @{ $$ = $1 * $3; @}
7593 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7594 | "identifier" @{ $$ = driver.variables[*$1]; @}
7595 | "number" @{ $$ = $1; @};
12545799
AD
7596%%
7597@end example
7598
7599@noindent
7600Finally the @code{error} member function registers the errors to the
7601driver.
7602
1c59e0a1 7603@comment file: calc++-parser.yy
12545799
AD
7604@example
7605void
1c59e0a1
AD
7606yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7607 const std::string& m)
12545799
AD
7608@{
7609 driver.error (l, m);
7610@}
7611@end example
7612
7613@node Calc++ Scanner
7614@subsection Calc++ Scanner
7615
7616The Flex scanner first includes the driver declaration, then the
7617parser's to get the set of defined tokens.
7618
1c59e0a1 7619@comment file: calc++-scanner.ll
12545799
AD
7620@example
7621%@{ /* -*- C++ -*- */
04098407
PE
7622# include <cstdlib>
7623# include <errno.h>
7624# include <limits.h>
12545799
AD
7625# include <string>
7626# include "calc++-driver.hh"
7627# include "calc++-parser.hh"
7870f699
PE
7628/* Work around a bug in flex 2.5.31. See Debian bug 333231
7629 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7630# undef yywrap
7631# define yywrap() 1
c095d689
AD
7632/* By default yylex returns int, we use token_type.
7633 Unfortunately yyterminate by default returns 0, which is
7634 not of token_type. */
7635#define yyterminate() return token::END
12545799
AD
7636%@}
7637@end example
7638
7639@noindent
7640Because there is no @code{#include}-like feature we don't need
7641@code{yywrap}, we don't need @code{unput} either, and we parse an
7642actual file, this is not an interactive session with the user.
7643Finally we enable the scanner tracing features.
7644
1c59e0a1 7645@comment file: calc++-scanner.ll
12545799
AD
7646@example
7647%option noyywrap nounput batch debug
7648@end example
7649
7650@noindent
7651Abbreviations allow for more readable rules.
7652
1c59e0a1 7653@comment file: calc++-scanner.ll
12545799
AD
7654@example
7655id [a-zA-Z][a-zA-Z_0-9]*
7656int [0-9]+
7657blank [ \t]
7658@end example
7659
7660@noindent
9d9b8b70 7661The following paragraph suffices to track locations accurately. Each
12545799
AD
7662time @code{yylex} is invoked, the begin position is moved onto the end
7663position. Then when a pattern is matched, the end position is
7664advanced of its width. In case it matched ends of lines, the end
7665cursor is adjusted, and each time blanks are matched, the begin cursor
7666is moved onto the end cursor to effectively ignore the blanks
7667preceding tokens. Comments would be treated equally.
7668
1c59e0a1 7669@comment file: calc++-scanner.ll
12545799 7670@example
828c373b
AD
7671%@{
7672# define YY_USER_ACTION yylloc->columns (yyleng);
7673%@}
12545799
AD
7674%%
7675%@{
7676 yylloc->step ();
12545799
AD
7677%@}
7678@{blank@}+ yylloc->step ();
7679[\n]+ yylloc->lines (yyleng); yylloc->step ();
7680@end example
7681
7682@noindent
fb9712a9
AD
7683The rules are simple, just note the use of the driver to report errors.
7684It is convenient to use a typedef to shorten
7685@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7686@code{token::identifier} for instance.
12545799 7687
1c59e0a1 7688@comment file: calc++-scanner.ll
12545799 7689@example
fb9712a9
AD
7690%@{
7691 typedef yy::calcxx_parser::token token;
7692%@}
c095d689
AD
7693 /* Convert ints to the actual type of tokens. */
7694[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7695":=" return token::ASSIGN;
04098407
PE
7696@{int@} @{
7697 errno = 0;
7698 long n = strtol (yytext, NULL, 10);
7699 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7700 driver.error (*yylloc, "integer is out of range");
7701 yylval->ival = n;
fb9712a9 7702 return token::NUMBER;
04098407 7703@}
fb9712a9 7704@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7705. driver.error (*yylloc, "invalid character");
7706%%
7707@end example
7708
7709@noindent
7710Finally, because the scanner related driver's member function depend
7711on the scanner's data, it is simpler to implement them in this file.
7712
1c59e0a1 7713@comment file: calc++-scanner.ll
12545799
AD
7714@example
7715void
7716calcxx_driver::scan_begin ()
7717@{
7718 yy_flex_debug = trace_scanning;
7719 if (!(yyin = fopen (file.c_str (), "r")))
7720 error (std::string ("cannot open ") + file);
7721@}
7722
7723void
7724calcxx_driver::scan_end ()
7725@{
7726 fclose (yyin);
7727@}
7728@end example
7729
7730@node Calc++ Top Level
7731@subsection Calc++ Top Level
7732
7733The top level file, @file{calc++.cc}, poses no problem.
7734
1c59e0a1 7735@comment file: calc++.cc
12545799
AD
7736@example
7737#include <iostream>
7738#include "calc++-driver.hh"
7739
7740int
fa4d969f 7741main (int argc, char *argv[])
12545799
AD
7742@{
7743 calcxx_driver driver;
7744 for (++argv; argv[0]; ++argv)
7745 if (*argv == std::string ("-p"))
7746 driver.trace_parsing = true;
7747 else if (*argv == std::string ("-s"))
7748 driver.trace_scanning = true;
7749 else
7750 @{
7751 driver.parse (*argv);
7752 std::cout << driver.result << std::endl;
7753 @}
7754@}
7755@end example
7756
7757@c ================================================= FAQ
d1a1114f
AD
7758
7759@node FAQ
7760@chapter Frequently Asked Questions
7761@cindex frequently asked questions
7762@cindex questions
7763
7764Several questions about Bison come up occasionally. Here some of them
7765are addressed.
7766
7767@menu
55ba27be
AD
7768* Memory Exhausted:: Breaking the Stack Limits
7769* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7770* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7771* Implementing Gotos/Loops:: Control Flow in the Calculator
7772* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7773* I can't build Bison:: Troubleshooting
7774* Where can I find help?:: Troubleshouting
7775* Bug Reports:: Troublereporting
7776* Other Languages:: Parsers in Java and others
7777* Beta Testing:: Experimenting development versions
7778* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7779@end menu
7780
1a059451
PE
7781@node Memory Exhausted
7782@section Memory Exhausted
d1a1114f
AD
7783
7784@display
1a059451 7785My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7786message. What can I do?
7787@end display
7788
7789This question is already addressed elsewhere, @xref{Recursion,
7790,Recursive Rules}.
7791
e64fec0a
PE
7792@node How Can I Reset the Parser
7793@section How Can I Reset the Parser
5b066063 7794
0e14ad77
PE
7795The following phenomenon has several symptoms, resulting in the
7796following typical questions:
5b066063
AD
7797
7798@display
7799I invoke @code{yyparse} several times, and on correct input it works
7800properly; but when a parse error is found, all the other calls fail
0e14ad77 7801too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7802@end display
7803
7804@noindent
7805or
7806
7807@display
0e14ad77 7808My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7809which case I run @code{yyparse} from @code{yyparse}. This fails
7810although I did specify I needed a @code{%pure-parser}.
7811@end display
7812
0e14ad77
PE
7813These problems typically come not from Bison itself, but from
7814Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7815speed, they might not notice a change of input file. As a
7816demonstration, consider the following source file,
7817@file{first-line.l}:
7818
7819@verbatim
7820%{
7821#include <stdio.h>
7822#include <stdlib.h>
7823%}
7824%%
7825.*\n ECHO; return 1;
7826%%
7827int
0e14ad77 7828yyparse (char const *file)
5b066063
AD
7829{
7830 yyin = fopen (file, "r");
7831 if (!yyin)
7832 exit (2);
fa7e68c3 7833 /* One token only. */
5b066063 7834 yylex ();
0e14ad77 7835 if (fclose (yyin) != 0)
5b066063
AD
7836 exit (3);
7837 return 0;
7838}
7839
7840int
0e14ad77 7841main (void)
5b066063
AD
7842{
7843 yyparse ("input");
7844 yyparse ("input");
7845 return 0;
7846}
7847@end verbatim
7848
7849@noindent
7850If the file @file{input} contains
7851
7852@verbatim
7853input:1: Hello,
7854input:2: World!
7855@end verbatim
7856
7857@noindent
0e14ad77 7858then instead of getting the first line twice, you get:
5b066063
AD
7859
7860@example
7861$ @kbd{flex -ofirst-line.c first-line.l}
7862$ @kbd{gcc -ofirst-line first-line.c -ll}
7863$ @kbd{./first-line}
7864input:1: Hello,
7865input:2: World!
7866@end example
7867
0e14ad77
PE
7868Therefore, whenever you change @code{yyin}, you must tell the
7869Lex-generated scanner to discard its current buffer and switch to the
7870new one. This depends upon your implementation of Lex; see its
7871documentation for more. For Flex, it suffices to call
7872@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7873Flex-generated scanner needs to read from several input streams to
7874handle features like include files, you might consider using Flex
7875functions like @samp{yy_switch_to_buffer} that manipulate multiple
7876input buffers.
5b066063 7877
b165c324
AD
7878If your Flex-generated scanner uses start conditions (@pxref{Start
7879conditions, , Start conditions, flex, The Flex Manual}), you might
7880also want to reset the scanner's state, i.e., go back to the initial
7881start condition, through a call to @samp{BEGIN (0)}.
7882
fef4cb51
AD
7883@node Strings are Destroyed
7884@section Strings are Destroyed
7885
7886@display
c7e441b4 7887My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7888them. Instead of reporting @samp{"foo", "bar"}, it reports
7889@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7890@end display
7891
7892This error is probably the single most frequent ``bug report'' sent to
7893Bison lists, but is only concerned with a misunderstanding of the role
7894of scanner. Consider the following Lex code:
7895
7896@verbatim
7897%{
7898#include <stdio.h>
7899char *yylval = NULL;
7900%}
7901%%
7902.* yylval = yytext; return 1;
7903\n /* IGNORE */
7904%%
7905int
7906main ()
7907{
fa7e68c3 7908 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7909 char *fst = (yylex (), yylval);
7910 char *snd = (yylex (), yylval);
7911 printf ("\"%s\", \"%s\"\n", fst, snd);
7912 return 0;
7913}
7914@end verbatim
7915
7916If you compile and run this code, you get:
7917
7918@example
7919$ @kbd{flex -osplit-lines.c split-lines.l}
7920$ @kbd{gcc -osplit-lines split-lines.c -ll}
7921$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7922"one
7923two", "two"
7924@end example
7925
7926@noindent
7927this is because @code{yytext} is a buffer provided for @emph{reading}
7928in the action, but if you want to keep it, you have to duplicate it
7929(e.g., using @code{strdup}). Note that the output may depend on how
7930your implementation of Lex handles @code{yytext}. For instance, when
7931given the Lex compatibility option @option{-l} (which triggers the
7932option @samp{%array}) Flex generates a different behavior:
7933
7934@example
7935$ @kbd{flex -l -osplit-lines.c split-lines.l}
7936$ @kbd{gcc -osplit-lines split-lines.c -ll}
7937$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7938"two", "two"
7939@end example
7940
7941
2fa09258
AD
7942@node Implementing Gotos/Loops
7943@section Implementing Gotos/Loops
a06ea4aa
AD
7944
7945@display
7946My simple calculator supports variables, assignments, and functions,
2fa09258 7947but how can I implement gotos, or loops?
a06ea4aa
AD
7948@end display
7949
7950Although very pedagogical, the examples included in the document blur
a1c84f45 7951the distinction to make between the parser---whose job is to recover
a06ea4aa 7952the structure of a text and to transmit it to subsequent modules of
a1c84f45 7953the program---and the processing (such as the execution) of this
a06ea4aa
AD
7954structure. This works well with so called straight line programs,
7955i.e., precisely those that have a straightforward execution model:
7956execute simple instructions one after the others.
7957
7958@cindex abstract syntax tree
7959@cindex @acronym{AST}
7960If you want a richer model, you will probably need to use the parser
7961to construct a tree that does represent the structure it has
7962recovered; this tree is usually called the @dfn{abstract syntax tree},
7963or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7964traversing it in various ways, will enable treatments such as its
7965execution or its translation, which will result in an interpreter or a
7966compiler.
7967
7968This topic is way beyond the scope of this manual, and the reader is
7969invited to consult the dedicated literature.
7970
7971
55ba27be
AD
7972@node Secure? Conform?
7973@section Secure? Conform?
7974
7975@display
7976Is Bison secure? Does it conform to POSIX?
7977@end display
7978
7979If you're looking for a guarantee or certification, we don't provide it.
7980However, Bison is intended to be a reliable program that conforms to the
7981@acronym{POSIX} specification for Yacc. If you run into problems,
7982please send us a bug report.
7983
7984@node I can't build Bison
7985@section I can't build Bison
7986
7987@display
7988I can't build Bison because "make" complains that "msgfmt" is not found.
7989What should I do?
7990@end display
7991
7992Like most GNU packages with internationalization support, that feature
7993is turned on by default. If you have problems building in the @file{po}
7994subdirectory, it indicates that your system's internationalization
7995support is lacking. You can re-configure Bison with
7996@option{--disable-nls} to turn off this support, or you can install GNU
7997gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
7998Bison. See the file @file{ABOUT-NLS} for more information.
7999
8000
8001@node Where can I find help?
8002@section Where can I find help?
8003
8004@display
8005I'm having trouble using Bison. Where can I find help?
8006@end display
8007
8008First, read this fine manual. Beyond that, you can send mail to
8009@email{help-bison@@gnu.org}. This mailing list is intended to be
8010populated with people who are willing to answer questions about using
8011and installing Bison. Please keep in mind that (most of) the people on
8012the list have aspects of their lives which are not related to Bison (!),
8013so you may not receive an answer to your question right away. This can
8014be frustrating, but please try not to honk them off; remember that any
8015help they provide is purely voluntary and out of the kindness of their
8016hearts.
8017
8018@node Bug Reports
8019@section Bug Reports
8020
8021@display
8022I found a bug. What should I include in the bug report?
8023@end display
8024
8025Before you send a bug report, make sure you are using the latest
8026version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8027mirrors. Be sure to include the version number in your bug report. If
8028the bug is present in the latest version but not in a previous version,
8029try to determine the most recent version which did not contain the bug.
8030
8031If the bug is parser-related, you should include the smallest grammar
8032you can which demonstrates the bug. The grammar file should also be
8033complete (i.e., I should be able to run it through Bison without having
8034to edit or add anything). The smaller and simpler the grammar, the
8035easier it will be to fix the bug.
8036
8037Include information about your compilation environment, including your
8038operating system's name and version and your compiler's name and
8039version. If you have trouble compiling, you should also include a
8040transcript of the build session, starting with the invocation of
8041`configure'. Depending on the nature of the bug, you may be asked to
8042send additional files as well (such as `config.h' or `config.cache').
8043
8044Patches are most welcome, but not required. That is, do not hesitate to
8045send a bug report just because you can not provide a fix.
8046
8047Send bug reports to @email{bug-bison@@gnu.org}.
8048
8049@node Other Languages
8050@section Other Languages
8051
8052@display
8053Will Bison ever have C++ support? How about Java or @var{insert your
8054favorite language here}?
8055@end display
8056
8057C++ support is there now, and is documented. We'd love to add other
8058languages; contributions are welcome.
8059
8060@node Beta Testing
8061@section Beta Testing
8062
8063@display
8064What is involved in being a beta tester?
8065@end display
8066
8067It's not terribly involved. Basically, you would download a test
8068release, compile it, and use it to build and run a parser or two. After
8069that, you would submit either a bug report or a message saying that
8070everything is okay. It is important to report successes as well as
8071failures because test releases eventually become mainstream releases,
8072but only if they are adequately tested. If no one tests, development is
8073essentially halted.
8074
8075Beta testers are particularly needed for operating systems to which the
8076developers do not have easy access. They currently have easy access to
8077recent GNU/Linux and Solaris versions. Reports about other operating
8078systems are especially welcome.
8079
8080@node Mailing Lists
8081@section Mailing Lists
8082
8083@display
8084How do I join the help-bison and bug-bison mailing lists?
8085@end display
8086
8087See @url{http://lists.gnu.org/}.
a06ea4aa 8088
d1a1114f
AD
8089@c ================================================= Table of Symbols
8090
342b8b6e 8091@node Table of Symbols
bfa74976
RS
8092@appendix Bison Symbols
8093@cindex Bison symbols, table of
8094@cindex symbols in Bison, table of
8095
18b519c0 8096@deffn {Variable} @@$
3ded9a63 8097In an action, the location of the left-hand side of the rule.
88bce5a2 8098@xref{Locations, , Locations Overview}.
18b519c0 8099@end deffn
3ded9a63 8100
18b519c0 8101@deffn {Variable} @@@var{n}
3ded9a63
AD
8102In an action, the location of the @var{n}-th symbol of the right-hand
8103side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8104@end deffn
3ded9a63 8105
18b519c0 8106@deffn {Variable} $$
3ded9a63
AD
8107In an action, the semantic value of the left-hand side of the rule.
8108@xref{Actions}.
18b519c0 8109@end deffn
3ded9a63 8110
18b519c0 8111@deffn {Variable} $@var{n}
3ded9a63
AD
8112In an action, the semantic value of the @var{n}-th symbol of the
8113right-hand side of the rule. @xref{Actions}.
18b519c0 8114@end deffn
3ded9a63 8115
dd8d9022
AD
8116@deffn {Delimiter} %%
8117Delimiter used to separate the grammar rule section from the
8118Bison declarations section or the epilogue.
8119@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8120@end deffn
bfa74976 8121
dd8d9022
AD
8122@c Don't insert spaces, or check the DVI output.
8123@deffn {Delimiter} %@{@var{code}%@}
8124All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8125the output file uninterpreted. Such code forms the prologue of the input
8126file. @xref{Grammar Outline, ,Outline of a Bison
8127Grammar}.
18b519c0 8128@end deffn
bfa74976 8129
dd8d9022
AD
8130@deffn {Construct} /*@dots{}*/
8131Comment delimiters, as in C.
18b519c0 8132@end deffn
bfa74976 8133
dd8d9022
AD
8134@deffn {Delimiter} :
8135Separates a rule's result from its components. @xref{Rules, ,Syntax of
8136Grammar Rules}.
18b519c0 8137@end deffn
bfa74976 8138
dd8d9022
AD
8139@deffn {Delimiter} ;
8140Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8141@end deffn
bfa74976 8142
dd8d9022
AD
8143@deffn {Delimiter} |
8144Separates alternate rules for the same result nonterminal.
8145@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8146@end deffn
bfa74976 8147
dd8d9022
AD
8148@deffn {Symbol} $accept
8149The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8150$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8151Start-Symbol}. It cannot be used in the grammar.
18b519c0 8152@end deffn
bfa74976 8153
18b519c0 8154@deffn {Directive} %debug
6deb4447 8155Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8156@end deffn
6deb4447 8157
91d2c560 8158@ifset defaultprec
22fccf95
PE
8159@deffn {Directive} %default-prec
8160Assign a precedence to rules that lack an explicit @samp{%prec}
8161modifier. @xref{Contextual Precedence, ,Context-Dependent
8162Precedence}.
39a06c25 8163@end deffn
91d2c560 8164@end ifset
39a06c25 8165
18b519c0 8166@deffn {Directive} %defines
6deb4447
AD
8167Bison declaration to create a header file meant for the scanner.
8168@xref{Decl Summary}.
18b519c0 8169@end deffn
6deb4447 8170
18b519c0 8171@deffn {Directive} %destructor
258b75ca 8172Specify how the parser should reclaim the memory associated to
fa7e68c3 8173discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8174@end deffn
72f889cc 8175
18b519c0 8176@deffn {Directive} %dprec
676385e2 8177Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8178time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8179@acronym{GLR} Parsers}.
18b519c0 8180@end deffn
676385e2 8181
dd8d9022
AD
8182@deffn {Symbol} $end
8183The predefined token marking the end of the token stream. It cannot be
8184used in the grammar.
8185@end deffn
8186
8187@deffn {Symbol} error
8188A token name reserved for error recovery. This token may be used in
8189grammar rules so as to allow the Bison parser to recognize an error in
8190the grammar without halting the process. In effect, a sentence
8191containing an error may be recognized as valid. On a syntax error, the
8192token @code{error} becomes the current look-ahead token. Actions
8193corresponding to @code{error} are then executed, and the look-ahead
8194token is reset to the token that originally caused the violation.
8195@xref{Error Recovery}.
18d192f0
AD
8196@end deffn
8197
18b519c0 8198@deffn {Directive} %error-verbose
2a8d363a
AD
8199Bison declaration to request verbose, specific error message strings
8200when @code{yyerror} is called.
18b519c0 8201@end deffn
2a8d363a 8202
18b519c0 8203@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8204Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8205Summary}.
18b519c0 8206@end deffn
d8988b2f 8207
18b519c0 8208@deffn {Directive} %glr-parser
c827f760
PE
8209Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8210Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8211@end deffn
676385e2 8212
dd8d9022
AD
8213@deffn {Directive} %initial-action
8214Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8215@end deffn
8216
18b519c0 8217@deffn {Directive} %left
bfa74976
RS
8218Bison declaration to assign left associativity to token(s).
8219@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8220@end deffn
bfa74976 8221
feeb0eda 8222@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8223Bison declaration to specifying an additional parameter that
8224@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8225for Pure Parsers}.
18b519c0 8226@end deffn
2a8d363a 8227
18b519c0 8228@deffn {Directive} %merge
676385e2 8229Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8230reduce/reduce conflict with a rule having the same merging function, the
676385e2 8231function is applied to the two semantic values to get a single result.
c827f760 8232@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8233@end deffn
676385e2 8234
18b519c0 8235@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8236Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8237@end deffn
d8988b2f 8238
91d2c560 8239@ifset defaultprec
22fccf95
PE
8240@deffn {Directive} %no-default-prec
8241Do not assign a precedence to rules that lack an explicit @samp{%prec}
8242modifier. @xref{Contextual Precedence, ,Context-Dependent
8243Precedence}.
8244@end deffn
91d2c560 8245@end ifset
22fccf95 8246
18b519c0 8247@deffn {Directive} %no-lines
931c7513
RS
8248Bison declaration to avoid generating @code{#line} directives in the
8249parser file. @xref{Decl Summary}.
18b519c0 8250@end deffn
931c7513 8251
18b519c0 8252@deffn {Directive} %nonassoc
9d9b8b70 8253Bison declaration to assign nonassociativity to token(s).
bfa74976 8254@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8255@end deffn
bfa74976 8256
fa4d969f 8257@deffn {Directive} %output="@var{file}"
72d2299c 8258Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8259Summary}.
18b519c0 8260@end deffn
d8988b2f 8261
feeb0eda 8262@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8263Bison declaration to specifying an additional parameter that
8264@code{yyparse} should accept. @xref{Parser Function,, The Parser
8265Function @code{yyparse}}.
18b519c0 8266@end deffn
2a8d363a 8267
18b519c0 8268@deffn {Directive} %prec
bfa74976
RS
8269Bison declaration to assign a precedence to a specific rule.
8270@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8271@end deffn
bfa74976 8272
18b519c0 8273@deffn {Directive} %pure-parser
bfa74976
RS
8274Bison declaration to request a pure (reentrant) parser.
8275@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8276@end deffn
bfa74976 8277
b50d2359 8278@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8279Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8280Require a Version of Bison}.
b50d2359
AD
8281@end deffn
8282
18b519c0 8283@deffn {Directive} %right
bfa74976
RS
8284Bison declaration to assign right associativity to token(s).
8285@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8286@end deffn
bfa74976 8287
18b519c0 8288@deffn {Directive} %start
704a47c4
AD
8289Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8290Start-Symbol}.
18b519c0 8291@end deffn
bfa74976 8292
18b519c0 8293@deffn {Directive} %token
bfa74976
RS
8294Bison declaration to declare token(s) without specifying precedence.
8295@xref{Token Decl, ,Token Type Names}.
18b519c0 8296@end deffn
bfa74976 8297
18b519c0 8298@deffn {Directive} %token-table
931c7513
RS
8299Bison declaration to include a token name table in the parser file.
8300@xref{Decl Summary}.
18b519c0 8301@end deffn
931c7513 8302
18b519c0 8303@deffn {Directive} %type
704a47c4
AD
8304Bison declaration to declare nonterminals. @xref{Type Decl,
8305,Nonterminal Symbols}.
18b519c0 8306@end deffn
bfa74976 8307
dd8d9022
AD
8308@deffn {Symbol} $undefined
8309The predefined token onto which all undefined values returned by
8310@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8311@code{error}.
8312@end deffn
8313
18b519c0 8314@deffn {Directive} %union
bfa74976
RS
8315Bison declaration to specify several possible data types for semantic
8316values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8317@end deffn
bfa74976 8318
dd8d9022
AD
8319@deffn {Macro} YYABORT
8320Macro to pretend that an unrecoverable syntax error has occurred, by
8321making @code{yyparse} return 1 immediately. The error reporting
8322function @code{yyerror} is not called. @xref{Parser Function, ,The
8323Parser Function @code{yyparse}}.
8324@end deffn
3ded9a63 8325
dd8d9022
AD
8326@deffn {Macro} YYACCEPT
8327Macro to pretend that a complete utterance of the language has been
8328read, by making @code{yyparse} return 0 immediately.
8329@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8330@end deffn
bfa74976 8331
dd8d9022
AD
8332@deffn {Macro} YYBACKUP
8333Macro to discard a value from the parser stack and fake a look-ahead
8334token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8335@end deffn
bfa74976 8336
dd8d9022 8337@deffn {Variable} yychar
32c29292 8338External integer variable that contains the integer value of the
dd8d9022
AD
8339look-ahead token. (In a pure parser, it is a local variable within
8340@code{yyparse}.) Error-recovery rule actions may examine this variable.
8341@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8342@end deffn
bfa74976 8343
dd8d9022
AD
8344@deffn {Variable} yyclearin
8345Macro used in error-recovery rule actions. It clears the previous
8346look-ahead token. @xref{Error Recovery}.
18b519c0 8347@end deffn
bfa74976 8348
dd8d9022
AD
8349@deffn {Macro} YYDEBUG
8350Macro to define to equip the parser with tracing code. @xref{Tracing,
8351,Tracing Your Parser}.
18b519c0 8352@end deffn
bfa74976 8353
dd8d9022
AD
8354@deffn {Variable} yydebug
8355External integer variable set to zero by default. If @code{yydebug}
8356is given a nonzero value, the parser will output information on input
8357symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8358@end deffn
bfa74976 8359
dd8d9022
AD
8360@deffn {Macro} yyerrok
8361Macro to cause parser to recover immediately to its normal mode
8362after a syntax error. @xref{Error Recovery}.
8363@end deffn
8364
8365@deffn {Macro} YYERROR
8366Macro to pretend that a syntax error has just been detected: call
8367@code{yyerror} and then perform normal error recovery if possible
8368(@pxref{Error Recovery}), or (if recovery is impossible) make
8369@code{yyparse} return 1. @xref{Error Recovery}.
8370@end deffn
8371
8372@deffn {Function} yyerror
8373User-supplied function to be called by @code{yyparse} on error.
8374@xref{Error Reporting, ,The Error
8375Reporting Function @code{yyerror}}.
8376@end deffn
8377
8378@deffn {Macro} YYERROR_VERBOSE
8379An obsolete macro that you define with @code{#define} in the prologue
8380to request verbose, specific error message strings
8381when @code{yyerror} is called. It doesn't matter what definition you
8382use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8383@code{%error-verbose} is preferred.
8384@end deffn
8385
8386@deffn {Macro} YYINITDEPTH
8387Macro for specifying the initial size of the parser stack.
1a059451 8388@xref{Memory Management}.
dd8d9022
AD
8389@end deffn
8390
8391@deffn {Function} yylex
8392User-supplied lexical analyzer function, called with no arguments to get
8393the next token. @xref{Lexical, ,The Lexical Analyzer Function
8394@code{yylex}}.
8395@end deffn
8396
8397@deffn {Macro} YYLEX_PARAM
8398An obsolete macro for specifying an extra argument (or list of extra
32c29292 8399arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8400macro is deprecated, and is supported only for Yacc like parsers.
8401@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8402@end deffn
8403
8404@deffn {Variable} yylloc
8405External variable in which @code{yylex} should place the line and column
8406numbers associated with a token. (In a pure parser, it is a local
8407variable within @code{yyparse}, and its address is passed to
32c29292
JD
8408@code{yylex}.)
8409You can ignore this variable if you don't use the @samp{@@} feature in the
8410grammar actions.
8411@xref{Token Locations, ,Textual Locations of Tokens}.
8412In semantic actions, it stores the location of the look-ahead token.
8413@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8414@end deffn
8415
8416@deffn {Type} YYLTYPE
8417Data type of @code{yylloc}; by default, a structure with four
8418members. @xref{Location Type, , Data Types of Locations}.
8419@end deffn
8420
8421@deffn {Variable} yylval
8422External variable in which @code{yylex} should place the semantic
8423value associated with a token. (In a pure parser, it is a local
8424variable within @code{yyparse}, and its address is passed to
32c29292
JD
8425@code{yylex}.)
8426@xref{Token Values, ,Semantic Values of Tokens}.
8427In semantic actions, it stores the semantic value of the look-ahead token.
8428@xref{Actions, ,Actions}.
dd8d9022
AD
8429@end deffn
8430
8431@deffn {Macro} YYMAXDEPTH
1a059451
PE
8432Macro for specifying the maximum size of the parser stack. @xref{Memory
8433Management}.
dd8d9022
AD
8434@end deffn
8435
8436@deffn {Variable} yynerrs
8a2800e7 8437Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8438(In a pure parser, it is a local variable within @code{yyparse}.)
8439@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8440@end deffn
8441
8442@deffn {Function} yyparse
8443The parser function produced by Bison; call this function to start
8444parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8445@end deffn
8446
8447@deffn {Macro} YYPARSE_PARAM
8448An obsolete macro for specifying the name of a parameter that
8449@code{yyparse} should accept. The use of this macro is deprecated, and
8450is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8451Conventions for Pure Parsers}.
8452@end deffn
8453
8454@deffn {Macro} YYRECOVERING
8455Macro whose value indicates whether the parser is recovering from a
8456syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8457@end deffn
8458
8459@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8460Macro used to control the use of @code{alloca} when the C
8461@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8462the parser will use @code{malloc} to extend its stacks. If defined to
84631, the parser will use @code{alloca}. Values other than 0 and 1 are
8464reserved for future Bison extensions. If not defined,
8465@code{YYSTACK_USE_ALLOCA} defaults to 0.
8466
55289366 8467In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8468limited stack and with unreliable stack-overflow checking, you should
8469set @code{YYMAXDEPTH} to a value that cannot possibly result in
8470unchecked stack overflow on any of your target hosts when
8471@code{alloca} is called. You can inspect the code that Bison
8472generates in order to determine the proper numeric values. This will
8473require some expertise in low-level implementation details.
dd8d9022
AD
8474@end deffn
8475
8476@deffn {Type} YYSTYPE
8477Data type of semantic values; @code{int} by default.
8478@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8479@end deffn
bfa74976 8480
342b8b6e 8481@node Glossary
bfa74976
RS
8482@appendix Glossary
8483@cindex glossary
8484
8485@table @asis
c827f760
PE
8486@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8487Formal method of specifying context-free grammars originally proposed
8488by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8489committee document contributing to what became the Algol 60 report.
8490@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8491
8492@item Context-free grammars
8493Grammars specified as rules that can be applied regardless of context.
8494Thus, if there is a rule which says that an integer can be used as an
8495expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8496permitted. @xref{Language and Grammar, ,Languages and Context-Free
8497Grammars}.
bfa74976
RS
8498
8499@item Dynamic allocation
8500Allocation of memory that occurs during execution, rather than at
8501compile time or on entry to a function.
8502
8503@item Empty string
8504Analogous to the empty set in set theory, the empty string is a
8505character string of length zero.
8506
8507@item Finite-state stack machine
8508A ``machine'' that has discrete states in which it is said to exist at
8509each instant in time. As input to the machine is processed, the
8510machine moves from state to state as specified by the logic of the
8511machine. In the case of the parser, the input is the language being
8512parsed, and the states correspond to various stages in the grammar
c827f760 8513rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8514
c827f760 8515@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8516A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8517that are not @acronym{LALR}(1). It resolves situations that Bison's
8518usual @acronym{LALR}(1)
676385e2
PH
8519algorithm cannot by effectively splitting off multiple parsers, trying all
8520possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8521right context. @xref{Generalized LR Parsing, ,Generalized
8522@acronym{LR} Parsing}.
676385e2 8523
bfa74976
RS
8524@item Grouping
8525A language construct that is (in general) grammatically divisible;
c827f760 8526for example, `expression' or `declaration' in C@.
bfa74976
RS
8527@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8528
8529@item Infix operator
8530An arithmetic operator that is placed between the operands on which it
8531performs some operation.
8532
8533@item Input stream
8534A continuous flow of data between devices or programs.
8535
8536@item Language construct
8537One of the typical usage schemas of the language. For example, one of
8538the constructs of the C language is the @code{if} statement.
8539@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8540
8541@item Left associativity
8542Operators having left associativity are analyzed from left to right:
8543@samp{a+b+c} first computes @samp{a+b} and then combines with
8544@samp{c}. @xref{Precedence, ,Operator Precedence}.
8545
8546@item Left recursion
89cab50d
AD
8547A rule whose result symbol is also its first component symbol; for
8548example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8549Rules}.
bfa74976
RS
8550
8551@item Left-to-right parsing
8552Parsing a sentence of a language by analyzing it token by token from
c827f760 8553left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8554
8555@item Lexical analyzer (scanner)
8556A function that reads an input stream and returns tokens one by one.
8557@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8558
8559@item Lexical tie-in
8560A flag, set by actions in the grammar rules, which alters the way
8561tokens are parsed. @xref{Lexical Tie-ins}.
8562
931c7513 8563@item Literal string token
14ded682 8564A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8565
bfa74976 8566@item Look-ahead token
89cab50d
AD
8567A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8568Tokens}.
bfa74976 8569
c827f760 8570@item @acronym{LALR}(1)
bfa74976 8571The class of context-free grammars that Bison (like most other parser
c827f760
PE
8572generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8573Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8574
c827f760 8575@item @acronym{LR}(1)
bfa74976
RS
8576The class of context-free grammars in which at most one token of
8577look-ahead is needed to disambiguate the parsing of any piece of input.
8578
8579@item Nonterminal symbol
8580A grammar symbol standing for a grammatical construct that can
8581be expressed through rules in terms of smaller constructs; in other
8582words, a construct that is not a token. @xref{Symbols}.
8583
bfa74976
RS
8584@item Parser
8585A function that recognizes valid sentences of a language by analyzing
8586the syntax structure of a set of tokens passed to it from a lexical
8587analyzer.
8588
8589@item Postfix operator
8590An arithmetic operator that is placed after the operands upon which it
8591performs some operation.
8592
8593@item Reduction
8594Replacing a string of nonterminals and/or terminals with a single
89cab50d 8595nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8596Parser Algorithm}.
bfa74976
RS
8597
8598@item Reentrant
8599A reentrant subprogram is a subprogram which can be in invoked any
8600number of times in parallel, without interference between the various
8601invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8602
8603@item Reverse polish notation
8604A language in which all operators are postfix operators.
8605
8606@item Right recursion
89cab50d
AD
8607A rule whose result symbol is also its last component symbol; for
8608example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8609Rules}.
bfa74976
RS
8610
8611@item Semantics
8612In computer languages, the semantics are specified by the actions
8613taken for each instance of the language, i.e., the meaning of
8614each statement. @xref{Semantics, ,Defining Language Semantics}.
8615
8616@item Shift
8617A parser is said to shift when it makes the choice of analyzing
8618further input from the stream rather than reducing immediately some
c827f760 8619already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8620
8621@item Single-character literal
8622A single character that is recognized and interpreted as is.
8623@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8624
8625@item Start symbol
8626The nonterminal symbol that stands for a complete valid utterance in
8627the language being parsed. The start symbol is usually listed as the
13863333 8628first nonterminal symbol in a language specification.
bfa74976
RS
8629@xref{Start Decl, ,The Start-Symbol}.
8630
8631@item Symbol table
8632A data structure where symbol names and associated data are stored
8633during parsing to allow for recognition and use of existing
8634information in repeated uses of a symbol. @xref{Multi-function Calc}.
8635
6e649e65
PE
8636@item Syntax error
8637An error encountered during parsing of an input stream due to invalid
8638syntax. @xref{Error Recovery}.
8639
bfa74976
RS
8640@item Token
8641A basic, grammatically indivisible unit of a language. The symbol
8642that describes a token in the grammar is a terminal symbol.
8643The input of the Bison parser is a stream of tokens which comes from
8644the lexical analyzer. @xref{Symbols}.
8645
8646@item Terminal symbol
89cab50d
AD
8647A grammar symbol that has no rules in the grammar and therefore is
8648grammatically indivisible. The piece of text it represents is a token.
8649@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8650@end table
8651
342b8b6e 8652@node Copying This Manual
f2b5126e 8653@appendix Copying This Manual
f9a8293a 8654
f2b5126e
PB
8655@menu
8656* GNU Free Documentation License:: License for copying this manual.
8657@end menu
f9a8293a 8658
f2b5126e
PB
8659@include fdl.texi
8660
342b8b6e 8661@node Index
bfa74976
RS
8662@unnumbered Index
8663
8664@printindex cp
8665
bfa74976 8666@bye
a06ea4aa
AD
8667
8668@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8669@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8670@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8671@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8672@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8673@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8674@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8675@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8676@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8677@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8678@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8679@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8680@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8681@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8682@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8683@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8684@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8685@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8686@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8687@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8688@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8689@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8690@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8691@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8692@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8693@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8694@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8695@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8696@c LocalWords: YYSTACK DVI fdl printindex