]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* NEWS: Clarify symbols versus types in unused-value warnings.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 471999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
32c29292
JD
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
150* GLR Semantic Actions:: Deferred semantic actions have special concerns.
151* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 152
bfa74976
RS
153Examples
154
155* RPN Calc:: Reverse polish notation calculator;
156 a first example with no operator precedence.
157* Infix Calc:: Infix (algebraic) notation calculator.
158 Operator precedence is introduced.
159* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 160* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
161* Multi-function Calc:: Calculator with memory and trig functions.
162 It uses multiple data-types for semantic values.
bfa74976
RS
163* Exercises:: Ideas for improving the multi-function calculator.
164
165Reverse Polish Notation Calculator
166
75f5aaea 167* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
168* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
169* Lexer: Rpcalc Lexer. The lexical analyzer.
170* Main: Rpcalc Main. The controlling function.
171* Error: Rpcalc Error. The error reporting function.
172* Gen: Rpcalc Gen. Running Bison on the grammar file.
173* Comp: Rpcalc Compile. Run the C compiler on the output code.
174
175Grammar Rules for @code{rpcalc}
176
13863333
AD
177* Rpcalc Input::
178* Rpcalc Line::
179* Rpcalc Expr::
bfa74976 180
342b8b6e
AD
181Location Tracking Calculator: @code{ltcalc}
182
183* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
184* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
185* Lexer: Ltcalc Lexer. The lexical analyzer.
186
bfa74976
RS
187Multi-Function Calculator: @code{mfcalc}
188
189* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
190* Rules: Mfcalc Rules. Grammar rules for the calculator.
191* Symtab: Mfcalc Symtab. Symbol table management subroutines.
192
193Bison Grammar Files
194
195* Grammar Outline:: Overall layout of the grammar file.
196* Symbols:: Terminal and nonterminal symbols.
197* Rules:: How to write grammar rules.
198* Recursion:: Writing recursive rules.
199* Semantics:: Semantic values and actions.
93dd49ab 200* Locations:: Locations and actions.
bfa74976
RS
201* Declarations:: All kinds of Bison declarations are described here.
202* Multiple Parsers:: Putting more than one Bison parser in one program.
203
204Outline of a Bison Grammar
205
93dd49ab 206* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
207* Bison Declarations:: Syntax and usage of the Bison declarations section.
208* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 209* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
210
211Defining Language Semantics
212
213* Value Type:: Specifying one data type for all semantic values.
214* Multiple Types:: Specifying several alternative data types.
215* Actions:: An action is the semantic definition of a grammar rule.
216* Action Types:: Specifying data types for actions to operate on.
217* Mid-Rule Actions:: Most actions go at the end of a rule.
218 This says when, why and how to use the exceptional
219 action in the middle of a rule.
220
93dd49ab
PE
221Tracking Locations
222
223* Location Type:: Specifying a data type for locations.
224* Actions and Locations:: Using locations in actions.
225* Location Default Action:: Defining a general way to compute locations.
226
bfa74976
RS
227Bison Declarations
228
b50d2359 229* Require Decl:: Requiring a Bison version.
bfa74976
RS
230* Token Decl:: Declaring terminal symbols.
231* Precedence Decl:: Declaring terminals with precedence and associativity.
232* Union Decl:: Declaring the set of all semantic value types.
233* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 234* Initial Action Decl:: Code run before parsing starts.
72f889cc 235* Destructor Decl:: Declaring how symbols are freed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
239* Decl Summary:: Table of all Bison declarations.
240
241Parser C-Language Interface
242
243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
f7ab6a50
PE
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
95923bd6 256* Token Locations:: How @code{yylex} must return the text location
bfa74976 257 (line number, etc.) of the token, if the
93dd49ab 258 actions want that.
bfa74976
RS
259* Pure Calling:: How the calling convention differs
260 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
261
13863333 262The Bison Parser Algorithm
bfa74976
RS
263
264* Look-Ahead:: Parser looks one token ahead when deciding what to do.
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
270* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 271* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 272* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
273
274Operator Precedence
275
276* Why Precedence:: An example showing why precedence is needed.
277* Using Precedence:: How to specify precedence in Bison grammars.
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
281Handling Context Dependencies
282
283* Semantic Tokens:: Token parsing can depend on the semantic context.
284* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
285* Tie-in Recovery:: Lexical tie-ins have implications for how
286 error recovery rules must be written.
287
93dd49ab 288Debugging Your Parser
ec3bc396
AD
289
290* Understanding:: Understanding the structure of your parser.
291* Tracing:: Tracing the execution of your parser.
292
bfa74976
RS
293Invoking Bison
294
13863333 295* Bison Options:: All the options described in detail,
c827f760 296 in alphabetical order by short options.
bfa74976 297* Option Cross Key:: Alphabetical list of long options.
93dd49ab 298* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 299
12545799
AD
300C++ Language Interface
301
302* C++ Parsers:: The interface to generate C++ parser classes
303* A Complete C++ Example:: Demonstrating their use
304
305C++ Parsers
306
307* C++ Bison Interface:: Asking for C++ parser generation
308* C++ Semantic Values:: %union vs. C++
309* C++ Location Values:: The position and location classes
310* C++ Parser Interface:: Instantiating and running the parser
311* C++ Scanner Interface:: Exchanges between yylex and parse
312
313A Complete C++ Example
314
315* Calc++ --- C++ Calculator:: The specifications
316* Calc++ Parsing Driver:: An active parsing context
317* Calc++ Parser:: A parser class
318* Calc++ Scanner:: A pure C++ Flex scanner
319* Calc++ Top Level:: Conducting the band
320
d1a1114f
AD
321Frequently Asked Questions
322
1a059451 323* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 324* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 325* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 326* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 327
f2b5126e
PB
328Copying This Manual
329
330* GNU Free Documentation License:: License for copying this manual.
331
342b8b6e 332@end detailmenu
bfa74976
RS
333@end menu
334
342b8b6e 335@node Introduction
bfa74976
RS
336@unnumbered Introduction
337@cindex introduction
338
339@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 340grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
341program to parse that grammar. Once you are proficient with Bison,
342you may use it to develop a wide range of language parsers, from those
343used in simple desk calculators to complex programming languages.
344
345Bison is upward compatible with Yacc: all properly-written Yacc grammars
346ought to work with Bison with no change. Anyone familiar with Yacc
347should be able to use Bison with little trouble. You need to be fluent in
348C programming in order to use Bison or to understand this manual.
349
350We begin with tutorial chapters that explain the basic concepts of using
351Bison and show three explained examples, each building on the last. If you
352don't know Bison or Yacc, start by reading these chapters. Reference
353chapters follow which describe specific aspects of Bison in detail.
354
931c7513
RS
355Bison was written primarily by Robert Corbett; Richard Stallman made it
356Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 357multi-character string literals and other features.
931c7513 358
df1af54c 359This edition corresponds to version @value{VERSION} of Bison.
bfa74976 360
342b8b6e 361@node Conditions
bfa74976
RS
362@unnumbered Conditions for Using Bison
363
a31239f1 364As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 365@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 366Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 367parsers could be used only in programs that were free software.
a31239f1 368
c827f760
PE
369The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
370compiler, have never
9ecbd125 371had such a requirement. They could always be used for nonfree
a31239f1
RS
372software. The reason Bison was different was not due to a special
373policy decision; it resulted from applying the usual General Public
374License to all of the Bison source code.
375
376The output of the Bison utility---the Bison parser file---contains a
377verbatim copy of a sizable piece of Bison, which is the code for the
378@code{yyparse} function. (The actions from your grammar are inserted
379into this function at one point, but the rest of the function is not
c827f760
PE
380changed.) When we applied the @acronym{GPL} terms to the code for
381@code{yyparse},
a31239f1
RS
382the effect was to restrict the use of Bison output to free software.
383
384We didn't change the terms because of sympathy for people who want to
385make software proprietary. @strong{Software should be free.} But we
386concluded that limiting Bison's use to free software was doing little to
387encourage people to make other software free. So we decided to make the
388practical conditions for using Bison match the practical conditions for
c827f760 389using the other @acronym{GNU} tools.
bfa74976 390
eda42934 391This exception applies only when Bison is generating C code for an
c827f760
PE
392@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
393as usual. You can
262aa8dd
PE
394tell whether the exception applies to your @samp{.c} output file by
395inspecting it to see whether it says ``As a special exception, when
396this file is copied by Bison into a Bison output file, you may use
397that output file without restriction.''
398
c67a198d 399@include gpl.texi
bfa74976 400
342b8b6e 401@node Concepts
bfa74976
RS
402@chapter The Concepts of Bison
403
404This chapter introduces many of the basic concepts without which the
405details of Bison will not make sense. If you do not already know how to
406use Bison or Yacc, we suggest you start by reading this chapter carefully.
407
408@menu
409* Language and Grammar:: Languages and context-free grammars,
410 as mathematical ideas.
411* Grammar in Bison:: How we represent grammars for Bison's sake.
412* Semantic Values:: Each token or syntactic grouping can have
413 a semantic value (the value of an integer,
414 the name of an identifier, etc.).
415* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 416* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 417* Locations Overview:: Tracking Locations.
bfa74976
RS
418* Bison Parser:: What are Bison's input and output,
419 how is the output used?
420* Stages:: Stages in writing and running Bison grammars.
421* Grammar Layout:: Overall structure of a Bison grammar file.
422@end menu
423
342b8b6e 424@node Language and Grammar
bfa74976
RS
425@section Languages and Context-Free Grammars
426
bfa74976
RS
427@cindex context-free grammar
428@cindex grammar, context-free
429In order for Bison to parse a language, it must be described by a
430@dfn{context-free grammar}. This means that you specify one or more
431@dfn{syntactic groupings} and give rules for constructing them from their
432parts. For example, in the C language, one kind of grouping is called an
433`expression'. One rule for making an expression might be, ``An expression
434can be made of a minus sign and another expression''. Another would be,
435``An expression can be an integer''. As you can see, rules are often
436recursive, but there must be at least one rule which leads out of the
437recursion.
438
c827f760 439@cindex @acronym{BNF}
bfa74976
RS
440@cindex Backus-Naur form
441The most common formal system for presenting such rules for humans to read
c827f760
PE
442is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
443order to specify the language Algol 60. Any grammar expressed in
444@acronym{BNF} is a context-free grammar. The input to Bison is
445essentially machine-readable @acronym{BNF}.
bfa74976 446
c827f760
PE
447@cindex @acronym{LALR}(1) grammars
448@cindex @acronym{LR}(1) grammars
676385e2
PH
449There are various important subclasses of context-free grammar. Although it
450can handle almost all context-free grammars, Bison is optimized for what
c827f760 451are called @acronym{LALR}(1) grammars.
676385e2 452In brief, in these grammars, it must be possible to
bfa74976
RS
453tell how to parse any portion of an input string with just a single
454token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
455@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
456restrictions that are
bfa74976 457hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
458@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
459@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
460more information on this.
bfa74976 461
c827f760
PE
462@cindex @acronym{GLR} parsing
463@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 464@cindex ambiguous grammars
9d9b8b70 465@cindex nondeterministic parsing
9501dc6e
AD
466
467Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
468roughly that the next grammar rule to apply at any point in the input is
469uniquely determined by the preceding input and a fixed, finite portion
470(called a @dfn{look-ahead}) of the remaining input. A context-free
471grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 472apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 473grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
474look-ahead always suffices to determine the next grammar rule to apply.
475With the proper declarations, Bison is also able to parse these more
476general context-free grammars, using a technique known as @acronym{GLR}
477parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
478are able to handle any context-free grammar for which the number of
479possible parses of any given string is finite.
676385e2 480
bfa74976
RS
481@cindex symbols (abstract)
482@cindex token
483@cindex syntactic grouping
484@cindex grouping, syntactic
9501dc6e
AD
485In the formal grammatical rules for a language, each kind of syntactic
486unit or grouping is named by a @dfn{symbol}. Those which are built by
487grouping smaller constructs according to grammatical rules are called
bfa74976
RS
488@dfn{nonterminal symbols}; those which can't be subdivided are called
489@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
490corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 491corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
492
493We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
494nonterminal, mean. The tokens of C are identifiers, constants (numeric
495and string), and the various keywords, arithmetic operators and
496punctuation marks. So the terminal symbols of a grammar for C include
497`identifier', `number', `string', plus one symbol for each keyword,
498operator or punctuation mark: `if', `return', `const', `static', `int',
499`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
500(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
501lexicography, not grammar.)
502
503Here is a simple C function subdivided into tokens:
504
9edcd895
AD
505@ifinfo
506@example
507int /* @r{keyword `int'} */
14d4662b 508square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
509 @r{identifier, close-paren} */
510@{ /* @r{open-brace} */
511 return x * x; /* @r{keyword `return', identifier, asterisk,
512 identifier, semicolon} */
513@} /* @r{close-brace} */
514@end example
515@end ifinfo
516@ifnotinfo
bfa74976
RS
517@example
518int /* @r{keyword `int'} */
14d4662b 519square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 520@{ /* @r{open-brace} */
9edcd895 521 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
522@} /* @r{close-brace} */
523@end example
9edcd895 524@end ifnotinfo
bfa74976
RS
525
526The syntactic groupings of C include the expression, the statement, the
527declaration, and the function definition. These are represented in the
528grammar of C by nonterminal symbols `expression', `statement',
529`declaration' and `function definition'. The full grammar uses dozens of
530additional language constructs, each with its own nonterminal symbol, in
531order to express the meanings of these four. The example above is a
532function definition; it contains one declaration, and one statement. In
533the statement, each @samp{x} is an expression and so is @samp{x * x}.
534
535Each nonterminal symbol must have grammatical rules showing how it is made
536out of simpler constructs. For example, one kind of C statement is the
537@code{return} statement; this would be described with a grammar rule which
538reads informally as follows:
539
540@quotation
541A `statement' can be made of a `return' keyword, an `expression' and a
542`semicolon'.
543@end quotation
544
545@noindent
546There would be many other rules for `statement', one for each kind of
547statement in C.
548
549@cindex start symbol
550One nonterminal symbol must be distinguished as the special one which
551defines a complete utterance in the language. It is called the @dfn{start
552symbol}. In a compiler, this means a complete input program. In the C
553language, the nonterminal symbol `sequence of definitions and declarations'
554plays this role.
555
556For example, @samp{1 + 2} is a valid C expression---a valid part of a C
557program---but it is not valid as an @emph{entire} C program. In the
558context-free grammar of C, this follows from the fact that `expression' is
559not the start symbol.
560
561The Bison parser reads a sequence of tokens as its input, and groups the
562tokens using the grammar rules. If the input is valid, the end result is
563that the entire token sequence reduces to a single grouping whose symbol is
564the grammar's start symbol. If we use a grammar for C, the entire input
565must be a `sequence of definitions and declarations'. If not, the parser
566reports a syntax error.
567
342b8b6e 568@node Grammar in Bison
bfa74976
RS
569@section From Formal Rules to Bison Input
570@cindex Bison grammar
571@cindex grammar, Bison
572@cindex formal grammar
573
574A formal grammar is a mathematical construct. To define the language
575for Bison, you must write a file expressing the grammar in Bison syntax:
576a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
577
578A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 579as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
580in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
581
582The Bison representation for a terminal symbol is also called a @dfn{token
583type}. Token types as well can be represented as C-like identifiers. By
584convention, these identifiers should be upper case to distinguish them from
585nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
586@code{RETURN}. A terminal symbol that stands for a particular keyword in
587the language should be named after that keyword converted to upper case.
588The terminal symbol @code{error} is reserved for error recovery.
931c7513 589@xref{Symbols}.
bfa74976
RS
590
591A terminal symbol can also be represented as a character literal, just like
592a C character constant. You should do this whenever a token is just a
593single character (parenthesis, plus-sign, etc.): use that same character in
594a literal as the terminal symbol for that token.
595
931c7513
RS
596A third way to represent a terminal symbol is with a C string constant
597containing several characters. @xref{Symbols}, for more information.
598
bfa74976
RS
599The grammar rules also have an expression in Bison syntax. For example,
600here is the Bison rule for a C @code{return} statement. The semicolon in
601quotes is a literal character token, representing part of the C syntax for
602the statement; the naked semicolon, and the colon, are Bison punctuation
603used in every rule.
604
605@example
606stmt: RETURN expr ';'
607 ;
608@end example
609
610@noindent
611@xref{Rules, ,Syntax of Grammar Rules}.
612
342b8b6e 613@node Semantic Values
bfa74976
RS
614@section Semantic Values
615@cindex semantic value
616@cindex value, semantic
617
618A formal grammar selects tokens only by their classifications: for example,
619if a rule mentions the terminal symbol `integer constant', it means that
620@emph{any} integer constant is grammatically valid in that position. The
621precise value of the constant is irrelevant to how to parse the input: if
622@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 623grammatical.
bfa74976
RS
624
625But the precise value is very important for what the input means once it is
626parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6273989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
628has both a token type and a @dfn{semantic value}. @xref{Semantics,
629,Defining Language Semantics},
bfa74976
RS
630for details.
631
632The token type is a terminal symbol defined in the grammar, such as
633@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
634you need to know to decide where the token may validly appear and how to
635group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 636except their types.
bfa74976
RS
637
638The semantic value has all the rest of the information about the
639meaning of the token, such as the value of an integer, or the name of an
640identifier. (A token such as @code{','} which is just punctuation doesn't
641need to have any semantic value.)
642
643For example, an input token might be classified as token type
644@code{INTEGER} and have the semantic value 4. Another input token might
645have the same token type @code{INTEGER} but value 3989. When a grammar
646rule says that @code{INTEGER} is allowed, either of these tokens is
647acceptable because each is an @code{INTEGER}. When the parser accepts the
648token, it keeps track of the token's semantic value.
649
650Each grouping can also have a semantic value as well as its nonterminal
651symbol. For example, in a calculator, an expression typically has a
652semantic value that is a number. In a compiler for a programming
653language, an expression typically has a semantic value that is a tree
654structure describing the meaning of the expression.
655
342b8b6e 656@node Semantic Actions
bfa74976
RS
657@section Semantic Actions
658@cindex semantic actions
659@cindex actions, semantic
660
661In order to be useful, a program must do more than parse input; it must
662also produce some output based on the input. In a Bison grammar, a grammar
663rule can have an @dfn{action} made up of C statements. Each time the
664parser recognizes a match for that rule, the action is executed.
665@xref{Actions}.
13863333 666
bfa74976
RS
667Most of the time, the purpose of an action is to compute the semantic value
668of the whole construct from the semantic values of its parts. For example,
669suppose we have a rule which says an expression can be the sum of two
670expressions. When the parser recognizes such a sum, each of the
671subexpressions has a semantic value which describes how it was built up.
672The action for this rule should create a similar sort of value for the
673newly recognized larger expression.
674
675For example, here is a rule that says an expression can be the sum of
676two subexpressions:
677
678@example
679expr: expr '+' expr @{ $$ = $1 + $3; @}
680 ;
681@end example
682
683@noindent
684The action says how to produce the semantic value of the sum expression
685from the values of the two subexpressions.
686
676385e2 687@node GLR Parsers
c827f760
PE
688@section Writing @acronym{GLR} Parsers
689@cindex @acronym{GLR} parsing
690@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
691@findex %glr-parser
692@cindex conflicts
693@cindex shift/reduce conflicts
fa7e68c3 694@cindex reduce/reduce conflicts
676385e2 695
fa7e68c3 696In some grammars, Bison's standard
9501dc6e
AD
697@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
698certain grammar rule at a given point. That is, it may not be able to
699decide (on the basis of the input read so far) which of two possible
700reductions (applications of a grammar rule) applies, or whether to apply
701a reduction or read more of the input and apply a reduction later in the
702input. These are known respectively as @dfn{reduce/reduce} conflicts
703(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
704(@pxref{Shift/Reduce}).
705
706To use a grammar that is not easily modified to be @acronym{LALR}(1), a
707more general parsing algorithm is sometimes necessary. If you include
676385e2 708@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 709(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
710(@acronym{GLR}) parser. These parsers handle Bison grammars that
711contain no unresolved conflicts (i.e., after applying precedence
712declarations) identically to @acronym{LALR}(1) parsers. However, when
713faced with unresolved shift/reduce and reduce/reduce conflicts,
714@acronym{GLR} parsers use the simple expedient of doing both,
715effectively cloning the parser to follow both possibilities. Each of
716the resulting parsers can again split, so that at any given time, there
717can be any number of possible parses being explored. The parsers
676385e2
PH
718proceed in lockstep; that is, all of them consume (shift) a given input
719symbol before any of them proceed to the next. Each of the cloned
720parsers eventually meets one of two possible fates: either it runs into
721a parsing error, in which case it simply vanishes, or it merges with
722another parser, because the two of them have reduced the input to an
723identical set of symbols.
724
725During the time that there are multiple parsers, semantic actions are
726recorded, but not performed. When a parser disappears, its recorded
727semantic actions disappear as well, and are never performed. When a
728reduction makes two parsers identical, causing them to merge, Bison
729records both sets of semantic actions. Whenever the last two parsers
730merge, reverting to the single-parser case, Bison resolves all the
731outstanding actions either by precedences given to the grammar rules
732involved, or by performing both actions, and then calling a designated
733user-defined function on the resulting values to produce an arbitrary
734merged result.
735
fa7e68c3 736@menu
32c29292
JD
737* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
738* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
739* GLR Semantic Actions:: Deferred semantic actions have special concerns.
740* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
741@end menu
742
743@node Simple GLR Parsers
744@subsection Using @acronym{GLR} on Unambiguous Grammars
745@cindex @acronym{GLR} parsing, unambiguous grammars
746@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
747@findex %glr-parser
748@findex %expect-rr
749@cindex conflicts
750@cindex reduce/reduce conflicts
751@cindex shift/reduce conflicts
752
753In the simplest cases, you can use the @acronym{GLR} algorithm
754to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
755Such grammars typically require more than one symbol of look-ahead,
756or (in rare cases) fall into the category of grammars in which the
757@acronym{LALR}(1) algorithm throws away too much information (they are in
758@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
759
760Consider a problem that
761arises in the declaration of enumerated and subrange types in the
762programming language Pascal. Here are some examples:
763
764@example
765type subrange = lo .. hi;
766type enum = (a, b, c);
767@end example
768
769@noindent
770The original language standard allows only numeric
771literals and constant identifiers for the subrange bounds (@samp{lo}
772and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77310206) and many other
774Pascal implementations allow arbitrary expressions there. This gives
775rise to the following situation, containing a superfluous pair of
776parentheses:
777
778@example
779type subrange = (a) .. b;
780@end example
781
782@noindent
783Compare this to the following declaration of an enumerated
784type with only one value:
785
786@example
787type enum = (a);
788@end example
789
790@noindent
791(These declarations are contrived, but they are syntactically
792valid, and more-complicated cases can come up in practical programs.)
793
794These two declarations look identical until the @samp{..} token.
795With normal @acronym{LALR}(1) one-token look-ahead it is not
796possible to decide between the two forms when the identifier
797@samp{a} is parsed. It is, however, desirable
798for a parser to decide this, since in the latter case
799@samp{a} must become a new identifier to represent the enumeration
800value, while in the former case @samp{a} must be evaluated with its
801current meaning, which may be a constant or even a function call.
802
803You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
804to be resolved later, but this typically requires substantial
805contortions in both semantic actions and large parts of the
806grammar, where the parentheses are nested in the recursive rules for
807expressions.
808
809You might think of using the lexer to distinguish between the two
810forms by returning different tokens for currently defined and
811undefined identifiers. But if these declarations occur in a local
812scope, and @samp{a} is defined in an outer scope, then both forms
813are possible---either locally redefining @samp{a}, or using the
814value of @samp{a} from the outer scope. So this approach cannot
815work.
816
e757bb10 817A simple solution to this problem is to declare the parser to
fa7e68c3
PE
818use the @acronym{GLR} algorithm.
819When the @acronym{GLR} parser reaches the critical state, it
820merely splits into two branches and pursues both syntax rules
821simultaneously. Sooner or later, one of them runs into a parsing
822error. If there is a @samp{..} token before the next
823@samp{;}, the rule for enumerated types fails since it cannot
824accept @samp{..} anywhere; otherwise, the subrange type rule
825fails since it requires a @samp{..} token. So one of the branches
826fails silently, and the other one continues normally, performing
827all the intermediate actions that were postponed during the split.
828
829If the input is syntactically incorrect, both branches fail and the parser
830reports a syntax error as usual.
831
832The effect of all this is that the parser seems to ``guess'' the
833correct branch to take, or in other words, it seems to use more
834look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
835for. In this example, @acronym{LALR}(2) would suffice, but also some cases
836that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
837
838In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
839and the current Bison parser even takes exponential time and space
840for some grammars. In practice, this rarely happens, and for many
841grammars it is possible to prove that it cannot happen.
842The present example contains only one conflict between two
843rules, and the type-declaration context containing the conflict
844cannot be nested. So the number of
845branches that can exist at any time is limited by the constant 2,
846and the parsing time is still linear.
847
848Here is a Bison grammar corresponding to the example above. It
849parses a vastly simplified form of Pascal type declarations.
850
851@example
852%token TYPE DOTDOT ID
853
854@group
855%left '+' '-'
856%left '*' '/'
857@end group
858
859%%
860
861@group
862type_decl : TYPE ID '=' type ';'
863 ;
864@end group
865
866@group
867type : '(' id_list ')'
868 | expr DOTDOT expr
869 ;
870@end group
871
872@group
873id_list : ID
874 | id_list ',' ID
875 ;
876@end group
877
878@group
879expr : '(' expr ')'
880 | expr '+' expr
881 | expr '-' expr
882 | expr '*' expr
883 | expr '/' expr
884 | ID
885 ;
886@end group
887@end example
888
889When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
890about one reduce/reduce conflict. In the conflicting situation the
891parser chooses one of the alternatives, arbitrarily the one
892declared first. Therefore the following correct input is not
893recognized:
894
895@example
896type t = (a) .. b;
897@end example
898
899The parser can be turned into a @acronym{GLR} parser, while also telling Bison
900to be silent about the one known reduce/reduce conflict, by
e757bb10 901adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
902@samp{%%}):
903
904@example
905%glr-parser
906%expect-rr 1
907@end example
908
909@noindent
910No change in the grammar itself is required. Now the
911parser recognizes all valid declarations, according to the
912limited syntax above, transparently. In fact, the user does not even
913notice when the parser splits.
914
f8e1c9e5
AD
915So here we have a case where we can use the benefits of @acronym{GLR},
916almost without disadvantages. Even in simple cases like this, however,
917there are at least two potential problems to beware. First, always
918analyze the conflicts reported by Bison to make sure that @acronym{GLR}
919splitting is only done where it is intended. A @acronym{GLR} parser
920splitting inadvertently may cause problems less obvious than an
921@acronym{LALR} parser statically choosing the wrong alternative in a
922conflict. Second, consider interactions with the lexer (@pxref{Semantic
923Tokens}) with great care. Since a split parser consumes tokens without
924performing any actions during the split, the lexer cannot obtain
925information via parser actions. Some cases of lexer interactions can be
926eliminated by using @acronym{GLR} to shift the complications from the
927lexer to the parser. You must check the remaining cases for
928correctness.
929
930In our example, it would be safe for the lexer to return tokens based on
931their current meanings in some symbol table, because no new symbols are
932defined in the middle of a type declaration. Though it is possible for
933a parser to define the enumeration constants as they are parsed, before
934the type declaration is completed, it actually makes no difference since
935they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
936
937@node Merging GLR Parses
938@subsection Using @acronym{GLR} to Resolve Ambiguities
939@cindex @acronym{GLR} parsing, ambiguous grammars
940@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
941@findex %dprec
942@findex %merge
943@cindex conflicts
944@cindex reduce/reduce conflicts
945
2a8d363a 946Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
947
948@example
949%@{
38a92d50
PE
950 #include <stdio.h>
951 #define YYSTYPE char const *
952 int yylex (void);
953 void yyerror (char const *);
676385e2
PH
954%@}
955
956%token TYPENAME ID
957
958%right '='
959%left '+'
960
961%glr-parser
962
963%%
964
fae437e8 965prog :
676385e2
PH
966 | prog stmt @{ printf ("\n"); @}
967 ;
968
969stmt : expr ';' %dprec 1
970 | decl %dprec 2
971 ;
972
2a8d363a 973expr : ID @{ printf ("%s ", $$); @}
fae437e8 974 | TYPENAME '(' expr ')'
2a8d363a
AD
975 @{ printf ("%s <cast> ", $1); @}
976 | expr '+' expr @{ printf ("+ "); @}
977 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
978 ;
979
fae437e8 980decl : TYPENAME declarator ';'
2a8d363a 981 @{ printf ("%s <declare> ", $1); @}
676385e2 982 | TYPENAME declarator '=' expr ';'
2a8d363a 983 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
984 ;
985
2a8d363a 986declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
987 | '(' declarator ')'
988 ;
989@end example
990
991@noindent
992This models a problematic part of the C++ grammar---the ambiguity between
993certain declarations and statements. For example,
994
995@example
996T (x) = y+z;
997@end example
998
999@noindent
1000parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1001(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1002@samp{x} as an @code{ID}).
676385e2 1003Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1004@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1005time it encounters @code{x} in the example above. Since this is a
1006@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1007each choice of resolving the reduce/reduce conflict.
1008Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1009however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1010ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1011the other reduces @code{stmt : decl}, after which both parsers are in an
1012identical state: they've seen @samp{prog stmt} and have the same unprocessed
1013input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1014
1015At this point, the @acronym{GLR} parser requires a specification in the
1016grammar of how to choose between the competing parses.
1017In the example above, the two @code{%dprec}
e757bb10 1018declarations specify that Bison is to give precedence
fa7e68c3 1019to the parse that interprets the example as a
676385e2
PH
1020@code{decl}, which implies that @code{x} is a declarator.
1021The parser therefore prints
1022
1023@example
fae437e8 1024"x" y z + T <init-declare>
676385e2
PH
1025@end example
1026
fa7e68c3
PE
1027The @code{%dprec} declarations only come into play when more than one
1028parse survives. Consider a different input string for this parser:
676385e2
PH
1029
1030@example
1031T (x) + y;
1032@end example
1033
1034@noindent
e757bb10 1035This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1036construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1037Here, there is no ambiguity (this cannot be parsed as a declaration).
1038However, at the time the Bison parser encounters @code{x}, it does not
1039have enough information to resolve the reduce/reduce conflict (again,
1040between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1041case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1042into two, one assuming that @code{x} is an @code{expr}, and the other
1043assuming @code{x} is a @code{declarator}. The second of these parsers
1044then vanishes when it sees @code{+}, and the parser prints
1045
1046@example
fae437e8 1047x T <cast> y +
676385e2
PH
1048@end example
1049
1050Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1051the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1052actions of the two possible parsers, rather than choosing one over the
1053other. To do so, you could change the declaration of @code{stmt} as
1054follows:
1055
1056@example
1057stmt : expr ';' %merge <stmtMerge>
1058 | decl %merge <stmtMerge>
1059 ;
1060@end example
1061
1062@noindent
676385e2
PH
1063and define the @code{stmtMerge} function as:
1064
1065@example
38a92d50
PE
1066static YYSTYPE
1067stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1068@{
1069 printf ("<OR> ");
1070 return "";
1071@}
1072@end example
1073
1074@noindent
1075with an accompanying forward declaration
1076in the C declarations at the beginning of the file:
1077
1078@example
1079%@{
38a92d50 1080 #define YYSTYPE char const *
676385e2
PH
1081 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1082%@}
1083@end example
1084
1085@noindent
fa7e68c3
PE
1086With these declarations, the resulting parser parses the first example
1087as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1088
1089@example
fae437e8 1090"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1091@end example
1092
fa7e68c3 1093Bison requires that all of the
e757bb10 1094productions that participate in any particular merge have identical
fa7e68c3
PE
1095@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1096and the parser will report an error during any parse that results in
1097the offending merge.
9501dc6e 1098
32c29292
JD
1099@node GLR Semantic Actions
1100@subsection GLR Semantic Actions
1101
1102@cindex deferred semantic actions
1103By definition, a deferred semantic action is not performed at the same time as
1104the associated reduction.
1105This raises caveats for several Bison features you might use in a semantic
1106action in a @acronym{GLR} parser.
1107
1108@vindex yychar
1109@cindex @acronym{GLR} parsers and @code{yychar}
1110@vindex yylval
1111@cindex @acronym{GLR} parsers and @code{yylval}
1112@vindex yylloc
1113@cindex @acronym{GLR} parsers and @code{yylloc}
1114In any semantic action, you can examine @code{yychar} to determine the type of
1115the look-ahead token present at the time of the associated reduction.
1116After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1117you can then examine @code{yylval} and @code{yylloc} to determine the
1118look-ahead token's semantic value and location, if any.
1119In a nondeferred semantic action, you can also modify any of these variables to
1120influence syntax analysis.
1121@xref{Look-Ahead, ,Look-Ahead Tokens}.
1122
1123@findex yyclearin
1124@cindex @acronym{GLR} parsers and @code{yyclearin}
1125In a deferred semantic action, it's too late to influence syntax analysis.
1126In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1127shallow copies of the values they had at the time of the associated reduction.
1128For this reason alone, modifying them is dangerous.
1129Moreover, the result of modifying them is undefined and subject to change with
1130future versions of Bison.
1131For example, if a semantic action might be deferred, you should never write it
1132to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1133memory referenced by @code{yylval}.
1134
1135@findex YYERROR
1136@cindex @acronym{GLR} parsers and @code{YYERROR}
1137Another Bison feature requiring special consideration is @code{YYERROR}
1138(@pxref{Action Features}), which you can invoke in any semantic action to
1139initiate error recovery.
1140During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1141the same as its effect in an @acronym{LALR}(1) parser.
1142In a deferred semantic action, its effect is undefined.
1143@c The effect is probably a syntax error at the split point.
1144
fa7e68c3
PE
1145@node Compiler Requirements
1146@subsection Considerations when Compiling @acronym{GLR} Parsers
1147@cindex @code{inline}
9501dc6e 1148@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1149
38a92d50
PE
1150The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1151later. In addition, they use the @code{inline} keyword, which is not
1152C89, but is C99 and is a common extension in pre-C99 compilers. It is
1153up to the user of these parsers to handle
9501dc6e
AD
1154portability issues. For instance, if using Autoconf and the Autoconf
1155macro @code{AC_C_INLINE}, a mere
1156
1157@example
1158%@{
38a92d50 1159 #include <config.h>
9501dc6e
AD
1160%@}
1161@end example
1162
1163@noindent
1164will suffice. Otherwise, we suggest
1165
1166@example
1167%@{
38a92d50
PE
1168 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1169 #define inline
1170 #endif
9501dc6e
AD
1171%@}
1172@end example
676385e2 1173
342b8b6e 1174@node Locations Overview
847bf1f5
AD
1175@section Locations
1176@cindex location
95923bd6
AD
1177@cindex textual location
1178@cindex location, textual
847bf1f5
AD
1179
1180Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1181and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1182the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1183Bison provides a mechanism for handling these locations.
1184
72d2299c 1185Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1186associated location, but the type of locations is the same for all tokens and
72d2299c 1187groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1188structure for storing locations (@pxref{Locations}, for more details).
1189
1190Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1191set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1192is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1193@code{@@3}.
1194
1195When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1196of its left hand side (@pxref{Actions}). In the same way, another default
1197action is used for locations. However, the action for locations is general
847bf1f5 1198enough for most cases, meaning there is usually no need to describe for each
72d2299c 1199rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1200grouping, the default behavior of the output parser is to take the beginning
1201of the first symbol, and the end of the last symbol.
1202
342b8b6e 1203@node Bison Parser
bfa74976
RS
1204@section Bison Output: the Parser File
1205@cindex Bison parser
1206@cindex Bison utility
1207@cindex lexical analyzer, purpose
1208@cindex parser
1209
1210When you run Bison, you give it a Bison grammar file as input. The output
1211is a C source file that parses the language described by the grammar.
1212This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1213utility and the Bison parser are two distinct programs: the Bison utility
1214is a program whose output is the Bison parser that becomes part of your
1215program.
1216
1217The job of the Bison parser is to group tokens into groupings according to
1218the grammar rules---for example, to build identifiers and operators into
1219expressions. As it does this, it runs the actions for the grammar rules it
1220uses.
1221
704a47c4
AD
1222The tokens come from a function called the @dfn{lexical analyzer} that
1223you must supply in some fashion (such as by writing it in C). The Bison
1224parser calls the lexical analyzer each time it wants a new token. It
1225doesn't know what is ``inside'' the tokens (though their semantic values
1226may reflect this). Typically the lexical analyzer makes the tokens by
1227parsing characters of text, but Bison does not depend on this.
1228@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1229
1230The Bison parser file is C code which defines a function named
1231@code{yyparse} which implements that grammar. This function does not make
1232a complete C program: you must supply some additional functions. One is
1233the lexical analyzer. Another is an error-reporting function which the
1234parser calls to report an error. In addition, a complete C program must
1235start with a function called @code{main}; you have to provide this, and
1236arrange for it to call @code{yyparse} or the parser will never run.
1237@xref{Interface, ,Parser C-Language Interface}.
1238
f7ab6a50 1239Aside from the token type names and the symbols in the actions you
7093d0f5 1240write, all symbols defined in the Bison parser file itself
bfa74976
RS
1241begin with @samp{yy} or @samp{YY}. This includes interface functions
1242such as the lexical analyzer function @code{yylex}, the error reporting
1243function @code{yyerror} and the parser function @code{yyparse} itself.
1244This also includes numerous identifiers used for internal purposes.
1245Therefore, you should avoid using C identifiers starting with @samp{yy}
1246or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1247this manual. Also, you should avoid using the C identifiers
1248@samp{malloc} and @samp{free} for anything other than their usual
1249meanings.
bfa74976 1250
7093d0f5
AD
1251In some cases the Bison parser file includes system headers, and in
1252those cases your code should respect the identifiers reserved by those
55289366 1253headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1254@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1255declare memory allocators and related types. @code{<libintl.h>} is
1256included if message translation is in use
1257(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1258be included if you define @code{YYDEBUG} to a nonzero value
1259(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1260
342b8b6e 1261@node Stages
bfa74976
RS
1262@section Stages in Using Bison
1263@cindex stages in using Bison
1264@cindex using Bison
1265
1266The actual language-design process using Bison, from grammar specification
1267to a working compiler or interpreter, has these parts:
1268
1269@enumerate
1270@item
1271Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1272(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1273in the language, describe the action that is to be taken when an
1274instance of that rule is recognized. The action is described by a
1275sequence of C statements.
bfa74976
RS
1276
1277@item
704a47c4
AD
1278Write a lexical analyzer to process input and pass tokens to the parser.
1279The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1280Lexical Analyzer Function @code{yylex}}). It could also be produced
1281using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1282
1283@item
1284Write a controlling function that calls the Bison-produced parser.
1285
1286@item
1287Write error-reporting routines.
1288@end enumerate
1289
1290To turn this source code as written into a runnable program, you
1291must follow these steps:
1292
1293@enumerate
1294@item
1295Run Bison on the grammar to produce the parser.
1296
1297@item
1298Compile the code output by Bison, as well as any other source files.
1299
1300@item
1301Link the object files to produce the finished product.
1302@end enumerate
1303
342b8b6e 1304@node Grammar Layout
bfa74976
RS
1305@section The Overall Layout of a Bison Grammar
1306@cindex grammar file
1307@cindex file format
1308@cindex format of grammar file
1309@cindex layout of Bison grammar
1310
1311The input file for the Bison utility is a @dfn{Bison grammar file}. The
1312general form of a Bison grammar file is as follows:
1313
1314@example
1315%@{
08e49d20 1316@var{Prologue}
bfa74976
RS
1317%@}
1318
1319@var{Bison declarations}
1320
1321%%
1322@var{Grammar rules}
1323%%
08e49d20 1324@var{Epilogue}
bfa74976
RS
1325@end example
1326
1327@noindent
1328The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1329in every Bison grammar file to separate the sections.
1330
72d2299c 1331The prologue may define types and variables used in the actions. You can
342b8b6e 1332also use preprocessor commands to define macros used there, and use
bfa74976 1333@code{#include} to include header files that do any of these things.
38a92d50
PE
1334You need to declare the lexical analyzer @code{yylex} and the error
1335printer @code{yyerror} here, along with any other global identifiers
1336used by the actions in the grammar rules.
bfa74976
RS
1337
1338The Bison declarations declare the names of the terminal and nonterminal
1339symbols, and may also describe operator precedence and the data types of
1340semantic values of various symbols.
1341
1342The grammar rules define how to construct each nonterminal symbol from its
1343parts.
1344
38a92d50
PE
1345The epilogue can contain any code you want to use. Often the
1346definitions of functions declared in the prologue go here. In a
1347simple program, all the rest of the program can go here.
bfa74976 1348
342b8b6e 1349@node Examples
bfa74976
RS
1350@chapter Examples
1351@cindex simple examples
1352@cindex examples, simple
1353
1354Now we show and explain three sample programs written using Bison: a
1355reverse polish notation calculator, an algebraic (infix) notation
1356calculator, and a multi-function calculator. All three have been tested
1357under BSD Unix 4.3; each produces a usable, though limited, interactive
1358desk-top calculator.
1359
1360These examples are simple, but Bison grammars for real programming
1361languages are written the same way.
1362@ifinfo
1363You can copy these examples out of the Info file and into a source file
1364to try them.
1365@end ifinfo
1366
1367@menu
1368* RPN Calc:: Reverse polish notation calculator;
1369 a first example with no operator precedence.
1370* Infix Calc:: Infix (algebraic) notation calculator.
1371 Operator precedence is introduced.
1372* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1373* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1374* Multi-function Calc:: Calculator with memory and trig functions.
1375 It uses multiple data-types for semantic values.
1376* Exercises:: Ideas for improving the multi-function calculator.
1377@end menu
1378
342b8b6e 1379@node RPN Calc
bfa74976
RS
1380@section Reverse Polish Notation Calculator
1381@cindex reverse polish notation
1382@cindex polish notation calculator
1383@cindex @code{rpcalc}
1384@cindex calculator, simple
1385
1386The first example is that of a simple double-precision @dfn{reverse polish
1387notation} calculator (a calculator using postfix operators). This example
1388provides a good starting point, since operator precedence is not an issue.
1389The second example will illustrate how operator precedence is handled.
1390
1391The source code for this calculator is named @file{rpcalc.y}. The
1392@samp{.y} extension is a convention used for Bison input files.
1393
1394@menu
75f5aaea 1395* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1396* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1397* Lexer: Rpcalc Lexer. The lexical analyzer.
1398* Main: Rpcalc Main. The controlling function.
1399* Error: Rpcalc Error. The error reporting function.
1400* Gen: Rpcalc Gen. Running Bison on the grammar file.
1401* Comp: Rpcalc Compile. Run the C compiler on the output code.
1402@end menu
1403
342b8b6e 1404@node Rpcalc Decls
bfa74976
RS
1405@subsection Declarations for @code{rpcalc}
1406
1407Here are the C and Bison declarations for the reverse polish notation
1408calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1409
1410@example
72d2299c 1411/* Reverse polish notation calculator. */
bfa74976
RS
1412
1413%@{
38a92d50
PE
1414 #define YYSTYPE double
1415 #include <math.h>
1416 int yylex (void);
1417 void yyerror (char const *);
bfa74976
RS
1418%@}
1419
1420%token NUM
1421
72d2299c 1422%% /* Grammar rules and actions follow. */
bfa74976
RS
1423@end example
1424
75f5aaea 1425The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1426preprocessor directives and two forward declarations.
bfa74976
RS
1427
1428The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1429specifying the C data type for semantic values of both tokens and
1430groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1431Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1432don't define it, @code{int} is the default. Because we specify
1433@code{double}, each token and each expression has an associated value,
1434which is a floating point number.
bfa74976
RS
1435
1436The @code{#include} directive is used to declare the exponentiation
1437function @code{pow}.
1438
38a92d50
PE
1439The forward declarations for @code{yylex} and @code{yyerror} are
1440needed because the C language requires that functions be declared
1441before they are used. These functions will be defined in the
1442epilogue, but the parser calls them so they must be declared in the
1443prologue.
1444
704a47c4
AD
1445The second section, Bison declarations, provides information to Bison
1446about the token types (@pxref{Bison Declarations, ,The Bison
1447Declarations Section}). Each terminal symbol that is not a
1448single-character literal must be declared here. (Single-character
bfa74976
RS
1449literals normally don't need to be declared.) In this example, all the
1450arithmetic operators are designated by single-character literals, so the
1451only terminal symbol that needs to be declared is @code{NUM}, the token
1452type for numeric constants.
1453
342b8b6e 1454@node Rpcalc Rules
bfa74976
RS
1455@subsection Grammar Rules for @code{rpcalc}
1456
1457Here are the grammar rules for the reverse polish notation calculator.
1458
1459@example
1460input: /* empty */
1461 | input line
1462;
1463
1464line: '\n'
18b519c0 1465 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1466;
1467
18b519c0
AD
1468exp: NUM @{ $$ = $1; @}
1469 | exp exp '+' @{ $$ = $1 + $2; @}
1470 | exp exp '-' @{ $$ = $1 - $2; @}
1471 | exp exp '*' @{ $$ = $1 * $2; @}
1472 | exp exp '/' @{ $$ = $1 / $2; @}
1473 /* Exponentiation */
1474 | exp exp '^' @{ $$ = pow ($1, $2); @}
1475 /* Unary minus */
1476 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1477;
1478%%
1479@end example
1480
1481The groupings of the rpcalc ``language'' defined here are the expression
1482(given the name @code{exp}), the line of input (@code{line}), and the
1483complete input transcript (@code{input}). Each of these nonterminal
1484symbols has several alternate rules, joined by the @samp{|} punctuator
1485which is read as ``or''. The following sections explain what these rules
1486mean.
1487
1488The semantics of the language is determined by the actions taken when a
1489grouping is recognized. The actions are the C code that appears inside
1490braces. @xref{Actions}.
1491
1492You must specify these actions in C, but Bison provides the means for
1493passing semantic values between the rules. In each action, the
1494pseudo-variable @code{$$} stands for the semantic value for the grouping
1495that the rule is going to construct. Assigning a value to @code{$$} is the
1496main job of most actions. The semantic values of the components of the
1497rule are referred to as @code{$1}, @code{$2}, and so on.
1498
1499@menu
13863333
AD
1500* Rpcalc Input::
1501* Rpcalc Line::
1502* Rpcalc Expr::
bfa74976
RS
1503@end menu
1504
342b8b6e 1505@node Rpcalc Input
bfa74976
RS
1506@subsubsection Explanation of @code{input}
1507
1508Consider the definition of @code{input}:
1509
1510@example
1511input: /* empty */
1512 | input line
1513;
1514@end example
1515
1516This definition reads as follows: ``A complete input is either an empty
1517string, or a complete input followed by an input line''. Notice that
1518``complete input'' is defined in terms of itself. This definition is said
1519to be @dfn{left recursive} since @code{input} appears always as the
1520leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1521
1522The first alternative is empty because there are no symbols between the
1523colon and the first @samp{|}; this means that @code{input} can match an
1524empty string of input (no tokens). We write the rules this way because it
1525is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1526It's conventional to put an empty alternative first and write the comment
1527@samp{/* empty */} in it.
1528
1529The second alternate rule (@code{input line}) handles all nontrivial input.
1530It means, ``After reading any number of lines, read one more line if
1531possible.'' The left recursion makes this rule into a loop. Since the
1532first alternative matches empty input, the loop can be executed zero or
1533more times.
1534
1535The parser function @code{yyparse} continues to process input until a
1536grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1537input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1538
342b8b6e 1539@node Rpcalc Line
bfa74976
RS
1540@subsubsection Explanation of @code{line}
1541
1542Now consider the definition of @code{line}:
1543
1544@example
1545line: '\n'
1546 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1547;
1548@end example
1549
1550The first alternative is a token which is a newline character; this means
1551that rpcalc accepts a blank line (and ignores it, since there is no
1552action). The second alternative is an expression followed by a newline.
1553This is the alternative that makes rpcalc useful. The semantic value of
1554the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1555question is the first symbol in the alternative. The action prints this
1556value, which is the result of the computation the user asked for.
1557
1558This action is unusual because it does not assign a value to @code{$$}. As
1559a consequence, the semantic value associated with the @code{line} is
1560uninitialized (its value will be unpredictable). This would be a bug if
1561that value were ever used, but we don't use it: once rpcalc has printed the
1562value of the user's input line, that value is no longer needed.
1563
342b8b6e 1564@node Rpcalc Expr
bfa74976
RS
1565@subsubsection Explanation of @code{expr}
1566
1567The @code{exp} grouping has several rules, one for each kind of expression.
1568The first rule handles the simplest expressions: those that are just numbers.
1569The second handles an addition-expression, which looks like two expressions
1570followed by a plus-sign. The third handles subtraction, and so on.
1571
1572@example
1573exp: NUM
1574 | exp exp '+' @{ $$ = $1 + $2; @}
1575 | exp exp '-' @{ $$ = $1 - $2; @}
1576 @dots{}
1577 ;
1578@end example
1579
1580We have used @samp{|} to join all the rules for @code{exp}, but we could
1581equally well have written them separately:
1582
1583@example
1584exp: NUM ;
1585exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1586exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1587 @dots{}
1588@end example
1589
1590Most of the rules have actions that compute the value of the expression in
1591terms of the value of its parts. For example, in the rule for addition,
1592@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1593the second one. The third component, @code{'+'}, has no meaningful
1594associated semantic value, but if it had one you could refer to it as
1595@code{$3}. When @code{yyparse} recognizes a sum expression using this
1596rule, the sum of the two subexpressions' values is produced as the value of
1597the entire expression. @xref{Actions}.
1598
1599You don't have to give an action for every rule. When a rule has no
1600action, Bison by default copies the value of @code{$1} into @code{$$}.
1601This is what happens in the first rule (the one that uses @code{NUM}).
1602
1603The formatting shown here is the recommended convention, but Bison does
72d2299c 1604not require it. You can add or change white space as much as you wish.
bfa74976
RS
1605For example, this:
1606
1607@example
99a9344e 1608exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1609@end example
1610
1611@noindent
1612means the same thing as this:
1613
1614@example
1615exp: NUM
1616 | exp exp '+' @{ $$ = $1 + $2; @}
1617 | @dots{}
99a9344e 1618;
bfa74976
RS
1619@end example
1620
1621@noindent
1622The latter, however, is much more readable.
1623
342b8b6e 1624@node Rpcalc Lexer
bfa74976
RS
1625@subsection The @code{rpcalc} Lexical Analyzer
1626@cindex writing a lexical analyzer
1627@cindex lexical analyzer, writing
1628
704a47c4
AD
1629The lexical analyzer's job is low-level parsing: converting characters
1630or sequences of characters into tokens. The Bison parser gets its
1631tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1632Analyzer Function @code{yylex}}.
bfa74976 1633
c827f760
PE
1634Only a simple lexical analyzer is needed for the @acronym{RPN}
1635calculator. This
bfa74976
RS
1636lexical analyzer skips blanks and tabs, then reads in numbers as
1637@code{double} and returns them as @code{NUM} tokens. Any other character
1638that isn't part of a number is a separate token. Note that the token-code
1639for such a single-character token is the character itself.
1640
1641The return value of the lexical analyzer function is a numeric code which
1642represents a token type. The same text used in Bison rules to stand for
1643this token type is also a C expression for the numeric code for the type.
1644This works in two ways. If the token type is a character literal, then its
e966383b 1645numeric code is that of the character; you can use the same
bfa74976
RS
1646character literal in the lexical analyzer to express the number. If the
1647token type is an identifier, that identifier is defined by Bison as a C
1648macro whose definition is the appropriate number. In this example,
1649therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1650
1964ad8c
AD
1651The semantic value of the token (if it has one) is stored into the
1652global variable @code{yylval}, which is where the Bison parser will look
1653for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1654defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1655,Declarations for @code{rpcalc}}.)
bfa74976 1656
72d2299c
PE
1657A token type code of zero is returned if the end-of-input is encountered.
1658(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1659
1660Here is the code for the lexical analyzer:
1661
1662@example
1663@group
72d2299c 1664/* The lexical analyzer returns a double floating point
e966383b 1665 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1666 of the character read if not a number. It skips all blanks
1667 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1668
1669#include <ctype.h>
1670@end group
1671
1672@group
13863333
AD
1673int
1674yylex (void)
bfa74976
RS
1675@{
1676 int c;
1677
72d2299c 1678 /* Skip white space. */
13863333 1679 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1680 ;
1681@end group
1682@group
72d2299c 1683 /* Process numbers. */
13863333 1684 if (c == '.' || isdigit (c))
bfa74976
RS
1685 @{
1686 ungetc (c, stdin);
1687 scanf ("%lf", &yylval);
1688 return NUM;
1689 @}
1690@end group
1691@group
72d2299c 1692 /* Return end-of-input. */
13863333 1693 if (c == EOF)
bfa74976 1694 return 0;
72d2299c 1695 /* Return a single char. */
13863333 1696 return c;
bfa74976
RS
1697@}
1698@end group
1699@end example
1700
342b8b6e 1701@node Rpcalc Main
bfa74976
RS
1702@subsection The Controlling Function
1703@cindex controlling function
1704@cindex main function in simple example
1705
1706In keeping with the spirit of this example, the controlling function is
1707kept to the bare minimum. The only requirement is that it call
1708@code{yyparse} to start the process of parsing.
1709
1710@example
1711@group
13863333
AD
1712int
1713main (void)
bfa74976 1714@{
13863333 1715 return yyparse ();
bfa74976
RS
1716@}
1717@end group
1718@end example
1719
342b8b6e 1720@node Rpcalc Error
bfa74976
RS
1721@subsection The Error Reporting Routine
1722@cindex error reporting routine
1723
1724When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1725function @code{yyerror} to print an error message (usually but not
6e649e65 1726always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1727@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1728here is the definition we will use:
bfa74976
RS
1729
1730@example
1731@group
1732#include <stdio.h>
1733
38a92d50 1734/* Called by yyparse on error. */
13863333 1735void
38a92d50 1736yyerror (char const *s)
bfa74976 1737@{
4e03e201 1738 fprintf (stderr, "%s\n", s);
bfa74976
RS
1739@}
1740@end group
1741@end example
1742
1743After @code{yyerror} returns, the Bison parser may recover from the error
1744and continue parsing if the grammar contains a suitable error rule
1745(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1746have not written any error rules in this example, so any invalid input will
1747cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1748real calculator, but it is adequate for the first example.
bfa74976 1749
342b8b6e 1750@node Rpcalc Gen
bfa74976
RS
1751@subsection Running Bison to Make the Parser
1752@cindex running Bison (introduction)
1753
ceed8467
AD
1754Before running Bison to produce a parser, we need to decide how to
1755arrange all the source code in one or more source files. For such a
1756simple example, the easiest thing is to put everything in one file. The
1757definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1758end, in the epilogue of the file
75f5aaea 1759(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1760
1761For a large project, you would probably have several source files, and use
1762@code{make} to arrange to recompile them.
1763
1764With all the source in a single file, you use the following command to
1765convert it into a parser file:
1766
1767@example
fa4d969f 1768bison @var{file}.y
bfa74976
RS
1769@end example
1770
1771@noindent
1772In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1773@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1774removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1775Bison contains the source code for @code{yyparse}. The additional
1776functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1777are copied verbatim to the output.
1778
342b8b6e 1779@node Rpcalc Compile
bfa74976
RS
1780@subsection Compiling the Parser File
1781@cindex compiling the parser
1782
1783Here is how to compile and run the parser file:
1784
1785@example
1786@group
1787# @r{List files in current directory.}
9edcd895 1788$ @kbd{ls}
bfa74976
RS
1789rpcalc.tab.c rpcalc.y
1790@end group
1791
1792@group
1793# @r{Compile the Bison parser.}
1794# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1795$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1796@end group
1797
1798@group
1799# @r{List files again.}
9edcd895 1800$ @kbd{ls}
bfa74976
RS
1801rpcalc rpcalc.tab.c rpcalc.y
1802@end group
1803@end example
1804
1805The file @file{rpcalc} now contains the executable code. Here is an
1806example session using @code{rpcalc}.
1807
1808@example
9edcd895
AD
1809$ @kbd{rpcalc}
1810@kbd{4 9 +}
bfa74976 181113
9edcd895 1812@kbd{3 7 + 3 4 5 *+-}
bfa74976 1813-13
9edcd895 1814@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181513
9edcd895 1816@kbd{5 6 / 4 n +}
bfa74976 1817-3.166666667
9edcd895 1818@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181981
9edcd895
AD
1820@kbd{^D} @r{End-of-file indicator}
1821$
bfa74976
RS
1822@end example
1823
342b8b6e 1824@node Infix Calc
bfa74976
RS
1825@section Infix Notation Calculator: @code{calc}
1826@cindex infix notation calculator
1827@cindex @code{calc}
1828@cindex calculator, infix notation
1829
1830We now modify rpcalc to handle infix operators instead of postfix. Infix
1831notation involves the concept of operator precedence and the need for
1832parentheses nested to arbitrary depth. Here is the Bison code for
1833@file{calc.y}, an infix desk-top calculator.
1834
1835@example
38a92d50 1836/* Infix notation calculator. */
bfa74976
RS
1837
1838%@{
38a92d50
PE
1839 #define YYSTYPE double
1840 #include <math.h>
1841 #include <stdio.h>
1842 int yylex (void);
1843 void yyerror (char const *);
bfa74976
RS
1844%@}
1845
38a92d50 1846/* Bison declarations. */
bfa74976
RS
1847%token NUM
1848%left '-' '+'
1849%left '*' '/'
1850%left NEG /* negation--unary minus */
38a92d50 1851%right '^' /* exponentiation */
bfa74976 1852
38a92d50
PE
1853%% /* The grammar follows. */
1854input: /* empty */
bfa74976
RS
1855 | input line
1856;
1857
1858line: '\n'
1859 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1860;
1861
1862exp: NUM @{ $$ = $1; @}
1863 | exp '+' exp @{ $$ = $1 + $3; @}
1864 | exp '-' exp @{ $$ = $1 - $3; @}
1865 | exp '*' exp @{ $$ = $1 * $3; @}
1866 | exp '/' exp @{ $$ = $1 / $3; @}
1867 | '-' exp %prec NEG @{ $$ = -$2; @}
1868 | exp '^' exp @{ $$ = pow ($1, $3); @}
1869 | '(' exp ')' @{ $$ = $2; @}
1870;
1871%%
1872@end example
1873
1874@noindent
ceed8467
AD
1875The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1876same as before.
bfa74976
RS
1877
1878There are two important new features shown in this code.
1879
1880In the second section (Bison declarations), @code{%left} declares token
1881types and says they are left-associative operators. The declarations
1882@code{%left} and @code{%right} (right associativity) take the place of
1883@code{%token} which is used to declare a token type name without
1884associativity. (These tokens are single-character literals, which
1885ordinarily don't need to be declared. We declare them here to specify
1886the associativity.)
1887
1888Operator precedence is determined by the line ordering of the
1889declarations; the higher the line number of the declaration (lower on
1890the page or screen), the higher the precedence. Hence, exponentiation
1891has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1892by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1893Precedence}.
bfa74976 1894
704a47c4
AD
1895The other important new feature is the @code{%prec} in the grammar
1896section for the unary minus operator. The @code{%prec} simply instructs
1897Bison that the rule @samp{| '-' exp} has the same precedence as
1898@code{NEG}---in this case the next-to-highest. @xref{Contextual
1899Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1900
1901Here is a sample run of @file{calc.y}:
1902
1903@need 500
1904@example
9edcd895
AD
1905$ @kbd{calc}
1906@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19076.880952381
9edcd895 1908@kbd{-56 + 2}
bfa74976 1909-54
9edcd895 1910@kbd{3 ^ 2}
bfa74976
RS
19119
1912@end example
1913
342b8b6e 1914@node Simple Error Recovery
bfa74976
RS
1915@section Simple Error Recovery
1916@cindex error recovery, simple
1917
1918Up to this point, this manual has not addressed the issue of @dfn{error
1919recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1920error. All we have handled is error reporting with @code{yyerror}.
1921Recall that by default @code{yyparse} returns after calling
1922@code{yyerror}. This means that an erroneous input line causes the
1923calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1924
1925The Bison language itself includes the reserved word @code{error}, which
1926may be included in the grammar rules. In the example below it has
1927been added to one of the alternatives for @code{line}:
1928
1929@example
1930@group
1931line: '\n'
1932 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1933 | error '\n' @{ yyerrok; @}
1934;
1935@end group
1936@end example
1937
ceed8467 1938This addition to the grammar allows for simple error recovery in the
6e649e65 1939event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1940read, the error will be recognized by the third rule for @code{line},
1941and parsing will continue. (The @code{yyerror} function is still called
1942upon to print its message as well.) The action executes the statement
1943@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1944that error recovery is complete (@pxref{Error Recovery}). Note the
1945difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1946misprint.
bfa74976
RS
1947
1948This form of error recovery deals with syntax errors. There are other
1949kinds of errors; for example, division by zero, which raises an exception
1950signal that is normally fatal. A real calculator program must handle this
1951signal and use @code{longjmp} to return to @code{main} and resume parsing
1952input lines; it would also have to discard the rest of the current line of
1953input. We won't discuss this issue further because it is not specific to
1954Bison programs.
1955
342b8b6e
AD
1956@node Location Tracking Calc
1957@section Location Tracking Calculator: @code{ltcalc}
1958@cindex location tracking calculator
1959@cindex @code{ltcalc}
1960@cindex calculator, location tracking
1961
9edcd895
AD
1962This example extends the infix notation calculator with location
1963tracking. This feature will be used to improve the error messages. For
1964the sake of clarity, this example is a simple integer calculator, since
1965most of the work needed to use locations will be done in the lexical
72d2299c 1966analyzer.
342b8b6e
AD
1967
1968@menu
1969* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1970* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1971* Lexer: Ltcalc Lexer. The lexical analyzer.
1972@end menu
1973
1974@node Ltcalc Decls
1975@subsection Declarations for @code{ltcalc}
1976
9edcd895
AD
1977The C and Bison declarations for the location tracking calculator are
1978the same as the declarations for the infix notation calculator.
342b8b6e
AD
1979
1980@example
1981/* Location tracking calculator. */
1982
1983%@{
38a92d50
PE
1984 #define YYSTYPE int
1985 #include <math.h>
1986 int yylex (void);
1987 void yyerror (char const *);
342b8b6e
AD
1988%@}
1989
1990/* Bison declarations. */
1991%token NUM
1992
1993%left '-' '+'
1994%left '*' '/'
1995%left NEG
1996%right '^'
1997
38a92d50 1998%% /* The grammar follows. */
342b8b6e
AD
1999@end example
2000
9edcd895
AD
2001@noindent
2002Note there are no declarations specific to locations. Defining a data
2003type for storing locations is not needed: we will use the type provided
2004by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2005four member structure with the following integer fields:
2006@code{first_line}, @code{first_column}, @code{last_line} and
2007@code{last_column}.
342b8b6e
AD
2008
2009@node Ltcalc Rules
2010@subsection Grammar Rules for @code{ltcalc}
2011
9edcd895
AD
2012Whether handling locations or not has no effect on the syntax of your
2013language. Therefore, grammar rules for this example will be very close
2014to those of the previous example: we will only modify them to benefit
2015from the new information.
342b8b6e 2016
9edcd895
AD
2017Here, we will use locations to report divisions by zero, and locate the
2018wrong expressions or subexpressions.
342b8b6e
AD
2019
2020@example
2021@group
2022input : /* empty */
2023 | input line
2024;
2025@end group
2026
2027@group
2028line : '\n'
2029 | exp '\n' @{ printf ("%d\n", $1); @}
2030;
2031@end group
2032
2033@group
2034exp : NUM @{ $$ = $1; @}
2035 | exp '+' exp @{ $$ = $1 + $3; @}
2036 | exp '-' exp @{ $$ = $1 - $3; @}
2037 | exp '*' exp @{ $$ = $1 * $3; @}
2038@end group
342b8b6e 2039@group
9edcd895 2040 | exp '/' exp
342b8b6e
AD
2041 @{
2042 if ($3)
2043 $$ = $1 / $3;
2044 else
2045 @{
2046 $$ = 1;
9edcd895
AD
2047 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2048 @@3.first_line, @@3.first_column,
2049 @@3.last_line, @@3.last_column);
342b8b6e
AD
2050 @}
2051 @}
2052@end group
2053@group
2054 | '-' exp %preg NEG @{ $$ = -$2; @}
2055 | exp '^' exp @{ $$ = pow ($1, $3); @}
2056 | '(' exp ')' @{ $$ = $2; @}
2057@end group
2058@end example
2059
2060This code shows how to reach locations inside of semantic actions, by
2061using the pseudo-variables @code{@@@var{n}} for rule components, and the
2062pseudo-variable @code{@@$} for groupings.
2063
9edcd895
AD
2064We don't need to assign a value to @code{@@$}: the output parser does it
2065automatically. By default, before executing the C code of each action,
2066@code{@@$} is set to range from the beginning of @code{@@1} to the end
2067of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2068can be redefined (@pxref{Location Default Action, , Default Action for
2069Locations}), and for very specific rules, @code{@@$} can be computed by
2070hand.
342b8b6e
AD
2071
2072@node Ltcalc Lexer
2073@subsection The @code{ltcalc} Lexical Analyzer.
2074
9edcd895 2075Until now, we relied on Bison's defaults to enable location
72d2299c 2076tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2077able to feed the parser with the token locations, as it already does for
2078semantic values.
342b8b6e 2079
9edcd895
AD
2080To this end, we must take into account every single character of the
2081input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2082
2083@example
2084@group
2085int
2086yylex (void)
2087@{
2088 int c;
18b519c0 2089@end group
342b8b6e 2090
18b519c0 2091@group
72d2299c 2092 /* Skip white space. */
342b8b6e
AD
2093 while ((c = getchar ()) == ' ' || c == '\t')
2094 ++yylloc.last_column;
18b519c0 2095@end group
342b8b6e 2096
18b519c0 2097@group
72d2299c 2098 /* Step. */
342b8b6e
AD
2099 yylloc.first_line = yylloc.last_line;
2100 yylloc.first_column = yylloc.last_column;
2101@end group
2102
2103@group
72d2299c 2104 /* Process numbers. */
342b8b6e
AD
2105 if (isdigit (c))
2106 @{
2107 yylval = c - '0';
2108 ++yylloc.last_column;
2109 while (isdigit (c = getchar ()))
2110 @{
2111 ++yylloc.last_column;
2112 yylval = yylval * 10 + c - '0';
2113 @}
2114 ungetc (c, stdin);
2115 return NUM;
2116 @}
2117@end group
2118
72d2299c 2119 /* Return end-of-input. */
342b8b6e
AD
2120 if (c == EOF)
2121 return 0;
2122
72d2299c 2123 /* Return a single char, and update location. */
342b8b6e
AD
2124 if (c == '\n')
2125 @{
2126 ++yylloc.last_line;
2127 yylloc.last_column = 0;
2128 @}
2129 else
2130 ++yylloc.last_column;
2131 return c;
2132@}
2133@end example
2134
9edcd895
AD
2135Basically, the lexical analyzer performs the same processing as before:
2136it skips blanks and tabs, and reads numbers or single-character tokens.
2137In addition, it updates @code{yylloc}, the global variable (of type
2138@code{YYLTYPE}) containing the token's location.
342b8b6e 2139
9edcd895 2140Now, each time this function returns a token, the parser has its number
72d2299c 2141as well as its semantic value, and its location in the text. The last
9edcd895
AD
2142needed change is to initialize @code{yylloc}, for example in the
2143controlling function:
342b8b6e
AD
2144
2145@example
9edcd895 2146@group
342b8b6e
AD
2147int
2148main (void)
2149@{
2150 yylloc.first_line = yylloc.last_line = 1;
2151 yylloc.first_column = yylloc.last_column = 0;
2152 return yyparse ();
2153@}
9edcd895 2154@end group
342b8b6e
AD
2155@end example
2156
9edcd895
AD
2157Remember that computing locations is not a matter of syntax. Every
2158character must be associated to a location update, whether it is in
2159valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2160
2161@node Multi-function Calc
bfa74976
RS
2162@section Multi-Function Calculator: @code{mfcalc}
2163@cindex multi-function calculator
2164@cindex @code{mfcalc}
2165@cindex calculator, multi-function
2166
2167Now that the basics of Bison have been discussed, it is time to move on to
2168a more advanced problem. The above calculators provided only five
2169functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2170be nice to have a calculator that provides other mathematical functions such
2171as @code{sin}, @code{cos}, etc.
2172
2173It is easy to add new operators to the infix calculator as long as they are
2174only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2175back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2176adding a new operator. But we want something more flexible: built-in
2177functions whose syntax has this form:
2178
2179@example
2180@var{function_name} (@var{argument})
2181@end example
2182
2183@noindent
2184At the same time, we will add memory to the calculator, by allowing you
2185to create named variables, store values in them, and use them later.
2186Here is a sample session with the multi-function calculator:
2187
2188@example
9edcd895
AD
2189$ @kbd{mfcalc}
2190@kbd{pi = 3.141592653589}
bfa74976 21913.1415926536
9edcd895 2192@kbd{sin(pi)}
bfa74976 21930.0000000000
9edcd895 2194@kbd{alpha = beta1 = 2.3}
bfa74976 21952.3000000000
9edcd895 2196@kbd{alpha}
bfa74976 21972.3000000000
9edcd895 2198@kbd{ln(alpha)}
bfa74976 21990.8329091229
9edcd895 2200@kbd{exp(ln(beta1))}
bfa74976 22012.3000000000
9edcd895 2202$
bfa74976
RS
2203@end example
2204
2205Note that multiple assignment and nested function calls are permitted.
2206
2207@menu
2208* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2209* Rules: Mfcalc Rules. Grammar rules for the calculator.
2210* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2211@end menu
2212
342b8b6e 2213@node Mfcalc Decl
bfa74976
RS
2214@subsection Declarations for @code{mfcalc}
2215
2216Here are the C and Bison declarations for the multi-function calculator.
2217
2218@smallexample
18b519c0 2219@group
bfa74976 2220%@{
38a92d50
PE
2221 #include <math.h> /* For math functions, cos(), sin(), etc. */
2222 #include "calc.h" /* Contains definition of `symrec'. */
2223 int yylex (void);
2224 void yyerror (char const *);
bfa74976 2225%@}
18b519c0
AD
2226@end group
2227@group
bfa74976 2228%union @{
38a92d50
PE
2229 double val; /* For returning numbers. */
2230 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2231@}
18b519c0 2232@end group
38a92d50
PE
2233%token <val> NUM /* Simple double precision number. */
2234%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2235%type <val> exp
2236
18b519c0 2237@group
bfa74976
RS
2238%right '='
2239%left '-' '+'
2240%left '*' '/'
38a92d50
PE
2241%left NEG /* negation--unary minus */
2242%right '^' /* exponentiation */
18b519c0 2243@end group
38a92d50 2244%% /* The grammar follows. */
bfa74976
RS
2245@end smallexample
2246
2247The above grammar introduces only two new features of the Bison language.
2248These features allow semantic values to have various data types
2249(@pxref{Multiple Types, ,More Than One Value Type}).
2250
2251The @code{%union} declaration specifies the entire list of possible types;
2252this is instead of defining @code{YYSTYPE}. The allowable types are now
2253double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2254the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2255
2256Since values can now have various types, it is necessary to associate a
2257type with each grammar symbol whose semantic value is used. These symbols
2258are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2259declarations are augmented with information about their data type (placed
2260between angle brackets).
2261
704a47c4
AD
2262The Bison construct @code{%type} is used for declaring nonterminal
2263symbols, just as @code{%token} is used for declaring token types. We
2264have not used @code{%type} before because nonterminal symbols are
2265normally declared implicitly by the rules that define them. But
2266@code{exp} must be declared explicitly so we can specify its value type.
2267@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2268
342b8b6e 2269@node Mfcalc Rules
bfa74976
RS
2270@subsection Grammar Rules for @code{mfcalc}
2271
2272Here are the grammar rules for the multi-function calculator.
2273Most of them are copied directly from @code{calc}; three rules,
2274those which mention @code{VAR} or @code{FNCT}, are new.
2275
2276@smallexample
18b519c0 2277@group
bfa74976
RS
2278input: /* empty */
2279 | input line
2280;
18b519c0 2281@end group
bfa74976 2282
18b519c0 2283@group
bfa74976
RS
2284line:
2285 '\n'
2286 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2287 | error '\n' @{ yyerrok; @}
2288;
18b519c0 2289@end group
bfa74976 2290
18b519c0 2291@group
bfa74976
RS
2292exp: NUM @{ $$ = $1; @}
2293 | VAR @{ $$ = $1->value.var; @}
2294 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2295 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2296 | exp '+' exp @{ $$ = $1 + $3; @}
2297 | exp '-' exp @{ $$ = $1 - $3; @}
2298 | exp '*' exp @{ $$ = $1 * $3; @}
2299 | exp '/' exp @{ $$ = $1 / $3; @}
2300 | '-' exp %prec NEG @{ $$ = -$2; @}
2301 | exp '^' exp @{ $$ = pow ($1, $3); @}
2302 | '(' exp ')' @{ $$ = $2; @}
2303;
18b519c0 2304@end group
38a92d50 2305/* End of grammar. */
bfa74976
RS
2306%%
2307@end smallexample
2308
342b8b6e 2309@node Mfcalc Symtab
bfa74976
RS
2310@subsection The @code{mfcalc} Symbol Table
2311@cindex symbol table example
2312
2313The multi-function calculator requires a symbol table to keep track of the
2314names and meanings of variables and functions. This doesn't affect the
2315grammar rules (except for the actions) or the Bison declarations, but it
2316requires some additional C functions for support.
2317
2318The symbol table itself consists of a linked list of records. Its
2319definition, which is kept in the header @file{calc.h}, is as follows. It
2320provides for either functions or variables to be placed in the table.
2321
2322@smallexample
2323@group
38a92d50 2324/* Function type. */
32dfccf8 2325typedef double (*func_t) (double);
72f889cc 2326@end group
32dfccf8 2327
72f889cc 2328@group
38a92d50 2329/* Data type for links in the chain of symbols. */
bfa74976
RS
2330struct symrec
2331@{
38a92d50 2332 char *name; /* name of symbol */
bfa74976 2333 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2334 union
2335 @{
38a92d50
PE
2336 double var; /* value of a VAR */
2337 func_t fnctptr; /* value of a FNCT */
bfa74976 2338 @} value;
38a92d50 2339 struct symrec *next; /* link field */
bfa74976
RS
2340@};
2341@end group
2342
2343@group
2344typedef struct symrec symrec;
2345
38a92d50 2346/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2347extern symrec *sym_table;
2348
a730d142 2349symrec *putsym (char const *, int);
38a92d50 2350symrec *getsym (char const *);
bfa74976
RS
2351@end group
2352@end smallexample
2353
2354The new version of @code{main} includes a call to @code{init_table}, a
2355function that initializes the symbol table. Here it is, and
2356@code{init_table} as well:
2357
2358@smallexample
bfa74976
RS
2359#include <stdio.h>
2360
18b519c0 2361@group
38a92d50 2362/* Called by yyparse on error. */
13863333 2363void
38a92d50 2364yyerror (char const *s)
bfa74976
RS
2365@{
2366 printf ("%s\n", s);
2367@}
18b519c0 2368@end group
bfa74976 2369
18b519c0 2370@group
bfa74976
RS
2371struct init
2372@{
38a92d50
PE
2373 char const *fname;
2374 double (*fnct) (double);
bfa74976
RS
2375@};
2376@end group
2377
2378@group
38a92d50 2379struct init const arith_fncts[] =
13863333 2380@{
32dfccf8
AD
2381 "sin", sin,
2382 "cos", cos,
13863333 2383 "atan", atan,
32dfccf8
AD
2384 "ln", log,
2385 "exp", exp,
13863333
AD
2386 "sqrt", sqrt,
2387 0, 0
2388@};
18b519c0 2389@end group
bfa74976 2390
18b519c0 2391@group
bfa74976 2392/* The symbol table: a chain of `struct symrec'. */
38a92d50 2393symrec *sym_table;
bfa74976
RS
2394@end group
2395
2396@group
72d2299c 2397/* Put arithmetic functions in table. */
13863333
AD
2398void
2399init_table (void)
bfa74976
RS
2400@{
2401 int i;
2402 symrec *ptr;
2403 for (i = 0; arith_fncts[i].fname != 0; i++)
2404 @{
2405 ptr = putsym (arith_fncts[i].fname, FNCT);
2406 ptr->value.fnctptr = arith_fncts[i].fnct;
2407 @}
2408@}
2409@end group
38a92d50
PE
2410
2411@group
2412int
2413main (void)
2414@{
2415 init_table ();
2416 return yyparse ();
2417@}
2418@end group
bfa74976
RS
2419@end smallexample
2420
2421By simply editing the initialization list and adding the necessary include
2422files, you can add additional functions to the calculator.
2423
2424Two important functions allow look-up and installation of symbols in the
2425symbol table. The function @code{putsym} is passed a name and the type
2426(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2427linked to the front of the list, and a pointer to the object is returned.
2428The function @code{getsym} is passed the name of the symbol to look up. If
2429found, a pointer to that symbol is returned; otherwise zero is returned.
2430
2431@smallexample
2432symrec *
38a92d50 2433putsym (char const *sym_name, int sym_type)
bfa74976
RS
2434@{
2435 symrec *ptr;
2436 ptr = (symrec *) malloc (sizeof (symrec));
2437 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2438 strcpy (ptr->name,sym_name);
2439 ptr->type = sym_type;
72d2299c 2440 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2441 ptr->next = (struct symrec *)sym_table;
2442 sym_table = ptr;
2443 return ptr;
2444@}
2445
2446symrec *
38a92d50 2447getsym (char const *sym_name)
bfa74976
RS
2448@{
2449 symrec *ptr;
2450 for (ptr = sym_table; ptr != (symrec *) 0;
2451 ptr = (symrec *)ptr->next)
2452 if (strcmp (ptr->name,sym_name) == 0)
2453 return ptr;
2454 return 0;
2455@}
2456@end smallexample
2457
2458The function @code{yylex} must now recognize variables, numeric values, and
2459the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2460characters with a leading letter are recognized as either variables or
bfa74976
RS
2461functions depending on what the symbol table says about them.
2462
2463The string is passed to @code{getsym} for look up in the symbol table. If
2464the name appears in the table, a pointer to its location and its type
2465(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2466already in the table, then it is installed as a @code{VAR} using
2467@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2468returned to @code{yyparse}.
bfa74976
RS
2469
2470No change is needed in the handling of numeric values and arithmetic
2471operators in @code{yylex}.
2472
2473@smallexample
2474@group
2475#include <ctype.h>
18b519c0 2476@end group
13863333 2477
18b519c0 2478@group
13863333
AD
2479int
2480yylex (void)
bfa74976
RS
2481@{
2482 int c;
2483
72d2299c 2484 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2485 while ((c = getchar ()) == ' ' || c == '\t');
2486
2487 if (c == EOF)
2488 return 0;
2489@end group
2490
2491@group
2492 /* Char starts a number => parse the number. */
2493 if (c == '.' || isdigit (c))
2494 @{
2495 ungetc (c, stdin);
2496 scanf ("%lf", &yylval.val);
2497 return NUM;
2498 @}
2499@end group
2500
2501@group
2502 /* Char starts an identifier => read the name. */
2503 if (isalpha (c))
2504 @{
2505 symrec *s;
2506 static char *symbuf = 0;
2507 static int length = 0;
2508 int i;
2509@end group
2510
2511@group
2512 /* Initially make the buffer long enough
2513 for a 40-character symbol name. */
2514 if (length == 0)
2515 length = 40, symbuf = (char *)malloc (length + 1);
2516
2517 i = 0;
2518 do
2519@end group
2520@group
2521 @{
2522 /* If buffer is full, make it bigger. */
2523 if (i == length)
2524 @{
2525 length *= 2;
18b519c0 2526 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2527 @}
2528 /* Add this character to the buffer. */
2529 symbuf[i++] = c;
2530 /* Get another character. */
2531 c = getchar ();
2532 @}
2533@end group
2534@group
72d2299c 2535 while (isalnum (c));
bfa74976
RS
2536
2537 ungetc (c, stdin);
2538 symbuf[i] = '\0';
2539@end group
2540
2541@group
2542 s = getsym (symbuf);
2543 if (s == 0)
2544 s = putsym (symbuf, VAR);
2545 yylval.tptr = s;
2546 return s->type;
2547 @}
2548
2549 /* Any other character is a token by itself. */
2550 return c;
2551@}
2552@end group
2553@end smallexample
2554
72d2299c 2555This program is both powerful and flexible. You may easily add new
704a47c4
AD
2556functions, and it is a simple job to modify this code to install
2557predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2558
342b8b6e 2559@node Exercises
bfa74976
RS
2560@section Exercises
2561@cindex exercises
2562
2563@enumerate
2564@item
2565Add some new functions from @file{math.h} to the initialization list.
2566
2567@item
2568Add another array that contains constants and their values. Then
2569modify @code{init_table} to add these constants to the symbol table.
2570It will be easiest to give the constants type @code{VAR}.
2571
2572@item
2573Make the program report an error if the user refers to an
2574uninitialized variable in any way except to store a value in it.
2575@end enumerate
2576
342b8b6e 2577@node Grammar File
bfa74976
RS
2578@chapter Bison Grammar Files
2579
2580Bison takes as input a context-free grammar specification and produces a
2581C-language function that recognizes correct instances of the grammar.
2582
2583The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2584@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2585
2586@menu
2587* Grammar Outline:: Overall layout of the grammar file.
2588* Symbols:: Terminal and nonterminal symbols.
2589* Rules:: How to write grammar rules.
2590* Recursion:: Writing recursive rules.
2591* Semantics:: Semantic values and actions.
847bf1f5 2592* Locations:: Locations and actions.
bfa74976
RS
2593* Declarations:: All kinds of Bison declarations are described here.
2594* Multiple Parsers:: Putting more than one Bison parser in one program.
2595@end menu
2596
342b8b6e 2597@node Grammar Outline
bfa74976
RS
2598@section Outline of a Bison Grammar
2599
2600A Bison grammar file has four main sections, shown here with the
2601appropriate delimiters:
2602
2603@example
2604%@{
38a92d50 2605 @var{Prologue}
bfa74976
RS
2606%@}
2607
2608@var{Bison declarations}
2609
2610%%
2611@var{Grammar rules}
2612%%
2613
75f5aaea 2614@var{Epilogue}
bfa74976
RS
2615@end example
2616
2617Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2618As a @acronym{GNU} extension, @samp{//} introduces a comment that
2619continues until end of line.
bfa74976
RS
2620
2621@menu
75f5aaea 2622* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2623* Bison Declarations:: Syntax and usage of the Bison declarations section.
2624* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2625* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2626@end menu
2627
38a92d50 2628@node Prologue
75f5aaea
MA
2629@subsection The prologue
2630@cindex declarations section
2631@cindex Prologue
2632@cindex declarations
bfa74976 2633
f8e1c9e5
AD
2634The @var{Prologue} section contains macro definitions and declarations
2635of functions and variables that are used in the actions in the grammar
2636rules. These are copied to the beginning of the parser file so that
2637they precede the definition of @code{yyparse}. You can use
2638@samp{#include} to get the declarations from a header file. If you
2639don't need any C declarations, you may omit the @samp{%@{} and
2640@samp{%@}} delimiters that bracket this section.
bfa74976 2641
287c78f6
PE
2642The @var{Prologue} section is terminated by the the first occurrence
2643of @samp{%@}} that is outside a comment, a string literal, or a
2644character constant.
2645
c732d2c6
AD
2646You may have more than one @var{Prologue} section, intermixed with the
2647@var{Bison declarations}. This allows you to have C and Bison
2648declarations that refer to each other. For example, the @code{%union}
2649declaration may use types defined in a header file, and you may wish to
2650prototype functions that take arguments of type @code{YYSTYPE}. This
2651can be done with two @var{Prologue} blocks, one before and one after the
2652@code{%union} declaration.
2653
2654@smallexample
2655%@{
38a92d50
PE
2656 #include <stdio.h>
2657 #include "ptypes.h"
c732d2c6
AD
2658%@}
2659
2660%union @{
779e7ceb 2661 long int n;
c732d2c6
AD
2662 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2663@}
2664
2665%@{
38a92d50
PE
2666 static void print_token_value (FILE *, int, YYSTYPE);
2667 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2668%@}
2669
2670@dots{}
2671@end smallexample
2672
342b8b6e 2673@node Bison Declarations
bfa74976
RS
2674@subsection The Bison Declarations Section
2675@cindex Bison declarations (introduction)
2676@cindex declarations, Bison (introduction)
2677
2678The @var{Bison declarations} section contains declarations that define
2679terminal and nonterminal symbols, specify precedence, and so on.
2680In some simple grammars you may not need any declarations.
2681@xref{Declarations, ,Bison Declarations}.
2682
342b8b6e 2683@node Grammar Rules
bfa74976
RS
2684@subsection The Grammar Rules Section
2685@cindex grammar rules section
2686@cindex rules section for grammar
2687
2688The @dfn{grammar rules} section contains one or more Bison grammar
2689rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2690
2691There must always be at least one grammar rule, and the first
2692@samp{%%} (which precedes the grammar rules) may never be omitted even
2693if it is the first thing in the file.
2694
38a92d50 2695@node Epilogue
75f5aaea 2696@subsection The epilogue
bfa74976 2697@cindex additional C code section
75f5aaea 2698@cindex epilogue
bfa74976
RS
2699@cindex C code, section for additional
2700
08e49d20
PE
2701The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2702the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2703place to put anything that you want to have in the parser file but which need
2704not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2705definitions of @code{yylex} and @code{yyerror} often go here. Because
2706C requires functions to be declared before being used, you often need
2707to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2708even if you define them in the Epilogue.
75f5aaea 2709@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2710
2711If the last section is empty, you may omit the @samp{%%} that separates it
2712from the grammar rules.
2713
f8e1c9e5
AD
2714The Bison parser itself contains many macros and identifiers whose names
2715start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2716any such names (except those documented in this manual) in the epilogue
2717of the grammar file.
bfa74976 2718
342b8b6e 2719@node Symbols
bfa74976
RS
2720@section Symbols, Terminal and Nonterminal
2721@cindex nonterminal symbol
2722@cindex terminal symbol
2723@cindex token type
2724@cindex symbol
2725
2726@dfn{Symbols} in Bison grammars represent the grammatical classifications
2727of the language.
2728
2729A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2730class of syntactically equivalent tokens. You use the symbol in grammar
2731rules to mean that a token in that class is allowed. The symbol is
2732represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2733function returns a token type code to indicate what kind of token has
2734been read. You don't need to know what the code value is; you can use
2735the symbol to stand for it.
bfa74976 2736
f8e1c9e5
AD
2737A @dfn{nonterminal symbol} stands for a class of syntactically
2738equivalent groupings. The symbol name is used in writing grammar rules.
2739By convention, it should be all lower case.
bfa74976
RS
2740
2741Symbol names can contain letters, digits (not at the beginning),
2742underscores and periods. Periods make sense only in nonterminals.
2743
931c7513 2744There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2745
2746@itemize @bullet
2747@item
2748A @dfn{named token type} is written with an identifier, like an
c827f760 2749identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2750such name must be defined with a Bison declaration such as
2751@code{%token}. @xref{Token Decl, ,Token Type Names}.
2752
2753@item
2754@cindex character token
2755@cindex literal token
2756@cindex single-character literal
931c7513
RS
2757A @dfn{character token type} (or @dfn{literal character token}) is
2758written in the grammar using the same syntax used in C for character
2759constants; for example, @code{'+'} is a character token type. A
2760character token type doesn't need to be declared unless you need to
2761specify its semantic value data type (@pxref{Value Type, ,Data Types of
2762Semantic Values}), associativity, or precedence (@pxref{Precedence,
2763,Operator Precedence}).
bfa74976
RS
2764
2765By convention, a character token type is used only to represent a
2766token that consists of that particular character. Thus, the token
2767type @code{'+'} is used to represent the character @samp{+} as a
2768token. Nothing enforces this convention, but if you depart from it,
2769your program will confuse other readers.
2770
2771All the usual escape sequences used in character literals in C can be
2772used in Bison as well, but you must not use the null character as a
72d2299c
PE
2773character literal because its numeric code, zero, signifies
2774end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2775for @code{yylex}}). Also, unlike standard C, trigraphs have no
2776special meaning in Bison character literals, nor is backslash-newline
2777allowed.
931c7513
RS
2778
2779@item
2780@cindex string token
2781@cindex literal string token
9ecbd125 2782@cindex multicharacter literal
931c7513
RS
2783A @dfn{literal string token} is written like a C string constant; for
2784example, @code{"<="} is a literal string token. A literal string token
2785doesn't need to be declared unless you need to specify its semantic
14ded682 2786value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2787(@pxref{Precedence}).
2788
2789You can associate the literal string token with a symbolic name as an
2790alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2791Declarations}). If you don't do that, the lexical analyzer has to
2792retrieve the token number for the literal string token from the
2793@code{yytname} table (@pxref{Calling Convention}).
2794
c827f760 2795@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2796
2797By convention, a literal string token is used only to represent a token
2798that consists of that particular string. Thus, you should use the token
2799type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2800does not enforce this convention, but if you depart from it, people who
931c7513
RS
2801read your program will be confused.
2802
2803All the escape sequences used in string literals in C can be used in
92ac3705
PE
2804Bison as well, except that you must not use a null character within a
2805string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2806meaning in Bison string literals, nor is backslash-newline allowed. A
2807literal string token must contain two or more characters; for a token
2808containing just one character, use a character token (see above).
bfa74976
RS
2809@end itemize
2810
2811How you choose to write a terminal symbol has no effect on its
2812grammatical meaning. That depends only on where it appears in rules and
2813on when the parser function returns that symbol.
2814
72d2299c
PE
2815The value returned by @code{yylex} is always one of the terminal
2816symbols, except that a zero or negative value signifies end-of-input.
2817Whichever way you write the token type in the grammar rules, you write
2818it the same way in the definition of @code{yylex}. The numeric code
2819for a character token type is simply the positive numeric code of the
2820character, so @code{yylex} can use the identical value to generate the
2821requisite code, though you may need to convert it to @code{unsigned
2822char} to avoid sign-extension on hosts where @code{char} is signed.
2823Each named token type becomes a C macro in
bfa74976 2824the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2825(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2826@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2827
2828If @code{yylex} is defined in a separate file, you need to arrange for the
2829token-type macro definitions to be available there. Use the @samp{-d}
2830option when you run Bison, so that it will write these macro definitions
2831into a separate header file @file{@var{name}.tab.h} which you can include
2832in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2833
72d2299c 2834If you want to write a grammar that is portable to any Standard C
9d9b8b70 2835host, you must use only nonnull character tokens taken from the basic
c827f760 2836execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2837digits, the 52 lower- and upper-case English letters, and the
2838characters in the following C-language string:
2839
2840@example
2841"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2842@end example
2843
f8e1c9e5
AD
2844The @code{yylex} function and Bison must use a consistent character set
2845and encoding for character tokens. For example, if you run Bison in an
2846@acronym{ASCII} environment, but then compile and run the resulting
2847program in an environment that uses an incompatible character set like
2848@acronym{EBCDIC}, the resulting program may not work because the tables
2849generated by Bison will assume @acronym{ASCII} numeric values for
2850character tokens. It is standard practice for software distributions to
2851contain C source files that were generated by Bison in an
2852@acronym{ASCII} environment, so installers on platforms that are
2853incompatible with @acronym{ASCII} must rebuild those files before
2854compiling them.
e966383b 2855
bfa74976
RS
2856The symbol @code{error} is a terminal symbol reserved for error recovery
2857(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2858In particular, @code{yylex} should never return this value. The default
2859value of the error token is 256, unless you explicitly assigned 256 to
2860one of your tokens with a @code{%token} declaration.
bfa74976 2861
342b8b6e 2862@node Rules
bfa74976
RS
2863@section Syntax of Grammar Rules
2864@cindex rule syntax
2865@cindex grammar rule syntax
2866@cindex syntax of grammar rules
2867
2868A Bison grammar rule has the following general form:
2869
2870@example
e425e872 2871@group
bfa74976
RS
2872@var{result}: @var{components}@dots{}
2873 ;
e425e872 2874@end group
bfa74976
RS
2875@end example
2876
2877@noindent
9ecbd125 2878where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2879and @var{components} are various terminal and nonterminal symbols that
13863333 2880are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2881
2882For example,
2883
2884@example
2885@group
2886exp: exp '+' exp
2887 ;
2888@end group
2889@end example
2890
2891@noindent
2892says that two groupings of type @code{exp}, with a @samp{+} token in between,
2893can be combined into a larger grouping of type @code{exp}.
2894
72d2299c
PE
2895White space in rules is significant only to separate symbols. You can add
2896extra white space as you wish.
bfa74976
RS
2897
2898Scattered among the components can be @var{actions} that determine
2899the semantics of the rule. An action looks like this:
2900
2901@example
2902@{@var{C statements}@}
2903@end example
2904
2905@noindent
287c78f6
PE
2906@cindex braced code
2907This is an example of @dfn{braced code}, that is, C code surrounded by
2908braces, much like a compound statement in C@. Braced code can contain
2909any sequence of C tokens, so long as its braces are balanced. Bison
2910does not check the braced code for correctness directly; it merely
2911copies the code to the output file, where the C compiler can check it.
2912
2913Within braced code, the balanced-brace count is not affected by braces
2914within comments, string literals, or character constants, but it is
2915affected by the C digraphs @samp{<%} and @samp{%>} that represent
2916braces. At the top level braced code must be terminated by @samp{@}}
2917and not by a digraph. Bison does not look for trigraphs, so if braced
2918code uses trigraphs you should ensure that they do not affect the
2919nesting of braces or the boundaries of comments, string literals, or
2920character constants.
2921
bfa74976
RS
2922Usually there is only one action and it follows the components.
2923@xref{Actions}.
2924
2925@findex |
2926Multiple rules for the same @var{result} can be written separately or can
2927be joined with the vertical-bar character @samp{|} as follows:
2928
2929@ifinfo
2930@example
2931@var{result}: @var{rule1-components}@dots{}
2932 | @var{rule2-components}@dots{}
2933 @dots{}
2934 ;
2935@end example
2936@end ifinfo
2937@iftex
2938@example
2939@group
2940@var{result}: @var{rule1-components}@dots{}
2941 | @var{rule2-components}@dots{}
2942 @dots{}
2943 ;
2944@end group
2945@end example
2946@end iftex
2947
2948@noindent
2949They are still considered distinct rules even when joined in this way.
2950
2951If @var{components} in a rule is empty, it means that @var{result} can
2952match the empty string. For example, here is how to define a
2953comma-separated sequence of zero or more @code{exp} groupings:
2954
2955@example
2956@group
2957expseq: /* empty */
2958 | expseq1
2959 ;
2960@end group
2961
2962@group
2963expseq1: exp
2964 | expseq1 ',' exp
2965 ;
2966@end group
2967@end example
2968
2969@noindent
2970It is customary to write a comment @samp{/* empty */} in each rule
2971with no components.
2972
342b8b6e 2973@node Recursion
bfa74976
RS
2974@section Recursive Rules
2975@cindex recursive rule
2976
f8e1c9e5
AD
2977A rule is called @dfn{recursive} when its @var{result} nonterminal
2978appears also on its right hand side. Nearly all Bison grammars need to
2979use recursion, because that is the only way to define a sequence of any
2980number of a particular thing. Consider this recursive definition of a
9ecbd125 2981comma-separated sequence of one or more expressions:
bfa74976
RS
2982
2983@example
2984@group
2985expseq1: exp
2986 | expseq1 ',' exp
2987 ;
2988@end group
2989@end example
2990
2991@cindex left recursion
2992@cindex right recursion
2993@noindent
2994Since the recursive use of @code{expseq1} is the leftmost symbol in the
2995right hand side, we call this @dfn{left recursion}. By contrast, here
2996the same construct is defined using @dfn{right recursion}:
2997
2998@example
2999@group
3000expseq1: exp
3001 | exp ',' expseq1
3002 ;
3003@end group
3004@end example
3005
3006@noindent
ec3bc396
AD
3007Any kind of sequence can be defined using either left recursion or right
3008recursion, but you should always use left recursion, because it can
3009parse a sequence of any number of elements with bounded stack space.
3010Right recursion uses up space on the Bison stack in proportion to the
3011number of elements in the sequence, because all the elements must be
3012shifted onto the stack before the rule can be applied even once.
3013@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3014of this.
bfa74976
RS
3015
3016@cindex mutual recursion
3017@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3018rule does not appear directly on its right hand side, but does appear
3019in rules for other nonterminals which do appear on its right hand
13863333 3020side.
bfa74976
RS
3021
3022For example:
3023
3024@example
3025@group
3026expr: primary
3027 | primary '+' primary
3028 ;
3029@end group
3030
3031@group
3032primary: constant
3033 | '(' expr ')'
3034 ;
3035@end group
3036@end example
3037
3038@noindent
3039defines two mutually-recursive nonterminals, since each refers to the
3040other.
3041
342b8b6e 3042@node Semantics
bfa74976
RS
3043@section Defining Language Semantics
3044@cindex defining language semantics
13863333 3045@cindex language semantics, defining
bfa74976
RS
3046
3047The grammar rules for a language determine only the syntax. The semantics
3048are determined by the semantic values associated with various tokens and
3049groupings, and by the actions taken when various groupings are recognized.
3050
3051For example, the calculator calculates properly because the value
3052associated with each expression is the proper number; it adds properly
3053because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3054the numbers associated with @var{x} and @var{y}.
3055
3056@menu
3057* Value Type:: Specifying one data type for all semantic values.
3058* Multiple Types:: Specifying several alternative data types.
3059* Actions:: An action is the semantic definition of a grammar rule.
3060* Action Types:: Specifying data types for actions to operate on.
3061* Mid-Rule Actions:: Most actions go at the end of a rule.
3062 This says when, why and how to use the exceptional
3063 action in the middle of a rule.
3064@end menu
3065
342b8b6e 3066@node Value Type
bfa74976
RS
3067@subsection Data Types of Semantic Values
3068@cindex semantic value type
3069@cindex value type, semantic
3070@cindex data types of semantic values
3071@cindex default data type
3072
3073In a simple program it may be sufficient to use the same data type for
3074the semantic values of all language constructs. This was true in the
c827f760 3075@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3076Notation Calculator}).
bfa74976
RS
3077
3078Bison's default is to use type @code{int} for all semantic values. To
3079specify some other type, define @code{YYSTYPE} as a macro, like this:
3080
3081@example
3082#define YYSTYPE double
3083@end example
3084
3085@noindent
342b8b6e 3086This macro definition must go in the prologue of the grammar file
75f5aaea 3087(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3088
342b8b6e 3089@node Multiple Types
bfa74976
RS
3090@subsection More Than One Value Type
3091
3092In most programs, you will need different data types for different kinds
3093of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3094@code{int} or @code{long int}, while a string constant needs type
3095@code{char *}, and an identifier might need a pointer to an entry in the
3096symbol table.
bfa74976
RS
3097
3098To use more than one data type for semantic values in one parser, Bison
3099requires you to do two things:
3100
3101@itemize @bullet
3102@item
3103Specify the entire collection of possible data types, with the
704a47c4
AD
3104@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3105Value Types}).
bfa74976
RS
3106
3107@item
14ded682
AD
3108Choose one of those types for each symbol (terminal or nonterminal) for
3109which semantic values are used. This is done for tokens with the
3110@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3111and for groupings with the @code{%type} Bison declaration (@pxref{Type
3112Decl, ,Nonterminal Symbols}).
bfa74976
RS
3113@end itemize
3114
342b8b6e 3115@node Actions
bfa74976
RS
3116@subsection Actions
3117@cindex action
3118@vindex $$
3119@vindex $@var{n}
3120
3121An action accompanies a syntactic rule and contains C code to be executed
3122each time an instance of that rule is recognized. The task of most actions
3123is to compute a semantic value for the grouping built by the rule from the
3124semantic values associated with tokens or smaller groupings.
3125
287c78f6
PE
3126An action consists of braced code containing C statements, and can be
3127placed at any position in the rule;
704a47c4
AD
3128it is executed at that position. Most rules have just one action at the
3129end of the rule, following all the components. Actions in the middle of
3130a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3131Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3132
3133The C code in an action can refer to the semantic values of the components
3134matched by the rule with the construct @code{$@var{n}}, which stands for
3135the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3136being constructed is @code{$$}. Bison translates both of these
3137constructs into expressions of the appropriate type when it copies the
3138actions into the parser file. @code{$$} is translated to a modifiable
3139lvalue, so it can be assigned to.
bfa74976
RS
3140
3141Here is a typical example:
3142
3143@example
3144@group
3145exp: @dots{}
3146 | exp '+' exp
3147 @{ $$ = $1 + $3; @}
3148@end group
3149@end example
3150
3151@noindent
3152This rule constructs an @code{exp} from two smaller @code{exp} groupings
3153connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3154refer to the semantic values of the two component @code{exp} groupings,
3155which are the first and third symbols on the right hand side of the rule.
3156The sum is stored into @code{$$} so that it becomes the semantic value of
3157the addition-expression just recognized by the rule. If there were a
3158useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3159referred to as @code{$2}.
bfa74976 3160
3ded9a63
AD
3161Note that the vertical-bar character @samp{|} is really a rule
3162separator, and actions are attached to a single rule. This is a
3163difference with tools like Flex, for which @samp{|} stands for either
3164``or'', or ``the same action as that of the next rule''. In the
3165following example, the action is triggered only when @samp{b} is found:
3166
3167@example
3168@group
3169a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3170@end group
3171@end example
3172
bfa74976
RS
3173@cindex default action
3174If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3175@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3176becomes the value of the whole rule. Of course, the default action is
3177valid only if the two data types match. There is no meaningful default
3178action for an empty rule; every empty rule must have an explicit action
3179unless the rule's value does not matter.
bfa74976
RS
3180
3181@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3182to tokens and groupings on the stack @emph{before} those that match the
3183current rule. This is a very risky practice, and to use it reliably
3184you must be certain of the context in which the rule is applied. Here
3185is a case in which you can use this reliably:
3186
3187@example
3188@group
3189foo: expr bar '+' expr @{ @dots{} @}
3190 | expr bar '-' expr @{ @dots{} @}
3191 ;
3192@end group
3193
3194@group
3195bar: /* empty */
3196 @{ previous_expr = $0; @}
3197 ;
3198@end group
3199@end example
3200
3201As long as @code{bar} is used only in the fashion shown here, @code{$0}
3202always refers to the @code{expr} which precedes @code{bar} in the
3203definition of @code{foo}.
3204
32c29292
JD
3205@vindex yylval
3206It is also possible to access the semantic value of the look-ahead token, if
3207any, from a semantic action.
3208This semantic value is stored in @code{yylval}.
3209@xref{Action Features, ,Special Features for Use in Actions}.
3210
342b8b6e 3211@node Action Types
bfa74976
RS
3212@subsection Data Types of Values in Actions
3213@cindex action data types
3214@cindex data types in actions
3215
3216If you have chosen a single data type for semantic values, the @code{$$}
3217and @code{$@var{n}} constructs always have that data type.
3218
3219If you have used @code{%union} to specify a variety of data types, then you
3220must declare a choice among these types for each terminal or nonterminal
3221symbol that can have a semantic value. Then each time you use @code{$$} or
3222@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3223in the rule. In this example,
bfa74976
RS
3224
3225@example
3226@group
3227exp: @dots{}
3228 | exp '+' exp
3229 @{ $$ = $1 + $3; @}
3230@end group
3231@end example
3232
3233@noindent
3234@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3235have the data type declared for the nonterminal symbol @code{exp}. If
3236@code{$2} were used, it would have the data type declared for the
e0c471a9 3237terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3238
3239Alternatively, you can specify the data type when you refer to the value,
3240by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3241reference. For example, if you have defined types as shown here:
3242
3243@example
3244@group
3245%union @{
3246 int itype;
3247 double dtype;
3248@}
3249@end group
3250@end example
3251
3252@noindent
3253then you can write @code{$<itype>1} to refer to the first subunit of the
3254rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3255
342b8b6e 3256@node Mid-Rule Actions
bfa74976
RS
3257@subsection Actions in Mid-Rule
3258@cindex actions in mid-rule
3259@cindex mid-rule actions
3260
3261Occasionally it is useful to put an action in the middle of a rule.
3262These actions are written just like usual end-of-rule actions, but they
3263are executed before the parser even recognizes the following components.
3264
3265A mid-rule action may refer to the components preceding it using
3266@code{$@var{n}}, but it may not refer to subsequent components because
3267it is run before they are parsed.
3268
3269The mid-rule action itself counts as one of the components of the rule.
3270This makes a difference when there is another action later in the same rule
3271(and usually there is another at the end): you have to count the actions
3272along with the symbols when working out which number @var{n} to use in
3273@code{$@var{n}}.
3274
3275The mid-rule action can also have a semantic value. The action can set
3276its value with an assignment to @code{$$}, and actions later in the rule
3277can refer to the value using @code{$@var{n}}. Since there is no symbol
3278to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3279in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3280specify a data type each time you refer to this value.
bfa74976
RS
3281
3282There is no way to set the value of the entire rule with a mid-rule
3283action, because assignments to @code{$$} do not have that effect. The
3284only way to set the value for the entire rule is with an ordinary action
3285at the end of the rule.
3286
3287Here is an example from a hypothetical compiler, handling a @code{let}
3288statement that looks like @samp{let (@var{variable}) @var{statement}} and
3289serves to create a variable named @var{variable} temporarily for the
3290duration of @var{statement}. To parse this construct, we must put
3291@var{variable} into the symbol table while @var{statement} is parsed, then
3292remove it afterward. Here is how it is done:
3293
3294@example
3295@group
3296stmt: LET '(' var ')'
3297 @{ $<context>$ = push_context ();
3298 declare_variable ($3); @}
3299 stmt @{ $$ = $6;
3300 pop_context ($<context>5); @}
3301@end group
3302@end example
3303
3304@noindent
3305As soon as @samp{let (@var{variable})} has been recognized, the first
3306action is run. It saves a copy of the current semantic context (the
3307list of accessible variables) as its semantic value, using alternative
3308@code{context} in the data-type union. Then it calls
3309@code{declare_variable} to add the new variable to that list. Once the
3310first action is finished, the embedded statement @code{stmt} can be
3311parsed. Note that the mid-rule action is component number 5, so the
3312@samp{stmt} is component number 6.
3313
3314After the embedded statement is parsed, its semantic value becomes the
3315value of the entire @code{let}-statement. Then the semantic value from the
3316earlier action is used to restore the prior list of variables. This
3317removes the temporary @code{let}-variable from the list so that it won't
3318appear to exist while the rest of the program is parsed.
3319
3320Taking action before a rule is completely recognized often leads to
3321conflicts since the parser must commit to a parse in order to execute the
3322action. For example, the following two rules, without mid-rule actions,
3323can coexist in a working parser because the parser can shift the open-brace
3324token and look at what follows before deciding whether there is a
3325declaration or not:
3326
3327@example
3328@group
3329compound: '@{' declarations statements '@}'
3330 | '@{' statements '@}'
3331 ;
3332@end group
3333@end example
3334
3335@noindent
3336But when we add a mid-rule action as follows, the rules become nonfunctional:
3337
3338@example
3339@group
3340compound: @{ prepare_for_local_variables (); @}
3341 '@{' declarations statements '@}'
3342@end group
3343@group
3344 | '@{' statements '@}'
3345 ;
3346@end group
3347@end example
3348
3349@noindent
3350Now the parser is forced to decide whether to run the mid-rule action
3351when it has read no farther than the open-brace. In other words, it
3352must commit to using one rule or the other, without sufficient
3353information to do it correctly. (The open-brace token is what is called
3354the @dfn{look-ahead} token at this time, since the parser is still
3355deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3356
3357You might think that you could correct the problem by putting identical
3358actions into the two rules, like this:
3359
3360@example
3361@group
3362compound: @{ prepare_for_local_variables (); @}
3363 '@{' declarations statements '@}'
3364 | @{ prepare_for_local_variables (); @}
3365 '@{' statements '@}'
3366 ;
3367@end group
3368@end example
3369
3370@noindent
3371But this does not help, because Bison does not realize that the two actions
3372are identical. (Bison never tries to understand the C code in an action.)
3373
3374If the grammar is such that a declaration can be distinguished from a
3375statement by the first token (which is true in C), then one solution which
3376does work is to put the action after the open-brace, like this:
3377
3378@example
3379@group
3380compound: '@{' @{ prepare_for_local_variables (); @}
3381 declarations statements '@}'
3382 | '@{' statements '@}'
3383 ;
3384@end group
3385@end example
3386
3387@noindent
3388Now the first token of the following declaration or statement,
3389which would in any case tell Bison which rule to use, can still do so.
3390
3391Another solution is to bury the action inside a nonterminal symbol which
3392serves as a subroutine:
3393
3394@example
3395@group
3396subroutine: /* empty */
3397 @{ prepare_for_local_variables (); @}
3398 ;
3399
3400@end group
3401
3402@group
3403compound: subroutine
3404 '@{' declarations statements '@}'
3405 | subroutine
3406 '@{' statements '@}'
3407 ;
3408@end group
3409@end example
3410
3411@noindent
3412Now Bison can execute the action in the rule for @code{subroutine} without
3413deciding which rule for @code{compound} it will eventually use. Note that
3414the action is now at the end of its rule. Any mid-rule action can be
3415converted to an end-of-rule action in this way, and this is what Bison
3416actually does to implement mid-rule actions.
3417
342b8b6e 3418@node Locations
847bf1f5
AD
3419@section Tracking Locations
3420@cindex location
95923bd6
AD
3421@cindex textual location
3422@cindex location, textual
847bf1f5
AD
3423
3424Though grammar rules and semantic actions are enough to write a fully
72d2299c 3425functional parser, it can be useful to process some additional information,
3e259915
MA
3426especially symbol locations.
3427
704a47c4
AD
3428The way locations are handled is defined by providing a data type, and
3429actions to take when rules are matched.
847bf1f5
AD
3430
3431@menu
3432* Location Type:: Specifying a data type for locations.
3433* Actions and Locations:: Using locations in actions.
3434* Location Default Action:: Defining a general way to compute locations.
3435@end menu
3436
342b8b6e 3437@node Location Type
847bf1f5
AD
3438@subsection Data Type of Locations
3439@cindex data type of locations
3440@cindex default location type
3441
3442Defining a data type for locations is much simpler than for semantic values,
3443since all tokens and groupings always use the same type.
3444
3445The type of locations is specified by defining a macro called @code{YYLTYPE}.
3446When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3447four members:
3448
3449@example
6273355b 3450typedef struct YYLTYPE
847bf1f5
AD
3451@{
3452 int first_line;
3453 int first_column;
3454 int last_line;
3455 int last_column;
6273355b 3456@} YYLTYPE;
847bf1f5
AD
3457@end example
3458
342b8b6e 3459@node Actions and Locations
847bf1f5
AD
3460@subsection Actions and Locations
3461@cindex location actions
3462@cindex actions, location
3463@vindex @@$
3464@vindex @@@var{n}
3465
3466Actions are not only useful for defining language semantics, but also for
3467describing the behavior of the output parser with locations.
3468
3469The most obvious way for building locations of syntactic groupings is very
72d2299c 3470similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3471constructs can be used to access the locations of the elements being matched.
3472The location of the @var{n}th component of the right hand side is
3473@code{@@@var{n}}, while the location of the left hand side grouping is
3474@code{@@$}.
3475
3e259915 3476Here is a basic example using the default data type for locations:
847bf1f5
AD
3477
3478@example
3479@group
3480exp: @dots{}
3e259915 3481 | exp '/' exp
847bf1f5 3482 @{
3e259915
MA
3483 @@$.first_column = @@1.first_column;
3484 @@$.first_line = @@1.first_line;
847bf1f5
AD
3485 @@$.last_column = @@3.last_column;
3486 @@$.last_line = @@3.last_line;
3e259915
MA
3487 if ($3)
3488 $$ = $1 / $3;
3489 else
3490 @{
3491 $$ = 1;
4e03e201
AD
3492 fprintf (stderr,
3493 "Division by zero, l%d,c%d-l%d,c%d",
3494 @@3.first_line, @@3.first_column,
3495 @@3.last_line, @@3.last_column);
3e259915 3496 @}
847bf1f5
AD
3497 @}
3498@end group
3499@end example
3500
3e259915 3501As for semantic values, there is a default action for locations that is
72d2299c 3502run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3503beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3504last symbol.
3e259915 3505
72d2299c 3506With this default action, the location tracking can be fully automatic. The
3e259915
MA
3507example above simply rewrites this way:
3508
3509@example
3510@group
3511exp: @dots{}
3512 | exp '/' exp
3513 @{
3514 if ($3)
3515 $$ = $1 / $3;
3516 else
3517 @{
3518 $$ = 1;
4e03e201
AD
3519 fprintf (stderr,
3520 "Division by zero, l%d,c%d-l%d,c%d",
3521 @@3.first_line, @@3.first_column,
3522 @@3.last_line, @@3.last_column);
3e259915
MA
3523 @}
3524 @}
3525@end group
3526@end example
847bf1f5 3527
32c29292
JD
3528@vindex yylloc
3529It is also possible to access the location of the look-ahead token, if any,
3530from a semantic action.
3531This location is stored in @code{yylloc}.
3532@xref{Action Features, ,Special Features for Use in Actions}.
3533
342b8b6e 3534@node Location Default Action
847bf1f5
AD
3535@subsection Default Action for Locations
3536@vindex YYLLOC_DEFAULT
3537
72d2299c 3538Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3539locations are much more general than semantic values, there is room in
3540the output parser to redefine the default action to take for each
72d2299c 3541rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3542matched, before the associated action is run. It is also invoked
3543while processing a syntax error, to compute the error's location.
847bf1f5 3544
3e259915 3545Most of the time, this macro is general enough to suppress location
79282c6c 3546dedicated code from semantic actions.
847bf1f5 3547
72d2299c 3548The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3549the location of the grouping (the result of the computation). When a
766de5eb 3550rule is matched, the second parameter identifies locations of
96b93a3d
PE
3551all right hand side elements of the rule being matched, and the third
3552parameter is the size of the rule's right hand side. When processing
766de5eb 3553a syntax error, the second parameter identifies locations of
96b93a3d
PE
3554the symbols that were discarded during error processing, and the third
3555parameter is the number of discarded symbols.
847bf1f5 3556
766de5eb 3557By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3558
766de5eb 3559@smallexample
847bf1f5 3560@group
766de5eb
PE
3561# define YYLLOC_DEFAULT(Current, Rhs, N) \
3562 do \
3563 if (N) \
3564 @{ \
3565 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3566 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3567 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3568 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3569 @} \
3570 else \
3571 @{ \
3572 (Current).first_line = (Current).last_line = \
3573 YYRHSLOC(Rhs, 0).last_line; \
3574 (Current).first_column = (Current).last_column = \
3575 YYRHSLOC(Rhs, 0).last_column; \
3576 @} \
3577 while (0)
847bf1f5 3578@end group
766de5eb 3579@end smallexample
676385e2 3580
766de5eb
PE
3581where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3582in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3583just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3584
3e259915 3585When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3586
3e259915 3587@itemize @bullet
79282c6c 3588@item
72d2299c 3589All arguments are free of side-effects. However, only the first one (the
3e259915 3590result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3591
3e259915 3592@item
766de5eb
PE
3593For consistency with semantic actions, valid indexes within the
3594right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3595valid index, and it refers to the symbol just before the reduction.
3596During error processing @var{n} is always positive.
0ae99356
PE
3597
3598@item
3599Your macro should parenthesize its arguments, if need be, since the
3600actual arguments may not be surrounded by parentheses. Also, your
3601macro should expand to something that can be used as a single
3602statement when it is followed by a semicolon.
3e259915 3603@end itemize
847bf1f5 3604
342b8b6e 3605@node Declarations
bfa74976
RS
3606@section Bison Declarations
3607@cindex declarations, Bison
3608@cindex Bison declarations
3609
3610The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3611used in formulating the grammar and the data types of semantic values.
3612@xref{Symbols}.
3613
3614All token type names (but not single-character literal tokens such as
3615@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3616declared if you need to specify which data type to use for the semantic
3617value (@pxref{Multiple Types, ,More Than One Value Type}).
3618
3619The first rule in the file also specifies the start symbol, by default.
3620If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3621it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3622Grammars}).
bfa74976
RS
3623
3624@menu
b50d2359 3625* Require Decl:: Requiring a Bison version.
bfa74976
RS
3626* Token Decl:: Declaring terminal symbols.
3627* Precedence Decl:: Declaring terminals with precedence and associativity.
3628* Union Decl:: Declaring the set of all semantic value types.
3629* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3630* Initial Action Decl:: Code run before parsing starts.
72f889cc 3631* Destructor Decl:: Declaring how symbols are freed.
d6328241 3632* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3633* Start Decl:: Specifying the start symbol.
3634* Pure Decl:: Requesting a reentrant parser.
3635* Decl Summary:: Table of all Bison declarations.
3636@end menu
3637
b50d2359
AD
3638@node Require Decl
3639@subsection Require a Version of Bison
3640@cindex version requirement
3641@cindex requiring a version of Bison
3642@findex %require
3643
3644You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3645the requirement is not met, @command{bison} exits with an error (exit
3646status 63).
b50d2359
AD
3647
3648@example
3649%require "@var{version}"
3650@end example
3651
342b8b6e 3652@node Token Decl
bfa74976
RS
3653@subsection Token Type Names
3654@cindex declaring token type names
3655@cindex token type names, declaring
931c7513 3656@cindex declaring literal string tokens
bfa74976
RS
3657@findex %token
3658
3659The basic way to declare a token type name (terminal symbol) is as follows:
3660
3661@example
3662%token @var{name}
3663@end example
3664
3665Bison will convert this into a @code{#define} directive in
3666the parser, so that the function @code{yylex} (if it is in this file)
3667can use the name @var{name} to stand for this token type's code.
3668
14ded682
AD
3669Alternatively, you can use @code{%left}, @code{%right}, or
3670@code{%nonassoc} instead of @code{%token}, if you wish to specify
3671associativity and precedence. @xref{Precedence Decl, ,Operator
3672Precedence}.
bfa74976
RS
3673
3674You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3675a decimal or hexadecimal integer value in the field immediately
3676following the token name:
bfa74976
RS
3677
3678@example
3679%token NUM 300
1452af69 3680%token XNUM 0x12d // a GNU extension
bfa74976
RS
3681@end example
3682
3683@noindent
3684It is generally best, however, to let Bison choose the numeric codes for
3685all token types. Bison will automatically select codes that don't conflict
e966383b 3686with each other or with normal characters.
bfa74976
RS
3687
3688In the event that the stack type is a union, you must augment the
3689@code{%token} or other token declaration to include the data type
704a47c4
AD
3690alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3691Than One Value Type}).
bfa74976
RS
3692
3693For example:
3694
3695@example
3696@group
3697%union @{ /* define stack type */
3698 double val;
3699 symrec *tptr;
3700@}
3701%token <val> NUM /* define token NUM and its type */
3702@end group
3703@end example
3704
931c7513
RS
3705You can associate a literal string token with a token type name by
3706writing the literal string at the end of a @code{%token}
3707declaration which declares the name. For example:
3708
3709@example
3710%token arrow "=>"
3711@end example
3712
3713@noindent
3714For example, a grammar for the C language might specify these names with
3715equivalent literal string tokens:
3716
3717@example
3718%token <operator> OR "||"
3719%token <operator> LE 134 "<="
3720%left OR "<="
3721@end example
3722
3723@noindent
3724Once you equate the literal string and the token name, you can use them
3725interchangeably in further declarations or the grammar rules. The
3726@code{yylex} function can use the token name or the literal string to
3727obtain the token type code number (@pxref{Calling Convention}).
3728
342b8b6e 3729@node Precedence Decl
bfa74976
RS
3730@subsection Operator Precedence
3731@cindex precedence declarations
3732@cindex declaring operator precedence
3733@cindex operator precedence, declaring
3734
3735Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3736declare a token and specify its precedence and associativity, all at
3737once. These are called @dfn{precedence declarations}.
704a47c4
AD
3738@xref{Precedence, ,Operator Precedence}, for general information on
3739operator precedence.
bfa74976
RS
3740
3741The syntax of a precedence declaration is the same as that of
3742@code{%token}: either
3743
3744@example
3745%left @var{symbols}@dots{}
3746@end example
3747
3748@noindent
3749or
3750
3751@example
3752%left <@var{type}> @var{symbols}@dots{}
3753@end example
3754
3755And indeed any of these declarations serves the purposes of @code{%token}.
3756But in addition, they specify the associativity and relative precedence for
3757all the @var{symbols}:
3758
3759@itemize @bullet
3760@item
3761The associativity of an operator @var{op} determines how repeated uses
3762of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3763@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3764grouping @var{y} with @var{z} first. @code{%left} specifies
3765left-associativity (grouping @var{x} with @var{y} first) and
3766@code{%right} specifies right-associativity (grouping @var{y} with
3767@var{z} first). @code{%nonassoc} specifies no associativity, which
3768means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3769considered a syntax error.
3770
3771@item
3772The precedence of an operator determines how it nests with other operators.
3773All the tokens declared in a single precedence declaration have equal
3774precedence and nest together according to their associativity.
3775When two tokens declared in different precedence declarations associate,
3776the one declared later has the higher precedence and is grouped first.
3777@end itemize
3778
342b8b6e 3779@node Union Decl
bfa74976
RS
3780@subsection The Collection of Value Types
3781@cindex declaring value types
3782@cindex value types, declaring
3783@findex %union
3784
287c78f6
PE
3785The @code{%union} declaration specifies the entire collection of
3786possible data types for semantic values. The keyword @code{%union} is
3787followed by braced code containing the same thing that goes inside a
3788@code{union} in C@.
bfa74976
RS
3789
3790For example:
3791
3792@example
3793@group
3794%union @{
3795 double val;
3796 symrec *tptr;
3797@}
3798@end group
3799@end example
3800
3801@noindent
3802This says that the two alternative types are @code{double} and @code{symrec
3803*}. They are given names @code{val} and @code{tptr}; these names are used
3804in the @code{%token} and @code{%type} declarations to pick one of the types
3805for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3806
6273355b
PE
3807As an extension to @acronym{POSIX}, a tag is allowed after the
3808@code{union}. For example:
3809
3810@example
3811@group
3812%union value @{
3813 double val;
3814 symrec *tptr;
3815@}
3816@end group
3817@end example
3818
d6ca7905 3819@noindent
6273355b
PE
3820specifies the union tag @code{value}, so the corresponding C type is
3821@code{union value}. If you do not specify a tag, it defaults to
3822@code{YYSTYPE}.
3823
d6ca7905
PE
3824As another extension to @acronym{POSIX}, you may specify multiple
3825@code{%union} declarations; their contents are concatenated. However,
3826only the first @code{%union} declaration can specify a tag.
3827
6273355b 3828Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3829a semicolon after the closing brace.
3830
342b8b6e 3831@node Type Decl
bfa74976
RS
3832@subsection Nonterminal Symbols
3833@cindex declaring value types, nonterminals
3834@cindex value types, nonterminals, declaring
3835@findex %type
3836
3837@noindent
3838When you use @code{%union} to specify multiple value types, you must
3839declare the value type of each nonterminal symbol for which values are
3840used. This is done with a @code{%type} declaration, like this:
3841
3842@example
3843%type <@var{type}> @var{nonterminal}@dots{}
3844@end example
3845
3846@noindent
704a47c4
AD
3847Here @var{nonterminal} is the name of a nonterminal symbol, and
3848@var{type} is the name given in the @code{%union} to the alternative
3849that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3850can give any number of nonterminal symbols in the same @code{%type}
3851declaration, if they have the same value type. Use spaces to separate
3852the symbol names.
bfa74976 3853
931c7513
RS
3854You can also declare the value type of a terminal symbol. To do this,
3855use the same @code{<@var{type}>} construction in a declaration for the
3856terminal symbol. All kinds of token declarations allow
3857@code{<@var{type}>}.
3858
18d192f0
AD
3859@node Initial Action Decl
3860@subsection Performing Actions before Parsing
3861@findex %initial-action
3862
3863Sometimes your parser needs to perform some initializations before
3864parsing. The @code{%initial-action} directive allows for such arbitrary
3865code.
3866
3867@deffn {Directive} %initial-action @{ @var{code} @}
3868@findex %initial-action
287c78f6 3869Declare that the braced @var{code} must be invoked before parsing each time
451364ed
AD
3870@code{yyparse} is called. The @var{code} may use @code{$$} and
3871@code{@@$} --- initial value and location of the look-ahead --- and the
3872@code{%parse-param}.
18d192f0
AD
3873@end deffn
3874
451364ed
AD
3875For instance, if your locations use a file name, you may use
3876
3877@example
48b16bbc 3878%parse-param @{ char const *file_name @};
451364ed
AD
3879%initial-action
3880@{
4626a15d 3881 @@$.initialize (file_name);
451364ed
AD
3882@};
3883@end example
3884
18d192f0 3885
72f889cc
AD
3886@node Destructor Decl
3887@subsection Freeing Discarded Symbols
3888@cindex freeing discarded symbols
3889@findex %destructor
3890
a85284cf
AD
3891During error recovery (@pxref{Error Recovery}), symbols already pushed
3892on the stack and tokens coming from the rest of the file are discarded
3893until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3894or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3895symbols on the stack must be discarded. Even if the parser succeeds, it
3896must discard the start symbol.
258b75ca
PE
3897
3898When discarded symbols convey heap based information, this memory is
3899lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3900in traditional compilers, it is unacceptable for programs like shells or
3901protocol implementations that may parse and execute indefinitely.
258b75ca 3902
a85284cf
AD
3903The @code{%destructor} directive defines code that is called when a
3904symbol is automatically discarded.
72f889cc
AD
3905
3906@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3907@findex %destructor
287c78f6
PE
3908Invoke the braced @var{code} whenever the parser discards one of the
3909@var{symbols}.
4b367315
AD
3910Within @var{code}, @code{$$} designates the semantic value associated
3911with the discarded symbol. The additional parser parameters are also
3912available (@pxref{Parser Function, , The Parser Function
3913@code{yyparse}}).
72f889cc
AD
3914@end deffn
3915
3916For instance:
3917
3918@smallexample
3919%union
3920@{
3921 char *string;
3922@}
3923%token <string> STRING
3924%type <string> string
3925%destructor @{ free ($$); @} STRING string
3926@end smallexample
3927
3928@noindent
258b75ca 3929guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3930its associated memory will be freed.
3931
e757bb10
AD
3932@sp 1
3933
3934@cindex discarded symbols
3935@dfn{Discarded symbols} are the following:
3936
3937@itemize
3938@item
3939stacked symbols popped during the first phase of error recovery,
3940@item
3941incoming terminals during the second phase of error recovery,
3942@item
a85284cf 3943the current look-ahead and the entire stack (except the current
9d9b8b70 3944right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3945@item
3946the start symbol, when the parser succeeds.
e757bb10
AD
3947@end itemize
3948
9d9b8b70
PE
3949The parser can @dfn{return immediately} because of an explicit call to
3950@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
3951exhaustion.
3952
3953Right-hand size symbols of a rule that explicitly triggers a syntax
3954error via @code{YYERROR} are not discarded automatically. As a rule
3955of thumb, destructors are invoked only when user actions cannot manage
a85284cf 3956the memory.
e757bb10 3957
342b8b6e 3958@node Expect Decl
bfa74976
RS
3959@subsection Suppressing Conflict Warnings
3960@cindex suppressing conflict warnings
3961@cindex preventing warnings about conflicts
3962@cindex warnings, preventing
3963@cindex conflicts, suppressing warnings of
3964@findex %expect
d6328241 3965@findex %expect-rr
bfa74976
RS
3966
3967Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3968(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3969have harmless shift/reduce conflicts which are resolved in a predictable
3970way and would be difficult to eliminate. It is desirable to suppress
3971the warning about these conflicts unless the number of conflicts
3972changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3973
3974The declaration looks like this:
3975
3976@example
3977%expect @var{n}
3978@end example
3979
035aa4a0
PE
3980Here @var{n} is a decimal integer. The declaration says there should
3981be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
3982Bison reports an error if the number of shift/reduce conflicts differs
3983from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 3984
035aa4a0
PE
3985For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
3986serious, and should be eliminated entirely. Bison will always report
3987reduce/reduce conflicts for these parsers. With @acronym{GLR}
3988parsers, however, both kinds of conflicts are routine; otherwise,
3989there would be no need to use @acronym{GLR} parsing. Therefore, it is
3990also possible to specify an expected number of reduce/reduce conflicts
3991in @acronym{GLR} parsers, using the declaration:
d6328241
PH
3992
3993@example
3994%expect-rr @var{n}
3995@end example
3996
bfa74976
RS
3997In general, using @code{%expect} involves these steps:
3998
3999@itemize @bullet
4000@item
4001Compile your grammar without @code{%expect}. Use the @samp{-v} option
4002to get a verbose list of where the conflicts occur. Bison will also
4003print the number of conflicts.
4004
4005@item
4006Check each of the conflicts to make sure that Bison's default
4007resolution is what you really want. If not, rewrite the grammar and
4008go back to the beginning.
4009
4010@item
4011Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4012number which Bison printed. With @acronym{GLR} parsers, add an
4013@code{%expect-rr} declaration as well.
bfa74976
RS
4014@end itemize
4015
035aa4a0
PE
4016Now Bison will warn you if you introduce an unexpected conflict, but
4017will keep silent otherwise.
bfa74976 4018
342b8b6e 4019@node Start Decl
bfa74976
RS
4020@subsection The Start-Symbol
4021@cindex declaring the start symbol
4022@cindex start symbol, declaring
4023@cindex default start symbol
4024@findex %start
4025
4026Bison assumes by default that the start symbol for the grammar is the first
4027nonterminal specified in the grammar specification section. The programmer
4028may override this restriction with the @code{%start} declaration as follows:
4029
4030@example
4031%start @var{symbol}
4032@end example
4033
342b8b6e 4034@node Pure Decl
bfa74976
RS
4035@subsection A Pure (Reentrant) Parser
4036@cindex reentrant parser
4037@cindex pure parser
8c9a50be 4038@findex %pure-parser
bfa74976
RS
4039
4040A @dfn{reentrant} program is one which does not alter in the course of
4041execution; in other words, it consists entirely of @dfn{pure} (read-only)
4042code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4043for example, a nonreentrant program may not be safe to call from a signal
4044handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4045program must be called only within interlocks.
4046
70811b85 4047Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4048suitable for most uses, and it permits compatibility with Yacc. (The
4049standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4050statically allocated variables for communication with @code{yylex},
4051including @code{yylval} and @code{yylloc}.)
bfa74976 4052
70811b85 4053Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4054declaration @code{%pure-parser} says that you want the parser to be
70811b85 4055reentrant. It looks like this:
bfa74976
RS
4056
4057@example
8c9a50be 4058%pure-parser
bfa74976
RS
4059@end example
4060
70811b85
RS
4061The result is that the communication variables @code{yylval} and
4062@code{yylloc} become local variables in @code{yyparse}, and a different
4063calling convention is used for the lexical analyzer function
4064@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4065Parsers}, for the details of this. The variable @code{yynerrs} also
4066becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4067Reporting Function @code{yyerror}}). The convention for calling
4068@code{yyparse} itself is unchanged.
4069
4070Whether the parser is pure has nothing to do with the grammar rules.
4071You can generate either a pure parser or a nonreentrant parser from any
4072valid grammar.
bfa74976 4073
342b8b6e 4074@node Decl Summary
bfa74976
RS
4075@subsection Bison Declaration Summary
4076@cindex Bison declaration summary
4077@cindex declaration summary
4078@cindex summary, Bison declaration
4079
d8988b2f 4080Here is a summary of the declarations used to define a grammar:
bfa74976 4081
18b519c0 4082@deffn {Directive} %union
bfa74976
RS
4083Declare the collection of data types that semantic values may have
4084(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4085@end deffn
bfa74976 4086
18b519c0 4087@deffn {Directive} %token
bfa74976
RS
4088Declare a terminal symbol (token type name) with no precedence
4089or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4090@end deffn
bfa74976 4091
18b519c0 4092@deffn {Directive} %right
bfa74976
RS
4093Declare a terminal symbol (token type name) that is right-associative
4094(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4095@end deffn
bfa74976 4096
18b519c0 4097@deffn {Directive} %left
bfa74976
RS
4098Declare a terminal symbol (token type name) that is left-associative
4099(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4100@end deffn
bfa74976 4101
18b519c0 4102@deffn {Directive} %nonassoc
bfa74976 4103Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4104(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4105Using it in a way that would be associative is a syntax error.
4106@end deffn
4107
91d2c560 4108@ifset defaultprec
39a06c25 4109@deffn {Directive} %default-prec
22fccf95 4110Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4111(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4112@end deffn
91d2c560 4113@end ifset
bfa74976 4114
18b519c0 4115@deffn {Directive} %type
bfa74976
RS
4116Declare the type of semantic values for a nonterminal symbol
4117(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4118@end deffn
bfa74976 4119
18b519c0 4120@deffn {Directive} %start
89cab50d
AD
4121Specify the grammar's start symbol (@pxref{Start Decl, ,The
4122Start-Symbol}).
18b519c0 4123@end deffn
bfa74976 4124
18b519c0 4125@deffn {Directive} %expect
bfa74976
RS
4126Declare the expected number of shift-reduce conflicts
4127(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4128@end deffn
4129
bfa74976 4130
d8988b2f
AD
4131@sp 1
4132@noindent
4133In order to change the behavior of @command{bison}, use the following
4134directives:
4135
18b519c0 4136@deffn {Directive} %debug
4947ebdb
PE
4137In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4138already defined, so that the debugging facilities are compiled.
18b519c0 4139@end deffn
ec3bc396 4140@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4141
18b519c0 4142@deffn {Directive} %defines
4bfd5e4e
PE
4143Write a header file containing macro definitions for the token type
4144names defined in the grammar as well as a few other declarations.
d8988b2f 4145If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4146is named @file{@var{name}.h}.
d8988b2f 4147
4bfd5e4e 4148Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4149declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4150(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4151require other definitions, or if you have defined a @code{YYSTYPE} macro
4152(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4153arrange for these definitions to be propagated to all modules, e.g., by
4154putting them in a prerequisite header that is included both by your
4155parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4156
4157Unless your parser is pure, the output header declares @code{yylval}
4158as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4159Parser}.
4160
4161If you have also used locations, the output header declares
4162@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4163@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4164Locations}.
4165
f8e1c9e5
AD
4166This output file is normally essential if you wish to put the definition
4167of @code{yylex} in a separate source file, because @code{yylex}
4168typically needs to be able to refer to the above-mentioned declarations
4169and to the token type codes. @xref{Token Values, ,Semantic Values of
4170Tokens}.
18b519c0 4171@end deffn
d8988b2f 4172
18b519c0 4173@deffn {Directive} %destructor
258b75ca 4174Specify how the parser should reclaim the memory associated to
fa7e68c3 4175discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4176@end deffn
72f889cc 4177
18b519c0 4178@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4179Specify a prefix to use for all Bison output file names. The names are
4180chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4181@end deffn
d8988b2f 4182
18b519c0 4183@deffn {Directive} %locations
89cab50d
AD
4184Generate the code processing the locations (@pxref{Action Features,
4185,Special Features for Use in Actions}). This mode is enabled as soon as
4186the grammar uses the special @samp{@@@var{n}} tokens, but if your
4187grammar does not use it, using @samp{%locations} allows for more
6e649e65 4188accurate syntax error messages.
18b519c0 4189@end deffn
89cab50d 4190
18b519c0 4191@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4192Rename the external symbols used in the parser so that they start with
4193@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4194is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4195@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4196possible @code{yylloc}. For example, if you use
4197@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4198and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4199Program}.
18b519c0 4200@end deffn
931c7513 4201
91d2c560 4202@ifset defaultprec
22fccf95
PE
4203@deffn {Directive} %no-default-prec
4204Do not assign a precedence to rules lacking an explicit @code{%prec}
4205modifier (@pxref{Contextual Precedence, ,Context-Dependent
4206Precedence}).
4207@end deffn
91d2c560 4208@end ifset
22fccf95 4209
18b519c0 4210@deffn {Directive} %no-parser
6deb4447
AD
4211Do not include any C code in the parser file; generate tables only. The
4212parser file contains just @code{#define} directives and static variable
4213declarations.
4214
4215This option also tells Bison to write the C code for the grammar actions
fa4d969f 4216into a file named @file{@var{file}.act}, in the form of a
6deb4447 4217brace-surrounded body fit for a @code{switch} statement.
18b519c0 4218@end deffn
6deb4447 4219
18b519c0 4220@deffn {Directive} %no-lines
931c7513
RS
4221Don't generate any @code{#line} preprocessor commands in the parser
4222file. Ordinarily Bison writes these commands in the parser file so that
4223the C compiler and debuggers will associate errors and object code with
4224your source file (the grammar file). This directive causes them to
4225associate errors with the parser file, treating it an independent source
4226file in its own right.
18b519c0 4227@end deffn
931c7513 4228
fa4d969f
PE
4229@deffn {Directive} %output="@var{file}"
4230Specify @var{file} for the parser file.
18b519c0 4231@end deffn
6deb4447 4232
18b519c0 4233@deffn {Directive} %pure-parser
d8988b2f
AD
4234Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4235(Reentrant) Parser}).
18b519c0 4236@end deffn
6deb4447 4237
b50d2359 4238@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4239Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4240Require a Version of Bison}.
b50d2359
AD
4241@end deffn
4242
18b519c0 4243@deffn {Directive} %token-table
931c7513
RS
4244Generate an array of token names in the parser file. The name of the
4245array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4246token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4247three elements of @code{yytname} correspond to the predefined tokens
4248@code{"$end"},
88bce5a2
AD
4249@code{"error"}, and @code{"$undefined"}; after these come the symbols
4250defined in the grammar file.
931c7513 4251
9e0876fb
PE
4252The name in the table includes all the characters needed to represent
4253the token in Bison. For single-character literals and literal
4254strings, this includes the surrounding quoting characters and any
4255escape sequences. For example, the Bison single-character literal
4256@code{'+'} corresponds to a three-character name, represented in C as
4257@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4258corresponds to a five-character name, represented in C as
4259@code{"\"\\\\/\""}.
931c7513 4260
8c9a50be 4261When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4262definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4263@code{YYNRULES}, and @code{YYNSTATES}:
4264
4265@table @code
4266@item YYNTOKENS
4267The highest token number, plus one.
4268@item YYNNTS
9ecbd125 4269The number of nonterminal symbols.
931c7513
RS
4270@item YYNRULES
4271The number of grammar rules,
4272@item YYNSTATES
4273The number of parser states (@pxref{Parser States}).
4274@end table
18b519c0 4275@end deffn
d8988b2f 4276
18b519c0 4277@deffn {Directive} %verbose
d8988b2f
AD
4278Write an extra output file containing verbose descriptions of the
4279parser states and what is done for each type of look-ahead token in
72d2299c 4280that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4281information.
18b519c0 4282@end deffn
d8988b2f 4283
18b519c0 4284@deffn {Directive} %yacc
d8988b2f
AD
4285Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4286including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4287@end deffn
d8988b2f
AD
4288
4289
342b8b6e 4290@node Multiple Parsers
bfa74976
RS
4291@section Multiple Parsers in the Same Program
4292
4293Most programs that use Bison parse only one language and therefore contain
4294only one Bison parser. But what if you want to parse more than one
4295language with the same program? Then you need to avoid a name conflict
4296between different definitions of @code{yyparse}, @code{yylval}, and so on.
4297
4298The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4299(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4300functions and variables of the Bison parser to start with @var{prefix}
4301instead of @samp{yy}. You can use this to give each parser distinct
4302names that do not conflict.
bfa74976
RS
4303
4304The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4305@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4306@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4307the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4308
4309@strong{All the other variables and macros associated with Bison are not
4310renamed.} These others are not global; there is no conflict if the same
4311name is used in different parsers. For example, @code{YYSTYPE} is not
4312renamed, but defining this in different ways in different parsers causes
4313no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4314
4315The @samp{-p} option works by adding macro definitions to the beginning
4316of the parser source file, defining @code{yyparse} as
4317@code{@var{prefix}parse}, and so on. This effectively substitutes one
4318name for the other in the entire parser file.
4319
342b8b6e 4320@node Interface
bfa74976
RS
4321@chapter Parser C-Language Interface
4322@cindex C-language interface
4323@cindex interface
4324
4325The Bison parser is actually a C function named @code{yyparse}. Here we
4326describe the interface conventions of @code{yyparse} and the other
4327functions that it needs to use.
4328
4329Keep in mind that the parser uses many C identifiers starting with
4330@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4331identifier (aside from those in this manual) in an action or in epilogue
4332in the grammar file, you are likely to run into trouble.
bfa74976
RS
4333
4334@menu
4335* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4336* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4337 which reads tokens.
4338* Error Reporting:: You must supply a function @code{yyerror}.
4339* Action Features:: Special features for use in actions.
f7ab6a50
PE
4340* Internationalization:: How to let the parser speak in the user's
4341 native language.
bfa74976
RS
4342@end menu
4343
342b8b6e 4344@node Parser Function
bfa74976
RS
4345@section The Parser Function @code{yyparse}
4346@findex yyparse
4347
4348You call the function @code{yyparse} to cause parsing to occur. This
4349function reads tokens, executes actions, and ultimately returns when it
4350encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4351write an action which directs @code{yyparse} to return immediately
4352without reading further.
bfa74976 4353
2a8d363a
AD
4354
4355@deftypefun int yyparse (void)
bfa74976
RS
4356The value returned by @code{yyparse} is 0 if parsing was successful (return
4357is due to end-of-input).
4358
b47dbebe
PE
4359The value is 1 if parsing failed because of invalid input, i.e., input
4360that contains a syntax error or that causes @code{YYABORT} to be
4361invoked.
4362
4363The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4364@end deftypefun
bfa74976
RS
4365
4366In an action, you can cause immediate return from @code{yyparse} by using
4367these macros:
4368
2a8d363a 4369@defmac YYACCEPT
bfa74976
RS
4370@findex YYACCEPT
4371Return immediately with value 0 (to report success).
2a8d363a 4372@end defmac
bfa74976 4373
2a8d363a 4374@defmac YYABORT
bfa74976
RS
4375@findex YYABORT
4376Return immediately with value 1 (to report failure).
2a8d363a
AD
4377@end defmac
4378
4379If you use a reentrant parser, you can optionally pass additional
4380parameter information to it in a reentrant way. To do so, use the
4381declaration @code{%parse-param}:
4382
feeb0eda 4383@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4384@findex %parse-param
287c78f6
PE
4385Declare that an argument declared by the braced-code
4386@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4387The @var{argument-declaration} is used when declaring
feeb0eda
PE
4388functions or prototypes. The last identifier in
4389@var{argument-declaration} must be the argument name.
2a8d363a
AD
4390@end deffn
4391
4392Here's an example. Write this in the parser:
4393
4394@example
feeb0eda
PE
4395%parse-param @{int *nastiness@}
4396%parse-param @{int *randomness@}
2a8d363a
AD
4397@end example
4398
4399@noindent
4400Then call the parser like this:
4401
4402@example
4403@{
4404 int nastiness, randomness;
4405 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4406 value = yyparse (&nastiness, &randomness);
4407 @dots{}
4408@}
4409@end example
4410
4411@noindent
4412In the grammar actions, use expressions like this to refer to the data:
4413
4414@example
4415exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4416@end example
4417
bfa74976 4418
342b8b6e 4419@node Lexical
bfa74976
RS
4420@section The Lexical Analyzer Function @code{yylex}
4421@findex yylex
4422@cindex lexical analyzer
4423
4424The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4425the input stream and returns them to the parser. Bison does not create
4426this function automatically; you must write it so that @code{yyparse} can
4427call it. The function is sometimes referred to as a lexical scanner.
4428
4429In simple programs, @code{yylex} is often defined at the end of the Bison
4430grammar file. If @code{yylex} is defined in a separate source file, you
4431need to arrange for the token-type macro definitions to be available there.
4432To do this, use the @samp{-d} option when you run Bison, so that it will
4433write these macro definitions into a separate header file
4434@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4435that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4436
4437@menu
4438* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4439* Token Values:: How @code{yylex} must return the semantic value
4440 of the token it has read.
95923bd6 4441* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4442 (line number, etc.) of the token, if the
4443 actions want that.
4444* Pure Calling:: How the calling convention differs
4445 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4446@end menu
4447
342b8b6e 4448@node Calling Convention
bfa74976
RS
4449@subsection Calling Convention for @code{yylex}
4450
72d2299c
PE
4451The value that @code{yylex} returns must be the positive numeric code
4452for the type of token it has just found; a zero or negative value
4453signifies end-of-input.
bfa74976
RS
4454
4455When a token is referred to in the grammar rules by a name, that name
4456in the parser file becomes a C macro whose definition is the proper
4457numeric code for that token type. So @code{yylex} can use the name
4458to indicate that type. @xref{Symbols}.
4459
4460When a token is referred to in the grammar rules by a character literal,
4461the numeric code for that character is also the code for the token type.
72d2299c
PE
4462So @code{yylex} can simply return that character code, possibly converted
4463to @code{unsigned char} to avoid sign-extension. The null character
4464must not be used this way, because its code is zero and that
bfa74976
RS
4465signifies end-of-input.
4466
4467Here is an example showing these things:
4468
4469@example
13863333
AD
4470int
4471yylex (void)
bfa74976
RS
4472@{
4473 @dots{}
72d2299c 4474 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4475 return 0;
4476 @dots{}
4477 if (c == '+' || c == '-')
72d2299c 4478 return c; /* Assume token type for `+' is '+'. */
bfa74976 4479 @dots{}
72d2299c 4480 return INT; /* Return the type of the token. */
bfa74976
RS
4481 @dots{}
4482@}
4483@end example
4484
4485@noindent
4486This interface has been designed so that the output from the @code{lex}
4487utility can be used without change as the definition of @code{yylex}.
4488
931c7513
RS
4489If the grammar uses literal string tokens, there are two ways that
4490@code{yylex} can determine the token type codes for them:
4491
4492@itemize @bullet
4493@item
4494If the grammar defines symbolic token names as aliases for the
4495literal string tokens, @code{yylex} can use these symbolic names like
4496all others. In this case, the use of the literal string tokens in
4497the grammar file has no effect on @code{yylex}.
4498
4499@item
9ecbd125 4500@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4501table. The index of the token in the table is the token type's code.
9ecbd125 4502The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4503double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4504token's characters are escaped as necessary to be suitable as input
4505to Bison.
931c7513 4506
9e0876fb
PE
4507Here's code for looking up a multicharacter token in @code{yytname},
4508assuming that the characters of the token are stored in
4509@code{token_buffer}, and assuming that the token does not contain any
4510characters like @samp{"} that require escaping.
931c7513
RS
4511
4512@smallexample
4513for (i = 0; i < YYNTOKENS; i++)
4514 @{
4515 if (yytname[i] != 0
4516 && yytname[i][0] == '"'
68449b3a
PE
4517 && ! strncmp (yytname[i] + 1, token_buffer,
4518 strlen (token_buffer))
931c7513
RS
4519 && yytname[i][strlen (token_buffer) + 1] == '"'
4520 && yytname[i][strlen (token_buffer) + 2] == 0)
4521 break;
4522 @}
4523@end smallexample
4524
4525The @code{yytname} table is generated only if you use the
8c9a50be 4526@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4527@end itemize
4528
342b8b6e 4529@node Token Values
bfa74976
RS
4530@subsection Semantic Values of Tokens
4531
4532@vindex yylval
9d9b8b70 4533In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4534be stored into the global variable @code{yylval}. When you are using
4535just one data type for semantic values, @code{yylval} has that type.
4536Thus, if the type is @code{int} (the default), you might write this in
4537@code{yylex}:
4538
4539@example
4540@group
4541 @dots{}
72d2299c
PE
4542 yylval = value; /* Put value onto Bison stack. */
4543 return INT; /* Return the type of the token. */
bfa74976
RS
4544 @dots{}
4545@end group
4546@end example
4547
4548When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4549made from the @code{%union} declaration (@pxref{Union Decl, ,The
4550Collection of Value Types}). So when you store a token's value, you
4551must use the proper member of the union. If the @code{%union}
4552declaration looks like this:
bfa74976
RS
4553
4554@example
4555@group
4556%union @{
4557 int intval;
4558 double val;
4559 symrec *tptr;
4560@}
4561@end group
4562@end example
4563
4564@noindent
4565then the code in @code{yylex} might look like this:
4566
4567@example
4568@group
4569 @dots{}
72d2299c
PE
4570 yylval.intval = value; /* Put value onto Bison stack. */
4571 return INT; /* Return the type of the token. */
bfa74976
RS
4572 @dots{}
4573@end group
4574@end example
4575
95923bd6
AD
4576@node Token Locations
4577@subsection Textual Locations of Tokens
bfa74976
RS
4578
4579@vindex yylloc
847bf1f5 4580If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4581Tracking Locations}) in actions to keep track of the textual locations
4582of tokens and groupings, then you must provide this information in
4583@code{yylex}. The function @code{yyparse} expects to find the textual
4584location of a token just parsed in the global variable @code{yylloc}.
4585So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4586
4587By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4588initialize the members that are going to be used by the actions. The
4589four members are called @code{first_line}, @code{first_column},
4590@code{last_line} and @code{last_column}. Note that the use of this
4591feature makes the parser noticeably slower.
bfa74976
RS
4592
4593@tindex YYLTYPE
4594The data type of @code{yylloc} has the name @code{YYLTYPE}.
4595
342b8b6e 4596@node Pure Calling
c656404a 4597@subsection Calling Conventions for Pure Parsers
bfa74976 4598
8c9a50be 4599When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4600pure, reentrant parser, the global communication variables @code{yylval}
4601and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4602Parser}.) In such parsers the two global variables are replaced by
4603pointers passed as arguments to @code{yylex}. You must declare them as
4604shown here, and pass the information back by storing it through those
4605pointers.
bfa74976
RS
4606
4607@example
13863333
AD
4608int
4609yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4610@{
4611 @dots{}
4612 *lvalp = value; /* Put value onto Bison stack. */
4613 return INT; /* Return the type of the token. */
4614 @dots{}
4615@}
4616@end example
4617
4618If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4619textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4620this case, omit the second argument; @code{yylex} will be called with
4621only one argument.
4622
e425e872 4623
2a8d363a
AD
4624If you wish to pass the additional parameter data to @code{yylex}, use
4625@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4626Function}).
e425e872 4627
feeb0eda 4628@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4629@findex %lex-param
287c78f6
PE
4630Declare that the braced-code @var{argument-declaration} is an
4631additional @code{yylex} argument declaration.
2a8d363a 4632@end deffn
e425e872 4633
2a8d363a 4634For instance:
e425e872
RS
4635
4636@example
feeb0eda
PE
4637%parse-param @{int *nastiness@}
4638%lex-param @{int *nastiness@}
4639%parse-param @{int *randomness@}
e425e872
RS
4640@end example
4641
4642@noindent
2a8d363a 4643results in the following signature:
e425e872
RS
4644
4645@example
2a8d363a
AD
4646int yylex (int *nastiness);
4647int yyparse (int *nastiness, int *randomness);
e425e872
RS
4648@end example
4649
2a8d363a 4650If @code{%pure-parser} is added:
c656404a
RS
4651
4652@example
2a8d363a
AD
4653int yylex (YYSTYPE *lvalp, int *nastiness);
4654int yyparse (int *nastiness, int *randomness);
c656404a
RS
4655@end example
4656
2a8d363a
AD
4657@noindent
4658and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4659
2a8d363a
AD
4660@example
4661int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4662int yyparse (int *nastiness, int *randomness);
4663@end example
931c7513 4664
342b8b6e 4665@node Error Reporting
bfa74976
RS
4666@section The Error Reporting Function @code{yyerror}
4667@cindex error reporting function
4668@findex yyerror
4669@cindex parse error
4670@cindex syntax error
4671
6e649e65 4672The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4673whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4674action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4675macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4676in Actions}).
bfa74976
RS
4677
4678The Bison parser expects to report the error by calling an error
4679reporting function named @code{yyerror}, which you must supply. It is
4680called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4681receives one argument. For a syntax error, the string is normally
4682@w{@code{"syntax error"}}.
bfa74976 4683
2a8d363a
AD
4684@findex %error-verbose
4685If you invoke the directive @code{%error-verbose} in the Bison
4686declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4687Section}), then Bison provides a more verbose and specific error message
6e649e65 4688string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4689
1a059451
PE
4690The parser can detect one other kind of error: memory exhaustion. This
4691can happen when the input contains constructions that are very deeply
bfa74976 4692nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4693parser normally extends its stack automatically up to a very large limit. But
4694if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4695fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4696
4697In some cases diagnostics like @w{@code{"syntax error"}} are
4698translated automatically from English to some other language before
4699they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4700
4701The following definition suffices in simple programs:
4702
4703@example
4704@group
13863333 4705void
38a92d50 4706yyerror (char const *s)
bfa74976
RS
4707@{
4708@end group
4709@group
4710 fprintf (stderr, "%s\n", s);
4711@}
4712@end group
4713@end example
4714
4715After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4716error recovery if you have written suitable error recovery grammar rules
4717(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4718immediately return 1.
4719
93724f13 4720Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4721an access to the current location.
4722This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4723parsers, but not for the Yacc parser, for historical reasons. I.e., if
4724@samp{%locations %pure-parser} is passed then the prototypes for
4725@code{yyerror} are:
4726
4727@example
38a92d50
PE
4728void yyerror (char const *msg); /* Yacc parsers. */
4729void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4730@end example
4731
feeb0eda 4732If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4733
4734@example
b317297e
PE
4735void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4736void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4737@end example
4738
fa7e68c3 4739Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4740convention for absolutely pure parsers, i.e., when the calling
4741convention of @code{yylex} @emph{and} the calling convention of
4742@code{%pure-parser} are pure. I.e.:
4743
4744@example
4745/* Location tracking. */
4746%locations
4747/* Pure yylex. */
4748%pure-parser
feeb0eda 4749%lex-param @{int *nastiness@}
2a8d363a 4750/* Pure yyparse. */
feeb0eda
PE
4751%parse-param @{int *nastiness@}
4752%parse-param @{int *randomness@}
2a8d363a
AD
4753@end example
4754
4755@noindent
4756results in the following signatures for all the parser kinds:
4757
4758@example
4759int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4760int yyparse (int *nastiness, int *randomness);
93724f13
AD
4761void yyerror (YYLTYPE *locp,
4762 int *nastiness, int *randomness,
38a92d50 4763 char const *msg);
2a8d363a
AD
4764@end example
4765
1c0c3e95 4766@noindent
38a92d50
PE
4767The prototypes are only indications of how the code produced by Bison
4768uses @code{yyerror}. Bison-generated code always ignores the returned
4769value, so @code{yyerror} can return any type, including @code{void}.
4770Also, @code{yyerror} can be a variadic function; that is why the
4771message is always passed last.
4772
4773Traditionally @code{yyerror} returns an @code{int} that is always
4774ignored, but this is purely for historical reasons, and @code{void} is
4775preferable since it more accurately describes the return type for
4776@code{yyerror}.
93724f13 4777
bfa74976
RS
4778@vindex yynerrs
4779The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4780reported so far. Normally this variable is global; but if you
704a47c4
AD
4781request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4782then it is a local variable which only the actions can access.
bfa74976 4783
342b8b6e 4784@node Action Features
bfa74976
RS
4785@section Special Features for Use in Actions
4786@cindex summary, action features
4787@cindex action features summary
4788
4789Here is a table of Bison constructs, variables and macros that
4790are useful in actions.
4791
18b519c0 4792@deffn {Variable} $$
bfa74976
RS
4793Acts like a variable that contains the semantic value for the
4794grouping made by the current rule. @xref{Actions}.
18b519c0 4795@end deffn
bfa74976 4796
18b519c0 4797@deffn {Variable} $@var{n}
bfa74976
RS
4798Acts like a variable that contains the semantic value for the
4799@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4800@end deffn
bfa74976 4801
18b519c0 4802@deffn {Variable} $<@var{typealt}>$
bfa74976 4803Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4804specified by the @code{%union} declaration. @xref{Action Types, ,Data
4805Types of Values in Actions}.
18b519c0 4806@end deffn
bfa74976 4807
18b519c0 4808@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4809Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4810union specified by the @code{%union} declaration.
e0c471a9 4811@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4812@end deffn
bfa74976 4813
18b519c0 4814@deffn {Macro} YYABORT;
bfa74976
RS
4815Return immediately from @code{yyparse}, indicating failure.
4816@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4817@end deffn
bfa74976 4818
18b519c0 4819@deffn {Macro} YYACCEPT;
bfa74976
RS
4820Return immediately from @code{yyparse}, indicating success.
4821@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4822@end deffn
bfa74976 4823
18b519c0 4824@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4825@findex YYBACKUP
4826Unshift a token. This macro is allowed only for rules that reduce
4827a single value, and only when there is no look-ahead token.
c827f760 4828It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4829It installs a look-ahead token with token type @var{token} and
4830semantic value @var{value}; then it discards the value that was
4831going to be reduced by this rule.
4832
4833If the macro is used when it is not valid, such as when there is
4834a look-ahead token already, then it reports a syntax error with
4835a message @samp{cannot back up} and performs ordinary error
4836recovery.
4837
4838In either case, the rest of the action is not executed.
18b519c0 4839@end deffn
bfa74976 4840
18b519c0 4841@deffn {Macro} YYEMPTY
bfa74976
RS
4842@vindex YYEMPTY
4843Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4844@end deffn
bfa74976 4845
32c29292
JD
4846@deffn {Macro} YYEOF
4847@vindex YYEOF
4848Value stored in @code{yychar} when the look-ahead is the end of the input
4849stream.
4850@end deffn
4851
18b519c0 4852@deffn {Macro} YYERROR;
bfa74976
RS
4853@findex YYERROR
4854Cause an immediate syntax error. This statement initiates error
4855recovery just as if the parser itself had detected an error; however, it
4856does not call @code{yyerror}, and does not print any message. If you
4857want to print an error message, call @code{yyerror} explicitly before
4858the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4859@end deffn
bfa74976 4860
18b519c0 4861@deffn {Macro} YYRECOVERING
bfa74976
RS
4862This macro stands for an expression that has the value 1 when the parser
4863is recovering from a syntax error, and 0 the rest of the time.
4864@xref{Error Recovery}.
18b519c0 4865@end deffn
bfa74976 4866
18b519c0 4867@deffn {Variable} yychar
32c29292
JD
4868Variable containing either the look-ahead token, or @code{YYEOF} when the
4869look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4870has been performed so the next token is not yet known.
4871Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4872Actions}).
bfa74976 4873@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4874@end deffn
bfa74976 4875
18b519c0 4876@deffn {Macro} yyclearin;
bfa74976 4877Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4878error rules.
4879Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4880Semantic Actions}).
4881@xref{Error Recovery}.
18b519c0 4882@end deffn
bfa74976 4883
18b519c0 4884@deffn {Macro} yyerrok;
bfa74976 4885Resume generating error messages immediately for subsequent syntax
13863333 4886errors. This is useful primarily in error rules.
bfa74976 4887@xref{Error Recovery}.
18b519c0 4888@end deffn
bfa74976 4889
32c29292
JD
4890@deffn {Variable} yylloc
4891Variable containing the look-ahead token location when @code{yychar} is not set
4892to @code{YYEMPTY} or @code{YYEOF}.
4893Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4894Actions}).
4895@xref{Actions and Locations, ,Actions and Locations}.
4896@end deffn
4897
4898@deffn {Variable} yylval
4899Variable containing the look-ahead token semantic value when @code{yychar} is
4900not set to @code{YYEMPTY} or @code{YYEOF}.
4901Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4902Actions}).
4903@xref{Actions, ,Actions}.
4904@end deffn
4905
18b519c0 4906@deffn {Value} @@$
847bf1f5 4907@findex @@$
95923bd6 4908Acts like a structure variable containing information on the textual location
847bf1f5
AD
4909of the grouping made by the current rule. @xref{Locations, ,
4910Tracking Locations}.
bfa74976 4911
847bf1f5
AD
4912@c Check if those paragraphs are still useful or not.
4913
4914@c @example
4915@c struct @{
4916@c int first_line, last_line;
4917@c int first_column, last_column;
4918@c @};
4919@c @end example
4920
4921@c Thus, to get the starting line number of the third component, you would
4922@c use @samp{@@3.first_line}.
bfa74976 4923
847bf1f5
AD
4924@c In order for the members of this structure to contain valid information,
4925@c you must make @code{yylex} supply this information about each token.
4926@c If you need only certain members, then @code{yylex} need only fill in
4927@c those members.
bfa74976 4928
847bf1f5 4929@c The use of this feature makes the parser noticeably slower.
18b519c0 4930@end deffn
847bf1f5 4931
18b519c0 4932@deffn {Value} @@@var{n}
847bf1f5 4933@findex @@@var{n}
95923bd6 4934Acts like a structure variable containing information on the textual location
847bf1f5
AD
4935of the @var{n}th component of the current rule. @xref{Locations, ,
4936Tracking Locations}.
18b519c0 4937@end deffn
bfa74976 4938
f7ab6a50
PE
4939@node Internationalization
4940@section Parser Internationalization
4941@cindex internationalization
4942@cindex i18n
4943@cindex NLS
4944@cindex gettext
4945@cindex bison-po
4946
4947A Bison-generated parser can print diagnostics, including error and
4948tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
4949also supports outputting diagnostics in the user's native language. To
4950make this work, the user should set the usual environment variables.
4951@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
4952For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
4953set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
4954encoding. The exact set of available locales depends on the user's
4955installation.
4956
4957The maintainer of a package that uses a Bison-generated parser enables
4958the internationalization of the parser's output through the following
4959steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4960@acronym{GNU} Automake.
4961
4962@enumerate
4963@item
30757c8c 4964@cindex bison-i18n.m4
f7ab6a50
PE
4965Into the directory containing the @acronym{GNU} Autoconf macros used
4966by the package---often called @file{m4}---copy the
4967@file{bison-i18n.m4} file installed by Bison under
4968@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4969For example:
4970
4971@example
4972cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4973@end example
4974
4975@item
30757c8c
PE
4976@findex BISON_I18N
4977@vindex BISON_LOCALEDIR
4978@vindex YYENABLE_NLS
f7ab6a50
PE
4979In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4980invocation, add an invocation of @code{BISON_I18N}. This macro is
4981defined in the file @file{bison-i18n.m4} that you copied earlier. It
4982causes @samp{configure} to find the value of the
30757c8c
PE
4983@code{BISON_LOCALEDIR} variable, and it defines the source-language
4984symbol @code{YYENABLE_NLS} to enable translations in the
4985Bison-generated parser.
f7ab6a50
PE
4986
4987@item
4988In the @code{main} function of your program, designate the directory
4989containing Bison's runtime message catalog, through a call to
4990@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4991For example:
4992
4993@example
4994bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4995@end example
4996
4997Typically this appears after any other call @code{bindtextdomain
4998(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4999@samp{BISON_LOCALEDIR} to be defined as a string through the
5000@file{Makefile}.
5001
5002@item
5003In the @file{Makefile.am} that controls the compilation of the @code{main}
5004function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5005either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5006
5007@example
5008DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5009@end example
5010
5011or:
5012
5013@example
5014AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5015@end example
5016
5017@item
5018Finally, invoke the command @command{autoreconf} to generate the build
5019infrastructure.
5020@end enumerate
5021
bfa74976 5022
342b8b6e 5023@node Algorithm
13863333
AD
5024@chapter The Bison Parser Algorithm
5025@cindex Bison parser algorithm
bfa74976
RS
5026@cindex algorithm of parser
5027@cindex shifting
5028@cindex reduction
5029@cindex parser stack
5030@cindex stack, parser
5031
5032As Bison reads tokens, it pushes them onto a stack along with their
5033semantic values. The stack is called the @dfn{parser stack}. Pushing a
5034token is traditionally called @dfn{shifting}.
5035
5036For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5037@samp{3} to come. The stack will have four elements, one for each token
5038that was shifted.
5039
5040But the stack does not always have an element for each token read. When
5041the last @var{n} tokens and groupings shifted match the components of a
5042grammar rule, they can be combined according to that rule. This is called
5043@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5044single grouping whose symbol is the result (left hand side) of that rule.
5045Running the rule's action is part of the process of reduction, because this
5046is what computes the semantic value of the resulting grouping.
5047
5048For example, if the infix calculator's parser stack contains this:
5049
5050@example
50511 + 5 * 3
5052@end example
5053
5054@noindent
5055and the next input token is a newline character, then the last three
5056elements can be reduced to 15 via the rule:
5057
5058@example
5059expr: expr '*' expr;
5060@end example
5061
5062@noindent
5063Then the stack contains just these three elements:
5064
5065@example
50661 + 15
5067@end example
5068
5069@noindent
5070At this point, another reduction can be made, resulting in the single value
507116. Then the newline token can be shifted.
5072
5073The parser tries, by shifts and reductions, to reduce the entire input down
5074to a single grouping whose symbol is the grammar's start-symbol
5075(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5076
5077This kind of parser is known in the literature as a bottom-up parser.
5078
5079@menu
5080* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5081* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5082* Precedence:: Operator precedence works by resolving conflicts.
5083* Contextual Precedence:: When an operator's precedence depends on context.
5084* Parser States:: The parser is a finite-state-machine with stack.
5085* Reduce/Reduce:: When two rules are applicable in the same situation.
5086* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5087* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5088* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5089@end menu
5090
342b8b6e 5091@node Look-Ahead
bfa74976
RS
5092@section Look-Ahead Tokens
5093@cindex look-ahead token
5094
5095The Bison parser does @emph{not} always reduce immediately as soon as the
5096last @var{n} tokens and groupings match a rule. This is because such a
5097simple strategy is inadequate to handle most languages. Instead, when a
5098reduction is possible, the parser sometimes ``looks ahead'' at the next
5099token in order to decide what to do.
5100
5101When a token is read, it is not immediately shifted; first it becomes the
5102@dfn{look-ahead token}, which is not on the stack. Now the parser can
5103perform one or more reductions of tokens and groupings on the stack, while
5104the look-ahead token remains off to the side. When no more reductions
5105should take place, the look-ahead token is shifted onto the stack. This
5106does not mean that all possible reductions have been done; depending on the
5107token type of the look-ahead token, some rules may choose to delay their
5108application.
5109
5110Here is a simple case where look-ahead is needed. These three rules define
5111expressions which contain binary addition operators and postfix unary
5112factorial operators (@samp{!}), and allow parentheses for grouping.
5113
5114@example
5115@group
5116expr: term '+' expr
5117 | term
5118 ;
5119@end group
5120
5121@group
5122term: '(' expr ')'
5123 | term '!'
5124 | NUMBER
5125 ;
5126@end group
5127@end example
5128
5129Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5130should be done? If the following token is @samp{)}, then the first three
5131tokens must be reduced to form an @code{expr}. This is the only valid
5132course, because shifting the @samp{)} would produce a sequence of symbols
5133@w{@code{term ')'}}, and no rule allows this.
5134
5135If the following token is @samp{!}, then it must be shifted immediately so
5136that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5137parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5138@code{expr}. It would then be impossible to shift the @samp{!} because
5139doing so would produce on the stack the sequence of symbols @code{expr
5140'!'}. No rule allows that sequence.
5141
5142@vindex yychar
32c29292
JD
5143@vindex yylval
5144@vindex yylloc
5145The look-ahead token is stored in the variable @code{yychar}.
5146Its semantic value and location, if any, are stored in the variables
5147@code{yylval} and @code{yylloc}.
bfa74976
RS
5148@xref{Action Features, ,Special Features for Use in Actions}.
5149
342b8b6e 5150@node Shift/Reduce
bfa74976
RS
5151@section Shift/Reduce Conflicts
5152@cindex conflicts
5153@cindex shift/reduce conflicts
5154@cindex dangling @code{else}
5155@cindex @code{else}, dangling
5156
5157Suppose we are parsing a language which has if-then and if-then-else
5158statements, with a pair of rules like this:
5159
5160@example
5161@group
5162if_stmt:
5163 IF expr THEN stmt
5164 | IF expr THEN stmt ELSE stmt
5165 ;
5166@end group
5167@end example
5168
5169@noindent
5170Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5171terminal symbols for specific keyword tokens.
5172
5173When the @code{ELSE} token is read and becomes the look-ahead token, the
5174contents of the stack (assuming the input is valid) are just right for
5175reduction by the first rule. But it is also legitimate to shift the
5176@code{ELSE}, because that would lead to eventual reduction by the second
5177rule.
5178
5179This situation, where either a shift or a reduction would be valid, is
5180called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5181these conflicts by choosing to shift, unless otherwise directed by
5182operator precedence declarations. To see the reason for this, let's
5183contrast it with the other alternative.
5184
5185Since the parser prefers to shift the @code{ELSE}, the result is to attach
5186the else-clause to the innermost if-statement, making these two inputs
5187equivalent:
5188
5189@example
5190if x then if y then win (); else lose;
5191
5192if x then do; if y then win (); else lose; end;
5193@end example
5194
5195But if the parser chose to reduce when possible rather than shift, the
5196result would be to attach the else-clause to the outermost if-statement,
5197making these two inputs equivalent:
5198
5199@example
5200if x then if y then win (); else lose;
5201
5202if x then do; if y then win (); end; else lose;
5203@end example
5204
5205The conflict exists because the grammar as written is ambiguous: either
5206parsing of the simple nested if-statement is legitimate. The established
5207convention is that these ambiguities are resolved by attaching the
5208else-clause to the innermost if-statement; this is what Bison accomplishes
5209by choosing to shift rather than reduce. (It would ideally be cleaner to
5210write an unambiguous grammar, but that is very hard to do in this case.)
5211This particular ambiguity was first encountered in the specifications of
5212Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5213
5214To avoid warnings from Bison about predictable, legitimate shift/reduce
5215conflicts, use the @code{%expect @var{n}} declaration. There will be no
5216warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5217@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5218
5219The definition of @code{if_stmt} above is solely to blame for the
5220conflict, but the conflict does not actually appear without additional
5221rules. Here is a complete Bison input file that actually manifests the
5222conflict:
5223
5224@example
5225@group
5226%token IF THEN ELSE variable
5227%%
5228@end group
5229@group
5230stmt: expr
5231 | if_stmt
5232 ;
5233@end group
5234
5235@group
5236if_stmt:
5237 IF expr THEN stmt
5238 | IF expr THEN stmt ELSE stmt
5239 ;
5240@end group
5241
5242expr: variable
5243 ;
5244@end example
5245
342b8b6e 5246@node Precedence
bfa74976
RS
5247@section Operator Precedence
5248@cindex operator precedence
5249@cindex precedence of operators
5250
5251Another situation where shift/reduce conflicts appear is in arithmetic
5252expressions. Here shifting is not always the preferred resolution; the
5253Bison declarations for operator precedence allow you to specify when to
5254shift and when to reduce.
5255
5256@menu
5257* Why Precedence:: An example showing why precedence is needed.
5258* Using Precedence:: How to specify precedence in Bison grammars.
5259* Precedence Examples:: How these features are used in the previous example.
5260* How Precedence:: How they work.
5261@end menu
5262
342b8b6e 5263@node Why Precedence
bfa74976
RS
5264@subsection When Precedence is Needed
5265
5266Consider the following ambiguous grammar fragment (ambiguous because the
5267input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5268
5269@example
5270@group
5271expr: expr '-' expr
5272 | expr '*' expr
5273 | expr '<' expr
5274 | '(' expr ')'
5275 @dots{}
5276 ;
5277@end group
5278@end example
5279
5280@noindent
5281Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5282should it reduce them via the rule for the subtraction operator? It
5283depends on the next token. Of course, if the next token is @samp{)}, we
5284must reduce; shifting is invalid because no single rule can reduce the
5285token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5286the next token is @samp{*} or @samp{<}, we have a choice: either
5287shifting or reduction would allow the parse to complete, but with
5288different results.
5289
5290To decide which one Bison should do, we must consider the results. If
5291the next operator token @var{op} is shifted, then it must be reduced
5292first in order to permit another opportunity to reduce the difference.
5293The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5294hand, if the subtraction is reduced before shifting @var{op}, the result
5295is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5296reduce should depend on the relative precedence of the operators
5297@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5298@samp{<}.
bfa74976
RS
5299
5300@cindex associativity
5301What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5302@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5303operators we prefer the former, which is called @dfn{left association}.
5304The latter alternative, @dfn{right association}, is desirable for
5305assignment operators. The choice of left or right association is a
5306matter of whether the parser chooses to shift or reduce when the stack
5307contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5308makes right-associativity.
bfa74976 5309
342b8b6e 5310@node Using Precedence
bfa74976
RS
5311@subsection Specifying Operator Precedence
5312@findex %left
5313@findex %right
5314@findex %nonassoc
5315
5316Bison allows you to specify these choices with the operator precedence
5317declarations @code{%left} and @code{%right}. Each such declaration
5318contains a list of tokens, which are operators whose precedence and
5319associativity is being declared. The @code{%left} declaration makes all
5320those operators left-associative and the @code{%right} declaration makes
5321them right-associative. A third alternative is @code{%nonassoc}, which
5322declares that it is a syntax error to find the same operator twice ``in a
5323row''.
5324
5325The relative precedence of different operators is controlled by the
5326order in which they are declared. The first @code{%left} or
5327@code{%right} declaration in the file declares the operators whose
5328precedence is lowest, the next such declaration declares the operators
5329whose precedence is a little higher, and so on.
5330
342b8b6e 5331@node Precedence Examples
bfa74976
RS
5332@subsection Precedence Examples
5333
5334In our example, we would want the following declarations:
5335
5336@example
5337%left '<'
5338%left '-'
5339%left '*'
5340@end example
5341
5342In a more complete example, which supports other operators as well, we
5343would declare them in groups of equal precedence. For example, @code{'+'} is
5344declared with @code{'-'}:
5345
5346@example
5347%left '<' '>' '=' NE LE GE
5348%left '+' '-'
5349%left '*' '/'
5350@end example
5351
5352@noindent
5353(Here @code{NE} and so on stand for the operators for ``not equal''
5354and so on. We assume that these tokens are more than one character long
5355and therefore are represented by names, not character literals.)
5356
342b8b6e 5357@node How Precedence
bfa74976
RS
5358@subsection How Precedence Works
5359
5360The first effect of the precedence declarations is to assign precedence
5361levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5362precedence levels to certain rules: each rule gets its precedence from
5363the last terminal symbol mentioned in the components. (You can also
5364specify explicitly the precedence of a rule. @xref{Contextual
5365Precedence, ,Context-Dependent Precedence}.)
5366
5367Finally, the resolution of conflicts works by comparing the precedence
5368of the rule being considered with that of the look-ahead token. If the
5369token's precedence is higher, the choice is to shift. If the rule's
5370precedence is higher, the choice is to reduce. If they have equal
5371precedence, the choice is made based on the associativity of that
5372precedence level. The verbose output file made by @samp{-v}
5373(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5374resolved.
bfa74976
RS
5375
5376Not all rules and not all tokens have precedence. If either the rule or
5377the look-ahead token has no precedence, then the default is to shift.
5378
342b8b6e 5379@node Contextual Precedence
bfa74976
RS
5380@section Context-Dependent Precedence
5381@cindex context-dependent precedence
5382@cindex unary operator precedence
5383@cindex precedence, context-dependent
5384@cindex precedence, unary operator
5385@findex %prec
5386
5387Often the precedence of an operator depends on the context. This sounds
5388outlandish at first, but it is really very common. For example, a minus
5389sign typically has a very high precedence as a unary operator, and a
5390somewhat lower precedence (lower than multiplication) as a binary operator.
5391
5392The Bison precedence declarations, @code{%left}, @code{%right} and
5393@code{%nonassoc}, can only be used once for a given token; so a token has
5394only one precedence declared in this way. For context-dependent
5395precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5396modifier for rules.
bfa74976
RS
5397
5398The @code{%prec} modifier declares the precedence of a particular rule by
5399specifying a terminal symbol whose precedence should be used for that rule.
5400It's not necessary for that symbol to appear otherwise in the rule. The
5401modifier's syntax is:
5402
5403@example
5404%prec @var{terminal-symbol}
5405@end example
5406
5407@noindent
5408and it is written after the components of the rule. Its effect is to
5409assign the rule the precedence of @var{terminal-symbol}, overriding
5410the precedence that would be deduced for it in the ordinary way. The
5411altered rule precedence then affects how conflicts involving that rule
5412are resolved (@pxref{Precedence, ,Operator Precedence}).
5413
5414Here is how @code{%prec} solves the problem of unary minus. First, declare
5415a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5416are no tokens of this type, but the symbol serves to stand for its
5417precedence:
5418
5419@example
5420@dots{}
5421%left '+' '-'
5422%left '*'
5423%left UMINUS
5424@end example
5425
5426Now the precedence of @code{UMINUS} can be used in specific rules:
5427
5428@example
5429@group
5430exp: @dots{}
5431 | exp '-' exp
5432 @dots{}
5433 | '-' exp %prec UMINUS
5434@end group
5435@end example
5436
91d2c560 5437@ifset defaultprec
39a06c25
PE
5438If you forget to append @code{%prec UMINUS} to the rule for unary
5439minus, Bison silently assumes that minus has its usual precedence.
5440This kind of problem can be tricky to debug, since one typically
5441discovers the mistake only by testing the code.
5442
22fccf95 5443The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5444this kind of problem systematically. It causes rules that lack a
5445@code{%prec} modifier to have no precedence, even if the last terminal
5446symbol mentioned in their components has a declared precedence.
5447
22fccf95 5448If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5449for all rules that participate in precedence conflict resolution.
5450Then you will see any shift/reduce conflict until you tell Bison how
5451to resolve it, either by changing your grammar or by adding an
5452explicit precedence. This will probably add declarations to the
5453grammar, but it helps to protect against incorrect rule precedences.
5454
22fccf95
PE
5455The effect of @code{%no-default-prec;} can be reversed by giving
5456@code{%default-prec;}, which is the default.
91d2c560 5457@end ifset
39a06c25 5458
342b8b6e 5459@node Parser States
bfa74976
RS
5460@section Parser States
5461@cindex finite-state machine
5462@cindex parser state
5463@cindex state (of parser)
5464
5465The function @code{yyparse} is implemented using a finite-state machine.
5466The values pushed on the parser stack are not simply token type codes; they
5467represent the entire sequence of terminal and nonterminal symbols at or
5468near the top of the stack. The current state collects all the information
5469about previous input which is relevant to deciding what to do next.
5470
5471Each time a look-ahead token is read, the current parser state together
5472with the type of look-ahead token are looked up in a table. This table
5473entry can say, ``Shift the look-ahead token.'' In this case, it also
5474specifies the new parser state, which is pushed onto the top of the
5475parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5476This means that a certain number of tokens or groupings are taken off
5477the top of the stack, and replaced by one grouping. In other words,
5478that number of states are popped from the stack, and one new state is
5479pushed.
5480
5481There is one other alternative: the table can say that the look-ahead token
5482is erroneous in the current state. This causes error processing to begin
5483(@pxref{Error Recovery}).
5484
342b8b6e 5485@node Reduce/Reduce
bfa74976
RS
5486@section Reduce/Reduce Conflicts
5487@cindex reduce/reduce conflict
5488@cindex conflicts, reduce/reduce
5489
5490A reduce/reduce conflict occurs if there are two or more rules that apply
5491to the same sequence of input. This usually indicates a serious error
5492in the grammar.
5493
5494For example, here is an erroneous attempt to define a sequence
5495of zero or more @code{word} groupings.
5496
5497@example
5498sequence: /* empty */
5499 @{ printf ("empty sequence\n"); @}
5500 | maybeword
5501 | sequence word
5502 @{ printf ("added word %s\n", $2); @}
5503 ;
5504
5505maybeword: /* empty */
5506 @{ printf ("empty maybeword\n"); @}
5507 | word
5508 @{ printf ("single word %s\n", $1); @}
5509 ;
5510@end example
5511
5512@noindent
5513The error is an ambiguity: there is more than one way to parse a single
5514@code{word} into a @code{sequence}. It could be reduced to a
5515@code{maybeword} and then into a @code{sequence} via the second rule.
5516Alternatively, nothing-at-all could be reduced into a @code{sequence}
5517via the first rule, and this could be combined with the @code{word}
5518using the third rule for @code{sequence}.
5519
5520There is also more than one way to reduce nothing-at-all into a
5521@code{sequence}. This can be done directly via the first rule,
5522or indirectly via @code{maybeword} and then the second rule.
5523
5524You might think that this is a distinction without a difference, because it
5525does not change whether any particular input is valid or not. But it does
5526affect which actions are run. One parsing order runs the second rule's
5527action; the other runs the first rule's action and the third rule's action.
5528In this example, the output of the program changes.
5529
5530Bison resolves a reduce/reduce conflict by choosing to use the rule that
5531appears first in the grammar, but it is very risky to rely on this. Every
5532reduce/reduce conflict must be studied and usually eliminated. Here is the
5533proper way to define @code{sequence}:
5534
5535@example
5536sequence: /* empty */
5537 @{ printf ("empty sequence\n"); @}
5538 | sequence word
5539 @{ printf ("added word %s\n", $2); @}
5540 ;
5541@end example
5542
5543Here is another common error that yields a reduce/reduce conflict:
5544
5545@example
5546sequence: /* empty */
5547 | sequence words
5548 | sequence redirects
5549 ;
5550
5551words: /* empty */
5552 | words word
5553 ;
5554
5555redirects:/* empty */
5556 | redirects redirect
5557 ;
5558@end example
5559
5560@noindent
5561The intention here is to define a sequence which can contain either
5562@code{word} or @code{redirect} groupings. The individual definitions of
5563@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5564three together make a subtle ambiguity: even an empty input can be parsed
5565in infinitely many ways!
5566
5567Consider: nothing-at-all could be a @code{words}. Or it could be two
5568@code{words} in a row, or three, or any number. It could equally well be a
5569@code{redirects}, or two, or any number. Or it could be a @code{words}
5570followed by three @code{redirects} and another @code{words}. And so on.
5571
5572Here are two ways to correct these rules. First, to make it a single level
5573of sequence:
5574
5575@example
5576sequence: /* empty */
5577 | sequence word
5578 | sequence redirect
5579 ;
5580@end example
5581
5582Second, to prevent either a @code{words} or a @code{redirects}
5583from being empty:
5584
5585@example
5586sequence: /* empty */
5587 | sequence words
5588 | sequence redirects
5589 ;
5590
5591words: word
5592 | words word
5593 ;
5594
5595redirects:redirect
5596 | redirects redirect
5597 ;
5598@end example
5599
342b8b6e 5600@node Mystery Conflicts
bfa74976
RS
5601@section Mysterious Reduce/Reduce Conflicts
5602
5603Sometimes reduce/reduce conflicts can occur that don't look warranted.
5604Here is an example:
5605
5606@example
5607@group
5608%token ID
5609
5610%%
5611def: param_spec return_spec ','
5612 ;
5613param_spec:
5614 type
5615 | name_list ':' type
5616 ;
5617@end group
5618@group
5619return_spec:
5620 type
5621 | name ':' type
5622 ;
5623@end group
5624@group
5625type: ID
5626 ;
5627@end group
5628@group
5629name: ID
5630 ;
5631name_list:
5632 name
5633 | name ',' name_list
5634 ;
5635@end group
5636@end example
5637
5638It would seem that this grammar can be parsed with only a single token
13863333 5639of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5640a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5641@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5642
c827f760
PE
5643@cindex @acronym{LR}(1)
5644@cindex @acronym{LALR}(1)
bfa74976 5645However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5646@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5647an @code{ID}
bfa74976
RS
5648at the beginning of a @code{param_spec} and likewise at the beginning of
5649a @code{return_spec}, are similar enough that Bison assumes they are the
5650same. They appear similar because the same set of rules would be
5651active---the rule for reducing to a @code{name} and that for reducing to
5652a @code{type}. Bison is unable to determine at that stage of processing
5653that the rules would require different look-ahead tokens in the two
5654contexts, so it makes a single parser state for them both. Combining
5655the two contexts causes a conflict later. In parser terminology, this
c827f760 5656occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5657
5658In general, it is better to fix deficiencies than to document them. But
5659this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5660generators that can handle @acronym{LR}(1) grammars are hard to write
5661and tend to
bfa74976
RS
5662produce parsers that are very large. In practice, Bison is more useful
5663as it is now.
5664
5665When the problem arises, you can often fix it by identifying the two
a220f555
MA
5666parser states that are being confused, and adding something to make them
5667look distinct. In the above example, adding one rule to
bfa74976
RS
5668@code{return_spec} as follows makes the problem go away:
5669
5670@example
5671@group
5672%token BOGUS
5673@dots{}
5674%%
5675@dots{}
5676return_spec:
5677 type
5678 | name ':' type
5679 /* This rule is never used. */
5680 | ID BOGUS
5681 ;
5682@end group
5683@end example
5684
5685This corrects the problem because it introduces the possibility of an
5686additional active rule in the context after the @code{ID} at the beginning of
5687@code{return_spec}. This rule is not active in the corresponding context
5688in a @code{param_spec}, so the two contexts receive distinct parser states.
5689As long as the token @code{BOGUS} is never generated by @code{yylex},
5690the added rule cannot alter the way actual input is parsed.
5691
5692In this particular example, there is another way to solve the problem:
5693rewrite the rule for @code{return_spec} to use @code{ID} directly
5694instead of via @code{name}. This also causes the two confusing
5695contexts to have different sets of active rules, because the one for
5696@code{return_spec} activates the altered rule for @code{return_spec}
5697rather than the one for @code{name}.
5698
5699@example
5700param_spec:
5701 type
5702 | name_list ':' type
5703 ;
5704return_spec:
5705 type
5706 | ID ':' type
5707 ;
5708@end example
5709
e054b190
PE
5710For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5711generators, please see:
5712Frank DeRemer and Thomas Pennello, Efficient Computation of
5713@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5714Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5715pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5716
fae437e8 5717@node Generalized LR Parsing
c827f760
PE
5718@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5719@cindex @acronym{GLR} parsing
5720@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5721@cindex ambiguous grammars
9d9b8b70 5722@cindex nondeterministic parsing
676385e2 5723
fae437e8
AD
5724Bison produces @emph{deterministic} parsers that choose uniquely
5725when to reduce and which reduction to apply
8dd162d3 5726based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5727As a result, normal Bison handles a proper subset of the family of
5728context-free languages.
fae437e8 5729Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5730sequence of reductions cannot have deterministic parsers in this sense.
5731The same is true of languages that require more than one symbol of
8dd162d3 5732look-ahead, since the parser lacks the information necessary to make a
676385e2 5733decision at the point it must be made in a shift-reduce parser.
fae437e8 5734Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5735there are languages where Bison's particular choice of how to
5736summarize the input seen so far loses necessary information.
5737
5738When you use the @samp{%glr-parser} declaration in your grammar file,
5739Bison generates a parser that uses a different algorithm, called
c827f760
PE
5740Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5741parser uses the same basic
676385e2
PH
5742algorithm for parsing as an ordinary Bison parser, but behaves
5743differently in cases where there is a shift-reduce conflict that has not
fae437e8 5744been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5745reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5746situation, it
fae437e8 5747effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5748shift or reduction. These parsers then proceed as usual, consuming
5749tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5750and split further, with the result that instead of a sequence of states,
c827f760 5751a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5752
5753In effect, each stack represents a guess as to what the proper parse
5754is. Additional input may indicate that a guess was wrong, in which case
5755the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5756actions generated in each stack are saved, rather than being executed
676385e2 5757immediately. When a stack disappears, its saved semantic actions never
fae437e8 5758get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5759their sets of semantic actions are both saved with the state that
5760results from the reduction. We say that two stacks are equivalent
fae437e8 5761when they both represent the same sequence of states,
676385e2
PH
5762and each pair of corresponding states represents a
5763grammar symbol that produces the same segment of the input token
5764stream.
5765
5766Whenever the parser makes a transition from having multiple
c827f760 5767states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5768algorithm, after resolving and executing the saved-up actions.
5769At this transition, some of the states on the stack will have semantic
5770values that are sets (actually multisets) of possible actions. The
5771parser tries to pick one of the actions by first finding one whose rule
5772has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5773declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5774precedence, but there the same merging function is declared for both
fae437e8 5775rules by the @samp{%merge} declaration,
676385e2
PH
5776Bison resolves and evaluates both and then calls the merge function on
5777the result. Otherwise, it reports an ambiguity.
5778
c827f760
PE
5779It is possible to use a data structure for the @acronym{GLR} parsing tree that
5780permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5781size of the input), any unambiguous (not necessarily
5782@acronym{LALR}(1)) grammar in
fae437e8 5783quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5784context-free grammar in cubic worst-case time. However, Bison currently
5785uses a simpler data structure that requires time proportional to the
5786length of the input times the maximum number of stacks required for any
9d9b8b70 5787prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5788grammars can require exponential time and space to process. Such badly
5789behaving examples, however, are not generally of practical interest.
9d9b8b70 5790Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5791doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5792structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5793grammar, in particular, it is only slightly slower than with the default
5794Bison parser.
5795
fa7e68c3 5796For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5797Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5798Generalised @acronym{LR} Parsers, Royal Holloway, University of
5799London, Department of Computer Science, TR-00-12,
5800@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5801(2000-12-24).
5802
1a059451
PE
5803@node Memory Management
5804@section Memory Management, and How to Avoid Memory Exhaustion
5805@cindex memory exhaustion
5806@cindex memory management
bfa74976
RS
5807@cindex stack overflow
5808@cindex parser stack overflow
5809@cindex overflow of parser stack
5810
1a059451 5811The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5812not reduced. When this happens, the parser function @code{yyparse}
1a059451 5813calls @code{yyerror} and then returns 2.
bfa74976 5814
c827f760 5815Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5816usually results from using a right recursion instead of a left
5817recursion, @xref{Recursion, ,Recursive Rules}.
5818
bfa74976
RS
5819@vindex YYMAXDEPTH
5820By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5821parser stack can become before memory is exhausted. Define the
bfa74976
RS
5822macro with a value that is an integer. This value is the maximum number
5823of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5824
5825The stack space allowed is not necessarily allocated. If you specify a
1a059451 5826large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5827stack at first, and then makes it bigger by stages as needed. This
5828increasing allocation happens automatically and silently. Therefore,
5829you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5830space for ordinary inputs that do not need much stack.
5831
d7e14fc0
PE
5832However, do not allow @code{YYMAXDEPTH} to be a value so large that
5833arithmetic overflow could occur when calculating the size of the stack
5834space. Also, do not allow @code{YYMAXDEPTH} to be less than
5835@code{YYINITDEPTH}.
5836
bfa74976
RS
5837@cindex default stack limit
5838The default value of @code{YYMAXDEPTH}, if you do not define it, is
583910000.
5840
5841@vindex YYINITDEPTH
5842You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5843macro @code{YYINITDEPTH} to a positive integer. For the C
5844@acronym{LALR}(1) parser, this value must be a compile-time constant
5845unless you are assuming C99 or some other target language or compiler
5846that allows variable-length arrays. The default is 200.
5847
1a059451 5848Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5849
d1a1114f 5850@c FIXME: C++ output.
c827f760 5851Because of semantical differences between C and C++, the
1a059451
PE
5852@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5853by C++ compilers. In this precise case (compiling a C parser as C++) you are
5854suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5855this deficiency in a future release.
d1a1114f 5856
342b8b6e 5857@node Error Recovery
bfa74976
RS
5858@chapter Error Recovery
5859@cindex error recovery
5860@cindex recovery from errors
5861
6e649e65 5862It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5863error. For example, a compiler should recover sufficiently to parse the
5864rest of the input file and check it for errors; a calculator should accept
5865another expression.
5866
5867In a simple interactive command parser where each input is one line, it may
5868be sufficient to allow @code{yyparse} to return 1 on error and have the
5869caller ignore the rest of the input line when that happens (and then call
5870@code{yyparse} again). But this is inadequate for a compiler, because it
5871forgets all the syntactic context leading up to the error. A syntax error
5872deep within a function in the compiler input should not cause the compiler
5873to treat the following line like the beginning of a source file.
5874
5875@findex error
5876You can define how to recover from a syntax error by writing rules to
5877recognize the special token @code{error}. This is a terminal symbol that
5878is always defined (you need not declare it) and reserved for error
5879handling. The Bison parser generates an @code{error} token whenever a
5880syntax error happens; if you have provided a rule to recognize this token
13863333 5881in the current context, the parse can continue.
bfa74976
RS
5882
5883For example:
5884
5885@example
5886stmnts: /* empty string */
5887 | stmnts '\n'
5888 | stmnts exp '\n'
5889 | stmnts error '\n'
5890@end example
5891
5892The fourth rule in this example says that an error followed by a newline
5893makes a valid addition to any @code{stmnts}.
5894
5895What happens if a syntax error occurs in the middle of an @code{exp}? The
5896error recovery rule, interpreted strictly, applies to the precise sequence
5897of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5898the middle of an @code{exp}, there will probably be some additional tokens
5899and subexpressions on the stack after the last @code{stmnts}, and there
5900will be tokens to read before the next newline. So the rule is not
5901applicable in the ordinary way.
5902
5903But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5904the semantic context and part of the input. First it discards states
5905and objects from the stack until it gets back to a state in which the
bfa74976 5906@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5907already parsed are discarded, back to the last complete @code{stmnts}.)
5908At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5909look-ahead token is not acceptable to be shifted next, the parser reads
5910tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5911this example, Bison reads and discards input until the next newline so
5912that the fourth rule can apply. Note that discarded symbols are
5913possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5914Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5915
5916The choice of error rules in the grammar is a choice of strategies for
5917error recovery. A simple and useful strategy is simply to skip the rest of
5918the current input line or current statement if an error is detected:
5919
5920@example
72d2299c 5921stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5922@end example
5923
5924It is also useful to recover to the matching close-delimiter of an
5925opening-delimiter that has already been parsed. Otherwise the
5926close-delimiter will probably appear to be unmatched, and generate another,
5927spurious error message:
5928
5929@example
5930primary: '(' expr ')'
5931 | '(' error ')'
5932 @dots{}
5933 ;
5934@end example
5935
5936Error recovery strategies are necessarily guesses. When they guess wrong,
5937one syntax error often leads to another. In the above example, the error
5938recovery rule guesses that an error is due to bad input within one
5939@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5940middle of a valid @code{stmnt}. After the error recovery rule recovers
5941from the first error, another syntax error will be found straightaway,
5942since the text following the spurious semicolon is also an invalid
5943@code{stmnt}.
5944
5945To prevent an outpouring of error messages, the parser will output no error
5946message for another syntax error that happens shortly after the first; only
5947after three consecutive input tokens have been successfully shifted will
5948error messages resume.
5949
5950Note that rules which accept the @code{error} token may have actions, just
5951as any other rules can.
5952
5953@findex yyerrok
5954You can make error messages resume immediately by using the macro
5955@code{yyerrok} in an action. If you do this in the error rule's action, no
5956error messages will be suppressed. This macro requires no arguments;
5957@samp{yyerrok;} is a valid C statement.
5958
5959@findex yyclearin
5960The previous look-ahead token is reanalyzed immediately after an error. If
5961this is unacceptable, then the macro @code{yyclearin} may be used to clear
5962this token. Write the statement @samp{yyclearin;} in the error rule's
5963action.
32c29292 5964@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 5965
6e649e65 5966For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5967called that advances the input stream to some point where parsing should
5968once again commence. The next symbol returned by the lexical scanner is
5969probably correct. The previous look-ahead token ought to be discarded
5970with @samp{yyclearin;}.
5971
5972@vindex YYRECOVERING
5973The macro @code{YYRECOVERING} stands for an expression that has the
5974value 1 when the parser is recovering from a syntax error, and 0 the
5975rest of the time. A value of 1 indicates that error messages are
5976currently suppressed for new syntax errors.
5977
342b8b6e 5978@node Context Dependency
bfa74976
RS
5979@chapter Handling Context Dependencies
5980
5981The Bison paradigm is to parse tokens first, then group them into larger
5982syntactic units. In many languages, the meaning of a token is affected by
5983its context. Although this violates the Bison paradigm, certain techniques
5984(known as @dfn{kludges}) may enable you to write Bison parsers for such
5985languages.
5986
5987@menu
5988* Semantic Tokens:: Token parsing can depend on the semantic context.
5989* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5990* Tie-in Recovery:: Lexical tie-ins have implications for how
5991 error recovery rules must be written.
5992@end menu
5993
5994(Actually, ``kludge'' means any technique that gets its job done but is
5995neither clean nor robust.)
5996
342b8b6e 5997@node Semantic Tokens
bfa74976
RS
5998@section Semantic Info in Token Types
5999
6000The C language has a context dependency: the way an identifier is used
6001depends on what its current meaning is. For example, consider this:
6002
6003@example
6004foo (x);
6005@end example
6006
6007This looks like a function call statement, but if @code{foo} is a typedef
6008name, then this is actually a declaration of @code{x}. How can a Bison
6009parser for C decide how to parse this input?
6010
c827f760 6011The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6012@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6013identifier, it looks up the current declaration of the identifier in order
6014to decide which token type to return: @code{TYPENAME} if the identifier is
6015declared as a typedef, @code{IDENTIFIER} otherwise.
6016
6017The grammar rules can then express the context dependency by the choice of
6018token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6019but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6020@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6021is @emph{not} significant, such as in declarations that can shadow a
6022typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6023accepted---there is one rule for each of the two token types.
6024
6025This technique is simple to use if the decision of which kinds of
6026identifiers to allow is made at a place close to where the identifier is
6027parsed. But in C this is not always so: C allows a declaration to
6028redeclare a typedef name provided an explicit type has been specified
6029earlier:
6030
6031@example
3a4f411f
PE
6032typedef int foo, bar;
6033int baz (void)
6034@{
6035 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6036 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6037 return foo (bar);
6038@}
bfa74976
RS
6039@end example
6040
6041Unfortunately, the name being declared is separated from the declaration
6042construct itself by a complicated syntactic structure---the ``declarator''.
6043
9ecbd125 6044As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6045all the nonterminal names changed: once for parsing a declaration in
6046which a typedef name can be redefined, and once for parsing a
6047declaration in which that can't be done. Here is a part of the
6048duplication, with actions omitted for brevity:
bfa74976
RS
6049
6050@example
6051initdcl:
6052 declarator maybeasm '='
6053 init
6054 | declarator maybeasm
6055 ;
6056
6057notype_initdcl:
6058 notype_declarator maybeasm '='
6059 init
6060 | notype_declarator maybeasm
6061 ;
6062@end example
6063
6064@noindent
6065Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6066cannot. The distinction between @code{declarator} and
6067@code{notype_declarator} is the same sort of thing.
6068
6069There is some similarity between this technique and a lexical tie-in
6070(described next), in that information which alters the lexical analysis is
6071changed during parsing by other parts of the program. The difference is
6072here the information is global, and is used for other purposes in the
6073program. A true lexical tie-in has a special-purpose flag controlled by
6074the syntactic context.
6075
342b8b6e 6076@node Lexical Tie-ins
bfa74976
RS
6077@section Lexical Tie-ins
6078@cindex lexical tie-in
6079
6080One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6081which is set by Bison actions, whose purpose is to alter the way tokens are
6082parsed.
6083
6084For example, suppose we have a language vaguely like C, but with a special
6085construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6086an expression in parentheses in which all integers are hexadecimal. In
6087particular, the token @samp{a1b} must be treated as an integer rather than
6088as an identifier if it appears in that context. Here is how you can do it:
6089
6090@example
6091@group
6092%@{
38a92d50
PE
6093 int hexflag;
6094 int yylex (void);
6095 void yyerror (char const *);
bfa74976
RS
6096%@}
6097%%
6098@dots{}
6099@end group
6100@group
6101expr: IDENTIFIER
6102 | constant
6103 | HEX '('
6104 @{ hexflag = 1; @}
6105 expr ')'
6106 @{ hexflag = 0;
6107 $$ = $4; @}
6108 | expr '+' expr
6109 @{ $$ = make_sum ($1, $3); @}
6110 @dots{}
6111 ;
6112@end group
6113
6114@group
6115constant:
6116 INTEGER
6117 | STRING
6118 ;
6119@end group
6120@end example
6121
6122@noindent
6123Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6124it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6125with letters are parsed as integers if possible.
6126
342b8b6e
AD
6127The declaration of @code{hexflag} shown in the prologue of the parser file
6128is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6129You must also write the code in @code{yylex} to obey the flag.
bfa74976 6130
342b8b6e 6131@node Tie-in Recovery
bfa74976
RS
6132@section Lexical Tie-ins and Error Recovery
6133
6134Lexical tie-ins make strict demands on any error recovery rules you have.
6135@xref{Error Recovery}.
6136
6137The reason for this is that the purpose of an error recovery rule is to
6138abort the parsing of one construct and resume in some larger construct.
6139For example, in C-like languages, a typical error recovery rule is to skip
6140tokens until the next semicolon, and then start a new statement, like this:
6141
6142@example
6143stmt: expr ';'
6144 | IF '(' expr ')' stmt @{ @dots{} @}
6145 @dots{}
6146 error ';'
6147 @{ hexflag = 0; @}
6148 ;
6149@end example
6150
6151If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6152construct, this error rule will apply, and then the action for the
6153completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6154remain set for the entire rest of the input, or until the next @code{hex}
6155keyword, causing identifiers to be misinterpreted as integers.
6156
6157To avoid this problem the error recovery rule itself clears @code{hexflag}.
6158
6159There may also be an error recovery rule that works within expressions.
6160For example, there could be a rule which applies within parentheses
6161and skips to the close-parenthesis:
6162
6163@example
6164@group
6165expr: @dots{}
6166 | '(' expr ')'
6167 @{ $$ = $2; @}
6168 | '(' error ')'
6169 @dots{}
6170@end group
6171@end example
6172
6173If this rule acts within the @code{hex} construct, it is not going to abort
6174that construct (since it applies to an inner level of parentheses within
6175the construct). Therefore, it should not clear the flag: the rest of
6176the @code{hex} construct should be parsed with the flag still in effect.
6177
6178What if there is an error recovery rule which might abort out of the
6179@code{hex} construct or might not, depending on circumstances? There is no
6180way you can write the action to determine whether a @code{hex} construct is
6181being aborted or not. So if you are using a lexical tie-in, you had better
6182make sure your error recovery rules are not of this kind. Each rule must
6183be such that you can be sure that it always will, or always won't, have to
6184clear the flag.
6185
ec3bc396
AD
6186@c ================================================== Debugging Your Parser
6187
342b8b6e 6188@node Debugging
bfa74976 6189@chapter Debugging Your Parser
ec3bc396
AD
6190
6191Developing a parser can be a challenge, especially if you don't
6192understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6193Algorithm}). Even so, sometimes a detailed description of the automaton
6194can help (@pxref{Understanding, , Understanding Your Parser}), or
6195tracing the execution of the parser can give some insight on why it
6196behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6197
6198@menu
6199* Understanding:: Understanding the structure of your parser.
6200* Tracing:: Tracing the execution of your parser.
6201@end menu
6202
6203@node Understanding
6204@section Understanding Your Parser
6205
6206As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6207Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6208frequent than one would hope), looking at this automaton is required to
6209tune or simply fix a parser. Bison provides two different
c827f760 6210representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6211file).
6212
6213The textual file is generated when the options @option{--report} or
6214@option{--verbose} are specified, see @xref{Invocation, , Invoking
6215Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6216the parser output file name, and adding @samp{.output} instead.
6217Therefore, if the input file is @file{foo.y}, then the parser file is
6218called @file{foo.tab.c} by default. As a consequence, the verbose
6219output file is called @file{foo.output}.
6220
6221The following grammar file, @file{calc.y}, will be used in the sequel:
6222
6223@example
6224%token NUM STR
6225%left '+' '-'
6226%left '*'
6227%%
6228exp: exp '+' exp
6229 | exp '-' exp
6230 | exp '*' exp
6231 | exp '/' exp
6232 | NUM
6233 ;
6234useless: STR;
6235%%
6236@end example
6237
88bce5a2
AD
6238@command{bison} reports:
6239
6240@example
6241calc.y: warning: 1 useless nonterminal and 1 useless rule
6242calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6243calc.y:11.10-12: warning: useless rule: useless: STR
6244calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6245@end example
6246
6247When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6248creates a file @file{calc.output} with contents detailed below. The
6249order of the output and the exact presentation might vary, but the
6250interpretation is the same.
ec3bc396
AD
6251
6252The first section includes details on conflicts that were solved thanks
6253to precedence and/or associativity:
6254
6255@example
6256Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6257Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6258Conflict in state 8 between rule 2 and token '*' resolved as shift.
6259@exdent @dots{}
6260@end example
6261
6262@noindent
6263The next section lists states that still have conflicts.
6264
6265@example
5a99098d
PE
6266State 8 conflicts: 1 shift/reduce
6267State 9 conflicts: 1 shift/reduce
6268State 10 conflicts: 1 shift/reduce
6269State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6270@end example
6271
6272@noindent
6273@cindex token, useless
6274@cindex useless token
6275@cindex nonterminal, useless
6276@cindex useless nonterminal
6277@cindex rule, useless
6278@cindex useless rule
6279The next section reports useless tokens, nonterminal and rules. Useless
6280nonterminals and rules are removed in order to produce a smaller parser,
6281but useless tokens are preserved, since they might be used by the
6282scanner (note the difference between ``useless'' and ``not used''
6283below):
6284
6285@example
6286Useless nonterminals:
6287 useless
6288
6289Terminals which are not used:
6290 STR
6291
6292Useless rules:
6293#6 useless: STR;
6294@end example
6295
6296@noindent
6297The next section reproduces the exact grammar that Bison used:
6298
6299@example
6300Grammar
6301
6302 Number, Line, Rule
88bce5a2 6303 0 5 $accept -> exp $end
ec3bc396
AD
6304 1 5 exp -> exp '+' exp
6305 2 6 exp -> exp '-' exp
6306 3 7 exp -> exp '*' exp
6307 4 8 exp -> exp '/' exp
6308 5 9 exp -> NUM
6309@end example
6310
6311@noindent
6312and reports the uses of the symbols:
6313
6314@example
6315Terminals, with rules where they appear
6316
88bce5a2 6317$end (0) 0
ec3bc396
AD
6318'*' (42) 3
6319'+' (43) 1
6320'-' (45) 2
6321'/' (47) 4
6322error (256)
6323NUM (258) 5
6324
6325Nonterminals, with rules where they appear
6326
88bce5a2 6327$accept (8)
ec3bc396
AD
6328 on left: 0
6329exp (9)
6330 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6331@end example
6332
6333@noindent
6334@cindex item
6335@cindex pointed rule
6336@cindex rule, pointed
6337Bison then proceeds onto the automaton itself, describing each state
6338with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6339item is a production rule together with a point (marked by @samp{.})
6340that the input cursor.
6341
6342@example
6343state 0
6344
88bce5a2 6345 $accept -> . exp $ (rule 0)
ec3bc396 6346
2a8d363a 6347 NUM shift, and go to state 1
ec3bc396 6348
2a8d363a 6349 exp go to state 2
ec3bc396
AD
6350@end example
6351
6352This reads as follows: ``state 0 corresponds to being at the very
6353beginning of the parsing, in the initial rule, right before the start
6354symbol (here, @code{exp}). When the parser returns to this state right
6355after having reduced a rule that produced an @code{exp}, the control
6356flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6357symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6358the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6359look-ahead triggers a syntax error.''
ec3bc396
AD
6360
6361@cindex core, item set
6362@cindex item set core
6363@cindex kernel, item set
6364@cindex item set core
6365Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6366report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6367at the beginning of any rule deriving an @code{exp}. By default Bison
6368reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6369you want to see more detail you can invoke @command{bison} with
6370@option{--report=itemset} to list all the items, include those that can
6371be derived:
6372
6373@example
6374state 0
6375
88bce5a2 6376 $accept -> . exp $ (rule 0)
ec3bc396
AD
6377 exp -> . exp '+' exp (rule 1)
6378 exp -> . exp '-' exp (rule 2)
6379 exp -> . exp '*' exp (rule 3)
6380 exp -> . exp '/' exp (rule 4)
6381 exp -> . NUM (rule 5)
6382
6383 NUM shift, and go to state 1
6384
6385 exp go to state 2
6386@end example
6387
6388@noindent
6389In the state 1...
6390
6391@example
6392state 1
6393
6394 exp -> NUM . (rule 5)
6395
2a8d363a 6396 $default reduce using rule 5 (exp)
ec3bc396
AD
6397@end example
6398
6399@noindent
8dd162d3 6400the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6401(@samp{$default}), the parser will reduce it. If it was coming from
6402state 0, then, after this reduction it will return to state 0, and will
6403jump to state 2 (@samp{exp: go to state 2}).
6404
6405@example
6406state 2
6407
88bce5a2 6408 $accept -> exp . $ (rule 0)
ec3bc396
AD
6409 exp -> exp . '+' exp (rule 1)
6410 exp -> exp . '-' exp (rule 2)
6411 exp -> exp . '*' exp (rule 3)
6412 exp -> exp . '/' exp (rule 4)
6413
2a8d363a
AD
6414 $ shift, and go to state 3
6415 '+' shift, and go to state 4
6416 '-' shift, and go to state 5
6417 '*' shift, and go to state 6
6418 '/' shift, and go to state 7
ec3bc396
AD
6419@end example
6420
6421@noindent
6422In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6423because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6424@samp{+}, it will be shifted on the parse stack, and the automaton
6425control will jump to state 4, corresponding to the item @samp{exp -> exp
6426'+' . exp}. Since there is no default action, any other token than
6e649e65 6427those listed above will trigger a syntax error.
ec3bc396
AD
6428
6429The state 3 is named the @dfn{final state}, or the @dfn{accepting
6430state}:
6431
6432@example
6433state 3
6434
88bce5a2 6435 $accept -> exp $ . (rule 0)
ec3bc396 6436
2a8d363a 6437 $default accept
ec3bc396
AD
6438@end example
6439
6440@noindent
6441the initial rule is completed (the start symbol and the end
6442of input were read), the parsing exits successfully.
6443
6444The interpretation of states 4 to 7 is straightforward, and is left to
6445the reader.
6446
6447@example
6448state 4
6449
6450 exp -> exp '+' . exp (rule 1)
6451
2a8d363a 6452 NUM shift, and go to state 1
ec3bc396 6453
2a8d363a 6454 exp go to state 8
ec3bc396
AD
6455
6456state 5
6457
6458 exp -> exp '-' . exp (rule 2)
6459
2a8d363a 6460 NUM shift, and go to state 1
ec3bc396 6461
2a8d363a 6462 exp go to state 9
ec3bc396
AD
6463
6464state 6
6465
6466 exp -> exp '*' . exp (rule 3)
6467
2a8d363a 6468 NUM shift, and go to state 1
ec3bc396 6469
2a8d363a 6470 exp go to state 10
ec3bc396
AD
6471
6472state 7
6473
6474 exp -> exp '/' . exp (rule 4)
6475
2a8d363a 6476 NUM shift, and go to state 1
ec3bc396 6477
2a8d363a 6478 exp go to state 11
ec3bc396
AD
6479@end example
6480
5a99098d
PE
6481As was announced in beginning of the report, @samp{State 8 conflicts:
64821 shift/reduce}:
ec3bc396
AD
6483
6484@example
6485state 8
6486
6487 exp -> exp . '+' exp (rule 1)
6488 exp -> exp '+' exp . (rule 1)
6489 exp -> exp . '-' exp (rule 2)
6490 exp -> exp . '*' exp (rule 3)
6491 exp -> exp . '/' exp (rule 4)
6492
2a8d363a
AD
6493 '*' shift, and go to state 6
6494 '/' shift, and go to state 7
ec3bc396 6495
2a8d363a
AD
6496 '/' [reduce using rule 1 (exp)]
6497 $default reduce using rule 1 (exp)
ec3bc396
AD
6498@end example
6499
8dd162d3 6500Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6501either shifting (and going to state 7), or reducing rule 1. The
6502conflict means that either the grammar is ambiguous, or the parser lacks
6503information to make the right decision. Indeed the grammar is
6504ambiguous, as, since we did not specify the precedence of @samp{/}, the
6505sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6506NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6507NUM}, which corresponds to reducing rule 1.
6508
c827f760 6509Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6510arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6511Shift/Reduce Conflicts}. Discarded actions are reported in between
6512square brackets.
6513
6514Note that all the previous states had a single possible action: either
6515shifting the next token and going to the corresponding state, or
6516reducing a single rule. In the other cases, i.e., when shifting
6517@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6518possible, the look-ahead is required to select the action. State 8 is
6519one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6520is shifting, otherwise the action is reducing rule 1. In other words,
6521the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6522look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6523precedence than @samp{+}. More generally, some items are eligible only
6524with some set of possible look-ahead tokens. When run with
6525@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6526
6527@example
6528state 8
6529
6530 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6531 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6532 exp -> exp . '-' exp (rule 2)
6533 exp -> exp . '*' exp (rule 3)
6534 exp -> exp . '/' exp (rule 4)
6535
6536 '*' shift, and go to state 6
6537 '/' shift, and go to state 7
6538
6539 '/' [reduce using rule 1 (exp)]
6540 $default reduce using rule 1 (exp)
6541@end example
6542
6543The remaining states are similar:
6544
6545@example
6546state 9
6547
6548 exp -> exp . '+' exp (rule 1)
6549 exp -> exp . '-' exp (rule 2)
6550 exp -> exp '-' exp . (rule 2)
6551 exp -> exp . '*' exp (rule 3)
6552 exp -> exp . '/' exp (rule 4)
6553
2a8d363a
AD
6554 '*' shift, and go to state 6
6555 '/' shift, and go to state 7
ec3bc396 6556
2a8d363a
AD
6557 '/' [reduce using rule 2 (exp)]
6558 $default reduce using rule 2 (exp)
ec3bc396
AD
6559
6560state 10
6561
6562 exp -> exp . '+' exp (rule 1)
6563 exp -> exp . '-' exp (rule 2)
6564 exp -> exp . '*' exp (rule 3)
6565 exp -> exp '*' exp . (rule 3)
6566 exp -> exp . '/' exp (rule 4)
6567
2a8d363a 6568 '/' shift, and go to state 7
ec3bc396 6569
2a8d363a
AD
6570 '/' [reduce using rule 3 (exp)]
6571 $default reduce using rule 3 (exp)
ec3bc396
AD
6572
6573state 11
6574
6575 exp -> exp . '+' exp (rule 1)
6576 exp -> exp . '-' exp (rule 2)
6577 exp -> exp . '*' exp (rule 3)
6578 exp -> exp . '/' exp (rule 4)
6579 exp -> exp '/' exp . (rule 4)
6580
2a8d363a
AD
6581 '+' shift, and go to state 4
6582 '-' shift, and go to state 5
6583 '*' shift, and go to state 6
6584 '/' shift, and go to state 7
ec3bc396 6585
2a8d363a
AD
6586 '+' [reduce using rule 4 (exp)]
6587 '-' [reduce using rule 4 (exp)]
6588 '*' [reduce using rule 4 (exp)]
6589 '/' [reduce using rule 4 (exp)]
6590 $default reduce using rule 4 (exp)
ec3bc396
AD
6591@end example
6592
6593@noindent
fa7e68c3
PE
6594Observe that state 11 contains conflicts not only due to the lack of
6595precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6596@samp{*}, but also because the
ec3bc396
AD
6597associativity of @samp{/} is not specified.
6598
6599
6600@node Tracing
6601@section Tracing Your Parser
bfa74976
RS
6602@findex yydebug
6603@cindex debugging
6604@cindex tracing the parser
6605
6606If a Bison grammar compiles properly but doesn't do what you want when it
6607runs, the @code{yydebug} parser-trace feature can help you figure out why.
6608
3ded9a63
AD
6609There are several means to enable compilation of trace facilities:
6610
6611@table @asis
6612@item the macro @code{YYDEBUG}
6613@findex YYDEBUG
6614Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6615parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6616@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6617YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6618Prologue}).
6619
6620@item the option @option{-t}, @option{--debug}
6621Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6622,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6623
6624@item the directive @samp{%debug}
6625@findex %debug
6626Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6627Declaration Summary}). This is a Bison extension, which will prove
6628useful when Bison will output parsers for languages that don't use a
c827f760
PE
6629preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6630you, this is
3ded9a63
AD
6631the preferred solution.
6632@end table
6633
6634We suggest that you always enable the debug option so that debugging is
6635always possible.
bfa74976 6636
02a81e05 6637The trace facility outputs messages with macro calls of the form
e2742e46 6638@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6639@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6640arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6641define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6642and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6643
6644Once you have compiled the program with trace facilities, the way to
6645request a trace is to store a nonzero value in the variable @code{yydebug}.
6646You can do this by making the C code do it (in @code{main}, perhaps), or
6647you can alter the value with a C debugger.
6648
6649Each step taken by the parser when @code{yydebug} is nonzero produces a
6650line or two of trace information, written on @code{stderr}. The trace
6651messages tell you these things:
6652
6653@itemize @bullet
6654@item
6655Each time the parser calls @code{yylex}, what kind of token was read.
6656
6657@item
6658Each time a token is shifted, the depth and complete contents of the
6659state stack (@pxref{Parser States}).
6660
6661@item
6662Each time a rule is reduced, which rule it is, and the complete contents
6663of the state stack afterward.
6664@end itemize
6665
6666To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6667produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6668Bison}). This file shows the meaning of each state in terms of
6669positions in various rules, and also what each state will do with each
6670possible input token. As you read the successive trace messages, you
6671can see that the parser is functioning according to its specification in
6672the listing file. Eventually you will arrive at the place where
6673something undesirable happens, and you will see which parts of the
6674grammar are to blame.
bfa74976
RS
6675
6676The parser file is a C program and you can use C debuggers on it, but it's
6677not easy to interpret what it is doing. The parser function is a
6678finite-state machine interpreter, and aside from the actions it executes
6679the same code over and over. Only the values of variables show where in
6680the grammar it is working.
6681
6682@findex YYPRINT
6683The debugging information normally gives the token type of each token
6684read, but not its semantic value. You can optionally define a macro
6685named @code{YYPRINT} to provide a way to print the value. If you define
6686@code{YYPRINT}, it should take three arguments. The parser will pass a
6687standard I/O stream, the numeric code for the token type, and the token
6688value (from @code{yylval}).
6689
6690Here is an example of @code{YYPRINT} suitable for the multi-function
6691calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6692
6693@smallexample
38a92d50
PE
6694%@{
6695 static void print_token_value (FILE *, int, YYSTYPE);
6696 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6697%@}
6698
6699@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6700
6701static void
831d3c99 6702print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6703@{
6704 if (type == VAR)
d3c4e709 6705 fprintf (file, "%s", value.tptr->name);
bfa74976 6706 else if (type == NUM)
d3c4e709 6707 fprintf (file, "%d", value.val);
bfa74976
RS
6708@}
6709@end smallexample
6710
ec3bc396
AD
6711@c ================================================= Invoking Bison
6712
342b8b6e 6713@node Invocation
bfa74976
RS
6714@chapter Invoking Bison
6715@cindex invoking Bison
6716@cindex Bison invocation
6717@cindex options for invoking Bison
6718
6719The usual way to invoke Bison is as follows:
6720
6721@example
6722bison @var{infile}
6723@end example
6724
6725Here @var{infile} is the grammar file name, which usually ends in
6726@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6727with @samp{.tab.c} and removing any leading directory. Thus, the
6728@samp{bison foo.y} file name yields
6729@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6730@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6731C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6732or @file{foo.y++}. Then, the output files will take an extension like
6733the given one as input (respectively @file{foo.tab.cpp} and
6734@file{foo.tab.c++}).
fa4d969f 6735This feature takes effect with all options that manipulate file names like
234a3be3
AD
6736@samp{-o} or @samp{-d}.
6737
6738For example :
6739
6740@example
6741bison -d @var{infile.yxx}
6742@end example
84163231 6743@noindent
72d2299c 6744will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6745
6746@example
b56471a6 6747bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6748@end example
84163231 6749@noindent
234a3be3
AD
6750will produce @file{output.c++} and @file{outfile.h++}.
6751
397ec073
PE
6752For compatibility with @acronym{POSIX}, the standard Bison
6753distribution also contains a shell script called @command{yacc} that
6754invokes Bison with the @option{-y} option.
6755
bfa74976 6756@menu
13863333 6757* Bison Options:: All the options described in detail,
c827f760 6758 in alphabetical order by short options.
bfa74976 6759* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6760* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6761@end menu
6762
342b8b6e 6763@node Bison Options
bfa74976
RS
6764@section Bison Options
6765
6766Bison supports both traditional single-letter options and mnemonic long
6767option names. Long option names are indicated with @samp{--} instead of
6768@samp{-}. Abbreviations for option names are allowed as long as they
6769are unique. When a long option takes an argument, like
6770@samp{--file-prefix}, connect the option name and the argument with
6771@samp{=}.
6772
6773Here is a list of options that can be used with Bison, alphabetized by
6774short option. It is followed by a cross key alphabetized by long
6775option.
6776
89cab50d
AD
6777@c Please, keep this ordered as in `bison --help'.
6778@noindent
6779Operations modes:
6780@table @option
6781@item -h
6782@itemx --help
6783Print a summary of the command-line options to Bison and exit.
bfa74976 6784
89cab50d
AD
6785@item -V
6786@itemx --version
6787Print the version number of Bison and exit.
bfa74976 6788
f7ab6a50
PE
6789@item --print-localedir
6790Print the name of the directory containing locale-dependent data.
6791
89cab50d
AD
6792@item -y
6793@itemx --yacc
54662697
PE
6794Act more like the traditional Yacc command. This can cause
6795different diagnostics to be generated, and may change behavior in
6796other minor ways. Most importantly, imitate Yacc's output
6797file name conventions, so that the parser output file is called
89cab50d 6798@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6799@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6800for Yacc, and the Bison distribution contains such a script for
6801compatibility with @acronym{POSIX}:
bfa74976 6802
89cab50d 6803@example
397ec073 6804#! /bin/sh
26e06a21 6805bison -y "$@@"
89cab50d 6806@end example
54662697
PE
6807
6808The @option{-y}/@option{--yacc} option is intended for use with
6809traditional Yacc grammars. If your grammar uses a Bison extension
6810like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6811this option is specified.
6812
89cab50d
AD
6813@end table
6814
6815@noindent
6816Tuning the parser:
6817
6818@table @option
cd5bd6ac
AD
6819@item -S @var{file}
6820@itemx --skeleton=@var{file}
6821Specify the skeleton to use. You probably don't need this option unless
6822you are developing Bison.
6823
89cab50d
AD
6824@item -t
6825@itemx --debug
4947ebdb
PE
6826In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6827already defined, so that the debugging facilities are compiled.
ec3bc396 6828@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6829
6830@item --locations
d8988b2f 6831Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6832
6833@item -p @var{prefix}
6834@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6835Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6836@xref{Decl Summary}.
bfa74976
RS
6837
6838@item -l
6839@itemx --no-lines
6840Don't put any @code{#line} preprocessor commands in the parser file.
6841Ordinarily Bison puts them in the parser file so that the C compiler
6842and debuggers will associate errors with your source file, the
6843grammar file. This option causes them to associate errors with the
95e742f7 6844parser file, treating it as an independent source file in its own right.
bfa74976 6845
931c7513
RS
6846@item -n
6847@itemx --no-parser
d8988b2f 6848Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6849
89cab50d
AD
6850@item -k
6851@itemx --token-table
d8988b2f 6852Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6853@end table
bfa74976 6854
89cab50d
AD
6855@noindent
6856Adjust the output:
bfa74976 6857
89cab50d
AD
6858@table @option
6859@item -d
d8988b2f
AD
6860@itemx --defines
6861Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6862file containing macro definitions for the token type names defined in
4bfd5e4e 6863the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6864
342b8b6e 6865@item --defines=@var{defines-file}
d8988b2f 6866Same as above, but save in the file @var{defines-file}.
342b8b6e 6867
89cab50d
AD
6868@item -b @var{file-prefix}
6869@itemx --file-prefix=@var{prefix}
d8988b2f 6870Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6871for all Bison output file names. @xref{Decl Summary}.
bfa74976 6872
ec3bc396
AD
6873@item -r @var{things}
6874@itemx --report=@var{things}
6875Write an extra output file containing verbose description of the comma
6876separated list of @var{things} among:
6877
6878@table @code
6879@item state
6880Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6881@acronym{LALR} automaton.
ec3bc396 6882
8dd162d3 6883@item look-ahead
ec3bc396 6884Implies @code{state} and augments the description of the automaton with
8dd162d3 6885each rule's look-ahead set.
ec3bc396
AD
6886
6887@item itemset
6888Implies @code{state} and augments the description of the automaton with
6889the full set of items for each state, instead of its core only.
6890@end table
6891
bfa74976
RS
6892@item -v
6893@itemx --verbose
6deb4447
AD
6894Pretend that @code{%verbose} was specified, i.e, write an extra output
6895file containing verbose descriptions of the grammar and
72d2299c 6896parser. @xref{Decl Summary}.
bfa74976 6897
fa4d969f
PE
6898@item -o @var{file}
6899@itemx --output=@var{file}
6900Specify the @var{file} for the parser file.
bfa74976 6901
fa4d969f 6902The other output files' names are constructed from @var{file} as
d8988b2f 6903described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6904
6905@item -g
c827f760
PE
6906Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6907automaton computed by Bison. If the grammar file is @file{foo.y}, the
6908@acronym{VCG} output file will
342b8b6e
AD
6909be @file{foo.vcg}.
6910
6911@item --graph=@var{graph-file}
72d2299c
PE
6912The behavior of @var{--graph} is the same than @samp{-g}. The only
6913difference is that it has an optional argument which is the name of
fa4d969f 6914the output graph file.
bfa74976
RS
6915@end table
6916
342b8b6e 6917@node Option Cross Key
bfa74976
RS
6918@section Option Cross Key
6919
6920Here is a list of options, alphabetized by long option, to help you find
6921the corresponding short option.
6922
6923@tex
6924\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6925
6926{\tt
6927\line{ --debug \leaderfill -t}
6928\line{ --defines \leaderfill -d}
6929\line{ --file-prefix \leaderfill -b}
342b8b6e 6930\line{ --graph \leaderfill -g}
ff51d159 6931\line{ --help \leaderfill -h}
bfa74976
RS
6932\line{ --name-prefix \leaderfill -p}
6933\line{ --no-lines \leaderfill -l}
931c7513 6934\line{ --no-parser \leaderfill -n}
d8988b2f 6935\line{ --output \leaderfill -o}
f7ab6a50 6936\line{ --print-localedir}
931c7513 6937\line{ --token-table \leaderfill -k}
bfa74976
RS
6938\line{ --verbose \leaderfill -v}
6939\line{ --version \leaderfill -V}
6940\line{ --yacc \leaderfill -y}
6941}
6942@end tex
6943
6944@ifinfo
6945@example
6946--debug -t
342b8b6e 6947--defines=@var{defines-file} -d
bfa74976 6948--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6949--graph=@var{graph-file} -d
ff51d159 6950--help -h
931c7513 6951--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6952--no-lines -l
931c7513 6953--no-parser -n
d8988b2f 6954--output=@var{outfile} -o @var{outfile}
f7ab6a50 6955--print-localedir
931c7513 6956--token-table -k
bfa74976
RS
6957--verbose -v
6958--version -V
8c9a50be 6959--yacc -y
bfa74976
RS
6960@end example
6961@end ifinfo
6962
93dd49ab
PE
6963@node Yacc Library
6964@section Yacc Library
6965
6966The Yacc library contains default implementations of the
6967@code{yyerror} and @code{main} functions. These default
6968implementations are normally not useful, but @acronym{POSIX} requires
6969them. To use the Yacc library, link your program with the
6970@option{-ly} option. Note that Bison's implementation of the Yacc
6971library is distributed under the terms of the @acronym{GNU} General
6972Public License (@pxref{Copying}).
6973
6974If you use the Yacc library's @code{yyerror} function, you should
6975declare @code{yyerror} as follows:
6976
6977@example
6978int yyerror (char const *);
6979@end example
6980
6981Bison ignores the @code{int} value returned by this @code{yyerror}.
6982If you use the Yacc library's @code{main} function, your
6983@code{yyparse} function should have the following type signature:
6984
6985@example
6986int yyparse (void);
6987@end example
6988
12545799
AD
6989@c ================================================= C++ Bison
6990
6991@node C++ Language Interface
6992@chapter C++ Language Interface
6993
6994@menu
6995* C++ Parsers:: The interface to generate C++ parser classes
6996* A Complete C++ Example:: Demonstrating their use
6997@end menu
6998
6999@node C++ Parsers
7000@section C++ Parsers
7001
7002@menu
7003* C++ Bison Interface:: Asking for C++ parser generation
7004* C++ Semantic Values:: %union vs. C++
7005* C++ Location Values:: The position and location classes
7006* C++ Parser Interface:: Instantiating and running the parser
7007* C++ Scanner Interface:: Exchanges between yylex and parse
7008@end menu
7009
7010@node C++ Bison Interface
7011@subsection C++ Bison Interface
7012@c - %skeleton "lalr1.cc"
7013@c - Always pure
7014@c - initial action
7015
e054b190 7016The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
7017it, you may either pass the option @option{--skeleton=lalr1.cc} to
7018Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
7019grammar preamble. When run, @command{bison} will create several
7020files:
7021@table @file
7022@item position.hh
7023@itemx location.hh
7024The definition of the classes @code{position} and @code{location},
7025used for location tracking. @xref{C++ Location Values}.
7026
7027@item stack.hh
7028An auxiliary class @code{stack} used by the parser.
7029
fa4d969f
PE
7030@item @var{file}.hh
7031@itemx @var{file}.cc
12545799 7032The declaration and implementation of the C++ parser class.
fa4d969f 7033@var{file} is the name of the output file. It follows the same
12545799
AD
7034rules as with regular C parsers.
7035
fa4d969f 7036Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7037work without the parser class declaration. Therefore, you must either
7038pass @option{-d}/@option{--defines} to @command{bison}, or use the
7039@samp{%defines} directive.
7040@end table
7041
7042All these files are documented using Doxygen; run @command{doxygen}
7043for a complete and accurate documentation.
7044
7045@node C++ Semantic Values
7046@subsection C++ Semantic Values
7047@c - No objects in unions
7048@c - YSTYPE
7049@c - Printer and destructor
7050
7051The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7052Collection of Value Types}. In particular it produces a genuine
7053@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7054within pseudo-unions (similar to Boost variants) might be implemented to
7055alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7056@itemize @minus
7057@item
fb9712a9
AD
7058The type @code{YYSTYPE} is defined but its use is discouraged: rather
7059you should refer to the parser's encapsulated type
7060@code{yy::parser::semantic_type}.
12545799
AD
7061@item
7062Non POD (Plain Old Data) types cannot be used. C++ forbids any
7063instance of classes with constructors in unions: only @emph{pointers}
7064to such objects are allowed.
7065@end itemize
7066
7067Because objects have to be stored via pointers, memory is not
7068reclaimed automatically: using the @code{%destructor} directive is the
7069only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7070Symbols}.
7071
7072
7073@node C++ Location Values
7074@subsection C++ Location Values
7075@c - %locations
7076@c - class Position
7077@c - class Location
b47dbebe 7078@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7079
7080When the directive @code{%locations} is used, the C++ parser supports
7081location tracking, see @ref{Locations, , Locations Overview}. Two
7082auxiliary classes define a @code{position}, a single point in a file,
7083and a @code{location}, a range composed of a pair of
7084@code{position}s (possibly spanning several files).
7085
fa4d969f 7086@deftypemethod {position} {std::string*} file
12545799
AD
7087The name of the file. It will always be handled as a pointer, the
7088parser will never duplicate nor deallocate it. As an experimental
7089feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7090"filename_type" "@var{type}"}.
12545799
AD
7091@end deftypemethod
7092
7093@deftypemethod {position} {unsigned int} line
7094The line, starting at 1.
7095@end deftypemethod
7096
7097@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7098Advance by @var{height} lines, resetting the column number.
7099@end deftypemethod
7100
7101@deftypemethod {position} {unsigned int} column
7102The column, starting at 0.
7103@end deftypemethod
7104
7105@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7106Advance by @var{width} columns, without changing the line number.
7107@end deftypemethod
7108
7109@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7110@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7111@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7112@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7113Various forms of syntactic sugar for @code{columns}.
7114@end deftypemethod
7115
7116@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7117Report @var{p} on @var{o} like this:
fa4d969f
PE
7118@samp{@var{file}:@var{line}.@var{column}}, or
7119@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7120@end deftypemethod
7121
7122@deftypemethod {location} {position} begin
7123@deftypemethodx {location} {position} end
7124The first, inclusive, position of the range, and the first beyond.
7125@end deftypemethod
7126
7127@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7128@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7129Advance the @code{end} position.
7130@end deftypemethod
7131
7132@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7133@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7134@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7135Various forms of syntactic sugar.
7136@end deftypemethod
7137
7138@deftypemethod {location} {void} step ()
7139Move @code{begin} onto @code{end}.
7140@end deftypemethod
7141
7142
7143@node C++ Parser Interface
7144@subsection C++ Parser Interface
7145@c - define parser_class_name
7146@c - Ctor
7147@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7148@c debug_stream.
7149@c - Reporting errors
7150
7151The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7152declare and define the parser class in the namespace @code{yy}. The
7153class name defaults to @code{parser}, but may be changed using
7154@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7155this class is detailed below. It can be extended using the
12545799
AD
7156@code{%parse-param} feature: its semantics is slightly changed since
7157it describes an additional member of the parser class, and an
7158additional argument for its constructor.
7159
8a0adb01
AD
7160@defcv {Type} {parser} {semantic_value_type}
7161@defcvx {Type} {parser} {location_value_type}
12545799 7162The types for semantics value and locations.
8a0adb01 7163@end defcv
12545799
AD
7164
7165@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7166Build a new parser object. There are no arguments by default, unless
7167@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7168@end deftypemethod
7169
7170@deftypemethod {parser} {int} parse ()
7171Run the syntactic analysis, and return 0 on success, 1 otherwise.
7172@end deftypemethod
7173
7174@deftypemethod {parser} {std::ostream&} debug_stream ()
7175@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7176Get or set the stream used for tracing the parsing. It defaults to
7177@code{std::cerr}.
7178@end deftypemethod
7179
7180@deftypemethod {parser} {debug_level_type} debug_level ()
7181@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7182Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7183or nonzero, full tracing.
12545799
AD
7184@end deftypemethod
7185
7186@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7187The definition for this member function must be supplied by the user:
7188the parser uses it to report a parser error occurring at @var{l},
7189described by @var{m}.
7190@end deftypemethod
7191
7192
7193@node C++ Scanner Interface
7194@subsection C++ Scanner Interface
7195@c - prefix for yylex.
7196@c - Pure interface to yylex
7197@c - %lex-param
7198
7199The parser invokes the scanner by calling @code{yylex}. Contrary to C
7200parsers, C++ parsers are always pure: there is no point in using the
7201@code{%pure-parser} directive. Therefore the interface is as follows.
7202
7203@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7204Return the next token. Its type is the return value, its semantic
7205value and location being @var{yylval} and @var{yylloc}. Invocations of
7206@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7207@end deftypemethod
7208
7209
7210@node A Complete C++ Example
7211@section A Complete C++ Example
7212
7213This section demonstrates the use of a C++ parser with a simple but
7214complete example. This example should be available on your system,
7215ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7216focuses on the use of Bison, therefore the design of the various C++
7217classes is very naive: no accessors, no encapsulation of members etc.
7218We will use a Lex scanner, and more precisely, a Flex scanner, to
7219demonstrate the various interaction. A hand written scanner is
7220actually easier to interface with.
7221
7222@menu
7223* Calc++ --- C++ Calculator:: The specifications
7224* Calc++ Parsing Driver:: An active parsing context
7225* Calc++ Parser:: A parser class
7226* Calc++ Scanner:: A pure C++ Flex scanner
7227* Calc++ Top Level:: Conducting the band
7228@end menu
7229
7230@node Calc++ --- C++ Calculator
7231@subsection Calc++ --- C++ Calculator
7232
7233Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7234expression, possibly preceded by variable assignments. An
12545799
AD
7235environment containing possibly predefined variables such as
7236@code{one} and @code{two}, is exchanged with the parser. An example
7237of valid input follows.
7238
7239@example
7240three := 3
7241seven := one + two * three
7242seven * seven
7243@end example
7244
7245@node Calc++ Parsing Driver
7246@subsection Calc++ Parsing Driver
7247@c - An env
7248@c - A place to store error messages
7249@c - A place for the result
7250
7251To support a pure interface with the parser (and the scanner) the
7252technique of the ``parsing context'' is convenient: a structure
7253containing all the data to exchange. Since, in addition to simply
7254launch the parsing, there are several auxiliary tasks to execute (open
7255the file for parsing, instantiate the parser etc.), we recommend
7256transforming the simple parsing context structure into a fully blown
7257@dfn{parsing driver} class.
7258
7259The declaration of this driver class, @file{calc++-driver.hh}, is as
7260follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7261required standard library components, and the declaration of the parser
7262class.
12545799 7263
1c59e0a1 7264@comment file: calc++-driver.hh
12545799
AD
7265@example
7266#ifndef CALCXX_DRIVER_HH
7267# define CALCXX_DRIVER_HH
7268# include <string>
7269# include <map>
fb9712a9 7270# include "calc++-parser.hh"
12545799
AD
7271@end example
7272
12545799
AD
7273
7274@noindent
7275Then comes the declaration of the scanning function. Flex expects
7276the signature of @code{yylex} to be defined in the macro
7277@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7278factor both as follows.
1c59e0a1
AD
7279
7280@comment file: calc++-driver.hh
12545799
AD
7281@example
7282// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7283# define YY_DECL \
fb9712a9
AD
7284 int yylex (yy::calcxx_parser::semantic_type* yylval, \
7285 yy::calcxx_parser::location_type* yylloc, \
7286 calcxx_driver& driver)
12545799
AD
7287// ... and declare it for the parser's sake.
7288YY_DECL;
7289@end example
7290
7291@noindent
7292The @code{calcxx_driver} class is then declared with its most obvious
7293members.
7294
1c59e0a1 7295@comment file: calc++-driver.hh
12545799
AD
7296@example
7297// Conducting the whole scanning and parsing of Calc++.
7298class calcxx_driver
7299@{
7300public:
7301 calcxx_driver ();
7302 virtual ~calcxx_driver ();
7303
7304 std::map<std::string, int> variables;
7305
7306 int result;
7307@end example
7308
7309@noindent
7310To encapsulate the coordination with the Flex scanner, it is useful to
7311have two members function to open and close the scanning phase.
7312members.
7313
1c59e0a1 7314@comment file: calc++-driver.hh
12545799
AD
7315@example
7316 // Handling the scanner.
7317 void scan_begin ();
7318 void scan_end ();
7319 bool trace_scanning;
7320@end example
7321
7322@noindent
7323Similarly for the parser itself.
7324
1c59e0a1 7325@comment file: calc++-driver.hh
12545799
AD
7326@example
7327 // Handling the parser.
7328 void parse (const std::string& f);
7329 std::string file;
7330 bool trace_parsing;
7331@end example
7332
7333@noindent
7334To demonstrate pure handling of parse errors, instead of simply
7335dumping them on the standard error output, we will pass them to the
7336compiler driver using the following two member functions. Finally, we
7337close the class declaration and CPP guard.
7338
1c59e0a1 7339@comment file: calc++-driver.hh
12545799
AD
7340@example
7341 // Error handling.
7342 void error (const yy::location& l, const std::string& m);
7343 void error (const std::string& m);
7344@};
7345#endif // ! CALCXX_DRIVER_HH
7346@end example
7347
7348The implementation of the driver is straightforward. The @code{parse}
7349member function deserves some attention. The @code{error} functions
7350are simple stubs, they should actually register the located error
7351messages and set error state.
7352
1c59e0a1 7353@comment file: calc++-driver.cc
12545799
AD
7354@example
7355#include "calc++-driver.hh"
7356#include "calc++-parser.hh"
7357
7358calcxx_driver::calcxx_driver ()
7359 : trace_scanning (false), trace_parsing (false)
7360@{
7361 variables["one"] = 1;
7362 variables["two"] = 2;
7363@}
7364
7365calcxx_driver::~calcxx_driver ()
7366@{
7367@}
7368
7369void
7370calcxx_driver::parse (const std::string &f)
7371@{
7372 file = f;
7373 scan_begin ();
7374 yy::calcxx_parser parser (*this);
7375 parser.set_debug_level (trace_parsing);
7376 parser.parse ();
7377 scan_end ();
7378@}
7379
7380void
7381calcxx_driver::error (const yy::location& l, const std::string& m)
7382@{
7383 std::cerr << l << ": " << m << std::endl;
7384@}
7385
7386void
7387calcxx_driver::error (const std::string& m)
7388@{
7389 std::cerr << m << std::endl;
7390@}
7391@end example
7392
7393@node Calc++ Parser
7394@subsection Calc++ Parser
7395
b50d2359
AD
7396The parser definition file @file{calc++-parser.yy} starts by asking for
7397the C++ LALR(1) skeleton, the creation of the parser header file, and
7398specifies the name of the parser class. Because the C++ skeleton
7399changed several times, it is safer to require the version you designed
7400the grammar for.
1c59e0a1
AD
7401
7402@comment file: calc++-parser.yy
12545799
AD
7403@example
7404%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7405%require "2.1a"
12545799 7406%defines
fb9712a9
AD
7407%define "parser_class_name" "calcxx_parser"
7408@end example
7409
7410@noindent
7411Then come the declarations/inclusions needed to define the
7412@code{%union}. Because the parser uses the parsing driver and
7413reciprocally, both cannot include the header of the other. Because the
7414driver's header needs detailed knowledge about the parser class (in
7415particular its inner types), it is the parser's header which will simply
7416use a forward declaration of the driver.
7417
7418@comment file: calc++-parser.yy
7419@example
12545799
AD
7420%@{
7421# include <string>
fb9712a9 7422class calcxx_driver;
12545799
AD
7423%@}
7424@end example
7425
7426@noindent
7427The driver is passed by reference to the parser and to the scanner.
7428This provides a simple but effective pure interface, not relying on
7429global variables.
7430
1c59e0a1 7431@comment file: calc++-parser.yy
12545799
AD
7432@example
7433// The parsing context.
7434%parse-param @{ calcxx_driver& driver @}
7435%lex-param @{ calcxx_driver& driver @}
7436@end example
7437
7438@noindent
7439Then we request the location tracking feature, and initialize the
7440first location's file name. Afterwards new locations are computed
7441relatively to the previous locations: the file name will be
7442automatically propagated.
7443
1c59e0a1 7444@comment file: calc++-parser.yy
12545799
AD
7445@example
7446%locations
7447%initial-action
7448@{
7449 // Initialize the initial location.
b47dbebe 7450 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7451@};
7452@end example
7453
7454@noindent
7455Use the two following directives to enable parser tracing and verbose
7456error messages.
7457
1c59e0a1 7458@comment file: calc++-parser.yy
12545799
AD
7459@example
7460%debug
7461%error-verbose
7462@end example
7463
7464@noindent
7465Semantic values cannot use ``real'' objects, but only pointers to
7466them.
7467
1c59e0a1 7468@comment file: calc++-parser.yy
12545799
AD
7469@example
7470// Symbols.
7471%union
7472@{
7473 int ival;
7474 std::string *sval;
7475@};
7476@end example
7477
fb9712a9
AD
7478@noindent
7479The code between @samp{%@{} and @samp{%@}} after the introduction of the
7480@samp{%union} is output in the @file{*.cc} file; it needs detailed
7481knowledge about the driver.
7482
7483@comment file: calc++-parser.yy
7484@example
7485%@{
7486# include "calc++-driver.hh"
7487%@}
7488@end example
7489
7490
12545799
AD
7491@noindent
7492The token numbered as 0 corresponds to end of file; the following line
7493allows for nicer error messages referring to ``end of file'' instead
7494of ``$end''. Similarly user friendly named are provided for each
7495symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7496avoid name clashes.
7497
1c59e0a1 7498@comment file: calc++-parser.yy
12545799 7499@example
fb9712a9
AD
7500%token END 0 "end of file"
7501%token ASSIGN ":="
7502%token <sval> IDENTIFIER "identifier"
7503%token <ival> NUMBER "number"
7504%type <ival> exp "expression"
12545799
AD
7505@end example
7506
7507@noindent
7508To enable memory deallocation during error recovery, use
7509@code{%destructor}.
7510
287c78f6 7511@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7512@comment file: calc++-parser.yy
12545799
AD
7513@example
7514%printer @{ debug_stream () << *$$; @} "identifier"
7515%destructor @{ delete $$; @} "identifier"
7516
7517%printer @{ debug_stream () << $$; @} "number" "expression"
7518@end example
7519
7520@noindent
7521The grammar itself is straightforward.
7522
1c59e0a1 7523@comment file: calc++-parser.yy
12545799
AD
7524@example
7525%%
7526%start unit;
7527unit: assignments exp @{ driver.result = $2; @};
7528
7529assignments: assignments assignment @{@}
9d9b8b70 7530 | /* Nothing. */ @{@};
12545799 7531
fb9712a9 7532assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7533
7534%left '+' '-';
7535%left '*' '/';
7536exp: exp '+' exp @{ $$ = $1 + $3; @}
7537 | exp '-' exp @{ $$ = $1 - $3; @}
7538 | exp '*' exp @{ $$ = $1 * $3; @}
7539 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7540 | "identifier" @{ $$ = driver.variables[*$1]; @}
7541 | "number" @{ $$ = $1; @};
12545799
AD
7542%%
7543@end example
7544
7545@noindent
7546Finally the @code{error} member function registers the errors to the
7547driver.
7548
1c59e0a1 7549@comment file: calc++-parser.yy
12545799
AD
7550@example
7551void
1c59e0a1
AD
7552yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7553 const std::string& m)
12545799
AD
7554@{
7555 driver.error (l, m);
7556@}
7557@end example
7558
7559@node Calc++ Scanner
7560@subsection Calc++ Scanner
7561
7562The Flex scanner first includes the driver declaration, then the
7563parser's to get the set of defined tokens.
7564
1c59e0a1 7565@comment file: calc++-scanner.ll
12545799
AD
7566@example
7567%@{ /* -*- C++ -*- */
04098407
PE
7568# include <cstdlib>
7569# include <errno.h>
7570# include <limits.h>
12545799
AD
7571# include <string>
7572# include "calc++-driver.hh"
7573# include "calc++-parser.hh"
7870f699
PE
7574/* Work around a bug in flex 2.5.31. See Debian bug 333231
7575 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7576# undef yywrap
7577# define yywrap() 1
12545799
AD
7578%@}
7579@end example
7580
7581@noindent
7582Because there is no @code{#include}-like feature we don't need
7583@code{yywrap}, we don't need @code{unput} either, and we parse an
7584actual file, this is not an interactive session with the user.
7585Finally we enable the scanner tracing features.
7586
1c59e0a1 7587@comment file: calc++-scanner.ll
12545799
AD
7588@example
7589%option noyywrap nounput batch debug
7590@end example
7591
7592@noindent
7593Abbreviations allow for more readable rules.
7594
1c59e0a1 7595@comment file: calc++-scanner.ll
12545799
AD
7596@example
7597id [a-zA-Z][a-zA-Z_0-9]*
7598int [0-9]+
7599blank [ \t]
7600@end example
7601
7602@noindent
9d9b8b70 7603The following paragraph suffices to track locations accurately. Each
12545799
AD
7604time @code{yylex} is invoked, the begin position is moved onto the end
7605position. Then when a pattern is matched, the end position is
7606advanced of its width. In case it matched ends of lines, the end
7607cursor is adjusted, and each time blanks are matched, the begin cursor
7608is moved onto the end cursor to effectively ignore the blanks
7609preceding tokens. Comments would be treated equally.
7610
1c59e0a1 7611@comment file: calc++-scanner.ll
12545799 7612@example
828c373b
AD
7613%@{
7614# define YY_USER_ACTION yylloc->columns (yyleng);
7615%@}
12545799
AD
7616%%
7617%@{
7618 yylloc->step ();
12545799
AD
7619%@}
7620@{blank@}+ yylloc->step ();
7621[\n]+ yylloc->lines (yyleng); yylloc->step ();
7622@end example
7623
7624@noindent
fb9712a9
AD
7625The rules are simple, just note the use of the driver to report errors.
7626It is convenient to use a typedef to shorten
7627@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7628@code{token::identifier} for instance.
12545799 7629
1c59e0a1 7630@comment file: calc++-scanner.ll
12545799 7631@example
fb9712a9
AD
7632%@{
7633 typedef yy::calcxx_parser::token token;
7634%@}
7635
12545799 7636[-+*/] return yytext[0];
fb9712a9 7637":=" return token::ASSIGN;
04098407
PE
7638@{int@} @{
7639 errno = 0;
7640 long n = strtol (yytext, NULL, 10);
7641 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7642 driver.error (*yylloc, "integer is out of range");
7643 yylval->ival = n;
fb9712a9 7644 return token::NUMBER;
04098407 7645@}
fb9712a9 7646@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7647. driver.error (*yylloc, "invalid character");
7648%%
7649@end example
7650
7651@noindent
7652Finally, because the scanner related driver's member function depend
7653on the scanner's data, it is simpler to implement them in this file.
7654
1c59e0a1 7655@comment file: calc++-scanner.ll
12545799
AD
7656@example
7657void
7658calcxx_driver::scan_begin ()
7659@{
7660 yy_flex_debug = trace_scanning;
7661 if (!(yyin = fopen (file.c_str (), "r")))
7662 error (std::string ("cannot open ") + file);
7663@}
7664
7665void
7666calcxx_driver::scan_end ()
7667@{
7668 fclose (yyin);
7669@}
7670@end example
7671
7672@node Calc++ Top Level
7673@subsection Calc++ Top Level
7674
7675The top level file, @file{calc++.cc}, poses no problem.
7676
1c59e0a1 7677@comment file: calc++.cc
12545799
AD
7678@example
7679#include <iostream>
7680#include "calc++-driver.hh"
7681
7682int
fa4d969f 7683main (int argc, char *argv[])
12545799
AD
7684@{
7685 calcxx_driver driver;
7686 for (++argv; argv[0]; ++argv)
7687 if (*argv == std::string ("-p"))
7688 driver.trace_parsing = true;
7689 else if (*argv == std::string ("-s"))
7690 driver.trace_scanning = true;
7691 else
7692 @{
7693 driver.parse (*argv);
7694 std::cout << driver.result << std::endl;
7695 @}
7696@}
7697@end example
7698
7699@c ================================================= FAQ
d1a1114f
AD
7700
7701@node FAQ
7702@chapter Frequently Asked Questions
7703@cindex frequently asked questions
7704@cindex questions
7705
7706Several questions about Bison come up occasionally. Here some of them
7707are addressed.
7708
7709@menu
1a059451 7710* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7711* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7712* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7713* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7714@end menu
7715
1a059451
PE
7716@node Memory Exhausted
7717@section Memory Exhausted
d1a1114f
AD
7718
7719@display
1a059451 7720My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7721message. What can I do?
7722@end display
7723
7724This question is already addressed elsewhere, @xref{Recursion,
7725,Recursive Rules}.
7726
e64fec0a
PE
7727@node How Can I Reset the Parser
7728@section How Can I Reset the Parser
5b066063 7729
0e14ad77
PE
7730The following phenomenon has several symptoms, resulting in the
7731following typical questions:
5b066063
AD
7732
7733@display
7734I invoke @code{yyparse} several times, and on correct input it works
7735properly; but when a parse error is found, all the other calls fail
0e14ad77 7736too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7737@end display
7738
7739@noindent
7740or
7741
7742@display
0e14ad77 7743My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7744which case I run @code{yyparse} from @code{yyparse}. This fails
7745although I did specify I needed a @code{%pure-parser}.
7746@end display
7747
0e14ad77
PE
7748These problems typically come not from Bison itself, but from
7749Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7750speed, they might not notice a change of input file. As a
7751demonstration, consider the following source file,
7752@file{first-line.l}:
7753
7754@verbatim
7755%{
7756#include <stdio.h>
7757#include <stdlib.h>
7758%}
7759%%
7760.*\n ECHO; return 1;
7761%%
7762int
0e14ad77 7763yyparse (char const *file)
5b066063
AD
7764{
7765 yyin = fopen (file, "r");
7766 if (!yyin)
7767 exit (2);
fa7e68c3 7768 /* One token only. */
5b066063 7769 yylex ();
0e14ad77 7770 if (fclose (yyin) != 0)
5b066063
AD
7771 exit (3);
7772 return 0;
7773}
7774
7775int
0e14ad77 7776main (void)
5b066063
AD
7777{
7778 yyparse ("input");
7779 yyparse ("input");
7780 return 0;
7781}
7782@end verbatim
7783
7784@noindent
7785If the file @file{input} contains
7786
7787@verbatim
7788input:1: Hello,
7789input:2: World!
7790@end verbatim
7791
7792@noindent
0e14ad77 7793then instead of getting the first line twice, you get:
5b066063
AD
7794
7795@example
7796$ @kbd{flex -ofirst-line.c first-line.l}
7797$ @kbd{gcc -ofirst-line first-line.c -ll}
7798$ @kbd{./first-line}
7799input:1: Hello,
7800input:2: World!
7801@end example
7802
0e14ad77
PE
7803Therefore, whenever you change @code{yyin}, you must tell the
7804Lex-generated scanner to discard its current buffer and switch to the
7805new one. This depends upon your implementation of Lex; see its
7806documentation for more. For Flex, it suffices to call
7807@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7808Flex-generated scanner needs to read from several input streams to
7809handle features like include files, you might consider using Flex
7810functions like @samp{yy_switch_to_buffer} that manipulate multiple
7811input buffers.
5b066063 7812
b165c324
AD
7813If your Flex-generated scanner uses start conditions (@pxref{Start
7814conditions, , Start conditions, flex, The Flex Manual}), you might
7815also want to reset the scanner's state, i.e., go back to the initial
7816start condition, through a call to @samp{BEGIN (0)}.
7817
fef4cb51
AD
7818@node Strings are Destroyed
7819@section Strings are Destroyed
7820
7821@display
c7e441b4 7822My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7823them. Instead of reporting @samp{"foo", "bar"}, it reports
7824@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7825@end display
7826
7827This error is probably the single most frequent ``bug report'' sent to
7828Bison lists, but is only concerned with a misunderstanding of the role
7829of scanner. Consider the following Lex code:
7830
7831@verbatim
7832%{
7833#include <stdio.h>
7834char *yylval = NULL;
7835%}
7836%%
7837.* yylval = yytext; return 1;
7838\n /* IGNORE */
7839%%
7840int
7841main ()
7842{
fa7e68c3 7843 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7844 char *fst = (yylex (), yylval);
7845 char *snd = (yylex (), yylval);
7846 printf ("\"%s\", \"%s\"\n", fst, snd);
7847 return 0;
7848}
7849@end verbatim
7850
7851If you compile and run this code, you get:
7852
7853@example
7854$ @kbd{flex -osplit-lines.c split-lines.l}
7855$ @kbd{gcc -osplit-lines split-lines.c -ll}
7856$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7857"one
7858two", "two"
7859@end example
7860
7861@noindent
7862this is because @code{yytext} is a buffer provided for @emph{reading}
7863in the action, but if you want to keep it, you have to duplicate it
7864(e.g., using @code{strdup}). Note that the output may depend on how
7865your implementation of Lex handles @code{yytext}. For instance, when
7866given the Lex compatibility option @option{-l} (which triggers the
7867option @samp{%array}) Flex generates a different behavior:
7868
7869@example
7870$ @kbd{flex -l -osplit-lines.c split-lines.l}
7871$ @kbd{gcc -osplit-lines split-lines.c -ll}
7872$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7873"two", "two"
7874@end example
7875
7876
2fa09258
AD
7877@node Implementing Gotos/Loops
7878@section Implementing Gotos/Loops
a06ea4aa
AD
7879
7880@display
7881My simple calculator supports variables, assignments, and functions,
2fa09258 7882but how can I implement gotos, or loops?
a06ea4aa
AD
7883@end display
7884
7885Although very pedagogical, the examples included in the document blur
a1c84f45 7886the distinction to make between the parser---whose job is to recover
a06ea4aa 7887the structure of a text and to transmit it to subsequent modules of
a1c84f45 7888the program---and the processing (such as the execution) of this
a06ea4aa
AD
7889structure. This works well with so called straight line programs,
7890i.e., precisely those that have a straightforward execution model:
7891execute simple instructions one after the others.
7892
7893@cindex abstract syntax tree
7894@cindex @acronym{AST}
7895If you want a richer model, you will probably need to use the parser
7896to construct a tree that does represent the structure it has
7897recovered; this tree is usually called the @dfn{abstract syntax tree},
7898or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7899traversing it in various ways, will enable treatments such as its
7900execution or its translation, which will result in an interpreter or a
7901compiler.
7902
7903This topic is way beyond the scope of this manual, and the reader is
7904invited to consult the dedicated literature.
7905
7906
7907
d1a1114f
AD
7908@c ================================================= Table of Symbols
7909
342b8b6e 7910@node Table of Symbols
bfa74976
RS
7911@appendix Bison Symbols
7912@cindex Bison symbols, table of
7913@cindex symbols in Bison, table of
7914
18b519c0 7915@deffn {Variable} @@$
3ded9a63 7916In an action, the location of the left-hand side of the rule.
88bce5a2 7917@xref{Locations, , Locations Overview}.
18b519c0 7918@end deffn
3ded9a63 7919
18b519c0 7920@deffn {Variable} @@@var{n}
3ded9a63
AD
7921In an action, the location of the @var{n}-th symbol of the right-hand
7922side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7923@end deffn
3ded9a63 7924
18b519c0 7925@deffn {Variable} $$
3ded9a63
AD
7926In an action, the semantic value of the left-hand side of the rule.
7927@xref{Actions}.
18b519c0 7928@end deffn
3ded9a63 7929
18b519c0 7930@deffn {Variable} $@var{n}
3ded9a63
AD
7931In an action, the semantic value of the @var{n}-th symbol of the
7932right-hand side of the rule. @xref{Actions}.
18b519c0 7933@end deffn
3ded9a63 7934
dd8d9022
AD
7935@deffn {Delimiter} %%
7936Delimiter used to separate the grammar rule section from the
7937Bison declarations section or the epilogue.
7938@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7939@end deffn
bfa74976 7940
dd8d9022
AD
7941@c Don't insert spaces, or check the DVI output.
7942@deffn {Delimiter} %@{@var{code}%@}
7943All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7944the output file uninterpreted. Such code forms the prologue of the input
7945file. @xref{Grammar Outline, ,Outline of a Bison
7946Grammar}.
18b519c0 7947@end deffn
bfa74976 7948
dd8d9022
AD
7949@deffn {Construct} /*@dots{}*/
7950Comment delimiters, as in C.
18b519c0 7951@end deffn
bfa74976 7952
dd8d9022
AD
7953@deffn {Delimiter} :
7954Separates a rule's result from its components. @xref{Rules, ,Syntax of
7955Grammar Rules}.
18b519c0 7956@end deffn
bfa74976 7957
dd8d9022
AD
7958@deffn {Delimiter} ;
7959Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7960@end deffn
bfa74976 7961
dd8d9022
AD
7962@deffn {Delimiter} |
7963Separates alternate rules for the same result nonterminal.
7964@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7965@end deffn
bfa74976 7966
dd8d9022
AD
7967@deffn {Symbol} $accept
7968The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7969$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7970Start-Symbol}. It cannot be used in the grammar.
18b519c0 7971@end deffn
bfa74976 7972
18b519c0 7973@deffn {Directive} %debug
6deb4447 7974Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7975@end deffn
6deb4447 7976
91d2c560 7977@ifset defaultprec
22fccf95
PE
7978@deffn {Directive} %default-prec
7979Assign a precedence to rules that lack an explicit @samp{%prec}
7980modifier. @xref{Contextual Precedence, ,Context-Dependent
7981Precedence}.
39a06c25 7982@end deffn
91d2c560 7983@end ifset
39a06c25 7984
18b519c0 7985@deffn {Directive} %defines
6deb4447
AD
7986Bison declaration to create a header file meant for the scanner.
7987@xref{Decl Summary}.
18b519c0 7988@end deffn
6deb4447 7989
18b519c0 7990@deffn {Directive} %destructor
258b75ca 7991Specify how the parser should reclaim the memory associated to
fa7e68c3 7992discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7993@end deffn
72f889cc 7994
18b519c0 7995@deffn {Directive} %dprec
676385e2 7996Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7997time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7998@acronym{GLR} Parsers}.
18b519c0 7999@end deffn
676385e2 8000
dd8d9022
AD
8001@deffn {Symbol} $end
8002The predefined token marking the end of the token stream. It cannot be
8003used in the grammar.
8004@end deffn
8005
8006@deffn {Symbol} error
8007A token name reserved for error recovery. This token may be used in
8008grammar rules so as to allow the Bison parser to recognize an error in
8009the grammar without halting the process. In effect, a sentence
8010containing an error may be recognized as valid. On a syntax error, the
8011token @code{error} becomes the current look-ahead token. Actions
8012corresponding to @code{error} are then executed, and the look-ahead
8013token is reset to the token that originally caused the violation.
8014@xref{Error Recovery}.
18d192f0
AD
8015@end deffn
8016
18b519c0 8017@deffn {Directive} %error-verbose
2a8d363a
AD
8018Bison declaration to request verbose, specific error message strings
8019when @code{yyerror} is called.
18b519c0 8020@end deffn
2a8d363a 8021
18b519c0 8022@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8023Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8024Summary}.
18b519c0 8025@end deffn
d8988b2f 8026
18b519c0 8027@deffn {Directive} %glr-parser
c827f760
PE
8028Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8029Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8030@end deffn
676385e2 8031
dd8d9022
AD
8032@deffn {Directive} %initial-action
8033Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8034@end deffn
8035
18b519c0 8036@deffn {Directive} %left
bfa74976
RS
8037Bison declaration to assign left associativity to token(s).
8038@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8039@end deffn
bfa74976 8040
feeb0eda 8041@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8042Bison declaration to specifying an additional parameter that
8043@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8044for Pure Parsers}.
18b519c0 8045@end deffn
2a8d363a 8046
18b519c0 8047@deffn {Directive} %merge
676385e2 8048Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8049reduce/reduce conflict with a rule having the same merging function, the
676385e2 8050function is applied to the two semantic values to get a single result.
c827f760 8051@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8052@end deffn
676385e2 8053
18b519c0 8054@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8055Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8056@end deffn
d8988b2f 8057
91d2c560 8058@ifset defaultprec
22fccf95
PE
8059@deffn {Directive} %no-default-prec
8060Do not assign a precedence to rules that lack an explicit @samp{%prec}
8061modifier. @xref{Contextual Precedence, ,Context-Dependent
8062Precedence}.
8063@end deffn
91d2c560 8064@end ifset
22fccf95 8065
18b519c0 8066@deffn {Directive} %no-lines
931c7513
RS
8067Bison declaration to avoid generating @code{#line} directives in the
8068parser file. @xref{Decl Summary}.
18b519c0 8069@end deffn
931c7513 8070
18b519c0 8071@deffn {Directive} %nonassoc
9d9b8b70 8072Bison declaration to assign nonassociativity to token(s).
bfa74976 8073@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8074@end deffn
bfa74976 8075
fa4d969f 8076@deffn {Directive} %output="@var{file}"
72d2299c 8077Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8078Summary}.
18b519c0 8079@end deffn
d8988b2f 8080
feeb0eda 8081@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8082Bison declaration to specifying an additional parameter that
8083@code{yyparse} should accept. @xref{Parser Function,, The Parser
8084Function @code{yyparse}}.
18b519c0 8085@end deffn
2a8d363a 8086
18b519c0 8087@deffn {Directive} %prec
bfa74976
RS
8088Bison declaration to assign a precedence to a specific rule.
8089@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8090@end deffn
bfa74976 8091
18b519c0 8092@deffn {Directive} %pure-parser
bfa74976
RS
8093Bison declaration to request a pure (reentrant) parser.
8094@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8095@end deffn
bfa74976 8096
b50d2359 8097@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8098Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8099Require a Version of Bison}.
b50d2359
AD
8100@end deffn
8101
18b519c0 8102@deffn {Directive} %right
bfa74976
RS
8103Bison declaration to assign right associativity to token(s).
8104@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8105@end deffn
bfa74976 8106
18b519c0 8107@deffn {Directive} %start
704a47c4
AD
8108Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8109Start-Symbol}.
18b519c0 8110@end deffn
bfa74976 8111
18b519c0 8112@deffn {Directive} %token
bfa74976
RS
8113Bison declaration to declare token(s) without specifying precedence.
8114@xref{Token Decl, ,Token Type Names}.
18b519c0 8115@end deffn
bfa74976 8116
18b519c0 8117@deffn {Directive} %token-table
931c7513
RS
8118Bison declaration to include a token name table in the parser file.
8119@xref{Decl Summary}.
18b519c0 8120@end deffn
931c7513 8121
18b519c0 8122@deffn {Directive} %type
704a47c4
AD
8123Bison declaration to declare nonterminals. @xref{Type Decl,
8124,Nonterminal Symbols}.
18b519c0 8125@end deffn
bfa74976 8126
dd8d9022
AD
8127@deffn {Symbol} $undefined
8128The predefined token onto which all undefined values returned by
8129@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8130@code{error}.
8131@end deffn
8132
18b519c0 8133@deffn {Directive} %union
bfa74976
RS
8134Bison declaration to specify several possible data types for semantic
8135values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8136@end deffn
bfa74976 8137
dd8d9022
AD
8138@deffn {Macro} YYABORT
8139Macro to pretend that an unrecoverable syntax error has occurred, by
8140making @code{yyparse} return 1 immediately. The error reporting
8141function @code{yyerror} is not called. @xref{Parser Function, ,The
8142Parser Function @code{yyparse}}.
8143@end deffn
3ded9a63 8144
dd8d9022
AD
8145@deffn {Macro} YYACCEPT
8146Macro to pretend that a complete utterance of the language has been
8147read, by making @code{yyparse} return 0 immediately.
8148@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8149@end deffn
bfa74976 8150
dd8d9022
AD
8151@deffn {Macro} YYBACKUP
8152Macro to discard a value from the parser stack and fake a look-ahead
8153token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8154@end deffn
bfa74976 8155
dd8d9022 8156@deffn {Variable} yychar
32c29292 8157External integer variable that contains the integer value of the
dd8d9022
AD
8158look-ahead token. (In a pure parser, it is a local variable within
8159@code{yyparse}.) Error-recovery rule actions may examine this variable.
8160@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8161@end deffn
bfa74976 8162
dd8d9022
AD
8163@deffn {Variable} yyclearin
8164Macro used in error-recovery rule actions. It clears the previous
8165look-ahead token. @xref{Error Recovery}.
18b519c0 8166@end deffn
bfa74976 8167
dd8d9022
AD
8168@deffn {Macro} YYDEBUG
8169Macro to define to equip the parser with tracing code. @xref{Tracing,
8170,Tracing Your Parser}.
18b519c0 8171@end deffn
bfa74976 8172
dd8d9022
AD
8173@deffn {Variable} yydebug
8174External integer variable set to zero by default. If @code{yydebug}
8175is given a nonzero value, the parser will output information on input
8176symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8177@end deffn
bfa74976 8178
dd8d9022
AD
8179@deffn {Macro} yyerrok
8180Macro to cause parser to recover immediately to its normal mode
8181after a syntax error. @xref{Error Recovery}.
8182@end deffn
8183
8184@deffn {Macro} YYERROR
8185Macro to pretend that a syntax error has just been detected: call
8186@code{yyerror} and then perform normal error recovery if possible
8187(@pxref{Error Recovery}), or (if recovery is impossible) make
8188@code{yyparse} return 1. @xref{Error Recovery}.
8189@end deffn
8190
8191@deffn {Function} yyerror
8192User-supplied function to be called by @code{yyparse} on error.
8193@xref{Error Reporting, ,The Error
8194Reporting Function @code{yyerror}}.
8195@end deffn
8196
8197@deffn {Macro} YYERROR_VERBOSE
8198An obsolete macro that you define with @code{#define} in the prologue
8199to request verbose, specific error message strings
8200when @code{yyerror} is called. It doesn't matter what definition you
8201use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8202@code{%error-verbose} is preferred.
8203@end deffn
8204
8205@deffn {Macro} YYINITDEPTH
8206Macro for specifying the initial size of the parser stack.
1a059451 8207@xref{Memory Management}.
dd8d9022
AD
8208@end deffn
8209
8210@deffn {Function} yylex
8211User-supplied lexical analyzer function, called with no arguments to get
8212the next token. @xref{Lexical, ,The Lexical Analyzer Function
8213@code{yylex}}.
8214@end deffn
8215
8216@deffn {Macro} YYLEX_PARAM
8217An obsolete macro for specifying an extra argument (or list of extra
32c29292 8218arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8219macro is deprecated, and is supported only for Yacc like parsers.
8220@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8221@end deffn
8222
8223@deffn {Variable} yylloc
8224External variable in which @code{yylex} should place the line and column
8225numbers associated with a token. (In a pure parser, it is a local
8226variable within @code{yyparse}, and its address is passed to
32c29292
JD
8227@code{yylex}.)
8228You can ignore this variable if you don't use the @samp{@@} feature in the
8229grammar actions.
8230@xref{Token Locations, ,Textual Locations of Tokens}.
8231In semantic actions, it stores the location of the look-ahead token.
8232@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8233@end deffn
8234
8235@deffn {Type} YYLTYPE
8236Data type of @code{yylloc}; by default, a structure with four
8237members. @xref{Location Type, , Data Types of Locations}.
8238@end deffn
8239
8240@deffn {Variable} yylval
8241External variable in which @code{yylex} should place the semantic
8242value associated with a token. (In a pure parser, it is a local
8243variable within @code{yyparse}, and its address is passed to
32c29292
JD
8244@code{yylex}.)
8245@xref{Token Values, ,Semantic Values of Tokens}.
8246In semantic actions, it stores the semantic value of the look-ahead token.
8247@xref{Actions, ,Actions}.
dd8d9022
AD
8248@end deffn
8249
8250@deffn {Macro} YYMAXDEPTH
1a059451
PE
8251Macro for specifying the maximum size of the parser stack. @xref{Memory
8252Management}.
dd8d9022
AD
8253@end deffn
8254
8255@deffn {Variable} yynerrs
8a2800e7 8256Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8257(In a pure parser, it is a local variable within @code{yyparse}.)
8258@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8259@end deffn
8260
8261@deffn {Function} yyparse
8262The parser function produced by Bison; call this function to start
8263parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8264@end deffn
8265
8266@deffn {Macro} YYPARSE_PARAM
8267An obsolete macro for specifying the name of a parameter that
8268@code{yyparse} should accept. The use of this macro is deprecated, and
8269is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8270Conventions for Pure Parsers}.
8271@end deffn
8272
8273@deffn {Macro} YYRECOVERING
8274Macro whose value indicates whether the parser is recovering from a
8275syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8276@end deffn
8277
8278@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8279Macro used to control the use of @code{alloca} when the C
8280@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8281the parser will use @code{malloc} to extend its stacks. If defined to
82821, the parser will use @code{alloca}. Values other than 0 and 1 are
8283reserved for future Bison extensions. If not defined,
8284@code{YYSTACK_USE_ALLOCA} defaults to 0.
8285
55289366 8286In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8287limited stack and with unreliable stack-overflow checking, you should
8288set @code{YYMAXDEPTH} to a value that cannot possibly result in
8289unchecked stack overflow on any of your target hosts when
8290@code{alloca} is called. You can inspect the code that Bison
8291generates in order to determine the proper numeric values. This will
8292require some expertise in low-level implementation details.
dd8d9022
AD
8293@end deffn
8294
8295@deffn {Type} YYSTYPE
8296Data type of semantic values; @code{int} by default.
8297@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8298@end deffn
bfa74976 8299
342b8b6e 8300@node Glossary
bfa74976
RS
8301@appendix Glossary
8302@cindex glossary
8303
8304@table @asis
c827f760
PE
8305@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8306Formal method of specifying context-free grammars originally proposed
8307by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8308committee document contributing to what became the Algol 60 report.
8309@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8310
8311@item Context-free grammars
8312Grammars specified as rules that can be applied regardless of context.
8313Thus, if there is a rule which says that an integer can be used as an
8314expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8315permitted. @xref{Language and Grammar, ,Languages and Context-Free
8316Grammars}.
bfa74976
RS
8317
8318@item Dynamic allocation
8319Allocation of memory that occurs during execution, rather than at
8320compile time or on entry to a function.
8321
8322@item Empty string
8323Analogous to the empty set in set theory, the empty string is a
8324character string of length zero.
8325
8326@item Finite-state stack machine
8327A ``machine'' that has discrete states in which it is said to exist at
8328each instant in time. As input to the machine is processed, the
8329machine moves from state to state as specified by the logic of the
8330machine. In the case of the parser, the input is the language being
8331parsed, and the states correspond to various stages in the grammar
c827f760 8332rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8333
c827f760 8334@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8335A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8336that are not @acronym{LALR}(1). It resolves situations that Bison's
8337usual @acronym{LALR}(1)
676385e2
PH
8338algorithm cannot by effectively splitting off multiple parsers, trying all
8339possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8340right context. @xref{Generalized LR Parsing, ,Generalized
8341@acronym{LR} Parsing}.
676385e2 8342
bfa74976
RS
8343@item Grouping
8344A language construct that is (in general) grammatically divisible;
c827f760 8345for example, `expression' or `declaration' in C@.
bfa74976
RS
8346@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8347
8348@item Infix operator
8349An arithmetic operator that is placed between the operands on which it
8350performs some operation.
8351
8352@item Input stream
8353A continuous flow of data between devices or programs.
8354
8355@item Language construct
8356One of the typical usage schemas of the language. For example, one of
8357the constructs of the C language is the @code{if} statement.
8358@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8359
8360@item Left associativity
8361Operators having left associativity are analyzed from left to right:
8362@samp{a+b+c} first computes @samp{a+b} and then combines with
8363@samp{c}. @xref{Precedence, ,Operator Precedence}.
8364
8365@item Left recursion
89cab50d
AD
8366A rule whose result symbol is also its first component symbol; for
8367example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8368Rules}.
bfa74976
RS
8369
8370@item Left-to-right parsing
8371Parsing a sentence of a language by analyzing it token by token from
c827f760 8372left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8373
8374@item Lexical analyzer (scanner)
8375A function that reads an input stream and returns tokens one by one.
8376@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8377
8378@item Lexical tie-in
8379A flag, set by actions in the grammar rules, which alters the way
8380tokens are parsed. @xref{Lexical Tie-ins}.
8381
931c7513 8382@item Literal string token
14ded682 8383A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8384
bfa74976 8385@item Look-ahead token
89cab50d
AD
8386A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8387Tokens}.
bfa74976 8388
c827f760 8389@item @acronym{LALR}(1)
bfa74976 8390The class of context-free grammars that Bison (like most other parser
c827f760
PE
8391generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8392Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8393
c827f760 8394@item @acronym{LR}(1)
bfa74976
RS
8395The class of context-free grammars in which at most one token of
8396look-ahead is needed to disambiguate the parsing of any piece of input.
8397
8398@item Nonterminal symbol
8399A grammar symbol standing for a grammatical construct that can
8400be expressed through rules in terms of smaller constructs; in other
8401words, a construct that is not a token. @xref{Symbols}.
8402
bfa74976
RS
8403@item Parser
8404A function that recognizes valid sentences of a language by analyzing
8405the syntax structure of a set of tokens passed to it from a lexical
8406analyzer.
8407
8408@item Postfix operator
8409An arithmetic operator that is placed after the operands upon which it
8410performs some operation.
8411
8412@item Reduction
8413Replacing a string of nonterminals and/or terminals with a single
89cab50d 8414nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8415Parser Algorithm}.
bfa74976
RS
8416
8417@item Reentrant
8418A reentrant subprogram is a subprogram which can be in invoked any
8419number of times in parallel, without interference between the various
8420invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8421
8422@item Reverse polish notation
8423A language in which all operators are postfix operators.
8424
8425@item Right recursion
89cab50d
AD
8426A rule whose result symbol is also its last component symbol; for
8427example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8428Rules}.
bfa74976
RS
8429
8430@item Semantics
8431In computer languages, the semantics are specified by the actions
8432taken for each instance of the language, i.e., the meaning of
8433each statement. @xref{Semantics, ,Defining Language Semantics}.
8434
8435@item Shift
8436A parser is said to shift when it makes the choice of analyzing
8437further input from the stream rather than reducing immediately some
c827f760 8438already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8439
8440@item Single-character literal
8441A single character that is recognized and interpreted as is.
8442@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8443
8444@item Start symbol
8445The nonterminal symbol that stands for a complete valid utterance in
8446the language being parsed. The start symbol is usually listed as the
13863333 8447first nonterminal symbol in a language specification.
bfa74976
RS
8448@xref{Start Decl, ,The Start-Symbol}.
8449
8450@item Symbol table
8451A data structure where symbol names and associated data are stored
8452during parsing to allow for recognition and use of existing
8453information in repeated uses of a symbol. @xref{Multi-function Calc}.
8454
6e649e65
PE
8455@item Syntax error
8456An error encountered during parsing of an input stream due to invalid
8457syntax. @xref{Error Recovery}.
8458
bfa74976
RS
8459@item Token
8460A basic, grammatically indivisible unit of a language. The symbol
8461that describes a token in the grammar is a terminal symbol.
8462The input of the Bison parser is a stream of tokens which comes from
8463the lexical analyzer. @xref{Symbols}.
8464
8465@item Terminal symbol
89cab50d
AD
8466A grammar symbol that has no rules in the grammar and therefore is
8467grammatically indivisible. The piece of text it represents is a token.
8468@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8469@end table
8470
342b8b6e 8471@node Copying This Manual
f2b5126e 8472@appendix Copying This Manual
f9a8293a 8473
f2b5126e
PB
8474@menu
8475* GNU Free Documentation License:: License for copying this manual.
8476@end menu
f9a8293a 8477
f2b5126e
PB
8478@include fdl.texi
8479
342b8b6e 8480@node Index
bfa74976
RS
8481@unnumbered Index
8482
8483@printindex cp
8484
bfa74976 8485@bye
a06ea4aa
AD
8486
8487@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8488@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8489@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8490@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8491@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8492@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8493@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8494@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8495@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8496@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8497@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8498@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8499@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8500@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8501@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8502@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8503@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8504@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8505@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8506@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8507@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8508@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8509@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8510@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8511@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8512@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8513@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8514@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8515@c LocalWords: YYSTACK DVI fdl printindex